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Preface

The term emergency management can be defined as the organization and manage-
ment of resources and responsibilities for dealing with all humanitarian aspects of
emergencies or disasters, in particular preparedness, response, and recovery in order
to lessen the impact of disasters. Earthquakes, floods, terrorist acts, and catastrophic
infrastructure failures are events that cause huge physical destruction, loss of life
and property around the world. The frequency, intensity, and impact of catastrophic
events have significantly increased in recent decades. Faced with such events, public
authorities have recognized emergency response and disaster management as major
concerns in need of concerted efforts, in collaboration with business and academia.
The emergence of extremely large and complex datasets (i.e., big data) made it
possible to utilize advanced techniques to reveal patterns, trends, and associations.
Data-driven emergency rescue and response have been efficiently applied in several
recent hazardous events.

Big Data provides valuable insights into all main phases of emergency man-
agement: prevention, preparedness, response, and recovery. There are two major
sources of big data, sensor networks (e.g., earthquake detection using seismometers)
and multipurpose sensor networks (e.g., social media such as Twitter using smart-
phones), both have proved their effectiveness in emergencies such as the hurricane
Sandy, coronavirus outbreak, and so on. However, significant big data research
challenges arise because of emergency management requirements for quality of
service (e.g., highly available real-time response) and quality of information (e.g.,
reliable communications on resource availability for the victim).

The Transnational Partnership for Excellent Research and Education in Big
Data and Emergency Management (BDEM) is a research and education network
coordinated by Western Norway Research Institute. The BDEM aims through a
cooperation between Western Norway Research Institute, University of Bergen, and
six world-class universities from Hong Kong, Japan, and the USA, to establish a
long-term partnership where excellent education is to be embedded in high-quality
research in big data for emergency management. The field of data-driven emergency
management involves cross-domain terminology and methodologies and should be
carried forward by multidisciplinary and international efforts. This edited book is
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viii Preface

based on a specially designed topic on big data in emergency management by the
BDEM project team. The master level course also launched at the University of
Bergen, Norway from autumn 2017.

This edited textbook has been designed to meet the needs of individuals wishing
to pursue a research and development career in emergency management and big
data, specifically techniques for social and mobile data.

Overview of the Book

Particularly, every chapter is based on graduate lectures or research seminars
delivered by authors over the last several years for a wide variety of courses
in various universities and research venues. The feedback from participants and
colleagues at these venues has helped them to improve the text significantly.

A brief description of the contents found within each chapter of the book is as
follows:

e In the chapter “Introduction to Emergency Management,” we examine basic
concepts of emergency management and provide its brief history. In addition,
the concept of data-driven emergencies is described by considering the unique
characteristics of big data.

e The chapter “Big Data” reviews the sources of big data and their characteristics.
Further, it discusses the potential benefits of big data for emergency management
along with the technological and societal challenges it poses. Also, central
technologies for big-data storage and processing in general are reviewed, before
presenting the Spark big-data engine in more detail. Finally, the chapter explains
the ethical and societal threats that big data pose.

* Next, the chapter “Learning Algorithms for Emergency Management” deals with
the fundamental machine learning techniques to support the decision-making
processes for emergency management. Then the practices and exercises of the
learning techniques with real tweet datasets in real emergencies are discussed.

¢ Emergency-relevant data comes in many varieties. It can be high volume and high
velocity, and reaction times are critical, calling for efficient and powerful tech-
niques for data analysis and management. Knowledge graphs represent data in a
rich, flexible, and uniform way that is well-matched with the needs of emergency
management. The chapter “Knowledge Graphs and Natural-Language Process-
ing” explains the most important semantic technologies and how they support
knowledge graphs. The chapter discusses their benefits and challenges and
gives examples of relevant semantic data sources and vocabularies. The chapter
concludes with an overview of techniques for processing natural-language texts.

e Next, the chapter “Social Media Mining for Disaster Management and Com-
munity Resilience” describes the role of social media during disasters as how
platforms like Twitter and Facebook facilitate communication for both the
public and response agencies during the time-critical events. Specifically, it
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introduces the concepts of social media mining for disaster events, provides
the use-cases to mine social media for helping public and emergency services,
and describes different methods of user, content, network, context, and visual
analytics to process and analyze social media data for emergency management
and community resilience.

Human mobility modeling for emergency management plays a critical role in
guaranteeing people safety and saving people’s life. However, many traditional
techniques for regular human mobility modeling fail on emergency management,
because human mobility differs significantly from routines. The chapter “Big
Data-Driven Citywide Human Mobility Modeling for Emergency Management”
elaborates the challenges and reviews the state-of-the-art technologies to cope
with the three fundamental tasks of human mobility modeling for emergency
management.

Emergency communication networks (ECNs) are designed to provide reli-
able communications under emergent scenarios. Recently, smartphone-based
networks have attracted remarkable attention on the management of ECNs.
The chapter “Smartphone based Emergency Communication” presents the state-
of-the-art research efforts devoted to the establishment and management of
smartphone-based ECNs. The related key techniques and their significant roles
for disaster relief in ECNs are discussed. Further, the chapter also presents several
real-world applications and case studies. Finally, it summarizes the open issues
and future research directions.

Finally, the chapter “Emergency Information Visualisation” is the final puzzle
piece to complete a big picture of big data in emergency management. A good
visualization can transfer big emergency data into a way that is easier and more
comprehensive to discover underlying patterns and valuable insights, which are
useful for either other analyzing tasks or end users.

Throughout the book, cases and exercises are given to highlight certain aspects

of the covered material and to stimulate thought. The BDEM website (https://www.
bigdata.vestforsk.no/resources) also has a dedicated webpage containing various
pointers about emergency datasets, tools, and software.

Intended Audience

The book can be used at the graduate or advanced undergraduate level as a textbook
or major reference for courses on Big Data and Disaster Management.

Advanced undergraduate and PhD students and other early-career researchers
who seek to conduct research on data-driven emergency management.
Researchers, engineers, data analysts, and data managers who need to deal with
large and complex sets of data.

Besides, the goal is to help policymakers and other individuals navigate the new
data-driven emergency response landscape.


https://www.bigdata.vestforsk.no/resources
https://www.bigdata.vestforsk.no/resources

X Preface
Prerequisites

To appreciate fully the material in this book, we recommend the following prereq-
uisites:

* A basic course in R programming and related database systems.
* A sophomore-level course in data structures, algorithms, and discrete mathemat-
ics.

The organization and the contents of this edited book have benefited from
our outstanding contributors, members of the BDEM network. I am very proud
and happy that outstanding researchers agreed to join this project and prepared a
chapter for this book. I am also very pleased to see it materialize in a way as we
originally envisioned. I hope that this book will be a source of inspiration to the
readers. I especially wish to express my sincere gratitude to all the authors for their
contribution to this book.

I am grateful to the Research Council of Norway (RCN) and the Norwegian
Agency for International Cooperation and Quality Enhancement in Higher Educa-
tion (Diku) for supporting the BDEM initiative through INTPART programme.

Springer Verlag, especially Susan Lagerstrom-Fife, production editor, production
staff, and reviewers of this book in bringing out in an orderly manner.

I wish all readers a fruitful time reading this book and wish they experience the
same excitement as I did—and still do—when dealing with Big Data.

Sogndal, Norway Rajendra Akerkar
March 2020
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Glossary

Analytic hierarchy processing The analytic hierarchy process is a structured
technique for organizing and analyzing complex decisions, based on mathemat-
ics.

Anomaly detection Anomaly detection is the identification of rare items, events,
or observations which raise suspicions by differing significantly from the
majority of the data.

Cloud-based service A cloud service is any service made available to users on
demand via the Internet from cloud service provider’s servers.

Collective intelligence Collective intelligence is shared or group intelligence that
emerges from the collaboration, collective efforts, and competition of many
individuals and appears in consensus decision-making.

Community A group with a commonality of association and generally defined
by location, shared experience, or function.

Competitive intelligence Competitive intelligence is the systematic collection
and analysis of information from multiple sources and a coordinated program.
Content analytics Content analytics defines a family of technologies that pro-
cesses digital content and user behavior in consuming and engaging with content,
such as documents, news sites, customer conversations (both audio and text), and

social network discussions, to solve specific problems.

Critical infrastructure The physical structures, facilities, networks, and other
assets which provide services that are essential to the social and economic
functioning of a community or society.

Crowdmapping Crowdmapping is a subtype of crowdsourcing by which aggre-
gation of crowd-generated inputs such as captured communications and social
media feeds is combined with geographic data to create a digital map that is as
up-to-date as possible on events such as wars, humanitarian crises, or natural
disasters.

Cyber-physical system A cyber-physical system is a system in which a mecha-
nism is controlled or monitored by computer-based algorithms.

XV
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Data aggregation Data aggregation is any process in which information is
gathered and expressed in a summary form, for purposes such as statistical
analysis.

Data-driven approach A data-driven approach means it makes strategic deci-
sions based on data analysis and interpretation.

Decision-making system Decision-making system is a system for computer
applications that help individuals and organizations make choices and take
decisions, typically by ranking, prioritizing, or choosing from a number of
options.

Emergency An event, either man-made or natural, sudden or progressive, the
impact of which is such that the affected community must respond through
exceptional measures.

Emergency management system Emergency management system refers to the
legislation, regulations, plans, standards, policies, technology systems, guide-
lines, and associated reports in place to facilitate effective emergency manage-
ment across the four phases of prevention, preparedness, response, and recovery.

Emergency risk management A development approach to emergency manage-
ment focuses on underlying conditions of the risks which lead to crisis occur-
rence. The objective is to increase capacities to effectively manage and reduce
risks, thereby reducing the occurrence and magnitude of emergencies.

Event An event may be natural or caused by human acts or omissions, for
example: a cyclone, hurricane, earthquake, flood, storm, storm tide, tornado,
tsunami, volcanic eruption, or other natural happenings, and an infestation,
coronavirus outbreak, or epidemic. An explosion or fire, a chemical, fuel, or oil
spill, or a gas leak. A failure or disruption to an essential service or infrastructure.
A terrorist attack against the state or community and another event similar to an
event mentioned here.

Event detection The goal of event detection is to detect the occurrences of events
and categorize them.

Geospatial Relating to or denoting data that is associated with a specific location
or that has a geographic component to it. It can be in the form of coordinates,
addresses, or postcodes.

Hazard A potential or existing condition that may cause harm to people or
damage to property or the environment. The magnitude of the phenomenon, the
probability of its occurrence, and the extent and severity of its impact can vary.

Impact assessment The analysis of the consequences of an event, including
psychosocial, economic, natural, and built environment.

Information system Information system is a formal, sociotechnical, organiza-
tional system designed to collect, process, store, and distribute information.

Level of risk  Magnitude of a risk, or a combination of risks, expressed in terms
of the combination of vulnerability, consequence, and their likelihood.

Machine learning Machine learning is a method of data analysis that automates
analytical model building. It is a branch of artificial intelligence based on the
idea that systems can learn from data, identify patterns, and make decisions with
minimal human intervention.
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Mobile communication Mobile communication is the use of technology that
allows us to communicate with others in different locations without the use of
any physical connection. Mobile communication makes our life easier, and it
saves time and effort.

Mobile computing Mobile computing is a technology that allows transmission
of data, voice, and video via a computer or any other wireless-enabled device
without having to be connected to a fixed physical link.

Preparedness Arrangements to ensure that, should an emergency occur, all those
resources and services which are needed to cope with the effects can be efficiently
deployed.

Prevention Regulatory or physical measures to ensure that emergencies are
prevented or their effects mitigated.

Radio-frequency identification Radio-frequency identification is a method of
automatic identification that relies on storing and remotely retrieving data using
RFID tags.

Real-time sensor data  Real-time sensor data is information that is delivered
immediately after collecting from sensors. Real-time sensor data is often used
for navigation or tracking.

Real-time system A real-time system can serve real-time applications that pro-
cess data as it comes in, typically without buffer delays.

Recovery The coordinated process of supporting emergency-affected communi-
ties in reconstruction of the physical infrastructure and restoration of emotional,
social, economic, and physical well-being.

Relief The provision of immediate shelter, life support, and human needs for
persons affected by an emergency incident.

Resilience A system or community’s ability to swiftly accommodate and recover
from the impacts of hazards, restore essential structures and desired functionality,
and adapt to new circumstances.

Response  Actions taken in anticipation of, during, and immediately after a crisis
event to ensure that its effects are minimized and that individuals affected are
given immediate relief and support.

Risk The expected losses (lives lost, persons injured, damage to property, and
disruption of economic activity) due to a specific hazard. Risk is the product of
hazard and vulnerability.

Sensing data stream A sensing data stream is a sequence of digitally encoded
coherent signals used to transmit or receive information from sensors.

Sensor data  Sensor data is the output of a device that detects and responds to
some type of input from the physical environment. The output may be used to
provide information or input to another system or to guide a process.

Sensor web  Sensor web is a type of sensor network that is especially well suited
for environmental monitoring.

Situational awareness Situational awareness is the perception of environmental
elements and events with respect to time or space, the comprehension of their
meaning, and the projection of their status after some variable has changed, such
as time, or some other variable, such as a predetermined event. It is also a field of
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study concerned with the understanding of the environment critical to decision-
makers.

Smart grid The “smart grid” is basically an intelligent communications network
that overlays the electric grid making optimal decisions on allocation, routing,
utilization, and spend of electricity.

Social networking service A social networking service is an online platform
which people use to build social networks or social relationship with other people
who share similar personal or career interests, activities, backgrounds or real-life
connections.

Spatial analytics  Spatial analytics includes any of the formal techniques which
studies entities using their topological, geometric, or geographic properties.

System modeling System modeling is the process of developing abstract models
of a system, with each model presenting a different view or perspective of that
system.

System reliability  Systems reliability describes the ability of a system to function
under stated conditions for a specified period of time. Reliability is closely related
to availability, which is typically described as the ability of a system to function
at a specified moment or interval of time.

Ubiquitous computing Ubiquitous computing is a concept in software engineer-
ing and computer science where computing is made to appear anytime and
everywhere.

Volunteers People who are formally affiliated with an emergency service organi-
zation or nongovernment organization and act under the respective organizations
direction and authority.

Vulnerability Degree of loss resulting from a possible damaging phenomenon.

Wireless sensor network  Wireless sensor network refers to a group of spatially
dispersed and dedicated sensors for monitoring and recording the physical
conditions of the environment and organizing the collected data at a central
location.
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1 What Is Emergency?

In the contemporary society, various emergencies occur more and more frequently
and have threatened to human life, environmental protection, social stability, and
even political relationship of different countries around the world [14]. Indeed many
emergencies killing thousands and destroying enormous amount of properties and
infrastructure [7, 19]. For example, the 2010 and 2011 Queensland floods has caused
the economic losses about A$ 6.8 billion [36], and the economic impact of 2016
Japan’s Kyushu Island earthquake were estimated to about US$ 25 billion and US$
30 billion. This 9.0 magnitude earthquake resulted in 15,889 deaths, 6152 injuries,
and 2601 people missing and caused 127,290 building collapses, 272,788 buildings
half collapsing.! Insurance firm Swiss Re which makes this calculation every 6
months estimated the economic loss in 2017 to be US$ 306 billion, which is almost
double 2016s loss of $188 billion [50].

The World Health Organisation (WHO) defined the emergency as “an occurrence
disrupting the normal conditions of existence and causing a level of suffering that
exceeds the capacity of adjustment of the affected community.”

There is one broad consensus that emergencies are social phenomena charac-
terised by a disruption of routine and of social structure, norms, and/or values [41].
This definition implies that the severity of a disaster is more related to the extent of
the disruption of social life, than to the measurable physical magnitude of the hazard
that may have triggered the emergency.

"Wikipedia. 2011. Tohoku Earthquake. Retrieved July, 2018 from https://en.wikipedia.org/.
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Table 1 Emergency categories and sub-categories, adapted from [38]

Category Subcategory Examples
Natural e Meteorological e Tornado, Hurricane

e Hydrological e Flood, Landslide

e Geophysical e Earthquake, Volcano

e Climatological o Wildfire, Heat/cold wave

e Biological e Epidemic, Infestation
Anthropogenic e Sociological (intentional) e Shooting, Bombing

e Technological (accidental) e Derailment, Building collapse

Emergency is a sudden, calamitous event that seriously disrupts the functioning
of a community or society and causes human, material, and economic or environ-
mental losses that exceed the community’s or society’s ability to cope using its own
resources. Though often caused by nature, disasters can have human origins. The
above Table 1 shows, two taxonomies used in Europe and the United States, as well
as the traditional hazard categories listed in [18].

Furthermore, an emergency could be a major disaster or crisis that goes beyond
a small geographic space and requires help from the outside. Thus, there are four
levels of emergency:

— First (lowest) level: this is about routine events, e.g. a vehicle accident or a heart
attack in a public place

— Second level: emergencies that can be dealt with within the municipality or local
level without requiring significant resources from outside areas. This includes
severe flooding or a power outage.

— Third level: a major incident or crisis requiring regional resources and higher
levels of coordination. Examples include a airline accident.

— The fourth level: refers to a national or international disaster, an event of
such magnitude and seriousness that it can be managed only with the complete
engagement of the national government, and perhaps also international aid.
Examples include an earthquake or an act of terrorism.

Peculiar characteristics of most emergencies are its complexity and unpre-
dictability. During emergencies, unexpected problems, dynamic changes of sit-
uations or environmental and knowledge limitations often lead to the need for
improvisation. Based on an analysis of the response to the 2001 World Trade Centre
attack, the following characteristics of emergency management can be considered
as reasons for improvisation:

— Time pressures force a convergence of planning and execution

— Uncertainty is present because developments within emergencies are rarely
predictable

— The rarity of incidents limits opportunities for training and learning

— Multiple decision makers and responding organizations may negotiate while
responding to the event
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— Extreme events have very broad consequences leading to complexity, which
necessitates a need to manage interdependencies among a wide range of physical
and social systems

In spite of these complexities and unpredictability, emergency services have built
systematic approaches to deal with these uncertainties and to carry out planned and
coordinated activities in emergencies. Yet, many situations require spontaneous, ad-
hoc decisions and short-term (re-)planning and the need for skills in improvisation.
The ability to improvise is therefore a valuable asset for individuals and organiza-
tions, and is usually cultivated in emergency training and grows with experience.
Computer-based systems can support these processes, if the design is informed by
an understanding of the cognitive processes involved in responding to unanticipated
contingencies.

In this chapter, we focus on the natural emergencies, without medical emergen-
cies. Natural emergencies refer to a natural processes that occur in the ecosystem,
which can lead to the losses of stability of the social-economic system, and serious
imbalance between supply and demand of social resources [59]. A brief technical
description of the upper major natural disasters is as follows [22]:

— Tornado: is a rapidly rotating vortex or funnel of air extending ground-ward
from a cumulonimbus cloud, exhibiting wind speeds of up to 300 miles per
hour. Approximately 1200 tornadoes are spawned by thunderstorms each year
in the United States. Most tornadoes remain aloft, but a few that do touch the
ground are devastating to everything in their path. The forces of a tornado’s winds
are capable of lifting and moving huge objects, destroying or moving whole
buildings, and siphoning large volumes from bodies of water and ultimately
depositing them elsewhere. Because tornadoes typically follow the path of least
resistance, people living in valleys have the greatest exposure to damage.

— Hurricane: are cyclonic storms that begin as tropical waves and grow in intensity
and size. Tropical waves continue to progress in size and intensity to tropical
depressions and tropical storms as determined by their maximum sustained wind
speed. The warm-core tropical depression becomes a tropical storm when the
maximum sustained surface wind speeds range from 39 miles per hour to 73
miles per hour (mph).

— Flood: is an overabundance of water that engulfs dry land and property that is
normally dry. Floods may be caused by a number of factors, including heavy
rainfall, melting snow, an obstruction of a natural waterway, and other generative
factors. Floods usually occur from large-scale weather systems generating
prolonged rainfall or onshore winds, but they may also result from locally intense
thunderstorms, snow-melt, ice jams, and dam failures.

— Landslide: occurs when masses of relatively dry rock, soil, or debris move in
an uncontrolled manner down a slope. Landslides may be very highly localised
or massive in size, and they can move at a creeping pace or at very high
speeds. Many areas have experienced landslides repeatedly since prehistoric
times. Landslides are activated when the mechanisms by which the material was
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anchored become compromised (through a loss of vegetation or seismic activity,
for example).

— Earthquake: is a sudden, rapid shaking of the earth’s crust that is caused by
the breaking and shifting of rock beneath the earth’s surface. This shaking can
cause the collapse of buildings and bridges; cause disruptions in gas, electric, and
phone service; and trigger landslides, avalanches, flash floods, fires, and huge,
destructive ocean waves (tsunamis).

— Volcano: is a rupture in the crust of a planetary-mass object, such as Earth, that
allows hot lava, volcanic ash, and gases to escape from a magma chamber below
the surface. Earth’s volcanoes occur because its crust is broken into 17 major,
rigid tectonic plates that float on a hotter, softer layer in its mantle.”

— Wildfire: can be occurred by human, here we consider the naturally occur
wildfires. It can be characterised in terms of the cause of ignition, their physical
properties, the combustible material present, and the effect of weather on the fire.
Wildfires can cause damage to property and human life.

2 Emergency Management

Emergency Management is a strategic planning and process that is administered
and employed to protect critical infrastructures from severe damages when natural
or human made calamities and catastrophic even occur. Emergency management
plans are multi-layered and are aimed to address such issues as earthquakes, floods,
hurricanes, fires, terrorist attacks, and even mass failures of utilities or the rapid
outbreak of disease. Some interpretations of the term emergency management are
as follows:

— IEM is “a discipline that deals with risk and risk avoidance.” It illustrates broad
definition of the EM, since risks represent a wide range of issues, and the range of
its situations are also vast. This supports the premise that EM is essential to the
security of everyone’s daily lives and should be integrated into daily decisions
and not just called on during times of emergencies [22].

— More modern EM includes processes to exploit the modern technologies which
contribute to effectively and efficiently monitoring, response to, handle, and
process the emergencies, with integrating various resources and analysing sci-
entifically the cause and process of emergency and its negative impacts [13].

— According to the definition of the Federal Emergency Management Agency
(FEMA), the EM consists of preparing for, mitigating, responding to, and
recovering from an emergency when it happens [2].

2Wikipedia. Volcano. Retrieved July, 2018 from https://en.wikipedia.org/wiki/Volcano.
3Wikipedia. Wildfire. Retrieved July, 2018 from https://en.wikipedia.org/wiki/Wildfire.
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— EM deals with the emergency events by the serious activities such as detection,
preparation, planning, mitigation, response, and recovery [22].

The traditional approach to EM is referred to as bureaucratic or command and
control [3]. In other words, in traditional methodologies, EM has been addressed
from a single authority’s perspective. For instance, the traditional emergency
response is recognised as an approach which focuses on a strict set of norms,
and it consists of bureaucratic policies and processes where emergent norms are
not accepted [48]. Therefore, adaptation to unexpected tasks and involvement of
other groups is not recognised as the necessary factors. Also, classic approaches are
characterised by adopting a hierarchical structure. With an increase of complexity
and a decrease in the predictability of operational scenarios, the traditional EM
activities, which follow a hierarchical approach, have difficulty in following factors:
(1) needs of rapidly developing scenarios, (2) increased numbers of participants, (3)
suitable adoption of new technologies and (4) huge amounts of data collection and
analyse [35].

Whereas, a professional approach of the FEMA [4] recognises that EM is
a decentralised network of organisations that collaborate to mitigate the impacts
of emergencies. For example, local police and fire stations, public enterprises,
volunteers and government entities carry out tasks across the board of emergency
life-cycle. Also it accommodates the civilians support for recovery strategies. In
contrast to the traditional approaches, it acknowledges that public information and
resources may support emergency activities. For instance, the public is able to be
recognised as the first emergency responder because they directly experience the
event. In addition, the flexibility of professional approach allows the implementation
of its strategies to multiple types of emergencies. That means the strategies are not
constrained to one specific emergency any more [35].

The recent approaches use Internet technologies to gather and disseminate
information in emergency situations, as well as to communicate among stakeholders
[27]. There were number of websites being set up in response to emergencies in
beginning 2000s [39]. For example, a user-generated content website was used
in response to a crisis in 2004. In addition, significant activities of emergency
response have took place on MySpace, which is social networking service, during
the occurrence of Hurricane Katrina which struck the city of New Orleans in the
United States in 2005 [49]. One of the earliest famous cases of people using the
micro-blogging service such as Twitter in an emergency is severe wildfires that
took place near San Diego, California in 2007. Since then, it has become common
practice for affected people and concerned others to use Twitter to communicate,
ask questions, collect and spread information, and organise response efforts (among
overall tasks) [16, 26, 47, 53, 54, 56]. On the other hand, with the Gartners’
hype-cycle 2014, the Internet of Things (IoT) has just reached the top of public
awareness and focus. Although it is entering the phase of disillusion, there is a clear
longstanding technological trend that will affect the amount and type of information
that is available in EM. In fact various research projects in the EM domain rely upon
such open geo-spatial services and IoT paradigms and varied possibilities it provides
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in visualising, analysing, and predicting emergencies [55]. For example, TRIDEC*
focuses on new technologies for enable intelligent information management in real
time in order to efficiently find, merge, evaluate, and manage huge amounts of
information and data for EM.

Moreover, in a response and recovery situation, numerous actors will be on site.
The emergency management services have “specific responsibilities and objectives
in serving and protecting people and property in emergency situations”. Emergency
management services “include agencies such as civil protection authorities, police,
fire, ambulance, paramedic and emergency medicine services, Red Cross and Red
Crescent societies, and specialized emergency units of electricity, transportation,
communications and other related services organizations.” The following broad
types of emergency management services can be identified:

First responders

— Governmental agencies or bodies
— Non-government organisations
Businesses

— Media.

3 Emergency Management in Social Media Age: Information
Flows

Social media platforms, including Twitter, Youtube, Foursquare, and Flickr have
been contributing significantly to emergency management. Geotagged social media
data can be collected by streaming harvest from the APIs provided by the social
media firms. Social media services have contributed significantly to emergency
management as a tool to communicate information during emergencies. There
are many ways of using social media in emergency management, including data
collection, analytic workflow, narrative construction, crisis related information
extraction, geolocation pattern/text/image analytics, and the broadcasting of infor-
mation through social media platforms.

By supporting both directions of information flow, it will be better positioned to
study the full impact of the entire communication between public authorities and
citizens via social media tools, apps and platforms.

Considering the citizen-to-authority (C2A) interaction, citizens can share infor-
mation, for example, through social media channels as normal but with the
knowledge that their contribution may help ES. All information sent by citizens on
social networks selected by the emergency response system will be usually filtered

4TRIDEC: Collaborative, Complex and Critical Decision-Support in Evolving Crises, http:/www.
trideconline.eu.


http://www.trideconline.eu
http://www.trideconline.eu

Introduction to Emergency Management 7

and gathered. The processing and analysis system skims the list of messages in order
to retrieve concise and accurate information to be communicated to ES.

Although emergency response systems are usually not equipped for social media,
they use interoperability alerting protocols through which they can delegate the
Authority to Citizen (A2C) communication to the system. In this way, emergency
response systems can be both uncoupled from social media and yet able to use it for
the broadcast of messages. The social media information to be shared by the system
adapts CAP-format messages. The emergency response system extracts information
from alerting messages and routes them toward social media using available APIs.
Citizens therefore both read and feed social media information during an emergency.

4 Emergency Management using Big Data

Undoubtedly, Big Data has opened new options for natural EM, primarily because
of the varied possibilities it provides in visualising, analysing, and predicting
emergencies. In this regard, emerging technologies associated with levering this new
ecosystem of Big Data to monitor and detect emergencies, mitigate their effects,
assist in relief efforts, and contribute to the recovery and reconstruction processes
are critical [57].

However, stakeholders who try to apply Big Data technologies to EM are facing
the biggest challenges to manage large volumes of data exponentially generated at
emergency. Due to huge amount of data, traditional data storage and processing
techniques are very difficult to fulfil performance in aspects of real-time processing,
scalability and availability [21]. As shown in Fig. 1, in addition to the techniques,
analytics to extract useful data and information from the huge data are particularly
challenged due to the combination of following unique characteristics (5 Vs such as
volume, variety, velocity, veracity and value) of Big Data.

— Vast data generated by a huge number of the people who affected or related to
emergency,

— The high time sensitivity due to data and events which must be detected and be
responded in real time,

— Integration techniques of static and dynamic data (e.g., maps and crowd
emotion) which are essential for effective and efficient EM [33, 46],

— Heterogeneous data ranging from raw data (e.g., sensors) to structured and
unstructured data (e.g., metadata and multimedia) [42],

— Disparate levels of trustworthiness of the data sources (e.g., newspaper,
government data and rumour in social media) [23] and

— Valuable information that may be extracted from data created by people who
are affected by emergency event in real time, via crowdsourcing [32]
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Volume
Vast data
generated by a
Value huge number ay/alocity
of people
Valuable High time
information that sensitivity to need
is generated by to handle data
actual affected in real time
people
Veracity Variety
Disparate levels Heterogeneous
of trustworthiness data (e.g., meta-
of data sources data, sensors and
multimedia)

Fig. 1 Characteristics of emergency data according to the 5 Vs of big data

5 Tasks in Data-Driven Emergency Management

The concept of data-driven EM became common that uses a number of emerging
technologies—e.g., big data analytics, participatory crisis mapping, crowdsourced
translation, social media, and mobile technology. For successful data-driven EM,
it is essential a variety of tasks based on an appropriate technologies (ML, DL
and AI) within across the three phases (i.e. pre-/in-/post-emergency). Figure 2
shows the tasks for which the vary techniques of ML to be used, in each phase of
emergency life-cycle. In the phase of “pre-emergency”, the occurrence of potential
emergency is predicted and early informed. For “in-emergency” stage, events caused
are detected and tracked, and situational awareness are conducted using collected
data to response the events or relief the affected people. The “post-emergency”
phase is also important. In this stage, evaluating the loss caused by the events
and the execution of response are carried out for the effective restoration and the
preparation of next emergency. Moreover, as the usage of social media is growing,
crowdsourcing-based approaches are attracting more attention to recover from an
emergency and simultaneously adjusting distribution of volunteer efforts.

— Event prediction can achieve forecasting potential emergencies using technolo-
gies and interpretation methods which extract inherent feature or pattern of
an emergency [37]. Although there is still no prediction method with perfect
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Fig. 2 Tasks of emergency
management in emergency
life-cycle [Source: BDEM?]

Event

Crowdsourcing Pradiction

Data Collection
Data Filtering
Data Integration

Emergency
Evaluation

Event
Detection &
Tracking

Situational
Awareness

In-emergency

accuracy, it is one of the most important tasks since early detection of the
emergencies makes us prevent or avoid many dangerous situations [15, 28, 45].

— Warning systems to detect impending emergencies can give that information
to make decision and early take actions such as prepare and evacuate people
at the before or early part of emergency [52]. These systems have significantly
improved using advanced techniques such as AI, DM and ML in recent years
than the past but they are not perfect yet [17, 40].

— Event Detection and Tracking is one of the tasks in which researchers and
practitioners have tried to apply the techniques of ML. Some events are often
associated with specific location and time, however the events may or may not be
necessarily related to the physical locations due to the online nature of collected
data [12, 43, 51].

— Situational Awareness uses social media data related to specific information
(e.g., caution, advice, donation, causalities and damage) and smart-phone which
typically mount various sensors such as camera, GPS and accelerometer to take
the appropriate decisions and actions in managing such emergency [46, 58].

— Emergency Evaluation is one of the most critical and complex tasks in EM
[14], in post-emergency, current activity outcomes (e.g., loss of resources, recov-
erability, performance and social influence) should be measured to suppress the
deterioration of next emergency. There were several tries to make measurements
for the evaluation of EM [10, 20, 34, 44].

— Crowdsourcing has being utilised by both researchers and practitioners in
EM for collecting, processing and sharing information across organisations
and affected populations. Crowdsourcing might be considered with citizen
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participation and digital neighbourhood as complementary mechanisms to give
an appropriate and sustainable response [8, 25, 30].

Valuable insight obtained from data during emergencies is highly dependent on
data and its quality [37]. Numerous amount of data will be collected in emergencies,
however, it’s a mixture of informative and non-informative data. Furthermore,
data related to emergency are gathered from multiple channels such as existing
records, sensors, satellite networks or social media. Hence, the core of Fig.2 is
data processing (i.e., data collection, data filtering, data integration and information
extraction) which is required in all the tasks in EM cycle.

— Data Collection: The Internet Technology (IT) has being arisen the innovative
collection methodologies from the traditional data collection such as the use of
processors, spreadsheets and forms to enter data directly into the databases [24].
It ranges from the automatic collecting sensors’ data (e.g., temperature, humidity
and wind strength) to gathering micro texts from blogs, SMS, email and social
media as a new way of communication in the course of emergencies [11]. In other
words, a major difference between data which is able to be collected with recent
technologies and traditional sources is the possibility of receiving feedback from
the affected people in real-time [37]. In addition to the real-time, data collection
in EM should consider the processing of gathering data which is coming from
multiple heterogeneous sources. Moreover, due to characteristic of emergency
data which is rapidly increasing, scalability and availability are also important
issues in data collection.

— Data Filtering: The objective of data filtering is removing redundant or
unwanted data from an data stream using (semi) automated or computerised
methods prior to provide it, to manage the data overload and increment of the
meaningful data. If all the emergency data were presented to the users, it would
cause an overwhelming workload. Therefore, the data should be filtered based
on the specific purposes of the users [32]. Furthermore, data quality is the key
for developing pre-emptive EM in .png environment [29]. Poor quality data
makes it difficult to assess and use for emergency services [9]. The potential of
emergency related data can be capitalised by addressing the risks of inaccurate
and redundant data [6].

— Data Integration: Emergency services sometimes should handle a massive
amount of data arriving from multiple channels such as existing records, sensors,
satellite networks or social media [1]. Hence, one of the biggest challenges in EM
is to integrate data from heterogeneous sources into one protocol for provide the
user with an unified view of data [31]. Data integration includes the following
steps: (1) converting contents of different formats into a standard format, (2)
verifying the reliability of a variety of data sources and attempt to leverage it to
produce meaningful information for emergency decision-making, (3) mapping

Shttps://www.bigdata.vestforsk.no/.
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images or texts with the corresponding geo-locations to better capture the current
situation and (4) processing and analysing the unified data for the proper purposes
[32].

Big Data is a great global opportunity for emergency management. Big data has
already demonstrated its usefulness for both dedicated sensor networks (e.g., earth-
quake detection during the earthquake) and multi-purpose sensor networks (e.g.,
social media such as Twitter). However, significant research challenges remain,
particularly in the areas of Variety of data sources and Veracity of data content,
which will be discussed in this book. Big Data and emergency management’s latest
growing relationship opens up new career opportunities also for those who want to
find innovative ways to help others.
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1 What Is Big Data?

There is already much more data available on the internet than humans can
meaningfully process. Spread out among this data may lie central keys to prevent
and better manage emergencies. To unlock the knowledge they contain, big data sets
must become effectively processable by machines and the results easily interpretable
for humans [2].

Big data is a broad term with many related meanings on the technical, computing,
data, and usage levels. On the technical-infrastructure level, big data has often been
used about data collections that are too large to be straightforwardly handled with
traditional mainstream data-processing techniques and tools. Starting in the 2000s,
big internet companies like Google, Amazon, and Facebook found they needed new
ways and new software tools to store and process the enormous data collections they
were amassing at the hearts of their businesses. The result was a new generation of
distributed technologies we will review later in this chapter: file systems such as
HDFS; grid and cloud technologies such as Amazon’s Web Services (AWS); big-
data stores such as Cassandra; and big-data processing engines such as Spark.
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On the computing level, big-data computing methods also differ from past
mainstream approaches. Most importantly, they need to be highly distributed
because computing, networking, and storage demands can go way beyond the
abilities of single computers. In consequence, computing must also be fault-tolerant
because, when a distributed system consists of hundreds or thousands of computers,
failing components become the norm rather than the exception. To achieve this,
big-data computing must therefore be highly redundant, so that each computation
is carried out and each piece of data stored in several places simultaneously, and so
that computation can go on even when some of the computers, disks, or networks
fail. While solutions to each of these problems have existed for a long time, big-data
computing has brought them together in new techniques and tools and moved their
use from the fringe into the mainstream [6, 7, 10, 14].

On the data level, big data refers to “the three Vs”: data that has large
volume, arrives at high velocity, and has great variety—consisting of both structured
data, natural language, images, audio, and video [9]. While earlier mainstream
approaches could deal with two of these at the expense of the third, the ability
to support all three “Vs” at the same time is a central requirement of big data.
Two more “Vs” are that big data must be valid or true (veracity) and provide
value to users. In addition, big data aims to be exhaustive, by representing each
and every relevant phenomenon rather than just a sample. It tends to be fine-
grained, by representing every available piece of information in the life-cycle of a
phenomenon. It is indexical, in that it uses, as much as possible, standard identifiers
for phenomena, attributes, and events. It is relational, in the sense that information
about different phenomena are connected by use of standard identifiers. It is also
easily extendible to new types of phenomena, attributes and events and scalable in
size as more information is added. It is historical, by representing not just current but
also all previous states of phenomena. And it can be opportunistic, in the sense that
data is stored exhaustively, historically and in full detail because it can potentially
generate value in the future, even if it is not yet needed today [9]. Despite including
the word “big”, data size is less used as a central characteristic of big data. Although
the big global players today manage data collections in the peta- (10'°) and exabyte
(10'®) range, many smaller- and medium-sized companies find big-data techniques
essential for creating value from datasets with high variety and velocity, even when
the volumes are much smaller.

Finally, on the usage level, big data refers to new data-driven ways of man-
aging and organising private, public, and ideal enterprises. So-called data-driven
projects, businesses/organisations, and societies continuously harvest exhaustive,
fine-grained data about their inner workings and environment. They process the data
in real time, using machine learning techniques on historical data to continuously
describe and diagnose the past and present in order to optimally predict the future
and prescribe optimal actions in advance [9].
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2 Big Data Sources for Emergency Management

Several organisations provide online overviews of big and other data sources that
can be useful in emergencies. The Humanitarian Data Exchange (HDX') indexes
more than 6000 crisis-relevant data sets, searchable by features, location, format,
organisation, license, year, and general tags. CSV-tables is the most common
data format by far. PreventionWeb? offers a portal to disaster-related datasets and
sites across the globe, focussing on past disaster loss and damage, historical and
synthetic hazard catalogues, socio-economic factors that can impact vulnerability
and resilience on a local level, and exposure data about populations and buildings in
particular locations.

General open data sources can also serve as useful references in emergencies.
GeoNames® is a global database of geographical features that is searchable and
browsable through a map interface. OpenStreetMap* is similar, but provides more
detailed information about populated areas. The Humanitarian OpenStreetMap®
is an international network dedicated to humanitarian action and community
development through open mapping, for example of refugee situations, volcanic
eruptions, and ebola outbreaks. Wikipedia is an important source of open reference
data, along with its more recent sister project Wikidata® for factual and structured
data. Google Crisis Map and Person Finder’ are examples of proprietary data
resources that can be leveraged in crisis situations through well-defined interfaces.

Public authorities on the international, national, and local levels are also impor-
tant providers of reference data, for example census and map data. Many authorities
also maintain emergency-relevant data about buildings (kindergartens, schools,
hospitals, care facilities) and statistical data about their population. More sensitive
governmental data include data about critical infrastructures: water supply and
sewage, electricity, communication, roads and railways, and military installations
and operations. Some local governments may also maintain information about
vulnerable citizens that need particular assistance. In many countries, a wide variety
of emergency-related data sets are already available through portals and data hotels
such as http://data.europa.eu in the EU and http://data.gov in the US. Unfortunately,
many datasets provide only static, aggregated, historical statistics. There are fewer
live web APIs that offer minute-to-minute information.

There are also many closed (for-pay or restricted) data sources provided by
businesses and governments. Some of them have higher quality than their open

Uhttps://data.humdata.org.

Zhttp://www.preventionweb.net.

3http://geonames.org.

“http://openstreetmap.org.

Shttp://www.hotosm.org/.

Shttp://www.wikidata.org/.

Thttp://www.google.org/crisismap, http://www.google.org/personfinder.
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counterparts in terms of completeness, correctness, precision, timeliness, etc. Exam-
ples of private and semi-private companies that maintain potentially emergency-
related information are: mapping agencies (maps, buildings, critical infrastructure);
telecommunications companies (location and movement of subscribers, communi-
cation patterns, habits, pictures); transport companies (movement patterns, locations
of people and vehicles); and app providers (many of the above and more). In some
countries, previous government agencies have been privatised or semi-privatised in
recent years, making emergency-relevant data sources less accessible.

The Internet of Things (IoT) is another source of big data, whose importance
is rapidly growing [1]. There are already many times more things connected to
the internet than there are people. These things can be sensors that measure and
observe, such as a thermometer or surveillance camera, or they can be actuators
that change the state of physical things, such as an alarm or a traffic light. Many
things on the internet, such as mobile phones, can be both sensors and actuators, and
they are quickly becoming smarter. Some of them have enough processing power
and storage capacity to run heavy computing tasks locally, and others run apps
that collaborate tightly with software agents running on more powerful computers
in the cloud. As the Internet of Things continues to grow, it will offer enormous
opportunities for preventing, detecting, limiting, managing, and recovering from
emergency situations, which we discuss in the following section.

Of course, social media is another central source of big data. It is so important
that we devote a separate chapter to it. For research purposes, CrisisLex® contains
brief descriptions of downloadable emergency-related social-message collections
from the past. In a later chapter we will also discuss emergency-related datasets that
are available in semantic formats (such as RDF and OWL).

3 Big Data Benefits and Challenges

3.1 Benefits

Big-data analytics can be helpful in all phases of emergency management, from
preparation, through detection and response, to recovery [3].

For preparation purposes, big data can be used to create baseline models that
describe and diagnose (explain) normal conditions, such as the normal movement
of people and goods in a city; normal consumption of transport services, power
and water; normal geographical and meteorological conditions; and normal physical
conditions inside a building. Diagnosing these and other conditions calls for big-
data analytics because they may be highly dependent on contextual factors, not
only on the most obvious ones, such as the location, time-of-day, day-of-week, and
part-of-year, but also on weather, holidays and their types, public health situation,

8https://www.crisislex.org/data-collections.html.
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state of the economy, accidents and emergencies, culture and sports events (both
local and global, such as the football World Cup finals). Baseline models can
be used to quickly identify deviating conditions and as input to simulating likely
consequences of deviations, such as choke points or single points of infrastructural
failure. Baselines can also be used for emergency preparation and training and
for post-hoc analysis after the crisis or emergency. Baselines can be created from
measurements and physical-observations from IoT devices and from social media
sensors (see another chapter) that gauge people’s moods and concerns, augmented
with contextual information from private and public data sets, such as maps and
information about buildings, infrastructure, population, vulnerable citizens, etc.

For detection purposes, potential emergency situations can be identified early
by continuously monitoring people and their environments. In some cases, a quick
response can even prevent an unstable or crisis situation from evolving into a
full-blown emergency. Useful common sensor types include: surveillance cameras,
mobile phones, wearable devices, and social media messages that signal people
who are dangerously crammed together at a public event; all kinds of indoor heath,
humidity, temperature, and light sensors that can inform about deviations such as
break-ins, fires and leakages; positioning devices in vehicles, combined with mobile
phone positioning data, social media messages, traffic sensors, road cameras, and
live weather data that indicate traffic accidents—or increased risk of such; and, of
course, all kinds of weather sensors combined with satellite images that give the
earliest warning possible about looming deviations from normal geophysical and
meteorological conditions.

For response purposes, similar types of information can be used during an
unfolding emergency both to gain (strategic) situational overviews and (tactical)
actionable insights [3], for example using map-based visualisations and interfaces.
Information from physical and social sensors can be corroborated with open
and reference data to improve data-quality attributes such as correctness and
trustworthiness. Actuators can be repurposed to actively relieve and improve the
situation. For example, a traffic light or gated crossing can be taken out of normal
operation and instead be used to direct traffic around an affected area. Remote-
controlled drones and other vehicles can be used to collect detailed information and
to disseminate medical equipment and food. Social media and other communication
technologies can be used in a similar manner (as social actuators) to disseminate
results of big-data analysis and other information back to responders, victims, and
their families and friends.

For recovery purposes, big-data technologies can be used to make full data
traces of the emergency available for post-mortem analysis, both of the unfolding
disaster itself, of its preconditions, of the detection and response effort, and of
their impacts. Of course, emergency-data traces, when combined with physical and
social baselines and reference data also have numerous uses in the aftermath of an
emergency: for rebuilding and to prevent or prepare for similar situations in the
future.
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3.2 Challenges

Properly leveraging big-data technologies for emergency management also poses
many challenges. Most of all, big-data harvesting, preparation, curation, analysis,
and interpretation is a skill intensive process and demand for big-data competency
is vastly greater than supply. Recruiting people with the right competencies, both as
professional emergency workers and as volunteers, is therefore a challenging task.
Global networks-of-networks are in place for recruiting, training, and coordinating
volunteers in various types of emergency and environment related activities, for
example in global-mapping activities or satellite-image analysis. Subnetworks of
volunteers with competencies in big-data analytics are called for.

Auvailability of computing infrastructures is a also an issue, both at the emer-
gency site and remotely. Cloud computing makes it feasible to create big-data
infrastructures in advance. After they have been set up and tested, the cloud
resources and services can be paused until an emergency occurs. Then they can be
restarted quickly and easily scaled when computing demands increase. However,
advance-preparing for an emergency is hard. Some of the data and processing
needs that arise during an emergency will always be unexpected, and preparations
must therefore focus on flexibility and responsiveness to change. Availability of
computation and communication facilities near the emergency site can be a bigger
issue. For example, local sensor networks may be damaged or disconnected due to
network or power failure. Aerial-network drones and store-and-forward networking
are possible ways to temporarily reinstate networking capacity in affected areas.
Disseminating analysis results to the affected people is also a challenge, because
most of the techniques and tools have been developed for highly-trained scientists,
business people, and other skilled decision makes. Communicating the results
of complex big-data analyses to emergency workers, victims, and their families
and friends most likely requires different presentation techniques. In a crisis,
criminals, terrorist groups, or hostile powers may try to exploit or destabilise
the situation further. Social media, which can be used to spread disinformation
(misinformation deliberately intended to deceive), has become a well-known attack
vector. Cyberattacks are another possibility, for example to interfere with critical
computer-controlled infrastructures, to hi-jack or cut off sensors and actuators, or to
compromise the emergency-computing infrastructure itself.

Other challenges are less specific to emergency management. High-velocity
data must be collected in real time from different data sources, of different types,
in different modalities (audio, written text, images, structured data, etc.), using
different formats and access methods (social media, the web, FTP, web APIs,
etc.). Widely heterogeneous data sets must be recombined and corroborated to
create richer situational overviews and facilitate more reliable actionable insights.
The data, in particular from social media, must be filtered to clear large amounts
of noise. Trustworthiness and other quality features (timeliness, completeness, etc.)
must be assessed.

The many ethical issues of big data will be discussed in a later section.
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4 Big Data Techniques and Tools

Although it builds on theories and techniques that are much older, the big-data
wave gained momentum in the mid 2000s, when data-driven businesses and big
internet companies like Amazon, Facebook, and Google needed new ways to store
and process the rapidly growing data sets they had amassed. The result was a
new generation of techniques and tools for big-data processing that includes: cloud
and grid computing technologies, distributed file systems, new types of database
management systems, and new distributed computing engines. Many of the ideas
they build on are old, but the tools themselves are new, and big data has made their
use much more widespread.

Big data is made possible by improvements in computing power, storage
capacity, and network bandwidth [9]. In addition, new sources of large data sets
have emerged, such as social media, the Cloud/Internet of Things (IoT/ClouT), and
ubiquitous and pervasive computing. Important enablers on the computing side are
cloud and grid techniques. Grid computing lets many loosely-coupled computers
distributed across the net perform large computing tasks together. Cloud computing
leverages grids to offer highly scalable services to end-users, such as massive data
storage, powerful virtual and remote servers, big-data analysis services, and much
more.

For example, Amazon Web Services (AWS?) uses large grids to offer a wide
range of scalable storage, computation and analysis services in the cloud. AWS’
Elastic Compute Cloud (Amazon EC2'?) servers appear to their users as regular
computers accessible over the net, but they are virtual: each of them may be
running on only a small part of a physical machine, or it can run on a large grid
of machines. Virtual servers can be quickly and easily created, started, stopped,
restarted, resized, replicated, and even moved between data centres on different
continents as computing demands change. A new cloud server can be instantiated in
minutes, either as a clean Linux or Windows computer or by instantiating an existing
Amazon Machine Image (AMI) that represents a predefined computer configuration,
such as a big-data set-up designed specifically for emergency computing. There are
two common approaches to create an AMI in Linux. The first approach is to start
from an existing public AMI and modify it according to the users’ requirements. The
second approach is to build a fresh installation, either on a standalone machine or on
an empty file system mounted by loopback [8]. Amazon also offers a choice between
two types of storage services: Elastic Block Store (EBS) and Simple Storage Service
(S3), along with management services such as checkpointing and security policies.

New file systems such as the Google File System (GFS, later renamed Colos-
sus) [7] and Apache’s open-source HDFS (Hadoop Distributed File System”) are

“https://aws.amazon.com/.
10https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html.
!1See https://hadoop.apache.org/.
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able to handle big-data volumes by distributing data storage across many computers,
possibly in the tens of thousands. On these scales, data storage (and computing)
must be fault-tolerant because failing components become the norm rather than the
exception. Each big-data file (possibly of tera- or petabyte size) is therefore split
into blocks (e.g., 128 Mb each) that are stored on different computers, called data
nodes in HDFS. To achieve fault tolerance, the same block is replicated on several
data nodes (sharding). Inside a data centre, the nodes are grouped into racks that
correspond to physically co-located sub-networks of computing nodes served by
the same router. HDFS attempts to shard each block across nodes that belong to
different racks so that, if a rack becomes unavailable due to router failure or power
outage, other copies of the blocks it stores will be available from other racks. A
single name node handles client requests and keeps track of where the blocks in
each file are stored. The name node thus makes HDFS appear as a single logical
file store to client programs, although data is transmitted directly between clients
and data nodes. Communication with clients and between HDFS nodes use TCP/IP,
making it easy to include heterogeneous computing nodes in the same cluster (which
is then often called a grid). To avoid making the name node a single-point of failure,
other data nodes are continuously monitoring their name node and are always ready
to step up should it lose connection. As with many big-data technologies, HDFS is
optimised for mostly immutable files: the initial write and the subsequent reads of
a file are much faster and use less resources than updating the file after it has been
created.

The new distributed file systems quickly inspired similarly distributed database
management systems (DDBMS), designed to accommodate big-data collections
(tera- and petabytes) in a flexible way. In addition to supporting higher numbers of
data items of the same type (vertical scaling in volume), new big-database systems
also emphasise supporting rapidly evolving information needs of different types
(horizontal scaling in variety). To achieve this, they deviate in several ways from
traditional relational and SQL-based data models, giving them the name Not Only
SQL (NOSQL) databases. MongoDB uses the JavaScript Object Model (JSON)
as its data model for both storage and interaction. Google’s Bigtable [4] organises
data as sparsely populated tables, called wide-column stores, and has inspired both
Apache HBase, which runs on top of HDFS, and Apache Cassandra [10]. The latter
has become one of the most widely used big-data stores. Initially developed to
support Facebook’s messaging system, Cassandra combines features from key-value
pairs and wide-column stores. Like most NOSQL databases, Cassandra is designed
to support data replication, resilience towards failure, and ease of adding more
machines to the cluster/grid. It offers flexibility, scalability and read-orientation: like
HDFS, it is optimised for writing new data once and reading it many times, whereas
updating existing data is more costly. Unlike HDFS, however, all Cassandra nodes
are equal: they can both store data and answer client requests.

Like data storage, processing has become distributed and duplicated across
computing nodes and centres too. The original Google MapReduce [6] and Apache’s
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open-source Hadoop'? support a massively parallel three-step model of computation
called map-reduce. In the first step (map), each computer, called a worker (or slave)
node in Hadoop, sorts the input data into local files according to a key. In the second
step (shuffle), the nodes transfer temporary files between them, so that all data items
with the same key end up in the same worker node. In the third and final step
(reduce), each worker node processes the data for its keys, possibly combining its
own results with results from its neighbour nodes. For example, to rapidly identify
duplicates in a set of merged library catalogues, the map step sorts each item locally
by title, the shuffle step moves all items with the same title to the same worker, and
the reduce step decides whether pairs of items that happen to have the same title
are actually duplicates. A Hadoop worker node can be the same computer that is
also a data node in HDFS or database node in Cassandra, so that the node works on
locally stored input data in the initial map step. Otherwise, a costly input split has
to be carried out before first.

A Hadoop master node handles client requests and distributes tasks to the
workers, ensuring that redundantly stored blocks are only processed by one worker
each. Hence, in Hadoop, as in most other big-data processing frameworks, the tasks
are moved to the data. This is a shift from conventional (“small-data”) computing,
where the data was moved to the task processor. In addition, the master node is
responsible for balancing tasks between workers, taking into account their varying
processing capacities, and for reallocating tasks when a worker is slow or becomes
unavailable. Many extensions and variations of the basic map-shuffle-reduce model
have been proposed, and multiple Hadoop computations are often chained. Because
it has been so successful, Hadoop’s subsystem for resource management and job
scheduling and monitoring has been turned into a separate framework, called YARN
(Yet Another Resource Negotiator) that can be used by other big-data processing
tools as well.

These tools and their successors share a model of computing that is both highly
distributed and highly redundant, so that each computation is carried out and
each piece of data stored in several places simultaneously. On top of node-level
replication, whole data centres can be replicated (or mirrored) across continents.
Data-centre replication improves service availability and can also be used as a
content delivery network (CDN) that improves responsiveness and communication
cost by distributing services geospatially according to user locations: requests from
Chinese users can be served by a replicated data centre in Guangzhou, European
requests can be routed to Frankfurt, and so on.

In recent years, more specialised big-data technologies and tools have emerged,
many of them growing out of the HDFS/YARN/Hadoop stack. Apache Hive is a
data warehousing tool that offers an SQL-like query language on top of HDFS and
converts the queries to Hadoop, Spark (see below), or other types of big-data jobs.
Apache Kafka and Amazon Kinesis specialise in processing and storing big streams
of data, which can be produced internally in an organisation or harvested externally

Zhttps://hadoop.apache.org/.
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from the social web or the Internet of Things. Google’s Pregel [11] and Apache
Giraph'? specialise in processing and storing big graph-structured data. They have
been used, respectively, to drive Google’s PageRank algorithm [12] and Facebook’s
social network analyses. And many very large-scale applications still use good-
old SQL databases. Alongside these and many other specialised technologies, a
preferred tool for general big-data processing has emerged: Apache Spark, which
we will present in the next section.

5 General Engine for Big Data Processing: Spark

The usefulness and power of Google’s MapReduce and its successors surpassed
many expectations. But this first generation of big-data processing engines also had
severe limitations. They were batch-oriented, with jobs that could take days because
they were heavily disk-based, copying their intermediate results repeatedly to and
from disks. Their computation model was also rigid, restricted to chaining jobs that
were composed of minor variants of the map, shuffle, and reduce operations.

In the early 2010s researchers therefore sought to develop big-data processing
tools that were more interactive; that reduced disk load by relying on in-memory
data storage; and that offered a broader variety of computing primitives. The
most widely used among them is Spark [14], which is part of Apache’s big-data
ecosystem. In addition to Hadoop’s map, shuffle, and reduce operations and their
variants, Spark offers more than 80 different high-level processing operations, which
can be detailed with functions written in standard programming languages such
as Python, Java, Scala, and R. There are also Spark libraries for: connecting to
Cassandra and SQL databases; analysing large graphs (GraphX); processing live
data streams (DStream); and machine learning (MLib). Like in Hadoop, worker
nodes do most of the computing. A driver node communicates with the client and
distributes tasks to workers, whereas a cluster manager (either Spark’s own built-in
one, YARN, or another) allocates processing capacity.

A Spark computation is organised as a dataflow (or pipeline). The dataflow can
be thought of as a directed acyclic graph (DAG) where each node represents data
at some stage of processing and each edge represents a processing operation. The
data in each node is treated as a Resilient Distributed Dataset (RDD) [13], which
may contain anything from a single boolean variable to a petabyte collection of
videos: the data in an RDD can be structured like key-value pairs (maps), tables,
and graphs or unstructured like text and multimedia. But all data items in the same
RDD must have the same type, which is written RDD[type]. Because of its size,
an RDD is usually split into partitions that can be distributed across thousands of
computing nodes, where they are stored in memory and normally not copied to disk,
unless memory fills up or the user specifically requests a checkpoint to be saved.

Bhttp://giraph.apache.org/.
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Importantly, RDDs are immutable meaning, that once they have been created by a
computing operation, they never change (more about that below).

Spark operations take input from one or more nodes and may produce output
to a single node. They are divided into transformations, which take one or more
RDDs and generate a new RDD, and actions, which take one or more input RDDs
and produce either an output (that is not an RDD) or a side effect. For example,
Spark transformations are available for mapping, filtering, reducing, sampling, and
sorting RDDs in various ways, and for combining multiple RDDs using operations
such as intersection, union, and join. After each transformation, the result is always
anew RDD. Spark actions are available for counting, sampling, looping through, or
otherwise reducing large RDDs into outputs that are easier for humans to interpret
and for simpler software tools to process. Other actions are used for their side
effects, for example to cache or checkpoint an RDD or save it to a (distributed)
file system. Spark evaluation is lazy, so that a transformation in a dataflow will not
be executed until the RDDs they produce are needed, either directly or indirectly, as
input to an action.

Spark processing is resilient because both data storage and processing is highly
redundant: each part of an RDD and of a computation can be stored and processed
on several cluster nodes simultaneously. Whenever a node fails during computation,
and that part of the computation is duplicated, the computation can just go on.
Whenever a node fails that is not redundantly processed, the Spark engine instead
relies on lineage. It automatically enforces recomputation of the necessary data
from the last available checkpoints, perhaps even going back to the original inputs.
Recomputation is possible exactly because the RDDs are immutable: once created
they never change, so each later processing step can be recomputed safely.

To program using Spark, we can use languages like Python, Java, Scala, and R
along with libraries that make Spark operations and RDDs available from inside
these languages. We can also program interactively using Spark’s built-in shells for
Python and Scala. The following example is written in Scala using the spark-shell,
but the code in other languages would not be much different.

To filter Twitter data with Spark in an emergency, we first import Spark’s
DStream library and its Twitter extensions:

import org.apache.spark.
import org.apache.spark.streaming.
import org.apache.spark.streaming.twitter.

We also need to specify the credentials for our Twitter account and app, with
lines like: !>

System.setProperty
System.setProperty
System.setProperty
System.setProperty

"twitter4j.oauth.consumerKey", "..." )
"twitter4j.oauth.consumerSecret", "..." )
"twitter4j.oauth.accessToken", "..." )
"twitter4j.oauth.accessTokenSecret", "...")

14See the Apache Spark DStream and Bahir-Twitter projects. The Twitter4j library is also needed.
15To register and get credentials for a Twitter App, go to apps.twitter.com.
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We are now ready to define a dataflow that harvests tweets from Spark (although
nothing will be executed until we start the stream and specify an action):

sc.setLogLevel ( "ERROR" )
val ssc = new StreamingContext( sc, Seconds( 5 ))
val stream = TwitterUtils.createStream( ssc, None )

The first line states that the running Spark engine, represented by the built-in
Spark Context (sc) object, should only report serious errors. The second line states
that Spark should run in streaming mode, collecting a new batch of input data every
5's. The third line states that this data should come from the Twitter account we have
already specified.

The stream variable represents the series of RDDs that are input to our pipeline,
one every 5s. Each RDD in it has the Scala type RDD[Status], meaning that it is an
RDD that contains Status objects. The Status class is defined in the Twitter4;j library
to represent and process a single tweet along with its (quite extensive) metadata.'®

We can easily add more operations to our dataflow. First, we use a map
transformation to pick out the message texts from each tweet:

val texts = stream.map( status => status.getText )

This creates a new stream of RDDs of strings (type RDD[String]), which we can
loop through and output (an action):

texts.foreachRDD( _.foreach( text => println( text )))

or split (a transformation) into a stream of RDDs of single words (again of
RDD[String]):

val words = texts.flatMap( text => text.split( ~~ '' ))

which we then filter (another transformation) for hashtags:

val hashtags = words.filter( _.startsWith( "#" ))

We can easily add further operations that may extend, split or merge processing
paths. When we are finished, we can start the flow of tweets and inspect the outputs:

ssc.start

In the example, this will start extracting message texts from live Twitter messages
and output them to the console. But it will not start splitting texts into words and
filter out the hashtags, because Spark evaluation is lazy and we have not yet used
the hashtags in an action.

Finally, we stop the Spark streaming pipeline, making it clear that we want to
wait until all data in the pipeline has been processed and that we do not want to
close the Spark context permanently:

16See the introduction to Tweet JSON at developer.twitter.com and the twitterdj.Status interface in
the Twitter4j API, which Bahir-Twitter wraps around.
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ssc.stop( stopSparkContext=false, stopGracefully=true )

Of course, this small example barely scratches the surface of what a powerful big-
data framework like Spark can do. But it illustrates how just a few lines of Spark
code is enough to process social media data in ways that are potentially useful in
emergency situations. In addition to its high-level processing operations, much of
the power of Spark lies in its scaling: the above example can be run both on a single
computer on a filtered stream of tweets and, without modifications, on a cluster
of hundreds or thousands of nodes processing a fire hose of data. Of course, the
Spark configuration would have to be changed, but there are many abstract machine
images for distributed Spark freely available in the cloud, and instantiating one of
them only takes minutes.

6 Ethical and Societal Issues

The previous sections have shown that big-data analytics offer many benefits in
all phases of emergency management. New possibilities for large-scale yet precise
surveillance on demand can save lives and property in emergency situations. But if
the same surveillance is misused in everyday life, it can pose threats to individual
privacy and to society in general. Use of big data during emergencies must therefore
be carefully conducted and monitored, and a fine line must be tread between specific
emergency needs and wider ethical and societal concerns [9].

Among the ethical concerns, privacy is central. Personal information refers to
information that can be attributed to a physical person. This includes data that
contains unambiguous identifiers such as personal id numbers, names, addresses,
and birth dates, but also data that is sufficiently detailed to be indirectly attributable
to a person. A study of mobile phone-users [5] showed that knowing only four
spatio-temporal data points was enough to identify 95% of the users uniquely, and
coarser datasets did not offer much stronger anonymity. Hence, when data sets about
individuals are recombined in an emergency situation, the combined data items can
become attributable to individuals, even when the original data were not. Privacy
concerns are accentuated when the personal information is also sensitive because
it covers: age, criminal records, ethnicity, gender, health, marital status, political
opinions, race, religion, sexuality, or trade-union membership. The many dangers
of personal data in the wrong hands are well known: it can be used for blackmail,
coercion, social-engineering scams, personality theft, or sold to advertising and
insurance companies. Live personal data can even be used by organised criminals
who want to commit theft or kidnapping or by terrorist organisations for targetted
attacks.

Personal information is not the only type of information that can be sensitive.
Information about critical infrastructures is also likely to be collected and recom-
bined as part of emergency computation. Such information can be valuable to
criminals, potential terrorists, and foreign powers. Although many of the data sets
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used will be in the open, their potential value for adversaries increase when they
are recombined and augmented with temporal information that can be used, for
example, by criminals or terrorists to estimate police and other response times.

Finding the right balance between emergency needs and ethical/societal concerns
requires an appropriate combination of organisational, informational, and technical
measures. On the organisational side, sensitive data should only be made accessible
to trusted agencies with clear procedures in place for screening personnel etc. For
every data set that includes sensitive information, a steward should be appointed
with clearly-defined responsibilities. As much as possible, data should be collected
only from trusted sources, but this is not always an option—and certainly not in
the case of socially generated data. And, of course, data should only be shared with
trusted partners.

On the informational side, sensitive data should only be collected and recom-
bined in response to concrete and carefully prioritised operational and tactical
needs, even when it goes against the opportunistic tendency of big-data practice,
which stores data opportunistically—exhaustively, historically, and in full detail—
because it can potentially become valuable in the future. Data tables should be
projected to remove unneeded attributes whenever they are shared. Whenever
possible, anonymisation and pseudonymisation should be used to increase privacy,
although they cannot be considered sufficient privacy measures in their own right.

On the fechnical side, only screened and trusted data processing organisations
should be allowed to store and process the data. This applies in particular to cloud
computing providers. The processing organisations should be transparent when it
comes to where in the world—and thus under which jurisdiction—the data is stored
and processed. Techniques such as secret sharing and watermarking should be
considered to make the data more difficult to obtain and leave it traceable should
it come into the wrong hands.

Exercises

What are the three V’s of big data?

. Some people talk about two more V’s in addition to the three. Which ones?

3. What does it mean that big data are: exhaustive, fine grained, indexical,
relational, extendible, historical, and opportunistic.

4. What is a data-driven organisation (or business)? Give examples?

5. Explain the four phases of emergency management. How can big data help in
each of them?

6. Which big data sources can be leveraged in each phase of emergency manage-
ment and how?

7. Name the most central big-data technologies for: file management, database
management, and data processing.

8. What are the main improvements of Spark over Google’s MapReduce and

Apache Hadoop?

N =
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. What is an RDD and what is lineage in Spark?
10.
11.

What are the most pressing ethical and societal dangers of big data?

In the Spark example, change the code to output Named Entities (names
of individual things like people, places, organisations, and works) instead of
hashtags, assuming that named entities are always written as a sequence of
words with capital initial letters.
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Learning Algorithms for Emergency )
Management Chechie

Minsung Hong and Rajendra Akerkar

1 Machine Learning and Emergency Management

1.1 Preliminaries

Machine learning is based on algorithms that can learn from data without relying
on rules-based programming. There are many different types of machine learning
algorithms, and they are commonly grouped by either learning style (i.e. supervised
learning, unsupervised learning, semi-supervised learning, reinforcement learning)
or by similarity in form or function (i.e. classification, regression, decision tree,
clustering, deep learning, etc.). While machine learning algorithms have been
around for decades, they have attained new popularity as artificial intelligence (Al)
has grown in prominence. Specifically, deep learning models power latest advanced
Al applications.

ML has been broadly utilised to create value and insight in various fields [2],
from laboratory curiosity to a practical technology in widespread commercial use
[22]. Even though ML and Data Mining (DM) are often overlapped and use the same
methods, ML focuses on prediction while DM concentrates on discovering unknown
properties from data. ML algorithms are categorised as shown in Fig. 1.

— Supervised learning predict a class of future instances using externally supplied
instances that consists of data and a label (i.e., class). It’s objective is to model
the class distribution of the supplied instances (i.e., training set), and a classifier
based on the model is then used to predict class to a test set [27].

— Unsupervised learning directly infers the properties of this probability density
without the help of externally provided instances giving correct label or degree-
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Fig. 1 Category of machine learning. An empty circle indicates an unlabelled instance while a
filled circle presents an instance with (a) label. The rectangle of (a) means instances which are
used for model training. (a) Supervised learning. (b) Unsupervised learning. (¢) Reinforcement
learning

of-error for each observation [19]. Therefore, with unsupervised learning, it is
possible to learn larger and more complex models than with supervised learning.
There are representative methods like Apriori algorithm, k-means, and so on.

— Reinforcement learning deduces labels of instances with a dynamic environ-
ment. In other words, it uses experience gained through interacting with the an
agent in the environment state and actions’ feedback (i.e., reward), to improve
a system’s ability [2]. There are two strategies: one is to search in the space of
behaviours to find one that performs well in the environment such as genetic
algorithms, and other relies on statistical techniques and dynamic programming
methods to estimate the utility of taking actions in states [24].

1.2 Learning Algorithms and Its Usage

The objective of this chapter is to provide a broad and basic understanding about
utilises of ML in the EM, we describe the basic concepts and usage cases of ML
technologies by following its sub-categories such as clustering, neural networks,
deep learning and so on. Such structure may help to comprehensively look through
and easily compare between usage precedents of a specific ML technique for
different tasks of EM. We start with decision tree which belongs to the family of
supervised learning algorithms.

1.2.1 Decision Tree
Fundamental Concept
Decision tree is a powerful and popular tool for classification and prediction. It

is usually working top-down, by choosing a variable at each step that best splits
the set of items. The beauty of decision tree methods is the fact that they express
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................... root - top internal node

............... branch - outcome of rule

---------- internal node - decision on feature

+---- leaf node - including class label

Fig. 2 Overview of a decision tree

rules which are able to be readily understand by human [2]. Given input X =
X1, X2, ..., X, the goal is to predict a response or output variable Y. Each member
of the set is called an input variable, and the input values of a decision tree can be
categorical or continuous [16]. As shown in Fig. 2, The prediction can be achieved
by constructing a decision tree with features/rules as nodes and branches as arcs. At
each node, a decision is made to pick a specific branch and traverse down the tree.
A node without further branches is called a leaf node which represents a class label,
in some implementations, it returns a probability score. The depth of a node is the
minimum number of steps required to reach the node from the root. The path from
the root to a leaf involves a series of decisions made at various internal nodes.

Decision trees have two varieties: classification trees and regression trees. The
former tree usually apply to output variables that are categorical—often binary—in
nature, such as yes or no, purchase or not purchase and so on. On the other hand
the later tree can be used for output variables that are numeric or continuous, such
as the predicted price of a consumer good or the likelihood a subscription will be
purchased.

The objective of decision tree algorithm is to construct a tree T from a training
data set D. If all the data records in D belong to some class C, or if D is sufficiently
pure (i.e., greater than a present threshold), then that node is generated as a leaf node
and assigned the label C. The purity of a node is defined as its probability of the
corresponding class, for instance proportion of the number of nodes corresponding
a class by the number of total nodes. In contrast, if not all the records in D
belong to class C or if D is not sufficiently pure, the algorithm selects the next
most informative feature/attribute F' and partitions D according to F’s values. The
algorithm constructs sub-trees for the subsets of D recursively unit one of the
following criteria is satisfied:

— All the leaf nodes in the tree meet the minimum purity threshold.
— The tree cannot be further split with the present minimum purity threshold.
— Any other stopping criterion is satisfied such as the maximum depth of the tree.

The first step for constructing a decision tree is to choose a most informative feature.
Identifying the feature usually uses entropy-based methods which are applied to
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decision tree learning algorithms such as ID3 (or Iterative Dichotomiser 3) [36] and
C4.5 [37]. The entropy methods select the most informative feature according to two
basic measures: entropy which indicates the impurity of a feature and information
gain which presents the purity of a feature.

By limiting the number of splits, a short tree can be generated. Short trees are
often combined as components (also called weak learners or base learners) into
ensemble methods. Ensemble methods use multiple predictive models to vote, and
decisions can be made based on the combination of the votes. Recently, some
ensemble methods including random forest [34, 51], bagging and boosting [23]
which are mixed with decision trees have been used for EM. The simplest short
tree is called a decision stump, which is a decision tree with the root immediately
connected to the leaf nodes. A decision stump makes a prediction based on the value
of just a single input variable. Given a class C and its label ¢ € C, let P(c) be the
probability of c. The entropy H, of C is defined by

He=— )" P(0)log2P(c) (1

YceC

It means that entropy H, becomes 0 when all P(c) is O or 1. For a binary
classification, H, is zero if the probability P(c) of each label c is either zero or
one. On the other hand, H, achieves the maximum entropy when all the class labels
are equally probable. The maximum entropy increases as the number of possible
outcomes increases. The next step if to calculate the conditional entropy for each
feature. Given an feature F, its value f, its outcome Y and its value y, conditional
entropy Hy)r is the remaining entropy of ¥ given F, formally defined as

Hyp =Y P(HHYIF=f)== Y P() D POINognPGIf) 2
f

VfeF VyeY

And the conditional entropy is always less than or equal to the base entropy (Hy|r <
Hy). The conditional entropy is smaller then the base entropy when the feature and
the outcome are correlated. In the worst case, when the feature is uncorrelated with
the outcome, the conditional entropy sames with the base entropy. In this regard, the
information gain /r y of an feature F for its outcome Y is defined as the difference
between the base entropy and the conditional entropy of the feature as follows:

Iry = Hy — Hy|F 3)

Splits are determined using the information gain which compares the purity degree
of the parent node before a split with the purity degree of the child node after a split.
At each split, an feature which can obtain the greatest information gain is considered
the most informative feature. In this regard, the information gain indicates the purity
of an feature.
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Usages for Emergency Management

Until now decision tree algorithms such as ID3, C4.5, CART and ADTree have
been proposed for feature selection, tree pruning and data structure to improve
the generalisation capability and scalability of decision trees. Similarly, various
techniques of decision tree have been broadly applied to EM tasks such as event
prediction [13, 29, 52], early warning [6] and emergency evaluation [11, 34, 51].

Zmazek et al. applied regression and model trees to earthquake prediction, by
using radon concentration which is measured as a numeric variable within soil
gas [52]. The regression trees were implemented with WEKA which is a DM
toolkit. Inner nodes of that tree include such as temperature, barometric, pressure
and so on, while leaf nodes indicates the radon concentration in soil gas. The
model tree outperformed other regression methods such as linear regression and
instance based regression in terms of accuracy of forecasting radon concentration
for earthquake prediction. Regression tree based on MSP and association rules
technique was proposed to help in earthquakes prediction [29]. The association rules
mining was used to obtain quantitative association rules, and the M5P algorithm
was used to discover patterns which model the behaviour of seismic temporal
data. It was implemented by using WEKA. Data set including current earthquake
magnitude, occurrence time, associated b-value and magnitude of the previously
occurred earthquake are used to get four linear models, and the models then are
applied to inner nodes of model tree MSP. The leaf nodes of the tree present
three non-overlapped intervals for earthquake magnitudes. Chen et al. proposed a
GIS-based vulnerability modelling which respectively utilises Naive Bayes tree,
alternating decision tree and the kernel logistic regression, to predict the landslide
[13]. They considered 12 landslide conditioning factors such as slope aspect, slope
angle, altitude, profile curvature, plan curvature, NDVI, landuse, lithological unit,
distance to rivers, distance to roads, distance to faults and mean annual precipitation
in modelling. The kernel logistic regression classifies the data in a high-dimensional
space, and Naive Bayes tree includes Naive Bayes categorizers as leaf nodes.
Alternating decision tree combining boosting algorithm and decision tree replace
the each decision node by two nodes: a splitter node and a prediction node. Although
the goodness-of-fits and the validations of three susceptibility models were good in
the case of using all the factors, A model base on Naive Bayes tree had the highest
classification accuracy.

A binary decision tree was used to predict whether flooded or not in the pixel of
various image data in order to assess damage [11]. The results are also combined
with additional data harvested from social media. First they identify the flooded
and non-flooded regions by using graphics software, and these regions then are
used for learning a binary decision tree. The inner nodes are selected among nine
spectral bands such as coastal aerosol, optical, near-IR, shortwave-IR, cirrus, and
so on. And leaf nodes involve labels presenting whether water or not water. Pham
et al. compared spatial predictions of Random Forest (RF), Logistic Model Trees
(LMT), Best First Decision Tree (BFDT) and Classification and Regression Tree
(CART) for landslide susceptibility assessment [34]. Sixteen conditioning factors
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Table 1 Summarising decision tree for emergency management

EM task/ citation
No.

Prediction/ [52]

Prediction/ [29]

Prediction/ [13]

Evaluation/ [11]

Evaluation/ [34]

ML technique
Model tree M5

Regression tree based
on M5P

Naive Bayes tree (and
alternating decision
tree)

Binary decision tree

Logistic model trees,

Inner node

Various data related to
radon

Location and magnitude

of earthquake (linear
models)

12 landslide
conditioning factors

Nine spectral bands

16 landslide

M. Hong and R. Akerkar

Leaf node

Radon concentration

Earthquake magnitude

Predictive capabilities
of conditioning factors

Binary representing
flooded and non-flooded

Five susceptible

best first decision tree
and classification and
regression tree

conditioning factors categories

including slope angle, elevation, slope aspect, profile curvature, land cover, and so
on were considered. Although the RF model has the highest predictive capability,
followed by the LMT, BFDT and CART models, respectively, the experimental
results indicate that all four methods are good for susceptibility assessment.

Table 1 summarises the decision trees which have been applied to EM tasks. We
believe that use cases listed below help to easily understand usages of decision tree
in EM.

1.2.2 Clustering
Fundamental Concept

As one of the popular unsupervised learning, clustering analysis divides data into
homogeneous clusters that have maximal intra-class similarity and minimal inter-
class similarity. There are two main approaches to clustering, namely—hierarchical
clustering and partitioning clustering. The former do a sequence of partitions, in
which each partition is nested into the next partition in the sequence. In other words,
it creates a hierarchy of clusters from small to big (agglomerate) or big to small
(divisive). The later approach partitions the data set into a predefined number of
clusters. Figure 3 illustrates the two major approaches to clustering. Clustering is
a very useful technique when there is no pre-classified data (i.e., labelled data),
therefore it is usually performed in the pre-processing phase to generate compressed
representative of raw data for large, complex data set[12]. Since the k-means
clustering method of cluster detection is the most commonly used in practice and
is one of the oldest and simplest clustering algorithms which may still produce
good results, we describe this method here. It involves with randomly choosing &
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Fig. 3 Overview of two clustering approaches. (a) indicates a division clustering and (b) presents
k-means clusters (k = 3) as one of main techniques for a partition clustering

Table 2 Basic steps of

: . 1. Randomly select k points to be starting points for the
k-means clustering algorithm

centroids of the k clusters

2. Assign each instance to the centroid closest, forming k
exclusive clusters

3. Recalculate new centroid of each cluster by taking the
average of all attribute values of the instances belonging to
the same cluster

4. Check if the cluster centroids have changed their
coordinates

— If yes, repeat from the Step 2

— If no, cluster detection is finished and all instances have
their cluster memberships

points to be the centroids of clusters, and grouping instances around centroids based
on proximity. The centroids then are iteratively recomputed for each cluster, and
instances regrouped until there is sufficiently little change in centroid positions [2].
This algorithm depends heavily on the choice of k (which may not be obvious at all
for a particular application) and the initial positioning of centroids [1].

k-means clustering algorithm starts with an input of predefined number of
clusters, which is called k. “Means” stands for an average location of all the
members within a single cluster. To use aforesaid geometry proximity, the values
in the data set must all be numeric. If they are categorical one, they then should be
normalised in order to obtain adequate results of the overall distances in a multi-
attribute space. The k-means algorithm is a straightforward iterative procedure,
in which a vital notion is centroid. A centroid indicates a point that represent an
average position of a single cluster. That means, the coordinates of this point are
the averages of attribute values of all instances that belong to the cluster. Table 2
describes the iterative process of redefining centroids and reassigning data instances
into clusters which a small number of iterations for converge is generally needed.
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Now, we discuss the partitioning technique in detail. The purpose of clustering is
to obtain each subset whose much more similar instances belong to a same cluster.
A partition Py, P», ..., P is represented by the centroids z1, 22, ..., zx such that

x€P ©plx zi) <plx,zj),i,j=1...k, 4

where the rho function means some metrics (e.g., Euclidean, Minkowski, Cosine
or Manhattan) to measure the similarity or dissimilarity between instances. In order
to recalculate new centroids, in the k-means algorithm, the mean of the real-values
instances in the cluster P; is calculated as:

1 .
g= 2 2 (5)

" xUep,

where N; indicates the number of data points in P;. The iterative process works till
z; do not change. With the preceding algorithm, k clusters can be identified in a
given data set, but what value of k is proper for the initial step? The value of k can
be chosen based on a reasonable guess or some predefined requirement. However,
even then, it would be good to know how much better of worse having k clusters
versus k — 1 or k + 1 clusters would be in explaining the structure of the data [16].
In this regards, we can determine a reasonably optimal value of k with a heuristic
using the Within Sum of Squares (WSS) metric which means “impurity measure”
that is estimated as follows using centroids:

k N
1 . 1 .
_ U) oy — — ; ) ..
J(z1,20, ..., 2) = N E E pxY, z;) = N _Ellr;lgkp(x 2 Zi)s (6)
j=

i=1 x()ep,

where N denotes the total number of instances. If the points are relatively close to
their respective centroids, the WSS is relatively small. Therefore if k + 1 clusters
do not greatly reduce the WSS than the case with only k clusters, there may be little
benefit to adding another cluster.

Usages for Emergency Management

In EM, clustering techniques mainly concentrate on the high quality information
acquisition from a mass of raw data with redundancy and noise. Clustering is con-
ducted by multiple approaches such as partitional clustering, hierarchical clustering,
density-based clustering, grid clustering, concept clustering, self-organising map
and so on. These approaches [18, 35, 47, 49, 50] have been widely used for various
tasks in EM than decision trees.

Zhang et al. applied the particle swarm optimisation clustering algorithm to
make a earthquake prediction model, with the characteristics of abnormally high-
dimensional data [50]. The model analyses the relationship between earthquake
precursor data and earthquake magnitude. In addition the average distance between
points in clusters is set as the evaluation function. The inputs are 14 abnormal
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indexes such as belt, seismic gap and short levelling, and output is earthquake mag-
nitude. They compared the algorithm with the k-means clustering, and experimental
result showed that the proposed algorithm was superior than the k-means clustering.

Based on data collected from social media (i.e. Flickr and YouTube), self-
organizing maps and agglomerative clustering was used to detect sub-events of
emergencies by Pohl et al. [35]. They more focus on metadata than its content by
considering time limitation which can be happened in real situation (e.g., it is often
not possible to see an entire video to judge about the content in a stressful situation
like an emergency). Consequently annotations (title, description, and tags) being
established in vector space model, the GPS coordinates and the time (milliseconds)
data were used as input of the two clustering algorithms whose outputs are sub-
events. They combined Euclidean distance with the WARD link measure' shows
good performance for our data sets. The experimental results shown that the
algorithms can be used for a fast overview than the base methods.

In order to detect and track emergency events and to provides decision support
for authorities and EM services, Xu et al. proposed an emergency event detection
and opinion mining method using cross-media analytics [47]. Herein, a clustering
algorithm by fast search and find of density peaks [39] was adopted to detect
emergency events according to basic assumption that every cluster centre has a long
distance to higher density points and is surrounded by lower density points. With
comparing with k-means clustering, the clustering algorithm used by the authors
can perform better even for relatively small emergency events.

Yin et al. developed an online incremental clustering algorithm by extending the
single-pass algorithm [48] due to the fact that the conventional clustering algorithms
such as partitional and hierarchical clustering algorithms are not suitable, when
tweet contents are constantly evolving over time [49]. Their algorithm automatically
groups similar tweets into topic clusters, so that each cluster corresponds to an event-
specific topic. The topics are used for enhancing emergency situation awareness.
Their results showed that usage of Jaccard similarity achieves higher clustering
accuracy than that of cosine similarity.

Harris and Anitha utilised the fast k-means clustering to ensure the credibility
of the crowdsourced information which social media users generate along with GIS
annotation [18]. The algorithm aims to find subsets of data set for minimising the
Euclidean squared distance between initial cluster centres and current centres, It
works until to achieve to minimise within-cluster sum of squares which is a measure
of the variability of the data points within each cluster. The fast k-means algorithm
[42], the randomised cluster centres that are eliminated in the initial selection,
effectively reduce the number of iterations and time of execution.

Table 3 summarises the clustering techniques for the various tasks in EM tasks.

'Wards distance between clusters C; and C j is the difference between the total within cluster sum
of squares for the two clusters separately, and the within cluster sum of squares resulting from
merging the two clusters in cluster C;;.
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Table 3 Summarising clustering techniques for emergency management

EM task/

citation No. ML technique Basic measure Input Output
Prediction/ [50] | Particle swarm Euclidean distance | 14 abnormal Earthquake
optimization indexes magnitude
algorithm
Event detection/ | Self-organizing Euclidean distance | Vector space Sub-event
[35] maps and and WARD distance model for term,
agglomerative GPS
clustering coordinates,
time
Event detection/| Clustering Local density in Keywords on Events
[47] algorithm by fast | clusters documents
search and find of
density peaks
Situation Online incremental | Cosine and Jaccard | Terms in tweet | Topics
Awareness/ [49] | clustering algorithm| similarities stream
Crowd- Fast k-means Euclidean squared | Latitude and Incident
sourcing/ clustering distance longitude of location
[18] crowdsourced
data

1.2.3 Support Vector Machine
Fundamental Concept

Support vector machine (SVM) is a classification and regression prediction tool
that uses ML theory to maximise predictive accuracy while automatically avoiding
over-fit to the data. The foundations of SVM have been developed by Cortes and
Vapnik [14], and have gained popularity due to many promising features such as
better empirical performance.

Although the SVM can be utilised in various optimisation problems such as
regression, the classic problem is mainly that of data classification. The SVM can
be used when a classification needs are straightforward. Figure 4 shows the basic
idea of the SVM, as the two-dimensional example where the data points are linearly
separable.

The data points (samples) are identified as being positive or negative, and the
problem is to find an optimal boundary (i.e. hyperplane) that separates the data
points by a maximal margin. A location of this boundary is determined by a subset of
the data points, known as support vectors, which are overlapped with the boundary.
The two-class classification problem to be solved is the following:
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0: positive samples
QO *:negative samples

optimal

hyperplanes hyperplane

(a) The margin between a hyperplane and (b) Support vector machine with
a closest data point an optimal hyperplane

Fig. 4 Overview of a support vector machine The margin is defined as the perpendicular distance
between the decision boundary (i.e. hyperplane) and the closest of the data points, as shown on (a).
Maximising the margin leads to a particular choice of decision boundary (i.e. optimal hyperplane),
as shown on (b)

1
min —[lw]|,
Wb
s, yi=+l= W x+b>+1 o
Vi=—-1=7W x—b<-1

sit Y (W -xi) = 1,Vi

where w and b indicate a weight vector and a bias. The identification of the each
data point x; is y;, which can take a value of 4+1 or —1 (representing positive or
negative, respectively). In this regard, the solution hyperplane present as follows:

W - x; +b. (8)

As aforementioned, SVMs can be used for classification and regression prob-
lems.

— Classification in SVMs is contained in supervised learning. Known labels points
to a desired response, validating the accuracy of the algorithm, or is used for
learning to act correctly. In this regard, a step as called feature selection identifies
which features are intimately connected to the known classes. Feature selection
and SVM classification together can also be used to identify key sets that are
involved in processes distinguish the classes.

— In linear and non-linear regression problems, SVMs can also be used by the
introduction of an alternative loss function which is modified to include a
distance measure. Similarly to classification, a non-linear model is generally
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required to pertinently model data. Since, a non-linear mapping can be used to
map the data into a high dimensional feature space where linear regression is
performed, SVM is again employed to address the curse of dimensionality [40].

Usages for Emergency Management

SVMs have shown significant generalisation performance when the underlying
data is nonlinear and non-stationary. Therefore the technique has attracted wide
popularity in solving both regression and classification tasks. It is designed for
binary classification in nature, but they can also solve the multi-class classification
problems through one-against-one or one-against-all strategy. SVMs were found
effective to classify topics and relevancy of data for the EM in various researches
[4, 10, 20, 30, 41, 44].

To use a real-time nature as an important characteristic of Twitter for earthquake
event detection, an algorithm to monitor tweets and to detect a target event was
proposed [41]. It starts with a SVM-based semantic analysis on tweet to discriminate
whether a tweet is truly referring to an actual earthquake occurrence. The statistical,
keyword and word context features as input are respectively transferred into the
SVM in order to classify the emergency tweet or not, such as keywords on a tweet,
the number of words, the position of the query word and the words before and after
the query word (i.e. word context) in tweets. From experiments with two query
words earthquake and shaking, the SVM based on statistical features (the number
of words in a tweet message, and the position of the query word within a tweet)
outperforms the others.

In order to classify tweets and text messages automatically for understanding the
emergency situation better, a reusable information technology infrastructure was
developed based on the SVM which uses a sign function [10]. Its components are
(1) an iPhone application, (2) a Twitter crawler component, (3) machine translation
and (4) automatic message classification. For the fourth component, two classifiers
by keywords and SVM were implemented and compared, based on four techniques
such as the bag of word approach, feature abstraction, feature selection and latent
Dirichlet allocation. The classification via SVM based on the feature abstraction
significantly outperformed other combinations for distinguishing topics of text
messages.

To improve high reliability of judging emergency of rescue evacuation support
system which reduces the number of victims by supporting real-time evacuation
in the critical situation immediately after emergency outbreak, a new method by
buffering judgement results of SVM was introduced [20, 30]. The SVM with a
radial function uses the maximum acceleration of mobile terminal for the behaviour
analysis and emergency recognition. From the results of experiments about the
emergency evacuation with more than 200 examples, it revealed that the approach by
performing a final judgement using accumulation of a judgement result can improve
the reliability of emergency recognition.
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Table 4 Summarising SVM techniques for emergency management

EM task/ citation
No.

Event detection/
[41]

Event detection/
[10]

Event detection/
[20, 30]

ML technique(kernal

function)

SVMs (polynomial
and RBF)
SVM (sign function)

Buffering-SVM
(radial function)

Input feature(s)

statistical, keyword
and word context
features

Four representation
types of bag of words
Maximum
acceleration of
mobile terminal

Output
Positive and negative
classes

Topics

Running or not

Crowdsourcing/ SSVM (linear Tweets Emergency severity
[4] function) labelled by human
Situation SVM (radial Messages of tweets Emergency and
awareness/ [44] function) including locations non-emergency
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A system performing the collection of emergency tweets based on trending
emergency hash tags and classifying the emergency severity based on the structured
support vector machine (SSVM) using the tweets was proposed [4]. First, initial
model parameters of learning is developed by combining feature vectors as set and
pattern-label pairs are taken as input with linear kernel functions. Then the label
related to most violated constraint for the pattern is obtained and a model is created
for the classification. As a result, it is observed relatively high detection rate using
SSVM classifier comparing with Naive Bayse classifier. Table 4 summarises the
SVM techniques for various EM tasks.

1.2.4 Bayesian
Fundamental Concept

Bayesian learning applies Bayes’ rule to problems such as classification and
regression. The rule gives a relationship between the posterior probability and the
prior probability. Let D be the data record (or case) whose class label is unknown
and H be some hypothesis, such as “data record D belongs to a specified class
C.’ In this case, our purpose is finding P(H|D) for classification, and P(H|D)
is the posterior probability of H conditioned on D. In contrast, P(H) is the prior
probability of H. For instance, P (H) is the probability that any given data record is
aclass C, regardless of how the data record looks. Given P(H), P(D) and P(D|H),
the posterior probability P (H|D) is calculated by using the Bayes’ rule as follows:
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PUALIC) P(AZIC) P(4,10) T
P(An|ArL)
(a) Naive Bayes (b} Bayesian network

Fig. 5 Overview of two Bayesian approaches It shows the Naive Bayes classifier, with conditional
probabilities P (A;|C) depicted as arcs from a class variable C to an attribute A;. The dependencies
between attributes, which are missing in Naive Bayes (a), are added in the Bayesian network in (b)

P(H|D) = P(D|H) x P(H)/P(D) €))

As shown in Fig. 5, there are two popular approaches, which use the Bayes’ rule,
such as Naive Bayes and Bayesian networks.

A Naive classifier considers all properties to contribute independently to the
probability that a data record belongs to a class. Although the conditional
independence assumption is almost always violated in practice, a long history
of application shows that Naive Bayes tends to work remarkably well even when
the assumption is violated [40]. The input variables are generally categorical
data, but variations of the algorithm can work with continuous variables. The
output typically includes a class label and its corresponding probability score.
The probabilities of prior and conditional are all normally estimated on the basis
of their frequency in a training set.

Bayesian networks consist of nodes that indicate random variables, and vertices
denoting conditional probabilities between nodes. Their purpose is to provide a
computationally feasible and graphically representable way about dependencies
between attributes whose dependencies have an strong enough impact on the
solution to a particular problem, under constraints that ensure the correctness and
feasibility of computation. It can be done manually, by supplying the structure of
the network, and then training a Bayesian network is similar to training the Naive
Bayes classifier with conditionals being estimated from the data set. Learning
structure of the network presents a bigger challenge, and active researches are
still going on.
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Usages for Emergency Management

In order to distinguish “informational” from “conversational” tweets, a Bayesian
approach to the classification of tweets (posts on Twitter) during Hurricane Sandy
was introduced [46]. It is designed an effective set of features and used them as
input to Naive Bayes classifiers. Nine extracted features (i.e. “has hash tag,” “abrupt
sentence,” “multiple sentences,” “informative URL,” “has phone number,” “has
emoticon,” “has retweet,” “has keyword” and “has curse word.” And the features
then are listed in descending order based on Information Gain Ranking from the
Weka DM toolkit” to be applied the Naive Bayes classifier. The proposed feature
set provides similar results in the classification of tweets comparing with a “bag of
words” approach.

In the EmerGent project’ which aimed to develop a tool that collects, analyses
and presents emergency relevant information, they used Naive Bayes based on a
bag of words to discriminate two sets as “spam” (not relevant) and “not spam”
(relevant) [45]. Experimental results showed that 76.1% of tweet data set were
correctly labelled. In addition the Naive Bayes was performed using the statistical
analysis programme R* to classify three types: ‘safety warning, ‘flood warning’
and ‘update.’ As a result, appeared that in particular case that has the high prior
probability of one type of content, the Naive Bayes classifier was not applicable.

When an earthquake occurs, a huge amount of data is generated by social media
users and social networks play therefore a fundamental role, like a crowdsourcing,
in the development of decision support systems that could help both government
and citizens [17]. In this regard, to effectively extract and organise knowledge from
online social media data, a decision support system for earthquake management
based on Bayesian model averaging and natural language processing techniques was
proposed. The system identifies messages related to (real) earthquakes and critical
tremors, highlights those posts provided by spontaneous users and containing any
actionable knowledge about damages, magnitude, location and time references. In
this system Bayesian model averaging was utilised to identify the probability of the
labels related to emergencies, magnitude (or damages) and authors of tweets.

To address the difficulty which is not readily available for an emerging target
disaster of conventional supervised learning algorithms relying on labelled data,
Li et al. utilised the Naive Bayes based on a multivariate Bernoulli model, which
is an iterative self-training strategy, to classify hard and soft-labels and to make
a cleaner decision boundary [28]. Experimental results on the task of identifying
tweets relevant to a disaster of interest showed that the domain adaptation classifiers
are better as compared to the supervised classifiers learned only from labelled source
data. Table 5 summarises the Bayesian-based ML techniques for various EM tasks.

2http://www.cs.waikato.ac.nz/ml/weka/.
3http://www.fp7-emergent.eu/.
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Table 5 Summarising Bayesian-based ML techniques for emergency management

EM task/ citation

No. ML technique Input Output
Crowdsourcing/ Naive Bayes Nine extracted “informational” and
[46] features “conversational”
Crowdsourcing/ Naive Bayes A bag of words in Emergency and
[45] tweets non-emergency
Early warning/ Bayesian model Tweets Probability of the
[17] averaging labels related to
emergencies,

magnitude (or
damages) and authors

of tweets
Situation Naive Bayes based on | A set of words in Hard-label and
awareness/ [28] a multivariate tweets soft-label

Bernoulli model

1.2.5 Neural Networks
Fundamental Concept

Artificial Neural Network (ANN) simulates the natural intelligence of biological
brain and nervous system in human. The human brain and nervous system are
consist of a huge number of processing units called neurons interconnected with
each other. Even though each neuron is having a limited processing power and
contributes very little in decision making and solution providing, intelligence is
generated from the parallel functioning and distributed asynchronous control of
neurons in the network. In other words, simple solutions from different neurons
can be worked out in parallel and contributed into a global solution. By mimicking
of ANN toward the biological neural network, it generates human-like intelligence.

Simple functionality that comprises hardware and/or software (programming
constructs), which mimic the properties of biological neurons, is called artificial
neuron as shown like the (a) of Fig. 6. A biological neuron has cell body, nucleus
and axon in right upper of (a), similarly the artificial neuron has functionality in its
nucleus (here > (W;X;)) and n number of sensory inputs along with their weights.
The aggregated and processed input with weight is compared with a threshold value
provided with the artificial neuron (here F'). If the processed input is substantial in
comparison with the threshold value provided, the output is generated. Since there
are many real-life problems that cannot be solved with a single neuron, the use of
multiple neurons working in parallel fashion is required. These multiple neurons can
be arranged in systematic architectures (e.g., multilayer perceptron, Kohonen and
Hopfield network) to solve complex problems and intelligent decision making. The
(b) of Fig. 6 shows the multilayer perceptron architecture which contains neurons
that are arranged in various layers such as input layer, hidden layer and output
layer. Neurons of the input layer directly take normalised environmental values
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dendrite nucleus
axon
e

—
Wi cell body

input layer  hidden layer output layer

input parameters
output opportunities

Fig. 6 Overview of an artificial neural network. (a) Artificial and biological neuron. (b) Multilayer
architecture of neural network

Table 6 Operating of a multilayer ANN

1. Determine parameters with sufficient number of neurons/nodes to accommodate these
parameters

2. Determine all output opportunities (i.e., the number of neurons in the output layer)

3. Take one hidden layers containing average number (average of total input plus total
output neurons) of nodes

4. Connect the network architecture properly and randomly provide weights to every
connections for an initial step

5. Collect training data sets containing input values as well as output values
6. Repeat the following steps for all training data sets

— Provide input from the environment and actual output in the training data, as a forward
pass

— Compare the calculated output with actual output in the training data and find out the
error (i.e., difference between them) according to the well-known back-propagation
algorithm. Propagate the error back for a backward pass to generalise the weights of the
network

— Adjust the weights and recalculate til you get correct according to the training data. As
the generalised weights according to the training set, the network is able to give
meaningful output

7. Use the architecture for the real input values for which output is required

without processing function. In the case of output layer, neurons are enriched
with application-specific output functions. Similarly neurons of a hidden layer have
appropriate activation functions. Each neuron from a given layer is connected with
every neuron of its adjacent layer in forward direction. Table 6 shows the simplified
steps how the architecture operates.

This learning algorithm transfers the input values into forward direction (i.e.
forward pass), compares the calculated outputs with the actual outputs in training
set, calculates the error value and propagates the error back (i.e. backward pass).
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Quality of the network generally depends on the quality of the sample data. To test
the network, similar data called validation set is used.

Usages for Emergency Management

As aforesaid, ANN as an information processing paradigm inspired from the
biological neural network to deal with nonlinear complex problems that are difficult
for conventional computations. ANNs with different architectures [25, 26, 31, 38]
have been used in various tasks of the EM.

For predicting earthquakes occurring in the region of Greece with the use
of different types of input data, a multilayer feed-forward network and back-
propagation was studied [31]. The authors considered two different case studies:
the prediction of the earthquake magnitude of the following day and the prediction
of the magnitude of the impending seismic event following the occurrence of pre-
seismic signals. The signals called as Seismic Electric Signals (SES), that are
believed to occur prior to an earthquake. Three network models were presented
based on the SES’s flowing directions (i.e., North-south and East-west) and an
average magnitudes for the previous 30 days as input for the network. These models
make outputs such as earthquake magnitudes (and time lag) by passing through
hidden layers that consist of five or ten neurons. The accuracy rate of the magnitude
prediction as 84.01% was high, and the corresponding rates from the prediction of
both magnitude and time lag were 83.56% for magnitude and 92.96% for time lag.

Similarly, to predict earthquake in Chile region, Reyes et al used the feed-forward
neural network with back-propagation [38]. Their method receives five b-values
from Gutenberg-Richter and Omori/Utsu laws that are strongly correlated with
seismicity, as inputs, and it passes the input into hidden layers containing fifteen
neurons to predict a maximum magnitude. It also provides the probability that an
earthquake of magnitude larger than a threshold value happens, and the probability
that an earthquake of a limited magnitude interval might occur, both during the next
5 days in the areas analysed. By means of statistical tests and compared with well-
known ML classifiers such as K-nearest neighbors, SVM and k-means clustering,
the proposed method has showed the high success rate.

Kim et al. proposed a time-dependent surrogate model of storm surge based on an
multilayer feed-forward network and backpropagation with synthetic simulations of
hurricanes [25]. The ANN pass six input hurricane parameters (Longitude, latitude,
central pressure, moving speed of storm, heading direction and radius of exponential
scale pressure) into a hidden layer which consists of 16 25 neurons to predict
a normalised surge water level. Experiment results showed that the developed
surrogate model is validated with measured data and high-fidelity simulations of
two historical hurricanes at four points in southern Louisiana.

A seismic system based on an ANN was introduced to collect data from
personal/private smart-phone sensors and analyse earthquakes using the collected
data [26]. Sensor data such as the acceleration vector sum, the maximum zero
crossing rate and the cumulative absolute velocity of the acceleration vector sum are
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Table 7 Summarising ANN techniques for emergency management

EM task/
citation No. | ML technique Input layer Hidden layer Output layer
Prediction/ | Multilayer SES-NS, Five or ten Earthquake
[31] feed-forward SES-EW and neurons magnitude
network and average
backpropagation | magnitudes for
the previous 30
days
Prediction/ | Feed-forward Five b-value of Fifteen neurons Earthquake
[38] neural network Gutenberg- magnitude
with Richter and
backpropagation | Omori/Utsu laws
Prediction/ Multilayer Six hurricane From 16 to 25 Normalised surge
[25] feed-forward parameters neurons water level
network and
backpropagation
Early ANN Acceleration Five neurons Earthquake and
warning/ sensor data from non-earthquake
[26] smart phones

carried into a hidden layer consisting of five neurons to predict whether earthquake
occurrence or not. It showed that smart-phones can record magnitude 5 earthquakes
at distances of 10km or less. Table 7 summarises the ANN techniques for various
EM tasks.

1.2.6 Deep Learning
Fundamental Concept

Since 2006 [21], deep learning or hierarchical learning has emerged as a new
area of ML research [8]. Although there are various definitions or high-level
descriptions of deep learning, common among them are two key aspects: (1) models
involving multiple layers of nonlinear information processing; and (2) supervised
or unsupervised learning methods of feature representation at successively higher,
more abstract layers.

The popularity of deep learning today are the drastically increased by following
three import reasons:

— the drastically increased chip processing abilities (e.g. GPGPUs)
— the significantly increased size of training data
— the recent advances in ML and information processing research.

Before appearing deep learning, most ML techniques had exploited shallow-
structured architectures which typically include at most one or two layers of
nonlinear feature transformations. Even though the shallow architectures have been
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Fig. 7 Overview of a deep

neural network input hidden hidden output
layer layer 1 layer n layer

shown effectiveness in solving many simple or well-constrained problems, their
limited modelling and representational power can lead to difficulties to deal with
more complicated real-world applications such as human speech, natural image etc.

In a same vein with ANN, deep learning techniques mimic the human infor-
mation processing mechanisms which suggest the need of deep architectures for
extracting complex structure and building internal representation. Historically, the
concept of deep learning originated from ANN research. As shown in Fig.7, deep
learning refers to a rather wide class of ML techniques and architectures using the
many layers of non-linear information processing [15]. Therefore, a deep learning
significantly improves the modelling power and creates many closely optimal
configurations. Even if parameter learning is converged in a local optimum, the
resulting deep learning can still perform well since the probability of having a poor
local optimum is lower than the case of using a small number of neurons in the
network. By using deep and wide neural networks, however, deep learning costs
great demand to the computational power during the training process.

Depending on how the architectures and techniques are intended for use, deep
learning can broadly be categorise most of the work into three major classes [15]:

— Deep networks for unsupervised learning are intended to capture high-order
correlation of the observed data for pattern analysis (or synthesis purposes) when
no information about target class labels is available. Unsupervised feature or
representation learning is involved in this category.

— Deep networks for supervised learning directly provide discriminative power
for pattern classification purposes by characterising the posterior distributions
of classes conditioned on the observed data. They are also called discriminative
deep networks.

— Hybrid deep networks whose a goal is discrimination provide outcomes of
generative or unsupervised deep networks. It can often be achieved by better
optimisation or/and regularisation of the deep networks in the second category.
The goal can also be accomplished when discriminative criteria for supervised
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learning are used to estimate the parameters in the unsupervised deep networks
of the first category.

Usages for Emergency Management

In the EM domain, most of deep learning techniques distinguishing images such
as the post from social media and the imagery from unmanned aerial vehicles have
been exploited the task of the emergency evaluation (e.g., damage and informative
level) [3, 5, 7, 32, 33].

A VGG16 technique as the convolutional neural networks (CNNs) was used in
order to improve the capability of the evaluation task from a large proportion of
web crawling images including irrelevant or redundant [32, 33]. A proposed image
processing pipeline based on the deep learning automatically detect and filter out
images that are not relevant or do not convey significant information for crisis
response and management. The 224 x 224 RGB images from social media are
inputted for the deep neural network and pass through the hidden layer which
consists of 13 convolutional and three (and two) fully connected layers. As a result,
three damage levels (i.e. severe, mild and none) as the output are annotated for the
images. Their experimentation indicated the utility of the proposed pipeline based
on the deep learning technique, in a number of real-world emergency datasets from
social media and web service (i.e. Google image data).

Attari et al. proposed Nazr-CNN, a deep learning pipeline for object (i.e. build-
ing) detection and fine-grained classification in images acquired from unmanned
aerial vehicles for damage assessment and monitoring [5]. In order to discriminate
between different levels (i.e. mild, medium and severe) of damage, the pipeline
comprises of two components: (1) the object localisation by carrying out a pixel-
level classification and (2) the hidden layer of CNN consisting of 14 convolutional
and three fully connected layers for encoding fisher vectors* of the segments
generated from the first component. Experimental results presented that Nazr-CNN
performs relatively better and improves on mild and severe classes than the baseline
semantic segmentation.

In order to filter the redundant or irrelevant of an overwhelming amounts of
imagery content on social networks within minutes of a disaster hit generated by
people, areal-time social media image processing pipeline that combines human and
machine intelligence was proposed by Alam et al. [3]. The CNN technique based on
VGG16 as the machine intelligence are utilised to capture and filter the relevancy of
the social media imagery content, for emergencies. Some their experiments showed
that the deep learning technique provide almost perfect performance for the binary
classifier stemming from the fact that relevant and irrelevant images.

4In Computer Vision, a Fisher Vector is used to describe an entire image for image classification
[43].
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Table 8 Summarising deep learning techniques for emergency management

EM task/ citation

M. Hong and R. Akerkar

No. ML technique | Input Hidden layer Output
Evaluation/ CNN (VGG16 |224x224 RGB 13 convolutional | Damage level
[32, 33] and VGG16- image from and three (two) (severe, mild

fine-turned)

social media

fully connected
layers

and none)

Evaluation/ [5] Nazr-CNN Images from 14 convolutional | Damage level
(VGGL16) unmanned aerial | and three fully (mild, medium
vehicles connected layers | and severe)
Evaluation/ [3] CNN 224x224 RGB 13 convolutional | Events
(VGG-16) image from and three fully
social media connected layers
Evaluation/ [7] CNN 64 x 64 pixels nine Damage level
(SqueezeNet) | images from convolutional (washed away,
radar Earth and two fully collapsed and
observation connected layers | slightly
satellite damaged
regions)

For real-time decision making in disaster relief using building damage mapping,
One of CNN techniques was introduced [7]. First a selection algorithm is based
on the SqueezeNet® network to swiftly distinguish between built-up and nonbuilt-
up regions, and a recognition algorithm with a modified wide residual network
then classify the built-up regions into wash away, collapsed and slightly damaged
regions. The deep network involves the nine convolutional and two fully connected
layers as a hidden part. Experiments on data sets about the 2011 Tohoku earthquake
and tsunami area showed that the proposed framework based on the deep learning
technique is operational and fast in training and prediction calculations.

Table 8 summarises the deep learning techniques for evaluation task in EM.

2 Practices of Learning Techniques in Emergency
Management

2.1 Data Sets

In order to practice learning techniques in EM, we use social media data collected
in August 2017, when Hurricane Harvey hit the United States. Hurricane Harvey is
a category 4 storm that hit Texas on August 26, 2017. According to the National
Hurricane Center (NHC), it had caused a total estimated economic cost of $125

3SqueezeNet: https://github.com/DeepScale/SqueezeNet.
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billion and death estimates between 68—89 as reported by the NHC and National
Oceanic and Atmospheric Administration.® Analysis of the Kinder Institute showed
that almost 30% of Houston’s population has been impacted by the storm.” The
social media dataset used for these practices consists of over 8.5 million tweets
that were extracted using the keywords “Harvey” and “hurricane Harvey.” These
tweets data covers a period of three days August 27th through the 29th, 2017.
Since, most of the tweets in the data set has not geo-tag, we had implicitly encoded
their geographic using relevant messages and their physical addresses. It can be
find on and downloaded from the website of the BDEM project.® In addition,
data sets extracted and filtered for following practices also are shared. There are
five R programming examples of learning techniques for EM on this section. We
hope these examples can help to more easily understand the theoretical descriptions
aforementioned and applying them to real situations. An usage way of R language
and Rstudio!? are not described in here, since it is out of scope of this book.

2.2 Decision Trees in R

In R, rpart is for modeling decision trees, and an optional package rpart.plot enables
the plotting of a tree. The rest of this section shows an example of how to use
decision trees in R with rpart.plot to predict whether a tweet related to demand of
people in emergency. Data set!! used here includes one relevance column and three
factors such as topic of tweets, release data of the tweets and the number of retweet.
We start with initialising the used packages.

library(rpart
Tibrary(rpart.plot

The working directory contains a comma-separated-value (CSV) file named
DTdata.csv. The file has a header row consisting of four attributes such as Topic,
TWDate, RTNumber and Demand, and 27 rows of training data. Demand would
be the output variable as the predicted class, and the others would be the input
variables. In R, read the data from the CSV file in the working directory and display
the content.

Shttps://www.nhc.noaa.gov/data/tcr/AL092017_Harvey.pdf, accessed on July 27th, 2018.

7https://ricegis.maps.arcgis.com/apps/Cascade/index.html?appid=
6ea5082d69484c7a922bd 18705atbf85, accessed on July 27, 2018.

8https://www.bigdata.vestforsk.no/.
9Download-link:https://www.r-project.org/.
19Download-link:https://www.rstudio.com/products/rstudio/download!.
https://bdem.squarespace.com/links/#links-home.
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won

demand_decision <- read.table("c:/DTdata.csv", header=TRUE, sep=",")
demand_decision[1:10,]

demand_decision[1:10,]
Topic TwWDate RTNumber Demand

v

1 Damage 8/27/2017 3 No
2 Damage 8/27/2017 1 No
3 Dpamage 8/27/2017 2 No
4 Damage 8/27/2017 2 No
5 Damage 8/27/2017 1 No
6 Damage 8/28/2017 2 No
7 Damage 8/28/2017 1 No
8 Damage 8/28/2017 1 No
9 Dpamage 8/28/2017 1 No
10 pamage 8/28/2017 1 No
Display a summary of demand_decision.
> summary (demand_decision)
Topic TwDate RTNumber Demand
Clothes: 2 8/27/2017: 5 M™in. : 1.00 No :17

Damage :14 8/28/2017: 8 1st Qu.: 1.00 Yes:10
Food : 4 8/29/2017:14 Median : 1.00

Power : 2 Mean : 4,63
water : 5 3rd Qu.: 2.50
Max. :76.00

The rpart function models recursive partitioning and regression trees[9]. The
following code shows how to use the rpart function to construct a decision tree.

fit <- rpart(pemand ~ Topic + TwDate + RTNumber,
method = "class”,
data = demand_decision,
control = rpart.control(minsplit = 1),
parms = Tist(split = 'information'))

The rpart function has four parameters. The first parameter is the model
indicating that attribute Demand an be predicted based on the others such as Topic,
TWDate and RTNumber. The second parameter, method, is set to “class” telling R it
is building a classification tree. The third control parameter is optional and controls
the tree growth. In the preceding example, control=rpart.control (minsplit = 1)
means that each node should have at least one observation before splitting nodes.
The minsplit = 1 marks sense for the small dataset, but for larger dataset minsplit
could be set to 10% of the dataset size to combat over-fitting. Besides minsplit,
other parameters are available to control the construction of the decision tree. For
instance, repart.control (maxdepth = 10, cp = 0.001) limits the depth of the tree
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to no more than 10, and a split must decrease the overall lack of fit by a factor of
0.001 before being attempted. The last parameter (i.e. parms) indicates the purity
measure being used for the splits. The value of split can be either information (for

using the information gain) or gini (for using the Gini index).
Enter summary(fit) to produce a summary of the model built from rpart.

> summary (fit)

call:
rpart(formula = Demand ~ Topic + TwWDate + RTNumber, data = demand_decision,
method = "class"”, parms = list(split = "information™), control = rpart.cont
rol(minsplit = 1))
n= 27
cP nsplit rel error xerror xstd
1 0.70000000 0 1.0 1.0 0.2509242
2 0.06666667 1 0.3 0.4 0.1845916
3 0.01000000 4 0.1 0.4 0.1845916

variable importance
Topic  TwDate RTNumber

48 34 18
Node number 1: 27 observations, complexity param=0.7
predicted class=No expected Toss=0.3703704 P(node) =1
class counts: 17 10

probabilities: 0.630 0.370

Teft son=2 (14 obs) right son=3 (13 obs)

Primary splits:
Topic splits as RLRRR, improve=10.774460, (0 missing)
TwDate  splits as LLR, improve= 9.421343, (0 missing)
RTNumber < 41 to the left, -+improve= 1.026256, (0 missing)

surrogate splits:

TwDate splits as LLR, agree=0.889, adj=0.769, (0 split)
RTNumber < 4.5 to the left, agree=0.630, adj=0.231, (0 split)

Node number 2: 14 observations
predicted class=No expected Toss=0 P(nhode) =0.5185185

class counts: 14 0

probabilities: 1.000 0.000

Mode number 3: 13 observations, complexity param=0.06666667
predicted class=Yes expected Toss=0.2307692 P(node) =0.4814815
class counts: 3 10
probabilities: 0.231 0.769
Tleft son=6 (7 obs) right son=7 (6 obs)
Primary splits:
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Topic splits as R-RLL, improve=2.242297, (0 missing)

TwDate splits as -LR, improve=1.615919, (0 missing)

RTNumber < 5.5 to the right, improve=0.420827, (0 missing)
surrogate splits:

RTNumber < 1.5 to the right, agree=0.615, adj=0.167, (0 split)

Node number 6: 7 observations, complexity param=0.06666667
predicted class=Yes expected Toss=0.4285714 P(node) =0.2592593
class counts: 3 4
probabilities: 0.429 0.571
left son=12 (1 obs) right son=13 (6 ohs)
Primary splits:

TwDate splits as -LR, improve=0.96127170, (0 missing)
RTNumber < 5.5 to the right, improve=0.96127170, (0 missing)
Topic splits as ---LR, improve=0.02900404, (0 missing)

Node number 7: & observations
predicted class=Yes expected Toss=0 P(node) =0.2222222

class counts: 0 6

probabilities: 0.000 1.000

Mode number 12: 1 observations
predicted class=No expected loss=0 P(node) =0.03703704

class counts: 1 0

probabilities: 1.000 0.000

NMode number 13: 6 observations, complexity param=0.06666667
predicted class=yes expected 10ss=0.3333333 P(node) =0.2222222
class counts: 2 4

probabilities: 0.333 0.667

Tleft son=26 (3 obs) right son=27 (3 obs)

Primary splits:
RTNumber < 1.5 to the left, -improve=1.9095430, (0 missing)
Topic splits as ---LR, improve=0.1834501, (0 missing)

Node number 26: 3 observations
predicted class=No expected loss=0.3333333 P(node) =0.1111111

class counts: 2 1

probabilities: 0.667 0.333

Node number 27: 3 observations

predicted class=yes expected Toss=0 P(node) =0.1111111
class counts: 0 3
probabilities: 0.000 1.000

The output summarise every node of the constructed decision tree. If a node is a
leaf, the output includes both the predicted class labels (Yes or No for Demand) and
the class probabilities. Whereas, if a node is internal, the output in addition displays
the number of observations that lead to each child node and the improvement that
each attribute may bring for the next split. These outputs are difficult to read and
comprehend. The rpart.plot() function from the rpart.plotr package can visually
present the output of a decision tree.

Enter the following R code to plot the tree based on the model being built.
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rpart.plot(fit, type = 4,
extra = 2,
clip.right.labs = FALSE)

[- e

Topic = Damage Topic = Clothes, Food, Power, Water

Topic = Power, Water Topic = Clothes, Food

TWDate = 8/28/2017  TWDate = 8/29/2017

RTNumber <2 RTNumber >= 2

The decision tree can be used to predict outcomes with the following record. The
goal is to predict the relevance of the tweet information for demand in Hurricane
Harvey. The following code loads the data into R as a data frame newdata. Note that
the training set does not contain this case.

newdata <- data.frame(Topic = "Clothes", TwDate = "8/29/2017", RTNumber = 70)

newdata
Topic TwDate RTNumber
Clothes 8/29/2017 70

Next, use the predict function to generate predictions from the fitted decision
tree. The code of the prediction function follows. Parameter fype denotes the type
of the predicted value. Set it to either prob or class to predict and receive the result
as either the class probabilities or just the class.

predict(fit, newdata = newdata, type = "prob™)
predict(fit, newdata = newdata, type = "class")

The output shows that one instance is classified as Demand=Yes, and zero instances
are classified as Demand=No. Therefore, in both cases, the decision tree predicts
that the demand decision of the testing tweet data is related to demand of a person
in emergency.
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> predict(fit, newdata = newdata, type = "prob™)
No Yes

10 1

> predict(fit, newdata = newdata, type = “"class")
1

Yes

Levels: No Yes

2.3 Naive Bayes in R

In this section, we practice the Naive Bayes as one of the Bayesian methods. The
data set!? is same with that of decision trees, except for the number of retweet.
The RTNumber column containing numerical numbers is transformed to categorical
values for easy calculating the probabilities. In addition, the data set contains one
record as test data. Here the /071 package are used for the naiveBayes function.
The data set are included in a CSV file (NBdata.csv). The file has 27 rows of
training data and one other row as testing data. From the CSV file, last ten records
of data set generated by following codes is shown next. Two data frame objects
called trainData and testData are created for the Naive Bayes classifier.

g womn

tweetsample <- read.table("C:/NBdata.csv”, header = TRUE, sep = ",™)
trainData <- as.data.frame(tweetsample[1:27,])

testData <- as.data.frame(tweetsample[28,])

trainbata[19:27,]

testData

> trainpata[19:27,]
Topic TwWDate RTNumber Demand

19 Power 8/29/2017 <5 No
20 Dpamage 8/29/2017 <5 No
21 Clothes 8/29/2017 >10 Yes
22 water 8/29/2017 <5 Yes
23  wvater 8/29/2017 3 to 10 Yes
24 Food 8/29/2017 <5 Yes
25 Food 8/29/2017 <5 Yes
26 Food 8/29/2017 <5 Yes
27 Damage 8/29/2017 3 to 10 No
> testData

Topic TwWDate RTNumber Demand
28 wWater 8/29/2017 3 to 10

The first method shown here is to build a Naive Bayes classifier from scratch by
manually computing the probability scores. The first step is to compute the prior
probabilities of each attribute, such as Topic, TWDate and RTNumber. According

Zhttps://bdem.squarespace.com/links/#links-home.
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to the Naive Bayes classifier, these attributes are conditional independent. The
dependent variable is Demand. Compute the prior probabilities P (c;) for Demand,
where ¢; € C and C = {Yes, No}.

> tprior <- table(trainbData$pemand)
> tprior

No Yes
0 17 10
tprior <- tprior/sum(tprior)
tprior

v v

No Yes
0.0000000 0.6296296 0.3703704

The next step is to compute conditional probabilities P(A|C), where A =
{Topic, TW Date, RT Number} and C = {Yes, No}. Count the number of “Yes”
and “No” entries for each group, and normalise by the total number of “Yes” and
“No” entries to get the conditional probabilities.

> topicCounts <- table(trainbata[,c("Demand”, "Topic™)])
> topicCounts <- topicCounts/rowSums(topicCounts)
> topicCounts
Topic
Demand Clothes Damage Food Power water

No 0.00000000 0.82352941 0.00000000 0.05882353 0.11764706
yes 0.20000000 0.00000000 0.40000000 0.10000000 0.30000000

> twdateCounts <- table(trainpata[,c("Demand”, "TwbDate")])
> twdateCounts <- twdateCounts/rowSums(twdateCounts)
> twdateCounts
TwDate
pemand 8/27/2017 8/28/2017 8/29/2017

No 0.2941176 0.4705882 0.2352941
Yes 0.0000000 0.0000000 1.0000000

> rtnoCounts <- table(trainpatal[,c("Demand”, "RTNumber™)])
> rtnoCounts <- rtnoCounts/rowsums(rtnoCounts)
> rtnoCounts
RTNumber
Demand <5 >10 3 to 10

No 0.7647059 0.0000000 0.2352941
Yes 0.7000000 0.1000000 0.2000000

According to Eq. 9, probability P(c;|A) is determined by the product of P(aj|c;)
times the (c;) where c; = Yes and c; = No. The predicted result of the output is
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determined by the larger value of P(Yes|A) and P(No|A). Given the test data, use
the following code to predict the Demand.

1T

prob_yes <- topicCounts["ves", testDatal[,c("Topic")]] *
twdateCounts["ves", testData[,c("Twbate")]] *

441

rtnoCounts["yes", testDatal,c("RTNumber")]]
tprior["yves"]

prob_no <- topicCounts["No", testDatal[,c("Topic")]] *
twdateCounts["No", testDatal[,c("TwDate")]] *

Ly 444
Y17 %

rtnoCounts["No", testDatal[,c("RTNumber')]]
tprior["No"]

The predicted results of the test data is Demand= Yes.

> prob_yes

Yes
0.02222222
> prob_no

No

0.004100987
> max(prob_yes, prob_no)
[1] 0.02222222

Exercise the naiveBayes Function in R Until now, we manually calculated
the probabilities and predicted the result of the testData using the Bayes’ rule.
The el071 package in R has a built-in naiveBayes function that can compute
the conditional probabilities of a categorical class variable given independent
categorical predictor variables using the Bayes’ rule. The function takes the form of
naiveBayes(formula, data, ...), where the data denotes a data frame of factors
x1, X2, ..., when the formula of the form class X1 + x2 + ... assuming X1, X2,
. are conditionally independent.

Exercise Develop a model using naiveBayes function and display results.

2.4 k-Means Clustering in R

In this section, we illustrate how to use the WSS mentioned in Sect.1.2.2 to
determine an appropriate number k of clusters we practice the k-means clustering.
The task is to group 161 tweets based on their location data (i.e. GPS coordinates).!?
Note that we created the latitude and longitude of extracted physical addresses from
the collected tweets by performing a geocoding procedure, and negative values
of the west longitudes were changed into positive values to fulfil the k-means

Bhttps://bdem.squarespace.com/links/#links-home.
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clustering. The following R code establishes the necessary libraries and imports
the CSV file containing the locations.

Tibrary(plyr)
Tlibrary(cluster
Tibrary(lattice
Tibrary(graphics
Tlibrary(factoextra

Tocation_input = as.data.frame(read.csv("C:/KMdata.csv"

The data file includes three columns such as a tweet identification (ID) number,
a latitude and a longitude. The identification is excluded from the k-means input
matrix KMdata_orig like the results according to following codes, since the tweets
ID is not used in the clustering.

> KMdata_orig = as.matrix(location_input[,c("TwNumber"”, "Latitude", "Longitude™)])
> KMdata <- KMdata_orig[,2:3]

> Kmdata[l:5,]

Latitude Longitude

32.88086 96.83910

29.99964 97.14612

29.52301 95.08167

32.78050 96.80186

30.04932 94.08202

Lo L Lo Lo Lo
v w2
M Lt L e L

If we use mixed numerical data, where each attribute is something entirely
different (say, shoe size and weight), the data can be standardised by following scale
function. Here the latitude and longitude should avoid to apply the scale function,
because it causes distortion.

Kmdata.scaled <- scale(kMdata_orig[,2:3])
summary (KMdata.scaled
KMmdata[1:10,]

To determine an appropriate value for k, the k-means algorithm is used to identify
clusters for k = 1,2,3,...,10. For each value, the WSS is calculated. If an
additional cluster provides a better partitioning of the data points, the WSS should be
smaller without the additional cluster. The following R code loops through several k-
means analyses for the number of centroids, k, varying from 1 to 10. For each k, the
option nstart = 30 specifics that the k-means algorithm will be repeated 30 times,
each starting with k random initial centroids. The corresponding value of WSS for
each k-means analysis is stored in the wss vector. The results can be showed using
the basic R plot function.

The k-means clustering will be conducted for k = 2, since the WSS is greatly
reduced when k increases from one to two.

The showed contents of the variable KMresult include the following:
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WSS numeric(l0

for(k in 1:10) wss[k] <- sum(kmeans(KMdata, centers=k, nstart=30)3Swithinss
plot(1:10, wss, type = "b", xlab = "Number of Clusters”, ylab = "within Sum of
wquares”
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Number of Clusters
Fig. 8 WSS of the tweet location data

> KMresult=kmeans(kmdata, 2, nstart = 10)
> KMresult
K-means clustering with 2 clusters of sizes 26, 135

Cluster means:
Latitude Longitude

1 31.85976 97.54729

2 29.75015 95.39149

R =W
LS Bt LS N
Lt B S N
L e
LSS I LS N
LSS I S N
LSS I S N
LSS S N
LAl

within cluster sum of squares by cluster:
[1] 72.89125 46.27130
(between_ss / total_ss = 62.5 %)

Available components:

[1] "cluster" "centers"” "totss" "withinss" "tot.withinss"”
[6] "betweenss" "size" "iter" "ifault"

— The location of the cluster means

— A clustering vector that defines the membership of each tweet to a corresponding
cluster 1 or 2

— The WSS of each cluster

— A list of all the available k-means components

The reader may wonder whether the k-means results stored in KMresult are same
as the WSS results obtained earlier in generating the plot in Fig. 8. The following
code and result show that the results are indeed equivalent.
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> c(wss[2], sum(KMresult$withinss))
[1] 119.1626 119.1626

The data scientist should visualize the data and assigned clusters, when the value
of k is determined. In the following code, the fviz_cluster function on the factoextra
package is used to visualise the distinguished tweet clusters and centroids. The
function can include many parameters for various visualisation.'*

fviz_cluster(KMresult, Kmdata, ellipse.type = "norm”
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Exercise The k-Means Clustering in R Until now, we separated the tweet location
data into two clusters according to the WSS values in Fig. 8. On the one hand, the
improvement in WSS is also fairly linear for k > 3. The process of identifying
the appropriate value of k is referred to as finding the “elbow” of the WSS curve.
Clustering techniques belong to unsupervised learning, while SVM introducing in
the next section is supervised learning. The example and practice results of the k-
means clustering can be used for the SVM. Therefore, generate other dataset for the
next section using the following code.

Exercise Cluster tweet data into three groups and compare its result with that of
the upper example. Generate two CSV files about the results.

I4factoextra: https://cran.r-project.org/web/packages/factoextra/factoextra.pdf.


https://cran.r-project.org/web/packages/factoextra/factoextra.pdf

64 M. Hong and R. Akerkar

exportData <- cbind(Kmdata_orig, Clustervalue=(KMresultScluster))
exportData[l:3,]

5

write.csv(exportData, "C:/svMdata.csv")

> exportData[l:3,]
TwNumber Latitude Longitude Clustervalue

1,1 1 32.88086 96.83910 2
2,1 2 29.99964 97.14612 1
[3,] 3 29.52301 95.08167 1

2.5 Support Vector Machine in R

In this section, we will leverage the tidyverse package to perform data manipulation,
the el071 packages to execute calculations and produce visualizations related to
SVMs. Data sets generated in Sect. 2.4 are used.!> It contains four column TWNum-
ber, Latitude, Longitude and ClusterValue. The column ClusterValue indicates
group numbers as the results of k-means clustering. Let’s import needed packages
and the data set using the following code. Note that our exercise (practice) uses data
set having two classes.

Attach Packages
Tibrary(tidyverse data manipul
Tibrary(el071) # SvM methodc

location_input = as.data.frame(read.csv("c:/svMdatal.csv"
location_input[1:5,]

Tocation_input[1:5,]
X TwWNumber Latitude Longitude Clustervalue
1 32.88086 96.83910
29.99964 97.14612
29.52301 95.08167
32.78050 96.80186
30.04932 94.08202

v

(L, I ST N
[V, - T N
[, IS P N ]

[ R

First the data set should be manipulated for the SVM practice. The TWNumber
is eliminated, and input variables (i.e. Latitude and Longitude) and one class factor
(i.e. ClusterValue) are separated into X and Yy variables for dot plot visualisation.
Execute the following code to regulate the data and to see the clustering result.

In addition, from the last line in the above code, the data set converted into a
data frame to use for the svm function. As mentioned in Sect. 1.2.3, the goal of the
maximal margin classifier is to identify the linear boundary that maximizes the total

IShttps://bdem.squarespace.com/links/#links-home.
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# Manipulate data

svMdata <- SvMdata_orig[,2:4]
x=SvMdatal[,1:2]
y=as.character(SvMdata_orig[,4])

df <- data.frame(x=x, y=as.factor(y))

# Plot data
ggplot(data = df, aes(x = x.Longitude, y = x.Latitude, color = y, shape = y))
+ geom_point(size = 2) +

scale_color_manual (values=c("#000000", "#FF0000")) +

theme(legend.position = "right")
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distance between the line and the closest point in each class. We can use the svm
function in the e/071 package to find this boundary.

SVMfit;11near *-svm'y‘., daéa = éf. kernel =
plot(svMfit_linear, df

“linear", scale = FALSE

In the plot, points being represented by an “X” indicate the support vectors, or
the points that directly affect the classification line. The points marked with an “o0”
denote the other points which don’t affect the calculation of the line. In the svm
function, kernel = “linear” means using the linear kernel, and it can be set as radial
like the following code.

Exercise the SVM Classification in R So far we performed the SVM classification
with the data set including two groups.

Exercise Build a SVM classification for another data set containing three groups,
using various kernel functions such as “linear”, “polynomial” and “radial . In
addition analyse between previous results in Sect. 2.4.
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SVM classification plot
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svMfit_radial = svm(y-., data = df, kernel = "radial”, gamma = 1, cost = 10,
scale = FALSE)
plot(svmfit_radial, df)

SVM classification plot

x.Latitude

94 95 96 97 98 99 100

x.Longitude
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2.6 Artificial Neural Networks in R

In this section we will fit a neural network model in R. A data set'® used here
is manipulated from an original data set and consequently contains five columns
such as TWDate, RTNumber as integer, Latitude, Longitude and Demand. The
TWDate was modified as generation days (i.e. 27, 28 and 29), and the Demand was
distinguished into three values (i.e. 0, 0.5 and 1). The values denotes the relevance
degree of tweets for demand, in other words “0” and “1” respectively represent “no
relevance for demand” and “related to demand.”

Let’s start with importing packages using the following code. The neuralnet
package is providing a nice tool to plot the ANN model which is used for the
analysis of a neural network. Also we use the matrixStats package for operating
on rows and columns of a matrix.

Tibrary(neuralnet)
Tibrary(matrixstats)

To validate the ANN model developed in this experiment, we divide the data into
training (60% of the data set) and test set (the remained data set). Training set is
used to find the relationship between dependent and independent variables while
the test set assesses the performance of the model. The assignment of the data to
training and test set is done using random sampling. We perform random sampling
on R using the sample function. The set.seed function is used to generate same
random sample every time and maintain consistency, and the index variable while
fitting neural network will be used to create training and test data sets. Let’s use the
following R script to do these tasks.

# Creating index variable
# Read the Data

data = read.csv("C:/ANNdata.csv", header=T)

# Random sampling

samplesize = 0.60 * nrow(data)

set.seed(80)

index = sample( seq_len ( nrow ( data ) ), size = samplesize )

# Create training and test set
datatrain = data[ index, ]
datatest = data[ -index, ]
datatrain[l1:5,]

datatest[1:5,]

16https://bdem.squarespace.com/links/#links-home.
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> datatrain[1:5,]
TwDate RTNumber Latitude Longitude Demand
95

71 28 1 30 0
90 28 6 29 97 1
125 29 2 30 96 0
12 27 6 30 96 0
95 28 1 30 95 0

> datatest[1:5,]
TwDate RTNumber Latitude Longitude Demand

L 27 1 33 97 1 B
6 27 1 30 95 0
9 27 5 30 95 0
10 27 1 30 95 0
15 27 2 30 95 0

The first step is to scale the tweet data set. The scaling of data is essential because
otherwise a variable may have large impact on the prediction variable only because
of its scale. Here we use the min-max normalisation as one of common techniques
to scale the data using the following script.

Scale data fTor neura netwo

max = apply(data , 2 , max)
min = apply(data, 2 , min
scaled = as.data.frame(scale(data, center = min, scale = max - min))

The scaled data is used to fit the neural network. Visualize the neural network
with weights for each of the variable as follows.

## Fit neural network

# creating training and test set
trainNN = scaled[index , ]
testNN = scaled[-index , ]

# fit neural network

set.seed(2)

NN = neuralnet(Demand ~ TwDate + RTNumber + Latitude + Longitude, trainNn,
hidden = 3 , Tinear.output = T )

# plot neural network
plot (NN)

Figure 9 shows the computed neural network. The generated model has three
neurons in its hidden layer. The black lines show the connections with weights
which are calculated using the back propagation algorithm explained earlier. The
blue line is the displays the bias term.

Evaluation of the neural network model is performed through the k-fold cross-
validation. In this method, the overall data is divided into k equal subsets, and each
time a subset is assigned as test set while others used as training set. Every data gets
a chance to be in test set and training set, thus the k-fold cross validation is able
to reduce the dependence of performance on test-training split and to decrease the
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Error: 4.817045 Steps: 5871

Fig. 9 Neural network model

variance of performance metrics. Let set the number of elements in the training set
as from 10 to 60 (i.e. for(j in 10:60)) and to select 80 samples from the dataset (i.e.
k = 80). The rest of the elements are assigned to test set. The model is trained on
each of the 4000 training datasets and then tested on the corresponding test sets.
RMSE of each of the test set is calculated. The RMSE values for each of the set is
stored in a 80 x 50 matrix Matrix.RMSE. This method ensures that our results are
free of any sample bias and checks for the robustness of our model. The R script is
as follows:

Since the size of the matrix (i.e. Matrix.RMSE) is large, visualise the RMSE
using a boxplot function like the following code and result.

The boxplot in Fig. 10 shows that the median RMSE across 80 samples when
length of training set is fixed to 60 is 0.437. In the next visualization, Let us look
at the variation of RMSE with the length of training set. We calculate the median
RMSE for each of the training set length and plot them using the following R script.

Figure 11 shows that the median RMSE of the model decreases as the length
of the training the set. This is an important result. Note that the model accuracy is
dependent on the length of training set. The performance of neural network model
is sensitive to training-test split.
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## Cross validation of neural network model
# Initialize variables

set.seed(50)

k = 80

RMSE.NN = NULL

List = Tist( )

# Fit neural network model within nested for loop
for(j in 10:60){
for (i din 1:k) {
index = sample(l:nrow(data),j )

trainNN = scaled[index,]
testNN = scaled[-index,]
datatest = data[-index,]

M. Hong and R. Akerkar

NN = neuralnet(Demand ~ TwDate + RTNumber + Latitude + Longitude,

trainNN, hidden = 3, linear.output= T)

predict_testNN = compute(NN,testNN[,c(1:4)1)
predict_testNN = (predict_testNNinet.result

“(max(datatpemand) -min(data$bemand)))+min(data$pemand)

RMSE.NN [i]<- (sum((datatestiDemand-predict_testNN)/2) /nrow(datatest))"0.5

}
List[[j]] = RMSE.NN

Matrix.RMSE = do.call(cbind, List)

## variation of median RMSE
med = colMedians(Matrix.RMSE)
X = seq(10,30)

plot (med-X, type = "1",
xlab = "length of training set”,
ylab = "median RMSE",

main = "variation of RMSE with Tlength of training set")
RMSE BoxPlot (Length of training set = 60)
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Fig. 10 Boxplot for RMSE of ANN model
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## variation of median RMSE
med = colMedians(Matrix.RMSE)
X = seq(10,60)

plot (med-X, type = "1",
x1ab = "length of training set",
ylab = "median RMSE",
main = "variation of RMSE with length of training set™)
Variation of RMSE with length of training set
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Fig. 11 Variation of RMSE of ANN model
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1 What Are Knowledge Graphs?

Knowledge graphs originate from Tim Berners-Lee’s vision of a machine-
processable web of data that would augment the original web of human-readable
documents [5, 23]. A central idea is to represent data as graphs, with nodes that
represent concrete objects, information, or concepts and with edges that represent
semantic relations [1].

The most central standard is the Resource Description Framework (RDFY),
which is the standard way of representing knowledge graphs. An RDF graph
consists of triples, each expressing that a semantic resource (the subject) has a
particular semantic relation (the predicate or property) to either a literal value
or another semantic resource (the object). Resources and properties are identified
using Internationalized Resource Names (IRN?), and literals are typically expressed
using XML Schema Definition (XSD) datatypes. A special rdf : type property
can be used to state that one resource is the type of another, such as in the
triple dopedia:Tim Berners-Lee rdf:type foaf:Person (where we
have used standard prefixes dbpedia:, rdf:, and foaf : to shorten the IRNs).
Standard formats are available for exchanging RDF files, and the new JSON-LD?

Uhttps://www.w3.org/TR/rdf11-primer/.

2Here, we use IRN about Uniform Resource Names (URN) that are extended to the Unicode
character set, although it remains more common to use the initialism URN even when Unicode
is allowed.

3http://json-1d.org.
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standard extends JavaScript Object Notation (JSON) with semantic tags so that RDF
data as can be easily exchanged through web APIs.

RDF Schema (RDFS*) extends RDF with terms—represented as IRNs—that
make knowledge graphs richer and more precise. For example, RDFS defines
resource types and properties for expressing that one resource type is a subtype
of another (i.e., that toxic fume is a kind of pollution), that one property is a subtype
of another (i.e., that being a nurse is a form of being a healthcare worker), and that
some property is always used with subjects and objects of specific types (i.e., that
only living things can be poisoned). The meaning of RDFS terms is defined through
axioms and entailment rules. The Web Ontology Language (OWL?) offers even
more precise semantics and automated reasoning on top of RDFS, but computational
complexity grows quickly when datasets become large. Therefore, OWL is most
effective for smaller and more specific semantic datasets, called onfologies. One
important use of ontologies is to precisely define and interrelate the resource types
and properties that are used to organise and give meaning to larger knowledge
graphs. Such ontologies—even when they are expressed less formally in RDFS—
are often called vocabularies (more about that later).

SPARQL (Simple Protocol and RDF Query Language®) lets users and programs
extract information from knowledge graphs. The result can be tables of information,
yes/no answers, or new knowledge graphs. SPARQL Update also lets users and
programs modify knowledge graphs by adding or removing triples. SPARQL is
supported both by native RDF database management systems, called triple stores,
and by wrappers that expose tabular and other data in legacy databases as knowledge
graphs—whether as downloadable RDF files, through online SPARQL endpoints, or
by other means.

The Linked Open Data (LOD) principles offer further advice for creating and
sharing knowledge graphs [6]. The four central principles are:

1. sharing graphs using standard formats and protocols such as RDF, RDFS, OWL,
and SPARQL;

2. using Internationalized Resource Names (IRNs) to name resources (nodes) and
properties (edges);

3. making these IRNs into dereferencable Internationalized Resource Identifiers
(IRIs”) that can be accessed on the web to provide further information about
the resource in RDF format; and

4. using standard IRNs that are defined in vocabularies as types and properties in
graphs.

“https://www.w3.org/TR/rdf-schemal.
Shttps://www.w3.0org/OWL/.
Shttps://www.w3.org/TR/spargl1 1-overview/.

7IRIs are Uniform Resource Identifiers (URIs) that are extended to the Unicode character set. They
both name a resource uniquely and specify its location on the web.
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Today, more than 1200 datasets that adhere to these principles are openly available
in the LOD cloud [13], adding up to almost 150 trillion triples. Much-used datasets
we will mention later (such as DBpedia, GeoNames, LinkedGeoData, and Wikidata)
act as hubs that tie these linked open datasets even more tightly together by offering
standard names (again IRNs) for individual people, organisations, places, works,
and so on.

Knowledge graphs can also be stored and processed using property graph
databases and other technologies outside the semantic standard but, even for such
graphs, RDF and SPARQL are commonly used for information exchange.

2 Benefits and Challenges

In an emergency situation, diverse data sources must be recombined and used to
support complex querying, processing, and reasoning in unforeseeable ways. This
is exactly the type of situation where knowledge graphs shine, because they leverage
an interoperable set of semantic technologies and tools for quickly and easily
interpreting, combining, analysing, and presenting potentially related datasets from
different sources.

2.1 Benefits

Given that the right competencies, tools, and infrastructure are in place, knowledge
graphs building on semantic technologies and tools have the potential to simplify
and speed up all stages of emergency data processing. Identifying data sources is
made easier by semantic search engines and semantically searchable registries of
open data (such as http://lod-cloud.net). Harvesting semantic data is made easier
by standard data-exchange formats such as Turtle, NT and OWL/XML for down-
loading files, JSON-LD for web APIs, and SPARQL for database endpoints. Lifting
non-semantic data to RDF format is supported by tools such as Karma,® and JSON
data from web APIs can be easily lifted to JSON-LD by adding simple semantic
metadata. A wide range of wrappers, such as D2RQ,’ provide SPARQL access
to relational and other DBMSs that do not natively support SPARQL. Identifying
vocabularies to use for lifting is made easier by semantically searchable registries
such as Linked Open Vocabularies (LOV'? [25] and LODstats [9]). Understanding
data becomes easier for humans when the data attributes are marked up with
semantically precise tags from well-defined vocabularies. Alignment of related

8http://usc-isi-i2.github.io/karma/.
http://d2rq.org/.
10https://lov.linkeddata.es/dataset/lov.
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terms from different vocabularies (and other kinds of ontologies) is supported by
techniques and tools that use term and structural similarity as indicators of term
equivalence and of other semantic relations between terms. Recombining data from
different data sets is the most central strength of knowledge graphs: as soon as
their vocabularies have been aligned, knowledge graphs can be recombined simply
by loading them into the same triple store or through SPARQL, using federated
queries that combine partial results from multiple endpoints. Enriching data means
to recombine a dataset with reference data, for example from the Linked Open
Data (LOD) cloud. Contextualising and validating data is thus simplified further
by openly available semantic datasets that can be used to make data even easier
to understand and to control its validity. Reasoning over data is supported to some
extent by the description logic (DL) subset of OWL, although computational effort
may grow quickly for large ontologies if they are not carefully designed. Rule-
based reasoning is therefore more applicable to large datasets than DL reasoning.
Visualising semantic data, e.g., in dashboards, is also well supported. In all these
processing stages, the strength of knowledge graphs and semantic technologies lies
in the same set of ideas and practices: expressing knowledge uniformly in a standard
format (RDF or OWL) that is annotated semantically using well-defined terms
(IRIs) defined as part of semantically interlinked vocabularies that are expressed
in the same standard formats (RDFS or OWL).

2.2 Challenges

A full stack of semantic technologies for knowledge graphs is already available for
simplifying and speeding up information processing in an emergency situation. The
challenge is to have the right combinations of competencies, capacities, and tools
already in place when disaster strikes.

On the competence side, it is critical to recruit and train staff and volunteers
with the right combination of semantic-technology competence and collaboration
and communication skills. To have maximal impact in an emergency, a semantic
technologist must not only be expert in the use of their tools and techniques, but
also be able to communicate well with emergency workers and perhaps directly
with the people affected. Communicating in an emergency situation is particularly
challenging, because the people involved: may be scared, fatigued. and otherwise
working in stressful situations; will have a broad variety and levels of other
competencies and skills; may come from different cultures, use different languages
and perhaps operate in different climates and time zones; may not be knowledgeable
and skilled in ICT; may experience low-quality transmission and delays due to long
distances and perhaps compromised infrastructures.

On the capacity side, most of the semantic interpretation, lifting, combining,
and analysing can take place in the cloud in a distributed fashion that makes it
highly suitable for volunteer work. Cloud computing platforms such as Amazon’s
EC2 and others make it possible to set up collaborative computing infrastructures
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on-demand quickly. The basic tools needed for handling knowledge graphs can
be downloaded and installed quickly, and some cloud providers even offer pre-
configured virtual hosts (such as Amazon’s Machine Images, AMIs) that can
be instantiated on demand. Hence, dedicated emergency machine images can be
defined in advance where important and trusted reference datasets have already been
loaded into a running triple store, along with ready-to-use tools such as data scrapers
and lifters, ontology editors, programming tools and APIs, visualisers, dashboard
generators, and various types of social emergency software. Training to create, use,
and curate such advance-prepared infrastructures is therefore a useful emergency-
preparation activity, and mastering management and use of virtual hosts and other
cloud infrastructures is a useful competence.

On the fool side, for all types of non-semantic data, precise semantic lifting is
essential to avoid information loss. We have already mentioned the computational
complexity of OWL reasoning. Indeed, computational complexity is a challenge
for graph-based reasoning and pattern matching in general, and it is an important
consideration both for native RDF programming and when providing and querying
SPARQL endpoints. Although triple-store technologies have been used to store
more than a trillion triples in benchmarks, most existing technologies do not scale to
the biggest data sizes. An important future challenge is therefore to extend current
big-data technologies to also handle semantic data. Finally, knowledge graphs
and semantic technologies need to become seamlessly integrated with mainstream
machine-learning techniques.

A final challenge is textual data, which must be lifted to semantic form before
they can be represented in knowledge graphs. This issue is so central that we will
discuss it in a separate section below.

3 Vocabularies for Emergency Response

Semantic technologies, LOD, and knowledge graphs rely heavily on vocabularies,
expressed either in RDFS or more precisely and formally as OWL ontologies.
Vocabularies define terms that can be used to make the meaning of knowledge
graphs explicit, precise, and easier to understand. The terms in a vocabulary
provide standard IRNs for the most important resource types and properties in
a domain. For example, an organisation vocabulary can define resource types for
Person and Project and a currentProject property to relate them. We have already
mentioned Linked Open Vocabularies (LOV'!), a web site that offers a searchable
overview over and entry point into the most used vocabularies. Precisely defined
and interlinked vocabularies also make it easier to combine knowledge graphs that
use different vocabularies.

https:/lov.linkeddata.es/dataset/lov.


https://lov.linkeddata.es/dataset/lov

80 A. L. Opdahl

There is no all-encompassing and widely accepted ontology that covers all of
emergency management. But many data-exchange standards have been proposed for
specific concerns, such as people, organisations, resources, infrastructure, processes,
disaster description, damage assessment, geography, hydrology, meteorology, and
topography. Unfortunately, most standards are defined in plain XML or proprietary
formats, and some of them are not even publicly available.

Among the vocabularies that are both open and semantic, MOAC (Management
of a Crisis'?) combines three types of crisis information used by: (a) traditional
humanitarian agencies, (b) disaster affected communities, and (c) volunteer and
technical committees for humanitarian data exchange. Accordingly, MOAC is
divided into three sections that offer terms (IRNs) for: emergency types, security
incidents, and affected populations (emergency management); shelters, water,
sanitation, food, health, logistics, and telecommunications (emergency cluster); and
who/what/where/when, needs, and responses (who-what-where). Parts of MOAC
are supported by the Ushahidi web platform'? for emergency management.

HXL (Humanitarian eXchange Language'#) aims to improve information shar-
ing during humanitarian crises without adding extra reporting burdens. It defines
hashtags for describing: places, such as geolocations, populated places and adminis-
trative units in countries; people and households, such as affected populations, their
needs and characteristics; responses and other operations, such as their capacities
and operations; crises, incidents and events, including their causes, impacts and
severity; and general metadata, such as data provenance, approvals, and timestamps.
It offers a broader infrastructure that also comprises training, tools and other
materials, including a semantic version of the vocabulary.

EDXL-RESCUER is an attempt to make the XML-based Emergency Data
Exchange Language (EDXL'?) standard available as an OWL ontology. EDXL
facilitates sharing of emergency information between government agencies and
other involved organisations. It offers terms for: alerts, information about events,
affected areas, and additional image or audio resources (the common alerting
protocol); requesting, responding to, and committing resources (resource messag-
ing); field observations, causality, illness, and management reporting (situation
reporting); hospitals, their statuses, bed capacities, facilities, resources, and services
(hospital availability exchange); emergency patients (emergency patients tracking);
and high-level information modelling (reference information model).

Other examples of domain ontologies or vocabularies that can be relevant in
emergency situations are: kmdcity (city data), Linked Datex II (traffic), Seman-
tic Sensor Network Ontology (sensors), Ordnance Survey Hydrology Ontology
(hydrology), Weather Ontology (meteorology), USGS CEGIS (topography), Ord-
nance Survey Building and Places Ontology, E-response Building Pathology Ontol-

Zhttp://observedchange.com/moac/ns/.

Bhttps://www.ushahidi.com.

http://hxIstandard.org/.
IShttp://docs.oasis-open.org/emergency/edxl-de/v2.0/edxI-de-v2.0.html.
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ogy, and E-response Building Internal Layout Ontology. These vocabularies can
be used alongside general vocabularies for, e.g., time and duration (OWL-Time),
locations (geo, GeoNames, LinkedGeoData), people (FOAF, bio), organisations
(org, InteLLEO), events (the Event Ontology), provenance (PROV-O), and data
rights (CC).

4 Semantic Datasets for Emergency Management

The chapter on Big Data has already reviewed many data sources that are relevant
for emergency management. Some of them are also available in semantic formats
or, at least, have semantic counterparts.

The LOD Cloud!® [13] is a searchable portal of more than 1200 interrelated
datasets available as knowledge graphs. It contains both general datasets and sets
that are specific to emergency-related domains such as geography, government,
social networking, and user-generated content. DBpedia [3, 7] is an automated
extraction of structured data from Wikipedia (in particular, its fact boxes) into RDF.
It describes more than 14 million resources and is available in over a hundred
languages. It is one of the most central hubs in the LOD cloud, where it has
been standard practice to name people, organisations, works, and so on using
their (dereferencable) DBpedia IRIs. Wikidata'” is Wikipedia’s sister project for
crowdsourcing structured factual information. The idea is that the information in
Wikipedia’s fact boxes will be extracted from and maintained by the Wikidata
project. Hence, whereas DBpedia extracts its data from Wikipedia, Wikidata is
a supplier of information fo Wikipedia. It currently contains around 50 million
items with unique IRIs, similar to RDF resources. Although Wikidata’s knowledge
graph is not natively stored and maintained in RDF, the data is available through a
SPARQL endpoint and downloadable as RDF files. GeoNames'® is a crowdsourced
open repository of more than 10 million geotagged toponyms (geographical names)
categorised using a three-level taxonomy with nine letter-coded top-level categories
and more than 600 sub-categories. The nine top-level categories are: countries,
states, regions... (A); streams, lakes... (H); parks, areas... (L); cities, villages...
(P); roads, railways. .. (R); spots, buildings, farms. .. (S); mountains, hills, rocks. ..
(T); undersea. .. (U); and forests, heaths... (V). GeoNames can be browsed online
through a map interface. It is also available as RDF and SPARQL and has a web
APL It is common in the LOD cloud to name places using their (dereferencable)
GeoNames IRIs. LinkedGeoData [4, 24] is an automated extraction of structured
data from OpenStreetMap, much as DBpedia is an extraction from Wikipedia.

16http://lod-cloud.net.
https://www.wikidata.org/wiki/Wikidata:Introduction.
8http://www.geonames.org/about.html.
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BabelNet!? is a multi-lingual word net [16]. LODstats2? [9] has been used to index
an even larger body of semantic datasets and endpoints and can be used to search
for datasets that use specific RDF types, properties, vocabularies, etc.

The big internet-companies like Google, Facebook, and Amazon also maintain
large internal knowledge graphs, although the information is not in general open or
always represented using standard semantic formats and protocols. In some cases,
commercial data can be sampled or shared in an emergency situation, either pro
bono or paid. Google’s Emergency Map service and Person Finder?! are examples
of such services, although they are not exposed through semantic interfaces.

Google also supports the GDELT project,”? which continuously harvests and
analyses media in print, broadcast, and web formats in over 100 languages. The
GDELT Event Database represents and codifies physical events reported in the
world news, whereas the GDELT Global Knowledge graph represents the reported
people, places, organisations, themes, and emotions. Both databases are open to the
public and incremental updates are available every 15 min. Although the graphs are
distributed in tabular form with unique identifiers and well-defined columns, the
data are not represented in standard semantic format with IRNs and XSD-typed
literals. GDELT does not target emergency management specifically, but offers
an open-data firchose about human society that can be used to monitor unstable
situations and escalating crises.

The new JSON-LD?? format extends basic JSON in a simple way with semantic
tags taken from standard vocabularies. JSON-LD makes it easy to lift JSON-based
APIs to a semantic format, so the responses can be inserted directly into knowledge
graphs as soon as a suitable vocabulary has been found or created and interlinked.
Data represented in XML-based or other formats, such as from Google Person
Finder, can easily be converted to JSON before lifting to JSON-LD by adding simple
semantic metadata.

Semantic web APIs also make it much easier to connect the rapidly growing
number of more or less smart things available on the internet. Networks of sensors,
actuators and other networked devices on the Internet of Things [2] can thereby be
identified, integrated, and leveraged much more quickly and easily in an emergency
situation, and the information they provide becomes easier to recombine with
semantic data from other sources. Smart semantic things can describe, gain access
to, and reason about their own context, They can describe themselves and their
services semantically in graph form, making them more self-contained and easier
to find, for example using the new Semantic Sensor Network Ontology.

¥https://babelnet.org/.

2Ohttp://lodstats.aksw.org/.

2Ihttp://www.google.org/crisismap, http://www.google.org/personfinder.
22https://www.gdeltproject.org/.

Zhttp://json-1d.org.
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Regular datasets that are available as spreadsheets or in SQL databases can also
be lifted easily to semantic format. We have already mentioned Karma,’* which is
one of several semantic lifting tools that can generate RDF from structured (tabular
or hierarchical) data and D2RQ,” which is a much-used wrapper for creating
SPARQL endpoints and RDF interfaces on top of SQL databases. Automatic
semantic annotation of images, video, and audio is an emerging area. In particular,
deep neural convolution networks have made image analysis much more precise in
recent years [11].

Nevertheless, some of the most important information during an emergency will
be available as text, in particular as messages harvested from social media in real
time. The next section therefore discusses natural-language processing and lifting
of texts into semantic form as knowledge graphs.

5 Analysing Natural-Language Texts

5.1 Pre-processing

Natural-language processing (NLP) use Al and ML techniques to make the semantic
content of written texts processable by computers. Central challenges are to identify:
which topics and things a text is about; how the topics and things are related; as well
as which attitudes and emotions the text expresses. Conventionally, NLP has built
on a pre-processing pipeline that combines all or some of the following steps [8,
chapter 3]:

1. Character decoding and tokenisation breaks the text into a list of words, word
pieces, or even single characters, called fokens, that are represented using a
standard character set such as Unicode.

2. Normalisation standardises use of abbreviations, accents, emoticons, shorthands,
slang, upper- versus lower-case characters, etc.

3. Stopword removal eliminates words that are too common to convey much
meaning, such as “of”, “the”, and “or”. One much-used stopword list contains
around 300 words but, for some types of analyses, aggressively eliminating as
much as the 20% most frequent words produce the best results. Removing little
used words is also common.

4. Stemming or lemmatisation are two alternative ways of handling words such
as “build”, “builds”, “built’, “builder”, and “building” that are grammatical
forms of the same word (and stem) “build”. The difference is that stemming
uses simple pattern-based string substitutions (typically based on regular expres-
sions), whereas lemmatisation embeds more lexical and grammatical knowledge,

2*http://usc-isi-i2.github.io/karmal.
Zhttp://d2rq.org/.
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including exception lists. For example, a hypothetical and very simple stemmer
might treat the word “was” as the plural form of (the non-word) “wa”, whereas
a lemmatiser would look up its exception list and identify “was” correctly as the
past tense of “is”.

5. Part of Speech (PoS) tagging parses sentences to assign words to classes such
as nouns, verbs, adjectives, and adverbs. Lemmatisation can sometimes benefit
from PoS tags, so the order of steps does not have to be strict. For example,
a grammatically-informed lemmatiser would recognise “building” as a form of
“build” when it is used as a verb, but retain the form “building” when it is used
as a noun.

6. Dependency parsing detects how the words and phrases in a sentence are related,
for example which noun (phrase) that an adjective modifies, which earlier noun
phrase that a pronoun refers to, and which noun phrases that are the subject and
object of a verb phrase.

While pre-processing has often relied on hand-crafted algorithms and rules, pre-
processing with neural networks and other machine-learning techniques has become
more common.

5.2 Word Embeddings

Natural-language processing techniques are developing rapidly. Google’s word2vec
has trained a neural network to predict which words that occur in which contexts
in a 1.6 billion-word corpus [10, 15]. The result is a set of word vectors, each of
which represents the semantics of a word as a few hundred real numbers. GloVe
has generated a similar set of word vectors using statistical techniques instead of a
neural network [20]. The vectors generated by word2vec and GloVe can describe
word meanings on a very precise level that opens up for new modes of analysis
and reasoning. For example, when the vector for the word “France” is subtracted
from the vector for “Paris” and the vector for “Germany” is added, the sum turns
out to be close to the vector for “Berlin”. Similar additive relations exist between
different grammatical forms of the same stem, so that “biggest”—"“big” + “small”
produces a vector similar to the one for “smallest” [15]. But word-vector addition
and subtraction does not work equally well for all kinds of relations.

Word-embedding techniques have also been used to generate vectors that approx-
imate the meaning of sentences, paragraphs, and documents [12] and even the nodes
(resources) and edges (properties) in knowledge graphs [21], so that the semantic
distance between a word or paragraph and a LOD resource can be approximated
by the distance (Euclidian or other) between their vector representations. Vector
representations of words, sentences, paragraphs, documents, LOD resources, and
other semantic phenomena are paving the way for research that may increase the
quality of NL processing as word embedding becomes better understood and more
widely used.
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Word-embedding approaches often skip all but the first step of the conven-
tional pre-processing pipeline, treating even misspellings and punctuation signs
as meaning-bearing tokens. Skipping stemming or normalisation can also improve
accuracy because grammatical forms carry semantic information.

5.3 Analysis Problems

Sentiment analysis, sometimes known as opinion mining, attempts to identify
whether a text (or its parts) expresses a positive or negative attitude [18, 19].
Most sentiment analysers are implemented using supervised machine-learning
algorithms. For example, a collection of movie reviews where each text is associated
with a numerical ranking can be used to train a regression algorithm [17]. Emotion
analysis uses similar techniques to identify more specific feelings such as joy, anger,
disgust, sadness, and fear, both for the text as a whole and for the keywords and
phrases it contains.

Negation analysis attempts to identify negated parts of a text. Otherwise a
sentence like “I did not find the jokes entertaining.” could easily be scored as a
positive statement: the words “joke” and “entertain” are both positive, and the rest
are neutral or stop words.

Keyword extraction attempts to find the most important words and phrases in
a text. Conventional keyword analysis uses a bag of words that results from pre-
processing steps 1—4. Extraction proceeds by comparing this bag to a large corpus
of other pre-processed texts (for example news articles or Wikipedia pages). Good
keywords are ones that occur many times in the input text, but are rare elsewhere
in the corpus. A suitable measure is term frequency-inverse document frequency
(TF-IDF). Word phrases can be extracted in much the same way as keywords, but
comparing bags of two- and three-word sequences (called 2- and 3-grams) instead
of single words [22].

Topic identification is used to identify topics or themes that are related to a text,
but that may not be explicitly mentioned in it. For example, a newspaper article
may be related to the Summer Olympic Games although the text does not contain
that exact phrase nor a synonym. Machine-learning techniques are much used for
this purpose [17]. Latent Dirichlet Allocation (LDA) is a statistical technique that
identifies groups of words that tend to occur together in a corpus of texts, under
the assumption that each such word group marks a topic or theme that a text can
be about. Word-embedding techniques are increasingly being used to identify and
represent the topics of sentences, paragraphs, and documents [12].

Classification is similar to topic identification but, whereas topic identification is
open, text classification relies on a closed taxonomy of labels. Standard machine-
learning approaches are available for single-label or multi-label classification [17],
and standard clustering algorithms can be used to establish the initial taxonomy
structure. Afterwards, other NL techniques can be used to suggest class labels,
although manual curation and labelling is also common.
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Named entity recognition (NER) attempts to identify the individuals that are
mentioned in a text, such as people, companies, organisations, cities, geographic
features, etc., usually along with their types. Conventionally, this has been treated
as a three-step task. First, the words or phrases that name an individual are identified.
Common techniques are gazetteer lists (of known names) and typesetting conven-
tions (such as capital initials) in combination with PoS analysis that identifies nouns.
Next, the identified names are disambiguated: does the name “Bergen” refer to an
American actress, a college football team, or a city in the Netherlands, New Jersey,
or Norway? Statistical techniques like LDA can be used here, because each meaning
of a name like “Bergen” will tend to co-occur with different groups of words.
Finally, when the meaning of a name is clear, it is represented in some standard
way, preferably linked by an IRN defined in a common Linked Open Data resource.
Examples of LOD sets that can be used to define IRNs are the English WordNet
(its RDF version), the multi-lingual BabelNet, DBpedia, Wikidata, GeoNames, and
LinkedGeoData. Keywords and phrases, concepts, and categories/labels can also be
semantically linked with IRNs using similar techniques. Recently, neural networks
have been applied to all three sub-problems, both separately and in combination.

Relation extraction is a challenging area that attempts to identify precise
semantic relations between the keywords, phrases, concepts, labels, and named
entities that are extracted from a text [26]. For example, when a text mentions a
“hurricane” near the name of a town, does it mean that the hurricane is approaching,
hitting, or passing by? Supervised machine learning has been used to extract
specific relations in narrow domains, such as sports results. But general relation
extraction using deeper PoS tagging and dependency analysis is an open research
area. A new generation of neural-network and word-embedding based joint entity
and relation extractors and linkers are producing increasingly accurate (complete
and precise) results, often surpassing specialised entity recognisers-linkers and
specialised relation extractors-linkers.

Literal extraction is a two-step task: first identifying data that constitutes a
literal such as a phone number, web address, date or time, and then representing
its meaning in a standard way, for example as an IRN or XSD-typed literal string.

5.4 Discussion

With the advent of statistical NL analysers trained on large text corpora, the area of
natural-language processing is currently progressing rapidly. But not even advanced
machine learning and deep neural networks will be able to handle the more difficult
problems of natural-language understanding anytime soon. Such problems include
irony, sarcasm, and metaphorical speech that presume a shared pragmatic and social
understanding between sender and receiver. Current narrow NL and ML techniques
have not yet dealt with these higher levels of communication, which approach
the so far unsolved problem of general artificial intelligence. On the other hand,
emergencies—in particular when broken down into particular emergency types
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(avalanche, derailing, fire, terrorism)—deal with highly specific domains for which
precise NL processors can be trained specifically. Also, during emergencies, people
can be expected to use simple and straightforward language that makes NLP easier,
with limited use of sarcasm, irony, and metaphor.

In the foreseeable future, general NLP will remain useful but inaccurate. In
situations where lives, health, property, and the environment are at stake, we cannot
fully trust the results of even the most accurate NL analysers on the single-text
level. This applies even more strongly to the kind of short and context-dependent
messages people write on social media. Nevertheless, NLP techniques will remain
useful in emergency situations in at least two ways:

e They can provide strategic overviews by aggregating analysis results over
collections of many messages, for example by averaging sentiment and emotion
scores and by eliminating concepts and named entities that are not repeated
across messages. They can offer answers to questions like: “In a disaster area,
how does the sentiment of tweets that mention food change over time in different
locations?” The hope is that aggregation of many messages will cancel or
straighten out single-text analysis errors, but some bias may always remain.

* They can suggest potentially actionable insights by identifying single messages
or groups of messages that may contain important tactical information, such
as a rapidly approaching fire front, a gas leak, or an entrapment. Semantically
categorising a single message as a distress call may not alone justify directing
a rescuer or medical worker to a dangerous spot. But it can act as a trigger for
further information gathering by automatic or manual means. And it can act as
one of several indicators that aid tactical operation leaders in making the best
possible decisions based on the available information.

6 Using a Sentiment Analyser

A wide range of tools support both sentiment analysis and other NLP techniques.
They are available as online services, as downloadable programs, or as APIs that
can be used from programming languages such as Python, Java, Scala, and R. Most
of them bundle several different analysis techniques together in a single interface.

We will look more closely at the NLP component of IBM’s Watson platform.2°
Through a web interface, the user enters either a plain text or the URL of a web
page. In response, the following features are returned:

* Keywords and phrases, ranked by their relevance.
o Sentiment of the text as a whole and for the specific keywords and phrases it
contains.

26]BM Watson offers a free online demo at http://natural-language-understanding-demo.ng.
bluemix.net/, but you must register with IBM Watson to get your own API key.
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* Emotions, such as joy, anger, disgust, sadness, and fear, both for the text as a
whole and for specific keywords and phrases.

* Named entities, such as people, companies, organisations, cities, and geographic
features, along with their types, relevance, and occurrence counts.

* Concepts that are related to the text, but that may not be explicitly mentioned in
it, ranked by their relevance scores.

* Categories selected from a fixed taxonomy and ranked by their relevance scores:
IBM Watson’s taxonomy is up to five levels deep with more than a thousand leaf
nodes and 23 top categories, such as education, finance, news, science, shopping,
and sports.

» Semantic roles that break sentences down into their grammatical and semantic
parts.

Overall sentiment is scored in the [—1, 1] range, whereas emotions and relevance are
[0, 1]-scored. The results are returned in a human-readable web page or as machine-
readable JSON. For example, the results of sentiment and emotion analysis may
look like this in JSON format:

{

"sentiment":
"document": {
"score": 0,
"label": "neutral"
1
I
"emotion": {
"document": {

"emotion": {
"sadness": 0.029943,
"joy": 0.056795,
"fear": 0.025568,
"disgust": 0.034639,
"anger": 0.549087

}

1
}
}

Of course, the analyser can be accessed through API calls as well, e.g., from a
Python program or from a terminal window using the command-line tool curl:

curl -X POST -u "apikey:{your-apikey}" \
"https://{your-api}/analyze?version={your-version}}" \
--header "Content-Type: application/json" \
--data '{
"text": "Wildfires rage in Arctic Circle as
Sweden calls for help",
"features": {
"sentiment": {},
"concepts": {},
"entities": {}
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This command will return JSON results about sentiments, concepts, and entities
found in the given newspaper headline. If possible, it will also return a DBpedia IRI
for each concept and entity. More specific results can be requested using additional
arguments, but a single headline usually contains too little context information to be
accurately lifted.

There is a wide range of similar natural language analysers available, differing
mostly in precision and in the range of analyses, metrics, and languages they
support. For example, DBpedia Spotlight?’ returns DBpedia IRIs for topics and
named entities found in texts in 12 major languages [14]. The code is open and
can be trained and tailored to other languages and more specific domains, such as
particular types of emergency situations. The BabelNet?® analyser returns IRIs for
topics and named entities in BabelNet, a multi-lingual version of WordNet. NLP
services that leverage next-generation NL analysers trained on large text corpora
are also appearing. It is likely that the quality of NL analysis tools will continue to
improve as word embedding becomes better understood and more neural-network
based text-analysis APIs and services become available.

Exercises

1. What is RDF, RDFS, OWL, and SPARQL?

2. What is a knowledge graph (RDF graph)?

3. Outline the following knowledge graph: Tim Berners-Lee is a person and an
author. He has authored a book with title “Weaving the Web”, published in
2001. Another person, Mark Fischetti is co-author of this book, which has ISBN
0756752310.

4. What are the benefits of knowledge graphs in an emergency situation?

. And what are the main challenges?

6. What is LOD? Give examples of LOD resources that can be useful for
emergency management. Where can you go to find more?

7. What is a vocabulary in connection with RDFS and OWL? Why are vocabular-
ies important?

8. Give examples of vocabularies that can be useful for emergency management.
Where can you find more?

9. What is TF-IDF?

10. What is LDA?

11. What are the main steps in natural-language processing?

12. What is a sentiment analyser? Explain its typical outputs.

9,1

27 A three-language demo is available at https://www.dbpedia-spotlight.org/demoy.
Zhttp://live.babelnet.org/.
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Social Media Mining for Disaster m)
Management and Community Resilience %

Hemant Purohit and Steve Peterson

1 Social Media and Disasters

The emergence of Internet or Web 2.0 and mobile technology has led to the
widespread adoption of communication platforms for content generation and
sharing. Social media refers to such platform applications, which enable computer-
mediated communication among citizens to create and share a variety of information
online [41], pursue topical interests via joining online communities as well as
network with like-minded users [39]. For instance, as per Pew Research Center’s
social media fact-sheet [38], only 5% of Americans used some form of social media
platforms in 2005 but the percentage has only grown over the years (Fig. 1), leading
to 72% in 2019. Also, according to a 2018 survey, about two-thirds of American
adults (68%) say they get news about real world events from social media [37].
Social media has created an opportunity for public to act as citizen sensors [57]
and not just consumers of information. This phenomenon can be extremely valuable
to timely sense and share useful observations during the times of emergencies. A
citizen-driven information infrastructure has created a new information sourcing
channel for the emergency management organizations, in order to continually enrich
information for dynamic situational awareness and improve the response services
[29]. The role of social media in disasters in helping the affected citizens has grown
substantially over the past decade correlating to the rapid adoption rate of social
media use in general by the public as shown in Fig. 1. Social media messages
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Fig. 1 Evidence for the rapid adoption rate of social media in our daily life indicating the greater
need to incorporate social media channels for information sourcing during emergencies. Source:
Pew Research Center [38]

during recent emergencies and disasters have included relevant information such
as caution-advice and damage reports [14], requests and offers to help [42] as
well as emotional support for the affected community [10]. However, the relevant
information is often buried in the haystack of noisy, large-scale unstructured data on
social media, which has a variety of multimodal (text, images, videos) data being
generated at high velocity. Thus, addressing this big crisis data problem [6] is an
important challenge for emergency services to achieve the goals of efficient disaster
management and community resilience.

Social media during disasters is leveraged for both natural hazards or manmade
disaster types. Table 1 highlights a variety of disasters and examples of social media
use over a 10-year period. This table is not an all-inclusive list though, it is just for
an illustrative purpose.

2 Scenarios of Using Social Media Mining

Social media has revolutionized both the public’s and response agencies’ ways of
communication before, during, and after disasters. Following a disaster, the public
will obtain information from any number of sources [61, 67, 68]. Specifically
located within the disaster-affected area, the public will search for meaning as
they are confronted with situations and problems outside their bounds of normal,
everyday existence. Both the public in the disaster-affected area and the general
public have a need for immediate information. Recent studies indicate social
media is one of the most popular sources for receiving and collecting critical
disaster information [6, 51]. Social media has expedited and fed our appetite of
seeking and obtaining disaster-related information. When a response agency, or
their communication procedures, do not adequately take into consideration the
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Table 1 Illustration of social media usage during disasters in the last decade

Year
2018

2017

2016

2015

2014

2013

Country
Japan

United
States

Germany

France

India

Kenya

Disaster

Flooding
and mud-
flows

Hurricane

Terrorist
attack

Terrorist
attack

Flooding

Terrorist
attack

Type
Natural

Natural

Man-made

Man- made

Natural

Man-made

Advance
notice?

Some
advance
notice

Advance

notice

No notice

No notice

Some
advance
notice

No notice

Social media usage

Japan Floods: Social media was
used to identify specific places
where people were stuck, posting
information on what to do, listing
locations of running water,
fund-raising, and updating road
conditions [70]

Hurricane Harvey: Several social
media platforms and apps were
used to coordinate citizen
volunteers and rescuers during the
floods in Houston, Texas [60]

2016 Munich Shopping Mall
Shooting: Dependency of the
Munich population on the messages
by police on both Facebook and
Twitter drastically increased during
and after the incident [3]

2015 Paris Attacks: Following the
events, official accounts saw
significant increases in Twitter
followers, e.g., the Prefecture of
Police of Paris (@prefpolice).
Facebook was also heavily used;
with 4.1 million users activating the
SafetyCheck feature [35]

Jammu & Kashmir Floods: Digital
volunteer teams identified need
categories based on information
communicated on social media by
the affected communities, such as
rescue calls for help, hazard impact,
transportation conditions, and relief
distribution [47]

Westgate Mall Attack:
Governmental officials and first
responders tweeted information
concerning the terrorist attack.
Kenya Police tweeted 569 times on
Twitter and the public expressed
emotional support and also,
requested to volunteer [59]

(continued)
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Table 1 (continued)

Advance
Year |Country | Disaster | Type notice?
2012 | United Hurricane | Natural | Advance
States notice
2011 | Japan Earthquake Natural | No notice
2010 | New Earthquake Natural | No notice
Zealand

2009 | United Flooding | Natural | Some
States advance
notice

H. Purohit and S. Peterson

Social media usage

Hurricane Sandy: Water, power, and
transportation agencies shared
information on the status and
availability of their resources
through various social media
platforms [72]

Japan Earthquake: Initial social
media platform usage served to
send and receive breaking
information from a variety of
official and unofficial sources,
including eyewitness accounts. As
time passed, platforms acted as an
electronic bulletin board, sharing
tips, and tracking loved ones [36]

Christchurch Earthquake: Through
the small beginnings of a Facebook
event sent to 200 friends, thousands
of student volunteers helped local
residents most affected by the
earthquake with non-life saving
tasks. The group grew to become
the Student Volunteer Army [66]

Red River Flooding: Local
individuals used social media to
communicate flood related issues
once flood predictions and warnings
appeared. Flooding, sandbagging,
and evacuation information were
posted [30]

value of rapidly disseminating disaster-related content via social media, the online

information search will be more challenging.

The automated methods of artificial intelligence such as natural language
processing and machine learning can help in designing tools for social media
mining to identify and consolidate time-sensitive, relevant social media content. The
classification, prioritization, and summarization of the relevant content into valuable
information categories would benefit both the public (e.g., life/safety information)
and response agencies (e.g., actionable intelligence for decision makers) before the

content becomes obsolete as time passes.

We describe such potential benefits next and summarize in Fig. 2.
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Fig. 2 A process overview of filtering, categorizing, extracting, and assigning actionable intelli-
gence to respective Emergency Support Function (ESF) needs

2.1 Filtering Social Data for Actionable Intelligence

The information present in the social media messages can be valuable and some-
times redundant but complementary for the emergency management and response
coordination. Therefore, the challenge is to extract timely, actionable intelligence
(c.f. Fig. 2) that can align with the operational needs of the emergency management,
such as the Emergency Support Functions (ESF)! as follows:

* Search and Rescue (ESF-9: Search & Rescue): Social media messages with calls
for help by the public [60]

 Situational Updates (Multiple ESF’s): Social media posts providing reassurance
and updates on disaster response efforts, and other pertinent information [75]

e Crisis Management (ESF-15: External Affairs): Social media mining to gauge
atmosphere of public and identify and stop the spread of any rumors/ disinfor-
mation/ misinformation [64]

¢ Health/Medical (ESF-8: Public Health & Medical Services): Mine social media
data for hospital statuses, potential post-disaster disease, injury updates, etc. [5]

e Shelter Operations (ESF-6: Mass Care, Emergency Assistance, Housing, &
Human Services): Social media updates on shelter locations and availability [65]

e Road Closures (ESF-1: Transportation): Social media messages on road clo-
sures, contraflow, etc. [54]

1Overview of Emergency Support Functions: https://www.phe.gov/Preparedness/support/esf8/
Pages/default.aspx.
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The technical challenge is how to create efficient artificial intelligence techniques
for transforming the unstructured social media content to structured information
categories (e.g., types of resource help [42]) to inform ESFs.

2.2 Alert, Warning, and Notifications

Emergency management officials can author social media alert, warning, and
notification messages and quickly disseminate time-sensitive information to the
public via social media platforms at large scale [31]. The public recipients of
the authoritative messages will be better informed of the situation. Public can
become further information disseminators [43], amplifying the critical messages by
simply sharing the actionable content to their social network. This behavior helps
the emergency management expand its audience reach. The technical challenge is
though how to maximize the spread of information for both response agencies and
the public.

2.3 Leveraging Volunteer Networks for Virtual Operations

Collective behavior is a desire to understand and resolve disruptive, disorienting
conditions [55]. The public will engage in collective behavior following a disaster
that allows them to finding meaning for the current situation [62]. Social media
provides a transparent avenue for the public to engage in collective behavior. They
may also converge to form a collective intelligence where they begin to either help
those in need or to support officials [22, 44]. This form of volunteering may come
in either of two forms: a physical presence on-site at the disaster-affected area, or
through a virtual presence of mining social media data for either victims or the
response agencies, or both [47].

In a study of emergency management practitioners, 75% of participants had
identified limited resources as their reason for lacking social media monitoring
services [76]. The collective behavior of volunteers through virtual organizations
could address this staffing limitation challenge by leveraging their social media
mining skills and easily connect and coordinate via social media platforms. For
example, digital volunteers in Community Emergency Response Teams (CERTS)
or Virtual Operations Support Teams (VOSTS) could be activated during times of
disaster to assist the response agency in establishing and sustaining a social media
presence [34]. In 2018, DHS released step-by-step guidance on developing a digital
volunteer program to support response agencies [73]. The technical challenge here
is how to efficiently identify emerging social media volunteers with help offering
intent [46] to meet the needs of the response agency and classify the type of help
the individual is offering to volunteer for. Similarly, another challenge is how to
create adaptive information filtering tools for such volunteer teams that would align
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the automated filtering with the changing definition of content relevance for the
emergency responders and their supporting volunteers.

Exercise 1 Create a survey of 10 news articles that report the use of social media
during an emergency event and identify the category of the reported usage of social
media across the set of Emergency Support Functions.

3 Collecting Data for Social Media Mining

Social media platforms (e.g., Twitter, Facebook) generally provide an Application
Programming Interface (API) or web service to facilitate a channel for collecting
data, either through free or paid subscription mechanism. An illustrative API
is Twitter Streaming API> which provides various subscription types for data
collection. There are three popular approaches for collecting data from social media
for disaster management. First, a keyword and hashtag-based method provides a
mechanism to collect relevant social media messages that contain a term from a
given set of relevant keywords and hashtags for an event (e.g., hurricane, flood,
#sandy, etc. were used during hurricane sandy 2012 [42]). Second, a location-
based method provides a mechanism to collect relevant social media messages that
originate in a given bounding box region (e.g., New York city). Third, a user-based
method provides a mechanism to collect relevant social media messages that are
written by a given set of users (e.g., a Twitter account of influential and active user).

An analyst can collect and store all the relevant metadata with the returned
responses such as message text, posting timestamp, message type such as ‘retweet’
or forwarded message on Twitter as well as authoring user’s self-reported author
profile information such as full name, and location. One requires a systematic
processing pipeline to handle the big social data streams during disasters and
therefore, recent advancement in social stream analytics systems with a focus on
disaster informatics applications (e.g., CitizenHelper [32], AIDR [13], Twitris [58],
CrisisTracker [52], Twitcident [2], TweetTracker [15]) become very useful.

For the early identification of the incidents to start the data collection, an analyst
can take help of event detection methods [53, 77]; for instance, Sakaki et al. [53]
showed efficacy of Twitter in detecting earthquake in realtime. After event detection,
one needs a relevance criterion for information filtering such as relevant keyword
set, in order to collect event-related social media messages, given the large amount
of noisy, operationally irrelevant content shared on social media. Given that manual
keyword set can be biased and outdated during the rapidly changing times of a
disaster event, domain modelling and topic tracking are important techniques to
employ. They allow us to adapt existing domain models or dynamically create

2Twitter ~API:  https://developer.twitter.com/en/docs/tweets/filter-realtime/api-reference/post-
statuses-filter.html.
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models for event relevance that help identify and filter relevant social data for
analysis [25, 69].

Exercise 2 Collect a sample of tweets related to disasters using the keyword-based
data collection approach. Implement a data collector by following the ‘filter-track’
method of Twitter Streaming API, with seed keywords as {flood,tornado,wildfire}.

4 Social Media Mining Techniques

There are several applications of mining social data for all phases of the emergency
management cycle. In the past decade, with the rising adoption of social media,
a variety of computational techniques in different areas including data mining,
machine learning, natural language processing, and network sciences were devel-
oped given the easier access to data, such as public Twitter data streams [78].

Once the data is collected either in streaming mode or batch mode, processing
large-scale social data requires a variety of techniques to meaningfully extract infor-
mation to improve situational awareness and decision support (for comprehensive
surveys, cf. [6, 14, 23]). These techniques can be primarily categorized into five
types that we describe next: content-based, network-based, user-based, context-
based, and lastly, visual analytics for the ultimate human-computer interaction.

4.1 Content Analytics

This type of approaches infer information categories across various content modal-
ities of a social media message [75], such as classifying topics like caution-advice
from text [14] and damage reports from images [17], extracting entities present in
the message [18] such as location mentions, modeling behaviors such as requests
and offers to help [33, 42, 74], quantifying serviceability characteristics for ranking
messages [48], as well as detecting rumors [7, 11, 64]. For instance, the following
message “got a bunch of clothes, I’d like to donate to #sandy victims. Anyone know
where/how do that?” could be classified into clothing/logistics related category.

4.2 User Analytics

Such methods focus mainly on the identification of a variety of user categories [26],
such as on-ground informants [63], emerging informants [43], influential users [16],
real and virtual volunteers [50], and organizational users [28, 40] as well as
measurement of user credibility [1, 71]. For instance, the Twitter user handle
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@RedCross can be categorized as an organizational user that could help filter the
highly-trusted source of information for a social media analytics system.

4.3 Network Analytics

These techniques primarily investigate information diffusion for message reachabil-
ity [12, 30], community formation and evolution [19, 45]. In addition, simulation
and agent-based modeling are useful methods to study social network behaviors
before, during, and after disaster events [49, 56]. For instance, a network of ‘retweet’
interaction on Twitter can be constructed to study the cascades of specific messages
posted by an emergency service and study the patterns of (non-)viral messages.

4.4 Context Analytics

These methods help enrich the metadata of the streaming data instances, such as
geo-location of the information source, which is often present in the less than 2% of
the records. Geo-tagging [4, 18, 21] and spatio-temporal analytics [8, 9] are some of
the examples of this type of techniques to enhance modeling and analysis of social
data. For instance, a location extraction technique could identify the mention of
Brooklyn entity, i.e. one of New York City’s 5 boroughs, in the following message
“Hey! this Brooklyn guy got a bunch of clothes, I’d like to donate to #sandy victims.
Anyone know where/how do that?”

4.5 Visual Analytics

For easily understanding extracted information from social data visualization is the
ultimate need to assist the emergency management teams as well as public. One
popular approach is to create customized dashboard, such as shown in Fig. 3 [15, 32,
52, 58], which provides a spatio-temporal organization of the information for what is
happening where and where are the needs. A key component of the dashboards is a
geo-tagged data visualization and often used standalone as ‘crisis map’ [20], which
has been used as an effective tool in various disasters in the last decade, for instance,
check the crisis map created during Hurricane Harvey in 2017 by @ HarveyRelief, a
volunteer group [24].

Exercise 3 During an emergency, public can mention several types of entities
such as locations and landmarks in the affected area. Use the dataset collected in
Exercise 2 and apply a natural language processing technique of Named Entity
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Fig. 3 Example of a customized dashboard CitizenHelper [32] during Hurricane Harvey to
visually interact with relevant social media messages by selecting time (widget 1, numbered top to
bottom) and location (widget 6), any trending hashtags (widget 4) or mentioned users (widget 5) as
well as filtered messages of public or groups requesting and offering help (widgets 2 and 3),
extracted by active learning techniques in the background that have an ability to take feedback
(e.g., irrelevant request) from a viewer using buttons next to the tweet message

Recognition (NER) for location entities. Report the identified entities and analyze a
random sample of those entities for reflecting on the accuracy.

5 Open Challenges for Social Media Mining During Disasters

While there have been a lot of technical research in the last decade on social
media analytics for emergency management, there are problems still in existence, in
order to actually integrate social media analytics as capabilities for the emergency
management operations. Some of the existing problems include managing dynamic
information overload of social media. It is still not efficient assistance to emergency
managers in terms of providing complete and concise summarization of the key
relevant information, where the relevance of information rapidly changes during
the disaster times [32]. Other set of problems include the sampling bias and noise
removal fallacy [78] for data collection as well as algorithmic biases in any data
processing phase [27]. Among other open problems, real-time social analytics
and integration of information in real-time for situational awareness and decision
making are challenging issues, given the unstructured and non-standardized data
sharing across different social platforms. Similarly, there is a need for mining social
data across other phases of the emergency management cycle than the response
phase, such as how to detect fake content and financial scammers with the malicious
intent during the rebuilding and recovery phase after a disaster.
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In summary, this chapter provided a systematic overview of the usage of social
media mining, the data collection approaches, and the types of analytics techniques
to meaningfully leverage the non-traditional data source of social media for disaster
management and community resilience.

Exercise 4 Implement an automated text classifier for categorizing the messages in
the dataset collected in Exercise 2. To train the model, use an existing crisis-relevant
annotated dataset or create your own annotated dataset using the categories of the
Emergency Support Functions.
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Big Data-Driven Citywide Human )
Mobility Modeling for Emergency ek
Management

Zipei Fan, Xuan Song, and Ryosuke Shibasaki

1 Introduction

With the explosive growth of cities, various urban development issues have
emerged. How to guarantee the safety of the people, especially in an emergency
situation, is becoming increasingly important to all city regulators. With the
popularization of the mobile phones with localization function and the advancement
of big data technology, we can collect and analyze human mobility big data at a
large scale in real-time, which sheds light on a new era of big data driven citywide
human mobility modeling for emergency management.

In general, there are two broad categories of citywide human mobility, routine,
composed of daily or periodic travel, and rare, which is essential to many emergency
situations, such as big crowd-drawing events or natural disasters. Considering the
volume of data and the complexity of the intrinsic patterns, routine human mobility
are simpler to model stochastically, while rare human mobility modeling, essential
to emergency management, is a much more challenging but unexplored research
topic.

In Fig. 1, we show how rare event human mobility different from routine human
mobility. Figure 1b shows the population density (represented as number of mobile
phone users in the dataset) of Shinjuku area shown in Fig. la at 01:30 of each
day in 2012 Jan. It is obvious that population density during a big event (the
New Year Celebration) drifts far from the routine human mobility. A variety of
statistical methods (for example, using a Gaussian or Gamma distribution to model
the population density) are suitable for modeling routine human mobility while in
the emergency case, the rare human mobility is always treated as noise or outliers.
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Fig. 1 Comparison of routine human mobility and rare human mobility

On the bottom row, we visualize the human mobility of the Tokyo area on a regular
weekday (Fig. 1c) and when the earthquake occurred (Fig. 1d). We can also see a
big difference between the mobility patterns of these two, and apparently the model
we learned from a regular day is hardly applicable to this emergency situation.
Moreover, the particularity of each emergency situation also adds up to the
difficulties in modeling the rare human mobility. For routine human mobility, there
are only a few types we could come up with. Two types of routine human mobility,
Weekday and weekend, take the largest proportion of the entire citywide human
mobility. However, rare human mobility, which take the rest proportion, has a wide
range of categories (e.g. New Year Celebration, Olympic Games, big earthquake and
mass gathering events like Comiket). What makes this problem more complicated
is that even the rare events belong to same category can be quite different from each
other. Considering two examples of the greatest earthquakes in Japan, the Great
Hanshin Earthquake in 1995, which occurred in the early morning near Osaka and
led to the collapse of a large number of buildings, and the Great Tohoku Earthquake
in 2011, which occurred in the afternoon in the east part of Japan and was followed
by a severe tsunami), we may find that human mobility during these two earthquakes
differ considerably because of the disparity in characteristics of the two earthquakes.
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Thus we must pay special attention to determining whether it is reasonable to
transfer the knowledge from one emergency situation to another, even of the same
type.

Bearing these difficulties in mind, in this chapter, we divide the emergency
citywide human mobility modeling into three fundamental tasks, which are ana-
lyzing the emergency human behavior, predicting the human mobility in the
emergency situation, and simulating human mobility in response to an imaginary
emergency situation. We review the relevant studies on each task, with real world
emergency management case studies.

2 Approaches for Analyzing Human Emergency Behavior

For big crowd-drawing event or natural disaster that happened in the past, what
we are interested in is how to learn the human mobility patterns in response to the
emergency from the past experience. A simple visualization or do a simple statistics
of the human mobility can provide many useful information, but for higher level
information (how the life of the people is recovered after the earthquake) turns out
to be difficult to extract directly because human mobility is always at a mixing
state. Imagine a commercial area at 7 p.m. on a weekend. The people in this region
would probably be drinking with friends, shopping, coming or leaving using public
transportation. Comparatively, when the disaster occurs, people in this region may
gather in the station to wait for the recovery of public transportation. Thus, we
assume that a people flow is a mixture of various underlying latent components
such as commuting and working patterns. Under this assumption, the objective of
analyzing is to infer the underlying components from population density variation.

There are two families of algorithms in finding the latent components. One is
topic modeling [5], which assigns a topic to each record of the human mobility data
with respect to the coherence of the spatiotemporal topic distributions. Figure 2
shows a case study on applying topic modeling to the call record details data in
modeling people behavior changes in Bangladesh during Eid al-Fitr festivals, which
is the most important religious festival to the people there.

Another family of algorithms to discover latent components is matrix/tensor
factorization [3, 12], which we will introduce in more details. An intuitive example
is given in Fig. 3, the upper part of which is a people flow in a mixed state. Some
regions are more likely to be a workplace (high density during working hours),
other regions are more likely to be a transit station (high density in the morning
and evening rush hours), and still some regions may be a combination of the two.
Our research objective is to decompose a mixed people flow into a few basic people
flows, each of which characterizes one human life pattern in the city, for example, a
working pattern or commuting pattern, as shown in the lower part of Fig. 3.

To find the proper “spectrograph” that decomposes the citywide human mobility
into basic patterns, Fan et al. [3] proposes a CitySpectrum method to approximate
the people flow tensor through a linear combination of a few basic tensors (of rank 1)
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with constraints (as shown in Fig.4). There are two commonly used constraints
to factorization. The first is the orthogonality (e.g. singular value decomposition),
which applies a constraint in that the bases that are factorized out should be
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orthogonal to each other. The second is non-negativity (e.g. NTF [1]), which
assumes that every entry in the bases have to be non-negative.
Fan et al. [3] claims two reasons why non-negativity is preferred:

* the density of a people flow cannot be negative, and
« the difference between each pattern is not so significant as to be orthogonal.

Each rank-one tensor we discovered can be represented using three vectors,
namely, the time-basis, the location-basis and the day-basis. These triple bases
describe the spatio-temporal characteristics of the components of a people flow
implied by a rank-one tensor. For simplicity and clarity of further analysis, we
manually named the labels summarizing what kind of pattern the bases describe. For
example, in Fig. 5, we show the bases of the rank-one tensor we factorized out. In
the top-right of the figure, the regions with the highest values are the major stations
in Tokyo, and we can see that the regions with a high value are approximately
aligned along the mainlines (railway) in Tokyo. As for the time-basis, we can see
two peaks at about 8:30 and 19:00 which could be interpreted as the morning and
evening rush hours. Weekly periodical behavior can be easily observed from the
day-basis diagram with the exception of the “golden week” in Japan. In the “golden
week”, Tuesday to Friday are national holidays. As a result, the people flow behaves
similarly as that found on the weekend. Therefore, we labeled the rank-one tensor
in Fig. 5 as a “commuting pattern”.
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2.1 Case Studies on Disaster Behavior Analysis

It is difficult for the government to quantitatively evaluate the impact of the disaster
on the daily life on the residents. With the help of the human mobility big data,
the CitySpectral approach provides a novel perspective in modeling a people flow
during a disaster in that disaster impact of the disaster on each basic life pattern can
be measured.

The people flow tensors are computed to represent the people flow in Fukushima
for four continuous months (ranged from Feb. 1 to May 31, 2011) before and
after The Great East Japan Earthquake. In the experiments, nine basic life patterns,
annotated as “home (1,2,3,4)”, “commercial (1,2)”, “working”, “entertaining” and
“commuting”.

Figure 6 shows the days-basis before and after the Great East Japan Earthquake,
reflecting the changes of each pattern with days. We can see that the home pattern
is affected by the earthquake so significantly that it cannot simply be described as a
single basic life patterns. The factorization algorithm separates a home pattern into
four sub-patterns, depicting different aspect of home pattern.

The most obvious peak in Fig. 6 is the dramatic increase of “home 1” pattern in
the three days following the earthquake. In the first row of Fig. 7, the time-basis (the
first column) describes the “home 1” life pattern as “staying at home (or somewhere
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Fig. 6 Diagram of day-basis in Fukushima before and after the Great East Japan Earthquake from
Feb. 1 to May 31, 2011 (the earthquake took place on March 11). Figure from [3]

nearby within the region) for the whole day”, since there is little variation of the
pattern intensity during one day. “Home 3” (on the third row) represents the pattern
of “spending most time at home while sometimes going outside during the daytime”.
As shown in region-basis, “home 1” represents a more concentrated pattern of
spatial distribution than “home 3”, because “home 1” describes the pattern that
people at a very low level of mobility while “home 3” describes the pattern that
people mobility is partially recovered. In addition, “home 1 and “home 3” have in
common that both have very low intensity in the coastal regions, where are severely
damaged by Tsunami.

We can see from Fig.6 that the peak of “home 1” follows right after the
earthquake, this is because after the earthquake the transportation system broke
down and the people’s movement ability is restricted. In addition, people felt
insecure, preferring to stay at home or their temporary shelter. About three days
later, “home 1”7 decreases sharply while “home 3” rises. This is an intermediate
state that transiting from heavily affected (“home 1) to regular patterns (“home 3
and 4”).

A larger scale (nationwide) spatial disparity of the influence of the earthquake can
be analyzed in a quantitative way shown in Fig. 8. We select four areas (inland area
of Fukushima prefecture, coastal area of Fukushima prefecture, Tokyo and Osaka)
and obtain the CitySpectrum of each area to see the influence of 311 earthquake
to the people’s daily life. As we can see from Fig. 8, inland and coastal area
of Fukushima prefecture are most heavily affected by the earthquake, we could
find a dramatic change of the patterns right after the earthquake takes place and
it takes about one and a half month for the patterns recover to the normal level.
Note that the regeneration process of inland and coastal areas are different. The
disastrous Tsunami after the earthquake cause an invertible damage to the coastal
area, especially the regions near to Nuclear Power station, we could see from
the day-basis that people’s life patterns are quite different from that before the
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Fig. 7 The time-basis and region-basis of “home” patterns in the Fukushima people flow Tensor

before and after the Great East Japan Earthquake. Figure from [3]

earthquake, while in the inland area of Fukushima, though the influence of the
earthquake is very strong, it is recoverable and we could observe that after one and
half months, people’s life patterns have regenerated and indistinguishable from that
before the earthquake. We could observe an obvious but much more mild change of
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Fig. 8 A comparison of the spatial disparity of day-basis at a nationwide scale

people’s life patterns compared with those in Fukushima prefecture, while in Osaka,
little change due to the earthquake could be observed (the most obvious change is
caused by the golden week in May).

3 Approaches for Predicting Human Emergency Mobility

Human mobility is very difficult to predict, especially, when we focus on the human
mobility in emergency situation. We can model users’ daily routines and predict
periodical behaviors by an accumulative observation of their mobility patterns,
whereas emergency behaviors, such as the gathering behavior for a crowd-drawing
event or responses to the natural disaster, can hardly be predicted and thus they
have usually been treated as outliers of the daily routines in most existing studies.
However, to guarantee the safety of the people, such rare behaviors intrigue us more
than daily routines.

In the scope of citywide, the emergency behavior of each individual is no longer
rare and thus it may be predictable. In this section, we explore the probability of
making short-term predictions based on the recent movement observations [13, 16],
shown in Fig.9, applies a hidden Markov model on user’s past trajectories to
learn their behavior pattern, and given the user’s current observed movements and
disaster states, the future movements are predicted in a particle filtering framework.
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Fig. 9 Overview of the approach for human mobility prediction during an earthquake. Figure from

[16]

[14] formulates the human mobility prediction during natural disaster in a Markov
decision process to model a better sequential pattern of human trajectories. Konishi
et al. [9] uses the characteristics of transit log data, and proposes an algorithm that
automatically early detects the rare event and switches the prediction model between
regular predictor and emergency predictor. To prevent the tragedy of Shanghai
stampede accident [2] from happening again, Zhou et al. [17] detects the irregularity
and gives early warning using Baidu map query data.

In the rest of this section, we will detail the following two studies: Fan et al.
[4] proposes a novel model called CityMomentum as a predicting-by-clustering
framework for sampling future movement using a mixture of multiple random
Markov chains, each of which is a Naive Movement Predictive model trained
with the movements of the subjects that belong to each cluster. To leverage the
historical data and enhance the prediction performance on regular and precedented
human mobility, in [7] we take CityMomentum model as one key component, and
propose an ensemble prediction framework that copes with both rare (precedented
and unprecedented) and regular human mobility.

3.1 CityMomentum

To predict the human mobility during a rare event, Fan et al. [4] makes simplifica-
tions based on the following assumptions:

* Social crowds gather gradually so we can collect enough information from those
who arrived early to attend gathering to predict late arrivals.

* Subjects sharing similar recent trajectories will have a similar bifurcating pattern
in the short-term future.

* The bifurcating behavior can be assumed to be invariant during a short period.

Given these assumptions, this study integrates the GPS logs of mobile phone
users based on the current time to predict their future movements at a citywide level.
An illustration of the intuition of the proposed model is shown in Fig. 10. Based on
observations of the recent trajectory of one user, there is no idea of where he/she
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Fig. 10 Overview of the key processes in our CityMomentum model. Figure from [4]
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Fig. 11 Predicted sources of visitors to C80 at 1 h later and predicted 1-h-later locations of the
visitors at C80 (in the top row) and the actual sources of and 1-h-later locations of visitors in reality
(in the bottom row). Figure from [4]

will move next (Fig. 10a). However, in the scope of citywide human mobility, we
can make a prediction based on the last location of the subject and the destinations
of others from the same location (Fig. 10b and f). Based on the second assumption,
we cluster users’ recent trajectories so that users within each cluster share similar
trajectories (Fig. 10c), and improve our prediction by the movements of the cluster
instead of all the users. Then, the predicted movement is generated in a random walk
procedure (Fig. 10d).

Here we present the prediction results at a rare event Comiket in Fig. 11. Comiket
is the biggest comic fair in the world and is a big challenge to the local transportation
system. The left panel of Fig. 11 shows the predicted human movements between
8:30 and 9:30 (top row) based on the momentary movements at 8:30 and a
comparison with the ground truth (bottom row). To visualize our prediction of the
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potential visitors to C80, we select the region around Big Sight at 9:30 and trace
back the subjects in this region to find out their locations at 8:30. Our algorithm
successfully predict the geographical distribution of the visitors to C80. The bottom
row shows that the main sources of the visitors are the two railways to the north-
west of Big Sight. These two railways are the most convenient way for reaching Big
Sight and they pass through the most important transport hubs in Tokyo (Shinjuku,
Tokyo, and Shibuya stations). The results shown in the top row illustrate that most
of our predictions agreed with ground truth movements.

At 4 p.m., C80 closed and a large crowd of people were leaving from the Big
Sight. In fact, most of the visitors tended to leave earlier because the majority of
the best-sellers sold out within the first few hours. As a result, we can obtain some
insights into the dispersion behavior of the visitors based on those early leavers. The
right panel of Fig. 11 provides an intuitive verification of the predicted of dispersion
behavior based on a comparison between the predicted destinations of C80 visitors
and their actual destinations.

3.2 Ensemble Human Mobility Predictor

CityMomentum discards all the historical data and make short-term prediction
only based on the most recent trajectories. This leads to a great information loss,
especially considering the regular and precedented rare human mobility. To enhance
the prediction performance on regular and precedented emergency situations, Fan
et al. [7] proposes an ensemble models which trains one human mobility predictor
for each day of the historical data and most recent data (shown in the lower
part of Fig. 12). Thus, each of these can be regarded as an “expert” in predicting
the human mobility on its particular day or the most recent trend. All these pre-
trained predictors are integrated in a mixture-of-experts way and the weights of the
“experts” are adjusted in an online model selection way, as shown in the upper part
of Fig. 12.

3.2.1 Case Study on Comiket

Figure 13b shows a typical trajectory that travels along the Joban line from northeast
of Tokyo to the Tokyo station. The prediction in shown in Fig. 13¢c was made using
our proposed online predictor for 8:00 a.m. on Aug. 11, 2012, which was the second
day of Comiket, while in Fig. 13d, the prediction was made using the predictor for
8:00 a.m. on Aug. 4, 2012, which was one week before Comiket when no big event
was being held at Tokyo Big Sight.

As can be seen from Fig. 13c and d, for Aug. 11, 2012, our predictor predicts a
significantly higher probability for the Tokyo Big Sight area than the one on Aug. 4.
The model selection ability is shown in Fig. 13e and f, on Aug. 11, 2012, the gating
function in the ensemble predictor automatically assigned the highest weight to the



Big Data-Driven Citywide Human Mobility Modeling for Emergency Management 121

Most recent trajectories

Next step movement prediction

Linear Combination

Deep CityMomentum

Predictor
Day 1 Day 2 Day 3 Day 4
weekday weekend New Year Comiket
Online Phase Offline Phase "Konzatsu-Tokei (R)". (C) ZENRIN DataCom CO., LTD.

Fig. 12 Overview of the ensemble prediction approach. Figure from [7]

pre-trained predictor for Aug. 14, 2010, which was the second day of the Comiket
in Aug 2010, whereas on Aug. 4, 2012, our ensemble predictor only assigned very
little weights on the Comiket days in Aug 2010 (indicated by the red box).

3.2.2 Case Study on New Year Countdown

Another case study is on predicting the citywide human mobility at midnight on
Jan. 1, 2012 on the New Year eve. Many crowd-drawing events take place on that
night, and famous examples include Universal Studios Japan (USJ) Countdown
Party, the Kitamido Countdown and Sumiyoshi Taisha Hatsumode. As shown in
the left panel of Fig. 14, for each trajectory, we estimated the weight of each pre-
trained predictor and colored them based on the predictor with the highest weight.
Those trajectories that considered Jan. 1, 2011, as the best predictor are in red, while
the others are blue. We can see that the famous New Year’s countdown locations are
mainly colored red, whereas residential areas, where there are fewer celebration
events and the human mobility pattern is not distinguishable from a regular day, are
mainly colored blue. In the right panel, we calculated the average weight of each
predictor for predicting the human mobility on Jan. 1, 2012. We can see that the
best predictor found by the gating function was the one trained using Jan. 1, 2011.
It is worth noting that in contrast to classical approaches that label rare events in
both the training data and testing data, we did not provide any prior knowledge
indicating such a correspondence. In others words, our gating neural network could
effectively manipulate the information flow based on the current human mobility to
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Fig. 13 Visualization of predicted human mobility during rare event (Comiket). Figure from [7]

automatically select the best information from the past, and thus enhance the human

mobility prediction at the current stage.
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Fig. 14 Visualization of online model selection on New Year Eve. Figure from [7]

3.2.3 Case Study on the 2011 Great East Japan Earthquake

Rare events such as the New Year countdown and Comiket are precedented. Fan
et al. [7] tests the performance of our system on unprecedented emergency using the
2011 Great East Japan Earthquake as an unprecedented emergency that could not
be found from the historical data. In Fig. 15, we can see that after the earthquake
occurred, the citywide human mobility changes significantly (Fig. 15a and b). In
response to this, the ensemble model raises the weight of the deep CityMomentum
predictor, which is more suitable for predicting unprecedented rare event. It is
worth noting that to predict the precedented rare human mobility in Figs. 13 and
14, the ensemble model choose the pre-trained component predictor, while the deep
CityMomentum predictor is not activated (the weight of predictor 0 is low).

4 Approaches for Simulating Human Emergency Mobility

When we see the reports of major events on TV, both joyful (e.g. the Olympics
Games or the New Year’s celebrations), and disastrous (e.g. earthquakes or
tsunamis), we may wonder: “What if this happened in my city?” As shown in Fig.
16, when a tremendous earthquake occurs in Tokyo, where hundreds kilometers
away from Tokyo, Osaka was only slightly effected by the earthquake. Thus, to
learn the lessons from Tokyo and improve the emergency management to minimize
the of the government, we may wonder what the human mobility would be in Osaka
if the same disaster occurs in Osaka.

We need to address two major problems of transferring the emergency human
mobility knowledge from one city to another. The first one is the particularity of
each emergency, as we discussed in the examples of two greatest earthquakes in
Japan in the introduction section. The second obstacle is the particularity of city
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Fig. 15 Visualization of citywide human mobility in Tokyo on regular day (a) and when the Great
East Japan Earthquake occurred (b) (the hue represents the moving direction) (¢) shows how the
weight of each component predictor changes before and after the earthquake took place, and (d)
shows the cross entropy loss for our ensemble predictor and each component predictor. Figure from

[7]

layouts. For example, when we learn lessons from one city in which a transportation
hub has been struck by a tremendous earthquake, we must know the details of the
corresponding transportation hub in the other city. In previous research, this is done
mainly by empirical knowledge with some supportive evidence (e.g. the largest
railway station in one city corresponds to the largest railway station in another city);
however it is unrealistic to determine city layout alignment manually, because of
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Fig. 16 What if Osaka was struck by the 311 earthquake? Figure from [6]

complex city topologies and multi-modality in intercity layout alignments (that is,
one place in a city may correspond to many candidate places in another).

To cope with these difficulties, Fan et al. [6] propose a transfer learning
algorithm, CityCoupling, to establish probabilistic intercity spatial mapping, which
can be assumed to be invariant with respect to both routine and rare human mobility,
that aligns the layouts of two cities in a domain adaptation way. We apply a spatial
transformation to rare human mobility, while leaving all the intrinsic factors of
human mobility unchanged. Thus, the information of the human mobility at rare
events are maximally preserved.

As shown in Fig. 17, the CityCoupling algorithm can be divided into two phases:
1) an expectation maximization (EM) framework for intercity spatial mapping
estimation and 2) a hidden Markov model (HMM) that incorporates knowledge
transferred from the source city, geographical continuity, and population density
prior to generating simulated trajectories. Figure 18 shows an example of how a
typical trajectory in Tokyo that travels through Toukaido line corresponds to the
locations in Osaka. The four important stations on Toukaido line that connects with
Yokohama (the largest city around Tokyo) with Tokyo is mapped to a route that
connects Kyoto (one of the largest city near Osaka) with Osaka.
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Fig. 18 Visualization of a typical trajectory in Tokyo that travels through Toukaido line (on the
left) and the mapping results (on the right) for four important stations on this railway: Kawasaki,
Shinagawa, Shimbashi, and Tokyo stations. Figure from [6]

4.1 Case Study on Transferring the Great Eastern Japan
Earthquake

As shown in the top row in Fig. 19, Tokyo was heavily affected by the 2011 Great
East Japan Earthquake and citywide human mobility was reduced due to severe
disruptions of the transportation network. The earthquake occurred at 14:46 on
a Friday; therefore, most people were trapped at their workplace, because the
transportation network failed to recover until the next morning. However, Osaka
was only slightly affect by the earthquake. From the second row in Fig. 19, we can
see that in Osaka human mobility on that day did not differ significantly from a
regular day.

With the help of the intercity spatial mapping from Tokyo to Osaka, the
trajectories in Osaka could be generated to simulate the human mobility in response
to the same disaster as in Tokyo. As shown in the third row, our simulated
trajectories preserve different phases of the human response to the earthquake
“regular — heavily affected by the disaster — gradual recovery”. Compared with
human mobility in Osaka on that day, we find that our simulation results in the
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Fig. 19 A visualization transferring human mobility during the Great Eastern Japan Earthquake
in Tokyo, where was heavily affected, to Osaka, where was only slightly affected. Figure from [6]

first and fourth columns, which are from before and 12 h after the earthquake
(when the transportation network had mostly recovered), are considerably similar
to the true human mobility at those times, while those in the second and the third
column, which depict transportation network disruption, are substantially different
from the second row. Putting the first and third rows together, we find a similar
human mobility pattern regardless of city layout.

4.2 Other Studies on Emergency Human Mobility Simulation

There are some other relevant studies on simulating human mobility for emergency
management. Traditional approaches are usually multi-agent based human mobility
simulation [8, 10], which require a large number of parameter configuration and
a rich expertise to make it work properly. Song et al. [13, 15] proposes a data-
driven approach for simulating human mobility in response to imaginary disasters
described by the disaster parameters. Such learning-to-simulate methods require
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much fewer parameter configurations (most of the parameters are learned from
data), but we need to collect sufficient training samples and the methods are more
limited to certain types of emergency that could be parameterized.

5 Conclusion

In this chapter, using the real-world human mobility big data, we give several
examples of modeling citywide human mobility for emergency management. The
challenges and state-of-the-art solutions to the three basic tasks are introduced.

Considering the limitations of existing studies, some promising future directions
in citywide human mobility modeling for emergency management are given as
below:

¢ Map information: In general, map information does not draw sufficient attention
in the existing studies. The reasons are twofold: the first reason is that map-
matching requires a lot of work, and can be quite unstable if the sampling rate
of human trajectory is low. However, to make the algorithms more practical,
map information should be taken into consideration in the future research (the
population density on XXX road is more informative than in grid XXXXX). The
second reason is using the map element to represent human mobility implies
much more complex constraints, and therefore make the model more difficult to
build and work properly.

* Fusing more sources of data: Comparing with social network data (e.g. Twitter,
Facebook, Weibo), transit app log data (e.g. Google map, Yahoo) or life log
data (e.g. Google calendar, survey), GPS points suffer from the problem of lack
of semantic information. For emergency management, although we are able to
observe irregularities from GPS points data, we are blind about what is happening
there. Surveillance camera or twitter data could be very important data providing
the semantic information of the emergency to help us know better about what the
emergency situation and how people react to it. Besides, for big crowd-drawing
event such as Olympic Games, we do not have many cues on whether he/she will
attend. Other sources of data, such as search query data, social network data and
ticket selling data, can be quite promising in complementing such weakness.

¢ Better model that robust to emergency: From the viewpoint of machine
learning, modeling emergency human mobility suffers from the problem that
insufficient samples. Emergency situation is always the rare case in the dataset,
and we should be very careful about whether we are reasonably generalizing the
emergency from our data. Transfer learning [11], which is a hot research topic,
sheds light on enabling the rapid learning ability that could even transfer the
knowledge between different tasks and learn from insufficient samples.
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6 Exercises

Geo-tagged social network data (e.g. Twitter, Foursquare, Instagram) are widely
available on the Internet.

1.

Write a crawler to collect a geo-tagged social network dataset at least one week
in two cities, including at least one crowd-drawing event (e.g. Football match
musical festival or New Year Countdown)

. Implement a CitySpectrum algorithm to find out the latent mobility patterns in

the dataset. Try to describe the spatio-temporal characteristics of the big event
human mobility

. Train an predictor on the next move of each user in the dataset, and see

how well the human mobility at the big event could be predicted. Popular
probability machine learning packages such as PyMC3 or Stan, and deep learning
frameworks such as TensorFlow or PyTorch are highly recommended.

. Find out the intercity spatial mapping between the two cities, and find out the

most probable venue of the big event in the other city. Try to simulate the human
mobility of the big event in the other city.
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Smartphone Based Emergency ®)
Communication G

Huawei Huang and Song Guo

1 Definition of Basic Terms

We first review the definitions of basic terms appeared in this chapter.

Emergency Communications are communication paradigms that are exploited
to support one-way and two-way communication of emergency information
between two peers, or within a group of peers.

Emergency Communication Networks (ECNs) are networks organized to convey
information over multiple types of communication devices, intended to serve
disaster-relief missions during emergency situations such as natural disasters.
Disruption/Delay Tolerance Network (DTN) is a type of computer network
architecture that aims to solve the technical issues in heterogeneous networks
where the continuous network connectivity is not always available [1]. The
examples of DTN networks are those operating in mobile terrestrial or space
environments.

Edge/Fog Computing is a computing paradigm that brings intelligence and pro-
cessing capabilities closer to where the data originates from sensors, actuators,
relays, etc. Therefore, it does not need to send the data to a remote cloud or
other centralized systems for processing. Taking advantage of Edge Computing,
the distance and time consumed in sending data to centralized sources can be
eliminated, such that the data transportation and service performance are able to
much improved.
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2 Introduction to Smartphone Based ECNs

Large-scale disasters such as devastating earthquake, flood, wild fire and tsunami
bring severe damages to telecommunication infrastructures, and incur massive
blackouts to the affected areas. It usually takes months to recover the dam-
aged infrastructures. Thus, aiming to satisfy the sharply growing communication
demands and reduce loss of lives and properties, the ECNs [2] need to be
immediately established to response to post-disaster missions. ECNs are designed
to provide reliable communications under emergency [3]. For example, the ECN
Center can collect messages from disaster areas and notify the rescue team members
the required actions for disaster-relief.

2.1 Background of Smartphone Based Networks

Nowadays, smartphones are pervasive in our daily life. In each of them, various
sensors such as GPS, cameras, compass, gyroscopes, microphones and light sensors
are embedded inside. Thus, when a group of smartphones connect to the Internet
through cellular or WiFi networks, or when they connect together under a certain
topology using the built-in bluetooth technology, a sensor network is actually
constructed and can be exploited to organize ECNs for disaster-relief tasks.

Smartphone based ECNs have attracted enormous attention in recent years. In
this chapter, we first review the state-of-the-art smartphone related disaster-relief
efforts. We then reveal the open issues and future research directions.

2.2 Overview of ECN Architecture

Through Fig. la, we have an overview of the typical smartphone based ECNs.
When disasters attack, the affected areas will be usually divided into multiple
communities. Due to the damage of the telecommunication infrastructures, these
distributed communities potentially disconnect from the Internet and form isolated
“islands”. As illustrated in Fig. la, to build network connection, the approaches
exploiting vehicular mobile stations [4-8] and DTN techniques [9-13] have been
widely studied. In the communities where vehicular mobile station can go through,
people could use the social media apps such as Twitter, Instagram, etc., to commu-
nicate with their family members and friends with the Internet connection provided
by the mobile stations. In the communities where the mobile stations cannot
reach, community residents could share content with their smartphones based
on Unmanned Aerial Vehicle (UAV) and Device-to-Device (D2D) technologies.
Meanwhile, smartphones can also help to collect data from the Internet of Things
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Fig. 1 The overview of smartphone based ECN architecture and the corresponding data-
transmission stages. (a) Smartphone based ECN architecture. (b) Data-transmission stages

(IoT) devices deployed in disaster areas. Then, all the collected data originated
from disaster scenes can be gathered by the mobile stations and finally aggregated
to the database that locates in remote cloud for big data analytics. By invoking
the big data technologies, critical useful information can be mined. For example,
the occurring probability of disasters can be predicted using historical records.
These useful information is delivered to the ECN Center, which will help make
the disaster-relief decisions, e.g., evacuation guidance and rescue commands. In
particular, in the edge networks where edge servers are deployed, the real-time
data analytics and data preprocessing can be accomplished by exploiting the edge
computing technologies [14].

To precisely draw the relationship between ECN components, we use Fig. 1b
to illustrate the stages of data-transmission from sensing stage to aggregation
stage. We can observe that the smartphone based networks play an important role
that bridges the bottom device-layer and the data-forwarding networks. Especially
under the ECN scenarios where the UAVs and other DTN network components
are constrained by energy limitation, weather conditions and various disaster
aftermath, smartphone based networks are much easier to establish comparing with
other DTN networks, thanks to the pervasive mobility of smartphone holders, i.e.,
human. Therefore, smartphone based networks provide the powerful data collection
functionality for ECN.
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2.3 Key Concepts for Emergency Management
2.3.1 Situation Awareness (SA)

Situation Awareness (SA) is a procedure to perceive the environmental events and
elements in either time or space dimension, aiming to know the comprehensive
understanding of their meaning, and the projection of their future status [15].

The SA information plays a significant role during disaster-relief, because the
ECN Center makes rescue planes for rescue teams relying on the onsite situa-
tions such as road damages, resident distribution, resource requirement, medical
demands, and so on. Thus, it is critical to timely sense the situation awareness infor-
mation for ECN management. Based on the pervasive sensor-equipped smartphones,
the opportunistic sensing technology [16] has been considered as the promising
paradigm for scalable context monitoring, such as the large-scale crowd-behavioral
sensing and environmental monitoring. Especially, the crowd-mobility study, such
as prediction of crowd mobility in public areas [13], is obviously very useful for
guiding evacuation when disaster occurs, to avoid the casualties caused by chaos
and panics in the crowd.

2.3.2 DTNs

As we have mentioned, communities in the disaster area may be separated to
multiple isolated ECNs, incurring that the end-to-end connection cannot be estab-
lished. The approaches to construct an ECN by exploiting mobile stations and aerial
vehicles [4-8] are options under DTN theories.

2.3.3 Big Data Analytics

A large volume of data can be collected from various sources such as the IoT
devices deployed in disaster scenes, smartphone based networks, and social media
networks. Then, with the collected data, big data analytics is essential to understand
the situations in each disaster site, because useful information can be extracted from
the collected raw data for situation awareness. For example, a number of recent
studies [13, 17-20] have retrieved meaningful information by specifically focusing
on analyzing the social media data such as Twitter or Facebook datasets, to response
to disasters and manage the emergency networks.

2.3.4 Edge/Fog Computing

As reported in a white paper of Cisco [21], there will be 50 billion things to
connect to the Internet by 2020. Such a large number of [oT devices will produce
tremendous volume of data that needs to be processed and analyzed. Similarly,
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as shown in Fig. la, in the post-disaster scenes, the IoT devices deployed in the
disaster areas and the smartphones themselves can yield a large volume of raw
data. To retrieve the real-time useful information for rescue teams, the collected
data requires distributed onsite processing. However, the conventional cloud based
data processing paradigm needs to direct the data streams to the servers located in
the remote cloud for processing or computing. This traditional paradigm results in
unacceptable performance under disaster scenarios. Edge computing [14] and fog
computing [22] are proposed to mitigate the workload in conventional datacenter
servers by processing local data on the computing nodes located at the edge of
networks. Thus, it is necessary to adopt the techniques of edge computing and
fog computing to reduce the situation-awareness delay and improve the quality of
service in the smartphone based ECNs.

3 Data Source

Generally, any text messages, GPS traces, images and videos reflecting the situa-
tions of disasters are greatly helpful for disaster-relief. In this section, we introduce
several representative datasets used in ECNs, such as the data for capturing
crowd mobility, for estimating the distribution of victims, and for better situation
awareness. The brief features of the typical datasets are shown in Table 1.

3.1 Mobility Related Datasets

The mobility pattern analysis towards human or vehicles benefits the evacuation
when disaster occurs. For example, to know the road conditions such as blocked,
damaged or normal, and the mobility of the crowd determines the rescue plans
directly. The typical datasets related to crowd mobility can be found as follows.

The floating car data is sensed and collected from the cars under driving by the
mobile devices such as smartphones holding inside cars. For example, to predict the
traffics in highway of Rome, Fabritiis et al. [23] successfully estimated the mobility
patterns by analyzing the floating car data that was collected from a large number
of cars. Then, Ganti et al. [24] studied the movement patterns of the taxi passengers
by analyzing the floating car data from taxis.

Table 1 Typical datasets for smartphone based ECNs

Datasets References Significance for disaster-relief
Floating car data [23,24] To estimate traffic mobility patterns in disasters
GPS trace data [25, 26] To estimate human mobility patterns in disasters

Social media data [13, 17-20, 27] To retrieve situation-awareness at disaster scenes
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GPS traces of mobile-phone users have been exploited to estimate people who are
traveling in urban areas. For instance, in [25], the GPS traces obtained from mobile
phones during some social events such as sport games and sudden entry/departure in
transport stations, were used to study the correlations between crowd mobility and
special events. Horanont et al. [26] analyzed the discerning behavior change during
the evacuation after the 2011 Great East Japan Earthquake using the large-scale GPS
trace samples.

3.2 Social Media Related Datasets

People who are close to the disaster scenes may post the real-time texts, images, and
even videos to the social media such as Twitter, Facebook, Instagram or YouTube.
Therefore, social media data captures the first-hand dynamic information at disaster
scenes, and it has significant value to disaster-relief. Some examples of using social
media data are presented as follows.

The analytics on Twitter dataset has been used in the response to Great East Japan
Earthquake [17]. Also, the Twitter dataset has been used to estimate the density
of victims via analyzing the distribution of Twitter messages in the post-disaster
areas [18]. However, the accuracy of this approach is not convincing, because not
everyone has a Twitter account, and not everyone will pose a Twitter when disaster
occurs.

Musaev et al. [19] first proposed a rapid ensemble classification system to
monitor natural disasters by exploiting the social media texts, such as Twitter data.
In this study, the proposed approach specifically addressed an unique challenge
caused by multiple meanings of the search word. Furthermore, Musaev et al. [20]
developed an online disaster detector that collects keyword related events and
particularly supports multiple-language, based on the Twitter social media data.

Higashino et al. [13] presented a smartphone based crowd and event detection
architecture, in which the data source from Twitter social media has been used.
At first step, the correlation between popular words in the Twitter dataset is
analyzed to extract the event keywords. Then, the crowd information is shared
among smartphone apps and uploaded to could servers for matching keywords with
the event database. In this manner, the presence of crowd in real world could be
detected, and the reason behind the crowd event can be also estimated. This is very
useful to public safety, because some dangerous events, such as fires and terrorist
attacks, could be timely identified to raise an alarm.

In addition, Giridhar et al. [27] developed an adaptive localization algorithm that
localizes urban events using the set of pictures retrieved from the Instagram images
containing the specified tag keyword.
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4 Methodologies and Key Techniques

In this section, we review the state-of-the-art existing methodologies and key
techniques in the smartphone based ECNs (Table 2).

4.1 Construct ECNs by Ad-hoc Networks and DTNs

To quickly response to disasters, recent studies [9—13] explored the techniques of ad-
hoc networks, opportunistic networks and DTN to construct ECNs in the affected
disaster areas for the survivability and evacuation of victims. For example, Based
on the DTN communication techniques, Trono et al. [12] developed a smartphone
application called DTN MapEx, which generate and share maps of disaster areas
by exploiting multiple nodes in the system. This application can minimize the
individual computational workload, since the map generation tasks are shared within
all mobile sensing nodes in DTNs. Higashino et al. [13] have launched a research
project for disaster mitigation, leveraging the DTN-enabled distributed micro-
modules. In their approach, a smartphone-based crowd-event detection architecture
has been designed.

4.2 Data Collection and Aggregation in ECNs
4.2.1 Mobile Base Stations

To better understand the situational awareness of disasters, data collection and
aggregation are the main tasks in ECNs. A handful number of studies [4-8] realize
such missions by applying the vehicle-based or aerial-based mobile base stations.
For example, Gomez et al. [4] presented the outcomes of the ABSOLUTE project

Table 2 Key techniques and methodologies of smartphone based ECNs

Contribution References | Key techniques and methodologies
Construct ECNs [9-13] Proposed approaches to communicate in
ECNs by ad-hoc networks,
Opportunistic networks and DTNs
Data collection and aggregation | [4-8] Proposed mobile base-station, like UAV, based
mechanisms
[28-31] Proposed Device-to-Device (D2D)
communication based mechanisms
[32-36] Proposed crowd-sensing based mechanisms
[37,38] Proposed satellite based technologies for
network discovery and connection
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[28], in which a low-latency IP mobile network with large coverage has been
prototyped by combining aerial, terrestrial and satellites communication networks.
In particular, the aerial base stations have been implemented as the main components
to provide resilient communications for the mobile devices in disaster scenarios.
A low cost balloon based Network [6] has been proposed for the post-earthquake
rescue. Li et al. [5, 7] proposed to build a disaster management network based
on mobile stations implemented by drones and vehicles, in which sensors and
network connection interfaces are equipped. Via this framework, a lot of disaster
management tasks can be achieved, such as sensing damage conditions, information
collection and message delivery in disaster areas. Then, Narang et al. [8] proposed
to build a cyber-physical buses-and-drone based mobile edge infrastructure for the
emergency communications in case of large scale disaster, in which the cellular
infrastructures have been destroyed.

4.2.2 D2D Communications

Many recent works in the literature have explored D2D communications to extend
the network coverage, especially in the context of disasters. For example, Wu et al.
[29] exploited smartphones as the medium to collect and disseminate messages in a
natural disaster network while the traditional cellular base station is inaccessible. A
modified epidemic routing protocol is also proposed to enable smartphones working
collaboratively in D2D manner in disaster environments. In the ABSOLUTE
project [28], the short-distance D2D communications are applied for rescue teams
and emergency agencies when the conventional network infrastructure have been
damaged in disasters. Orsino et al. [30] studied the social-aware data collection
and information diffusion using D2D communication techniques. The proposed
approach can be applied to the emergency networks for public safety. Based on
D2D communications in ad-hoc network, Meurisch et al. [31] recently proposed
an emergency communication system called NICER911, aiming to provide reliable
communication and emergency services in infrastructure-less disaster areas.

4.2.3 Crowd Sensing

To enhance situation-awareness in disaster scenes, the existing studies [32-36] have
developed impressive smartphone based crowd sensing techniques. For example,
Higuchi et al. [32] proposed a low power cooperative localization algorithm that
captures the stop-and-go behavior of indoor pedestrians. Based on the coop-
erative operations among multiple smartphones, Noh et al. [33] developed an
infrastructure-free localization identification technology with high-speed position-
ing effect. Kojima et al. [34] proposed a new application that estimates the
reason behind the scheduled human crowd events using the mobile crowd sensing
techniques. To improve the rescue efficiency in terms of bandwidth utilization
and energy consumption, Zuo et al. [35] explored the image sharing mechanism
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that acquires significant onsite situation-awareness information of disasters, e.g.,
earthquake and Typhoon. In this mechanism, the shared images are collected via the
smartphone based crowd-sensing techniques. Based on the fact that a camera can
help rescue team well identify the situation-awareness information, e.g., victims
trapped in a disaster, Dao et al. [36] implemented a network of cameras with
smartphones, which energy-efficiently coordinates among the built-in cameras to
transmit the objects detected with high accuracy.

4.2.4 Satellite Based Technologies

Pal et al. [37] proposed a novel WiFi tethering strategy based on smartphones to
construct a disaster-relief network architecture, named E-Darwin2. The satellite
and its modem in the proposed architecture play the roles of a network gateway
and an intermediary cell tower for discovery and connection device. Huang et al.
[38] studied an energy-efficient online data upload scheme for geo-distributed IoT
networks. Because the low-earth-orbital satellites have global coverage, it is easy to
aggregate the data collected by smartphones when satellite modems are configured
as gateways in the isolated disaster communities.

5 Real-World Applications and Case Study

In this section, we first review the real-word applications related to the smartphone
based ECNs. Then, a case study is presented in the context of disaster management.

5.1 Dedicated Smartphone Apps For Disaster-Relief

Peng et al. [39] developed a bluetooth based smartphone app named “E-Explorer”,
which can deliver rescue information for the survivors trapped in post-earthquake
sites. Then, Han et al. [40] extended the aforementioned iOS based application E-
Explorer to other platforms, to better support the emergency communication and
fast investigation of damages on the post-earthquake circumstance. Recently, to
efficiently response disasters such as large-scale earthquake and tsunami, Miyazaki
et al. [41] developed a resilient information management system, which can
be executed on Android and iOS platforms and bring convenient information
management and data exchange functionalities between rescue teams and victims
in disasters. Chiou et al. [42] proposed a mobile emergency system (MES) that can
be used in houses, hospitals, and other nursing facilities offering continuous care
services for elders and disabilities. The proposed emergency rescue alert system
is implemented on Android smartphones, and is able to provide the security and
privacy-preserving functionalities, including authentication, location confidentiality,
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data integrity and anonymity. Kau et al. [43] implemented a smartphone app that can
detect the user fall-accidents, perform location positioning, and communicate with
the rescue center for assistance.

To detect faces efficiently in a wireless on-demand emergency network, Lampe
et al. [44] proposed a smartphone based app, which performs face detection in local
mobile devices by exploiting a two-stage combination of existing algorithms.

5.2 Case Study: Resilient Information Management (RIM)
System

We now present our previous project named RIM system [41] as a case study
for serving ECN. In the proposed RIM system, the smartphone- and UAV-based
integrated network aims to provide more delay-efficient and reliable solutions
in many harsh disaster environments where conventional cellular communication
infrastructures have been almost unavailable or severely damaged. At these crucial
scenarios, although the ad-hoc mobile social networks built through mobile devices
such as smartphones are the most promising communication approach, the delivery
delay could be very large, leading to unacceptable performance for disaster-relief
tasks.

As shown in Fig. 2, to reduce the delivery delay, we propose to use the UAVs
that are equipped with wireless communication capability. They are controlled to
travel along the designed routes, collect the information such as damage conditions,
injuries and medical demands, from certain specified sites, and deliver the gathered
data to information center. Through this way, the delivery latency of the emergency
information can be reduced greatly compared with the systems that rely on the ad-
hoc communication paradigm.

Under this smartphone and UAV based architecture, we have designed an
integrated information management and sharing mechanism benefiting both rescue
teams and victims [41]. Also, an online algorithm that addresses the disaster
management tasks with different weights have been proposed by dynamically
scheduling mobile stations [5]. Besides, some problems under the RIM system
will be studied in the future work, e.g., the energy-efficient schedule of drone-route
during the data collection and aggregation missions.

6 Challenges and Open Issues

6.1 Key Challenges of Smartphone Based ECNs

Some notable challenges in smartphone based ECNs can be summarized as
follows.
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e The constrained battery budget of the sensing devices in disasters, e.g., sensors,
cameras, smartphones and drones.

¢ Long delay to grasp the situation of the entire regions in real time. Massive
power/network outages make the grasping delay even longer.

» Safe evacuation for the crowd when disaster occurs in the indoor environments.

Disaster possibly destroy the power supply infrastructures and cause massive
outage. Thus, maintaining the alive status of the big number of sensing devices with
limited power budget becomes an intractable challenge.

Service delay is always the key metric concerned by the literature on DTNs.
Although the state-of-the-art techniques and technologies such as UAV based
mobile base stations and D2D communications, have been exploited in ECNs, the
inter-community delivery delay still cannot be reduced to online service level for
disaster communications.

During disaster scenarios in urban districts, for example, big fire occurs in
a tall building, or explosive incidents hit the public crowd areas, people are
every easy to get into panics and cause casualties. Thus, to provide the efficient
evacuation guidance to the crowd is of great significance. This can be realized by
studying the mobility of the crowd during disasters. The existing related studies on
estimating crowd mobility [32-34] still cannot fulfill the rigorous requirement of



142 H. Huang and S. Guo

safe evacuation for everyone. It can be seen that safe evacuation for the crowd still
remains as an intractable challenge in the field of disaster-relief.

6.2 Open Issues and Future Directions
6.2.1 Reliable and Efficient Disaster-Relief Architecture

First, it is an open problem to build a high reliability disaster-relief architecture
that can handle the disaster data-sensing and aggregation efficiently in terms of
energy and delivery delay. The trade-off between detection accuracy and energy
consumption should be emphasized.

6.2.2 Recognition for Indoor Environments

The GPS signal is only available in the outdoor environments, resulting in that
GPS based technology is not applicable to the indoor localization and tracking.
Therefore, the smartphone based approaches that can actually track human mobility
and recognize human behaviors in the indoor environments are in urgent need to
satisfy the requirement of disaster-relief applications. For example, Berbakov et
al. [45] proposed an indoor positioning system that exploits the built-in inertial
sensors of a smartphone to realize the situation awareness in emergency contexts.
This work motivates us that various other smartphone sensors are able to be applied
to implement the indoor recognition applications.

6.2.3 Fast Data Aggregation

To understand the disaster situations from the collected data, machine learning based
classification is a popular approach to recognizing different contexts. On the other
hand, to build a machine learning model for classifications, sufficient volume of
training data is needed. This implies that to quickly aggregate the required amount
of training data samples is a critical problem. Furthermore, since large-volume of
sensing data needs to transmit to aggregation gateways, it is crucial to schedule
the efficient data delivery such that the data-loss ratio is minimized in DTN based
ECNs.

6.2.4 Deployment of Computing Resources
With the collected data that needs to be processed to quickly retrieve the meaningful

information for evacuation and rescue, several groups of edge servers might work
in a decentralized manner at real-time. Consequently, the deployment of the data
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processing/computing resources while coordinating with data-collecting devices
becomes another open problem.

6.2.5 Privacy

Privacy is an important issue that should not be ignored in the smartphone based
ECNs. To achieve situational awareness, data needs to be collected from both public
and private sensor networks, and smartphone based applications. This results in
privacy issues. Because the existing social medias are used with the annotation
functionality, through which some private information of users such as personal
home address, daily office routines and social activities could be easily inferred
from the multimedia data including images, audio records and videos posted on
their social media networks. In order to preserve the privacy of users, social medias
usually allow them to tune the privacy level when they are sharing something
online. This leads to a trade-off between the privacy-preserving level and situational
awareness performance in ECNis: strict privacy control limits the useful information
that is aware from disaster scenes.

6.2.6 Emotion Sensing

We notice that the emotion sensing [46] is an emerging topic in the smartphone
based data analytics. Especially, under disaster scenarios, to know the emotions
of victims is great helpful to their emotional care, so as to help them overcome
difficulties and recover from disasters. Although some recent studies [47, 48] have
conducted the sentiment analysis based on Twitter datasets, it is still a challenge
to estimate the psychological status of people with high accuracy in the context of
disasters. This poses an interesting open problem for the smartphone based ECN
management.

6.2.7 Smart Cities with Integrated Disaster-Relief Infrastructures

Finally, establishing the smart cities with resilient disaster recovery capability
is a promising direction for the future sustainable development of human. To
achieve this goal, the integrated disaster-relief infrastructure equipped with multiple
heterogeneous technologies including satellite communication networks, aerial-
vehicle based networks and ground smart-device networks, should be exploited and
developed. On the other hand, the efficient distributed algorithms that can work in
the decentralized and autonomous environments are also needed to coordinate with
the integrated infrastructure.
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6.2.8 Bridging IoT Networks and UAV Systems

As illustrated in Figs. la and 2, in the isolated disaster communities, smartphone
based networks can be treated as the bridge between IoT Networks and the UAV
based data collection systems. Although UAVs have flexible flying trajectories,
which make them easily aggregate the distributed disaster data to the central
database. However, because of the on-board energy limitation, UAVs are impossible
to travel every corner to collect data generated from the widely distributed IoT
devices. Thus, smartphones can be exploited to bridge the data-transmission
between IoT devices and UAVs. With the three primary components of ECN, i.e.,
smartphone networks, IoT networks, and UAV systems, the time- and energy-
efficient collaborative data collection, forwarding and aggregation strategies are
expected to design as open issues.

7 Conclusion

In this article, we have reviewed the basics and the state-of-the-art research
efforts on smartphone based ECNs. Some key techniques and technologies are
summarized. A real-world project, RIM system, is also exhibited as a case study
of the smartphone based ECN. Some open problems and future research directions
are discussed finally.

Exercises and Mini Projects
At the end of this chapter, we supplement several exercises, programming problems,
or mini projects for student readers.

(1) Design an ECN architecture/system that enforces smartphones to collaborate
with IoT devices, sensors or actuators for data collection stage.

(2) Design an ECN architecture/system that integrates smartphones and UAV based
system for data forwarding stage.

(3) Develop smartphone applications using open APIs of social media such as Twit-
ter, Facebook, Instagram, etc., to accelerate data collection or data forwarding.
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1 From Big Emergency Data to Visualisation

We can leverage big emergency data as the standards and guidelines for emergency
management, some of which are smart response systems, early event anticipation,
and coordination between end-users (e.g., the connection between authorities, first
responders, and local citizens). Emergency data is available in various sources (e.g.,
social media, mass media, sensor, and linked open data) or local knowledge. In terms
of the 6 Vs of big emergency data (i.e., value, volume, velocity, variety, veracity,
and variability), they are challenging actually and consume our research efforts in
analysing and capturing essential knowledge, especially in urgent circumstances.
With manual methods, it may take years for a person to read, process, and
understand massive amounts of big emergency data [23]. We, therefore, need to
come up with a digital solution, which can deal with the complexity of emergency
data, to get meaningful results in a fast response time.

Data visualisation is an excellent approach to solve the problems mentioned
above by representing either tangible or intangible emergency data in systematic
forms without losing any crucial information [8]. With an enormous amount of
complex emergency data, our human brain can understand and process visual infor-
mation (e.g., diagrams, graphs, or charts) 60,000 times faster than raw documents,
spreadsheets, notes, numerical tables, or reports [27]. To identify and deal with
an image, we need to spend only 13 ms.! Data visualisation is a powerful tool to
discover latent correlations and unexpected relationships, which is impossible by
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manually exploring or traditional descriptive statistics [ 14]. It can bring us surprising
patterns that we may never imaginable.

One of the key discoveries in science that disease was passed through germs,
rather than through pollution resulted from perception derived from a visualisation
of the location of London cholera outbreaks near the Broad Street pump. The
visualisation of cholera outbreaks changed how we saw a disease. Present-day
Information visualisation can be used to create similar ideas: understanding the
spread of a COVID-19 pandemic, spotting terrorist movement, or evaluating the
emergency impact on a town. But, there are some notable challenges: several things
may be utilised and visualised, often derived or aggregated from vast data sets, or
created by algorithms for analytics.

Moreover, we can leverage data visualisation for performing prediction [1] and
feature selection [29] in machine learning and artificial intelligence. We can do
the data visualisation even before, during, or after data analysis. Visualising data
before and during data analysis provides better insights into our data. It supports
discovering underlying knowledge quickly and comprehensively; for example,
conducting time-series visualisation may help recognise abnormal patterns and spot
trends on which we should focus. On the other hand, performing visualisation after
analysing data may make it easier, quicker, and more precise to communicate any
results and insights to audiences. Even though data visualisation is enormously
useful, but inappropriate methods can drive our decisions in negative ways. Hence,
we must deeply understand our data, target audiences, and particular scenarios
to select visualisation techniques correctly and carefully for achieving the most
powerful insights.

Our motivation in this chapter is to provide crucial knowledge to let readers
understand how big emergency data should be visualised to overcome challenges,
what visualisation techniques are available to support data analytics, and in which
situations we can apply. Based on these critical questions, we address in detailed
multiple design strategies for an excellent viewing, different methods to display
emergency information in various conditions, and several exercises at the final
for understanding how to bring proposed theories into practical problems. The
knowledge in this chapter can support a wide range of emergency applications that is
vital for our community to derive optimal decision-making criteria and strategies, as
our world is becoming more and more complex. Besides, we complete this chapter
to be used different end-users, from academic researchers to practitioners, from
natural to social science areas, and from inhabitants to authorities. The visualisation
of emergency information is a must for any community today to increase their
resilience [3].

We introduced the problem and emphasised our motivation for researching
about emergency information visualisation in this section. In Sect. 2, we present
visualisation design objectives for the sake of efficiency in further sections. Next,
Sect. 3 summarises different visualising methods for content-based, geospatial, and
temporal information along with details of dashboards. Then, we introduce some
pertinent research issues in Sect. 4. Last but not least, we provide practical exercises
in Sect. 6.
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2 Visualisation Design Objectives

The main objective of the visualisation is to explore, develop and provide insight
into a data set. However, there are several essential challenges [28] that data
visualisation techniques have to face with, especially towards big data. Some of
which are mentioned as follows.

— Understanding our data: to create an effective visualisation, it is vital to
understand our data comprehensively, for example, manifest and latent context,
underlying meaning, and hidden patterns. However, following our data has never
been easy. In the era of big data, we have to deal with the sheer volume of both
structured and unstructured emergency data. A data type is very diverse, as well.
It can be content-based, geospatial, and temporal data. Misunderstanding our data
can lead to inefficient visualisation or, also, missing or giving wrong information.

— Dealing with outliers: outliers are exceptional values that are inconsistent with
other observations in a data set on account of measurement variability, sampling
problems, wrong number crunching, natural variation or experimental errors.
We should remove outliers from our data set because they may create a degree
of complexity and ambiguity, which could be the main problems affecting our
visualisation, leading us to make the wrong decision. On the opposite, outlier
can contain useful information about abnormal properties of entities. We need
practical approaches to tackle with and evaluate on that abnormal values to deter-
mine whether we should keep or exclude them. However, detecting, analysing,
and assessing anomalous instances might be not always easy. Neural networks,
support vector machine, logistic regression, and clustering-based algorithms are
basic methods to handle outliers.

— Fast response time: high accuracy is essential; however, fast response time is a
crucial attribute of a good visualisation as well. There are always challenges of
querying the overabundant amount of data in a short time to capture and display
useful information. In real-time systems, we have to decide a trade-off between
discovering the data accurately and visualising it quickly.

— Displaying meaningful results: even we can capture all useful information
quickly, displaying significant results is the problem of selecting what to display
when dealing with enormous amounts of information. We have to define what
type of information is displayed, how to show, and in which order. Stuffing
everything at the same place can cause audiences confusingly.

Visualisation design objectives can be considered as good starts for brightening
the way of people in avoiding these problems as above mentioned and creating
useful visualisations. For transforming complicated scientific information into an
expression that is meaningful and helpful towards every user group, visualisation
techniques should satisfy the following objectives.

— Setting your target: to do a visualisation successfully, the first objective is to
acknowledge our end goal. We need to identify which our audience prefers by
always asking ourselves what our audience is expecting to derive. There may
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have some information that is so obvious and seems to be redundant to us;
however, the viewer may need to understand the visualisation comprehensively.
Determining an explicit target can guarantee that we do everything purposively,
reasonably, and understandably.

— Choosing the right visualisation: selecting an inappropriate visualisation may
demolish all of your hard efforts. There may have several ways to visualise our
data. In this circumstance, it is crucial to follow our determined end goal and
choose a visualisation methodology that is best suited to the targets of our work
and the requirements of our intended audience.

— Simple is the best: this is a critical objective to create an effective visualisation.
Remembering not to put so much information in your visualisation. This will
make audiences challenging to capture their necessary information. If we make
the visualisation too complicated and tedious, the audience is going to spend
much time understanding the diagram instead of getting hidden knowledge. This
is not what we want to have. Instead of cramming all of the information in
the same place, you should categorise them into groups and visualise them in
different graphs or diagrams. Do not waste our time on futile decorations. We
use labels only if they do not cover any essential information on the chart.

— Be consistent: a piece of advice, especially for beginners, is to ensure that every
design feature (e.g., the use of shapes and symbols, the choice of colour scheme,
the order of items, and the selection of position and font of labels) is consistent
within your visualisation. A visualisation guaranteeing the consistency can help
readers get an overview at a glance.

— Easy comparison: one good motivation when using visualisation is the ability
to conduct the comparison. Our visualisation will be more helpful if we can
compare valuables in the same diagram or even between different diagrams
easily and comprehensively. We then can capture the strengths and weaknesses
of variables over space or time-periods.

— Ensuring the clarity: last but not least, we must verify that every information
is visible. The contrast between colours, especially adjacent ones, must be high
enough. The placement of all labels on data points and lines must be easy to
determine. If there is any text in our visualisation, we should make sure to
create high descriptive text and not over-explain. Every duplicated and redundant
information should be removed as well.

In the emergency area, visualisation can enable end-users (e.g., authorities,
first responders, and inhabitants) to utilise captured information by presenting
it in significant ways. This can enhance the value of information and increase
decision-making potential. To deal with complications of emergency information
visualisation, we provide adequate techniques for a successful data visualisation in
the next section.
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3 Visualisation Techniques

In this section, we aim at providing different visualisation techniques corresponding
to the types of information that we wish to process which are content-based,
geospatial, and temporal information.

3.1 Content-Based Information Visualisation

What may we do if we were given a massive raw data set? Content-based
analysis can be the first step for providing a deep analysing with a variety
of methodologies to capture valuable knowledge, to discover hidden patterns,
and to identify complex relationships. It is also known as content-based mining
and knowledge discovery. In the field of emergency, we can apply content-based
analysis for anticipating risks, determining impacts, and comprehending triggered
actions. The integration of content-based analysis and visualisation can convert from
structured and unstructured data (e.g., corpora, spreadsheets, and social media data)
to comprehensible diagrams and charts. These diagrams and charts can enhance
the ability of people to explore, capture essential information promptly and come
up with more application solutions, as well. In this section, we provide useful
visualisation techniques supporting content-based information, which are correlated
and hierarchical visualisation.

3.1.1 Visualising Correlation

Correlation visualisations are very helpful to determine whether there is any
relationship between variables.

Matrix Chart This is a compelling visualisation method for analysing, expressing,
and understanding the relationship from two to four groups in a matrix format.
Numbers or symbols in each cell of the matrix indicate the strength of the
relationship between variables of groups. The matrix diagram allows us to compare,
match, and search for variables between groups to derive better decisions. For
example, the local community and first responders can choose the most effective
strategies among possible solutions to behave in and after disasters. There are
various types of matrix chart which are L-shaped, T-shaped, Y-shaped, C-shaped,
and X-shaped matrices [21], each of them is used depending on how many groups
you want to compare. Among these five types of matrix chart, people frequently use
the L-shaped matrix chart.

— L-shaped matrix chart: among the types of matrix chart, this is the basic,
simplest, and most popular matrix diagram to capture a critical relationship
between two groups of variables by using a two-dimensional table. The variables
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of the first group and second group are placed on the left column and the top row
of the table, respectively. The value in the intersection between rows and columns
indicates how related between pairs of variables of two groups.

— T-shaped matrix chart: it is the combination of two L-shaped matrices to
compare one core group with two other groups (e.g., we use the T-shaped matrix
to compare two cities that are related to a list of resilient indicators). In this type
of matrix chart, we usually represent variables of the core group as columns and
variables of the other two groups as rows.

— Y-shaped matrix chart: the Y-shaped matrix chart is used for identifying
interactions among three groups in a circular manner. Assuming that three groups
are a,b,c respectively, we can discover the relationships among these following
pairs of groups: (a,b), (b,c), and (a,c).

— C-shaped matrix chart: the C in the name of this matrix chart is the abbreviation
for Cube. This is the extension of the Y-shaped matrix chart. We may use the C-
shaped matrix chart for representing and comparing three groups concurrently in
a three-dimensional space.

— X-shaped matrix chart: this is the extension of the T-shaped matrix, allowing
you to conduct the comparison among four different groups. Each group is related
to two other groups that are immediately adjacent to it (i.e., two groups, which
are opposite, are not related to each other).

Node-Link Diagram Node-link diagram is also known as a network graph or a
relationship map. The node-link diagram illuminates interconnections and relation-
ships between a set of entities through the use of nodes and links (or vertices and
edges in a graph). Nodes are often displayed as points, dots or circles, but we
can use squares, icons, and symbols instead. We connect nodes by links, which
are usually straight lines, or curved lines in complicated diagrams. Labels can be
used to provide additional information to nodes and links. If there are multiple
relationships between two nodes, we may use more than one line. The line colour
is useful to show different types of relations as well. Besides, not all of the nodes
and links are same in all node-link diagrams. They can have different sizes, shapes,
and orientations, depending on the type of node-link diagram that we are using.
There are four features of node-link diagram categorised into two groups, which
are weighted and unweighted, and directed and undirected. We can express the
weight of node and line by node size and line thickness, respectively. One-way or
two-way arrows can represent the direction of relations. Based on four features,
there are four significant types of node-link diagram which are: (1) unweighted
and undirected, (2) unweighted and directed, (3) weighted and undirected, and (4)
weighted and directed node-link diagrams. The node-link diagram is a powerful
method to show how entities connect and which entities are more important.
To derive useful insights from a node-link diagram, we should focus on nodes
with many connections to discover clusters, central nodes, trivial correlations, and
connectivity patterns. However, the use of so many nodes and links will reduce
the legibility, and we are in trouble to explore new information. In this case, we
should focus on particular sub-diagrams or eliminate some nodes and links with
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pre-defined rules. Also, we can leverage two traditional approaches which are force-
directed layouts and edge bundling [12] to construct a better node-link diagram with
many nodes and connections. There also have other similar diagrams which are the
chord diagram, the Sankey diagram, and the arc diagram. We may use these types
of diagram instead if your data set does not work with the node-link diagram well.

Word Cloud Word cloud given a textual corpus, we may have to tackle with a
hundred thousand different words that seem to have no clue for exploring their
correlation. Word cloud, otherwise called text cloud or tag cloud, may be useful
in this situation. This is a visualisation method to show a collection of words
appearing in different sizes. The larger size of a word (or sometimes the bold of
text), the higher frequency this word appears in the document; with the assumption
that words with higher frequency are more important. The colours in the word
cloud are often used for aesthetic or classifying types of words. We can use word
cloud visualisation to identify wording, recognise semantic similarity, analyse and
understand users’ sentiment, discover underlying patterns, and optimise search
engines. Remembering to pre-process your textual data before visualising with word
cloud; otherwise, we may be unable to derive useful information. There are different
pre-processing tasks which we can do at the first step to remove noise, some of
which are lowercasing, lemmatisation, stop-words deletion, and word normalisation
[18]. Word cloud visualisation, in general, are effortless, fast, attractive, and easy to
understand. Nevertheless, there are several situations that we should not use the
word cloud. That is when the frequency of words is not adequate different, when
words in a document are not variable enough, and when our textual data is too
noisy. Besides, long words may get over-attention than short ones. The designs
of the word cloud are also vital points to consider. The use of so many fonts (or
tangled fonts) and colours, the cramped distance between words, the large number
and messy direction of words, and the complicated shape of a word cloud can affect
audiences in recognising importance information as well. We must guarantee that
we understand our data and design objectives comprehensively before deciding to
use word cloud visualisation.

3.1.2 Visualising Hierarchy

Hierarchical data visualisations are used for displaying multiple groups of data
in organisational order. In this section, we present two popular hierarchical data
visualisation techniques that are tree diagram and sunburst diagram.

Tree Diagram The tree diagram is a method of visualising the organisational
hierarchy of data in a tree-like structure without containing any cycle. Typically
a tree diagram consists of nodes (including root nodes, nodes, and leaf nodes) and
links; every node has at least one relationship. The root node is the highest one
with no parent nodes. From a root node, there are many branches leads to nodes
that are connected by links. Each node has either parent or child nodes. We call
nodes at the same level and share the same parent node as sibling nodes. The leaf
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nodes, which are the ending points of a tree diagram, do not have any further child
nodes. We usually use rectangles or circles as nodes, straight or elbowed lines as
links, and descriptive text inside or around nodes. With the recursively defined
property, any subtree is also a completed tree diagram. The root node usually has an
overall meaning. From top nodes to leaf nodes, the content becomes more specific
and detailed. Tree diagram visualisation appears in various applications, from
computer science, biology, and mathematics to business, information management,
and emergency management. For example, we can build a tree diagram for quick
disaster responses with leaf nodes are specific actions. An alternation of tree
diagram is the treemap that shows hierarchical variables by rectangle areas. In the
treemap, all the categories are represented as rectangle areas. The rectangle area of
a parent category will contain all its child categories inside. Comparing to the tree
diagram, we can easier recognise the differences between groups in the treemap.

Sunburst Diagram This is a multi-level pie chart through the use of a series
of rings. The sunburst diagram will become the doughnut chart if there are no
hierarchical relationships. The root node is at the centre, child nodes moving
outward from there and placing on top of each other, and leaf nodes stay at the
outermost of the circle. Each ring in the sunburst diagram represents for a level of
the hierarchy. The slices of every ring are divided based on hierarchical relationships
with their parents. The angle of slices having the same parent can be either equal or
proportion to their parent/the whole diagram slices. Different colours can categorise
different types of variables or hierarchical levels. Utilising sunburst diagram helps
us understand the hierarchical relationship between outer and inner rings. Along
with hierarchical information, sunburst diagram can be sufficient to show the part-
to-whole relationships, i.e., between a variable with either its parent variable or the
whole chart. We should not use sunburst diagram if there are so many slices in each
ring because this can skew our perception. Besides, labels will be ineffective and
useless if the space of slices is too cramped. Instead of using a label for every slice,
we may use for inner ones only (e.g., at the first or second level) because they will
have a larger area.

3.2 Visualising Geospatial Information

Visualising geospatial information is one of the earliest approaches in the history
of information visualisation. This is the process of representing objects, elements,
and events using their location. The location is a diverse range of areas; from a
small place such as an office, a building, or a street; to a large region like a city,
a nation, or a continent. On the opposite with static information, as we mentioned,
the location can also be dynamic. It means the movement from a location to the
others, referred to as spatial interactions [9, 24]. For example, the movement of a
storm, the expansion of a fire forest, or the spread of disease. Geospatial data can
be captured either by humans (e.g., geologists, land surveyors, photographers, or
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polices) or by machines (e.g., sensors or GPS-enabled smartphones). Leveraging
geospatial information can bring us a lot of benefits in various applications [15].

3.2.1 Geospatial Data Types

After collecting, we can represent and store geospatial information in various forms
including vector, raster, compressed raster, geographic database, relational database,
light detection and ranging (LiDAR), computer-assisted drafting (CAD), elevation,
web, multi-temporal, cartographic, 3D, and interchange file formats.” For the sake
of simplicity, we only provide the most commonly used forms as follows.

Vector Vector data is beneficial for modelling discrete objects such as streets,
rivers or buildings. This is the basic type of data that people always start thinking
of when they face with spatial data. It is the combination of vertices and paths
for representing location and shape of geographic features, by three geometric
shapes which are points, lines, and polygons (or areas). Ubiquitous online mapping
application, some of which are Google Maps and Open Street Maps, represent their
geospatial data using this format.

— Vector point: each point has its location using (X, Y) coordinate or longitude and
latitude values. Each vector point can describe information itself. In the topic of
emergency, we can describe a traffic accident, a destructed building, or a victim
location as a point.

— Vector line: is the connection by at least two points with or without direction.
A vector line starts and ends with nodes and changes its directions through
vertices. Information can be attached to a specific point, node, or ever an entire
line. Examples of emergency events which are represented well by vector lines
are the shifting of a storm and the movement of rescuers.

— Vector polygon: polygons join a set of points which share the same starting and
ending coordinates. We usually place information of a polygon in its centre, be
independent of the shape of this polygon. A flooding risk, a forest fire, or a dam
breach are well modelled by vector polygon.

Raster In contrast with vector data, we use raster data to store and represent
connected objects such as population distribution and temperature of an area. Raster
data consists of a set regular grid array, pixels, or cells. Each cell in the raster has
a coordinate value that means the position of the centre of this cell. The coordinate
value depends on its dimension, in 2-D is width and height, in 3-D is width, height,
and depth. The shape of a cell can be square or rectangular; however, it is usually
represented as a square. The continuous rasters have associated values gradually
changing in a defined manner. We find it essential to take into account the resolution
of a raster (i.e., the size of a cell). The resolution can express how large area a raster

Zhttps://gisgeography.com/gis-formats.
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can cover. If the resolution is too high, a cell will include a small area; therefore,
the information is a cell is less. If we zoom in to the map utmostly, we can observe
separated cells, each of them brings a particular colour. This concept is especially
crucial towards geospatial visualisation. By selecting the optimal size of a cell, we
can effectively and efficiently express necessary information while minimising file
size.

Web Files As we are living in the area of internet and big data, publishing
geographic features over the internet is an essential requirement. The GeoJSON
and the GeoRSS file formats were built to store and display geographic features
over the internet effectively. GeoJSON is designed based on the JSON (JavaScript
Object Notation) standard format that contains both geospatial and attribute data.
The GeoJSON filename usually ends with .geojson. This web file data has been
widened used by popular services and systems (e.g., the QGIS, the ArcGIS, the
Tableau, and the Spotzi). Meanwhile, GeoRSS is developed based on Geography
Markup Language (GML) for describing and pinpointing geographic information on
Internet content. These two formats can well describe complex natural features such
as canyons, lakes and rivers to human-made creations such as buildings, universities,
and cities. Besides that, there exist cloud-based platforms (e.g., Esri ArcGIS Online
Web Services) that allow individuals and organisations to publish their contents in
shareable and recoverable environments.

3D 3D data is the extension of 2D data by adding Z-aspect to the dimension for
creating a triple coordinate (X, Y, Z); therefore, it is similar with vector data and
raster data in term of concept. Z-value can be either a tangible value (e.g., geological
depth) or an intangible value (e.g., the suitability of a place, the level of pollution, or
concentration values). A 3D geospatial surface can be represented by a connected
triangle. There are two basic types of 3D data which are feature data and surface
data.

— 3D feature: represents 3D geospatial information for discrete objects.
— 3D surface: expresses continuous phenomena by having height values over a
specific area.

Overall, types of geospatial data in which we select are depend on our input
data, expected output, and targeted audiences. Each type is not higher-level than
the others, but each can maximise efficiency when it is used in the right demand
and context. If the output is close to traditional cartographic representations, then
vector data would be appropriate. Meanwhile, raster data is more suitable in term of
representing a surface, physical phenomena, or mathematical context.

3.2.2 Techniques

Geospatial data convey a physical context, mostly in 2D space, like geographical
maps or floor plans. The primary form of visualising geospatial data is mapping.
In choropleth maps, colour encoding is used to add represent one data attribute.
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Cartograms aim to encode the attribute value with the size of regions by distorting
the underlying physical space. Tile grid maps reduce each geospatial area to a
uniform size and shape (e.g., a square) so that the colour coded data are easier
to observe and compare, and they arrange the tiles to approximate the neighbour
relations between physical locations. Grid maps also make a selection of smaller
areas (such as small cities or states) easier. Contour (isopleth) maps connect areas
with similar measurements and colour each one separately. Network maps aim to
show network connectivity between locations, such as flights to/from many regions
of the world. Spatial data can also be presented with a non-geospatial emphasis (e.g.,
as a hierarchy of continents, countries, and cities). Maps are commonly combined
with other visualisations. Based on types of geospatial data, i.e., data which contains
geo-referencing, there are popular visualisation techniques to show and leverage full
advantage of geospatial information as follows.

Cartogram A cartogram describes information by using the forms of geographical
regions. Nevertheless, we can distort or modify the actual shapes of geographic areas
(i.e., expanding or reducing the actual size of the geographical regions) to best fit
with our data. Although a cartogram is not correct in term of geographic size, it
still preserves the spatial relationships of objects. There are several popular types of
cartogram which are non-contiguous cartogram, contiguous cartogram, and Dorling

cartogram. 3

— Non-contiguous cartogram: this is the simplest one among different types of
the cartogram. Non-contiguous cartogram does not conserve the connectivity
of adjacent objects. This detachment allows geographical objects to expand or
shrink their size without distorting their natural shape. There are two types of
non-contiguous cartogram which are non-overlapping (for avoiding overlapping
but affecting the distance of objects) and overlapping (for maintaining centroid
coordinates of objects). Among the two types, people usually prefer to use non-
overlapping because we can observe objects comprehensively.

— Contiguous cartogram: comparing to non-contiguous, the contiguous car-
togram is more complicated to construct because we must preserve the topology
between geographical objects. This type of cartogram immensely distorts the
shape of geographic regions to represent attribute value associated with this
region. The higher value, the more distorted the size of geographical areas will
be affected.

— Dorling cartogram: in Dorling cartogram, we represent the geographical objects
as uniform non-overlapping shape circles, with appropriate positions and suitable
size that can maintain their original topology effectively. The Dorling cartogram
can preserve not only the topology but also the shape, and centroid of geo-
graphical objects. Similar to Dorling cartogram is the Demers cartogram in
which circles are replaced by squares to decrease the distance between terrestrial
objects.

3http://www.ncgia.ucsb.edu/projects/Cartogram$_$Central/types.html.
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There are other types of a cartogram, including the hexmaps cartogram, the
tilegrams cartogram, and the distance cartogram as well; however, we only describe
a more detailed for popular types as above mentioned. Every kind of cartogram
can represent geographical objects from a different perspective. Although we can
gain many advantages by visualisation geospatial information as a cartogram, it
also has limitations in shape recognition and area magnitude estimation. In [6],
authors suggested overcoming these problems by (1) representing the shapes of the
enumeration units as irregular polygons and (2) “at least one square legend symbol
should be used at the lower end of the data range. It is best to provide three squares
in the legend, one at the low end, one at the middle, and one at the high end of the
data range”.

Flow Map A flow map is a combination between a flow chart and a map to
represent the movement of objects between different areas and geographically
express the distribution. In a flow map, the arrow depicts the direction, and the
thickness of lines represents for the magnitude or amount of phenomena of objects.
The use of flow lines is similar to other graduated symbols on other thematic
maps [2].

One of the benefits of a flow map is that it enables users to easily recognise the
differences in magnitude or amount of a wide diversity of items across areas without
many map-clutters [20]. This allows cartographers and Geographic Information
Systems (GIS) analysts to see the majority of the movement of objects, and then they
can discover implicit patterns. Almost flow maps are created with vector, instead
of raster data, because the changes of objects usually shown as lines. In vector-
based flow maps, the vectors are points or lines that represent information about the
direction and magnitude of items which are transferring. There are three different
types of flow maps* as follows.

— Radial flow map: this type of flow map represents the relationships between
one source towards many destinations. It uses different lines radiating out from a
starting point to express the movements.

— Network flow map: network flow map depicts the quantity of flow in an existing
network; hence, this type of flow map can effectively show transportation systems
or communication networks.

— Distributive flow map: similar with radial flow map, the distributive flow map
show relationships between a single source and many destinations; however, this
map often has a large, single line from one source and this line is divided into
different parts when reaching its destination.

We can use a flow map for showing dynamic geospatial information of people,
weather phenomena, and other living things (e.g., the migration of people, the
movement of storms across space, or river flow).

“https://www.gislounge.com/overview-flow-mapping/.
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Density Map Density map is sufficient for visualising the density differences
between areas. To represent how different between objects, people usually use
colour scale either with a linear mapping [13] or with a non-linear mapping [10].
This type of visualisation brings many advantages towards big dynamic data because
we can have valuable insight at the application level. We can create a density map
by using either point or line data. The way we choose radius value can affect the
representation of the density map. With larger values of the radius value, the density
map is more generalised. On the opposite, the smaller values of the radius can show
information more detail. There are different methods for calculating magnitude,
which is point density and line density. These two interpolation methods can provide
quantitative values to represent the concentration of points and poly-lines.

— Point density: this method calculates the magnitude-per-unit area of point
features that fall within a neighbourhood around each cell. We consider only
points that fall within the neighbourhood, if there is not exist any point, we
understand as no data.

— Line density: this method is similar to point density; nevertheless, it calculates
based on poly-line features instead of point features. To obtain an appropriate
value of density, we need to select a suitable area unit scale factor (e.g., square
kilometres and square meters). The larger the value of area unit scale factor, the
more significant value of density we have.

The magnitude of point or line at every sample location is spread through
the study area. Density map can determine which locations are greater or fewer
numbers of data points or lines. We can utilise density map for visualising different
information, some of which are population, urban [25], bomb, crisis [7], and even
unhealthy behavior of men [22]. One practical example is the use of a density map
for tornado monitoring and analysis in the United States from 1950 to 2017.° This
visualisation is extremely useful for meteorologists to anticipate weather and to
estimate where a tornado may move to have a good preparedness, response, and
mitigation of damages [5]. Density map is more effective in case there are many
data points (or data lines) in a small geographic area.

With the development of social networking services and smart devices, there
emerge many applications of density mapping using geo-located Twitter data to
discover hidden patterns of social events. In [19], authors collect geo-located tweets
in 1 x 1km grid cells over 2months in Indonesia. By applying random forests-
based census dis-aggregation method to the geospatial data and density mapping,
we can comprehend population distributions at a particular time. Governments can
take advance of this work for having adjustments promptly to increase the citizen’s
quality of life. In another work, authors create a density map of Manhattan urban
using the data of billion taxi trips for over 7 years [30]. This research is useful for
detecting and understanding civic events given specific locations.

Shttp://maxfelsenstein.com/gis-maps/tornado-density-map- 1950-2017/.
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3.3 Visualising Temporal Information

Time is a distinctive dimension in real world. It gradually moves forward without
our control. But, we often record it as a moment or interval. We can represent it in
different ways, for instance year, month, day, hour, and minute. As we calculate time
based on cyclic (day/night) incidents in environment, our representations are cyclic
too. For example, May follows April and so on. The cyclic way of representation
can be described by circular visual encodings, such as the typical clock. Time series
data is data that is collected at different points in time, such as stock market or
weather data. Data points in time series are gathered at adjacent time periods and
has potential for correlation between observations. The emphasis of the analysis
is on exploring temporal trends and anomalies, probing for precise patterns, or
prediction. The statistical attributes of time series data often violate the notions
of standard statistical methods. Thus, analysing time series data requires a unique
set of tools and techniques, mutually known as time series analysis. Temporal
analysis is comprehending the sequences of events. In our day-to-day life we analyse
event sequences. In the analysis of event sequences, uncovering the most common
patterns, perceiving unique patterns, searching for certain sequences, or knowing
what directs to certain kind of incidents is important (e.g., what situations lead to
a unrest during the football match). In this section, we mention different methods
for visualising temporal information effectively, which are a line graph, area chart,
polar area diagram, and the Gantt chart.

Line Graph We use a line graph to show how quantitative values of something
changed over a continuous interval or period. A line graph is constructed by
connecting individual data points in the Cartesian coordinate system, consisting
of a horizontal x-axis to show a timescale or a sequence of intervals (e.g., hours,
days, weeks, or months) and a vertical y-axis to show quantitative values of data.
The values on the x-axis are independent because it remains unaffected by other
values. On the other hand, the values on the y-axis are dependent because a y-value
must correspond to an x-value. Hence, we can call x-axis as independent axis and
y-axis as the dependent axis. At a particular time, each x-value only has one y-value
associated with it; nevertheless, different x-values may have the same y-value (e.g.,
a country only has one value of the population at a specific time). Typically, the
y-value is positive, but we can express negative values under the x-axis as well.
The label in each axis should be selected and divided into suitable units according
to different data sets; for example, the x-axis would represent the time measured
in years for the population of a country and in months, days, or hours for average
temperature. The line graph may lose its clarity if there are so many points in a tiny
area.

Besides, we can draw more than one line in the same chart to discover how
different between variables, for example, we can compare the temperature, the
number of storms, or the population between countries. In this circumstance,
the lines should have different colours, shapes, or patterns. However, we should
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avoid drawing too many lines in a graph because the line chart becomes denser,
challenging to see, and impossible to get insights from. A good number of lines to
represent information effectively and efficiently is under five.

Area Chart Area chart is the mixing between the line graph and bar chart. Similar
to the line graph, an area chart can show the changes or patterns of quantitative
values over time. For example, we can comprehend seasonal peaks in the area chart
as a periodic pattern. The x-axis typically represents time, and the y-axis is for
another variable that depends on the x-axis. We connect discrete data points by
straight lines or smooth curves. An area chart which connects points by a fitted
curve is defined as the spline-area chart. The difference with a line graph is that
the space between line and x-axis in an area chart is filled up with specific colours,
shadings, or patterns. By filling the area under the curve, we can observe the trend
from data more apparent. This is also a limitation of the area chart. Comparing to
the line graph, we find it harder to add data labels because of less available space.

To use or not to use the area chart will depend on our data set. An area chart
can work best if we meet the following requirements: (1) the comparison between
values towards the total value is essential, (2) the difference between values are
adequate, and (3) the data set is represented over a long period with many values of
the time. Though the basic area chart is good at showing how values develop over
time, it will not be effective when tackling with multiple attributes. In addition to
the primary area chart, there are extended versions as follows.

— Stacked area chart: this is the extension of a basic area chart, which can deal
with several groups on the same graph by placing each group on top of another
one. When only one attribute is presented, the stacked area chart becomes the
basic area chart. The stacked area chart is useful for figuring out how the total
value is distributed to groups. We may use the stacked area chart for negative
numbers, but typically people use positive values instead. By normalising values
at each timestamp to the range between 0 and 100%, we can draw a percent
stacked area chart. It is precisely the same thing, but the y-values are always on
the 0—100% scale. The percent stacked area chart can represent the performance
of each segment concerning the total, but we will be unable to find information
about the trend of the total.

— Stream graph: a stream graph is a modification of the stacked area chart to
display high-volume datasets along a different central horizontal axis. As the
name, this type of visualisation represents the changes of values of several groups
over time by resembling a themed river with the use of flowing and organic
shapes; therefore, there is no fixed, straight corner, axis, or angle as in the stacked
area chart. This makes the stream graph more interesting and entices users to see
the graph. We should use the stream graph when groups are possible to start and
finish at different time points. In a stream graph, the height of stream shapes
is corresponding to the values of groups. The vertical dimension does not imply
positive or negative values. There may not exist even a y-axis to use as a reference
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in many stream graphs. Hence, we should focus on the general view of the stream
graph rather than spending much time to concentrate on a slice at a particular time
point.

Polar Area Diagram Polar area diagram can display data occurring in cycles (e.g.,
months, years, and seasons) cleanly and effectively. It is also known as a rose chart
or a coxcomb chart. A polar area diagram is the combination of a radar chart and
a stacked column chart. It is similar to a traditional pie chart; however, sectors
have the same size of angles. The distance that extends out from the centre of
the circle representing the value of each variable. We can express multiple groups
by continuously stacking each on the others in a sector of the pie. To create an
excellent and correct polar area diagram, we should keep in mind these experience
carefully: (1) each the data set has to follow the part-to-whole relationship (i.e.,
the sum of values in a group is 100%), (2) selecting appropriate colours (e.g., the
colours between groups should be disparate, using darker colours for groups having
higher value), (3) we should avoid using too many numbers of sectors to ensure the
visibility and legibility, (4) a functional polar area diagram should have the area of
sector corresponding to the value of the variable that is representing, and (5) adding
data labels may not useful towards polar area chart because of the limited space.
Comparing to the traditional pie chart, the polar area diagram is a little harder-to-
understand; however, it can display multiple data sets in the same graph, instead of
using a series of traditional pie charts.

Gantt Chart The Gantt chart is an organisational visualisation tool allowing you
to keep track of and update statuses of various activities/tasks/events to guarantee
that we can complete them entirely and punctually [17]. This is extremely useful for
emergency management in any size. Nowadays, the Gantt charts are widely used
for every management activities due to its efficiency and simplicity. There are two
primary components of a Gantt chart that are activity and time duration. Very simple,
we put on the left of the Gantt chart a list of all activities and on the top a timescale.
Based on the original bar chart, the Gantt chart uses the horizontal axis to display
the progress of all events that need to be accomplished, with each one is a bar. The
position and length of horizontal bars represent for the starting time, ending time,
and duration of activities. We can use different colours for categorising different
types of events. In Gantt charts, we may display additional information such as the
contributors, milestones, or dependency relationships (i.e., how an action relates to
the others by connecting arrows). The current status in the Gantt chart can represent
by using different colours or shadings, filling in partially, or plotting a vertical line
of the present day. Because activities can run in parallel; it is crucial to control and
ensure that there are not so many activities overlapping at a particular time point.
With the Gantt chart, we can recognise overlapping events efficiently and promptly.
There are two popular types of Gantt chart which are the progress Gantt charts and
the linked Gantt charts.

— Progress Gantt charts: in progress Gantt chart, we shade horizontal bars until
the positions where the tasks have completed (i.e., a job that has completed 50%
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should be 50% shaded). We can use a vertical line as the current time to monitor
the progress of all task. If parts of horizontal bars of all tasks at the left side
of the vertical line shaded, everything is processing punctually. This type of
Gantt chart provides an excellent visual representation of the progress of tasks
to determine which ones should be taken into account soon. Being unable to
manipulate workflow is one disadvantage of the progress Gantt chart because it
does not display the dependencies between tasks explicitly.

— Linked Gantt charts: the linked Gantt charts represents the connection between
tasks by lines. Nevertheless, linked Gantt charts can be very cluttered and
lose its clarity if a project has many tasks that are strongly dependent on the
others. This is also a limitation of the linked Gantt chart in expressing complex
interdependencies between tasks, which may usually happen in large emergency
projects.

Temporal information visualisations are the simplest and quickest techniques to
represent important information about features and attributes regarding the duration
of time [4]. The visualisation can enable and enhance the ability to discover different
social events and phenomena in term of temporal data (e.g., crime trends, disaster
patterns, and temperature changes). Temporal data is simply data that contains
temporal information, usually having a staring and a finishing time. There may have
overlap between events. We create temporal data in almost activities, for records,
management, and presentations. To obtain temporal data, we can collect from
different sources manually and automatically; some sources are mass media source,
social networking services [11], observational sensors and simulation models.
Comparing to geospatial information, we can obtain temporal information more
efficiently and seamlessly. With the personally-identifiable nature of the data, we
can not access geospatial information in several situations.

3.4 Dashboards

Dashboards can increase situational awareness so that problems can be noticed and
solved early and better decisions can be made with up-to-date information [26]. A
dashboard exhibits a smart overview of your most crucial information. Dashboards
allow you to display your data, gain a new bird’s-eye view on emergency response
or management and share information with your team. We define dashboard as:

A dashboard is a glimpse of geographic information that helps you observe incidents or
activities. Dashboards are designed to exhibit multiple visualisations that work together on
a single screen. They offer a comprehensive and engaging view of collected data, to provide
key insights for immediate decision making.

Dashboards are a visual design pattern that integrates components (dashlets)
that can be interconnected or independent. The dashboard is powered by data
from different sources via a pivot (service), with which the components (dashlets)
exchange synchronously or asynchronously, delayed or in real-time. Interactivity
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can be expound at both levels-individual dashlet and dashboard. The latter is based
on the dependencies defined between the components. The data that you visualise
can be processed both in the pivot and/or during visualisation. There are also
dashboard implementations as stand-alone systems in the organisation’s information
infrastructure. For the effective application of a dashboard in infrastructure, whether
as a standalone element or as part of a specific software solution, the following
aspects should be taken into account:

— Data adaptation: very rarely a dashboard exhibits data from a single source.
Adaptation to the different formats is needed for data to be processed for
visualisation.

— Adaptation of the visualisation: the variety of visuals often makes it hard to
choose the right presentation. Adaptation implies evaluating variants that are at
hand for visualisation, which further reflects on the data format.

— Navigation adaptation: interplay in a dashboard can be divided into two groups-
the first in terms of the data defining the set of actions available with the
dashboard at a time, and the second in view of the way in which it can be
executed. Dashboard navigation is an rigorous process in terms of computing
and communication through dashboard pivot down to the data sources.

— Supporting context: the context of the dashboard is determined by the selected
sources, the current users, the selected indicators, and the navigation actions
carried out so far. Upholding a complex context affects cognitive integration.
Through it in the different components (dashlets) on a dashboard, the diverse
aspects of the related data are interpreted and visualised.

— Managing complexity: to efficiently design and develop a dashboard in man-
agement processes, it is essential to manage the complexity that has many
dimensions such as semantic transparency, perceptual discrimination, cognitive
capability etc.

The utilisation of dashboard holds significant benefit for those with emergency
management responsibilities. Emergency managers rely on a wide variety of
location-based data to assist their mitigation, preparedness, response, and recovery
tasks. However, it can be a ominous task to figure out how to credibly turn the
overwhelming flood of raw data into reliable information that can be analysed and
shared.

One tool that is helping emergency managers is the use of GIS operational
dashboards. GIS technologies are not new; they have facilitated the emergency
management community for many years and have become vital elements in modern
emergency management practice. GIS takes data that is referenced to an Earth coor-
dinate system and stores, analyses and produces spatial data and information. This
information can be collated into a dashboard, which is an interactive visualisation
of the information exhibited in a variety of formats, including graphical, maps,
or numerical. The strength of a dashboard is that it can convey a vast amount of
actionable information on one screen, whether it’s a computer or mobile device.
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In a very lucid account of how to create a GIS-enabled operational dashboard,
creating a dashboard is begun by identifying the desired near-live data feeds, which
could come from a location-enabled mobile application, such as a Twitter feed.
Connections are then formulated between the GIS and those data feeds. The data
from the different sources are then processed and analysed, and the dashboard
exhibited on a computer with the ability to access the dashboard on mobile field
devices.

The operational dashboards allow emergency managers to comprehend better
data from complex, near-real-time data feeds. Also, visualised presentation of
information allows emergency managers to gain insights from data that helps them
make more informed decisions, take precise actions, and create detailed strategies
during a disaster.

4 Research Issues and Readings

The fields of visualisation rely on methods from scientific, geospatial, and informa-
tion analytics. It benefits from the knowledge out of the field of interaction as well as
of cognitive and perceptual science. We continuously see more increasing amounts
of data: new sensors, faster-recording methods and decreasing prices for storage
capacities in the previous years allow storing huge amounts of data that used to be
unthinkable a decade ago. In this section, we will discuss some significant research
issues or challenges in the field of data or information visualisation.

Scalability The scalability problem is a enduring challenge for information visu-
alisation. Visual scalability is defined as the capability of visualisation tools to
smartly exhibit large data sets in terms of either the number or the dimension
of single data elements. Most visualisations handle relatively small data sets but
scaling visualisations from millions to billions of records does require cautious
coordination of analytic algorithms to filter data or perform fast aggregation,
effective visual summary designs, and rapid refreshing of displays. To accommodate
a billion records, aggregate markers (which may represent thousands of records) and
density plots are valuable. In some cases, the large volume of data can be collected
meaningfully into a small number of pixels. For example Google Maps and its
visualisation of traffic conditions. A quick glance at the map allows drivers to use a
highly aggregated synopsis of the speed of a large number of vehicles and only a few
red pixels are enough to decide when to get on the road. Maintaining interactive rates
in querying big data sources is a challenge, with a distinct of methods proposed, such
as approximations and compact caching of aggregated query results.

Scalability is a major challenge of data visualisation as it establishes the power
to process large datasets by means of computational overhead as well as pertinent
rendering techniques. Information visualisation has recently developed numerous
techniques to visualise datasets, but only some of them are scalable to the huge
data sets used in visualisation. It is the task of visualisation (analytics) to build a
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higher-level view of the dataset to acquire insight while maximising the number of
additional information simultaneously.

Contrary to the field of scientific visualisation, supercomputers have not been the
primary source of data providers for information visualisation. Parallel computing
and other high-performance computing techniques have not been used in the field
of information visualisation as much as in scientific visualisation. In addition to
the standard approach of developing increasingly better ways to scale up sequential
computing algorithms, the scalability issue should be studied at different levels-
such as the hardware and the high-performance computing levels-as well as that of
individual users. Additionally, the challenge of visualising data streams is due to the
pattern of the data stream and the necessity to comprehend its contents.

Data Deluge Increasing access to disruptive technologies and the increasing
application of sensors are generating massive volumes of data. Such Big Data has
huge relevance for emergency management. However, the growing amount of data
poses challenges for data management, analysis and verification.

Causality Visual representation, reasoning, and analytics stress the role of infor-
mation visualisation as the key medium for detecting causality, forming hypotheses,
and assessing accessible evidence. The challenge is to derive highly sensitive and
selective algorithms that can resolve conflicting evidence and suppress background
noises. Complex network analysis and link analysis are crucial in this matter. Due to
the exploratory and decision-making nature of such tasks, users need to voluntarily
interact with raw data as well as its visualisations to find causality. Methods such as
multiple coordinated views will boost the discovery process. Features that facilitate
users in detecting what-ifs and test their hypotheses should be given.

Visual Impairment Colour impairment is a common condition that needs to be
taken into consideration. For example, red and green are appealing or their intuitive
mapping to positive or negative outcomes (also depending on cultural associations);
however, users with red-green colour blindness one of the most common forms,
would not be able to differentiate such scales distinctly.

Interpretability The ability to recognise and understand the data is one of the key
challenges in the visualisation. Creating a visually correct output from raw data
and drawing the right conclusions largely depends on the quality of the used data
and methods. Several potential quality problems (e.g., data capture errors, noise,
outliers, low precision, missing values, coverage errors, double counts) can be hold
in the raw data. Also, the preprocessing of data in order to use it for visual analysis
shows several possible quality problems. Data can be inherently incomplete or out
dated. The challenges are to determine and to minimise these errors on the pre-
processing side, and to provide a flexible yet stable design of the visual analytics
application to manage with data quality problems. For example, Homeland Security
applications, in particular, have to deal with missing values and uncertainty. Suppose
a screening program in the context of Homeland Security in a sensitive area. The
system should identify potential attackers, but also try to minimise false positives
in order to avoid incorrectly targeting innocent commuters. A falsely inserted data



Emergency Information Visualisation 169

record should not influence the primary manner in which the system observes and
analyses different people. Moreover, updated data of a potential attacker might not
be available in the database, but the visual monitoring and analysis of patterns
should still work even though the records in the database are largely incomplete.

Aesthetics The aim of information visualisation is the insights into data that it
provides. It is important to comprehend the representation of insights in order
to comprehend how insights and aesthetics interact, and how these two goals
could sustain insightful and visually appealing information visualisation. Much
of the aesthetics wisdom consists more of heuristics than empirical evidence at
the elementary level of perceptual-cognitive activity. Research in this area mostly
focuses on graph-theoretical properties and hardly ever involves the semantics
associated with the data. Insights should be detected in the data modelling phase
of the process. Incorporating aesthetics into information visualisation still remains
a challenge.

Semantics Another challenge in the context of information visualisation is to
furnish semantics for analysis tasks and decision making visualisation. Semantic
meta data extracted from heterogeneous sources may capture associations and
complex relationships. Hence, providing approaches to analyse and detect this
information is important to visualisation applications. Ontology-driven approaches
and systems have allowed new semantic applications in financial services, web
services, business intelligence, and national security. Nevertheless, more research
is necessary in order to increase capabilities for creating and maintaining large
domain ontologies and automatic extraction of semantic meta data, since the
integration process between different ontologies to link various datasets is not fully
automated yet. To perform more effective analysis of heterogeneous data sources,
more advanced methods for the extraction of semantics from heterogeneous data
are a key requirement. Thus, research challenges arise from the size of ontologies,
content diversity, heterogeneity as well as from computation of complex queries and
link analysis over ontology instances and meta data. New ways to resolve semantic
heterogeneities to discover complex relationships are crucial.

Evaluation Human-centric evaluation of visualisation techniques can give rise to
qualitative and quantitative assessments of their potential quality, with previous
researches focus on the effectiveness of basic visual variables. Evaluations can
aim to measure and study the size and value of the insights divulged by the
employing of exploratory visualisation tools. Diagnostic usability evaluation is a
core of user-centred design. Usability studies can be carried out at different phases
of the development process to verify that users are able to complete benchmark
tasks with adequate speed and accuracy. Resemblances with the technology earlier
used by target users may also be possible to verify improvements. Metrics need to
address the learnability and utility of the system, in addition to performance and
user satisfaction. Usage data logging, user interviews, and surveys can also assist in
spotting potential enhancements in visualisation design and developments.
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5 Social Media Data Visualisation and Filtering

In the following section an overview of the methods used for social media data
visualisation related to emergency events will be given.

5.1 Sorted List

A simple way of displaying posts and other news is to arrange them in a simple
list. An advantage of this presentation is the easy (re-)arrangement, for example
in a chronological, geographical or relevance (based on more complex metrics)
order. The posts can also be shown with accompanying pictures (e.g., of authors)
or timestamps.

5.2 Table

A more structured approach to visualise data in comparison to a list is a table with
several columns like frequency, post content, author, etc. In general, a table can
be ordered by clicking a column header. The items in the table are then ordered
ascending or descending according to the attributes in the selected column.

5.3 Timeline

A timeline is a form of visualisation where one axis represents the time. The other
axis can represent various types of information like events or posts. The advantage
in comparison to a list is a better visualisation of the chronological order as the
temporal relationships between events can be easily visualised and understood.

The displayed data can be as simple as points just representing an event
(“something took place at this point in time”) but can also be more complex such as
a visual representation of what happened at this point in time (i.e., a photo).

5.4 Structural

A structural visualisation collects various node-link network layouts to illustrate the
structure of a network. It supports the exploration of connectivity in large graph
structures. In the case of social media data for example the spreading (reposting) of
posts by actors can be shown. Colours can be used to emphasise links or present
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additional information. In addition to node-link diagrams there is also a matrix
orientated approach that compresses information to get a better use of limited space.
This gives them an advantage over node-link diagrams which rapidly clutter when
the network grows.

The map is the most often used visualisation method. This is understandable as a
map is a medium that can be intuitively understood and is appropriate for visualising
geographical information. However most maps contain only basic features such as
displaying a marker for every post, maps displaying enhanced data are used less
often.

Statistical information is also frequently used as it provides a visual way of
understanding data. Humans can use this visual display e.g., to detect anomalies
or track the time progression of an event.

Lists and tables are often used since they provide the most basic way of
displaying simple information. This makes them suitable for displaying data that
cannot or does not need to be visualised like simple content of posts.

Other visualisation methods such as structural or temporal visualisation are
not frequently used although they provide great potential for displaying important
information. This might be due to the fact that the data required for them is harder
to gather and mine.

5.5 VFiltering

When trying to visualise too much data at once the visualisation might get cluttered.
Therefore filtering options are needed that reduce the information or adjust it
dynamically to the user’s focus. In dependence to the form of visualisation,
filter mechanics might regard time, location, keywords, quality metrics and other
attributes of posts.

In time-based filtering, the user can select a start- and end date, a start time and
the length of the time window to be displayed. In addition, the user can specify how
the data should be replayed (Movie/Loop) and control the replay (Start/Stop). In
addition to simple selection elements for the time another visualisation component
can be used for defining a time interval where a timeline is used as a filter element
and a data visualisation element at the same time.

Moreover, a map can be used for filtering a dataset based on location as the map’s
viewport defines a (normally rectangular) geographical area. It is also possible to
create more precise location filters on the map by defining an area with markers.
The selected area can be used to restrict the dataset to events that occurred within
the area, allowing queries such as “What is the sentiment of users in this region?”
or “Was there a sharp influx of posts in this city?”.

Keywords (and especially tags) are an easy to use method to restrict a large
dataset to data that is only relevant for a specific topic. Further, information quality
metrics can be automatically computed to determine the quality of an information.
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Therefore they can be used to restrict the dataset to data that matches certain quality
criteria.

Time, location and keywords were frequently used for filtering, presumable
because they provide a simple way to filter out messages concerning a specific event
out of a larger dataset.

6 Exercises

In this section, we provide some general guidances of how to apply visualisation
techniques mentioned above into possible emergencies using a real dataset collected
from social data sources.

6.1 Data Set

To provide practical exercises, we use a real dataset collected from Twitter in 2012
about the Hurricane Sandy 2012. Twitter is an useful source to support managing
and analysing emergency situations [16]. The Hurricane Sandy (also known as
Superstorm Sandy) was the deadliest, strongest, and the most destructive hurricane
of the Atlantic hurricane season in 2012. According to the record, is was inflicted
almost $70 billion USD in damage. It was also the second-costliest hurricane
towards the United States until now (the first ranking belongs to the hurricanes
Harvey and Maria in 2017). Along the path of this storm through eight different
countries, at least 233 people were passed away. This dataset collected for the
REVEAL project includes around 2,000 tweets with enough textual, geospatial,
and temporal information. Besides, each tweet in the dataset was labelled with
location entries at the building, street and region levels manually to provide a gold
standard for evaluation work. We can obtain this dataset directly on the website of
the REVEAL project.® Each tweet has various information encoded as JSON as
follows.

Listing 1 A tweet with various information encoded as JSON

L

2 "favorited":false,

3 "in reply to_user_ id":null,

4 "contributors":null,

5 "truncated":false,

6 "text":"Seeing the midtown tunnel flooded and with water
just flowing down was scary",

7 "created at":"Tue Oct 30 04:04:41 +0000 2012",

Shttps://revealproject.eu/geoparse-benchmark-open-dataset/.


https://revealproject.eu/geoparse-benchmark-open-dataset/

Emergency Information Visualisation

57
58

"retweeted":false,

"in reply to_status_id str":null,

"coordinates" : {
"type":"Point",
"coordinates": [-73.95240391,
bo
"in reply to user id str":null,
"entities": {
"user mentions": [],
"mentions": [

{
"indices":[11, 24],
"class":"Location",
"subclass":"building",
"name" : "Midtown Tunnel"

}

1,

"hashtags": [],

"urls": []

i
"in reply to status_id":null,
"id str":"263129269520195585",
"place": {

"full name":"Queens, NY",

40.74147806]

173

"url":"http://api.twitter.com/1/geo/id/b6ea2e341bad356¢f.

json",
"country":"United States",
"place type":"city",
"bounding box": {
"type":"Polygon",
"coordinates": [
[
[-74.042112, 40.489794]
[-73.700272, 40.489794]
[-73.700272, 40.812242]
[-74.042112, 40.812242]

1
}I
"country code":"US",
"attributes":{},
"id":"b6ea2e341ba4356f",
"name" : "Queens"

"user": {
"follow request sent":null,

’

’

’

"profile use background_image":true,

"geo enabled":true,
"verified":false,

"profile image url https":"https://si0.twimg.com/

profile images/2659914767/511

cllc3bd2a216edl19378592d5b35dec _normal.jpeg",
"profile sidebar fill color":

"is translator":false,

"feffdi",
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"id":480979191,
"profile text color":"333333",
"followers count":80,
"profile sidebar border_ color":"fff8ad",
"id str":"480979191",
"default profile image":false,
"location":"",
"utc_offset":-14400,
"statuses count":3764,
"description":"24.Virgo.NewYorker.Queens",
"friends count":112,
"profile link color":"0099CC",
"profile image url":"http://a0.twimg.com/profile images
/2659914767/511cllc3bd2a216ed19378592d5b35dc _normal.
Jpeg",
"notifications":null,
"profile background image url https":"https://si0.twimg.
com/images/themes/themel9/bg.gif",
"profile background color":"FFF04D",
"profile background image url":"http://a0.twimg.com/
images/themes/themel9/bg.gif",
"screen name':"xnancyi",
lllangll . Ilenll ,
"profile background tile":false,
"favourites count":96,
"name" : "Nancy",
"url":null,
"created at":"Thu Feb 02 04:39:37 +0000 2012",
"contributors_enabled":false,
"time zone":"Atlantic Time (Canada)",
"protected":false,
"default profile":false,
"following":null,
"listed count":0
}I
"in reply to_screen name":null,
"retweet count":0,
"geo":{
"type":"Point",
"coordinates":[40.74147806, -73.95240391]
}I
"id":263129269520195585,
"source":"<a href=\"http://twitter.com/download/iphone\"
rel=\"nofollow\">Twitter for iPhone</a>"
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6.2 Visualisation Tool

Visualisation tools can organise data in a meaningful way that lowers the cognitive
and analytical effort required to make sense of the data and make data-driven
decisions. Users can scan, recognise, understand, and recall visually structured
representations more rapidly than they can process non-structured representations.
The science of visualisation draws on multiple fields such as perceptual psychology,
statistics, and graphic design to present information, and on advances in rapid
processing and dynamic displays to design user interfaces that permit robust
interactive visual analysis.

In this section, we use the D3 library as the visualisation tool. The D3 is a very
popular JavaScript (JS) library to give different visualisation techniques for various
types of information. The reason for choosing D3.js because JS is a light-weight,
interpreted, and just-in-time compiled programming language and compatible with
every systems and device. Besides, the D3 library gives us the freedom to modify
their source code to adapt to our particular requirements.

To start using the D3 library, we need to download the regular version’ or the
minified version® (i.e., all the white-space were wiped to reduce file size and time
loading) from their website. This exercise is writing for the 5.72.0 version; however,
it will be mostly similar to the other versions. After downloading and getting the file
d3.v5.min.js, we should create a folder for containing this JS file. For the sake of
simplicity, I will name this folder as exercises. The next step is to create an HTML
file, name it as demo.html, and place into the same folder with the JS file. The folder
exercises now contains two files as shown in Fig. 1.

Now copying this source code and put into the file demo.html. You then only
need to open the file demo.html with any browser to run the program.

Fig. 1 The folder structure
for this exercise

V)

d3.v5.js demo.html

7https://d3js.org/d3.v5 js.
8https://d3js.org/d3.v5.min.js.
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Listing 2 Template for making visualisation with the D3 library

1 |<html lang= >

2 <head>

3 <meta charset= >

4 <title>Emergency Visualisation Demo</title>
5 <script types= src= ></script>
6 </head>

7 <body>

8 // The D3 code will come here

9 2

10 </body>

11

12 | </html>

For any D3 script providing in the next section, we should put into the place
that we noted as “The D3 code will come here”. This D3 JavaScript code will then
generate other necessary HTML elements for the visualisation automatically.

Towards beginning users that do not have much experience in the D3 library, it is
beneficial to visit their website? and follow their instructions. In the gallery, different
authors modified and extended the original D3 library to adapt to their specific
visualisation requirements. After we self-determined our visualisation targets, we
may search in the collection of examples to pick up the most similar ones.

6.3 A Case Study with the Hurricane Sandy 2012

In this section, we focus on providing different visualisations that can support
end-users understanding useful information about Hurricane Sandy 2012 quickly
and efficiently. To derive a helpful visualisation, pre-processing and analysing data
are beneficial. For the sake of simplicity, we only mention about pre-processing
and analysing data briefly here and leave other space for describing visualisation
methods. In the previous section, we introduced different visualisation techniques
that can deal with content-based, geospatial, and temporal information.

Given no prior knowledge of an event, the word cloud is beneficial that should
be conducted at the first step to derive an overview of what has happened. The input
of the word cloud visualisation is a set of non-duplicated words extracting from the
attribute “text” in the dataset. This set of words should not contain stop words, which
are commonly used words (e.g., the, a, an, and in) but empty of meaning. Besides
stop word removal, we can do the stemming or lemmatisation to convert words to
their base forms. Stemming considers removing the last few characters, but this may
lead to incorrect meanings and spelling errors. Otherwise, lemmatisation focuses
more on the context and tries to revise words to their meaningful original form. To
split a text into words, we may use a unigram, bigram or trigram model or combining

“https://github.com/d3/d3/wiki/Gallery.
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these models. In addition to the processes as mentioned earlier, we also delete
hyperlinks, remove all punctuation marks, and change all the letters to lowercase
for reducing noise and redundancy. Finally, we obtain 30 highest frequency words in
ascending order as follows: school, news, coastal, high, wind, crazy, good, warning,
live, rain, subway, safe, street, hope, bad, manhattan, storm, basement, east, people,
house, tsunami, hurricane, city, water, power, sandy, movie, flood, and newyork. The
source code for visualising these words along with their frequency is given as below.

Listing 3 Source codes for the word cloud visualisation

1 |<div id= >
2 // The HTML will be generated here
3 | </div>
4 | <script src=
></script>
5 |<script type= >
6 |// List of words
7 |var words = [{word: , size: }, {worad: ,
size: }, {word: , size: }, {word:
, size: }, {worad: , size: }, {worad:
, size: }, {word: , size: }, {word:
, size: }, {worad: , size: }, {wora:
, size: }, {word: , size: }, {word
: , size: }, {worad: , size: b
word: , size: }, {word: , size: bAoA
word: , size: }, {worad: , size:
}, {word: , size: }, {word: , size:
}, {worad: , size: }, {worad: , size
}, {word: , size: }, {word:
, size: }, {worad: , size: }, {worad:
, size: }, {word: , size: }, {word:
, size: }, {word: , size: }, {word:
, size: }, {word: , size: }
8

9 | // set the dimensions and margins of the graph
10 |[var m = {top: 10, right: 10, bottom: 10, left: 10},

11 w = 850 - m.left - m.right,
12 h = 850 - m.top - m.bottom;
13

14 | // append the svg object to the body of the page
15 |var svg = d3.select( )

16 .append ( )

17 .attr( , w + m.left + m.right)

18 .attr( , h + m.top + m.bottom)

19 .append ( )

20 .attr( ,

21 + m.left + + m.top + ) ;
22

23 | // Constructs a new cloud layout instance.

24 | // An algorithm to find position of words that suits the
needs.

25 | // The different from one word to the other must be here.
26 |var layout = d3.layout.cloud()
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27 .size([w, hl])

28 .words (words.map (function (d) {return{text: d.word, size:
d.size};}))

29 .padding (6) //space between words

30 .rotate (function() {return ~~(Math.random() = 2) % 90;})

31 .fontSize (function(d) {return d.size;}) // font size

32 .on ( , draw) ;

33 | layout.start () ;

34

35 | // Takes the output of 'layout' above and draw the words.
36 |// THE SAME from one word to the other can be here.
37 | function draw(words) {

38 svg

39 .append ( )

40 .attr( S + layout.size() [0] / 2
+ + layout.size() [1] / 2 + )

41 .selectAll ( )

42 .data (words)

43 .enter () .append ( )

44 .style( , function(d) { return d.size; })

45 .style( o )

46 .attr( , )

47 .style( 5 )

48 .attr( , function(d) {

49 return + [d.x, d.y] + + d.

rotate + ;

50 9]

51 .text (function (d) { return d.text; });

52 |}

53 | </script>

Figure 2 depicts the word cloud, which is referred from the D3 examples.'? To
use this source code, we need to define an array containing different words and their
frequency (e.g., {word: “school”, size: “10”}). Because the frequency of appearance
of words extracted from tweets in the Hurricane Sandy 2012 is very high and
deviant, the visualisation may lose its clarity (i.e., some words are too big while the
others can be too small). To obtain a better appearance of words, we normalise the
frequency of words to values lower than 100 following a defined scaling function.
We may change the fonts, colours, sizes, and directions of words in the word cloud
by modifying the source codes as well. From this visualisation, we can quickly have
an insight in where this event might happen (i.e., New York), what is this event (i.e.,
hurricane and tsunami), and what is effect of the Hurricane Sandy 2012 (i.e., flood,
water, city, house, power, and so on).

For the next visualisation, we consider representing geospatial information. With
the development of smart devices, there are more tweets posted with geotagged
locations; however, the number of geotagged tweets is still in limitation due to users’

10https://www.d3-graph-gallery.com/graph/wordcloud_size.html.
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Fig. 2 Word cloud visualisation of the Hurricane Sandy 2012

privacy. In this dataset, we can get the geospatial information by extracting from
the attribute “full_name” in “place” (e.g., Queens, NY. With the assumption that the
number of tweets is corresponding to the effect of the Hurricane Sandy 2012 towards
different states in the US (i.e., the longer time and more severe of the hurricane,
the more people posted tweets to Twitter), density map is an excellent selection to
express this information. The source code for density map visualisation is given as
below.

Listing 4 Source codes for the density map visualisation

1 |// Create US map.

2 | <script srec="http://bl.ocks.org/NPashaP/raw/
a74faf20b492ad377312/uStates.js"></script> <!-- . -->

3 | <svg width="960" height="600" id="statesvg"s>

4 // The HTML will be generated here

5 | </svg>

6 | <style>

7 | .statef

8 fill: none;

9 stroke: #a9a9a9;

10 stroke-width: 1;

11

12 | </style>
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13

14 | <script>

15 |var sampleData = { : { : }, : {
}r : { : }l : {
1. 3 { : ¥ 8 {
}r : { : }l : {
} 2 { : 1 8 {
}r : { : }l : {
3 2 { ¥ 8 {
}r : { }' : {
3 2 { ¥ 8
}r : { }l : {
3 2 { ¥ 8 {
}r : { }l : {
3 2 { ¥ 8 {
}r : { }l : {
1 2 { ¥ 8 {
}r : { }l : {
3 2 { : } 8 {
}r : { : }l : {
3 2 { : ¥ 8
}r : { }l : {
3 2 { ¥ 8 {
}r : { }l : {
1 2 { 1 8 {
}r : { : }l : {
3 2 { : | 8 {
bo 3 { : 11

16

17 | // Fill colour for above states.

18 |uStates.draw( , sampleData) ;

19 |d3.select (self.frameElement) .style ( 7 ) 8
20 |</script>

We use the example of the density map in the D3 gallery for our visualisation.!!
For the sake of simplicity, we removed the tooltip function for reducing the length
of this source code. Besides, we modified the source code for users to customise
the colours of the density map easily. What we need as the input is an array of US
states with their respective colours (e.g., “HI”: “color’: “#ffffff”"). Here, the colours
represent levels of emergencies. We used five different colours as the descending
of risks including red (i.e., significant risk to lives exist and significant damage and
disruption), orange (i.e., more certain that there is to personal and property safety),
yellow (i.e., hazard is possible, be aware of the potential impacts of the hazard),
and green (i.e., non-urgent or not serious), and white (i.e., no hazards expected).
The colour codes of these five colour are #f0000, #fb266, #{fff00, #008000, and
#ITtTtf respectively. Based on extracted locations in the dataset and their frequency of
appearance, the red group includes NY, the orange group comprises NJ, the yellow

http://bl.ocks.org/NPashaP/a74faf20b492ad377312.


http://bl.ocks.org/NPashaP/a74faf20b492ad377312

Emergency Information Visualisation 181

Fig. 3 Density map visualisation of the Hurricane Sandy 2012

group contains FL, PA, MD, OH, WA, TX, CA, IL, MO, VA, the green group consists
of NC, CT, MA, CO, NM, MN, WI, and the rest states belong to the white group.
From the density map in Fig.3, we may recognise the state under the highest
risk was New York, following by New Jersey. However, the dataset may contain
noise because the tweets can be posted by not only people in areas of the hurricane
but also any person at any state in the US. In case of temporal visualisation, it is
not useful towards this dataset because authors collected these tweets in a very
short time (i.e., in only 10 minutes from 04:00 to 04:10). In a short duration of
time, we find it difficult to express the differences or changes using temporal
information. In order to understand the data comprehensively, of course, we need
higher-level data analysis with a certain amount of time and effort. Therefore, the
former visualisations (i.e., word cloud and density map in this exercise) are very
compelling, which can be considered as a roadmap to guide further data analytics.
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