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Abbreviations

A1C	 Hemoglobin A1c
BMI	 Body mass index
BP	 Blood pressure
ECG	 Electrocardiogram
HR	 Heart rate
MARD	 Mean absolute relative difference

�Introduction

The traditional encounter model between patient and health-
care professional is evolving under the strong influences of 
chronic care models, economic constraints, and advanced 
technologies. Wearable technologies will be a cornerstone 
of early and sustainable preventive care to not only offset 
the consequences of chronic disease, but also as an effective 
tool to prevent chronic disease risk, progression, and conse-
quences. Wearable technologies are electronic computing 
devices, capable of primarily functioning passively, attached 
and detached from the body freely, and commonly connected 
with the Internet. The incorporation of wearable technologies 
into the cloud has been recently referred to as the “Internet 
of Things” (IoT), and when specifically incorporating medi-
cal wearables, the “Internet of Medical Things” (IoMT). The 
coordination of smartphone applications, wearables, and 

point-of-care testing (e.g., in a Lifestyle Medicine Center) 
allows individual adaptations to activities of daily living [1]. 
Intelligent healthcare systems have been described utilizing 
Wireless Body Area Network concepts to link sensors with 
a hub in a reliable and scalable way, especially as integration 
becomes more complex with more and more wearables being 
used [2]. Sensor data can also be incorporated into electronic 
health records for both inpatients and outpatients [3]. Protected 
health information can be safeguarded using Integrated Circuit 
Metric technology, which provides authentication, confidenti-
ality, secure admission, and symmetric key generation [4].

The purpose of wearable technologies in the setting 
of lifestyle medicine and prevention and management of 
chronic disease is to measure any clinical parameter, pref-
erably a continuous parameter, that has value to the user, 
and in many cases, to provide context for interpreting that 
measurement. A major presumption is that the measurement 
is interpretable and actionable in a way that improves the 
user’s health. This is particularly attractive in low-income 
countries, where measurements should be easy to perform 
and scalable, with open access and adaptability [5].

Wearable technologies are an indispensible implementa-
tion tool in lifestyle medicine. There are two broad catego-
ries of wearable technologies: those that monitor clinical 
parameters (e.g., activity with a step counter; certain vital 
signs, such as heart rate [HR], heart rhythm, and blood pres-
sure [BP]; and laboratory values, such as interstitial fluid 
glucose) and those that monitor and intervene based on clini-
cal parameters (e.g., cardioverter-defibrillator, ultrasound, 
and mobility assistance). Examples of wearables that mea-
sure movement, and posture; wearables related to exosuits 
with sensors for augmented movement and cardiac physiol-
ogy; and wearables as mixed reality goggles are shown in 
Fig. 13.1. There are also wearables that detect environmental 
factors that comprise the human exposome (e.g., acoustic 
noise, temperature/heat, particle number counts, and geo-
location) and impact health, though there are still problems 
with accuracy and interpretation of these variables [6].

13

J. I. Mechanick (*) 
The Marie-Josée and Henry R. Kravis Center for Cardiovascular 
Health at Mount Sinai Heart, and the Division of Endocrinology, 
Diabetes and Bone Disease, Icahn School of Medicine at Mount 
Sinai, New York, NY, USA
e-mail: jeffrey.mechanick@mountsinai.org 

S. Zhao 
Department of Anesthesiology, Icahn School of Medicine at Mount 
Sinai, New York, NY, USA
e-mail: Shan.Zhao@MountSinai.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48088-2_13&domain=pdf
https://doi.org/10.1007/978-3-030-48088-2_13#DOI
mailto:jeffrey.mechanick@mountsinai.org
mailto:Shan.Zhao@MountSinai.org


134

a c

b

ed

f g

Fig. 13.1  Examples of 
wearable technologies related 
to movement.* (∗(a) Fitbit 
Versa2™ (https://www.fitbit.
com/shop/versa [accessed on 
December 21, 2019]); 
(b) Nike+ FuelBand SE™ 
(https://www.ebay.
com/c/620182438 [accessed 
on December 21, 2019]); 
(c) Apple Watch Series 5 
Nike™ (https://www.apple.
com/apple-watch-series-5 
[accessed December 21, 
2019]); (d) Samsung Galaxy 
Watch™ (https://www.
samsung.com/ [accessed on 
December 21, 2019]); 
(e) Seismic™ (http://www.
meggrant.com/ [accessed 
December 21, 2019); 
(f) BodyGuardian™ Heart 
(https://www.
preventicesolutions.com/hcp/
body-guardian-heart 
[accessed on December 21, 
2019); (g) Microsoft Hololens 
2™ ([accessed on December 
21, 2019])
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�Clinical Scenarios

The value of wearable technologies becomes evident across 
levels of sophistication, clinical disorders, and endpoints 
(Table 13.1). These devices can provide simple chores, such 
as keeping a record of steps or calories, to inform conver-
sations with the lifestyle medicine professional, to enable 
locomotion in a patient with paraplegia, to enable physical 
activity and to reduce cardiometabolic risk. There are also 
platforms, such as HealthSnap™ (www.healthsnap.io 
[accessed on December 22, 2019]), that capture, analyze, 
and present a broad range of lifestyle variables with many 

derivative services. This is a rapidly changing landscape, 
and each Lifestyle Medicine Center will need to identify 
areas of interest and then consider how relevant wearables 
can be successfully implemented in their programs. The 
decision of whether to utilize a wearable device in patient 
care needs to be carefully considered, depending upon the 
patient population. Simpson and Mazzeo [7] found that 
health-tracking devices/applications might actually be 
detrimental in patients with eating disorders, serving as a 
reminder that these technologies are still, for the most part, 
in the development and early implementation stage. There 
are many other wearable technologies that may influence 
the implementation of lifestyle medicine, such as those 
related to obstetrics and neonatology, mental health, ostomy 
function, lymphedema, hearing and vision, and artificial 
kidneys, but describing a complete potpourri of devices is 
beyond the scope of this chapter.

Table 13.1  Examples of wearable technologies in healthcarea

Clinical target Device Description
Cancer Optune™ Emits tumor-treating fields to 

treat glioblastoma
Vivofit 2™ Correlates activity with 

behavior
Cardiovascular Apple Watch™ HR/rhythm and energy 

expenditure
BodyGuardian 
Heart™

Adhesive strips, mobile 
telemetry, cardiac event 
monitoring

Fitbit Blaze™/ 
Charge 2™

HR/rhythm

Garmin 
Forerunner™

HR

Microsoft Kinect™ Correlates skin color with HR
Phillips 
Actiwatch™

Measures mobility and sleep

Preventice 
BodyGuardian™

ECG measures HR and 
respiratory rate

Samsung Galaxy 
Gear™

HR/rhythm

TomTom Spark™ HR
ZioPatch™ ECG monitoring patch to 

detect AF
Diabetes Dexcom™ Glucose sensor

Freestyle Libre™ Glucose sensor
Serenita™ Relaxation app measuring 

hemodynamics
Neurology Empatica™ Wrist-worn detection of 

seizure counts
ExoAtlet™ Exoskeleton used in multiple 

sclerosis
iCalm™ Wrist-worn detection of 

seizure counts
Nightwatch™ Wrist-worn detection 

nocturnal seizures, movement, 
HR

Nutrition Healbe’s GoBe 2™ Bioelectrical impedance 
detection of food intake

SilkLab™ Tooth-mounted monitor for 
glucose, salt, and alcohol

Styr life™ Voice-activated food logging
The Bite 
Counter™

Wrist-worn device correlates 
with oral intake

Table 13.1  (continued)

Clinical target Device Description
Orthopedics Fitbit™ Integrates physical activity 

with coaching sessions
LUMOback™ Wearable back device 

provides posture information
Micro-
Motionlogger™

Correlates activity with 
clinical symptoms

Primewalk™ Robotic power-assist 
locomotor for paraplegia

ZetrOZ sam™ Provides low-intensity 
therapeutic ultrasound

Physical 
activity

ActiGraph™ Rest/activity monitor (e.g., 
fidgeting versus deskwork)

ActivPAL™ Activity/incline monitor for 
sitting, standing, and stepping

Bio2Bit Move™ Real-time muscle activity 
monitor

Coffee WALKIE™ Wrist/waist-worn monitor
Fitbit Flex™ Monitor with personalized 

predictors; reminders to 
exercise

Seismic™ Powered garment with sensors 
to assist movement

SenseWear 
Armband™

Monitors sleep, posture, and 
activity

Platform HealthSnap™ Presents range of lifestyle 
variables

Hololens™ Patient education and 
telemedicine

Sleep SnoreLab™ Monitors snoring and provides 
analysis

WatchPAT™ Monitors rest/activity, 
hemodynamics, and oximetry

aDevices listed are those that monitor clinical parameters with/without 
intervention. Smartphone apps are not included here. With some excep-
tions, specific device models are not provided since they frequently 
change over time. See Table 13.2 for expanded list of glucose sensors. 
Abbreviations: AF atrial fibrillation, ECG electrocardiogram, HR heart 
rate
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�Cardiometabolic-Based Chronic Disease

Cardiometabolic risks include obesity, dysglycemia, 
unhealthy eating patterns, physical inactivity, tobacco use, 
hypertension, hypercholesterolemia, poor sleep hygiene, 
unhealthy behaviors, and inflammation [8–11]. Wearable 
technologies that address cardiometabolic risk factors will 
be presented according to the evidence and three clinical sce-
narios: abnormal adiposity, movement, and sleep; dysglyce-
mia; and cardiovascular disease (CVD).

�Abnormal Adiposity, Movement, and Sleep
The mainstay of obesity management is to achieve an opti-
mal body composition (adiposity amount and distribution) 
and decreased risk for obesity-related complications for a 
specific patient [8]. This is primarily, but not exclusively, 
accomplished through healthy eating and physical activ-
ity. Wearable technologies interrogate various nutritional 
and movement variables and can provide a cost-effective 
and durable adjunct to strategies and tactics delivered in the 
Lifestyle Medicine Center.

Manual reporting of food intake is generally unreliable 
[12]. Mobile, dietary self-monitoring, such as image analy-
sis systems that identify foods and estimate portion sizes, 
can be a valuable tool [13, 14]. Turner-McGrievy et al. [15] 
found that the total number of days tracking at least two eat-
ing occasions per day correlated with improved adherence, 
highlighting the need for techniques to improve performance 
of these technologies. Recently, a voice-based mobile nutri-
tion monitoring system has been developed that is based on 
speech and natural language processing, text-mining tech-
niques, and a tiered matching algorithm that searches nutri-
tional databases to provide a dietary composition monitoring 
function [16]. Weathers et al. [17] found that the use of The 
Bite Counter (a wrist-worn device that detects a rolling of 
the wrist that correlates with bites; http://icountbites.com/ 
[accessed on December 24, 2019]) is as effective as mental 
tracking for achieving eating goals. In another study by Shen 
et al. [18], bite-counting protocols have a sensitivity of 75% 
with positive predictive value of 89% for actual bites deter-
mined by video monitoring. Wearable technologies also sup-
port behavioral weight loss in patients with serious mental 
illnesses [19]. Nevertheless, in the Innovative Approaches to 
Diet, Exercise and Activity (IDEA) randomized, controlled 
trial (N = 470) of young adults (age 18–35 years) with a body 
mass index (BMI) between 25 and <40  kg/m2, the use of 
wearable technologies compared with standard behavioral 
interventions resulted in less weight loss over 24  months 
[20]. The results are not fully explained by the authors and 
point out that more formal research studies into behavioral 
mechanisms in patients with abnormal adiposity, especially 
over longer periods of time, are needed to better understand 
the role for and mechanism of action of wearables [21].

In a study of patients with metabolic syndrome (central 
obesity 83.0%; hyperglycemia 54.7%; hypertension 90.6%; 
hypertriglyceridemia 83.7%; and low high-density lipopro-
tein cholesterol 54.7%), a 12-week intervention using a wrist- 
or waist-worn physical activity monitor (Coffee WALKIE 
+Dv.3™) improved engagement with regular walking and 
cardiometabolic risk factors, especially hypertension [22]. 
Using behavioral analytics, the system was able to provide 
personalized exercise predictors derived from Fitbit Flex™ 
output and smartphone assessment of daily stress experi-
ence and was associated with a 6.5% (p = 0.04) greater like-
lihood of exercising [23]. There are also wearable devices 
(e.g., Bio2Bit Move™) that perform real-time monitoring of 
muscle activity [24].

In a study by Kingsley et al. [25], there were large dif-
ferences in activity intensity estimates among wrist-worn 
accelerometers, especially below moderate intensity levels 
(<3 metabolic equivalents or METs). In overweight/obesity, 
inclinometers (e.g., ActivPAL™ and ActiGraph™) are more 
error-prone for sedentary to upright transitions and stepping 
time, compared with sedentary behavior and standing time 
[26]. Moreover, in children, total activity counts are gener-
ally affected by moderate- and vigorous-intensity physical 
activity but can also be confounded by total wear time [27].

Sedentary behavior is generally any waking behavior in 
a sitting or reclining posture with <1.5 METs [28]. A pre-
liminary study using the SenseWear Armband™ (for sleep 
and activity) and activPAL™ (for posture) devices can 
simultaneously measure sleep, posture, and activity [28]. 
Sedentary behavior varies according to occupation using 
device-measured movements, with office workers having 
the greatest, and laborers the lowest sedentary time; of note, 
higher BMI and BP correlate with sedentary time [29]. In 
a prospective cohort study using wrist-worn accelerometers 
(N = 91,648), Kim et al. [30] found that subjects with high 
levels of physical activity, lower sedentary or screen [TV 
viewing and computer use] time, and sleep times of 7 hours/
day were more physically active at 5.7 year follow-up. On 
the other hand, subjects with increased, compared with 
decreased, dynamic sitting (fidgeting and deskwork; assessed 
with a hip-worn accelerometer [ActiGraph GT3X™]) was 
associated with a lower BMI, smaller waist circumference, 
and lower risk for metabolic syndrome [31]. In addition, 
novel designs for smart shirts, integrating individual fac-
tors and machine learning algorithms, provide highly accu-
rate information about sedentary behavior that is useful for 
designing active lifestyles, especially for frail, elderly people 
[32]. Future studies will need to discern how each compo-
nent of sedentary behavior, and components of physically 
active lifestyles, contributes to sustainable health outcomes.

Obstructive sleep apnea is an obesity-related complica-
tion related to pulmonary function that compromises quality 
of life by reducing energy and wakefulness during the day-
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time, while also exacerbating problems with glycemic and 
weight control. Sleep quality (e.g., ratio of deep sleep to total 
sleep) estimated using an accelerometer, and correlated with 
data from pulse activity trackers, body weighing scales, and 
BP monitors, found that poor sleep quality was associated 
with being a male, young, having a fast heart rate, and having 
high BP, whereas increased total sleep was associated with 
increased weight [33]. Research is currently underway using 
wearable sensor data from electrodermal activity to more 
accurately measure sleep efficiency and quality [34].

The wrist-worn WatchPAT 200™ is a four-channel unat-
tended home device that measures peripheral arterial tone, 
pulse oximetry, HR, and actigraphy (rest/activity cycles). 
Surges of sympathetic activity detected with this device cor-
relate with apnea/hypopnea events [35]. This information 
can be useful in high-risk patients where polysomnogra-
phy is not available [35]. In another study, Lin et  al. [36] 
found that wearable piezoelectric thoracic and abdominal 
bands detect obstructive versus central sleep apnea with 
81.8 ± 9.4% accuracy. The CBT-i Coach™ is a mobile app 
that has been shown to improve subjective sleep based on 
cognitive-behavioral therapy in patients with insomnia [37]. 
Obesity-related lung disease also includes an increased risk 
for asthma. A wireless wearable ultrasound sensor has been 
developed for early detection of asthma progression by mea-
suring the FEV1/FVC ratio [38]. In patients with chronic 
obstructive pulmonary disease and mean BMI of 28.6  kg/
M2, activity levels measured by a ActiGraph wGT3X-BT™ 
accelerometer for 7 consecutive days identified 3 behav-
ioral constructs: [1] low-intensity movement associated with 
mobility, daily activities, health status, and BMI; [2] high-
intensity movement associated with younger age and mini-
mal self-care limitations; and [3] sleep associated with body 
adiposity and poor lung function [39].

�Dysglycemia
The management of type 1 and type 2 diabetes includes life-
style medicine, particularly medical nutrition therapy and 
healthy eating, as well as mitigation of other CVD risk fac-
tors that often includes pharmacotherapy. In patients with or 
suspected as having dysglycemia, especially as efforts are 
underway to mitigate cardiometabolic risk factors, capturing 
and visualizing glucose patterns and correlating them with 
eating patterns and physical activity provides a unique and 
valuable opportunity for motivation and lifestyle change. 
In fact, wearable glucose sensors are an integral part of 
single- and dual-hormone, closed-loop hormone (insulin 
± glucagon) delivery systems that facilitate safe exercise 
and physical activity by reducing hypoglycemic episodes 
[40]. Various glucose-sensing technologies are available to 
increase patient engagement and motivation to improve gly-
cemic control. Currently, there are some significant concerns 
about wearable glucose-monitoring devices: accuracy, bat-

tery life, burden to patients, comfort, confidentiality, cost, 
market stability, and standardization [41].

Many sensors are available. There is a curvilinear relation-
ship between the mean absolute relative difference (MARD) 
and frequency of large (>20%) deviations in glucose deter-
minations [42, 43]. This relationship is consistent across the 
full range of devices and manufacturers (Table  13.2) [42, 
43]. Wrist-borne non-invasive glucose monitors use photo-
plethysmographic optical sensors and have a MARD in the 
7.40–7.54%, which is at the lower part of the range for avail-
able glucometer models (5.6–20.8%) [44].

Wearable interfaces also provide measurements of glucose 
and alcohol in sweat that correlate with blood levels [45, 46]. 
In addition, a paper microfluidic device for integration into a 
silicone mouthguard has been developed to measure salivary 
glucose [47]. Many other paper-based electrochemilumines-
cence analytic devices, including 3-D origami devices, are 
suitable for wearing and available for detecting not only glu-
cose but also metal ions, virulent DNA, pathogenic bacteria, 
and tumor cells [48]. Still other lab-on-skin devices can mea-
sure temperature, blood pressure, electromyography, elec-
troencephalography, electrocardiography, hydration, blood 
oxygenation, wound care, lactate, and pH [49]. Cholesterol 

Table 13.2  Current continuous glucose-monitoring sensorsa

Device MARD % Calibrations
Lifetime 
days Comments

Medtronic 
Enlite 
Sensor™

13.6 q 12h 6 Adjunctive only
Acetaminophen
Interference

Medtronic 
Guardian 
Sensor 3™

10.6 
(abdomen)

q 12h 7 Adjunctive only

9.1 (arm) Acetaminophen 
interference

Freestyle 
Libre™

11.4 None 14 Scanning 
required

Freestyle 
Libre II™

n/a None 14 Scanning 
required
Improved 
sensors

Dexcom G4 
Platinum™

9 q 12h 7 Adjunctive only

Dexcom G5 
Mobile™

9 q 12h 7 Acetaminophen
Interference

Dexcom 
G6™

10 None 10 Has “urgent low 
soon” alert

Senseonics 
Eversense™

11.4 None 90 Adjunctive only
Inserted/
removed in 
doctor’s office

aAdapted from Cappon et al. [43]. A full disposable Dexcom G7™ is 
anticipated in 2020–2021 with real-time monitoring, factory calibra-
tion, extended sensor life, with simple application, and significant cost 
reduction. Other models will be updated as well, especially with 
improved connectivity with insulin pumps, and Lifestyle Medicine 
Centers will need to keep pace with these advances. Abbreviation: 
MARD – mean absolute relative difference
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monitoring is also important for cardiometabolic risk reduc-
tion and can be performed using organic electrochemical 
transistor-based sensors [50]. Electrochemical nose-bridge 
sensors on eyeglasses have been developed to detect glucose, 
lactate, and other analytes [51]. Even contact-lens biosen-
sors are being developed for analysis of tear glucose levels in 
patients with diabetes [52]. Another area of active research is 
the development of wearables that measure foot temperature 
to provide a means of early detection of peripheral neuropa-
thy and foot ulceration in patients with diabetes [53].

There are also various apps available to patients to store 
and analyze data from wearable glucose sensors, provid-
ing further incentives and motivation for patients: mySugr 
App™, Glooko™, and Livongo™. The use of these apps is 
associated with improved glycemic control (by hemoglobin 
A1c; A1C) according to a meta-analysis by Bonoto et  al. 
[54]. Another type of app that has benefit in patients with 
diabetes is Serenita™. This is an interactive relaxation app 
based on acquiring a photoplethysmography signal from a 
mobile phone camera lens, measuring blood flow, HR, and 
HR variability, and providing feedback to the user, which 
in a clinical trial was found to reduce BP, A1C, and fasting 
plasma glucose [55].

�Cardiovascular Disease
Mobile health technology involving apps and wearable 
devices guide patients to lead healthy lifestyles and reduce 
CVD risks [56]. Several devices have been developed and 
are currently available to enrich cardiovascular monitoring 
and guide lifestyle medicine interventions, particularly phys-
ical activity. These wearable devices can be sorted into heart 
rhythm and electrocardiography systems, HR monitors, 
daily activity monitors, hemodynamic technologies, remote 
dielectric sensing, and bioimpedance monitoring [57]. The 
Preventice BodyGuardian™ monitors heart and respiratory 
rates via single lead electrocardiogram (ECG) and Phillips 
Actiwatch Spectrum Pro™ monitors mobility and sleep and 
can be used to record physiological changes and pharmaco-
logical responses, though fit-for-purpose validation studies 
are needed for wide scale use [58].

Cardiac rehabilitation is a form of secondary prevention 
to avert a subsequent cardiac event. The Apple Watch™, 
Fitbit Blaze™, TomTom Spark™, and Garmin Forerunner™ 
measure HR with acceptable accuracy and can therefore be 
incorporated in cardiac rehabilitation sessions [59], though 
there may be overestimations in energy expenditure with the 
Apple Watch™, when compared against indirect calorimetry 
[59, 60]. In addition, three wrist-worn devices (Apple Watch 
series 2™, Samsung Galaxy Gear S3™, and Fitbit Charge 
2™) accurately measure baseline and induced supraventricu-
lar tachyarrhythmia HRs [61]. There are many other wrist-
worn devices measuring a wide range of biological signals. 
Interestingly, there is also an earlobe photoplethysmographic 
sensor that represents a less expensive alternative for detect-

ing subclinical atrial fibrillation [62]. Overall, the selection 
of any device should be based on validation by clinical stud-
ies and a thorough understanding of shortcomings, such 
as decreased specificity for atrial fibrillation, inaccuracy 
for tachycardia, and decreased sensitivity for chronotropic 
incompetence in evaluation for bradycardia [63].

In patients who have had a transient ischemic attack or 
ischemic stroke, early and prolonged monitoring for parox-
ysmal atrial fibrillation using the ZioPatch™ (an ECG mon-
itoring patch) is more cost-effective and superior in terms 
of detection rates, compared with shorter-duration Holter 
monitoring (16.3% vs. 2.1% [OR 8.9; 95% CI 1.1–76.0; 
p = 0.026]) [64]. In German patients, a wearable cardioverter-
defibrillator provided an alternative to implantable devices 
for those with poor left ventricular function at risk for sud-
den cardiac death [65]. In the foreseeable future, devices of 
this type may allow for more patients to engage in structured 
secondary prevention programs.

Potential future wearable technologies are exciting, pro-
viding perspective and a realistic glimpse of what lifestyle 
medicine looks like on a population-based scale. These 
devices provide more detailed information about cardio-
vascular physiology, which can be correlated in real time 
with physical activity to optimize preventive strategies. 
Photoplethysmography is currently used for pulse oximetry, 
but by leveraging knowledge in waveform morphology and 
propagation theory, this technology can provide cuffless 
estimations of BP [66]. In fact, a wireless, wearable chest 
device has been developed that measures and analyzes HR 
and BP by detecting ECG, photoplethymography and bal-
listocardiogram signals, sending them via Bluetooth to a 
mobile phone and then to a server where offline MATLAB 
based operations are run [67]. Using another technology, 
chest vibrations that correlate with heartbeats are measured 
by seismocardiography, typically through the use of rigid 
accelerometers or non-stretchable piezoelectrical mem-
branes, but moving forward, with ultrathin and stretchable 
e-tattoos [68]. However, even these innovations are chal-
lenged by difficulties with analysis, confounders, low sensi-
tivity, and cost, paving the way for computing and analyzing 
second derivatives of pulse waveforms with the use of flex-
ible, self-powered, ultrasensitive pulse sensors to detect a 
wider range of CVDs, including arrhythmia, coronary heart 
disease, and atrial septal defect [68].

By using a soft electro-mechanical-acoustic cardiovas-
cular sensing tattoo, continuous BP readings can be derived 
based on the associations of systolic time intervals and 
systolic/diastolic BPs [69]. In patients with or at-risk for 
heart failure, a non-invasive, point-of-care skin patch sen-
sor can monitor left ventricular fluid dynamics and stroke 
volume [70]. Clinical compensated versus decompensated 
heart failure status can be better predicted with wearable 
seismocardiography after exercise with the assistance of 
machine-learning algorithms [71]. Along these lines, lung 
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fluid volume detection by remote dielectric sensing using a 
wearable vest can reduce rehospitalizations in patients with 
acute decompensated heart failure [72]. In a study by Lim 
et al. [73] of 233 normal volunteers that integrated data from 
wearable sensors, lifestyle questionnaires, cardiac imaging, 
and sphingolipid profiling, various risk categories could be 
determined, such as the extent that heart size is affected by 
exercise, or what chronic diseases may be more likely based 
on associations with specific sphingolipids.

One of the more interesting innovations lately is a wire-
less intraoral retainer that fits against the palate and contains 
hybrid electronics that quantify sodium intake in the man-
agement of hypertension [74]. There are even contactless 
innovations. The Microsoft Kinect™ device is a validated 
technology that reads small variations in skin color that cor-
relate with HR measurements [75]. This device employs 
Eulerian Video Magnification, photoplethysmography, and 
videoplethysmography [75].

�Orthopedics

There are various wearable technologies that can treat ortho-
pedic and rheumatologic disorders, which ultimately serve to 
improve physical activity and lower risks for chronic disease. 
Many of these techniques can be incorporated in the physical 
therapy program in the Lifestyle Medicine Center or Clinical 
Service Line.

Diagnostic devices provide useful information to the life-
style medicine team. Patients with lower back pain frequently 
report decreased ability to adhere with medical fitness recom-
mendations. Integrating physical activity information book-
lets, coaching sessions (face-to-face and telephone-based), 
and an activity tracker (Fitbit™) with an Internet app can 
decrease care seeking in patients with lower back pain after 
inpatient and outpatient physiotherapy program completion 
[76]. Results from the Micro-Motionlogger™ actigraph cor-
relate with four validated questionnaires related to clinical 
symptoms, as well as clinical measurements [77]. Lumbar 
spine and social life dysfunction correlate with actigraphy 
results, but there are also individual factors that correlate 
with sex, BMI, low back pain, and muscle mass [77]. Using 
the LUMOback™ wearable back device (N = 15), a more 
slouched lumbopelvic posture was associated with pro-
longed lower back pain [78], potentially providing person-
alized information that can improve well-being and greater 
participation with physical activities.

Wearable technologies can provide interventions that 
enable greater mobility. In a 6-week clinical trial (N = 25), 
Best et  al. [79] found that daily multi-hour low-intensity 
therapeutic ultrasound (ZetrOZ sam™; with power con-
troller, 2 ultrasound transducers, and specialized bandages) 
improved pain and strength in patients with chronic tendon 
injuries. Also, wearable pulsed electromagnetic fields pro-

vide pain relief and greater mobility in patients with knee 
osteoarthritis (N  =  66) [80]. More sophisticated robotic 
devices can facilitate increased physical activity. For exam-
ple, in patients with paraplegia, the Wearable Power-Assist 
Locomotor with conventional knee-ankle-foot orthoses 
(e.g., Hip and Ankle Linked Orthosis or Primewalk™) can 
improve energy efficiency and lower gait demand with loco-
motion [81]. The wearable exoskeletal device has also been 
shown to be safe, feasible, and associated with improve-
ments in spatiotemporal and kinematic factors to enable 
locomotion and mobility in patients with spinal cord injury 
[82]. Fabric-based soft robotic gloves have also been used 
to assist hand function in patients with upper limb paralysis 
after spinal cord injury [83].

Many medical fitness programs in Lifestyle Medicine 
Centers need to address the challenges related to increasing 
physical activity in the geriatric and disabled populations, 
particularly when there are significant orthopedic concerns. 
The detection of disturbances in gait speed, positional 
transitions, and posture correlate with mortality, disabil-
ity, and cognitive impairments [84]. Using accelerometry-
measured physical activity using a hip-worn ActiGraph 
GT3X™, numbers of steps and duration of activity were 
correlated with lower CVD event rates in the elderly [85]. 
Unfortunately, estimating energy expenditure in the elderly 
based on accelerometer output is not as accurate as hoped 
for, across physical activity intensities and even with differ-
ent equations [86]. In the elderly, robot-assisted gait devices 
(e.g., wearable hip assist) can stabilize the trunk [87] and 
spring-assist actuators can increase the required motor 
torque [88] for walking and other physical activities. There 
are even devices that can attach to walkers for positional 
feedback to improve adherence with guidelines, though pos-
ture was not improved [89].

�Neurological

The literature on wearable systems, including sensors 
embedded in garments, to monitor and provide feedback on 
posture and movement in patients with a variety of neuro-
logical disorders is emerging and not yet conclusive [90]. 
For instance, fall prediction and prevention in the elderly 
and/or frail generally involves education, footwear advice, 
toileting, balance training, and exercise but can be enhanced 
using wearable motion and environment sensors [91]. Also, 
in a meta-analysis, Gordt et  al. [92] found that wearable 
sensor training exerts a positive effect on static steady-state 
balance and gait parameters in patients with Parkinson’s dis-
ease, stroke, peripheral neuropathy, and frailty. Specifically, 
in patients with Parkinson’s disease, soft wearable sensors 
can detect signs, such as bradykinesia, and inform clinicians 
about disease progression to optimize therapy [93]. On-shoe 
wearable sensors can also provide important information 

13  Wearable Technologies in Lifestyle Medicine



140

with turning related to gain in patients with Parkinson’s dis-
ease [94]. In patients with multiple sclerosis (N = 18), the 
exoskeleton ExoAtlet™ enabled or improved walking and 
maintenance of vertical posture [95]. In patients with seizure 
disorder (N  =  69), certain multimodal wrist-worn devices 
(Empatica E3™ and E4™; MIT Media Lab iCalm™) detect 
seizure counts more accurately than other automated systems 
and self-reporting [96]; this can allow for correlation with 
various lifestyle factors to optimize overall care. In another 
study (N = 28), the Nightwatch™ combined HR and move-
ment data to detect a broad range of nocturnal seizures [97].

�Cancer

The role of lifestyle medicine in patients with or at-risk for 
neoplastic diseases is oriented toward prevention of risk at a 
population level (primordial prevention), prevention of dis-
ease in those at risk (primary prevention), prevention of dis-
ease progression in those with early, asymptomatic disease 
(secondary prevention), and prevention of suffering, further 
morbidity, and mortality in those with advanced disease (ter-
tiary prevention). However, in patients with neoplastic dis-
ease, regardless of their staging or response to therapy, there 
still remains an imperative to prevent other chronic disease 
risks, progression, and complications. For instance, in patients 
fighting breast cancer, where the overwhelming focus of care 
is on tertiary prevention related to this primary diagnosis, 
the additional attention paid to preventing other chronic dis-
eases, especially through lifestyle change, is often inadequate 
or completely neglected. With improved survivorships with 
cancer observed nowadays, this healthcare paradigm needs to 
be re-examined. The role of wearable technologies to concur-
rently improve lifestyle for prevention of cancer risk, devel-
opment, and progression, as well as for other chronic diseases 
(e.g., cardiometabolic and neurodegenerative), is worthy of 
discussion and pragmatic implementation.

Healthy eating and physical activity are the core lifestyle 
medicine modalities, with wearable technologies playing an 
important role in the earlier primordial/primary/secondary 
prevention types. As an example, in postmenopausal women 
with stage I-III breast cancer who have completed primary 
therapy, the use of a Garmin Vivofit 2™ activity monitor 
with behavioral sessions was associated with more active 
lifestyles [98]. Among 42 colorectal cancer survivors, the 
use of a Fitbit Flex™ and reminder text messages was asso-
ciated with increased motivation to exercise [99]. Activity 
monitors have also demonstrated efficacy for motivation and 
increased physical function in patients with advanced can-
cer (N  = 37) [100]. Specifically, there were lower rates of 
patient-reported outcomes, as well as adverse events, hospi-
talizations, and mortality [100].

�Implementation of Wearable Technologies

When building a Lifestyle Medicine Center or Clinical 
Service Line within a sponsoring healthcare system, a for-
mal program should be developed that provides relevant 
wearable technologies to patients. The primary clinical end-
point of a Lifestyle Medicine Center is to decrease the risk 
for chronic diseases. This means that interventions will span 
a relatively long period of time and therefore benefits would 
need to be sustainable. One way to do this is through tra-
ditional educational [101] or more contemporary “robotic 
nudges” [102]. Wearable technology event nudges pro-
vide reminders, feedback, and planning prompts that direct 
human behaviors using intuition and reasoning in a certain 
direction over a long time, such as chronic disease self-man-
agement [103, 104].

From the outset, an expansive line of wearables should 
be explored that cover the full range of services offered 
in the Lifestyle Medicine Center. This would range from 
smartphone apps that monitor dietary patterns, to acceler-
ometers, to more specialized devices for cardiopulmonary 
measurements or movement disorders with orthopedic or 
neurological conditions. As lifestyle medicine protocols 
are formulated within the Center, wearable technologies 
should be included to support these protocols. The clinical 
director and other assigned personnel in the facility should 
be familiar with the use of the devices and related opera-
tions, such as access to cloud-based data and troubleshoot-
ing protocols. Representatives from manufacturers should 
be invited to review the proper use of devices and apps 
with the healthcare professionals and staff in the Center. 
Personnel should be assigned to monitoring patient data 
and coordinating with Information Technology resources 
to incorporate, as easily as possible, data in the electronic 
health record. One could conceive a dedicated wear-
able technologies program within the Lifestyle Medicine 
Clinical Service Line, with trained personnel and a busi-
ness model.

Not surprisingly, the economics of wearable technologies 
pose a significant obstacle to implementation by a Lifestyle 
Medicine Center, translating into decreased general use by 
patients. Many of these devices are expensive and not cov-
ered by insurance. However, many others are affordable and 
easy to obtain over the web, especially apps for smartphones 
already owned by the patient. Creative solutions should 
be considered by the Center’s leaders, such as bundling 
resources and including one or more wearables for all users 
of the Center. Expenses for wearables that are distributed to 
all patients in the Center could be a line item in the total 
expenses as part of the business plan. Another option is to 
build a unique, dedicated app for the Center with startup 
funds or charitable donations.
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