
Alexander Raschke
Dominique Méry
Frank Houdek (Eds.)

LN
CS

 1
20

71

7th International Conference, ABZ 2020
Ulm, Germany, May 27–29, 2020
Proceedings

Rigorous State-Based
Methods

Lecture Notes in Computer Science 12071

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Alexander Raschke • Dominique Méry •

Frank Houdek (Eds.)

Rigorous State-Based
Methods
7th International Conference, ABZ 2020
Ulm, Germany, May 27–29, 2020
Proceedings

123

Editors
Alexander Raschke
Institute of Software Engineering
and Programming Languages
Ulm University
Ulm, Germany

Dominique Méry
LORIA, Campus Scientifique
Université de Lorraine
Vandoeuvre-les-Nancy, France

Frank Houdek
Research and Development
Mercedes-Benz AG
Sindelfingen, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-48076-9 ISBN 978-3-030-48077-6 (eBook)
https://doi.org/10.1007/978-3-030-48077-6

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-6088-8393
https://orcid.org/0000-0001-5231-6611
https://orcid.org/0000-0003-3132-6698
https://doi.org/10.1007/978-3-030-48077-6

Preface

The International Conference on Rigorous State-Based Methods (ABZ 2020) is an
international forum for the cross-fertilization of related state-based and machine-based
formal methods, mainly Abstract State Machines (ASM), Alloy, B, TLA+, VDM, and
Z. Rigorous state-based methods share a common conceptual foundation and are
widely used in both academia and industry for the design and analysis of hardware and
software systems.

The name ABZ was invented at the first conference held in London in 2008, where
the ASM, B, and Z conference series merged into a single event. The second ABZ 2010
conference was held in Orford, Canada, where the Alloy community joined the event;
ABZ 2012 was held in Pisa, Italy, which saw the inclusion of the VDM community
(but not in the title); ABZ 2014 was held in Toulouse, France, which brought the
inclusion of the TLA+ community into the ABZ conference series. Lastly, the ABZ
2016 conference was held in Linz, Austria, and ABZ 2018 in Southampton, UK. In
2018 the Steering Committee decided to retain the (well-known) acronym ABZ and
add the subtitle “International Conference on Rigorous State-Based Methods” to make
more explicit the intention to include all state-based formal methods. Consequently, the
title of the proceedings was also modified to “Rigorous State-Based Methods”.

Started 2014 in Toulouse, each ABZ asked for the application of formal specifi-
cations on industrial case studies. This year, we extend the previous areas (aerospace,
medical equipment, rails) with the automotive domain. A specification of an adaptive
light and speed control system similar to the available real systems was provided by
Frank Houdek, who also answered almost a hundred questions and gave clarifying
explanations, for which we would like to thank him. The objective of these case studies
is to provide an opportunity to demonstrate the applicability of the ABZ methods to
real examples and also to allow for a better comparison of them. These proceedings
include the case study as well as several accepted papers outlining solutions to it.

ABZ 2020 received 55 submissions from 21 countries around the world. The
selection process was rigorous, where each paper received at least three reviews. The
Program Committee (PC), after careful discussions, decided to accept 12 full research
papers, 6 case study papers, and 9 short research papers. One extended abstract of one
of the keynote speakers and one invited research paper are also included in the pro-
ceedings. All accepted papers cover broad research areas on both theoretical systems
and practical aspects of state-based methods.

For the first time in the conference’s history, ABZ 2020 organized a doctoral
symposium and PhD students had to submit a short paper presenting their PhD topics;
those six submissions were evaluated by a separate PC including the two chairs of ABZ
2020.

The conference was to be held during May 27–29, 2020, in Ulm, Germany, but due
to the historical crisis caused by the corona virus with an unprecedented international
lock-down, travel-restrictions, and sadly many deaths around the world, we had to

cancel the conference and postpone it to next year (2021). At ABZ 2021, all authors of
accepted papers of ABZ 2020 are requested to present their research in addition to the
new accepted papers.

We are honored that all three distinguished guests as keynote speakers agreed to
give their keynotes next year: Ana Cavalcanti, University of York, UK, will give a talk
entitled “RoStar technology—a roboticist’s toolbox for combined proof and sound
simulation;” Uwe Glässer, Simon Fraser University, Canada, will give a talk entitled
“Quantifying Uncertainty in ASM Models with Markov Processes;” and we will hear
from Gilles Dowek, INRIA/ENS Paris-Saclay, France.

The EasyChair conference management system was set up for ABZ 2020, sup-
porting submission, review, and volume edition processes. We acknowledge it as an
outstanding tool for the academic community.

We would like to thank all the authors who submitted their work to ABZ 2020. We
are grateful to the PC members and external reviewers for their high-quality reviews
and discussions. Finally, we wish to thank the Organizing Committee members for
their continuous support.

We hope the corona crisis will be over within the next weeks or months and that the
enormous economic consequences of this crisis will be outweighed by more humanity
in the world. We look forward to welcoming many conference attendants in Ulm next
year and hope they will enjoy the technical program, informal meetings, and interac-
tions with colleagues from all over the world; and of course, we are confident they will
like the city of Ulm, Germany. For readers of these proceedings, we hope these papers
are interesting and they inspire ideas for future research.

March 2020 Dominique Méry
Alexander Raschke

Frank Houdek

vi Preface

Organization

Program Committee

Yamine Ait Ameur IRIT/INPT-ENSEEIHT, France
Paolo Arcaini National Institute of Informatics, Japan
Richard Banach The University of Manchester, UK
Egon Boerger University of Pisa, Italy
Eerke Boiten De Montfort University, UK
Michael Butler University of Southampton, UK
Andrew Butterfield Trinity College Dublin, Ireland
David Deharbe ClearSy System Engineering, France
Juergen Dingel Queen’s University, Canada
Flavio Ferrarotti Software Competence Centre Hagenberg, Austria
Mamoun Filali-Amine IRIT, France
Marc Frappier Université de Sherbrooke, Canada
Leo Freitas Newcastle University, UK
Angelo Gargantini University of Bergamo, Italy
Vincenzo Gervasi University of Pisa, Italy
Uwe Glässer Simon Fraser University, Canada
Gudmund Grov Norwegian Defence Research Establishment (FFI),

Norway
Stefan Hallerstede Aarhus University, Denmark
Klaus Havelund Jet Propulsion Laboratory, USA
Ian J. Hayes The University of Queensland, Australia
Thai Son Hoang University of Southampton, UK
Frank Houdek Daimler AG, Germany
Alexei Iliasov Newcastle University, UK
Jeremy Jacob University of York, UK
Felix Kossak Software Competence Center Hagenberg, Austria
Regine Laleau Paris-Est Créteil University, France
Thierry Lecomte ClearSy, France
Michael Leuschel University of Düsseldorf, Germany
Alexei Lisitsa The University of Liverpool, UK
Amel Mammar Télécom SudParis, France
Atif Mashkoor Johannes Kepler University, Austria
Jackson Mayo Sandia National Laboratories, USA
Stephan Merz Inria Nancy, France
Stefan Mitsch Carnegie Mellon University, USA
Rosemary Monahan Maynooth University, Ireland
Mohamed Mosbah LaBRI, University of Bordeaux, France
Dominique Méry Université de Lorraine, LORIA, France

Shin Nakajima National Institute of Informatics, Japan
Uwe Nestmann TU Berlin, Germany
Jose Oliveira University of Minho, Portugal
Philipp Paulweber University of Vienna, Austria
Luigia Petre Åbo Akademi University, Finland
Andreas Prinz University of Agder, Norway
Shengchao Qin Teesside University, UK
Philippe Queinnec IRIT, Université de Toulouse, France
Alexander Raschke Ulm University, Germany
Elvinia Riccobene University of Milan, Italy
Victor Rivera The Australian National University, Australia
Thomas Santen TU Berlin, Germany
Patrizia Scandurra University of Bergamo, Italy
Gerhard Schellhorn Universitaet Augsburg, Germany
Klaus-Dieter Schewe Zhejiang University, China
Steve Schneider University of Surrey, UK
Colin Snook University of Southampton, UK
Michael Stegmaier Ulm University, Germany
Maurice H. ter Beek ISTI-CNR, Italy
Laurent Voisin Systerel, France
Alan Wassyng McMaster University, Canada
Virginie Wiels ONERA/DTIM, France
Frank Zeyda University of York, UK
Wolf Zimmermann Martin Luther University Halle-Wittenberg, Germany

Additional Reviewers

Bannister, Callum
Bonfanti, Silvia
Charalampous, Tilemachos
Dghaym, Dana
Fantechi, Alessandro
Mazzanti, Franco
Pollitt, Alastair
Salehi Fathabadi, Asieh
Tayebi, Mohammad
Tounsi, Mohamed
Winter, Kirsten

viii Organization

Contents

Keynotes and Invited Papers

Modelling and Verification of Robotic Platforms for Simulation
Using RoboStar Technology . 3

Ana Cavalcanti

Adding Concurrency to a Sequential Refinement Tower. 6
Gerhard Schellhorn, Stefan Bodenmüller, Jörg Pfähler,
and Wolfgang Reif

Regular Research Articles

Diverse Scenario Exploration in Model Finders Using Graph Kernels
and Clustering . 27

Robert Clarisó and Jordi Cabot

Formal Verification of Interoperability Between Future Network
Architectures Using Alloy . 44

Mohammad Jahanian, Jiachen Chen, and K. K. Ramakrishnan

Experiences on Teaching Alloy with an Automated Assessment Platform. . . . 61
Nuno Macedo, Alcino Cunha, José Pereira, Renato Carvalho,
Ricardo Silva, Ana C. R. Paiva, Miguel Sozinho Ramalho,
and Daniel Silva

A Characterization of Distributed ASMs with Partial-Order Runs 78
Egon Börger and Klaus-Dieter Schewe

A Logic for Reflective ASMs . 93
Klaus-Dieter Schewe and Flavio Ferrarotti

Analysing PROB’s Constraint Solving Backends: What Do They Know? Do
They Know Things? Let’s Find Out! . 107

Jannik Dunkelau, Joshua Schmidt, and Michael Leuschel

Programming the CLEARSY Safety Platform with B 124
Thierry Lecomte

Modelling Hybrid Programs with Event-B . 139
Meryem Afendi, Régine Laleau, and Amel Mammar

Event-B-Supported Choreography-Defined Communicating Systems:
Correctness and Completeness . 155

Sarah Benyagoub, Yamine Aït-Ameur, and Klaus-Dieter Schewe

Formally Verified Architecture Patterns of Hybrid Systems Using
Proof and Refinement with Event-B . 169

Guillaume Dupont, Yamine Aït-Ameur, Marc Pantel,
and Neeraj K. Singh

Integration of iUML-B and UPPAAL Timed Automata for Development
of Real-Time Systems with Concurrent Processes . 186

Fatima Shokri-Manninen, Leonidas Tsiopoulos, Jüri Vain,
and Marina Waldén

Formal Distributed Protocol Development for Reservation
of Railway Sections. 203

Paulius Stankaitis, Alexei Iliasov, Tsutomu Kobayashi,
Yamine Aït-Ameur, Fuyuki Ishikawa, and Alexander Romanovsky

Short Articles

Verifying SGAC Access Control Policies: A Comparison of PROB,
ALLOY and Z3. 223

Diego de Azevedo Oliveira and Marc Frappier

Account and Transaction Protocol of the Open Banking Standard 230
Abdulaziz Almehrej, Leo Freitas, and Paolo Modesti

Structuring the State and Behavior of ASMs: Introducing a Trait-Based
Construct for Abstract State Machine Languages. 237

Philipp Paulweber, Emmanuel Pescosta, and Uwe Zdun

Exploring the Concept of Abstract State Machines for System
Runtime Enforcement . 244

Elvinia Riccobene and Patrizia Scandurra

ProB and Jupyter for Logic, Set Theory, Theoretical Computer Science
and Formal Methods . 248

David Geleßus and Michael Leuschel

Existence Proof Obligations for Constraints, Properties and Invariants
in Atelier B . 255

Héctor Ruíz Barradas, Lilian Burdy, and David Déharbe

VisB: A Lightweight Tool to Visualize Formal Models
with SVG Graphics . 260

Michelle Werth and Michael Leuschel

x Contents

Towards a Shared Specification Repository . 266
Philipp Körner, Michael Leuschel, and Jannik Dunkelau

Refinement and Verification of Responsive Control Systems 272
Karla Morris, Colin Snook, Thai Son Hoang, Geoffrey Hulette,
Robert Armstrong, and Michael Butler

Articles Contributing to the Case Study

Adaptive Exterior Light and Speed Control System 281
Frank Houdek and Alexander Raschke

Modelling an Automotive Software-Intensive System with Adaptive
Features Using ASMETA. 302

Paolo Arcaini, Silvia Bonfanti, Angelo Gargantini, Elvinia Riccobene,
and Patrizia Scandurra

Validating Multiple Variants of an Automotive Light System
with Electrum . 318

Alcino Cunha, Nuno Macedo, and Chong Liu

Modelling and Validating an Automotive System in Classical B
and Event-B . 335

Michael Leuschel, Mareike Mutz, and Michelle Werth

An Event-B Model of an Automotive Adaptive Exterior Light System. 351
Amel Mammar, Marc Frappier, and Régine Laleau

Modeling of a Speed Control System Using Event-B. 367
Amel Mammar and Marc Frappier

A Verified Low-Level Implementation of the Adaptive Exterior Light
and Speed Control System . 382

Sebastian Krings, Philipp Körner, Jannik Dunkelau,
and Chris Rutenkolk

Short Articles of the PhD-Symposium (Work in Progress)

A Correct by Construction Approach for the Modeling and the Verification
of Cyber-Physical Systems in Event-B. 401

Meryem Afendi

Improving Trustworthiness of Self-driving Systems 405
Fahad Alotaibi

A Formal Approach for the Modeling of High-Level Architectures Aligned
with System Requirements . 409

Racem Bougacha

Contents xi

Automatic Generation of DistAlgo Programs from Event-B Models. 414
Alexis Grall

Event-B: From Systems to Sub-systems Modeling. 418
Kenza Kraibi

A Framework for Critical Interactive System Formal Modelling
and Analysis. 423

Ismaïl Mendil

Author Index . 427

xii Contents

Keynotes and Invited Papers

Modelling and Verification of
Robotic Platforms for Simulation

Using RoboStar Technology

Ana Cavalcanti(B)

Department of Computer Science, University of York, York YO105GH, UK
Ana.Cavalcanti@york.ac.uk

The RoboStar framework1 supports model-based engineering of robotic appli-
cations. Modelling is carried out using diagrammatic domain-specific lan-
guages: RoboChart [13] and RoboSim [3]. Verification and generation of artefacts
is justified by a formal semantics given using a state-rich hybrid version of a pro-
cess algebra for refinement [7]. It is inspired by CSP [19] and cast in Hoare and
He’s Unifying Theories of Programming (UTP) [10] formalised in Isabelle [6].

RoboChart is an event-based language for design, while RoboSim is a cycle-
based language for simulation. Tool support is provided by RoboTool, which
includes facilities for graphical modelling, validation, and automatic generation
of CSP (for analysis with the model checker FDR [9]) and PRISM [11] scripts (for
verification of probabilistic controllers), and simulations. RoboChart and
RoboSim are based on the use of state machines to specify behaviour, akin to
notations already in widespread use [2,5,16,20], but RoboChart and RoboSim
are enriched with facilities for verification and traceability of artefacts.

Recent work has focussed on enriching RoboSim for physical modelling. Cur-
rent practice in robotics often uses simulation to understand the behaviour of
a robotic controller for a particular robotic platform and environment. A wide
variety of simulators for robotics use different tool-dependent or even propri-
etary programming languages and API [8,12,14,17,18]. Physical modelling of
the platforms are encoded by programs in customised notations, generated from
graphical tools, or in C++, Java, Python, or C#, for example.

RoboSim, on the other hand, is a tool-independent notation. For physical
modelling, we have defined a notation based on SysML block diagrams [15].
Our profile is inspired by XML-based notations used by robotics simulators2. It
defines a physical model by a diagram that captures the physical components
of a platform as links (rigid bodies), joints, sensors, and actuators. Properties
of these blocks capture their attributes that are relevant for simulation and for
capturing behaviour: movement and use of sensors and actuators.

In contrast with XML-based notations in current use, RoboSim block dia-
grams encourage readability and support modularisation via several mechanisms.
Models can be parametrised by constants that represent, for example, key mea-
sures of physical bodies. The pose of an element is defined always in reference to

1 www.cs.york.ac.uk/robostar/.
2 sdformat.org.

c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 3–5, 2020.
https://doi.org/10.1007/978-3-030-48077-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_1&domain=pdf
www.cs.york.ac.uk/robostar/
http://sdformat.org
https://doi.org/10.1007/978-3-030-48077-6_1

4 A. Cavalcanti

the element that contains it. A richer notion of connection captures flexible and
fixed compositions. A library fosters reuse by the possibility of defining parts
and fragments that can be instantiated or simply included to define a complete
model. Finally, well-formedness rules ensure validity of models.

The most distinctive feature of RoboSim block diagrams, however, is the
possibility of defining systems of differential algebraic equations that capture
behaviour of the platform. For sensors, these equations define how inputs (from
the environment) are reflected in sensor outputs for use with the software. For
actuators, the equations define how inputs from the software affect the outputs
of the actuators, and therefore, affect the platform itself (in the case of motors,
for example), or the environment. For joints, the equations define how their
movement induces movement on the links connected to them.

A system view is provided by connecting a RoboSim block diagram that
specifies a physical model for a robotic platform, to a RoboSim module that
specifies a control software. This is achieved by a platform mapping, which spec-
ifies how software elements that abstract services of the platform are defined. In
specifying these services, we can use outputs of sensors and inputs of actuators.

Ongoing work, provides support to translate RoboSim block diagrams to
XML for use in simulation (using Coppelia, formerly, v-rep). For mathemati-
cal modelling, the UTP semantics constructs a hybrid model, with constructs
inspired by those of Circus [4], combining Z [1,21] and CSP.

Acknowledgements. The work mentioned is a collaboration with colleagues at the
RoboStar group, in particular, Alvaro Miyazawa and Sharar Ahmadi. The author’s
work is funded by the Royal Academy of Engineering grant CiET1718/45, and UK
EPSRC grants EP/M025756/1 and EP/R025479/1. No new primary data was created
as part of the study reported here.

References

1. ISO/IEC 13568:2002. Information technology - Z formal specification notation -
syntax, type system and semantics. International Standard

2. Brunner, S.G., Steinmetz, F., Belder, R., Domel, A.: Rafcon: a graphical tool for
engineering complex, robotic tasks. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 3283–3290 (2016)

3. Cavalcanti, A.L.C., et al.: Verified simulation for robotics. Sci. Comput. Program.
174, 1–37 (2019)

4. Cavalcanti, A.L.C., Sampaio, A.C.A., Woodcock, J.C.P.: A refinement strategy for
Circus. Formal Aspects Comput. 15(2–3), 146–181 (2003)

5. Dhouib, S., Kchir, S., Stinckwich, S., Ziadi, T., Ziane, M.: RobotML, a domain-
specific language to design, simulate and deploy robotic applications. In: Noda, I.,
Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS (LNAI), vol.
7628, pp. 149–160. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34327-8 16

6. Foster, S., Baxter, J., Cavalcanti, A., Miyazawa, A., Woodcock, J.: Automating
verification of state machines with reactive designs and Isabelle/UTP. In: Bae, K.,
Ölveczky, P.C. (eds.) FACS 2018. LNCS, vol. 11222, pp. 137–155. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-02146-7 7

https://doi.org/10.1007/978-3-642-34327-8_16
https://doi.org/10.1007/978-3-642-34327-8_16
https://doi.org/10.1007/978-3-030-02146-7_7

Modelling and Verification of Robotic Platforms 5

7. Foster, S., Cavalcanti, A.L.C., Canham, S., Woodcock, J.C.P., Zeyda, F.: Unifying
theories of reactive design contracts. Theoret. Comput. Sci. 802, 105–140 (2020)

8. Gerkey, B., Vaughan, R.T., Andrew, H.: The player/stage project: tools for
multi-robot and distributed sensor systems. In: 11th International Conference on
Advanced Robotics, pp. 317–323 (2003)

9. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3—a mod-
ern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54862-8 13

10. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice-Hall, Upper
Saddle River (1998)

11. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking
with PRISM: a hybrid approach. Int. J. Softw. Tools Technol. Transf. 6(2), 128–142
(2004). https://doi.org/10.1007/s10009-004-0140-2

12. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: Mason: a multiagent
simulation environment. Simulation 81(7), 517–527 (2005)

13. Miyazawa, A., Ribeiro, P., Li, W., Cavalcanti, A., Timmis, J., Woodcock, J.:
RoboChart: modelling and verification of the functional behaviour of robotic appli-
cations. Softw. Syst. Modeling 18(5), 3097–3149 (2019). https://doi.org/10.1007/
s10270-018-00710-z

14. Olivier, M.: WebotsTM: professional mobile robot simulation. Int. J. Adv. Robot.
Syst. 1(1), 39–42 (2004)

15. OMG. OMG Systems Modeling Language (OMG SysML), Version 1.3 (2012)
16. Pembeci, I., Nilsson, H., Hager, G.: Functional reactive robotics: an exercise in

principled integration of domain-specific languages. In: 4th ACM SIGPLAN Inter-
national Conference on Principles and Practice of Declarative Programming, pp.
168–179. ACM (2002)

17. Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-
robot systems. Swarm Intell. 6(4), 271–295 (2012)

18. Rohmer, E., Singh, S.P.N., Freese, M.: V-REP: a versatile and scalable robot sim-
ulation framework. In: IEEE International Conference on Intelligent Robots and
Systems, vol. 1, pp. 1321–1326. IEEE (2013)

19. Roscoe, A.W.: Understanding Concurrent Systems. Texts in Computer Science.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-1-84882-258-0

20. Wachter, M., Ottenhaus, S., Krohnert, M., Vahrenkamp, N., Asfour, T.: The
ArmarX statechart concept: graphical programing of robot behavior. Front. Robot.
AI 3, 33 (2016)

21. Woodcock, J.C.P., Davies, J.: Using Z - Specification, Refinement, and Proof.
Prentice-Hall, Upper Saddle River (1996)

https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/s10009-004-0140-2
https://doi.org/10.1007/s10270-018-00710-z
https://doi.org/10.1007/s10270-018-00710-z
https://doi.org/10.1007/978-1-84882-258-0

Adding Concurrency to a Sequential
Refinement Tower

Gerhard Schellhorn(B), Stefan Bodenmüller, Jörg Pfähler, and Wolfgang Reif

Institute for Software and Systems Engineering,
University of Augsburg, Augsburg, Germany

{schellhorn,stefan.bodenmueller,reif}@informatik.uni-augsburg.de,
joerg.pfaehler@gmx.de

Abstract. This paper defines a concept and a verification methodology
for adding concurrency to a sequential refinement tower of abstract state
machines, that is based on data refinement and a component structure.
We have developed such a refinement tower for the Flashix file system
earlier, from which we generate executable (C and Scala) Code.

The question we answer in this paper, is how to add concurrency
based on locks to such a refinement tower, without breaking the initial
modular structure. We achieve this by just enhancing the relevant compo-
nents, and adding intermediate atomicity refinements that complement
the data refinements that are already there. We also give a verification
methodology for such atomicity refinements.

1 Introduction

Development of formally proved software systems using incremental refinement
has been successfully used in many case studies. Often the system developed is
a sequential system, e.g. a compiler. The standard technique used then is data
refinement [8,9,14] or closely related definitions [2].

Our group has developed a verified file system for flash memory [12,13,22,26]
using a strategy based on data types specified as abstract state machines (ASMs,
[4]), data refinement, and subcomponents. The resulting refinement tower is
shown in Fig. 1. It starts with an abstract state machine that specifies the POSIX
file system operations. This interface is then refined to an implementation VFS
(denoted by VFS � POSIX), which calls operations of a submachine AFS. This
machine acts as an abstract interface to the next implementation. This continues
until the MTD layer is reached, which is the generic interface for flash hardware
used in Linux.

Scala code for simulations as well as C code integrated into the Linux kernel
has been generated from the implementations (shown in grey). The file system so
far is strictly sequential, i.e., all operations are called in sequential order. Adding

Supported by the Deutsche Forschungsgemeinschaft (DFG), “Verifikation von Flash-
Dateisystemen” (grants RE828/13-1 and RE828/13-2).

c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 6–23, 2020.
https://doi.org/10.1007/978-3-030-48077-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-48077-6_2

Adding Concurrency to a Sequential Refinement Tower 7

concurrency is however relevant for practical usability and efficiency on at least
three levels: top-level operations, garbage collection and wear leveling.

Since existing refinement strategies are typically designed to start with an
atomic specification that is refined to a concurrent system, this raises the ques-
tion how to add concurrency a posteriori to intermediate levels of such a refine-
ment tower without losing modularity and without having to start verification
from scratch. This paper gives a positive answer to the question, by “shifting”
parts of the refinement towers, i.e., by modifying individual specifications and
implementations, to make them concurrent.

Fig. 1. Flashix refinement
tower

We will use erase block management (the EBM
interface) and the concurrent implementation of
wear leveling (WL) based on the interface Blocks
as an example to demonstrate how concurrency is
added. A specification of the sequential specifica-
tions and refinements involved has already been
published in [23].

The next section will give a simplified version
of the relevant sequential specifications and imple-
mentation, to demonstrate in Sect. 3 how concur-
rency using locks is added and how restrictions are
encoded as ownership constraints. Section 4 infor-
mally introduces the well-known concept of lineariz-
ability as the relevant concept to verify correctness
of concurrent implementations, and shows how the proof of linearizability can
be split into one of data refinement (that reuses the original proof) and one of
atomicity refinement. Section 5 will give a proof strategy based on rely-guarantee
proofs and reduction. Both have been implemented in our KIV [11] theorem
prover. The specifications and proofs for the case study are available online [18].
Section 6 gives related work, and Sect. 7 concludes.

2 The Refinement for Wear Leveling

Flash hardware is partitioned into erase blocks. Blocks can be written sequen-
tially, and erased as a whole. Erasing wears out the block until it becomes unus-
able. Therefore, for efficient usage of a flash device, blocks must be worn out
evenly. In particular if a device is filled to a large part with static data, the blocks
with these data must sometimes be swapped with other (currently empty) blocks,
that have often been modified and erased. This is called wear leveling. Wear lev-
eling is hidden from the more abstract levels of the file system by the erase block
manager (EBM) interface. The interface offers access to logical blocks. The task
of the implementation (WL) is to map them to the physical blocks offered by the
hardware, and to change the mapping when this is advisable, using an internal
operation for wear leveling that has no effect (implements skip) for the interface
EBM.

8 G. Schellhorn et al.

An abstract specification of the erase block manager is given with the ASM
EBM. The state consists of a function that maps logical block numbers to actual
content and a set of currently used (“mapped”) block numbers.

state Contents : nat → content Mapped : set〈nat〉
initial state Contents = λ n. empty ∧ Mapped = ∅

For simplicity, we do not specify content , except for a default value empty. The
interface of EBM shown in Fig. 2 allows to read and to write the content of logical
blocks. The operations use a semicolon to separate input and output parameters.

ebm write(lnum, c)
Contents(lnum) c
Mapped Mapped ∪ {lnum}

ebm read(lnum; c)
if ¬ lnum ∈ Mapped then
c empty

else
c Contents(pnum)

Fig. 2. Sequential specification
of the erase block manager (EBM)

The implementation of EBM is given by the
ASM WL together with a specification Blocks
as a submachine. This refinement introduces the
distinction between logical and physical blocks.
Blocks allows reading and writing of physical
blocks while WL is responsible for the mapping
of logical to physical blocks. Furthermore, the
wear leveling algorithm is implemented in WL.

To enable wear leveling each physical block
in Blocks contains a header. This header stores
which logical block is mapped to the physical
block or if the block is currently unmapped (⊥).

data header = mapped(blockno : nat) | ⊥
data block = mkb(header : header , content : content)

The state of Blocks is a function that maps physical block numbers to blocks.
Initially all blocks are unmapped and empty.

state Blocks : nat → block initial state Blocks = λ m. mkb(⊥, empty)

The interface of Blocks as shown in Fig. 3 provides additional functionality
to write and read the header of a physical block. Accessing the content of a
block requires it to be mapped, i.e., the header of the block must not be ⊥. For
wear leveling the interface also offers an interface operation blocks get wl that
returns two physical blocks from and to, that are suitable for wear leveling. The
actual decision is based on erase counts (also stored in block headers), but we
leave the concrete implementation open here. To signal that wear leveling is
currently unnecessary, the operation returns a block from with an unmapped
header.

The operations of WL are depicted in Fig. 4. To avoid scanning the headers of
all blocks, the state of WL maintains an in-memory mapping from logical block
numbers to headers, which contain the corresponding physical block numbers if
the logical block is mapped.

state LMap : nat → header initial state LMap = λ n. ⊥

Adding Concurrency to a Sequential Refinement Tower 9

blocks write(pnum, c)
pre Blocks(pnum).header �= ⊥
Blocks(pnum).content c

blocks read(pnum; c)
pre Blocks(pnum).header �= ⊥
c Blocks(pnum).content

blocks write h(pnum, h)
h Blocks(pnum).header

blocks read h(pnum; h)
Blocks(pnum).header h

blocks map(; pnum)
choose m with
Blocks(m).header = ⊥

in
pnum m

blocks get wl(; from, to)
choose m1 , m2 with
Blocks(m2).header = ⊥
/* ∧ m1 , m2 are suitable

for wear leveling */
in
from m1 , to m2

Fig. 3. Sequential specification of the physical block layer (Blocks)

Reading and writing of content delegates to the corresponding operations of
Blocks by following LMap. If a logical block is unmapped, the write operation
first maps this block to an unused physical block by writing a header and updat-
ing LMap. Therefore Blocks provides an operation blocks map that returns a
fresh block that can be mapped.

The wear leveling operation wl wear leveling, that is not visible to the
clients, first requests a pair of blocks to be wear leveled by calling blocks get wl.
If the from Block is mapped, its header and content are copied to the to Block
and LMap is updated. We leave away many details here, that ensure, that crash-
ing in the middle of wear leveling will result in a consistent state, see [23].

To prove the refinement WL � EBM three invariants are established in WL.

injective(lmap) ↔
∀ n1 ,n2 . lmap(n1)
= ⊥ ∧ lmap(n2)
= ⊥ → lmap(n1)
= lmap(n2)

lmapblocks(lmap, blocks) ↔
∀ n. lmap(n)
= ⊥ → blocks(lmap(n).blockno).header = mapped(n)

blockslmap(blocks, lmap) ↔
∀ m. blocks(m).header
= ⊥ → lmap(blocks(m).header.blockno) = mapped(m)

The three predicates guarantee a valid mapping between logical and physical
blocks. injective prohibits that two logical blocks are mapped to the same phys-
ical block, lmapblocks ensures that each mapped physical block in lmap points
to the correct logical block, and blockslmap ensures that each mapped physical
block also has a matching entry in lmap.

The abstraction relation between states of the specification and states of the
implementation ensures that mapped blocks in Mapped conform with mapped
logical blocks in LMap and that contents of Contents conform to the contents
of the mapped physical blocks in Blocks.

(∀ n. n ∈ Mapped ↔ LMap(n)
= ⊥)

∧ (∀ n. n ∈ Mapped → Contents(n) = Blocks(LMap(n).blockno).content)

10 G. Schellhorn et al.

wl write(lnum, c)
let pnum = 0 in
if LMap(lnum) = ⊥ then
blocks map(; pnum);
blocks write h(pnum, mapped(lnum));
blocks write(pnum, empty);
LMap(lnum) mapped(pnum);

else
pnum LMap(lnum).blockno;

blocks write(pnum, c);

wl read(lnum; c)
if LMap(lnum) = ⊥ then
c empty;

else
let pnum = LMap(lnum).blockno in
blocks read(pnum; c);

wl wear leveling()
internal
let h = ⊥, c = empty,

from = 0, to = 0
in
blocks get wl(; from, to);
blocks read h(from; h);
if h �= ⊥ then
let lnum = h .blockno in
blocks read(from; c);
blocks write h(to, h);
blocks write(to, c);
LMap(lnum) mapped(to);
blocks write h(from; ⊥) ;

Fig. 4. Sequential implementation of the wear leveling layer (WL)

Together with the invariants this is sufficient to prove a data refinement using
forward simulation.

3 Adding Concurrency and Ownership

The sequential code calls the wear leveling operation at the end of every other
operation. This causes small pauses in between operations. A better solution is
to call wear leveling in a separate thread concurrently. This exploits that even
the MTD hardware interface is capable of reading and writing different blocks
concurrently. This is not possible for individual blocks, since these do not provide
random access, but can be written sequentially only.

Adding concurrency implies that interface operations are now called concur-
rently by several threads, and it is natural to assume that they now have an
atomic semantics (which is the natural semantics of ASMs, but was not required
in a sequential context). We emphasize this, by writing EBMAt and BlocksAt for
EBM and Blocks with atomic semantics, although the machines are the same.
Assuming an atomic semantics for the implementation is however unrealistic.

A simple solution that enforces an atomic semantics for an implementation
is to use a single global mutex, that is set before each operation and released
afterwards. Doing so for the operations of WL would however prevent wear leveling
from running concurrent.

An implementation of Blocks that uses such a simple locking strategy would
be correct to enforce atomicity, but too restrictive as it would prevent concurrent
access to different blocks. It would also not be sufficient for the correctness
of WL. To understand this, consider the implementation of wl write in Fig. 4
and a potential interleaving of two concurrent executions of this operation as
depicted in Fig. 5. Here two threads tid1 and tid2 write two contents to different
logical blocks lnum1 resp. lnum2 . Both logical blocks are unmapped so by calling
blocks map unmapped physical blocks are chosen to be mapped. Although the

Adding Concurrency to a Sequential Refinement Tower 11

operation is atomic it is possible that for tid2 the same physical block pnum is
returned as for tid1 since tid1 has not written the new header yet. Both threads
would then write to the same physical block, first different headers that point to
lnum1 resp. lnum2 , then different contents c2 resp. c1 . After both writes finish
an inconsistent state is reached to the effect that the written data of tid2 is lost
and the injectivity of the block mapping is violated.

tid1

blocks map blocks write h blocks write

tid2

blocks map blocks write h blocks write

wl write(lnum1 , c1)

wl write(lnum2 , c2)

Fig. 5. Critical interleaving of two wl write executions

A concept is needed that enforces on the level of Blocks that its implemen-
tation can assume that only one thread is writing each block at one time, and
that headers are written by a single thread only.

The concept we use is that of threads owning data structures.

data owner = readers(tids : set〈threadid〉) | writer(tid : threadid)

ghoststate OBlocks : nat → owner OHeaders : owner

An owner can either own a data structure non-exclusively (typically for read-
ing) or exclusively for writing. That a thread owns all headers or some block for
reading or writing is specified as two ghost variables OHeaders and OBlocks.
To ensure, that clients of the extended interface BlocksOwns shown in Fig. 6
respect the ownership, we add preconditions to the operations, that request
read-ownership for reading and write-ownership for writing blocks and head-
ers. A thread that wants to call an operation of BlocksOwns must now acquire
ownership before it and can release ownership afterwards. For this purpose the
interface is extended with two auxiliary acquire and release operations. These
acquire and release full ownership, which is sufficient for the concurrent imple-
mentation of wear leveling given below. It is possible to add operations that
acquire and release read-ownership too. Acquiring full ownership has the pre-
condition that there is no current owner. If two threads now try to write the
same block, one of them will violate the precondition of acquire (if it tries to
acquire) or it will violate the precondition of writing (if it does not). But this
is impossible, since submachine calls in implementations are checked to satisfy
their preconditions.

12 G. Schellhorn et al.

data mutex = free locked(tid : threadid)

blocks acquire(pnum)
pre OBlocks(pnum) = readers(∅)
atomic ghost
OBlocks(pnum) writer(tid)

blocks acquire h()
pre OHeaders = readers(∅)
atomic ghost
OHeaders writer(tid)

blocks write(pnum, c)
pre Blocks(pnum).header �= ⊥

∧ tid ∈ OBlocks(pnum).writers
atomic
Blocks(pnum).content c

blocks write h(pnum, h)
pre tid ∈ OHeaders.writers

∧ tid ∈ OBlocks(pnum).writers
atomic
h Blocks(pnum).header

blocks get wl(; from, to)
pre tid ∈ OHeaders.readers
atomic
choose m1 , m2 with
Blocks(m2).header = ⊥
/* ∧ m1 is good for WL */

in
from m1 , to m2

blocks release(pnum)
pre tid ∈ OBlocks(pnum).readers
atomic ghost
OBlocks(pnum) release(tid,OBlocks(pnum))

blocks release h()
pre tid ∈ OHeaders.readers
atomic ghost
OHeaders release(tid,OHeaders)

blocks read(pnum; c)
pre Blocks(pnum).header �= ⊥

∧ tid ∈ OBlocks(pnum).readers
atomic
c Blocks(pnum).content

blocks read h(pnum; h)
pre tid ∈ OHeaders.readers
atomic
Blocks(pnum).header h

blocks map(; pnum)
pre tid ∈ OHeaders.readers
atomic
choose m with
Blocks(m).header = ⊥

in
pnum m

Fig. 6. Atomic specification of the physical block layer with ownership (BlocksOwns)

Calls to acquire and release in the augmented code of wear leveling will now
ensure, that ownership is properly acquired. They are used for verification, but
are “ghost code” that is eliminated when generating executable code.

To make sure, that calls to acquire never violate their precondition, we have
to use locks in the extended implementation of WL given in Fig. 8. The simple
implementation we give here just uses mutexes.

data mutex = free | locked(tid : threadid)

The locking and unlocking operations mutex lock and mutex unlock are
specified as the atomic program statements given in Fig. 7. The definition of
mutex lock uses the program construct atomic ϕ { α }. The atomic construct
blocks the current thread until its guard ϕ is satisfied. Immediately afterwards,
the program α is executed in a single, indivisible step.

Adding Concurrency to a Sequential Refinement Tower 13

mutex lock(mutex)
atomic (mutex = free) {
mutex locked(tid)

}

mutex unlock(mutex)
pre mutex = locked(tid)
mutex free

Fig. 7. Mutex locking opera-
tions

Figure 8 shows the result of applying suffi-
cient locking and ownership acquisition to WL.
Additionally, each atomic step gets an individ-
ual label (W1–W18, R1–R8, and WL1–WL21) to give
assertions for this program point when reason-
ing about atomicity (see Sect. 5). We refer to
this concurrent implementation as WLConc. The
state of WLConc is enhanced by a lock that pro-
tects the headers of all blocks, and locks for each
logical block that protects its contents.

state ... Lock : mutex Locks : nat → mutex

We use mutexes for all locks, since they match our simplification of acquiring
write-ownership only. The actual Erase-Block-Manager in Flashix employs reader-
writer locks whenever parallel reading is unproblematic. The general locking con-
cept of WLConc is to acquire Lock only if the mapping from logical to physical blocks
needs to be updated. This is the case when writing to an unmapped block or when
wear leveling is active. Otherwise, locking only one individual Locks(lnum) of a
specific logical block lnum is sufficient. This lock protects the corresponding entry
LMap(lnum) of the block mapping as well as the content of the physical block
LMap(lnum).blockno. With this strategy multiple reads and writes to different,
mapped logical blocks are possible, even in parallel to wear leveling.

wl write(lnum, c)
let pnum = 0 in
mutex lock(Lock);
mutex lock(Locks(lnum));
if LMap(lnum) = ⊥ then
blocks acquire h();
blocks map(; pnum);
blocks acquire(pnum);
blocks write h(pnum, mapped(lnum));
blocks write(pnum, empty);
blocks release(pnum);
LMap(lnum) mapped(pnum);
blocks release h();

W1

W2

W3

W4

W5

W6

W7

W8

W9

W10

W11

W12

else
pnum LMap(lnum).blockno;

mutex unlock(Lock);
blocks acquire(pnum);
blocks write(pnum, c);
blocks release(pnum);
mutex unlock(Locks(lnum));

W13

W14

W15

W16

W17

W18

wl read(lnum; c)
mutex lock(Locks(lnum));
if LMap(lnum) = ⊥ then
c empty

R1

R2

R3

else
let pnum = LMap(lnum).blockno in
blocks acquire(pnum);
blocks read(pnum; c);
blocks release(pnum);

mutex unlock(Locks(lnum));

R4

R5

R6

R7

R8

wl wear leveling()
internal
let h = ⊥, c = empty,WL1

from = 0, to = 0
in
mutex lock(Lock);
blocks acquire h();
blocks get wl(; from, to);
blocks read h(from; h);
if h �= ⊥ then
let lnum = h .blockno in
mutex lock(Locks(lnum));
blocks acquire(from);
blocks read(from; c);
blocks acquire(to);
blocks write h(to, h);
blocks write(to, c);
LMap(lnum) mapped(to);
blocks write h(from; ⊥);
blocks release(to);
blocks release(from);
mutex unlock(Locks(lnum));

blocks release h();
mutex unlock(Lock);

WL2

WL3

WL4

WL5

WL6

WL7

WL8

WL9

WL10

WL11

WL12

WL13

WL14

WL15

WL16

WL17

WL18

WL19

WL20

Fig. 8. Concurrent implementation of the wear leveling layer (WLConc)

14 G. Schellhorn et al.

Fig. 9. Concurrency refinement of the
erase-block-manager

One exception is that the Lock has
to be acquired in every wl write exe-
cution (W2–W14 in Fig. 8), at least for a
short amount of time. This is due to
the locking hierarchy that is employed to
avoid deadlocks. When running in par-
allel, it is possible that a wl write and
wl wear leveling may both need to
acquire Lock and the same Locks(lnum),
so it must be ensured that those opera-
tions request the locks in the same order. Because wl wear leveling needs
to be owner of OHeaders to get suitable physical blocks at WL4 before a log-
ical block can be locked, wl write must request Lock (W2) ahead of requesting
Locks(lnum) (W3).

Figure 9 shows the resulting refinement of EBMAt. Proving WLConc � EBMAt

using linearizability is discussed in detail in the next sections. It remains to
integrate the new “shifted” refinement into the refinement tower. The layers
above EBMAt can remain untouched since EBMAt is identical to EBM, and sequential
use of EBMAt is not problematic. Below BlocksOwns an adjustment is necessary:
a simple one is to use a global lock around the operations of its implementation.
Since the level is already close to the MTD hardware interface, the real solution
propagates ownership down to ownerships at the hardware level (where blocks
store a sequence of bytes instead of a header and content).

4 Linearizabilty and Atomicity Refinement

The standard correctness criterion we use to prove correctness of the refinement
of EBMAt to WLConc from Fig. 9 is linearizability. A formal definition can be found
in [15], we only give an informal description here.

A concurrent implementation CASM with nonatomic programs COPi is lin-
earizable to an atomic specification AASM with atomic operations AOPi, if the
input/output behaviors of each concurrent run can be explained by mapping
them to the sequential input/output behavior of some sequential run of AASM.

Fig. 10. Splitting the refinement

The mapping between a concurrent and a
sequential run is as follows: for each concur-
rent call of an operation COPi that is started
at time ti and returns at time t′i find some
point in time li with ti ≤ li ≤ t′i, such that
all li are different. The point is called the lin-
earization point of the operation call. Then
construct some sequential run of AASM that
executes each corresponding abstract opera-
tion AOPi atomically at time li. Note that
even for fixed linearization points this may
give several sequential runs if the abstract
operations are nondeterministic.

Adding Concurrency to a Sequential Refinement Tower 15

A refinement from AASM to CASM then is linearizable, if for every concurrent
run linearization points and an abstract sequential run can be found, such that
all operation calls have the same inputs and outputs.

The clients of the interface then cannot distinguish the concurrent run from
one, where each operation call is delayed until time li, executes AOPi atomically
and then is delayed again until time t′i.

Our proof technique will use an intermediate machine at(WLConc) that is
the same as WLConc, but executes the code of each operation as one atomic
step. This splits the refinement problem into three parts as shown in Fig. 10.
The data refinement WLAt � EBMAt, that we have already proved (since the
ASMs are the same as WL and EBM). Second, a trivial refinement at(WLConc) �
WLAt that abstracts from the locking/unlocking (and acquire/release) instruc-
tions in at(WLConc), since the overall effect of locking/unlocking in one atomic
step is empty. Finally, the atomicity refinement WLConc � at(WLConc), where both
machines have the same data and operations, but different atomicity. Splitting
the refinement from an atomic AASM to a concurrent CASM by using an inter-
mediate at(CASM), which executes the operations of CASM atomically, has the
advantage that data refinement is completely decoupled from atomicity refine-
ment.

The next section will describe a proof strategy for proving the atomicity
refinement between at(WLConc) and WLConc, which is the new problem we get
from adding concurrency to the refinement tower.

5 Proof Strategy for Atomicity Refinement

The proof strategy we use to prove atomicity refinement consists of two steps.
First we prove that the concurrent runs of WLConc satisfy some assertions at all
program points. These proofs use thread-local reasoning with the rely-guarantee
calculus. They additionally ensure termination and deadlock-freedom, which are
not implied by linearizability alone. Second we prove that based on the assertions,
atomic program steps can be reduced to larger and larger atomic steps, until we
arrive at at(WLConc). We sketch the basic strategy in the first subsection, and
give results for the case study in Sect. 5.2.

5.1 Rely-Guarantee Proofs and Reduction

The variant of the rely-guarantee calculus used here is similar to the one given
in [30], Section 5. The basic correctness statement1 is of the form

pre ∧ I → 〈R,G, I , run, α〉 post

1 The notation in [30] is: α sat (pre,R ∧ (I → I (x′)), run,G ∧ (I → I (x′)), post).

16 G. Schellhorn et al.

where program α is assumed to be the sequential program of some thread, that
executes atomic steps. These alternate with environment steps, where one envi-
ronment step is an arbitrary sequence of steps of other threads.

The program is assumed to use the state variables x. Precondition pre, post-
condition post , predicate run, and global invariant I are predicates over this
state. The rely R and the guarantee G restrict environment and program steps.
They are predicates over x and x′ We write arguments in predicates if they differ
from the standard ones only.

The formula asserts, that program α, when started in a state that satisfies
precondition pre and global invariant I , will execute steps that satisfy G and
preserve the invariant I , as long as all previous environment steps satisfy R and
preserve I too. No program step will block, when at that time run holds. In
addition, when all environment steps satisfy R and preserve I , then the program
will either terminate and the final state will satisfy post , or it will stop in a
blocked state where run is false.

The calculus to prove such formulas in KIV is based on symbolic execution.
The basic rule to execute one atomic step at label L, that is annotated with an
assertion ϕL is

pre ∧ I → ϕL ∧ (run → ϕ)

pre ∧ I ∧ 〈α〉 x = x′ → G(x, x′) ∧ I (x′)

pre(x0) ∧ 〈α(x0)〉 x0 = x1 ∧ R(x1, x) ∧ I (x) → 〈R,G, I , run, β〉 post

pre ∧ I → 〈R,G, I , run, L : / ∗ ϕL ∗ / atomic ϕ {α};β〉 post

The rule reduces the conclusion at the bottom to premises. The first premise
states that before executing α the assertion at the initial label holds, and that
the first step does not block (ϕ holds) whenever the run predicate is true.

The second premise uses the Dynamic Logic formula 〈α〉 x = x′ which asserts
that the sequential program α has a terminating run that yields a state x′. The
premise ensures that the first atomic step of the program, which executes α is a
step that satisfies G and preserves the invariant I .

The third premise continues symbolic execution with the rest of the program.
Its precondition uses two sets x0 and x1 of fresh variables, to represent the
two old states before and after the first atomic program step. The subsequent
environment step from x1 to the current state x is assumed to satisfy R. Since
rely steps preserve the invariant, it can be assumed for the current state again.

One common instance of the rule is a parallel assignment y := t, which can
be viewed as an abbreviation for atomic true {y := t}. In this case the formula
〈α〉 x = x′ reduces to y′ = t ∧ z′ = z, where z are the remaining variables from
x that are not assigned.

The rules for other constructs like conditionals resemble the usual rules for
symbolic execution of programs, except that similar to the rule above they have
rely steps in between program steps and side conditions for assertions and guar-
antee. For loops, a loop invariant (that holds at the start of each iteration) and a

Adding Concurrency to a Sequential Refinement Tower 17

variant, that decreases with a wellfounded order are needed. Proofs for recursive
routines need wellfounded induction.

Individual rely-guarantee proofs for single threads can be combined to a
rely-guarantee property of a concurrent system. The crucial property that needs
to hold for this to work, is that the relies and guarantees must be compatible:
the guarantee of each thread Gtid must imply the relies Rtid ′ of other threads
tid ′ �= tid . For our state machines where all threads are known to execute the
same operations, the guarantee can be chosen to be Gtid :=

∧
tid′ �=tid Rtid ′ , the

weakest guarantee possible that is trivially compatible. The system is deadlock-
free, if the disjunction of all

∨
tid runtid holds. When a mutex is used, runtid

is chosen to be lock = locked(tid) ∨ lock = Free which implies this condition.
This easily generalizes to the hierarchy of locks used in the case study.

In summary, to verify assertions for a specification of a concurrent state
machine with operations OPi, the user has to provide an invariant I , a rely Rtid
and a predicate idletid . The latter describes states, where a thread is not cur-
rently executing an operation. From these predicate logic proof obligations (e.g.
the R must be reflexive, initial states satisfy the invariant etc.) are generated,
together with the following rely guarantee proof obligation for each operation.

tid
= tid ′, I , idletid , pretid
 〈Rtid ,Rtid′ , I , runtid , OPi〉 idletid

Successful verification guarantees that each of the assertions ϕL holds every time
a thread reaches label L, that the operations terminate and that the implemen-
tation is deadlock-free.

The verified assertions are then used to combine atomic statements to larger
ones following Lipton’s [19] strategy of reduction. The idea is that a thread
executing two atomic steps AtL1 and AtL2 (at labels L1 and L2) with an envi-
ronment step in between is often equivalent to first executing the environment
step, then AtL1 and AtL2 with no intermediate environment step. In this case
the two steps can be merged together to form one atomic step.

Fig. 11. AtL1 commutes to the right of
environment step AtM ;AtN

Reverting the order of first executing
AtL1 and then an environment step is pos-
sible, if all steps of other threads, that
could be a part of the environment step,
commute to the right with AtL1, in the
sense that executing them in both orders
gives the same final state. In this case
AtL1 is called a right mover. Analogous to this, a step that commutes to left
with all steps is called a left mover. Figure 11 shows an example, where the envi-
ronment step consists of two steps AtM and AtN of other threads. The original
run is shown at the bottom, the alternative run which allows executing AtL1

and AtL2 as one atomic step at the top. The intermediate states of the runs are
different, but they reach the same final state.

18 G. Schellhorn et al.

The atomic steps of the programs can all be written in the form

AtL ≡ L : / ∗ ϕL ∗ / atomic εL {αL}

where L is the label, and ϕL the assertion established. The guard εL is true for
all statements, except locking instructions, cf. Figure 7. Program αL is either an
assignment, or the call of a submachine operation. For a conditional or a while
loop with test δ, αL is defined to be b := δ using a fresh variable b, while binding
a local variable let y = t in . . . gives αL ≡ {y := t}. The formal condition for
AtL1 to commute to the right with AtL2 executed by another thread is

ϕL ∧ ϕ′
M ∧ εL ∧ ε′

M ∧ tid
= tid ′ ∧ 〈αL;α
′
M 〉 x = x0 → 〈α′

M ;αL〉 x = x0 (1)

In the formula, ϕ′
M , ε′

M , α′
M are variants, that rename thread local variables used

in AtM to new, primed variables disjoint from the shared state and the local
variables of AtL. The criterion critically uses the assertions at both labels, since
they often show that the preconditions of the implication contradict each other,
trivializing the proof. If, for example the two steps are both in a region where a
common lock is needed, they commute trivially: ϕL implies lock = locked(tid),
while ϕ′

M implies lock = locked(tid ′), so the proof obligation trivially holds. A
general result is that locking is always a right mover, while unlocking is always
a left mover.

Combining steps to larger steps can be translated into rules for making state-
ments like sequential composition, conditionals and loops atomic, when their
parts are atomic already. We use rules similar to the reduction rules given in
[10]. Iterated application gives larger and larger atomic blocks. Ideally, the final
result is that the whole concurrent program of one operation has been combined
into a single atomic step. If this is possible, then a linearizability proof becomes
trivial, as the linearizability point then simply is the single atomic step.

5.2 Proving the Case Study

The main task for proving the atomicity refinement of the case study is to find
assertions, rely conditions and a global invariant that are strong enough to allow
atomicity refinement.

The rely conditions are derived from the crucial ideas what data structures
are protected from being changed, when thread tid has a certain lock or owner-
ship. This results in the following clauses.

tid ∈ OHeaders.readers → ∀ m. Blocks(m).header = Blocks′(m).header

tid ∈ OBlocks(m).readers → Blocks(m) = Blocks′(m)

Lock = locked(tid) → LMap′ = LMap

Locks(n) = locked(tid) → LMap′(n) = LMap(n)

Locks(n) = locked(tid)

→ ∀ m. Blocks(m).header = mapped(n) ↔ Blocks′(m).header = mapped(n)

Adding Concurrency to a Sequential Refinement Tower 19

The only rely that is somewhat difficult to find is the last one: if a thread locks
logical block n, then other threads are not allowed to change the block header
to point to or to point away from n.

The global invariant and the assertions are derived from several sources.
First, ownership as used in the interface BlocksOwns has to be compatible with
the use of locks.

OHeaders ⊆ Lock .owner (2)

∀ m. Blocks(m).header �= ⊥
→ OBlocks(m) ⊆ Locks(Blocks(m).header.blockno).owner (3)

∀ m. Blocks(m).header = ⊥ → OBlocks(m) ⊆ Lock .owner (4)

The invariant (2) states that headers are owned only if the lock has been taken.
Invariant (3) states that a mapped physical block m can be owned (and therefore
changed) only if the corresponding logical block that is stored in its header is
locked. For unmapped blocks property (4) states that they can be owned only if
WLConc has taken the header lock.

Second, the three global invariants of the sequential code are relevant. Drop-
ping them completely would result in illegal states where e.g. the block mapping
is no longer injective. However, the invariants of the sequential verification are
only guaranteed to hold in idle states, where no thread is running. So it is nec-
essary to give weaker assertions for intermediate states, that are still sufficient
to avoid illegal ones.

For the given case study, it turns out that lmapblocks and injective are pre-
served by all steps, but that blockslmap does not hold while the headers are
locked. As a result the global invariant can include blockslmap(Blocks,LMap)
only when the headers are currently not owned (Oheaders = readers(∅)). To
establish this assertion, after a step that releases OHeaders, assertions have to
be given for all labels, where OHeaders is taken. For writing the predicate is
violated between line W9 after the header of block pnum has been set to lnum
and line W11, where LMap(lnum) is set to pnum. For all lines in this range
blockslmap(Blocks,LMap(lnum; pnum)) holds: if LMap were already updated,
then blockslmap would hold. The wear leveling algorithm gives similar assertions
for the range WL13–WL15.

Finally, assertions are sometimes necessary for the code after a test or
after assignments to a variable. In a purely sequential setting, the test for
LMap(lnum) �= ⊥ at R2 ensures that this formula holds, until the subse-
quent let binding pnum = LMap(n).blockno at line R4, which will ensure
pnum = LMap(lnum).blockno when the variable pnum is used later on. How-
ever, in the concurrent setting LMap may be assigned by other threads, destroy-
ing each of these properties. In the given case, the rely conditions are strong
enough to propagate the formulas, so we assert that at line R4 the first formula
holds, while for lines R5–R7 the second holds. A number of similar assertions are
needed for other local variables.

20 G. Schellhorn et al.

Proving the rely-guarantee proof obligations for the individual programs
requires the main effort in proving the concurrent setting correct. This is in
line with case studies we have done for lock-free algorithms [25,27–29], where
proving rely-guarantee assertions caused the main effort too.

After establishing assertions for all program points, the program can then be
reduced, combining atomic steps to larger ones. This requires to find out, which
steps are left or right movers (or both). The current strategy implemented in
KIV does simple syntactic checks to check whether the resulting commutativ-
ity requirement (1) is trivial: either the accessed variables are disjoint, or the
preconditions of the proof obligation trivially reduce to false. Otherwise it is
possible to generate proof obligations, by manually asserting that certain steps
(identified by their label) are left or right movers (or both).

For the case study, manual specifications of mover types are currently nec-
essary for the atomic calls blocks acquire (right mover) and blocks release
(left mover) of BlocksAt. The reader may check, that this trivially implies that
the other operations of BlocksAt are left and right movers. After the mover
types have been determined, the reduction rules are then applied automatically,
to form maximally large atomic blocks.

This immediately results in a single atomic block for wl write and wl read.
Reducing wl wear leveling creates three atomic blocks. The first ends at the
conditional at line WL6 and is a right mover. The second is for the let-block
WL7–WL19. The third is for the last two lines WL20–WL21, and is a left mover.
The conditional cannot be reduced, since its then-branch requires the lock for
block lnum to be free, while the empty else-branch does not have this guard.
With the atomic blocks now being much larger than before, it becomes possible
to prove much stronger invariants that just hold in between blocks, but did not
hold for the original programs. In particular, since all locking and unlocking of
blocks is now within atomic regions, the simple invariant that all Locks(lnum) are
always free can be established using another simple rely-guarantee proof. With
the new invariant established, another reduction step finds, that the conditional
at line WL6 can now be reduced to an atomic block. Together with the initial
and the final block being right resp. left movers already, the wear leveling code
is combined by another reduction step into a single step. This implies that the
concurrent implementation of wear leveling is indeed linearizable and a correct
refinement.

6 Related Work

Related work on wear leveling and the flash file system we have developed has
already been given in [23], where the full version of the sequential wear leveling
algorithm has been specified.

This paper is based on the PhD of Jörg Pfähler [21], where concurrency was
added to the full wear leveling algorithm. The full version needs to add ownership
annotations and locks to several refinements. This version is now used in our
actual flash file system implementation. The PhD also contains extensions that
allow verifying crash-safety, which we could not address in this paper.

Adding Concurrency to a Sequential Refinement Tower 21

The flash file system by Damchoom et al. [7] has concurrent wear leveling.
The synchronization between threads is implicitly performed by the semantics of
Event-B models, i.e., an event in an Event-B model is always executed atomically,
and not explicitly via locks or other synchronization primitives. This makes the
step to actual running code more difficult and less straightforward. The full erase
block management used in our flash file system is also more general, because it
does not use additional bits of out-of-band data of an erase block.

Verification of concurrent, lock-based systems is of course a very broad topic
with lots of important contributions, and the proof techniques we use are from
this field. We are not aware of other formal methods that specifically address the
question of this paper: how to add concurrency a posteriori to an existing modu-
lar, sequential system, without having to prove the system from scratch. Adding
concurrency to components of an existing software system to increase efficiency
is however a recurring software engineering task that should be supported by
formal methods.

Refinement and abstraction of atomicity is quite common for concurrent
systems, and many refinement definitions for concurrent systems like [1] or [20]
address refinements of atomicity. The refinement calculus of Back [3] uses the
opposite direction. It starts out with an atomic program and splits it into smaller
actions in refinement steps.

The calculus of atomic actions due to Elmas et al. [10] is an extension of
Lipton’s [19] original approach for highly concurrent, linearizable programs. It
provides a more incremental verification methodology than the calculus given
here for highly concurrent systems and its implementation is better automated.
The assertions and invariants are incrementally validated in [10], whereas here
a rely/guarantee proof is used to validate them before applying any reductions.
The rules of the calculus in [10] address partial correctness, so termination would
have to be proven differently. Nevertheless, many of the reduction rules given in
this paper are directly used in our approach too.

Ownership annotations are used in the C verifier VCC [6] and Spec# [16]
in order to ensure data-race freedom of the code. They are typically coupled to
objects of the programming language, while we decouple the use of ownership
from objects. Fractional permissions [5] in concurrent versions of separation log-
ics [24] serve a similar purpose as ownership. These are for example supported
by the C code verifier VeriFast [17].

7 Conclusion

We have presented an approach for adding concurrency to an existing refine-
ment tower. The given approach allows to add concurrency by enhancing some
of the components of the refinement tower. Abstract interfaces are extended
with acquire and release operations, that specify allowed concurrency. In our
case study concurrent writes on different blocks are possible, while concurrent
writes on the same block are disallowed. Concurrent code using these interfaces
is then possible, that enhances the existing sequential code with suitable locking

22 G. Schellhorn et al.

strategies. We have evaluated this strategy of “shifting parts of the refinement”
tower by making wear-leveling concurrent in the Flashix file system. Specifica-
tions using the same concept have been defined for concurrent garbage collection,
with executable code already running. Verification is work in progress. We also
work on a allowing concurrent calls for POSIX file system operations.

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theoret. Comput.
Sci. 2, 253–284 (1991). Also appeared as SRC Research Report 29

2. Abrial, J.-R.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press, Cambridge (2010)

3. Back, R.J.R.: A method for refining atomicity in parallel algorithms. In: Odijk, E.,
Rem, M., Syre, J.-C. (eds.) PARLE 1989. LNCS, vol. 366, pp. 199–216. Springer,
Heidelberg (1989). https://doi.org/10.1007/3-540-51285-3 42

4. Börger, E., Stärk, R.F.: Abstract State Machines—A Method for High-Level Sys-
tem Design and Analysis. Springer, Heidelberg (2003). https://doi.org/10.1007/
978-3-642-18216-7

5. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-44898-5 4

6. Cohen, E., et al.: VCC: a practical system for verifying concurrent C. In: Berghofer,
S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp.
23–42. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9 2

7. Damchoom, K., Butler, M.: Applying event and machine decomposition to a flash-
based filestore in Event-B. In: Oliveira, M.V.M., Woodcock, J. (eds.) SBMF 2009.
LNCS, vol. 5902, pp. 134–152. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-10452-7 10

8. de Roever, W., Engelhardt, K.: Data Refinement: Model-Oriented Proof Methods
and their Comparison. Cambridge Tracts in Theoretical Computer Science, vol.
47. Cambridge University Press, Cambridge (1998)

9. Derrick, J., Boiten, E.: Refinement in Z and in Object-Z: Foundations and
Advanced Applications. FACIT. Springer, Heidelberg (2001). https://doi.org/10.
1007/978-1-4471-5355-9. Second, revised edition 2014

10. Elmas, T., Qadeer, S., Tasiran, S.: A calculus of atomic actions. In: Proceeding
POPL 2009, pp. 2–15. ACM (2009)

11. Ernst, G., Pfähler, J., Schellhorn, G., Haneberg, D., Reif, W.: KIV - overview and
verifythis competition. Softw. Tools Techn. Transf. 17(6), 677–694 (2015)

12. Ernst, G., Pfähler, J., Schellhorn, G., Reif, W.: Inside a verified flash file system:
transactions & garbage collection. In: Gurfinkel, A., Seshia, S.A. (eds.) VSTTE
2015. LNCS, vol. 9593, pp. 73–93. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-319-29613-5 5

13. Ernst, G., Pfähler, J., Schellhorn, G., Reif, W.: Modular. Crash-Safe Refinement
for ASMs with Submachines. Science of Computer Programming (SCP) (2016)

14. He, J., Hoare, C.A.R., Sanders, J.W.: Data refinement refined resume. In: Robi-
net, B., Wilhelm, R. (eds.) ESOP 1986. LNCS, vol. 213, pp. 187–196. Springer,
Heidelberg (1986). https://doi.org/10.1007/3-540-16442-1 14

15. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. (TOPLAS) 12(3), 463–492 (1990)

https://doi.org/10.1007/3-540-51285-3_42
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-10452-7_10
https://doi.org/10.1007/978-3-642-10452-7_10
https://doi.org/10.1007/978-1-4471-5355-9
https://doi.org/10.1007/978-1-4471-5355-9
https://doi.org/10.1007/978-3-319-29613-5_5
https://doi.org/10.1007/978-3-319-29613-5_5
https://doi.org/10.1007/3-540-16442-1_14

Adding Concurrency to a Sequential Refinement Tower 23

16. Jacobs, B., Leino, K.R.M., Piessens, F., Schulte, W.: Safe concurrency for aggregate
objects with invariants. In: Software Engineering and Formal Methods (SEFM)
2005, pp. 137–146. IEEE (2005)

17. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. NASA Formal
Methods 6617, 41–55 (2011)

18. KIV proofs for wear leveling (2020). https://kiv.isse.de/projects/WearLeveling.
html

19. Lipton, R.J.: Reduction: a method of proving properties of parallel programs. Com-
mun. ACM 18(12), 717–721 (1975)

20. Lynch, N., Vaandrager, F.: Forward and backward simulations - part i: untimed sys-
tems. Inf. Comput. 121(2), 214–233 (1995). Also: Technical Memo MIT/LCS/TM-
486.b, Laboratory for Computer Science, MIT

21. Pfähler, J.: A modular verification methodology for caching and lock-based con-
currency in file systems. Ph.D. thesis, Universität Augsburg, Fakultät für Infor-
matik (2018). https://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/in
dex/docId/41890

22. Pfähler, J., Ernst, G., Bodenmüller, S., Schellhorn, G., Reif, W.: Modular verifica-
tion of order-preserving write-back caches. In: Polikarpova, N., Schneider, S. (eds.)
IFM 2017. LNCS, vol. 10510, pp. 375–390. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66845-1 25

23. Pfähler, J., Ernst, G., Schellhorn, G., Haneberg, D., Reif, W.: Formal specification
of an erase block management layer for flash memory. In: Bertacco, V., Legay, A.
(eds.) HVC 2013. LNCS, vol. 8244, pp. 214–229. Springer, Cham (2013). https://
doi.org/10.1007/978-3-319-03077-7 15

24. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Proceedings of 17th Annual IEEE Symposium on Logic in Computer Science, pp.
55–74. IEEE (2002)

25. Schellhorn, G., Derrick, J., Wehrheim, H.: A sound and complete proof technique
for linearizability of concurrent data structures. ACM Trans. Comput. Logic 15(4),
31:1–31:37 (2014)

26. Schellhorn, G., Ernst, G., Pfähler, J., Haneberg, D., Reif, W.: Development of a
verified flash file system. In: Ait Ameur, Y., Schewe, K.D. (eds.) ABZ 2014, vol.
8477. LNCS, pp. 9–24. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-43652-3 2

27. Schellhorn, G., Travkin, O., Wehrheim, H.: Towards a thread-local proof technique
for starvation freedom. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS,
vol. 9681, pp. 193–209. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
33693-0 13

28. Tofan, B., Schellhorn, G., Reif, W.: Formal verification of a lock-free stack with
hazard pointers. In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol.
6916, pp. 239–255. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23283-1 16

29. Tofan, B., Travkin, O., Schellhorn, G., Wehrheim, H.: Two approaches for proving
linearizability of multiset. Sci. Comput. Program. 96(P3), 297–314 (2014)

30. Xu, Q., de Roever, W.-P., He, J.: The rely-guarantee method for verifying shared
variable concurrent programs. Formal Aspects Comput. 9(2), 149–174 (1997)

https://kiv.isse.de/projects/WearLeveling.html
https://kiv.isse.de/projects/WearLeveling.html
https://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/41890
https://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/41890
https://doi.org/10.1007/978-3-319-66845-1_25
https://doi.org/10.1007/978-3-319-66845-1_25
https://doi.org/10.1007/978-3-319-03077-7_15
https://doi.org/10.1007/978-3-319-03077-7_15
https://doi.org/10.1007/978-3-662-43652-3_2
https://doi.org/10.1007/978-3-662-43652-3_2
https://doi.org/10.1007/978-3-319-33693-0_13
https://doi.org/10.1007/978-3-319-33693-0_13
https://doi.org/10.1007/978-3-642-23283-1_16
https://doi.org/10.1007/978-3-642-23283-1_16

Regular Research Articles

Diverse Scenario Exploration in Model
Finders Using Graph Kernels and

Clustering

Robert Clarisó1(B) and Jordi Cabot2

1 Universitat Oberta de Catalunya (UOC), Barcelona, Spain
rclariso@uoc.edu

2 ICREA, Barcelona, Spain
jordi.cabot@icrea.cat

Abstract. Complex software systems can be described using modeling
notations such as UML/OCL or Alloy. Then, some correctness properties
of these systems can be checked using model finders, which compute
sample scenarios either fulfilling the desired properties or illustrating
potential faults. Such scenarios allow designers to validate, verify and
test the system under development.

Nevertheless, when asked to produce several scenarios, model finders
tend to produce similar solutions. This lack of diversity impairs their
effectiveness as testing or validation assets. To solve this problem, we
propose the use of graph kernels, a family of methods for computing the
(dis)similarity among pairs of graphs. With this metric, it is possible to
cluster scenarios effectively, improving the usability of model finders and
making testing and validation more efficient.

Keywords: Model-driven engineering · Verification and validation ·
Testing · Graph kernels · Clustering · Diversity

1 Introduction

The structure and behavior of a software system can be described by means of
software models, using notations such as Alloy [10], graph-based formalisms [20]
or UML/OCL [17]. These notations describe software systems at a high level of
abstraction, hiding implementation details while preserving its salient features.
Analysing these models can reveal complex faults in the underlying systems.

In this analysis, the key assets for checking the correctness of software models
are model finders [8], tools capable of computing instances of a model that
satisfy a set of constraints and properties of interest. Each model finder targets

This work is partially funded by the H2020 ECSEL Joint Undertaking Project
“MegaM@Rt2: MegaModelling at Runtime” (737494) and the Spanish Ministry of
Economy and Competitivity through the project “Open Data for All: an API-based
infrastructure for exploiting online data sources” (TIN2016-75944-R).

c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 27–43, 2020.
https://doi.org/10.1007/978-3-030-48077-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_3&domain=pdf
http://orcid.org/0000-0001-9639-0186
http://orcid.org/0000-0003-2418-2489
https://doi.org/10.1007/978-3-030-48077-6_3

28 R. Clarisó and J. Cabot

a particular modeling notation and uses a different reasoning engine, like search-
based methods [1,24], SAT [10], SMT [24,28] or constraint programming [3].

For verification purposes, it is usually enough to search for one instance,
which either proves or disproves the property of interest. However, for test-
ing and validation purposes several instances are usually required to increase
our confidence in the correctness of the model. It is highly desirable that those
instances exhibit diversity, i.e., distinct configurations of the system and inter-
esting corner cases [11]. Lack of diversity may make validation and testing more
time consuming, as the analysis includes almost-duplicate instances that do not
provide added value; and less effective, as the sample of instances may fail to
include relevant scenarios.

Nevertheless, most model finders focus on efficiency and expressiveness of
the input modeling notation, so few of them ensure diversity of the generated
instances [6,11,20,23,26]. In these few, diversity assurance is integrated into the
solver: it guides the search process to look for diverse instances. However, this
integration makes it harder to transfer the proposed methods to other solvers and
notations. Thus, designers are limited in terms of expressiveness (e.g., no support
for integer or string attributes [11,20,26] or dynamic properties [6,11,23,24]) and
cannot benefit from additional features provided by others model finders (e.g.,
computation of minimal instances [16] or support for max-satisfiability [28]).

This paper proposes a method for distilling diverse instances in the model
finder output based on the use of clustering. Instances are classified into cate-
gories according to their similarity, which is calculated using information about
their structure (the existing objects and the links between them), typing (the
specific type of each object) and attribute values. This calculation is based on
the use of graph kernels, a family of methods for computing distances among
graphs. Selecting a representative instance from each category ensures diversity
while reducing testing and validation time, as redundant instances can be safely
discarded. As a drawback, this method does not force the model finder to look
for diverse instances, it only distills the most diverse ones.

Compared with related works, our approach offers the following advantages:

– It is independent of the solver used by the model finder (SAT, SMT, . . .) and
the modeling notation being analyzed (Alloy, UML/OCL, . . .).

– It does not require manual intervention from the designer to define what kind
of instances are “relevant” or when two instances are “similar”.

– The similarity computation can be customized, e.g., by selecting a trade-off
between precision and accuracy.

Paper Organization. The remainder of the paper is structured as follows.
Section 2 presents an overview of the method illustrated with a simple example.
Then, we describe the three steps of our method: the abstraction process for
transforming instances into graphs (Sect. 3); graph kernels (Sect. 4), the frame-
work for computing similarities among graphs; and clustering algorithms that
can use this similarity to build groups of related instances (Sect. 5). Section 6
presents some experimental results of the application of this method. After that,

Diverse Scenario Exploration in Model Finders 29

Sect. 7 describes previous work on diversity and model finding. Finally, Sect. 8
outlines the conclusions and lines for future work.

2 Method Overview

The overview of our approach for identifying diverse instances in model finder
output is depicted in Fig. 1. Our input is a set of instances computed by a model
finder, and our output is a set of clusters grouping those instances according to
their similarity. From this output, it is possible to select a representative instance
for each cluster, e.g., choosing the smallest instance.

The method can be divided into three steps:

1. Graph abstraction: First, each instance is abstracted as a labeled graph,
where labels store type and attribute value information and the underlying
graph captures the objects and the links among them.

2. Graph kernel: Then, the pairwise similarity among the n graphs is com-
puted using a state-of-the-art labeled graph comparison technique. The result
of this computation is a n×n matrix S where each cell Sij provides informa-
tion about the similarity between graphs i and j.

3. Clustering: Finally, the similarity data is used by a clustering procedure to
classify instances into groups of similar instances. The most suitable number
of groups is determined by using clustering validity indices, which measure
whether elements in the cluster are similar to each other and different from
elements in other clusters.

To illustrate how the method works and the type of results it can achieve,
we will use the UML class diagram in Fig. 2(a). This model describes the rela-
tionships between employees who work in or lead a department. There are two
constraints regarding the salary, defined as OCL invariants: all salaries must be
below a salary threshold and also below the salary of the department’s director.

Property

Model
Model
Finder

Instances

�–�

�–�

�–�

�–�
Proposed method

Clusters

�–�

�–�

Graph
abstraction

Graphs

O–O

O–O
Graph
kernel

[
s11 s12 s13
s21 s22 s23
s31 s32 s33

]

Similarity matrix

Clustering

Fig. 1. Overview of the method presented in this paper.

30 R. Clarisó and J. Cabot

Employee

salary: Integer

Department

maxSalary: Integer

Leads WorksIn

boss 1

0..1

*

1 dept

context Employee inv maxSalary:
self.salary ≤ self.dept.maxSalary

context Employee inv bossSalary:
self.salary ≤ self.dept.boss.salary

(a)

alice: Employee

salary: 450

hr: Department

maxSalary: 500

bob: Employee

salary: 200

WorksIn
Leads

WorksIn

(b)

emp

dept

emp

450 200

500

WorksIn

Leads

WorksIn

salary salary

maxSalary

(c)

emp

dept

emp

dept

WorksIn
Leads
WorksIn

Leads

emp

dept

emp

dept

WorksIn
Leads
WorksIn

Leads

emp

dept

emp

dept

emp

dept

WorksIn
WorksIn

Leads
Leads
Leads WorksIn

(d)

Fig. 2. Motivating example: (a) UML/OCL class diagram; (b) Sample instance; (c)
Encoding of the instance as a labeled graph; (d) Graph shapes of the three clusters.

To be usable in practice, this model should be strongly satisfiable [3]: it should
have some instance where all integrity constraints are satisfied with each class
having a non-empty population. In our example, the class diagram is satisfiable
and a potential solution is the instance shown in Fig. 2(b). Instances like this
can then be used for validating and testing the UML/OCL model.

We have used the USE Model Validator [12] to generate 25 valid instances
for this model. By manually inspecting these instances, we can easily realize that
most of them are very similar. A designer would be interested in a smaller and
more diverse set of instances that gives the same or even more information as
the 25 original ones. We explain next how this can be achieved with our method.

Applying our method, each object diagram is abstracted as a labeled graph.
As an example, Fig. 2(c) shows the abstraction for the object diagram in
Fig. 2(b). We then apply hierarchical clustering to our 25 graphs using the simi-
larity information provided by a graph kernel algorithm. From the results, valid-
ity indices recommend choosing 3 clusters. Thus, we have discovered that out
of the 25 instances, there are only 3 types of solutions worth considering. The
common pattern in each cluster is depicted in Fig. 2(d).

Notice that one cluster identified by our method (the middle one) highlights
a potential problem in the model: a department where the director works in
another department. This is a corner case worth studying, to decide whether it
should actually be allowed or it is a mistake in the model that needs to be fixed.

The following sections describe the different phases of our approach in detail.

Diverse Scenario Exploration in Model Finders 31

3 Graph Abstraction

Depending on the model finder, instances have a different structure, e.g., an
object diagram, an enriched graph or a set of tuples. In order to take advantage
of off-the-shelf graph comparison algorithms, we translate these instances into
labeled undirected graphs. To this end, we define the vertices, edges and labels
in the graph in terms of the original instance.

Intuitively, the vertices of the graph will describe the object elements in the
instance, while the edges will describe the relationships among them. Labels are
integer values assigned to vertices. Labels will be used to describe information
such as the type of each element or the values of attributes that can, later on,
help to establish whether a pair of vertices from two different graphs can be
considered “equivalent”.

The complexity of this step depends on the kind of output provided by the
model finder. Our approach provides a specific solution for each type of out-
put. As shown in Fig. 2, the abstraction of object diagrams is straightforward
according to this pattern: objects and attributes becomes vertices, links become
edges, and types and attribute values become labels. Similarly, the mapping
from instances in graph-based modeling notations is also trivial: the vertices
and edges of the original graph are preserved while the type of each element is
used as a label for the corresponding vertex. Nevertheless, the transformation
from the relational notation used by Alloy is more involved. Thus, we devote the
remainder of this Section to formalize the abstraction of Alloy instances.

Alloy Models. An Alloy specification is defined as a collection of signatures
and constraints, followed by a command.

Signatures (sig) describe the data in the model. Each signature has a unique
name and represents a set of atoms, the base individuals in Alloy’s logic. Sig-
natures can have fields which take values for each atom of the signature. These
values can be basic data types like integers, other signatures or complex values
like functions or sets. Internally, these values are managed as relations, collec-
tions of tuples with the same arity (number of elements).

It is possible to define a hierarchy among signatures (extends). Moreover,
fields and signatures may have multiplicity constraints limiting their population,
e.g., one or lone (zero or one). In addition to user-defined signatures, Alloy pro-
vides some built-in signatures to describe common data types such as booleans,
integers, strings or sequences.

Regarding constraints, there are different types of constraint: facts (fact)
describe invariants that should always hold; assertions (assert) state desired
properties that should be checked; and predicates (pred) are reusable constraints
where some elements are passed as parameters. Each constraint can be defined
using a mixture of logical operators (e.g., and, not or implies), relational oper-
ators (e.g., dot join or transpose) and quantifiers (e.g., all or some).

Finally, commands instruct the solver which constraint should be analyzed
and the scope (number of atoms) that should considered for each signature.

32 R. Clarisó and J. Cabot

Command check searches for a counterexample of an assertion, while command
run searches for an example of a predicate.

Alloy Snapshots. Executing a command with the Alloy Analyzer may yield
two outcomes: either no instance within the scope satisfies the constraints or an
instance has been found. Instances are called snapshots in the Alloy terminology.

An Alloy snapshot is defined by the following elements:

– A list of signatures, including both built-in and user-defined signatures.
– A list of relations, each one with a fixed arity n.
– A list of free variables in the model, e.g., parameters of predicates and exis-

tentially quantified variables.
– For each signature, a set of atoms.
– For each relation with arity n, a set of tuples of n atoms.
– For each free variable with arity n, a witness, i.e., a set of tuples of n atoms.

That is, when checking for a property with existential quantifiers, Alloy not
only answers whether it is satisfied or not: if it holds, it also computes for which
specific value of the quantified variable (the witness) the property holds.

From Snapshots to Graphs. We need to define how to translate: (1) built-
in signatures, (2) user-defined signatures and (3) relations. As witnesses are a
special type of relation, we do not need to treat them separately.

Regarding built-in signatures, we need to make sure that each value will be
given the same label in different snapshots: an integer like 7 and a string like
“John” should be considered equal among different snapshots. Thus, the first
step is traversing the set of snapshots being abstracted to construct a vocabulary
of values. In this way, we compute a unique label for each value of a basic type.

1. Built-in signatures: We create a vertex for each atom in these signatures,
plus a vertex for each built-in value (string, integer or sequence) used in the
model. We label each vertex with the unique label for that built-in value.

2. User-defined signatures: We create a vertex for each atom. It is labeled
with its signature, i.e., the innermost signature in the signature hierarchy
where it belongs.

3. Relations: We create a vertex v for each tuple, labeled with the name of the
relation. Then, for each i-th element in the tuple, we create a vertex1 labeled
with i connected to both v and the vertex of the corresponding value.

Figure 3 shows an example of this abstraction process. The Alloy model in
Fig. 3(a) describes a DNS server lookup process. We want to validate the poten-
tial scenarios in this process, for instance, whether two names may resolve to
the same IP address. To do that, Alloy finds example instances, highlighting
the offending names (n1 and n2) and DNS (d). Figure 3(b) and (c) show one
sample Alloy instance in textual and graphical format. The corresponding graph

1 The intermediate vertex is omitted when the position i can be inferred: no other
position in the relation has a compatible signature, i.e., with a common supertype.

Diverse Scenario Exploration in Model Finders 33

abstraction is depicted in Fig. 3(d). For clarity, vertices are depicted in a different
shape according to their origin: circles for atoms; rectangles for relations (white)
and positions within relations (grayed); and hexagons for witnesses.

Abstraction and Diversity. Some approaches aimed at achieving diversity
use uniform sampling [5,14,15,18] as their goal: achieving a uniform distribu-
tion among solutions. Nevertheless, the desired notion of diversity may be more
complex (a target probability distribution, a partition into meaningful classes),
and specific to a domain or even a particular problem [6,24]. In the following, we
discuss how this information about the desired type of diversity can be integrated
in the graph abstraction process with very few changes.

For example, let us consider the specification of a banking system. From our
domain knowledge, it seems reasonable to think that the name of the owner
an account is not very relevant: if there are 10 clients in our system, the fact

sig Name, IP {}

sig DNS {

parent: lone DNS,

lookup: Name -> lone IP

}

pred Dup[n1, n2: Name] {

some d: DNS | (n1 != n2) and

(d.lookup[n1] = d.lookup[n2])

}

// Find names with same IP

run Dup for 2

(a)

Atoms

Name = {Name0, Name1}
IP = {IP0}
DNS = {DNS0, DNS1}
Relations

parent = {DNS0->DNS1}
lookup = {DNS1->Name0->IP0,

DNS1->Name1->IP0}
Witnesses

Dup n1 = {Name1}
Dup n2 = {Name0}
Dup d = {DNS1}

(b)

(c)

DNS0 parent DNS1

Name0 Name1

lookup lookup

IP0

n1n2

d1 2

(d)

Fig. 3. Example of graph abstraction: (a) Alloy model; (b) Alloy snapshot in textual
format; (c) Alloy snapshot depicted graphically; (d) Abstracted graph.

34 R. Clarisó and J. Cabot

that all of them are called “John Smith” might not be problematic. Thus, the
name of the owner could be abstracted away in our graph representation, i.e.
remove from the graph the vertices related to this particular attribute. On the
other hand, focusing on the balance of an account, we might be interested in
considering accounts with a positive, negative and zero balance. In this case, we
are not interested in specific values for the balance, only if they fit in these three
categories. In our graph abstraction, this situation can be modeled by using
these categories (instead of the integer value) as the label for the vertex.

4 Graph Kernels

There are different ways to compare a pair of graphs and establish the degree
of similarity between them. For instance, the edit distance measures the number
of atomic changes required to transform one graph into the other. An alterna-
tive is checking for isomorphism2 between the whole graphs or their subgraphs.
However, these approaches have a high computational complexity and may be
unsuitable for comparing large graphs or sizable collections of graphs.

An alternative approach is taken by graph kernels [7,27], a family of methods
for measuring the (dis)similarity among pairs of graphs. Rather than computing
an exact measure for similarity, kernels aim to provide an efficient approximation
that can be computed efficiently but still captures relevant topological informa-
tion about the graphs. A typical approach is counting the number of matching
substructures within the graphs, like paths, subtrees or subgraphs. In this work,
we have used the Weisfeiler-Lehman kernel [22], as it has been shown to provide
good precision with an efficient computation in a variety of domains [13,22].

Algorithm 1 describes the Weisfeiler-Lehman (WL) kernel. The procedure
computes the distance between a pair of graphs G1 and G2 by counting the
number of common subtrees up to height h. To avoid enumerating subtrees
explicitly, a characteristic label is computed for each subtree. This label is con-
structed iteratively: each iteration i computes the label for the tree of height i
rooted in each node v (label(i, v)). Iteration 0 (line 11) uses the original labels
in the graph. Then, each iteration i (lines 14–21) assigns a label to each vertex v
by combining the labels of v and its adjacent vertices in iteration i− 1. Finally,
the distance between the pair of graphs is computed by counting the original
labels (line 12) and the labels for subtrees up to height h (line 22) and comparing
their frequencies (lines 4–6). The complexity of this procedure is O(hm), with
m being the number of edges in the graphs [22]. The parameter h allows us to
control the trade-off between performance and precision.

Notice that thanks to how our graph abstraction process is defined (types
and attribute values as labels), the similarity value computed by the kernel is
implicitly taking advantage of topological, type and attribute value information
from the instance.

2 Graphs G1 = (V1, E1) and G2 = (V2, E2) are called isomorphic if there is a mapping
f : V1 → V2 such that ∀x, y ∈ V1 : (x, y) ∈ E1 iff (f(x), f(y)) ∈ E2.

Diverse Scenario Exploration in Model Finders 35

1 Function WLKernel(G1, G2, h) // Weisfeiler-Lehman graph kernel
input : G1, G2: a pair of labeled graphs; h : an integer (the tree height)
output: A distance measure between G1 and G2

2 freq1 ← WLTest(G1, h); // frequency of each label in G1
3 freq2 ← WLTest(G2, h); // frequency of each label in G2
4 distance ← 0; // distance = difference among frequencies
5 foreach label lab do
6 distance ← distance + |freq1[lab] − freq2[lab]|;
7 return distance;

8 Function WLTest(G,h) // Weisfeiler-Lehman isomorphism test
input : G: a labeled graph G = (V,E); h : an integer (the tree height)
output: A map counting the frequency of labels in G

9 // Initially all labels x have frequency[x] = 0
10 foreach vertex v ∈ V (G) do
11 label(0,v) ← label of v in G;
12 frequency[label(0,v)] ← frequency[label(0,v)] + 1

13 for i ← 1 to h do
14 foreach vertex v ∈ V (G) do
15 adjacentLabels ← labels(i-1, neighbours(v,G));
16 // signature = my label + sorted labels of adjacent vertices
17 signature ← append(label(i-1,v), sort(adjacentLabels));
18 // Assign an integer label that summarizes signature
19 // Two equal signature should always receive the same label
20 // Compressed labels not reused in the next iterations
21 label(i, v) ← compressLabels(signature) ;
22 frequency[label(i,v)] ← frequency[label(i,v)] + 1

23 return frequency;

Algorithm 1: Pseudocode for the Weisfeiler-Lehman graph kernel [22].

5 Clustering

Clustering is one of the fundamental tasks in the field of Machine Learning (ML).
Intuitively, it consists in the analysis of a collection of elements to identify groups
of similar individuals, for a given definition of “similarity”.

Algorithm Selection. Several algorithms have been proposed for this task [29].
There is no single “best” clustering algorithm: the most suitable one depends on
the collection being analyzed. This is because the strategies for finding clusters
can be very different. For example, means and medoids are different definitions
of the “center” of a cluster, and algorithms like K-means and K-medoids aim to
find the best location for those centers. On the other hand, methods like hierar-
chical clustering initially consider each element as a cluster and then iteratively
merge the two nearest clusters.

In order to select which clustering algorithm should be used, the required
input information should be considered:

– Feature versus Kernel methods: Some algorithms like K-means require
each element to be described by a vector of features (relevant characteristics)
of a fixed length. Meanwhile, other algorithms like hierarchical clustering only
require a distance (or similarity) measure among pairs of elements.

– Target number of clusters: Algorithms like K-means or K-medoids require
knowing the target number of clusters a priori. Conversely, algorithms like
hierarchical clustering do not require this information beforehand.

36 R. Clarisó and J. Cabot

In our context, the elements we are trying to cluster are labeled graphs
abstracting the outputs of a model finder. The number of target clusters is
unknown a priori and, as discussed in the previous section, we will be using a
similarity metric. Given this setting, we have chosen hierarchical clustering.

Choice of Number of Clusters. Hierarchical clustering computes a hierarchi-
cal structure called dendogram, a tree that describes the order in which clusters
should be merged according to their similarity. A clustering is obtained when we
decide where (in which level of the tree) the merging should stop. In order to
decide that, we can use cluster validity indices, metrics that measure the quality
of a clustering. In a good clustering, elements within a cluster should be very
similar and very dissimilar to elements in other clusters. The metric is evaluated
in each level of the tree and the clustering providing the optimal value is selected.

In this work, we have used the silhouette coefficient [19], a classical metric
that measures the average distance to elements in the same cluster compared to
the minimum of the average distances to elements in other clusters. It provides
a value in the [−1, 1] range (higher is better), where values below 0.5 signal a
bad fit in the clustering. As mentioned previously, the clustering achieving the
highest average silhouette width is selected as our output.

6 Experimental Results

In order to assess the computational effort of the proposed method and the use-
fulness of its output, we have performed several experiments. These experiments
aim to answer the following research questions:

RQ1. How does the execution time of the method compare to model finding?
RQ2. Do the resulting clusters provide a concise yet diverse summary of the

model finder output?

Experiment Design. We have analyzed a collection of Alloy models provided
in the Alloy GitHub model repository3. Among them, we have chosen examples
dealing with the generation of examples or counterexamples, rather than proving
their absence. These type of models could be used for validation and testing,
and thus they are the target of the proposed method. For these models, we have
used the Alloy Analyzer to generate up to 100 instances (less if there are not
enough valid instances available). Table 1 provides information about the size
and complexity of these models: the number of signatures (Sig), fields (Fields),
facts (Fact) and predicates (Pred) in each Alloy model.

Implementation. We have implemented our method as two separate compo-
nents. First, we have developed a Java program that calls the latest version of
the Alloy API (5.0.0) to compute a collection of instances and generate their
graph abstraction. The output of this tool is stored as a set of files in GML
format. Then, a R script reads the GML files, computes the graph kernel and
3 https://github.com/AlloyTools/models.

https://github.com/AlloyTools/models

Diverse Scenario Exploration in Model Finders 37

Table 1. Summary of the models analyzed with the Alloy Analyzer.

Model Domain Sig Field Fact Pred

chord-bug-model Chord distributed hastable lookup protocol 4 8 3 15

file-system Generic file system 7 4 0 3

firewire Leader election in the Firewire protocol 15 16 2 15

flip-flop Flip-flop state machine 6 8 1 2

genealogy Genealogical relationships 5 2 4 1

grandpa “I am my own grandfather” puzzle 3 3 3 2

philosophers Dining philosophers problem 3 5 1 2

railway Train safety in a railway system 4 5 3 6

reset-flip-flop Evolution of a flip-flop 7 8 1 2

performs the clustering. This script takes advantage of existing libraries for rep-
resenting graphs (the igraph package4), similarity analysis among graphs (the
graphkernels package5) and clustering (the cluster package6).

The experiments have been performed on a quad-core Intel i5-760 2.8 GHz
with 4 GB of RAM. On the software side, we have used Java 9.0.4 64 bits and
R 3.50 64 bits. With respect to the settings, Alloy has used MiniSat as the SAT
solver back-end with the highest amount of symmetry breaking (symmetry=20).
Regarding the graph kernel, the Weisfeiler-Lehman graph kernel has been used
with the default number of iterations (h = 5).

Execution times have been measured in each step of the computation: the
Alloy analysis, the graph abstraction phase and the kernel and clustering phases.

Table 2. Experimental results.

Model Execution time Output

Model Scope Inst finding Abst Kern Clust Total # Cl Sil

chord-bug-model 2 52 498 ms 169 ms 90 ms 30 ms 289 ms 5 0.31

file-system 5 100 825 ms 165 ms 180 ms 30 ms 375 ms 3 0.99

firewire 2–7 100 1474 ms 209 ms 180 ms 40 ms 429 ms 3 0.76

flip-flop 10 100 652 ms 203 ms 180 ms 50 ms 433 ms 2 0.04

genealogy 6 100 830 ms 129 ms 140 ms 50 ms 319 ms 33 0.45

grandpa 4 48 554 ms 88 ms 70 ms 40 ms 198 ms 2 0.96

life 3–6 100 1681 ms 283 ms 180 ms 40 ms 503 ms 14 0.30

philosophers 4 100 1539 ms 157 ms 160 ms 40 ms 357 ms 2 0.30

railway 1–4 100 735 ms 179 ms 170 ms 30 ms 379 ms 50 0.46

reset-flip-flop 10 100 672 ms 250 ms 160 ms 40 ms 450 ms 14 0.48

4 https://igraph.org.
5 https://cran.r-project.org/package=graphkernels.
6 https://cran.r-project.org/package=cluster.

https://igraph.org
https://cran.r-project.org/package=graphkernels
https://cran.r-project.org/package=cluster

38 R. Clarisó and J. Cabot

Results and Discussion. Table 2 shows, for each experiment, the scope used in
the analysis (Scope) and the number of computed instances (Inst). Notice that
for two models there were less than 100 satisfying instances. Then, we describe
the time (in milliseconds) required by Alloy to compute the instances (Model
finding), compared to the time taken by the different steps of our method: graph
abstraction (Abst), graph kernel (Kern) and clustering (Clust). The total time
for the three steps is reported as well. Finally, we list the optimal number of
clusters (# Cl) identified by our method and the silhouette coefficient (Sil). As
mentioned in Sect. 5, the silhouette is a value in the [−1,+1] range that estimates
the quality of the clustering (higher is better).

Considering these results, regarding RQ1 (efficiency) the execution time of
the method is always below 0.5 seconds and less than the time required by Alloy
to compute the instances. This was somewhat expected, as the computational
effort of our approach depends on the number of instances and their size, but it
is unaffected by the hardness of finding instances, the decisive factor in Alloy’s
execution time. Therefore, we can conclude that using our approach does not
incur in a significant overhead with respect to using the model finder.

With respect to the scalability of our approach, let us consider the computa-
tional complexity of our method. We consider two parameters in this analysis:
n, the number of instances that will be computed by the model finder; and m,
the size (number of atoms, tuples in the relation and witnesses) of an instance.
Graph abstraction performs a traversal of the instance, requiring O(m) time.
The graph kernel takes O(m) time for each comparison and performs O(n2)
comparisons, so in total it requires O(m · n2). Finally, clustering requires O(n3)
time, so the overall complexity is O(m · n2 + n3). In terms of space complexity,
we require O(m · n) to store the n graphs, O(n2) to store the similarity matrix
and perform clustering, that is, O(m · n + n2) in total.

Regarding RQ2 (quality of the output) we can see that the proposed num-
ber of clusters varies significantly from one model to another, and so does the
silhouette coefficient:

– Models with a high silhouette (e.g., file-system and grandpa) exhibit some sort
of symmetry that is not being detected by the Alloy Analyzer. For instance,
in file-system there is a symmetry between directory names, so in practice, it
is as if Alloy was only returning the same 3 effective instances all the time.
Models like this one are the scenarios where our approach is most effective.

– Models with a low number of clusters and a low silhouette (e.g., flip-flop)
highlight scenarios where all instances are very similar. For instance, in flip-
flop the instance models 10 steps of a trace in the evolution of a flip-flop. All
these traces are very similar, so no salient features can be used to classify
them. Diversity can only be slightly improved for these scenarios.

– Models with a high number of clusters (e.g., genealogy or railway) describe
scenarios where the instances produced by the solver are already very dissim-
ilar among them. In this case, the output of the solver was already diverse
before applying our method.

Diverse Scenario Exploration in Model Finders 39

– The rest of models, with an average silhouette between (0.4–0.7) illustrate a
middle ground: some instances share similarities but the boundaries between
each group may overlap or be hard to establish. Choosing a representative
from each cluster ensures diversity, but there is the risk (higher for lower
silhouette values) of discarding relevant instances. To reduce this risk, it would
be possible to select a higher number of representatives per cluster.

To sum up, our method can reduce the number of instances to consider
while preserving diversity. Furthermore, this method provides an estimate of the
quality of its result that helps designers deciding when and how to employ it.

7 Related Work

Several works have considered how to improve the diversity in the output of
model finders, e.g., [6,9,11,20,23,26]. We will classify them according to two
criteria: (i) how diversity is specified by the designer and (ii) how it is achieved.

We exclude from this discussion all methods designed for general-purpose
solvers [5,15,25], as they have not been used within model finders and they con-
sider diversity at a lower level of abstraction (e.g., assignments to a boolean for-
mula) where some model-level similarities may be lost (e.g., isomorphic instances
with different bit-vector representations are still equivalent). For instance, a
related software engineering problem that relies on low-level constraint solvers
is finding valid configurations in a software product line. In this context, it has
been shown [18] that SAT solvers designed for uniform sampling (i.e., comput-
ing satisfying assignments that are distributed as close as possible to a uniform
distribution) do not achieve a uniform distribution in the set of computed con-
figurations.

Definition of Diversity. The designer has different ways to specify the desired
notion of diversity. Some methods [6,23] need to be given a probability distribu-
tion that the output instances should follow. Otherwise, the designer can parti-
tion the universe of instances by defining predicates called classifying terms [9].
For instance, for an attribute the designer may only be interested in its sign
(positive, negative or zero), defining 3 partitions. Diversity is then achieved by
finding instances that cover each partition.

Meanwhile, other methods such as [11,26] or the one proposed in this paper
do not require any input from the designer: diversity is defined implicitly by
ensuring non-equivalence or enforcing some distance metric between the output
instances. Nevertheless, in our case, the designer has some degree of control
over the desired type of diversity by adapting the graph abstraction process, as
explained in Sect. 3.

Implementation of Diversity. Most methods operate inside the model finder,
reducing the number of instances being computed in different ways.

Some techniques aim to automatically detect equivalent solutions during the
analysis in order to avoid exploring them. In the context of boolean satisfiability

40 R. Clarisó and J. Cabot

(SAT), SAT-Modulo Theories (SMT) and Constraint Programming (CP) this
notion is called symmetry breaking [3,10] and it is achieved by including addi-
tional constraints a priori. These constraints can also be added dynamically each
time a new instance is found [9,23], to forbid exploring equivalent instances in
the future. Another way to avoid exploring equivalent instances is requiring the
solution to be minimal [2,4,16].

In search-based methods like genetic algorithms [2] or simulated annealing [4],
similarity among solutions can be detected through a distance measure: neigh-
bors that are too close to previously explored solutions can be ignored. Similarly,
in graph solvers graph shape analysis [20,21] can detect equivalent or similar
graphs. Nevertheless, this approach does not support features like attributes,
relations or witnesses like the approach presented in this paper.

Moreover, model finders can introduce randomness [6], such as random selec-
tion of the next value to be explored or random restarts that can help explore
different areas of the search space. Another take on randomness, randomized
partitioning [11], shares the goal of classifying terms (partitioning the solution
space) but generates the partitions by randomly splitting the domains of model
elements. While this approach may be successful in problems with simple and
local constraints, it is ineffective when dealing with complex constraints.

Finally, the COMODI tool [6] provides several techniques for clustering the
object diagrams produced by a UML/OCL model finder. First, it defines a fea-
ture vector encoding for object diagrams that captures, for each object, infor-
mation about attribute values and adjacent objects. And second, it defines a
centrality metric (similar to the pagerank algorithm of search engines) that
measures the importance of each object within the object diagram. Compared
to our method, this approach is specific for object diagrams: it cannot deal with
features from other modeling notations, such as Alloy’s relations or witnesses.
Furthermore, the proposed similarity metrics do not consider information about
types, structure and attribute values simultaneously: the centrality metric omits
attribute values entirely; and the feature vector approach does not consider topo-
logical information about the structure of the object diagram.

8 Conclusions

We have presented a method for addressing the lack of diversity among the
instances computed by a model finder. Our approach uses clustering to group
instances according to their similarity, using information both about topology,
types and attribute. The method is solver- and notation-agnostic: it can be
applied to model finders using different types of solvers (e.g., SAT, SMT or CP)
and even targeting different modeling notations (e.g., UML/OCL or Alloy).

This approach is capable of computing meaningful clusters and has an execu-
tion time that is negligible with respect to that of the model finder itself. Still, as
our diversity computation is an a posteriori procedure, it is intended for valida-
tion and testing scenarios where model finders are able to find instance solutions
with relative ease. In this sense, our approach does not increase the diversity of

Diverse Scenario Exploration in Model Finders 41

the model finder output. However, it maximizes diversity by selecting, on behalf
of the user, the widest possible variation among the output set.

As future work, we plan to define custom kernels for comparing instances that
take into account specific characteristics of the input model. For instance, the
invariants and multiplicities in the model can be used to identify which model
elements are more constrained: this is where diversity is most relevant, rather
than elements where we are free to choose almost any value. Also, we plan to look
into combining graph kernels with topological and label features [13] that can
improve the quality of the similarity analysis. Finally, we will consider strategies
for tailoring the graph abstraction to particular problems and domains.

References

1. Ali, S., Zohaib Iqbal, M., Arcuri, A., Briand, L.C.: Generating test data from OCL
constraints with search techniques. IEEE Trans. Softw. Eng. 39(10), 1376–1402
(2013). https://doi.org/10.1109/TSE.2013.17

2. Batot, E., Sahraoui, H.: A generic framework for model-set selection for the unifica-
tion of testing and learning MDE tasks. In: ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems (MODELS 2016), pp. 374–
384. ACM Press, New York (2016). https://doi.org/10.1145/2976767.2976785

3. Cabot, J., Clarisó, R., Riera, D.: On the verification of UML/OCL class diagrams
using constraint programming. J. Syst. Softw. 93, 1–23 (2014). https://doi.org/
10.1016/j.jss.2014.03.023

4. Cadavid, J.J., Baudry, B., Sahraoui, H.: Searching the boundaries of a modeling
space to test metamodels. In: IEEE International Conference on Software Testing,
Verification and Validation (ICST 2012), pp. 131–140. IEEE (2012). https://doi.
org/10.1109/ICST.2012.93

5. Dutra, R., Laeufer, K., Bachrach, J., Sen, K.: Efficient sampling of SAT solutions
for testing. In: International Conference on Software Engineering (ICSE 2018), pp.
549–559. ACM (2018). https://doi.org/10.1145/3180155.3180248

6. Ferdjoukh, A., Galinier, F., Bourreau, E., Chateau, A., Nebut, C.: Measurement
and generation of diversity and meaningfulness in model driven engineering. Int.
J. Adv. Softw. 11(1/2), 131–146 (2018). https://hal-lirmm.ccsd.cnrs.fr/lirmm-
02067506

7. Ghosh, S., Das, N., Gonçalves, T., Quaresma, P., Kundu, M.: The journey of graph
kernels through two decades. Comput. Sci. Rev. 27, 88–111 (2018). https://doi.
org/10.1016/J.COSREV.2017.11.002

8. González, C.A., Cabot, J.: Formal verification of static software models in MDE:
a systematic review. Inf. Softw. Technol. 56(8), 821–838 (2014). https://doi.org/
10.1016/j.infsof.2014.03.003

9. Hilken, F., Gogolla, M., Burgueño, L., Vallecillo, A.: Testing models and model
transformations using classifying terms. Softw. Syst. Modeling 17(3), 885–912
(2016). https://doi.org/10.1007/s10270-016-0568-3

10. Jackson, D.: Software Abstractions: Logic, Language and Analysis. MIT Press,
Cambridge (2006). https://mitpress.mit.edu/books/software-abstractions

11. Jackson, E.K., Simko, G., Sztipanovits, J.: Diversely enumerating system-level
architectures. In: International Conference on Embedded Software (EMSOFT
2013), pp. 1–10. IEEE, September 2013. https://doi.org/10.1109/EMSOFT.2013.
6658589

https://doi.org/10.1109/TSE.2013.17
https://doi.org/10.1145/2976767.2976785
https://doi.org/10.1016/j.jss.2014.03.023
https://doi.org/10.1016/j.jss.2014.03.023
https://doi.org/10.1109/ICST.2012.93
https://doi.org/10.1109/ICST.2012.93
https://doi.org/10.1145/3180155.3180248
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02067506
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02067506
https://doi.org/10.1016/J.COSREV.2017.11.002
https://doi.org/10.1016/J.COSREV.2017.11.002
https://doi.org/10.1016/j.infsof.2014.03.003
https://doi.org/10.1016/j.infsof.2014.03.003
https://doi.org/10.1007/s10270-016-0568-3
https://mitpress.mit.edu/books/software-abstractions
https://doi.org/10.1109/EMSOFT.2013.6658589
https://doi.org/10.1109/EMSOFT.2013.6658589

42 R. Clarisó and J. Cabot

12. Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive validation of OCL models
by integrating SAT solving into USE. In: Bishop, J., Vallecillo, A. (eds.) TOOLS
2011. LNCS, vol. 6705, pp. 290–306. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21952-8 21

13. Li, G., Semerci, M., Yener, B., Zaki, M.J.: Effective graph classification based on
topological and label attributes. Stat. Anal. Data Mining 5(4), 265–283 (2012).
https://doi.org/10.1002/sam.11153

14. Mougenot, A., Darrasse, A., Blanc, X., Soria, M.: Uniform random generation
of huge metamodel instances. In: Paige, R.F., Hartman, A., Rensink, A. (eds.)
ECMDA-FA 2009. LNCS, vol. 5562, pp. 130–145. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02674-4 10

15. Nadel, A.: Generating diverse solutions in SAT. In: Sakallah, K.A., Simon, L. (eds.)
SAT 2011. LNCS, vol. 6695, pp. 287–301. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-21581-0 23

16. Nelson, T., Saghafi, S., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Aluminum:
principled scenario exploration through minimality. In: International Conference
on Software Engineering (ICSE 2013), pp. 232–241. IEEE, May 2013. https://doi.
org/10.1109/ICSE.2013.6606569

17. Petre, M.: UML in practice. In: International Conference on Software Engineering
(ICSE 2013), pp. 722–731. IEEE Press (2013). https://doi.org/10.1109/ICSE.2013.
6606618

18. Plazar, Q., Acher, M., Perrouin, G., Devroey, X., Cordy, M.: Uniform sampling
of SAT solutions for configurable systems: are we there yet? In: IEEE Conference
on Software Testing, Validation and Verification (ICST 2019), pp. 240–251. IEEE
(2019). https://doi.org/10.1109/ICST.2019.00032

19. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. J. Comput. Appl. Math. 20(1), 53–65 (1987). https://doi.org/
10.1016/0377-0427(87)90125-7

20. Semeráth, O., Nagy, A.S., Varró, D.: A graph solver for the automated generation of
consistent domain-specific models. In: International Conference on Software Engi-
neering (ICSE 2018), pp. 969–980. ACM Press (2018). https://doi.org/10.1145/
3180155.3180186

21. Semeráth, O., Varró, D.: Iterative generation of diverse models for testing spec-
ifications of DSL tools. In: Russo, A., Schürr, A. (eds.) FASE 2018. LNCS, vol.
10802, pp. 227–245. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
89363-1 13

22. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2001).
https://dl.acm.org/citation.cfm?id=2078187

23. Soltana, G., Sabetzadeh, M., Briand, L.C.: Synthetic data generation for statis-
tical testing. In: IEEE/ACM International Conference on Automated Software
Engineering (ASE 2017), pp. 872–882. IEEE (2017). https://doi.org/10.1109/ASE.
2017.8115698

24. Soltana, G., Sabetzadeh, M., Briand, L.C.: Practical model-driven data generation
for system testing. ACM Transactions on Software Engineering and Methodology
(2020, to appear). http://arxiv.org/abs/1902.00397

25. Vadlamudi, S.G., Kambhampati, S.: A combinatorial search perspective on diverse
solution generation. In: AAAI Conference on Artificial Intelligence, pp. 776–783.
AAAI Press (2016). https://dl.acm.org/citation.cfm?id=3015927

https://doi.org/10.1007/978-3-642-21952-8_21
https://doi.org/10.1007/978-3-642-21952-8_21
https://doi.org/10.1002/sam.11153
https://doi.org/10.1007/978-3-642-02674-4_10
https://doi.org/10.1007/978-3-642-21581-0_23
https://doi.org/10.1007/978-3-642-21581-0_23
https://doi.org/10.1109/ICSE.2013.6606569
https://doi.org/10.1109/ICSE.2013.6606569
https://doi.org/10.1109/ICSE.2013.6606618
https://doi.org/10.1109/ICSE.2013.6606618
https://doi.org/10.1109/ICST.2019.00032
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1145/3180155.3180186
https://doi.org/10.1145/3180155.3180186
https://doi.org/10.1007/978-3-319-89363-1_13
https://doi.org/10.1007/978-3-319-89363-1_13
https://dl.acm.org/citation.cfm?id=2078187
https://doi.org/10.1109/ASE.2017.8115698
https://doi.org/10.1109/ASE.2017.8115698
http://arxiv.org/abs/1902.00397
https://dl.acm.org/citation.cfm?id=3015927

Diverse Scenario Exploration in Model Finders 43

26. Varró, D., Semeráth, O., Szárnyas, G., Horváth, Á.: Towards the automated gen-
eration of consistent, diverse, scalable and realistic graph models. In: Heckel, R.,
Taentzer, G. (eds.) Graph Transformation, Specifications, and Nets. LNCS, vol.
10800, pp. 285–312. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
75396-6 16

27. Vishwanathan, S., Schraudolph, N.N., Kondor, R., Borgwardt, K.M.: Graph ker-
nels. J. Mach. Learn. Res. 11(Apr), 1201–1242 (2010). http://www.jmlr.org/
papers/v11/vishwanathan10a.html

28. Wu, H.: MaxUSE: a tool for finding achievable constraints and conflicts for incon-
sistent UML class diagrams. In: Polikarpova, N., Schneider, S. (eds.) IFM 2017.
LNCS, vol. 10510, pp. 348–356. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66845-1 23

29. Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw.
16(3), 645–678 (2005). https://doi.org/10.1109/TNN.2005.845141

https://doi.org/10.1007/978-3-319-75396-6_16
https://doi.org/10.1007/978-3-319-75396-6_16
http://www.jmlr.org/papers/v11/vishwanathan10a.html
http://www.jmlr.org/papers/v11/vishwanathan10a.html
https://doi.org/10.1007/978-3-319-66845-1_23
https://doi.org/10.1007/978-3-319-66845-1_23
https://doi.org/10.1109/TNN.2005.845141

Formal Verification of Interoperability
Between Future Network Architectures

Using Alloy

Mohammad Jahanian1(B), Jiachen Chen2, and K. K. Ramakrishnan1

1 University of California, Riverside, CA, USA
mjaha001@ucr.edu, kk@cs.ucr.edu

2 WINLAB, Rutgers University, North Brunswick, NJ, USA
jiachen@winlab.rutgers.edu

Abstract. The Internet is composed of many interconnected, interop-
erating networks. With the recent advances in Future Internet design,
multiple new network architectures, especially Information-Centric Net-
works (ICN) have emerged. Given the ubiquity of networks based on the
Internet Protocol (IP), it is likely that we will have a number of different
interconnecting network domains with different architectures, including
ICNs. Their interoperability is important, but at the same time difficult
to prove. A formal tool can be helpful for such analysis. ICNs have a num-
ber of unique characteristics, warranting formal analysis, establishing
properties that go beyond, and are different from, what have been used
in the state-of-the-art because ICN operates at the level of content names
rather than node addresses. We need to focus on node-to-content reach-
ability, rather than node-to-node reachability. In this paper, we present
a formal approach to model and analyze information-centric interoper-
ability (ICI). We use Alloy Analyzer’s model finding approach to verify
properties expressed as invariants for information-centric services (both
pull and push-based models) including content reachability and return-
ability. We extend our use of Alloy to model counting, to quantitatively
analyze failure and mobility properties. We present a formally-verified
ICI framework that allows for seamless interoperation among a multi-
tude of network architectures. We also report on the impact of domain
types, routing policies, and binding techniques on the probability of con-
tent reachability and returnability, under failures and mobility.

1 Introduction

Today’s computer networks, the Internet being a dominant example, are heavily
used to fulfill users’ information-centric needs: users primarily seek informa-
tion over the network without necessarily wanting to focus on its location or
the underlying mechanisms used to retrieve it [9]. However, the current way of
using “location-based” access in IP networks results in a less convenient and less
efficient means for information retrieval and dissemination. Information-Centric
Networks (ICNs) address this content-oriented networking paradigm by separat-
ing content identity from its location [9]. ICN enables access to content based on
c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 44–60, 2020.
https://doi.org/10.1007/978-3-030-48077-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-48077-6_4

Formal Verification of Future Networks Interoperability 45

its name, from wherever it resides, supporting mobility as well as accessing the
named content from the best, any, or all source(s). It also allows for network-wide
caching to reduce access latency. There are a variety of ICN architectures which
have been proposed in the past decade. Two of the most notable ones, which
we primarily focus on in this paper, are Named Data Networks (NDN) [20], and
MobilityFirst [16], which have been considered for Future Internet designs [3].

Currently, there are two main factors that make the discussion of network
interoperability important: 1) Today, IP is ubiquitous and used on a majority
of network devices, despite the legacy of end-point address-oriented communica-
tion, especially considering new services and demands on today’s networks [15].
2) Research on designing new network architectures radically different from IP,
is ongoing, and in many cases has already led to implemented systems; our focus
in this paper is on an important class of such architectures, namely ICN. It is
anticipated that we may have a number of interconnected networks (domains)
using different architectures [15]. To go beyond the interconnection (i.e., physi-
cal connections between different domains) towards interoperation between them
(i.e., being able to use a service, or content, provided by one domain in another
domain), we need network interoperability. In the past decade, several designs
have been proposed for interoperation between an ICN architecture (either NDN
or MF) with IP [3]. However, such designs and their requirements were presented
informally, describing the primitives and operations. It has been observed that
network interoperability is complex [19]; thus, a formal structure for analysis
of information-centric interoperability (ICI) can be very helpful, as it can pro-
vide proofs or expose errors early on, before the universal deployment of ICI
frameworks for Future Internet.

Formal methods have been extensively used for designing and analyzing com-
puter networks and protocols (surveyed in [14]). As for interoperability, work in
[19] proposed a formal model to analyze interoperation of legacy networks. How-
ever, it only deals with host-centric interoperability (HCI), and only uses classic
model finding [17] reasoning techniques. We extend that to support ICI as well
as modeling failure and mobility with model counting [7] techniques. Network
verification tools have also been proposed to analyze network data and control
planes. Recently, work in [10] proposed a tool to verify ICN data planes, analyz-
ing properties such as reachability. However, it only deals with a single domain,
while our goal here is to cover multiple domains with different architectures
coexisting with each other. Also, the symbolic execution nature of works such as
[10] is computationally too expensive when expanded across multiple domains,
each having its own data plane.

We present an Alloy [8]-based formalization of ICI, to analyze interoperability
correctness. We cover both pull-based (request/response) and push-based (pub-
lish/subscribe) [6] content retrieval services, and their most essential properties
such as content reachability and returnability. To analyze content-oriented ser-
vices, we distinguish between static and dynamic content, justifying their dif-
ferences, and specifying no-conflict properties, especially for dynamic content
retrieval. For verification of these properties, we use Alloy Analyzer’s built-in SAT
solver-based model finding engine [2]. We also consider failure and mobility; to

46 M. Jahanian et al.

analyze them, mere model finding is not sufficient, as failure and mobility, when
severe, can cause any network protocol to become “incorrect” (and raise coun-
terexamples). Thus, for such analysis, we resort to model counting (to count and
compare the number of satisfying instances and counterexamples) to assess “how
well” a particular domain or architecture is doing under failure and mobility.

The major contributions of this paper are: 1) a model finding method to
analyze basic properties (mainly reachability and returnability) of information-
centric interoperability (ICI); 2) a formally-verified ICI framework; and 3) a
model counting method to analyze gateway failure and mobility.

2 Background and Related Work

2.1 Information-Centric Networking (ICN) and Interoperability

ICN enables access to content independent of its location, focusing on the fact
that what matters to users is what the content is rather than where that content
is located [9]. An ICN network layer recognizes and makes its forwarding deci-
sions based on content names (or IDs) instead of addresses (unlike host-centric
networks, as in today’s IP networks), achieving efficiency and scalability.

Among many different ICN architectures proposed recently, we focus on the
two most popular ones, namely Named Data Networks (NDN) [20] and Mobil-
ityFirst (MF) [16]. Both allow users to retrieve content using content names,
through pull-based request/response or push-based publish/subscribe methods
[6]. In-network content caching in routers is an important feature of ICN, allow-
ing for requests to be satisfied from an intermediate cache on the path to the
server/repository [9]. An in-network namespace is generally a graphical structure
that captures the content names and their relationships in an ICN’s content space
[12]. Despite both being ICNs, NDN and MF have important differences [16,20]:
NDN uses human-readable hierarchically-structured names, with Longest Pre-
fix Matching-based forwarding. NDN content requests (called Interests) leave
“breadcrumb” state in the routers on their path, which the associated response
(called Data packets) then follow back, via Reverse Path Forwarding (RPF). MF,
on the other hand, uses flat IDs (called GUIDs) to identify content. Response
packets contain the consumer’s ID and do not need to follow the same path
as the request. Also, MF inherently supports mobility by late binding, which
re-directs in-flight packets towards a mobile content repository. Early binding
assigns names to locations strictly at the original client, while late binding allows
such assignment to be updated on its way in the network [16].

There have been several proposals for interoperability frameworks for ICNs
(surveyed in [3]). These frameworks typically consist of interoperation gateways
between domains of different network architectures, performing translations
between them. All of these proposals allow interoperation of just two domains,
IP and one ICN (either NDN or MF), and often require addition of new proto-
cols or modification of existing ones. We generalize these solutions in our model
to an interoperability framework of multiple (≥2) domain types (we allow IP,
NDN and MF to coexist simultaneously), and do not change any domain-specific
protocols.

Formal Verification of Future Networks Interoperability 47

2.2 Alloy

Alloy is a declarative language based on relations and first order logic [8]. Alloy
models a system, M , through the declaration of signatures (objects and their
relations) and facts (constraints and axioms). A predicate is defined as a logical
formula. An Assertion is a logical formula (which can be a combination of pred-
icates) that are required to be always true (i.e., as invariants) in the system.
Alloy Analyzer [2] allows the automatic analysis of models and their properties
through utilizing off-the-shelf SAT solvers. The tool translates Alloy descrip-
tions into Conjunctive Normal Form (CNF) expressions. It uses an enumeration
of instances, also called model finding, within a bound (scope), to prove whether
or not a predicate P ever holds (by SAT-solving M∧P), or an assertion A always
holds as an invariant (by SAT-solving M ∧ ¬A, to look for counterexamples).

Alloy has been used in modeling and analysis of many systems, including
network protocols and architectures [8]. In the particular case of network inter-
operability, Zave [19] used Alloy to formally analyze host-centric interoperabil-
ity for legacy networks, with domains of the Public Switched Telephone Net-
work (PSTN), BoxOS and the Session Initiation Protocol (SIP). We extend the
approach to model and analyze interoperability of information-centric services
and architectures, since we are dealing with radically different network designs
(name-based networking vs. address-based [9]) and required properties (node-to-
content reachability vs. node-to-node reachability [10]). Additionally, we extend
the classic Alloy-based model finding approach, such as in [19], to a model count-
ing one, to quantitatively analyze the impacts of failure and mobility. An impor-
tant feature of Alloy is its strength in efficiently handling graph structures and
properties [18], a feature that we benefit from, in two ways: 1) the composite
network topology, and 2) a graph-based information namespace. Further, Alloy
helps provide proofs for properties with a reasonably large scope [18].

3 Modeling Information-Centric Interoperability

We now describe the basics of our formal model1. First and foremost, let us
define information-centric interoperability (ICI):

Definition 1. A sequence of interconnected domains in a network are
information-centrically interoperable if and only if any client in any of the
domains can access information-centric services provided in any other domain.

Throughout this paper, we use the term “network” to mean “a composition
of multiple network domains”, each domain being a different type of standalone
architecture (e.g., IP, NDN, or MF). An interoperability framework (such as [3])
is a set of protocols and architectural components that allow interconnected net-
works of different types to interoperate. Information-centric services are broadly
sub-categorized as: 1) requesting for and retrieving content (pull-based), and 2)

1 Full source files are available in [1].

48 M. Jahanian et al.

C

R1

GW1 GW2
Interest
name=/MF/175

HTTP GET /MF/175
source IP= GW1.IP
des na on IP= GW2.IP

des na on
GUID= 175

W
an

ts
 to

 re
tr

ie
ve

co

nt
en

t w
ith

GU

ID
=1

75
 in

 M
F NDN IP MF

R2 An
y

re
po

sit
or

y
or

ro

ut
er

 c
ac

he
 th

at

ha
s ‘

17
5’

Fig. 1. Information-centric interoperability (ICI): request for content

Client0

RevRoute0 RevRoute1

Route1Route0

Domain0

GW0

Domain1

Keyword0,
ContentID0
or Prefix0

w
an

ts

Group0 Group1

ContentID0

Content0

Server0
Repos0 or
Publisher0

map[Keyword0]

domains

initiator
acceptor

Fig. 2. Example (partial) instance for ICI Alloy model (objects and relations)

subscribing to and receiving content (push-based). Both of these may be based
on namespaces defined by content producers. An example 3-domain ICI scenario
is depicted in Fig. 1. As shown, ICI accesses content by name, rather than an
address. Also, requests can be satisfied at any cache node, not just the original
server. As for formal analysis, in ICI, the main property we care about is node-to-
content reachability [10], while in traditional host-centric interoperability (HCI)
analysis [19], the focus is on node-to-node reachability.

We model our networked environment using Alloy’s relational and logical
atoms. We have Domains (as abstract signatures), each of which can be an IP,
NDN, or MF type (extended signatures) (Listing 3.1). A Node is at least in one
Domain and has at least one NodeID . A Node can be either a Client, Repos
(repository/server), or GW (gateway). A gateway is associated with exactly two
Domains (constrained using facts), that it is stitching together (Listing 3.2.)

Listing 3.1. Domains

abstract sig Domain{}
sig IPdomain extends Domain{}
sig NDNdomain extends Domain{}
sig MFdomain extends Domain{}

Listing 3.2. Nodes

abstract sig Node{domains: some Domain, id:
some NodeID}

sig Client extends Node{...}{...}
sig Repos extends Node{...}{...}
sig GW extends Node{...}{#domains=2 && ...}

Our declarations specify a network meta-model [8], which maps to a number
of instances (models) each being a network configuration (i.e., with their own
topology, content, namespace, etc.). An example 2-domain instance is depicted
in Fig. 2, as a high-level schematic, showing objects and their inter-relations. The
Client here wishes to retrieve some Content using its ContentID or a (set of)
Keyword(s). Objects of type Route and RevRoute (reverse route) couple the
notion of “a series of links” and “packets carried over them”, the packet carry-
ing content request and response, respectively. A Route has attributes such as
initiator, acceptor, and a request for ContentID . We also extend signatures to

Formal Verification of Future Networks Interoperability 49

add more fine-grained, domain-specific characteristics. One of Route’s extended
object types, namely IPRoute, inherits its attributes and constraints, and also
has additional attributes such as srcIPaddress and destIPaddress, and constraints
saying that source and destination IP addresses must correctly correspond to ini-
tiator and acceptor nodes. Gateways perform translation for forwarding requests
(over a composition of Routes), and retain state information which they use to
forward the content back to the client (over composition of RevRoutes). We also
add a number of additional facts, such as uniqueness of node ID, absence of self-
looping routes, and the existence of one-to-one mapping between NDN’s forward
and reverse routes (to reflect NDN’s RPF policy [20]).

We define a global-state relation C that captures routes to/from gateways. To
model connectivity, we use the transitive closure of the route-connections relation
C where (r1, r2) ∈ C if and only if there exists a gateway between two domains
that connects routes r1 and r2. E.g., if we have C = {(r1, r2), (r2, r3)}, then its
transitive closure C+ = {(r1, r2), (r2, r3), (r1, r3)} will represent existing paths
of any length (i.e., number of routes). We define object type Connections (as a
singleton) to capture these connections (i.e., relation C); it has attributes being
relations themselves, primarily connected and revconnected, to capture connec-
tion relations of Routes and RevRoutes respectively. Relation revconnected has
an additional constraint, which says that for two reverse routes rr1 and rr2
connected at gateway gw, corresponding state information (associated with the
ContentID or other multiplexing/demultiplexing values in rr1 and rr2) must be
stored on gw, so that the content can be carried over this cascade of reverse routes
towards the consumer (Listing 3.3). Additionally, we define a fact (path exists,
Listing 3.4) that ensures any two nodes are connected (through one or multi-
ple Routes or RevRoutes), to reduce our instance space to only the ones with
strongly connected topology.

Listing 3.3. Connections: capture the connectivity of routes and groups

one sig Connections{connected: Route->Route, revconnected: RevRoute->RevRoute,
chain: Group->Group, revchain: Group->Group}

fact connectivity{ -- conditions for two (reverse) routes being ‘‘connected’’
all r1,r2:sRoute, c:Connections |

(r1->r2) in c.connected <=>
r1.acceptor = r2.initiator && r1.contentID = r2.contentID &&

r1.reposdomain = r2.reposdomain -- requests for same content
-- similar condition for RevRoute paths (with extra criteria: gateway state

information should match for the two connecting reverse routes) ...
}

Listing 3.4. Constraints to ensure that a path exists between any two nodes

fact path_exists{
all co:Connections, disj n1,n2:Node, cid:ContentID, rd: Domain |

(some r:Repos | rd in r.domains =>
(some r1,r2:Route | (r1->r2) in ^(co.connected) && r1.initiator = n1

&& r2.acceptor = n2 && r1.contentID = cid && r2.contentID = cid
&& r1.reposdomain = rd && r2.reposdomain = rd))

-- similar condition for RevRoute paths ...
}

While Routes represent unicast exchange paths, we define Groups to denote
multicast groups (one-to-many communication), enabling push-based notifica-
tion models. Following the principles of ICN, each group is associated with a

50 M. Jahanian et al.

content name Prefix [6] and can be used for publish/subscribe exchanges regard-
ing that prefix. Each group belongs to one domain. To model a connection of
groups across multiple domains, we add relation attributes chain and revchain
to Connections (Listing 3.3), to capture connectivity of groups (as a chain) for
subscription and publication respectively. To ensure strong connectivity, we add
a fact that says any two groups serving the same prefix are chained (Listing 3.5).

Listing 3.5. Constraints to ensure that a chain of connectivity exists between groups

fact GroupRules{
all disj g1,g2:Group, co:Connections | -- group chain conditions

(g1->g2) in co.chain <=>
(g1.prefix = g2.prefix &&
(some gw:GW| g1.domain in gw.domains && g2.domain in gw.domains))

all disj d1,d2:Domain, co:Connections, p:Prefix | -- chains for each prefix
some disj g1,g2:Group |

g1.domain = d1 && g2.domain = d2 && (g1->g2) in ^(co.chain) &&
g1.prefix = p && g2.prefix = p

-- similiar conditions for revchain ...
}

Content naming is integral in ICI. We define names, i.e., ContentID objects
for each Content. Based on domain type, ContentID can be either URL (in IP),
NDNName (in NDN) or ContentGUID (in MF) (Listing 3.6). Each ContentID
is a leaf node under a Prefix in the prefix tree (PTree). An example prefix tree
is shown in Fig. 3, which represents the network’s content namespace. PTree
may contain a number of fragmented sub-trees (i.e., as a forest), each sub-tree
representing the namespace of a different (set of) content provider(s) in differ-
ent domains. To represent the structure of hierarchical prefixes, we use binary
relations to model the immediate parent-child relationship between prefixes in
PTree. In Fig. 3, the relation P = {(P1, P2), (P1, P3), (P2, P4), (P2, P5)} rep-
resents such relationships, and is captured in the prefix-to-prefix relation map
in PTree (Listing 3.6). We also use its transitive closure to model the ancestor-
descendant relationships. We add additional facts to ensure basic constraints on
the tree, such as the non-existence of loops.

Listing 3.6. Content IDs and Prefix Tree

abstract sig ContentID{prefix: Prefix}
sig URL extends ContentID{} -- if in IP
sig NDNName extends ContentID{} -- if in NDN
sig ContentGUID extends ContentID{} --if in MF
sig Prefix{parent: lone Prefix, domains: some

Domain} -- each Prefix has exactly one
parent and is at least in one domain

one sig PTree {map: Prefix set -> set Prefix}

“/”

“/news”“/sports”

“/sports/football” “/sports/basketball”

P1

P2 P3

P4 P5

Fig. 3. Prefix tree example

4 Satisfying Information-Centric Service Properties

There are a number of important properties that are required from the frame-
work, to ensure interoperability as defined in Definition 1. We consider prop-
erties of two classes of information-centric services here: pull-based (for uni-
cast request/response), and push-based (for multicast publish/subscribe) con-
tent retrieval. We further divide the pull-based services into two categories: static

Formal Verification of Future Networks Interoperability 51

content retrieval (SCR) and dynamic content retrieval (DCR). This distinction is
important as the nature, protocol for retrieval, and thus formal properties of the
two are different: static content is one that does not change in a long time (e.g.,
a movie) and can be retrieved from its original producer as well as a cache, while
dynamic content is created once on demand (e.g., result of a Google search), and
must be retrieved from its original server (not from a cache). Additionally, we
assume content requests are assumed to be genuine and correct, i.e., false and
bogus content requests are not our focus here.

We study essential invariant properties, guaranteed to hold at all times.
These properties are primarily associated with content-oriented reachability and
returnability. We formally specify these properties, using Alloy predicates and
assertions. For verification, Alloy’s built-in model finding engine is used to find
satisfying instances and counterexamples. Any counterexample found indicates
interoperability violations: e.g., a client cannot generate a request native to its
domain, or the gateway does not know what to do with a returned response.

4.1 Pull-Based Retrieval: Request/Response

Static Content Retrieval. In the static content retrieval (SCR) service, the
request packets carry content IDs which the client requests, and the response
packets produced by repositories (can be content producers or router caches)
carry the data associated with that content ID. We describe two of SCR’s essen-
tial content-oriented properties using Alloy (Listings 4.1 and 4.2).

Property 1.1. SCR Reachability: For every client that wants to retrieve content
associated with a content ID and has a direct route to a gateway, there is a
repository with content having that ID reachable from that gateway.

Property 1.2. SCR Returnability: For every client that reaches a repository with
a request, there is a path back to the client for the response with the content.

Listing 4.1. SCR reachability property

pred reach[c:Client, cid:ContentID, re:Repos, gw:GW]{ -- reachability predicate
all co: Connections | cid in c.want => -- if requested

(some r:Route, con:Content | r.initiator = c && r.acceptor = gw &&
r.contentID = cid && (cid->con) in re.map =>

some r1,r2:Route | (r1->r2) in ^(co.connected) && r1.initiator = gw &&
r2.acceptor = re && r1.contentID = cid && r2.contentID = cid &&
r1.reposdomain in re.domains && r2.reposdomain in re.domains)}

assert reach{ -- reachability assertion
all c:Client, cid:ContentID| some re:Repos, gw:GW | reach[c,cid,re,gw]}

Listing 4.2. SCR returnability property

pred return[c:Client, cid:ContentID, re:Repos, gw:GW]{ -- returnability
predicate

all co:Connections | some gw1:GW | reach[c,cid,re,gw1] => -- if reachable
(some r,r1,r2:RevRoute | (r1->r2) in ^(co.revconnected) &&
r1.initiator = re && r2.acceptor = gw &&
r1.content = re.map[cid] && r2.content = re.map[cid] &&
r.initiator = gw && r.acceptor = c && r.content = re.map[cid])}

assert return{ -- returnability assertion
all c:Client, cid:ContentID, re:Repos | some gw:GW | return[c,cid,re,gw]}

52 M. Jahanian et al.

Dynamic Content Retrieval. In DCR, every request has to be mapped to a
unique response, as opposed to SCR. To facilitate this, having a demux value (for
multiplexing/demultiplexing) is essential for DCR, to provide the correct map-
ping of responses to requests; since every generated response is specific to not just
the request’s name, but also its input parameters. To access dynamic content from
a server, a client generates a query for which the gateway keeps state as <nodeID,
demux> of the requesting side and <demux> for the serving side. Reachabil-
ity and returnability are still important in DCR (Properties 2.1–2.2). However,
if the same SCR protocol is used for DCR, there can be conflicts between multi-
ple requests, e.g., a cached content may get sent back to multiple distinct clients.
Therefore, we define no-conflict properties for DCR (Property 2.3).

Property 2.1–2.2. DCR Reachability and Returnability: These two properties
are similar to those of SCR; with the difference being additional constraints
regarding elements of DCR requests, i.e., including generation and verification
of the correct demux values at gateways (i.e., in addition to contentID, etc.).

Property 2.3. No-conflict between distinct requests/clients: For every client that
searches for two distinct content items (no-conflict-A, Listing 4.3), or a dynamic
content requested by two different clients (no-conflict-B, Listing 4.4), two dis-
tinct, appropriately associated responses, should be received back. In no-conflict-
A, the focus is on the distinction between two return-ed contents, associated
with two distinct requests made by a given Client for distinct Keywords k1 and
k2. On the other hand, no-conflict-B focuses on the distinction between two
return-ed contents, associated with requests for a particular Keyword initiated
by two distinct Clients c1 and c2.

This property shows the importance of having two separate demux values in
packets, namely both the request ID (required for Property 2.3.a) and client ID
(required for Property 2.3.b), to make each dynamic request globally unique, for
correct multiplexing/demultiplexing. If we remove either of those two elements,
this property will be violated and counterexamples will arise; i.e., the gateway
would not know how to demultiplex incoming response data to serve the correct,
corresponding requesting client.

Listing 4.3. DCR - No conflict between 2 distinct requests from the same client

assert no-conflict-A{ -- Property 2.3.a
all c:Client, disj k1,k2:Keyword | some s1,s2:Server, gw1,gw2:GW |

return[c,k1,s1,gw1] && return[c,k2,s2,gw2] => some n1,n2: NodeID,
d1,d2,d3,d4:Demux |

(n1->d1->d2) in gw1.state && (n2->d3->d4) in gw2.state &&
n1 in c.id && d1 in c.demux && d2 in gw1.demux &&
n2 in c.id && d3 in c.demux && d4 in gw2.demux &&
!(n1 = n2 && d1 = d3 && d2 = d4) && (some disj r1,r2:RevRoute |

r1.initiator = gw1 && r1.acceptor = c && r1.contentID = s1.map[k1]
&& r1.demux = d1 && r2.initiator = gw2 && r2.acceptor = c
&& r2.contentID = s2.map[k2] && r2.demux = d3)}

Formal Verification of Future Networks Interoperability 53

Listing 4.4. DCR - No conflict between 2 identical requests from two distinct clients

assert no-conflict-B{ -- Property 2.3.b
all c1,c2:Client, k:Keyword | some s1,s2:Server, gw1,gw2:GW |

return[c1,k,s1,gw1] && return[c2,k,s2,gw2] => some n1,n2: NodeID,
d1,d2,d3,d4:Demux |

(n1->d1->d2) in gw1.state && (n2->d3->d4) in gw2.state &&
n1 in c1.id && d1 in c1.demux && d2 in gw1.demux &&
n2 in c2.id && d3 in c2.demux && d4 in gw2.demux &&
!(n1 = n2 && d1 = d3 && d2 = d4) && (some disj r1,r2:RevRoute |

r1.initiator = gw1 && r1.acceptor = c1 && r1.contentID = s1.map[k]
&& r1.demux = d1 && r2.initiator = gw2 && r2.acceptor = c2
&& r2.contentID = s2.map[k] && r2.demux = d3)}

4.2 Push-Based Retrieval: Publish/Subscribe

In pub/sub, we have domain-specific multicast groups that are associated with
prefixes [6]. We want a client to be able to subscribe to and receive all relevant
publications in accordance with the prefix tree of the namespace over “chain”
of groups across domains. Groups G1 and G2 form a chain if and only if the
publisher of G1 can be a subscriber of G2, and is then able to relay data received
from G2 to his subscribers in G1.

Property 3.1. Ability to subscribe to any prefix. For every client that wants to
retrieve future publications under/associated with an existing prefix and has a
direct route to a gateway, if there is some publisher that will publish content
under that prefix, then that publisher is accessible through a chain of groups.

Property 3.2. Ability to receive any content published directly associated with the
subscribed prefix. For every client who is subscribed to a prefix and can reach
the associated publisher, there is a path back to the client to carry any content
with a content ID belonging to that prefix. For example, a subscriber of P2 in
Fig. 3 should receive publications pertaining to P2 across domains.

Property 3.3. Ability to receive all content published that is associated with pre-
fixes under the subscribed prefix. This property says that for every client that has
subscribed to a prefix and has reached the associated publisher, there is a path
back to the client to carry any content with content ID either directly belong-
ing to that prefix or under it in the hierarchy on the prefix tree. For example,
a subscriber of P2 in Fig. 3 should receive publications pertaining to P2 and
also P4 across domains. The assertion rcvall in Listing 4.5 depends on how
relationships among groups and also between content IDs and prefixes are rep-
resented by Connections and PTree. For a domain with a namespace that does
not capture relationships between prefixes, i.e., does not map a prefix to a set of
multiple relevant prefixes according to a graph, then rcvall would be equivalent
to receiving a single content element (Property 3.2). Properties 3.1–3 collectively
model and verify properties of a service offering hierarchical pub/sub.

54 M. Jahanian et al.

Listing 4.5. Pub/Sub - receiving all relevant publications

assert rcvall{ -- all relevant publications in accordance with the prefix tree
all pub:Publisher, con:Content, cid:ContentID |

all co:Connections, pt:PTree | (cid->con) in pub.map =>
((some c:Client, p:Prefix | (p in c.want || (all p1:Prefix |
(p1->p) in ^(pt.map) && p1 in c.want)) && cid.prefix = p =>

(some r1,r2:Route | r1.initiator = pub && r2.acceptor = c &&
(r1>r2) in ^(co.connected) && some g1,g2:Group |

g1.domain = pub.domain && g2.domain = c.domain &&
g1.prefix = p && g2.prefix = p && (g1->g2) in

^(co.revchain)))}

5 Reasoning About Failure and Mobility

In addition to the basic invariants (Sect. 4), there are other important aspects
of formal analysis of networks that warrant a more quantitative analysis; among
them are failure and mobility analysis. Failures and mobility of nodes can occur
in a network, causing disruption and lack of content availability. To better com-
pare how different network architectural components, e.g., routing, impact the
number of success and violation scenarios, we perform model counting [7]. While
we can consider the probability for all instances as being equal, we can also calcu-
late each instance’s probability by additionally factoring in the real-world prob-
ability of individual elements causing failures and mobility, provided as external
information (e.g., the probability of a gateway failing when processing a content
request, a route disconnecting while carrying a packet, etc.). Thus, we can pro-
vide a more realistic probabilistic analysis for the effect of failures and mobility
using weighted model counting methods [5].

While the Alloy Analyzer (v4.20) [2] allows for a limited, graphical iteration
over instances, it does not enable an explicit counting of instances in an efficient
manner. To perform model counting, we wrote an application [1] that counts
all SAT solutions, using the SAT4J solver [13] (SAT4J can be replaced by any
off-the-shelf SAT solver). We feed the Alloy model and properties, in Kodkod
format [17], to our application. Predicates and assertions are used for count-
ing instances that satisfy or violate (counterexamples) respectively. Through
this counting, we can also look into the details (relations and values) within
each instance, and gain insight such as possible cause of violations (in case of
counterexamples) and calculate the probability of occurrence of each instance
in real-world scenarios. While we do not focus on the performance aspects of
model counting in this paper, optimizations of this procedure can be leveraged
for enhancing the scalability of our approach in case of very large problem sizes.
At a minimum, our approach can provide a rough estimate of failure probabili-
ties. Even if the model counting provided by the SAT solver is through “approx-
imate” model counting (e.g., using repetitive halving procedures) [4] rather than
an “exact” one, it still gives us a good enough assessment of the degree of success
and violation of properties.

Formal Verification of Future Networks Interoperability 55

Fig. 4. Gateway failure scenario

Table 1. Model finding
Domain

n con-

straints

Returnability

Const. 1 ✗

Const. 2 ✗

Table 2. Model counting
Domainn
con-

straints

Returnability

I C R

Const. 1 x1 y1 x1/(x1 + y1)

Const. 2 x2 y2 x2/(x2 + y2)

5.1 Failure

Our interoperability framework depends on gateways that retain state informa-
tion. What would happen to a response packet if that state is lost at the gateway
for any reason? For reliability, we consider state sharing between redundant gate-
ways that have the same domains on either side. Figure 4 depicts an example
for this. Consider the gateway that received the request and created the state
as the primary gateway for the request (GW1 in the Fig.), and the replicas that
have the shared state as the secondary gateways (GW2 and GW3). Formally,
we add an extra condition to our reachability and returnability properties such
that, for two routes to connect, the gateway attaching them must be up and
running at the time the packet is received. Additionally, for returnability, the
state information must be present at the gateway. If any gateway goes down,
the corresponding potential path going through it (p1–3) back for the content
cannot be leveraged. If the gateway is neighboring an NDN domain (e.g., in
Domainn or Domainn−1), then the gateway has to be the primary only, for
correct operation with the NDN reverse-path-forwarding (RPF) policy [20]. For
other domain types, a secondary gateway that is active and has the shared state
information is adequate to forward the response data back. We model the con-
ditions representing this in Alloy as shown in Listing 5.1.

Listing 5.1. Failure scenario constraints: impact of gateway status on route connec-
tivity

all r1,r2: Route, c:Connections | -- forward routes (request) condition
(r1->r2) in c.connected <=> r1.acceptor = r2.initiator &&
r1.initiator.status1 in Up && r2.initiator.status1 in Up

all r1,r2: RevRoute, c:Connections | -- reverse routes (response) condition
(r1->r2) in c.connectedR <=> r1.acceptor = r2.initiator &&
r1.initiator.status1 in Up && r2.initiator.status1 in Up &&
((r1.domain in NDNdomain || r2.domain in NDNdomain) =>

r1.acceptor.type in Primary) -- NDNdomain enforces RPF policy

Gateways can go down due to various reasons such as completely failing
or just losing state information due to a software failure. Our method can be
used to reason about various scenarios and measure failure probability given an
input configuration space, i.e., a set of Alloy facts that set constraints on some
objects or variables while relaxing others. As Table 1 shows, a simple model
finding analysis does not provide a helpful comparison between different such
constraints:it will say that both cases lead to counterexamples raised (e.g., for the

56 M. Jahanian et al.

case that all gateways go down). To gain a better assessment of which constraint
does better, we resort to model counting (Table 2). Using model counting, we can
count (satisfying) instances (I) and counterexamples (C), and calculate (even if
approximately [7]) the probability of reliability (R = I/(I +C)). This reliability
indicates to what degree interoperability is impacted in presence of failure, given
certain conditions (i.e., choice of domain policies, etc.).

5.2 Mobility

To model and analyze mobility (Fig. 5), we add the notion of “time” to our
model. In particular, we associate timeout values to state entries at gateways
and birthT ime and deathT ime to routes (and similarly for reverse routes). We
assume gateways are stationary, but other nodes can move, causing the “death”
of their route (route1) to/from their closest gateway. A new route to the gateway
is “born” (route2) after some time, assuming the existence of a domain-specific
method to handle mobility. Temporal conditions must be incorporated into
reachability/returnability properties. The most critical case is when a mobility
event occurs while the packet is in-flight [21]. At high-level, the sum total latency
formulated as firstDeliveryAttempt+recovery+secondDeliveryAttempt, must
be below a certain expiration threshold (at every gateway and consumer).
firstDeliveryAttempt is the incomplete partial delivery latency via route1 and
secondDeliveryAttempt is the delivery via route2 (continuation in MF, and
complete retransmission in IP and NDN). The recovery delay is the time it
takes for the packet to be transmitted back on the new path again; it includes
re-registration (MF and IP), FIB re-population (IP and NDN in case of provider
mobility) and/or PIT re-population (for NDN in the case of consumer mobil-
ity) delays [16,20,21]. Using this formal method, we check properties in the
presence of mobility, find appropriate values for a timeout threshold on gate-
ways and investigate the effect of domain-specific mobility handling methods
on interoperability. Listing 5.2 generally specifies how the reachability property
(to deliver a named request) depends on the condition of mobility (stationary
or mobile) and the domain policy on handling mobility (early binding or late
binding). Returnability is similarly specified (for content). Predicates stationary,
mobileEarlyBinding, and mobileLateBinding specify timing conditions for suc-
cessful delivery assuming their corresponding conditions (details of the three
properties are omitted here due to space but are in [1]). As shown in Fig. 5,
we only consider intra-domain mobility here, i.e., the mobile node changes its
location and point of attachment, but stays within its domain.

Formal Verification of Future Networks Interoperability 57

Fig. 5. Mobility scenario example:
Route 2 established after B moves
and changes its point of attach-
ment

Table 3. Verif. scopes for properties of ICI services

P
ro

p
er

ty

C
li
e
n
t

G
W

R
e
p
o
s/

S
e
rv

e
r/

P
u
b
li
sh

e
r

D
o
m
a
in

C
o
n
te
n
tI
D
/

K
e
y
w
o
rd

P
re
fi
x

P
T
re
e

C
o
n
te
n
t

C
o
n
n
e
c
ti
o
n
s

R
o
u
te

R
e
v
R
o
u
te

N
o
d
e
ID

P
o
rt

N
D
N
re
q
ID

M
F
re
q
ID

G
ro

u
p

G
ro

u
p
ID

V
er

if
.
R
es

u
lt

1.1 1 2 1 3 1 1 1 12 12 6 �
1.2 1 2 1 3 1 1 1 12 12 6 �
2.1 1 2 1 3 1 1 1 12 12 6 6 3 3 �
2.2 1 2 1 3 1 1 1 12 12 6 6 3 3 �
2.3.a 1 1 1 2 2 2 1 8 8 4 4 4 4 �
2.3.b 2 1 1 2 1 1 1 8 8 5 4 4 4 �
3.1 1 2 1 3 3 3 1 3 1 12 12 9 9 �
3.2 1 2 1 3 3 3 1 3 1 12 12 9 9 �
3.3 1 2 1 3 3 3 1 3 1 12 12 9 9 �

Listing 5.2. Reachability in presence of mobility

pred reach[c:Client, p:Producer, cid:ContentID]{ -- a client and content producer
(stationary[c,p,cid] && p.mobility in Stationary) -- producer p stationary
|| (mobileLateBinding[c,p,cid] && p.mobility in Mobility

&& Domain.binding in LateBinding) -- p mobile, domain does late binding
|| (mobileEarlyBinding[c,p,cid] && p.mobility in Mobility

&& Domain.binding in EarlyBinding)} -- p mobile, domain does early binding

6 Implementation and Results

We implemented the ICI framework discussed in our model in Sect. 3, with gate-
ways for interoperation among IP, NDN, and MF (Fig. 1 as an example) in
a software testbed (implementation details in [11]). This section provides the
description and results of our analysis of the ICI framework (our Alloy source
code is approximately 800 lines of code in total [1]).

To check for correctness, we performed verification (supported by Alloy
Analyzer’s model finding engine) of our ICI framework model, against the
information-centric services properties (as specified in Sect. 4). In order to reach
convincing proofs (as advised in [18]), we pick the scopes for verification in
Alloy that are large enough to contain all necessary cases (i.e., minimum num-
ber of actors and objects for each service), and small enough so that we do not
encounter model explosion. The scopes, i.e., upper bounds on the number of key
objects, are provided in Table 3. For most properties, we consider 1 Client, 1
Server, 1 Content, and 1 ContentID . That is, different <client, request> pairs
are considered independent of each other. However, for Properties 2.3.a/b, such
a dependency matters, and we want to show lack of conflicts. For Property 2.3.a,
we set 1 Client and 2 Contents (to generate scenarios where one client makes
two separate request for two different contents), and for Property 2.3.b, we set
2 Clients and 1 Content (to look for conflicts between request for one content
but by two clients). We use 3 Domains for most properties, as it contains all
cases with 1, 2, or 3 domains of any type, i.e., IP, NDN, or MF. Also, with upper

58 M. Jahanian et al.

Table 4. Failure analysis results

Cases Reachability Returnability

I C R I C R

No domain

constraints

290 0 1.00 56 210 0.21

One NDN

domain

176 0 1.00 8 168 0.04

Table 5. Mobility analysis results

Cases Stationary Mobile

Late binding Early binding

DL range I C R I C R I C R

[0, 20] 100 8 0.92 72 24 0.75 92 64 0.58

[0, 18] 96 0 1.00 72 8 0.90 92 48 0.65

[0, 15] 84 0 1.00 64 0 1.00 92 24 0.79

[0, 10] 64 0 1.00 44 0 1.00 84 0 1.00

bound n on the total number of Nodes, i.e., sum of Clients, Servers, and GW s,
we specify the upper bound on the number of Routes (as well as RevRoutes)
to be n(n − 1), enabling the existence of any possible (uni-directional) route.
For pub/sub services (i.e., Properties 3.1–3), we set 3 Prefixes, ContentIDs, and
Contents, to capture inter-relationship of content IDs in a large enough names-
pace. Additionally, with the upper bound on Domains and ContentIDs both set
at 3, we set the upper bound on total number of Groups (and GroupIDs) to be
3 × 3 = 9, so as to contain cases with one group per content ID per domain.
The blank cells in Table 3 indicate either “N/A” or “no particular upper bound
set”, in which case Alloy picks a default value. Within this scope, our verifica-
tion passes successfully for each property, showing that the stated properties are
invariants of our ICI framework. In other words, the framework design ensures
that any sequence of interconnected IP, NDN, and MF domains are information-
centrically interoperable.

We use our proposed model counting approach to analyze scenarios with
the failure of one or multiple gateways. The most important factor affecting
returnability in scenarios with the possibility of failure, is domain-specific routing
policies, in particular, whether or not it allows for a secondary (backup) gateway
to relay the returning response content. Different domains have different policies;
MF and IP decouple the forward (request) and return (response) paths, and they
can be delivered through different gateways, while NDN strictly requires the
two paths to be the same, due to RPF policy. To investigate the impact of that
policy, we considered a scenario of two domains, with two gateways between
them (one primary and one secondary), sharing state. Both gateways are Up
(working) when the request is forwarded, and either may go Down (failing)
when the response is one its way back. Table 4 shows different scenarios for
reachability and returnability, with different domain constraints (with different
routing policies). In particular, the two domain constraints we consider are the
following: 1) no constraint on what any of the domains are; and 2) one domain is
definitely NDN. The table shows the values of I (instances), C (counterexample),
and R (reliability) for each scenario, as defined in Sect. 5. Our results for R in
Table 4 prove that having an NDN domain on one side dramatically reduces the
returnability reliability ratio, since basic NDN forwarding strictly forbids data
coming back on a different path than the original path taken by the request.

Formal Verification of Future Networks Interoperability 59

When a content producer (server) moves while a content request is in-flight
(Fig. 5), the domain’s handling of mobility recovery determines the reachability
probability. NDN and IP use early binding with retransmissions, while MF sup-
ports late binding with rerouting. We compare the impact of these mechanisms
and techniques using our model counting method, with results shown in Table 5.
Our modeled scenario consists of two nodes in a domain, one requester (client
or gateway) and one server (producer) with a route established among them.
The ‘Stationary’ columns in the table show reachability results in the stationary
server case. With ‘Mobile’, the route dies due to a server mobility event (at time
t = 10), leading to the birth of the second route. We set the re-registration and
re-population delays to 1 each. Also, a retransmission is initiated 1 time unit
after the mobility event. Different binding techniques for mobility, i.e., late and
early binding, are also shown in Table 5. We compare cases with different ranges
for Delivery Latency (DL), which is time approximately needed for a packet to
travel from requester to server. For a delivery latency range of [0, 20], we see a
higher R for stationary vs. mobility cases. The reason is that when the server
does not move, the original route stays active, thus providing a higher chance for
requests to reach the server. Comparing the two binding techniques, late bind-
ing leads to higher chance of reachability compared to early binding, as it allows
for packets to be re-routed on the newly-born route, rather than retransmitting
from the original requester. These results serve as proof that under similar sce-
narios, late binding outperforms early binding in ICI. Also, changing the delivery
latency ranges, we can find out at what points, reachability is an invariant (if
ever) under mobility conditions. As the table shows, with ranges within [0, 18],
[0, 15], and [0, 10] (rows in Table 5 labeled in first column accordingly), reachabil-
ity becomes an invariant in cases of Stationary, Late Binding, and Early Binding,
respectively; as zero counterexamples are raised. With a small enough delivery
latency ranges, namely [0, 10], reachability becomes an invariant, no matter the
mobility conditions or binding techniques. Our approach can be used to find
such points of invariance, comparing different techniques, and prove them.

7 Conclusion

This paper presented an Alloy-based formal analysis model for information-
centric interoperability (ICI) for Future Internet environments. We showed how
model finding can be used to analyze basic (reachability and returnability) prop-
erties of ICI. Additionally, our proposed model counting approach analyzes fail-
ure and mobility scenarios, which we used to prove the negative impact of cer-
tain routing policies (particularly, reverse path forwarding), and the helpfulness
of certain mobility-handling mechanisms (particularly, late binding), providing
necessary confidence and guidelines for Future Internet interoperability.

Acknowledgements. This work was supported by the US Department of Commerce,
National Institute of Standards and Technology (award 70NANB17H188) and US
National Science Foundation grants CNS-1455815 and CNS-1818971.

60 M. Jahanian et al.

References

1. https://www.cs.ucr.edu/∼mjaha001/ICI.zip
2. Alloy: A Language and Tool for Relational Models. http://alloy.mit.edu/alloy/
3. Carofiglio, G., et al.: Enabling ICN in the internet protocol: analysis and evaluation

of the hybrid-ICN architecture. In: ACM ICN (2019). https://doi.org/10.1145/
3357150.3357394

4. Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable approximate model counter.
In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 200–216. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40627-0 18

5. Chavira, M., Darwiche, A.: On probabilistic inference by weighted model counting.
AI 172(6–7), 772–799 (2008). https://doi.org/10.1016/j.artint.2007.11.002

6. Chen, J., et al.: COPSS: an efficient content oriented publish/subscribe system.
In: ACM/IEEE ANCS (2011). https://doi.org/10.1109/ANCS.2011.27

7. Gomes, C.P., Sabharwal, A., Selman, B.: Model counting: a new strategy for obtain-
ing good bounds. In: AAAI (2006)

8. Jackson, D.: Alloy: a lightweight object modelling notation. TOSEM 11(2), 256–
290 (2002)

9. Jacobson, V., et al.: Networking named content. In: CONEXT (2009)
10. Jahanian, M., Ramakrishnan, K.K.: Name space analysis: verification of named

data network data planes. In: ACM ICN (2019). https://doi.org/10.1145/3357150.
3357406

11. Jahanian, M., et al.: Managing the evolution to future internet architectures and
seamless interoperation. In: Proceedings of the 29th International Conference on
Computer Communication and Networks (ICCCN) (2020)

12. Jahanian, M., et al.: Graph-based namespaces and load sharing for efficient infor-
mation dissemination in disasters. In: ICNP (2019). https://doi.org/10.1109/ICNP.
2019.8888047

13. Le Berre, D., Parrain, A.: The SAT4J library, release 2.2, system description. J.
Satisf. Boolean Model. Comput. 7, 59–64 (2010)

14. Li, Y., et al.: A survey on network verification and testing with formal methods:
approaches and challenges. IEEE Commun. Surv. Tutor. 21(1), 940–969 (2019)

15. McCauley, J., et al.: Enabling a permanent revolution in internet architecture. In:
ACM SIGCOMM (2019). https://doi.org/10.1145/3341302.3342075

16. Raychaudhuri, D., et al.: MobilityFirst: a robust and trustworthy mobility-centric
architecture for the future internet. ACM SIGMOBILE MCCR 16(3), 2–13 (2012)

17. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71209-1 49

18. Zave, P.: A practical comparison of alloy and spin. Formal Aspects Comput. 27(2),
239–253 (2015). https://doi.org/10.1007/s00165-014-0302-2

19. Zave, P.: A formal model of addressing for interoperating networks. In: Fitzgerald,
J., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 318–333. Springer,
Heidelberg (2005). https://doi.org/10.1007/11526841 22

20. Zhang, L., et al.: Named data networking. ACM SIGCOMM CCR 44(3), 66–73
(2014)

21. Zhang, Y., et al.: KITE: producer mobility support in named data networking. In:
ACM ICN (2018). https://doi.org/10.1145/3267955.3267959

https://www.cs.ucr.edu/~mjaha001/ICI.zip
http://alloy.mit.edu/alloy/
https://doi.org/10.1145/3357150.3357394
https://doi.org/10.1145/3357150.3357394
https://doi.org/10.1007/978-3-642-40627-0_18
https://doi.org/10.1016/j.artint.2007.11.002
https://doi.org/10.1109/ANCS.2011.27
https://doi.org/10.1145/3357150.3357406
https://doi.org/10.1145/3357150.3357406
https://doi.org/10.1109/ICNP.2019.8888047
https://doi.org/10.1109/ICNP.2019.8888047
https://doi.org/10.1145/3341302.3342075
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1007/s00165-014-0302-2
https://doi.org/10.1007/11526841_22
https://doi.org/10.1145/3267955.3267959

Experiences on Teaching Alloy
with an Automated Assessment Platform

Nuno Macedo1,2, Alcino Cunha1,2(B), José Pereira2, Renato Carvalho1,2,
Ricardo Silva2, Ana C. R. Paiva1,3, Miguel Sozinho Ramalho1,3,

and Daniel Silva3

1 INESC TEC, Porto, Portugal
2 University of Minho, Braga, Portugal

alcino@di.uminho.pt
3 University of Porto, Porto, Portugal

Abstract. This paper presents Alloy4Fun, a web application that
enables online editing and sharing of Alloy models and instances (includ-
ing dynamic ones developed with the Electrum extension), to be used
mainly in an educational context. By introducing secret paragraphs and
commands in the models, Alloy4Fun allows the distribution and auto-
mated assessment of simple specification challenges, a mechanism that
enables students to learn the language at their own pace. Alloy4Fun
stores all versions of shared and analyzed models, as well as derivation
trees that depict how they evolved over time: this wealth of information
can be mined by researchers or tutors to identify, for example, learn-
ing breakdowns in the class or typical mistakes made by Alloy users.
Alloy4Fun has been used in formal methods graduate courses for two
years and for the latest edition we present results regarding its adop-
tion by the students, as well as preliminary insights regarding the most
common bottlenecks when learning Alloy (and Electrum).

Keywords: Teaching formal methods · Alloy · Automated assessment

1 Introduction

Alloy [6] is a popular formal specification language, accompanied by a toolkit, to
describe and reason about software design. It is taught in several undergraduate
and graduate courses in formal methods, including graduate courses taught by
some of the authors at University of Minho (UM) and University of Porto (UP),
in Portugal. One of the reasons for this popularity is the support for automated
analysis provided by the Alloy Analyzer, an easy to download and install self-
contained executable written in Java. The Analyzer also allows instances (either
witness scenarios or counter-examples) to be graphically depicted using user-
customized themes, a popular feature both for experienced users and students.
Alloy is very effective in the specification and analysis of the static structures
that pervade software design, but requires the employment of well-established
c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 61–77, 2020.
https://doi.org/10.1007/978-3-030-48077-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-48077-6_5

62 N. Macedo et al.

idioms, that introduce an explicit notion of state or time, if mutability is to
be considered and temporal properties analyzed. To avoid this cumbersome and
error-prone process, several extensions to Alloy have been proposed, including
one by authors of this paper – Electrum [7] – which extends the Alloy language
with variable structures and linear temporal logic (including past operators),
also adding bounded and unbounded model checking engines to the Analyzer.

Despite such streamlined toolkit, over the many years we taught and
researched with Alloy we identified some missing features and functionalities
that could further ease its adoption and its usage in an educational context. The
first is the lack of a straightforward mechanism to share simple Alloy models,
instances1 and associated themes. This would be particularly useful for students
trying to get feedback from the tutors about specific counter-examples, or to
submit exercise resolutions for evaluation. The second is the absence of some
automated assessment functionality or online judge system for students to inde-
pendently check the correctness of their exercise resolutions. Due to some limi-
tations of the visualizer packaged with the Analyzer, we also felt the need for a
more decoupled infrastructure to test alternative instance visualization features.

To address these limitations we developed Alloy4Fun, a web application that
enables online editing and sharing of Alloy and Electrum models2 and instances,
including simple specification challenges in the form of duels where students
attempt to discover a secret specified by the tutors. Such online platform also
provided us the opportunity to collect information regarding Alloy usage pat-
terns from an extended user base: one of the features of Alloy4Fun is thus the
ability to record every interaction with the (anonymous) user, information that
is made available to the creator of the challenges for subsequent analysis. Over
the last two years, Alloy4Fun has been used in 3 editions of graduate courses
on formal methods and a tutorial at an international venue, which has allowed
us to quickly obtain insight on how students use the language, namely identify
typical mistakes or learning breakdowns in the class.

This paper presents Alloy4Fun and reports on its application in teaching
Alloy, starting with an overview of (and rationale for) its current features in
Sect. 2. Section 3 reports on its deployment in a formal methods graduate course
(Sect. 3.1), including our experience on defining exercises, results regarding usage
and adoption of the platform (Sect. 3.2), and some preliminary insights on Alloy
usage patterns and learning pitfalls (Sect. 3.3). Finally, Sect. 4 concludes the
paper and presents some ideas for future work. Knowledge of Alloy is not required
to understand the paper, but can help better appreciate some of the features of
Alloy4Fun.

1 In Alloy literature, specifications are usually referred to as models, and the results
of animation/verification commands as model instances.

2 Electrum is retro-compatible with Alloy: models without temporal features are valid
Alloy, apart from protected keywords. For readability we will simply refer to Alloy
throughout the paper, unless some Electrum-specific feature is being discussed.

Experiences on Teaching Alloy with an Automated Assessment Platform 63

Fig. 1. A failed attempt to solve a challenge in the CV exercise.

2 Alloy4Fun Overview

The core of Alloy4Fun mimics in a web application the main features of the
standalone Alloy Analyzer. After accessing alloy4fun.inesctec.pt (the URL where
Alloy4Fun is currently deployed) the user gets an empty online editor (with syn-
tax highlighting) where Alloy models can be written. An Alloy model consists of
a sequence of paragraphs: each paragraph is either a signature (and the respec-
tive fields) declaration, a fact with a constraint that is assumed to hold, an
assertion with a constraint to be checked, or an auxiliary predicate or function
definition. Signatures introduce sets of elements (known in Alloy as atoms) and
fields establish relations of arbitrary arity between those sets. Disjoint subset sig-
natures can be declared by extension, and the parent signature can be marked
as abstract, if it should only contain atoms present in its extensions. For exam-
ple, the Alloy4Fun screen capture shown in Fig. 1 shows a model of an online
Curriculum Vitae (CV) platform, an example that was used as an exercise in
classes. This model declares a signature Source that is partitioned in two sub-
sets, User and Institution. Two more signatures are declared in this example:

http://alloy4fun.inesctec.pt/

64 N. Macedo et al.

Id and Work. We also have several fields that relate atoms of these signatures.
For example, ids is a binary relation that associates each atom of Work with its
set of Ids. Signature and field declarations can have multiplicities attached to
impose cardinality constraints. For example, the some in the declaration of field
ids imposes that each Work should have at least one Id.

Formulas in facts, assertions, and predicates, are written in Relational Logic
(RL), an extension of First-Order Logic (FOL) with operators that can be used
to combine relations (aka predicates in FOL). The most frequently used one is
the relational composition (written as .), an operator that allows us to “nav-
igate” through a relation: for example, in predicate Inv2 of Fig. 1, expression
u.profile denotes the set of atoms of signature Work associated with User u.
In Alloy every signature and field is immutable. With the Electrum extension
they can be declared as mutable, and formulas can also be specified with Linear
Temporal Logic (LTL) operators.

A distinctive feature of Alloy is that analysis commands can also be declared
as paragraphs in a model. There are two kinds of commands: run commands,
that verify the satisfiability of the declared facts and can be used to get witness
scenarios; and check commands, that verify the validity of an assertion (assum-
ing the facts to hold) and, if that is not the case, return a counter-example. All
the analysis commands operate in a bounded domain: there is a user-defined
scope imposed on every signature that limits the maximum number of elements
that will be considered by the automatic verification procedures. In Alloy4Fun
the topmost right button allows analysis commands to be executed: the com-
mand to be executed can be selected in the drop-down immediately above. If
witnesses (in the case of run) or counter-examples (in the case of a check) are
found, they are depicted below the editor as graphs that, likewise in Analyzer,
can be customised with user-defined themes.

Besides these core functionalities, Alloy4Fun has some new features (and
some improvements to existing ones) when compared to the Analyzer, as
described in the sequel. Currently, it also has some limitations, most notably
the inability to choose the underlying SAT solver used to perform a given anal-
ysis, not being able to display an unsatisfiable core, and lack of support for
Alloy’s module system (except for the standard modules distributed with Alloy,
which can be used). In the specific case of Electrum, Alloy4Fun lacks the more
sophisticated trace exploration options available in the Electrum Analyzer [3],
as described next.

Instance Visualization and Navigation. When compared to the Analyzer,
Alloy4Fun follows a more lightweight approach to the user interface, allowing the
most common theme customizations (like changing the color of the atoms of a
given signature) to be performed quickly through a right-click menu on atoms or
edges. We also stripped down a bit theme features to a subset that we identified
as those more commonly used. Alloy4Fun themes allow color, shape, stroke, and
visibility parametrization for signatures and fields, signature projection, and the
display of fields as attributes inside atoms. Among the unsupported features we
have, for example, the customization of the atom labels for each signature or the

Experiences on Teaching Alloy with an Automated Assessment Platform 65

ability to hide only unconnected atoms of a particular signature. A new feature is
the ability to select different layout algorithms to automatically organize nodes,
which the user can then manually move. Unlike in the Analyzer, atom positions
are preserved between the frames of projected instances, and when navigating
the different states of a trace in the case of an Electrum (mutable) instance. In
Fig. 1 a counter-example of a check command named Inv2OK is being depicted
with a user-defined theme. Unlike in the Analyzer, besides navigating to the next
instance the user can also re-visit previously presented instances. In the case of
Electrum, Alloy4Fun only allows one state of an instance trace to be visualised
at a time (the Electrum Analyzer depicts two states side by side), and it is only
possible to ask for a different next trace (the Electrum Analyzer has more sophis-
ticated trace exploration options, for example it is possible to ask for trace with
the same prefix up to the displayed state, but a different next state).

Sharing Models and Instances. The standard Alloy Analyzer provides limited
support for model and instance sharing: they can be saved in separate files, which
can then be shared using external tools (email, online repositories, etc), to be
again opened at the destination for inspection or editing. When a visualization
theme has been developed to ease the interpretation of instances, it must also
be shared in an additional file. This sharing by saving/opening files rapidly
becomes tedious and time consuming in some contexts, in particular for tutors of
large classes that interact frequently with students (typically by email) to clarify
doubts. Alloy4Fun provides the ability to easily share models and instances. After
pressing the “share model” button a permalink is generated, that can later be
used to access the model. Any theme defined by the user is also preserved when
sharing, thus allowing instances of shared models to be depicted as intended
by their creators. Concrete instances can also be shared via permalinks. The
theme and positions of the depicted atoms and relations at the time of sharing
are also preserved. This is a very handy feature since, likewise in the Analyzer,
the positioning of atoms by the automatic layout mechanism is often not ideal,
requiring manually rearrangement for better comprehension. For instance, the
instance presented in Fig. 1 can be shared as depicted3.

Anonymous Interaction. In Alloy4Fun there are no user accounts nor means to
recover the permalinks of previously shared models and instances. The user is
responsible for keeping track of relevant permalinks using some external mecha-
nism (Alloy4Fun provides a “copy to clipboard” button to ease this task). The
anonymity, namely the absence of user accounts, was a design choice made in
order to keep the interaction with the web application as simple as possible,
to maximize user exposure, and also to avoid dealing with privacy and secu-
rity issues, namely the hassle of storing and managing user credentials and of
implementing mandatory regulations concerning data protection.

Automatic Assessment. Although the Alloy specification language has very neat
and simple syntax and semantics, many students struggle with its declarative
3 http://alloy4fun.inesctec.pt/8Q4Sbjqj4KzHuvuNC.

http://alloy4fun.inesctec.pt/8Q4Sbjqj4KzHuvuNC

66 N. Macedo et al.

nature, in particular those used to procedural programming [2]. One way to over-
come this difficulty is by independently solving exercises proposed by tutors, but,
even with automated analysis and visual feedback, it is often difficult for stu-
dents to assess whether they reached the correct answer, and tutors are required
to inspect and interpret the solutions (something not scalable for large classes).
These problems could be mitigated with automatic assessment functionalities,
allowing students to solve exercises at their own pace and without the constant
need for face-to-face time with tutors. In recent years, auto-graders and online
judges have become widely popular for learning how to program [10], and we
believe this success could be replicated in the learning of formal methods in
general, and Alloy in particular.

With this in mind, the user in Alloy4Fun has the ability to mark any para-
graph of a model as secret, by adding the special comment //SECRET immedi-
ately before. When sharing a model with secret paragraphs two permalinks are
generated: a private one that, when accessed, reveals the full model, including
secrets; and a public one that, when accessed, only shows public paragraphs, but
internally still considers the secret in analyses and still allows the execution of
secret commands (whose names are public). Using a comment instead of a new
keyword to mark secret paragraphs ensures compatibility with Alloy’s default
syntax, allowing users to copy and paste models from Alloy4Fun to the stan-
dalone Analyzer, and vice versa. Section 3.1 will describe how this feature can
be used to create simple specification exercises in the form of duels, where the
user/student tries to reach a secret specification. The instance shown in Fig. 1
was obtained precisely by accessing the public permalink of an exercise, and
failing to solve a challenge, for which a counter-example was returned.

Mining Derivation Trees. A possible way to gain insight about the students’
learning process is to have access to their attempts at solving the proposed
exercises, and tool support to mine this corpus for useful data [8]. Again, such
feature would also be useful for research, and was one of the reasons that led
Microsoft to develop the www.rise4fun.com web service, that allows researchers
to easily deploy their tools on the web and collect human-tool interactions for
posterior mining [1] (besides other advantages of web tools, like increased expo-
sure, since the need for downloading and installing is eliminated, and promoting
reliability given the large amount of test cases that can be collected). One of the
most popular examples available via Rise4Fun, and the inspiration for developing
Alloy4Fun, is www.pex4fun.com, a web-based educational gaming environment
for learning programming, where students can engage in coding duels where they
attempt to write code equivalent to a tutor’s secret implementation [12]. Pex [11],
an advanced white box test-generation tool, is used on the background to find
inputs that show discrepancies between the student’s code and the secret imple-
mentation. However, the interaction with the outcome of the tools has limitations
in Rise4Fun, which would prevent the implementation of key Alloy features such
as instance iteration and customization. This has led us to implement our own
solution rather than integrate Alloy in this service.

www.rise4fun.com
www.pex4fun.com

Experiences on Teaching Alloy with an Automated Assessment Platform 67

Every shared model and instance is stored by Alloy4Fun in its database.
However, to enable the proponents of challenges to mine the submissions for
useful information, every model for which a command was executed is also stored,
along with the respective result (e.g., whether satisfiable or not, or whether errors
were thrown). Moreover, for each model, the identifier of the model from which it
derives and a time-stamp are also stored. This means that all the models that are
developed after accessing a shared permalink end up forming a derivation tree.
In the case of a permalink with secrets/challenges, a branch in this tree typically
corresponds to an interactive session where one user/student is trying to solve
the different challenges defined inside, and can be analyzed to determine, for
example, how many challenges were solved or how many attempts were needed
to solve each one. Every fork in branch represents a point where a user generated
a new permalink for a model which was subsequently accessed multiple times.
Alloy4Fun allows anyone in possession of the secret permalink of a model to
download the respective derivation tree in an easy to process JSON format.

Implementation. Alloy4Fun was developed [9] with Meteor, a full-stack isomor-
phic JavaScript framework for developing web applications based on Node.js.
The client uses CodeMirror as text editor and the Cytoscape.js graph visual-
ization library to depict instances. Models and instances are stored in a Mon-
goDB document-oriented database at the server. To execute commands, we
encapsulated the Alloy Analyzer in a RESTful web service implemented in Java.
Seamless deployment of both the application and the service in a server is per-
formed using Docker. All the Alloy4Fun code is open-source and available at
github.com/haslab/Alloy4Fun.

3 Experiences on Teaching with Alloy4Fun

In the first semester of the 2018/19 academic year we did a preliminary evalua-
tion of Alloy4Fun in two graduate formal methods courses at UM and UP. The
former taught Alloy for 6 weeks and had 22 students enrolled, and the latter for
4 weeks and had 156 students enrolled. Both courses had one weekly lecture and
one weekly lab session. This experiment – which recorded almost 5000 interac-
tions – allowed us to test a beta version of the application in a medium-sized
audience to detect and fix bugs and identify possible design improvements. One
major identified design improvement regarded a special “lock” comment avail-
able in the beta version to prevent the accidental editing of certain paragraphs
that could render the challenges unsolvable (or trivially solvable). However, we
noticed students rarely tried to change the model outside of the challenge pred-
icates, and opted to remove this feature for simplicity and efficiency4. These
first experiences also allowed us to identify which classes of exercises are better
suited to be explored in Alloy4Fun, as well as how the visualization features can
be explored to provide more intuitive feedback to the students.

4 Note that Alloy4Fun was only used for self-study and not for student grading.

http://github.com/haslab/Alloy4Fun

68 N. Macedo et al.

From this process resulted the first official release of Alloy4Fun, which has
been used in the 2019/20 academic year in the UM graduate course and on
an Alloy/Electrum tutorial at the World Congress on Formal Methods5, with
a refined set of specification exercises with challenges. The remainder of this
section reports on the usage of the platform by the students during this latest
instance of the UM graduate course, including preliminary results regarding the
most common mistakes and difficulties when learning Alloy.

3.1 Alloy4Fun Exercises

The model secrets supported by Alloy4Fun can be used to create simple specifica-
tion challenges in the form of duels, where the user/student tries to reach a secret
specification. Such models – which we refer to as exercises – can have a public
predicate that the student must fill-in, together with a secret check command
that asserts (for a given scope) that such predicate is equivalent to the desired
specification (typically in a separate secret predicate). Although useful for prac-
ticing the usage of logic (either relational or temporal) in the specification of
properties, there are certain classes of problems for which the approach based
on secret specifications is not well-suited, namely modeling exercises where the
student is expected to freely declare signatures and fields.

The model shown in Fig. 1 was obtained precisely by accessing the public
permalink of the CV exercise, which contains 4 challenges (in this case, simple
problems where a natural language description of a desired property of the model
is given for each of them). After filling the empty predicate (e.g., Inv2), the
student can check whether it is a valid solution (e.g., by running secret command
Inv2OK, for the case of Inv2), which will either return a “no counter-example
found” message, meaning the challenge is solved, or a counter-example otherwise
(as is the case in Fig. 1, showing that the specification of Inv2 is still not correct).

Figure 2 shows the secret implementation of challenge Inv2: predicate Inv2o
specifies a correct solution for the challenge and command Inv2OK checks the
equivalence between both. In exercises such as CV where several desired (and nat-
ural) properties of the model are solved in different challenges, we opted to check
this equivalence assuming that the remaining properties hold: if that was not the
case the student would get many counter-examples where it would not be clear
why their specification failed, since they would be “polluted” with distracting
problems corresponding to failures of other properties. This conditional check is
the reason to include Inv1o, Inv3o, and Inv4o as assumptions in the equiva-
lence check Inv2OK. Notice that in the preamble to the exercise the students are
warned that they can assume the properties in the remaining challenges to be
true when solving a particular challenge.

During the course we also noticed that the students found it hard to distin-
guish whether the provided counter-example represents a scenario where their
solution was over-specified or under-specified. For this reason, in the challenges

5 http://haslab.github.io/TRUST/tutorial.html.

http://haslab.github.io/TRUST/tutorial.html

Experiences on Teaching Alloy with an Automated Assessment Platform 69

Fig. 2. The secret for the challenge Inv2 of CV from Fig. 1.

used later in the course we opted to include two special atoms in the counter-
example instance that signal whether an instance that should have been rejected
or accepted by a correct specification, meaning their solution is under- or over-
specified, respectively. As seen in Fig. 2 this can be achieved by introducing
a singleton signature whose possible values are either ShouldBeRejected or
ShouldBeAccepted and through a simple trick in the equivalence check, namely
making the verification conditional to the existence of the ShouldBeRejected
atom when the student solution incorrectly holds (or vice-versa).

The challenges used in this course were based on 6 different problems:

– Trash, a model of a file system trash bin.
– Classroom, a model a classroom management system.
– Graph, a specification of several standard properties of unlabeled graphs.
– LTL, a specification of several standard properties of labeled transition sys-

tems.
– Production, a model of an automated production line in a factory.
– CV, the Curriculum Vitae model used as running example in this paper.

For some of these problems we developed more than one variant (or exercise)
focusing on different features of the language. Each variant was provided as a
shared model to students and contained multiple challenges, as summarized in
Table 1. The table lists the permalink and total number of challenges of each
exercise (the columns F1 to F9 will be discussed in Sect. 3.3).

Challenges in these exercises range from trivial (e.g., asking to enforce simple
inclusion dependencies or multiplicities), to more complex ones requiring the use
of nested quantifiers or closures. As expected, the introduction of the Alloy (and
Electrum) language and underlying logics in classes was gradual: FOL constructs
were first presented, followed by the full set of RL operators, and finally the
LTL operators specific to Electrum. To try to understand the impact of using
relational operators, we introduced two variants of the first two problems: one
where challenges were to be solved using only the FOL subset of Alloy, and
another, introduced when students already had knowledge of RL, where they

70 N. Macedo et al.

Table 1. Alloy4Fun exercises shared for the 2019/20 year.

Id Exercise Permalink Chall. F1 F2 F3 F4 F5 F6 F7 F8 F9

1 Trash FOL zA2MMSGy6iW8Mihep 10 0 1 2 0 0 0 0 0 0

2 Classroom FOL Pdvipvrpr5hg7JKbs 15 6 6 9 4 0 0 0 0 0

3 Trash RL WJdLnDL78m7mM7W4J 10 0 1 2 0 0 0 0 0 0

4 Classroom RL i5u2pjKJt6Bz227QT 15 5 6 9 4 1 0 0 0 0

5 Graphs 28fwdmjL79X4SQ9EP 8 1 0 0 0 2 1 0 0 0

6 LTS gqS3qTTn4B62NYmJX 7 4 2 6 6 0 2 0 0 0

7 Production PKy7chamCieZyCix5 4 1 1 3 0 1 0 1 0 0

8 CV X72J6js9fA3CKYQWX 4 3 0 3 0 0 1 0 0 0

9 Trash LTL irRLJn7qbQq3xMFGp 20 0 0 1 0 0 0 0 5 14

could use all the standard Alloy operators to solve the challenges. For the Trash
problem we also created a mutable variant, where challenges required the usage
of the LTL operators of Electrum to be solved. Hence the total of 9 exercises
described in Table 1. As an example, exercise CV (containing 4 challenges) is the
one shown in Fig. 1.

3.2 Student Usage and Adoption

In the 2019/20 edition 17 students attended the UM course. Alloy was taught
for 5 weeks and, for the first time in this course, Electrum was also taught
for 4 additional weeks. In each week, a 1 h lecture was followed by a 2 h lab
session. Alloy4Fun was used in the lab sessions that followed the lectures that
introduced FOL, RL, and LTL, mainly as a way to practice the usage of these
logics to specify natural language requirements.

In the lab sessions that addressed other aspects of the Alloy language and
analysis not amenable for automated assessment, such as solving problems that
required the development of a full model from scratch, students were expected
to still use the Alloy Analyzer and locally manage their models. In principle,
they could also have used Alloy4Fun to develop most of the problems addressed
in those sessions, but we also wanted students to gain some experience in using
the standard Analyzer, particularly since the current limitations of Alloy4Fun
(presented in the beginning of Sect. 2, such as the lack of module support or the
lack of sophisticated trace exploration options in the case of Electrum) might
prove problematic for some more realistic problems. Thus, Alloy4Fun was only
used in 4 lab sessions, each introducing a particular set of exercises – 1 session
with Trash FOL and Classroom FOL after the FOL lecture, 2 sessions with
Trash RL, Classroom RL and Graphs after the RL lecture, and 1 session with
Trash LTL after the LTL lecture. Extra exercises (namely LTS, Production,
and CV) were made available in the course website for the students to freely
explore. Moreover, all exercises were kept available throughout the semester so
that students could independently practice outside of the classes. During the
course there were 3 evaluation points involving Alloy: a medium-size modeling

http://alloy4fun.inesctec.pt/zA2MMSGy6iW8Mihep
http://alloy4fun.inesctec.pt/Pdvipvrpr5hg7JKbs
http://alloy4fun.inesctec.pt/WJdLnDL78m7mM7W4J
http://alloy4fun.inesctec.pt/i5u2pjKJt6Bz227QT
http://alloy4fun.inesctec.pt/28fwdmjL79X4SQ9EP
http://alloy4fun.inesctec.pt/gqS3qTTn4B62NYmJX
http://alloy4fun.inesctec.pt/PKy7chamCieZyCix5
http://alloy4fun.inesctec.pt/X72J6js9fA3CKYQWX
http://alloy4fun.inesctec.pt/irRLJn7qbQq3xMFGp

Experiences on Teaching Alloy with an Automated Assessment Platform 71

project (developed with the standard Analyzer outside of the classes in groups
of two students), an individual written exam, and finally a supplementary exam
for students failing the first attempt.

After concluding the course, the main question we tried to answer was
whether students found Alloy4Fun useful as an automated assessment platform
while learning Alloy. More specifically: 1) have the students used Alloy4Fun
regularly outside classes? 2) in particular, have they used it when studying for
the exams? 3) have they found the sharing feature useful? 4) were the counter-
examples useful to reach the correct solution? To answer these question we used
two methods: an anonymous questionnaire and analysis of the data collected
by Alloy4Fun. The questionnaire was answered by 13 of the 17 students, and,
over the duration of the course, we collected almost 11000 interactions with the
exercises, most of them resulting from the execution of commands (checking the
correctness of challenges) and a small portion from sharing of models6.

Concerning the first question, of the 13 students that answered the ques-
tionnaire, 9 said they used Alloy4Fun frequently outside classes, 3 only used it
rarely, and 1 never used it. To the second question all of the 12 students that
used it outside classes answered that they used it to study for the exam. Of these,
9 mentioned that when studying for the exam they actually repeated some of
the exercises they had already solved before. The data collected throughout the
semester, shown in Fig. 3, seems to corroborate these answers. Figure 3a depicts
the usage of the platform over time, highlighting the classes where Alloy4Fun
was mandatory and the evaluation points (first the project deadline, and later
in the semester the two exams). Each entry in the dataset is either a correct
(unsatisfiable) check, a wrong (satisfiable) check, an analysis that threw an error
(e.g., parsing) or a model stored for sharing. Despite the peak of usage during the
Alloy4Fun classes, we can see that the students have indeed relied on Alloy4Fun
outside the classes, and in particular when studying for the written exam.

Figures 3b and 3c present statistics per exercise (below each exercise number
we recall the number of challenges inside). Figure 3b presents the same execu-
tion information as Fig. 3a (except shares), with the addition of the number of
successful analyses (i.e., without error) that threw a warning. This information
is normalised taking into account the number of challenges in each exercise (i.e.,
the graph shows the average number of executions per challenge). This chart pro-
vides some evidence that most of the students attempted to solve all exercises,
including some of those not used in class. For example, averaging the executions
per challenge and per student, we have a maximum of around 10 for exercise
1 and a minimum of around 3 for exercise 7, and an overall average of around
6 attempts per challenge per student. Even taking into account failed attempts
and repeated attempts to solve exercises already previously solved, it is relatively
safe to infer that such numbers can only have resulted from having most of the
class attempting to solve all exercises.

Figure 3c presents information regarding solving “sessions”. Recall that a ses-
sion is a branch in the derivation tree, typically recording the interaction of a

6 This dataset is freely available in the Alloy4Fun GitHub repository.

72 N. Macedo et al.

Fig. 3. Alloy4Fun usage statistics by 17 students over a semester for 9 exercises.

student with Alloy4Fun while solving the challenges inside an exercise. For each
exercise we depict how many session solved all its challenges, some of its chal-
lenges, or none. Of course, some students might have multiple sessions recorded
for each attempt to solve an exercise, since they might not solve all the chal-
lenges in a single continuous session and access the original shared permalink
several times, instead of generating a new permalink of a partial resolution for
later resuming the work. Overall we identified 430 sessions, with an average of 48
sessions per exercise. Even with all the uncertainty, it is safe to say that indeed
most students should have used Alloy4Fun frequently outside the classes (from
our observation, during classes students mainly used a single session per exer-
cise), including repeated attempts to solve exercises already previously solved (as
reported in the questionnaire): for example, for Trash FOL around 50 sessions
were recorded where all the challenges were solved, a strong indicator that each
student should have solved it at least twice.

Concerning permalinks, 7 students mentioned that they generated them fre-
quently to store their own solutions for later access, 3 did it rarely, and, somehow
surprising, 3 never did it. Generating permalinks for the purpose of sharing with
colleagues and tutors was even less common: only 5 students did it frequently,
4 rarely and 4 never. Figure 3c also depicts how many session had at least one
permalink generated, and indeed we can see that, for most of the exercises,

Experiences on Teaching Alloy with an Automated Assessment Platform 73

the number of permalinked sessions is clearly less than the number of students.
Surprisingly, the share instance feature has not been used: there were only 2
generated permalinks for instances. These results seem to suggest that one of
our main goals for Alloy4Fun – to simplify the sharing of models and instances
– may actually not be that popular in an educational setting, but of course a
more comprehensive study must be conducted to clarify that.

Concerning the last question, 10 students mentioned that counter-examples
were frequently useful to help find the correct answer, but of these 4 only found
them useful if they had the atoms that signal whether the shown counter-example
should have been rejected or accepted by a correct specification. Unfortunately
we have no data to corroborate this, but in principle Alloy4Fun could be used to
check whether those atoms are indeed helpful or not, for example by giving two
different versions of an exercise to different sets of students and then analyzing
the results. This is one of the studies we intend to conduct in the near future.

Finally we also asked the students the overall question of whether they found
Alloy4Fun useful for learning Alloy and Electrum: all of them agreed that was
the case, with 8 of the 13 strongly agreeing.

3.3 Insights on Learning Alloy

Taking advantage of the collected data, we also tried to get some insights about
how students learn Alloy, and in particular determine which features of the
language pose more difficulties and should thus be addressed more carefully in
lectures. To this end, we started by classifying a normalized version7 of each
challenge according to a set of required concepts, namely whether it requires:
F1 using more than 10 logic or relational operators
F2 a simple restriction of the multiplicity of a relation
F3 nested quantifications (ignoring multi-variable quantifications)
F4 manipulating ternary relations
F5 transitive closure over fields
F6 transitive closure over expressions (either relational expressions or relations

by comprehension)
F7 reasoning about total orders (i.e, using the ordering module)
F8 a single temporal operator
F9 nested temporal operators

For each exercise, Table 1 presents the number of challenges that fall into each of
these (non-exclusive) categories. Figure 4 compares the results of challenge exe-
cution classified under each category (also listing the total number of challenges
for each). For each of the 9 categories, the number of correct (green) and wrong
(red) executions are presented. Additionally, entry F0 collects the results of chal-
lenges that require none of the above concepts, and category All the results for
all challenges. Of all the 7689 executions without errors, 3682 were correct (48%),
meaning that in average each challenge required two attempts to be solved (after
solving possible errors).
7 Normalized specifications were expanded into almost pure FOL (or FO-LTL when
temporal logic was required), using no relational operators except for closures.

74 N. Macedo et al.

Fig. 4. Executions per class of challenge. (Color figure online)

As expected, challenges requiring none of the listed concepts (F0) were sim-
pler (71% success rate), and those requiring more than 10 operators (F1) were
notoriously more difficult (18% success rate). Contrary to our expectations, given
that Alloy has special syntax for that purpose, challenges that required restrict-
ing the multiplicity of relations (F2) were only slightly easier than average (52%).
As expected, the need to use nested quantifiers (F3) increases the difficulty of
challenges (33% success rate). Concerning closures, usage of a closure operator
over a relation (F5) was not very problematic (41% success rate), but challenges
that required applying a closure operator to a relational expression (F6) were
the most difficult to solve (8% success rate). We had some anecdotal evidence
that closures were difficult for students, but this discrepancy between the two
cases was rather surprising, meaning that special attention should be given to
the later case in lectures. Other problematic concepts were the manipulation of
ternary relations (F4) (19% success rate), and usage of the standard ordering
module (F7) (16% success rate), both frequently used in Alloy specifications. The
first result is aligned with our anecdotal evidence, and we already had special
care with higher arity relations in lectures. The second is a bit more surpris-
ing, meaning that, likewise to closures of relational expressions, we should invest
more lecture time in explaining how to use this module. Concerning Electrum,
students seem to understand well the usage of a single temporal operator (F8)
(58% success rate), but, as expected and likewise quantifiers, specifications requir-
ing nesting of several temporal operators (F9) were more difficult (32% success
rate).

We also collected statistics about typical errors and warnings, with Tables 2
and 3 presenting the 10 most commonly found error and warning messages,
respectively. Concerning errors, as expected, the most frequent are basic pars-
ing errors (corresponding to messages 1, 2, and 8, and including, for example,
parenthesis problems or misspelled identifiers), totaling around 44% of the errors.
Of the remaining, the most frequent are incorrectly applying logic operators to
relational expressions and vice-versa (messages 3, 5, and 7), in total 28% of

Experiences on Teaching Alloy with an Automated Assessment Platform 75

Table 2. Most common error messages.

Table 3. Most common warning messages.

the errors, and simple typing errors related to arity (messages 4, 6, 9, and 10),
in total 26% of the errors. The reader unacquainted with Alloy could find the fre-
quency of the former rather surprising, but this is a rather frequent error due to
the syntactic similarity between some logical and relational operators (for exam-
ple, not for negation vs. no for emptiness check or && for conjunction vs. & for
intersection). Fortunately, Alloy has alternative syntax for many logic operators
(for example, and for conjunction) and maybe instructors should recommend
using that alternative instead. Concerning warnings, all but the third most com-
mon message (unused variables, 23% of the total warnings) are warnings about
potentially irrelevant expressions – formulas that are trivially true or false or
expressions that always denote an empty set – a testimony to the usefulness of
Alloy’s sophisticated type system [5].

4 Concluding Remarks and Future Work

We briefly presented Alloy4Fun, a web application for online editing and sharing
of Alloy models and instances, that also allows the automated assessment of sim-
ple specification challenges. Its main intended use is in an educational context,
and our preliminary evaluation in a graduate formal methods course provided
evidence that students found the automated assessment feature useful for learn-
ing Alloy and Electrum (and the sharing feature less so). We also collected
evidence that some features of the Alloy language are particularly problematic
for students, and should be addressed with particular care by tutors.

76 N. Macedo et al.

We intend to continue using Alloy4Fun in our formal methods courses in the
upcoming years, collecting more data to support more detailed and informed
analyses about the language usage. Concerning the application itself, we intend
to develop tools to simplify the mining of useful data from the derivation trees,
possibly to be run server-side at the click of a button (with results visualized
in the browser), to enable the timely identification of learning breakdowns. We
also intend to incorporate in Alloy4Fun an alternative instance visualizer more
amenable for dynamic systems [4].

Acknowledgements. We would like to thank Daniel Jackson for the helpful com-
ments and suggestions about the design of Alloy4Fun. This work is financed by National
Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tec-
nologia, within project UIDB/50014/2020. The third and forth authors were financed
by the ERDF – European Regional Development Fund through the Operational Pro-
gramme for Competitiveness and Internationalisation - COMPETE 2020 Programme
and by National Funds through the Portuguese funding agency, FCT - Fundação para
a Ciência e a Tecnologia, within project POCI-01-0145-FEDER-016826. The second
author was also supported by the FCT sabbatical grant with reference SFRH/B-
SAB/143106/2018.

References

1. Ball, T., de Halleux, P., Swamy, N., Leijen, D.: Increasing human-tool interaction
via the web. In: Proceedings of the 11th ACM SIGPLAN/SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering, pp. 49–52. ACM (2013)

2. Boyatt, R., Sinclair, J.: Experiences of teaching a lightweight formal method. In:
Proceedings of the 1st Workshop on Formal Methods in Computer Science Educa-
tion, pp. 71–80 (2008)

3. Brunel, J., Chemouil, D., Cunha, A., Macedo, N.: Simulation under arbitrary tem-
poral logic constraints. In: Proceedings of the 5th Workshop on Formal Integrated
Development Environment, EPTCS, vol. 310, pp. 63–69 (2019)

4. Couto, R., Campos, J.C., Macedo, N., Cunha, A.: Improving the visualization of
Alloy instances. In: Proceedings 4th Workshop on Formal Integrated Development
Environment, EPTCS, vol. 284, pp. 37–52 (2018)

5. Edwards, J., Jackson, D., Torlak, E.: A type system for object models. In: Pro-
ceedings of the 12th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pp. 189–199. ACM (2004)

6. Jackson, D.: Software Abstractions: Logic, Language, and Analysis, 2nd edn. The
MIT Press, Cambridge (2012)

7. Macedo, N., Brunel, J., Chemouil, D., Cunha, A., Kuperberg, D.: Lightweight spec-
ification and analysis of dynamic systems with rich configurations. In: Proceedings
of the 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pp. 373–383. ACM (2016)

8. Mangaroska, K., Giannakos, M.N.: Learning analytics for learning design: a system-
atic literature review of analytics-driven design to enhance learning. IEEE Trans.
Learn. Technol. 12(4), 516–534 (2019)

9. Pereira, J.: A web-based social environment for Alloy. Master’s thesis, Universidade
do Minho, Escola de Engenharia (2016)

Experiences on Teaching Alloy with an Automated Assessment Platform 77

10. Sioson, A.A.: Experiences on the use of an automatic C++ solution grader system.
In: Proceedings of the 4th International Conference on Information, Intelligence,
Systems and Applications, pp. 1–6. IEEE (2013)

11. Tillmann, N., de Halleux, J.: Pex–white box test generation for.NET. In: Beckert,
B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79124-9_10

12. Tillmann, N., de Halleux, J., Xie, T., Bishop, J.: Pex4Fun: a web-based environ-
ment for educational gaming via automated test generation. In: Proceedings of the
28th IEEE/ACM International Conference on Automated Software Engineering,
pp. 730–733. IEEE (2013)

https://doi.org/10.1007/978-3-540-79124-9_10

A Characterization of Distributed ASMs
with Partial-Order Runs

Egon Börger1 and Klaus-Dieter Schewe2(B)

1 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
boerger@di.unipi.it

2 UIUC Institute, Zhejiang University, Haining, China
kdschewe@acm.org

Abstract. To overcome the practical limitations of partial-order runs of
‘distributed ASMs’ (Abstract State Machines) proposed by Gurevich, we
have defined a concept of concurrent runs of multi-agent ASMs and could
show that concurrent ASMs capture a natural language-independent
axiomatic definition of concurrent algorithms, thus generalising Gure-
vich’s seminal ‘Sequential ASM Thesis’ from sequential to concurrent
algorithms. However, we remained intrigued by the fact that Blass and
Gurevich used partial-order runs of distributed ASMs to explain runs of
sequential recursive algorithms. We discovered that also the inverse sim-
ulation holds: for every distributed ASM with partial order runs, these
runs can be described by runs of a sequential recursive algorithm. This
surprising result clarifies the difference in expressivity between partial-
order and concurrent runs.

1 Introduction

In [8, Sect. 2–3] the concept of sequential Abstract State Machines (seq-ASMs)
has been defined for which the ‘Sequential ASM Thesis’ [7]—to capture the intu-
itive notion of sequential algorithm—could be proved from three natural postu-
lates, see [9]. In [8, Sect. 6] the concept of sequential ASM runs is extended by
partial-order runs of a specific class of multi-agent ASMs called distributed ASMs.
However, contrary to the great variety of successful applications of sequential
ASMs, the use of distributed ASMs with partial-order runs turned out to be
impractical to adequately model concurrent systems. It has been replaced in [4]
by a language-independent axiomatic characterization of concurrent runs, adding
a fourth postulate (on the intuitive meaning of concurrency), together with a
definition of concurrent ASMs, based upon which the Sequential ASM Thesis
and its proof could be generalized to a Concurrent ASM Thesis—to capture the
proposed intuitive notion of concurrent algorithms.

In reaction to some scepticism expressed in [13], whether recursive algorithms
can be adequately defined by ASMs, partial-order runs of distributed ASMs have
been used in [1] to simulate the computations of recursive algorithms.1 For a long
1 Already the definition of recursive ASMs in [10] uses a special case of this translation

of recursive into distributed computations.

c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 78–92, 2020.
https://doi.org/10.1007/978-3-030-48077-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-48077-6_6

A Characterization of Distributed ASMs with Partial-Order Runs 79

time we have been intrigued by this proposal, since on the one side, a simple
sequential extension of ASMs suffices for the specification of recursive algorithms
(see for example [2]), on the other side partial-order runs of distributed ASMs
turned out to be impractical for modeling truly concurrent systems (see [4]).

In Sect. 3 we review Gurevich’s description of distributed ASMs with partial-
order runs and analyse the proof that the runs of recursive algorithms can be
defined as partial-order runs of distributed ASMs. The analysis reveals that the
distributed ASMs used to define recursive runs by partial-order runs are finitely
composed concurrent ASMs with non-deterministic sequential (nd-seq) compo-
nents (see the definition in Sect. 3). In Sect. 4 we show the surprising discovery
that also the inverse relation holds, namely: for every finitely composed concur-
rent algorithm with nd-seq components, if its concurrent runs are definable by
partial-order runs, then the algorithm can be simulated by a recursive algorithm.
This establishes the main result of this paper.

Theorem 1.1 (Main Theorem). Recursive algorithms are behaviourally
equivalent to finitely composed concurrent algorithms C with nd-seq components
such that all concurrent C-runs are definable by partial-order runs.2

The equivalence of runs of recursive ASMs and of partial-order runs of dis-
tributed ASMs makes it explicit in which sense concurrent ASM runs as char-
acterized in [4] are more expressive than the ‘partial-order runs of distributed
ASMs’ proposed in [8, Sect. 6].

We will also show that if the concurrent runs are restricted further to partial-
order runs of a concurrent algorithm with a fixed finite number of agents and
fixed non-deterministic sequential (nd-seq) programs, one can simulate them
even by a non-deterministic sequential algorithm. An interesting example of this
special case are partial-order runs of Petri nets and more generally of Mayr’s
Process Rewrite Systems [12].

For the proofs we use an axiomatic characterization of recursive algorithms as
sequential algorithms enriched by call steps,3 such that the parent-child relation-
ship between caller and callee defines well-defined shared locations representing
input and return parameters. This characterization is reviewed in Sect. 2 and is
taken from [5] where it appears as Recursion Postulate and is added to Gure-
vich’s three postulates for sequential ASMs [9] as basis for the proof of an ASM
thesis for recursive ASMs.

We assume the knowledge of [8,9] and [4] and use without further expla-
nations standard textbook notations for ASMs, including ambient ASMs [3,
Ch. 4.1].

2 We call R behaviourally equivalent to C if each r ∈ R can be simulated by a c ∈ C
and vice versa.

3 To emphasize the sequential nature of recursive algorithms we sometimes use the
term ‘sequential recursive algorithm’. See [5] for the technical reason for this naming
policy.

80 E. Börger and K.-D. Schewe

2 The Recursion Postulate

We start with a characteristic example to illustrate the intuitive idea of recur-
sion which guided the formulation of the recursion postulate below.4 Take the
mergesort algorithm, which consists of a main algorithm sort and an auxiliary
algorithm merge. Every call to (a copy, we also say an instance of) sort and
every call to (an instance of) the merge algorithm could give rise to a new agent.
However, these agents only interact by passing input parameters and return val-
ues, but otherwise operate on disjoint sets of locations. In addition, a calling
agent always waits to receive return values, which implies that only one or (in
case of parallel calls) a finite number of agents are active in any state.

If one considers mutual recursion, then this becomes slightly more general,
as there is a finite family of algorithms calling (instances of) each other. Further-
more, there may be several simultaneous calls. E.g. in mergesort , sort calls two
copies of itself, each sorting one half of the list of given elements. Such simulta-
neously called copies may run sequentially in one order or the other, in parallel
or even asynchronously. This give rise to non-deterministic execution of multiple
sequential algorithms.

Therefore, for a characterization of recursive algorithms and their compu-
tations we can rely on the capture of non-deterministic sequential algorithms
by non-deterministic sequential ASMs.5 Thus, to axiomatically define recursive
algorithms and their runs it suffices to add to the three postulates for nd-seq
algorithms a Call Step Postulate and a Recursive Run Postulate defined below,
which together form the Recursion Postulate.

To characterize the input/output relation between the input provided by the
caller in a call step and the output computed by the callee for this input we
use the ASM function classification from [6] to distinguish between input, output
and local (also called controlled) function symbols in the signature, the union
of pairwise disjoint sets Σin , Σout and Σloc respectively. We call any nd-seq
algorithm which comes with such a signature and also satisfies the Call Step
Postulate below an algorithm with input and output (for short: i/o-algorithm).
We can then define (sequential) recursive algorithms syntactically as collections
of i/o-algorithms.

Definition 2.1. A recursive algorithm R is a finite set of i/o-algorithms with
one distinguished main algorithm. The elements of R are called components
of R.

The independency condition for (possibly parallel) computations of different
instances of the given algorithms requires that for different calls, in particular for
different calls of the same algorithm, the state spaces of the triggered subcom-
putations are separated from each other. This encapsulation of subcomputations
can be made precise by the concept of ambient algorithms where each instance of

4 For a detailed analysis see [5].
5 The proof for the Sequential ASM Thesis is easily extended from deterministic to

non-deterministic algorithms, see [9, Sect. 9.2].

A Characterization of Distributed ASMs with Partial-Order Runs 81

an algorithm has a unique context parameter for its functions, e.g. its executing
agent (see [3, Ch. 4.1]), and is started in an initial state that only depends on
its input locations.6

Now we are ready to formulate the postulate for call steps. In Sect. 3.4 we
formalize this postulate by an ASM Call(t0 ← N (t1, . . . , tn)) (see Definition 3.4
and its refinement in Sect. 4).

Postulate 1 (Call Step Postulate). When an i/o-algorithm p—the caller,
viewed as parent algorithm—calls a finite number of i/o-algorithms c1, . . . , cn—
the callees, viewed as child algorithms CalledBy(p)—a call relationship (denoted
as CalledBy(p)) holds between the caller and each callee. The caller activates a
fresh instance of each callee ci so that they can start their computations. These
computations are independent of each other and the caller remains waiting—
i.e. performs no step—until every callee has terminated its computation (read:
has reached a final state). For each callee, the initial state of its computation is
determined only by the input passed by the caller; the only other interaction of
the callee with the caller is to return in its final state an output to p.

Definition 2.2. A call relationship holds for (instances of) two i/o-algorithms
Ap (parent) and Ac (child) if and only if they satisfy the following conditions
on their function classification:

� ΣAc

in ⊆ ΣAp
so that the parent algorithm is able to update input locations of

the child algorithm. Furthermore, Ap never reads the input locations of Ac .
� ΣAc

out ⊆ ΣAp
so that the parent algorithm can read the output locations of

the child algorithm. Furthermore, Ap never updates output locations of Ac .
� ΣAc

loc ∩ ΣAp
= ∅ (no other common locations).

Differently from runs of a nd-seq algorithm, where in each state at most one
step of the nd-seq algorithm is performed, in a recursive run a sequential recursive
algorithm R can perform in one step simultaneously one step of each of finitely
many not terminated and not waiting called instances of its i/o-algorithms. This
is expressed by the Recursive Run Postulate. In this postulate we refer to Active
and not Waiting instances of components, which are defined as follows:

Definition 2.3. To be Active resp. Waiting in a state S is defined as follows:

Active(q) iff q ∈ Called and not Terminated(q)
Waiting(p) iff forsome c ∈ CalledBy(p) Active(c)
Called = {main} ∪ ⋃

p CalledBy(p)

6 More precisely, one can define an instance of an algorithm A by adding a parameter
a, say for an agent executing the instance Aa = (a,A) of A. a can be used as
environment parameter for the evaluation valS (t , a) of a term t in state S with the
given environment. This yields for different agents a, a ′ different functions fa , fa′ as
interpretation of the same function symbol f , so that the run-time interpretations
of a common signature element f can be made to differ for different agents, due to
different inputs which determine their initial states.

82 E. Börger and K.-D. Schewe

Called collects the instances of algorithms that are called during the run. The
subset of Called which contains all the children called by p is denoted by
CalledBy(p). Called = {main} and CalledBy(p) = ∅ are true in the initial state
S0, for each i/o-algorithm p ∈ R. In particular, in S0 the original component
main is considered to not be CalledBy(p), for any p.

Postulate 2 (Recursive Run Postulate). For a sequential recursive algo-
rithm R with main component main a recursive run is a sequence S0,S1,S2, . . .
of states7 together with a sequence C0,C1,C2, . . . of sets of instances of compo-
nents of R which satisfy the following constraints:

Recursive run constraint
� C0 is the singleton set C0 = {main}, i.e. every run starts with main,
� every Ci is a finite set of instances of components of R which are Active

and not Waiting in state Si ,
� every Si+1 is obtained in one R-step by performing in Si simultaneously

one step of each i/o-algorithm in Ci . Such an R-step is also called a
recursive step of R.

Bounded call tree branching. There is a fixed natural number m > 0, depend-
ing only on R, which in every R-run bounds the number of callees which can
be called by a call step.

Remark (on Call Trees). If in a recursive R-run the main algorithm calls
some i/o-algorithms, this call creates a finitely branched call tree whose nodes
are labeled by the instances of the i/o-algorithms involved, with active and not
waiting algorithms labeling the leaves and with the main (the parent) algorithm
labeling the root of the tree and becoming waiting. When the algorithm at a
leaf makes a call, this extends the tree correspondingly. When the algorithm at
a child of a node has terminated its computation, we delete the child from the
tree. The leaves of this (dynamic) call tree are labeled by the active not waiting
algorithms in the run. When the main algorithm terminates, the call tree is
reduced again to the root labeled by the initially called main algorithm.

Usually, it is expected that for recursive R-runs each called i/o-algorithm
reaches a final state, but in general it is not excluded that this is not the case.

In [5] the reader can find a definition of recursive ASMs together with a proof
that they capture (are equivalent to) recursive algorithms as characterized by
the Recursion Postulate. Here we use the postulate as a basis for the proof that
recursive algorithms are captured by ‘distributed ASMs with partial-order runs’,
as defined in [8].

7 For the sake of simplicity we take a state as union of the states of the component
instances in the run, in other words as state over the union of the individual signa-
tures.

A Characterization of Distributed ASMs with Partial-Order Runs 83

3 Recursive ASMs Are Distributed ASMs
with Partial-Order Runs

Syntactically, a multi-agent (also called concurrent) algorithm C is defined as a
family of algorithms alg(a), each associated with (‘indexed by’) an agent a ∈
Agent that executes the algorithm in a run. Each (a, alg(a)) resp. alg(a) is
called a component resp. (component) program of C. This applies to distributed
ASMs [8] as well as to recursive or concurrent algorithms and ASMs [4,5].

To investigate the simulation of recursive runs by partial-order runs of dis-
tributed ASMs (Sect. 3.4) we must explain what are finitely composed concurrent
(Gurevich’s ‘distributed’) algorithms (Sect. 3.1) and partial-order resp. concur-
rent runs (Sect. 3.2 resp. 3.3).

3.1 Finitely Composed Concurrent Algorithms

For recursive algorithms various restrictions on the syntactical definition of
multi-agent algorithms have to be made most of which appear also for distributed
ASMs in [8, Sect. 6].

First of all, although the components alg(a) of concurrent algorithms are
not necessarily sequential algorithms, to simulate specific concurrent algorithms
by recursive ones, which are defined as families of nd-seq algorithms, we must
restrict our attention to concurrent algorithms with sequential (though possibly
non-deterministic) components.8

Second, for distributed ASMs it is stipulated in [8, p. 31] that the agents are
equipped with instances of programs which are taken from ‘a finite indexed set of
single-agent programs’. This leads to what we call finitely composed concurrent
algorithms or ASMs C where the components can only be copies (read: instances)
of finitely many different nd-seq algorithms or ASMs, which we will call the
program base of C.

Third, for distributed ASMs it is stipulated in [8, 6.2, p. 31] that in ini-
tial states there are only finitely many agents, each equipped with a program.
We reflect this by the (simplifying but equivalent) condition that the runs of a
finitely composed concurrent algorithm or ASM must be started by executing a
distinguished main component.

Fourth, for distributed ASMs it is stipulated in [8, p. 32] that ‘An agent a
can make a move at S by firing Prog(a) ... and change S accordingly. As part of
the move, a may create new agents’, which then may contribute by their moves
to the run in which they were created. For this purpose we use the new function.

We summarize these constraints for distributed ASMs by the notion of finitely
composed concurrent algorithms (read: concurrent ASMs).

Definition 3.1. A concurrent algorithm C is finitely composed iff (i)–(iii) hold:

8 In fact it is shown in [5] that permitting the unbounded forall and choose constructs
results in algorithms far more powerful than the recursive ones.

84 E. Börger and K.-D. Schewe

(i) There exists a finite set B of nd-seq algorithms such that each C-program
is of form amb a in r for some program r ∈ B—call B the program base
of C.

(ii) There exists a distinguished agent a0 which is the only one Active in any
initial state. Formally this means that in every initial state of a C-run,
Agent = {a0} holds. We denote by main the component in B of which
a0 executes an instance. For partial-order runs of C defined below this
implies that they start with a minimal move which consists in executing
the program asm(a0) = amb a0 in main.

(iii) Each program in B may contain rules of form let a = new (Agent) in r .
Together with (ii) this implies that every agent, except the distinguished
a0, before making a move in a run must have been created in the run.

C is called finite iff Agent is finite.

3.2 Partial-Order Runs

In [8] Gurevich defined (for distributed algorithms) the notion of partial-order
run by a partial order on the set of single moves of the agents which execute the
component algorithms. For a nd-seq algorithm A, to make one move means to
perform one step in a state S .

Definition 3.2. Let C = {(a, alg(a))}a∈Agent be a concurrent algorithm, in
which each alg(a) is an nd-seq algorithm. A partial-order run for C is defined by
a set M of moves of instances of the algorithms alg(a) (a ∈ Agent), a function
ag : M → Agent assigning to each move the agent performing the move, a
partial order ≤ on M , and an initial segment function σ such that the following
conditions are satisfied:

finite history. For each move m ∈ M its history {m ′ | m ′ ≤ m} is finite.
sequentiality of agents. The moves of each agent are ordered, i.e. for any two

moves m and m ′ of one agent ag(m) = ag(m ′) we either have m ≤ m ′ or
m ′ ≤ m.

coherence. For each finite initial segment M ′ ⊆ M (i.e. such that for m ∈ M ′

and m ′ ≤ m we also have m ′ ∈ M ′) there exists a state σ(M ′) over the
combined signatures of the algorithms (a, alg(a)) such that for each maximum
element m ∈ M ′ the state σ(M ′) is the result of applying m to σ(M ′ −{m}).

3.3 Concurrent Runs

In a concurrent run as defined in [4], multiple agents with different clocks may
contribute by their single moves to define the successor state of a state. Therefore,
when a successor state Si+1 of a state Si is obtained by applying to Si multiple
update sets Ua with agents a in a finite set Agenti ⊆ Agent , each Ua is required
to have been computed by a ∈ Agenti in a preceding state Sj , i.e. with j ≤ i . It
is possible that j < i holds so that for different agents different alg(a)-execution
speeds (and purely local subruns to compute Ua) can be taken into account.

A Characterization of Distributed ASMs with Partial-Order Runs 85

This can be considered as resulting from a separation of a step of an nd-seq
algorithm alg(a) into a read step—which reads location values in a state Sj—
followed by a write step which applies the update set Ua computed on the basis
of the values read in Sj to a later state Si (i ≥ j). We say that a contributes to
updating the state Si to its successor state Si+1, and that a move starts in Sj and
contributes to updating Si (i.e. it finishes in Si+1). This is formally expressed
by the following definition of concurrent ASMs and their runs.

Definition 3.3. Let C be a concurrent algorithm of component algorithms
pgm(a) (read: ASM rules) with associated agents a ∈ Agent . A concurrent run of
C is defined as a sequence S0,S1, . . . of states together with a sequence A0,A1, . . .
of finite subsets of Agent , such that S0 is an initial state and each Si+1 is obtained
from Si by applying to it the updates computed by the agents in Ai , where each
a ∈ Ai computes its update set Ua on the basis of the location values (including
the input and shared locations) read in some preceding state Sj (i.e. with j ≤ i)
depending on a.

Remark. In this definition we deliberately permit the set of Agents to be infi-
nite or dynamic and potentially infinite, growing or shrinking in a run. In Defi-
nition 3.2 above, the set of Agents is fixed by the set M of moves.

3.4 Simulation of Recursive by Partial-Order Runs

We are now ready to specify recursive algorithms by distributed ASMs, following
the thought proposed in [1]. For the sake of precision and simplicity we formulate
the construction in terms of ASMs; due to the characterization theorems in [5]
and [4] this implies no loss of generality.

Theorem 3.1. Every recursive ASM R can be simulated by a finitely composed
concurrent ASM CR with nd-seq ASM components for which every concurrent
run of CR is definable by a partial-order run.

Proof. Let R be a recursive ASM given with distinguished program main. We
define a finitely composed concurrent ASM CR with program base {r∗ | r ∈ R},
where r∗ is defined as

r∗ = if Active(r) and not Waiting(r) then r .

In doing so, for each call rule r = t0 ← N (t1, . . . , tn) in R we use for its transla-
tion the following ASM Call(t0 ← N (t1, . . . , tn)), which rigorously defines the
behavioral interpretation of the call rule r (for details see [5]):

Definition 3.4. Call(t0 ← N (t1, . . . , tn)) =
let N (x1, . . . , xn) = q // declaration of N
let v1 = t1, . . . , vn = tn // input evaluation valS (ti , self) by caller
let t0 = f (t ′

1, . . . , t
′
k)

let v ′
1 = t ′

1, . . . , v
′
k = t ′

k
let c = new (Agent)

86 E. Börger and K.-D. Schewe

pgm(c) := amb c in q // equip callee with its program instance
Insert(c,CalledBy(self))
Initialize(qc , v1/x1, . . . , vn/xn , f (v ′

1, . . . , v
′
k)/xo)

CalledBy(c) := ∅

Note that the call is a call-by-value and that (f , (v ′
1, . . . , v

′
k)) denotes the

output location whose value the caller expects to be updated by the callee with
the return value.

By definition, r∗ can only contribute a non-empty update set to form a state
Si+1 in a concurrent run, if r is Active and not Waiting ; this reflects that by the
recursive run postulate, in every step of a recursive run of R only Active and
not Waiting rules are executed.

The definition of r∗ obviously guarantees that CR simulates R step by step:
in each run step the same Active and not Waiting rules r respectively r∗ and
their agents are selected for their simultaneous execution and their rules perform
the same state change.

Note that by Definition 3.4 of Call(i/o-rule), each agent operates in its own
state space so that the view of an agent’s step as read-step followed by a write-
step is equivalent to the atomic view of this step. Note also that in a concurrent
run of CR the Agent set is dynamic, in fact it grows with each execution of a call
rule, together with the number of instances of R-components executed during a
recursive run of R.

It remains to define every concurrent run (S0,A0), (S1,A1), . . . of CR by a
partial-order run. For this we define an order on the set M of moves made during
a concurrent run, showing that it satisfies the constraints on finite history and
the sequentiality of agents, and then relate each state Si of the run to the state
computed by the set Mi of moves performed to compute Si (from S0), showing
that Mi is a finite initial segment of M and that the associated state σ(Mi)
equals Si and satisfies the coherence condition.

Each successor state Si+1 in a concurrent run of CR is the result of applying to
Si the write steps of finitely many moves of agents in Ai . This defines the function
ag , which associates agents with moves, and the finite set Mi of all moves finished
in a state belonging to the initial run segment [S0, . . . ,Si]. Let M = ∪iMi . The
partial order ≤ on M is defined by m < m ′ iff move m contributes to update
some state Si (read: finishes in Si) and move m ′ starts reading in a later state
Sj with i + 1 ≤ j . Thus, by definition, Mi is an initial segment of M .

To prove the finite history condition, consider any m ′ ∈ M and let Sj be
the state in which it is started. There are only finitely many earlier states
S0, . . . ,Sj−1, and in each of them only finitely many moves m can be finished,
contributing to update Sj−1 or an earlier state.

The condition on the sequentiality of the agents follows directly from the
definition of the order relation ≤ and from the fact that in a concurrent run,
for every move m = (readm ,writem) executed by an agent, this agent performs
no other move between the readm -step and the corresponding writem -step in
the run.

A Characterization of Distributed ASMs with Partial-Order Runs 87

This leaves us to define the function σ for finite initial segments M ′ ⊆ M and
to show the coherence property. We define σ(M ′) as result of the application of
the moves in M ′ in any total order extending the partial order ≤. For the initial
state S0 we have σ(∅) = S0. This implies the definability claim Si = σ(Mi).

The definition of σ is consistent for the following reason. Whenever two moves
m �= m ′ are incomparable, then either they both start in the same state or say
m starts earlier than m ′. But m ′ also starts earlier than m finishes. This is only
possible for agents ag(m) = a and ag(m ′) = a ′ whose programs pgm(a), pgm(a ′)
are not in an ancestor relationship in the call tree. Therefore these programs have
disjoint signatures, so that the moves m and m ′ could be applied in any order
with the same resulting state change.

To prove the coherence property let M ′ be a finite initial segment, and let
M ′′ = M ′\M ′

max, where M ′
max is the set of all maximal elements of M ′. Then

σ(M ′) is the result of applying simultaneously all moves m ∈ M ′
max to σ(M ′′),

and the order in which the maximum moves are applied is irrelevant. This implies
in particular the desired coherence property. �

The key argument in the proof exploits the Recursion Postulate whereby
for recursive runs of R, the runs of different agents are initiated by calls and
concern different state spaces with pairwise disjoint signatures, due to the func-
tion parameterization by agents, unless pgm(a ′) is a child (or a descendant) of
pgm(a), in which case the relationship between the signatures is defined by the
call relationship. Independent moves can be guaranteed in full generality only
for algorithms with disjoint signatures.

4 Distributed ASMs with Partial-Order Runs Are
Recursive ASMs

While Theorem 3.1 is not surprising, we will now show its less obvious inverse.

Theorem 4.1. For each finitely composed concurrent ASM C with program base
{ri | i ∈ I } of nd-seq ASMs such that all its concurrent runs are definable
by partial-order runs, one can construct a recursive ASM RC such that each
concurrent run of C can be simulated by a recursive run of RC.9

Proof. Let a concurrent C-run (S0,A0), (S1,A1), . . . be given. If it is definable by
a partial-order run (M ,≤, ag , pgm, σ), the transition from Si = σ(Mi) to Si+1 is
performed in one concurrent step by parallel independent moves m ∈ Mi+1\Mi ,
where Mi is the set of moves which contributed to transform S0 into Si . Let
m ∈ Mi+1\Mi be a move performed by an agent a = ag(m) with rule pgm(a) =
amb a in r , an instance of a rule r in the program base of C. To execute the
concurrent step by means of steps of a recursive ASM RC , we simulate each

9 One obtains even the behavioral equivalence via an inverse simulation of every recur-
sive RC-run by a concurrent C-run if the delegates of C-agents, called in the recursive
run to perform the step of their caller in the concurrent run, act in an ‘eager’ way.
See the remark at the end of the proof.

88 E. Börger and K.-D. Schewe

of its moves m by letting agent a act in the RC-run as caller of a named rule
outr ← OneStepr (inr). The callee agent c acts as delegate for one step of a: it
executes amb a ∈ r and makes its program immediately Terminated .

To achieve this, we refine the Call machine defined in Definition 3.4 such
that upon calling outr ← OneStepr (inr), the delegate c created by the call
becomes Active so that it can make a step to execute amb c in OneStepr .
It suffices to add to the component Initialize the update Terminated(amb
c in q) := false, which makes c Active. OneStepr is defined to perform amb
caller(c) in r and to terminate immediately (by setting Terminated to true). For
ease of exposition we add to Definition 3.4 also the update caller(c) :=self , to
distinguish agents in the concurrent run—the callers of OneStepr -machines—
from the delegates each of which simulates one step of its caller and immediately
terminates its life cycle.

It remains to determine the input and output for calling OneStepr . For
the input we exploit the existence of a bounded exploration witness Wr for r .
All updates produced in a single step are determined by the values of Wr in
the state, in which the call is launched. So Wr defines the input terms of the
called rule OneStepr , combined in inr . Analogously, a single step of r provides
updates to finitely many locations that are determined by terms appearing in
the rule, which defines outr .

We summarize the explanations by the following definition:

RC = {outr ← OneStepr (inr) | r ∈ program base of C}
OneStepr =

amb caller(self) in r // the delegate executes the step of its caller
Terminated(pgm(self)) := true // ... and immediates stops

Note that by the refined Definition 3.4, outr ← OneStepr (inr) triggers the
execution of the delegate program amb c in OneStepr . Let a = caller(c). By
definition, amb c in OneStepr triggers amb c in amb a in r . Furthermore,
since the innermost ambient binding counts, this machine is equivalent to the
simulated machine amb a in r , as was to be shown.

Thus the recursive RC-run which simulates (S0,A0), (S1,A1), . . . starts by
Definition 3.1 in S0 with program amb a0 in inmain ← OneStepmain(outmain).
For the sake of notational simplicity we disregard the auxiliary locations of RC .
Let

Ai = {ai1 , . . . , aik } ⊆ Agent for some ij and k depending on i
where forall 1 ≤ j ≤ k

aij = ag(mij) ∈ Mi+1\Mi and pgm(aij) = amb aij in rij

We use the same agents aij for Ai in the RC-run, but with program outrij ←
OneSteprij (inrij). Their step in the recursive run leads to a state S ′

i where all
callers aij are Waiting and the newly created delegates cij are Active and not
Waiting . So we can choose them for the set A′

i of agents which perform the next
RC step, whereby

A Characterization of Distributed ASMs with Partial-Order Runs 89

� all rules rij are performed simultaneously (as in the given concurrent run
step), in the ambient of caller(cij) = aij thus leading as desired to the state
Si+1,

� the delegates make their program Terminated , whereby their callers aij
become again not Waiting and thereby ready to take part in the next step
of the concurrent run. We assume for this that whenever in the C-run (not in
the RC run) a new agent a is created, it is made not Waiting (by initializing
CalledBy(a) := ∅).

�

Remark. Consider an RC-run where each recursive step of the concurrent caller
agents in Ai , which call each some OneStep program, alternates with a recursive
step of all—the just called—delegates whose program is not yet Terminated .
Then this run is equivalent to a corresponding concurrent C-run.

Note that Theorem 4.1 heavily depends on the prerequisite that C only has
partial-order runs.10 With general concurrent runs as defined in [4] the construc-
tion would not be possible.

4.1 Partial Order Runs of Petri Nets

The semantics of Petri nets actually defines a rather special case of partial-order
runs, namely runs one can describe even by a nd-seq ASM, as we show in this
section.

A Petri net comes with a finite number of transition rules, each of which
can be described by a nd-seq ASM (see [6, p. 297]). The special character of
the computational Petri net model is due to the fact that during the runs, only
exactly these rules are used. In other words there is a fixed association of each
rule with an executing agent; there is no rule instantiation with new agents which
could be created during a run. Therefore the states are the global markings of
the net. The functions σ(I) associated with the po-runs of the net yield for every
finite initial segment I as value the global marking obtained by firing the rules
in I .

For this particular kind of concurrent ASMs with partial-order runs one can
define the concurrent runs by nd-seq ASMs, as we are going to show in this
section.

Theorem 4.2. For each finite concurrent ASM C = {(ai , ri) | 1 ≤ i ≤ n} with
nd-seq ASMs ri such that all its concurrent runs are definable by partial-order
runs one can construct a nd-seq ASM MC such that the concurrent runs of C
and the runs of MC are equivalent.
10 The other prerequisites in Theorem 4.1 appear to be rather natural. Unbounded runs

can only result, if in a single step arbitrarily many new agents are created. Also,
infinitely many different rules associated with the agents are only possible, if new
agents are created and added during a concurrent run. Though this is captured in
the general theory of concurrency in [4], it was not intended in Gurevich’s definition
of partial-order runs.

90 E. Börger and K.-D. Schewe

Corollary 4.1. Partial-order Petri net runs can be simulated by runs of a non-
deterministic sequential ASM.11

Proof. We relate the states Si of a given concurrent run of C to the states σ(Mi)
associated with initial segments Mi of a given corresponding partial order run
(M ,≤, ag , pgm, σ), where each step leading from Si to Si+1 consists of pairwise
incomparable moves in Mi+1\Mi . We call such a sequence S0,S1, . . . of states a
linearised run of C. For i > 0 the initial segments Mi are non empty.

The linearized runs of C can be characterized as runs of a nd-seq ASM MC :
in each step this machine chooses one of finitely many non-empty subsets of rules
in C to execute them in parallel. Formally:

MC = choose AllRulesOf(I1) | · · · | AllRulesOf(In)
where
AllRulesOf({i1, . . . , ik}) =

ri1
. . .
rik

{I1, . . . , In} = {I ′ �= ∅ | I ′ ⊆ I } // the non-empty subsets of I
n = 2|I | − 1

To complete the proof it suffices to show the following lemma. �

Lemma 4.1. The linearised runs of C are exactly the runs of MC.

Proof. To show that each run S0,S1, . . . of MC is a linearised run of C we pro-
ceed by induction to construct the partial-order run (M ,≤) with its finite initial
segments Mi . For the initial state S0 = σ(∅) there is nothing to show, so let Si+1

result from Si by applying an update set produced by AllRulesOf(J) for some
non-empty J ⊆ I . By induction we have Si = σ(Mi) for some initial segment of
a partial-order run (M ,≤). As AllRulesOf(J) is a parallel composition, Si+1

results from applying the union of update sets Δij ∈ Δrij for j = 1, . . . , |J | to
Si . Each Δij defines a move mij of some ag(mij) = aij , move which finishes in
state Si . We now have two cases:

(i) The moves mij with j ∈ J are pairwise independent, i.e. their application
in any order produces the same new state. Then (M ,≤) can be extended
with these moves such that Mi+1 = Mi ∪ {mij | j ∈ J} becomes an initial
segment and Si+1 = σ(Mi) holds.

(ii) If the moves mij with j ∈ J are not pairwise independent, the union of
the corresponding update sets is inconsistent, hence the run terminates in
state Si .

11 We thank Wolf Zimmermann for pointing out that the argument applies more gen-
erally to Mayr’s Process Rewrite Systems [12]. They have been used in [11] to verify
protocols for services which may rise exceptions.

A Characterization of Distributed ASMs with Partial-Order Runs 91

To show the converse we proceed analogously. If we have Si = σ(Mi) for all
i ≥ 1, then Si+1 results from Si by applying in parallel all moves in Mi+1 −Mi .
Applying a move m means to apply an update set produced by some rule rj ∈ C
(namely the rule pgm(ag(m))) in state Si , and applying several update sets in
parallel means to apply their union Δ, which then must be consistent. So we
have Si+1 = Si +Δ with Δ =

⋃
j∈J Δij for some J , where each Δij is an update

set produced by rij , i.e. Δ is an update set produced by AllRulesOf(J), which
implies that the linearised run S0,S1, . . . is a run of MC . �

For the corollary it suffices to note that each Petri net transition can be
described by a nd-seq ASM (see [6, p. 297]). The functions σ(I) associated with
the po-runs yield the global marking obtained by firing the rules in I .

5 Conclusions

While Gurevich’s Sequential ASM Thesis [9] provides an elegant and satisfactory
mathematical definition of the notion of sequential algorithm plus a proof that
sequential algorithms are captured by sequential ASMs, this theory does not
capture recursive algorithms. It lacks an appropriate call concept. In fact, in an
attempt to solve this problem Blass and Gurevich in [1] invoked the notion of
partial-order runs of ‘distributed ASMs’, which has been proposed in [8] as a
concurrency concept for ASMs. We showed in this paper that these ‘distributed
ASMs’ are finitely composed ASMs whose partial-order runs characterize (are
equivalent to) recursive runs. Thus, partial-order runs of distributed ASMs do
not capture the concept of concurrent algorithms (but see [4]).

References

1. Blass, A., Gurevich, Y.: Algorithms vs. machines. Bull. EATCS 77, 96–119 (2002)
2. Börger, E., Bolognesi, T.: Remarks on turbo ASMs for functional equations and

recursion schemes. In: Börger, E., Gargantini, A., Riccobene, E. (eds.) ASM 2003.
LNCS, vol. 2589, pp. 218–228. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36498-6 12

3. Börger, E., Raschke, A.: Modeling Companion for Software Practitioners. Springer,
Heidelberg (2018). https://doi.org/10.1007/978-3-662-56641-1

4. Börger, E., Schewe, K.-D.: Concurrent abstract state machines. Acta Inform. 53(5),
469–492 (2016). https://doi.org/10.1007/s00236-015-0249-7

5. Börger, E., Schewe, K.-D.: A behavioural theory of recursive algorithms (2020).
http://arxiv.org/abs/2001.01862

6. Börger, E., Stärk, R.F.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
642-18216-7

7. Gurevich, Y.: A new thesis. In: Abstracts, vol. 6, no. 4, p. 317. American Mathe-
matical Society (1985)

8. Gurevich, Y.: Evolving algebras 1993: lipari guide. In: Börger, E. (ed.) Specification
and Validation Methods, pp. 9–36. Oxford University Press (1995)

https://doi.org/10.1007/3-540-36498-6_12
https://doi.org/10.1007/3-540-36498-6_12
https://doi.org/10.1007/978-3-662-56641-1
https://doi.org/10.1007/s00236-015-0249-7
http://arxiv.org/abs/2001.01862
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-642-18216-7

92 E. Börger and K.-D. Schewe

9. Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms.
ACM Trans. Comput. Logic 1(1), 77–111 (2000)

10. Gurevich, Y., Spielmann, M.: Recursive abstract state machines. J. UCS 3(4),
233–246 (1997)

11. Heike, C., Zimmermann, W., Both, A.: On expanding protocol conformance check-
ing to exception handling. SOCA 8(4), 299–322 (2013). https://doi.org/10.1007/
s11761-013-0146-2

12. Mayr, R.: Process rewrite systems. Inf. Comput. 156, 264–286 (1999)
13. Moschovakis, Y.N.: What is an algorithm? In: Engquist, B., Schmid, W. (eds.)

Mathematics Unlimited - 2001 and Beyond, pp. 919–936. Springer, Heidelberg
(2001). https://doi.org/10.1007/978-3-642-56478-9 46

https://doi.org/10.1007/s11761-013-0146-2
https://doi.org/10.1007/s11761-013-0146-2
https://doi.org/10.1007/978-3-642-56478-9_46

A Logic for Reflective ASMs

Klaus-Dieter Schewe1 and Flavio Ferrarotti2(B)

1 Zhejiang University, UIUC Institute, Haining, China
kd.schewe@intl.zju.edu.cn, kdschewe@acm.org

2 Software Competence Center Hagenberg, Hagenberg, Austria
flavio.ferrarotti@scch.at

Abstract. Reflective algorithms are algorithms that can modify their
own behaviour. Recently a behavioural theory of reflective algorithms has
been developed, which shows that they are captured by reflective abstract
state machines (rASMs). Reflective ASMs exploit extended states that
include an updatable representation of the ASM signature and rules to
be executed by the machine in that state. Updates to the representation
of ASM signatures and rules are realised by means of a sophisticated tree
algebra defined in the background of the rASM. In this paper the theory
is taken further by an extension of the logic of ASMs to capture inferences
on rASMs. The key is the introduction of terms that are interpreted
by ASM rules stored in some location. We show that fragments of the
logic with a fixed bound on the number of steps preserve completeness,
whereas the full run-logic for rASMs becomes incomplete.

Keywords: Abstract state machine · Reflection · Logic · Tree algebra

1 Introduction

Reflection refers to the ability of an algorithm or program to modify its own
behaviour. The concept is as old as computer science; it already appears in
LISP [16], where programs and data are both represented uniformly as lists.
General run-time and compile-time linguistic reflection in programming and
database research have been investigated in general by Stemple, Van den Bussche
and others in [18,19]. Recently, adaptivity and thus reflection has become a key
aspect of (cyber-physical) systems [7]. Nonetheless, it is still not well understood
and contains great challenges and risks. As it is hard to oversee how a system
behaves after many adaptations, any uncontrolled application of reflection bears
the risk of unpredictable and undesired outcomes. Thus, the challenge for rigor-
ous methods is to enable static reasoning and verification of desired properties
of reflective algorithms and systems, which requires to control an unbounded
family of specifications.

The research reported in this paper has been partly funded by BMVIT, BMDW, and
the Province of Upper Austria in the frame of the COMET Programme managed by
FFG.

c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 93–106, 2020.
https://doi.org/10.1007/978-3-030-48077-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-48077-6_7

94 K.-D. Schewe and F. Ferrarotti

Concerning the foundations of reflection we developed a behavioural the-
ory of reflective sequential algorithms (RSAs) in [12] (see arXiv version in [9]),
which extends and cleanses our previous sketch in [2]. The theory provides
an axiomatic, language-independent definition of RSAs, defines an extension
of sequential ASMs to reflective sequential ASMs (rsASMs), by means of which
RSAs can be specified, and provides a proof that RSAs are captured by rsASMs.
That is, rsASMs satisfy the postulates of the axiomatisation, and any RSA as
stipulated by the axiomatisation can be defined by a behaviourally equivalent
rsASM. The notion of behavioural equivalence is slightly weaker than the cor-
responding notion for sequential or parallel algorithms, as there is no need to
require that changes to the represented algorithm are exactly the same, as long
as the application of the algorithm to the core part of the structure yields the
same results.

In [13] we sketched how to generalise the theory to reflective parallel algo-
rithms [11], which requires an integration of the behavioural theory of syn-
chronous parallel algorithms [3]. Leaving this general aspect aside the gener-
alisation of just the reflective sequential ASMs to reflective ASMs is rather
straightforward. For deterministic ASMs this was done in [10]. In a nutshell,
in each step of a reflective ASM (rASM) the rule is taken from a dedicated loca-
tion self , which uses a tree structure to represent the signature and rule, and a
sophisticated tree algebra to manipulate tree values [14]. We also exploit partial
updates in the form of [15] to minimise clashes that may otherwise result from
simultaneously updating self by several parallel branches.

In this paper we address the fundamental question how desired properties of
a reflective algorithm can be verified. As rASMs capture reflective algorithms,
this requires extending the logic of ASMs [4,5,17]. We observe that in these
logics the rules defining an ASM only enter as extra-logical constants r that are
expanded in atomic formulae [r]ϕ (the application of r to the current state leads
to a state satisfying the formula ϕ), upd(r,X) (the rule r yields an update set
X in the current state), and upm(r, Ẍ) (the rule r yields an update multiset Ẍ
in the current state). In an rASM, however, the rule to be applied in the current
state is stored itself in the state in a sublocation of a location self . We therefore
explore the idea to treat r in formulae as variables that are interpreted by a rule
stored in the current state. Furthermore, as reasoning about reflective algorithms
only makes sense for multiple steps, we also extend the one-step ASM logic to a
multiple-step logic. The precise definition of such a logic and the completeness
proof for a fragment of the logic are the key contributions of this paper.

In Sect. 2 we present rASMs as extensions of ASMs. Section 3 is dedicated to
the introduction of the logic of ASMs, which follows our previous work in [4].
The core of the paper is Sect. 4, where we formally develop the extension of the
logic dealing with reflection and investigate completeness. We conclude with a
brief summary and outlook in Sect. 5.

A Logic for Reflective ASMs 95

2 Reflective Abstract State Machines

We assume general familiarity with ASMs as defined in [1]. The extension to
reflective ASMs requires to define a background structure that covers trees and
operations on them, a dedicated variable self that takes as its value a tree
representation of an ASM signature and rule, and the extension of rules by partial
updates. Due to space limitations our presentation must be terse—nevertheless
the details are given in [9,10,12]. Note that the omitted details include the
sophisticated tree algebra defined for the representation of rules and the access
to them. We use some of its operators, but they can be correctly understood
from the context.

Let Σ be an ASM signature, i.e. a set of function symbols. Partial assign-
ments are defined as follows: Whenever f ∈ Σ has arity n and op is an operator
of arity m + 1, ti (i = 1, . . . , n) and t′i (i = 1, . . . ,m) are terms over Σ, then
f(t1, . . . , tn) ⇔op t′1, . . . , t

′
m is a rule. The informal meaning is that we evalu-

ate the terms as well as f(t1, . . . , tn) in the current state S, then apply op to
valS(f(t1, . . . , tn)), valS(t′1), . . . , valS(t′m) and assign the resulting value v to the
location (f, (valS(t1), . . . , valS(tn))). Conditions for compatibility and the col-
lapse of an update multiset into an update set have been elaborated in detail in
[15].

For the dedicated location storing the self-representation of an ASM it is
sufficient to use a single function symbol self of arity 0. Then in every state S the
value valS(self) is a complex tree comprising two subtrees for the representation
of the signature and the rule, respectively. That is, in the tree structure we have
a root node o labelled by self with exactly two successor nodes, say o0 and o1,
labelled by signature and rule, respectively. So we have o ≺c o0, o0 ≺s o1 and
o ≺c o1, where ≺c and ≺s denote, respectively, the child and sibling relationships.
The subtree rooted at o0 has as many children o00, . . . , o0k as there are function
symbols in the signature, each labelled by func. Each of the subtrees rooted at
ooi takes the form func〈name〈f〉arity〈n〉〉 with a function name f and a natural
number n. The subtree rooted at o1 represents the rule of a sequential ASM as
a tree.

The inductive definition of trees representing rules is rather straightfor-
ward. For instance, an assignment rule f(t1, . . . , tn) := t0 is represented by a
tree of the form update〈func〈f〉term〈t1 . . . tn〉term〈t0〉〉, and a partial assign-
ment rule f(t1, . . . , tn) ⇔op t′1, . . . , t

′
m is represented by a tree of the form

partial〈func〈f〉func〈op〉term〈t1 . . . tn〉term〈t′1 . . . t′m〉〉.
The background of an rASM is defined by a background class K over a back-

ground signature VK . It must contain an infinite set reserve of reserve values
and an infinite set Σres of reserve function symbols, the equality predicate, the
undefinedness value undef, and a set L of labels self, signature, rule, func,
name, arity, update, term, if, bool, par, let, partial. The background class
must further define truth values and their connectives, tuples and projection
operations on them, natural numbers and operations on them, trees in TL and
tree operations, and the function I, where Ix.ϕ denotes the unique x satisfying
condition ϕ.

96 K.-D. Schewe and F. Ferrarotti

If B is a base set, then an extended base set is the smallest set Bext containing
B that is closed under adding function symbols in the reserve Σres , natural
numbers, the terms T with respect to B and Σres , and terms of the tree algebra
defined over Σres with labels in L as defined above. Furthermore, we use T̂ext

to denote the union of the set Text of terms with Σext and the set of rules.
The background must further provide functions: drop : T̂ext → Bext and

raise : Bext → T̂ext for each base set B and extended base set Bext, and a
derived extraction function β : Text → ⋃

n∈N
T

n, which assigns to each term
defined over the extended signature Σext and the extended base set Bext a tuple
of terms in T defined over Σ and B.

A reflective ASM (rASM) M comprises an (initial) signature Σ containing a
0-ary function symbol self , a background as defined above, and a set I of initial
states over Σ closed under isomorphisms such that any two states I1, I2 ∈ I coin-
cide on self . Furthermore, M comprises a state transition function τ on states
over extended signature ΣS with τ(S) = S+ΔrS

(S), where the rule rS is defined
as raise(rule(valS(self))) over the signature ΣS = raise(signature(valS(self))).

In this definition we use extraction functions rule and signature defined on
the tree representation of a sequential ASM in self . These are simply defined
as signature(t) = subtree(Io.root(t) ≺c o ∧ label(o) = signature) and rule(t) =
subtree(Io.root(t) ≺c o ∧ label(o) = rule).

3 The Logic of Abstract State Machines

We now look briefly into a simplified version of the logic of non-deterministic
ASMs as defined in [4]. The simplification concerns the distinction between db-
terms and algorithmic terms that is necessary, if explicit meta-finite states are
considered. Here we just consider a single uniform signature Σ, so terms are
defined in the usual way. However, we have to keep in mind that rASMs have
a rich set of operators in their background that are used to build terms. Fur-
thermore, as we are dealing with non-determinism there is a need to consider
also ρ-terms of the form ρv(t | ϕ), where ρ is a multiset operator defined in
the background, ϕ is a formula, t is a term, and v is a variable. A pure term is
defined as a term that does not contain any sub-term which is a ρ-term.

In order to define formulae inductively we extend the set of first-order vari-
ables with a countable set of second-order (relation) variables of arity r for each
r ≥ 1.

1. If s and t are terms, then s = t is a formula.
2. If t1, . . . , tr are terms and X is a second-order variable of arity r, then

X(t1, . . . , tr) is a formula.
3. If r is a rule and X is a second-order variable of arity 3, then upd(r,X) is a

formula.
4. If r is a rule and Ẍ is a second-order variable of arity 4, then upm(r, Ẍ) is a

formula.
5. If ϕ and ψ are formulae and x is a first-order variable, then ¬ϕ, ϕ ∨ ψ and

∀x(ϕ) are formulae.

A Logic for Reflective ASMs 97

6. If ϕ is a formula and X is a second-order variable, then ∀X(ϕ) is a formula.
7. If ϕ is a formula and X is a second-order variable of arity 3, then [X]ϕ is a

formula.

Note that we use second-order variables of arity 3 and 4 to capture update
sets and update multisets, respectively.

The semantics of the logic is defined by Henkin structures. A Henkin pre-
structure S is a state of signature Σ with base set B extended with a new universe
Dn of n-ary relations for each n ≥ 1, where Dn ⊆ P(Bn).

Variable assignments ζ into a Henkin prestructure S are defined as usual:
ζ(x) ∈ B for each first-order variable x, and ζ(X) ∈ Dn for each second-order
variable X of arity n.

Then the interpretation of a term in a Henkin prestructure S with a variable
assignment ζ is defined as usual; for ρ-terms t = ρv(t′ | ϕ) we have valS,ζ(t) =
ρ({{valS,ζ[v �→ai](t

′) | ai ∈ B and [[ϕ]]S,ζ[v �→ai] = true}}).
We extend this interpretation to formulae. For a second-order variable X of

arity 3 we abuse the notation by writing valS,ζ(X) ∈ Δ(r, S, ζ) meaning that
there is a set U ∈ Δ(r, S, ζ) such that (f, a0, a1) ∈ U iff (cS

f , a0, a1) ∈ valS,ζ(X).
Analogously, for a second-order variable Ẍ of arity 4 we write valS,ζ(Ẍ) ∈
Δ̈(r, S, ζ) meaning that there is a multiset Ü ∈ Δ(r, S, ζ) such that (f, a0, a1) ∈ Ü
with multiplicity n iff there are exactly b1, . . . , bn pairwise different values such
that (cS

f , a0, a1, bi) ∈ valS,ζ(X) for every 1 ≤ i ≤ n. If ϕ is a formula, then its
truth value on S under ζ (denoted as [[ϕ]]S,ζ) is defined by the following rules:

– If ϕ is of the form s = t, then [[ϕ]]S,ζ =

{
true if valS,ζ(s) = valS,ζ(t)
false otherwise

.

– If ϕ is of the form X(t1, . . . , tr), then

[[ϕ]]S,ζ =

{
true if (valS,ζ(t1), . . . , valS,ζ(tn)) ∈ valS,ζ(X)
false otherwise

.

– If ϕ is of the form upd(r,X), then

[[ϕ]]S,ζ =

{
true if valS,ζ(X) ∈ Δ(r, S, ζ)
false otherwise

.

– If ϕ is of the form upm(r, Ẍ), then

[[ϕ]]S,ζ =

{
true if valS,ζ(Ẍ) ∈ Δ̈(r, S, ζ)
false otherwise

.

– If ϕ is of the form ¬ψ, then [[ϕ]]S,ζ =

{
true if [[ψ]]S,ζ = false
false otherwise

.

98 K.-D. Schewe and F. Ferrarotti

– If ϕ is of the form α ∨ ψ, then

[[ϕ]]S,ζ =

{
true if [[α]]S,ζ = true or [[ψ]]S,ζ = true
false otherwise

.

– If ϕ is of the form ∀x(ψ), then

[[ϕ]]S,ζ =

{
true if [[ψ]]S,ζ[x�→a] = true for all a ∈ B

false otherwise
.

– If ϕ is of the form ∀X(ψ), where X is a second-order variable of arity n, then

[[ϕ]]S,ζ =

{
true if [[ψ]]S,ζ[X �→R] = true for allR ∈ Dn

false otherwise
.

– If ϕ is of the form ([X]ψ), then

[[ϕ]]S,ζ =

⎧
⎪⎨

⎪⎩

false if ζ(X) represents an update set U

such that U is consistent and [[ψ]]S+U,ζ = false
true otherwise

.

For a sentence ϕ to be valid in the given Henkin semantics, it must be true
in all Henkin prestructures. This is a stronger requirement than saying that ϕ
is valid in the standard Tarski semantics. A sentence that is valid in Tarski
semantics is true in those Henkin prestructures, for which each universe Dn is
the set of all relations of arity n.

The universes Dn of the Henkin prestructures should not be arbitrary collec-
tions of n-ary relations. Thus, it is reasonable to restrict our attention to some
collections of n-ary relations that we can define, i.e. we restrict our attention to
Henkin structures.

A Henkin structure is a Henkin prestructure S that is closed under definabil-
ity, i.e. for every formula ϕ, variable assignment ζ and arity n ≥ 1, we have that
{ā ∈ An | [[ϕ]]S,ζ[a1 �→x1,...,an �→xn] = true} ∈ Dn.

The main result in [4] states that the logic for ASMs defined here is complete
with respect to Henkin semantics.

4 Reasoning About Reflection

Let us now investigate the extension of the logic above to handle reflection. The
main difference of rASMs to ordinary ASMs is that in each step a different rule
r is applied, and this rule is part of the current state. In the one-step logic of
ASMs described in the previous section a rule is treated as a fixed extra-logical
constant appearing only in formulae of the form upd(r,X) and upm(r, Ẍ), and
the meaning of these formulae depends on the actual rule r.

A Logic for Reflective ASMs 99

4.1 Extension of the Logic of ASMs

In an rASM valS(self) is a tree value t and rule(t) (defined at the end of
Sect. 2) is the subtree representing the actual rule of the rASM in state S. Then
raise(rule(valS(self))) is the rule rS of the rASM in state S, or phrased differ-
ently, we obtain this rule by interpretation of the term

therule = raise(subtree(Io.root(self) ≺c o ∧ label(o) = rule).

That is, the only extension to the logic required to capture reflection is the
treatment of the first argument of upd(r,X) and upm(r, Ẍ) as a term that is
then evaluated in the state S. If the result is not a rule, these formulae remain
undefined.

However, for a single machine step this extension is rather irrelevant, as in an
rASM the main rule does not change within a single step. Thus, we have to take
multiple steps into account. For these we introduce two additional predicates
r-upd and r-upm with the following informal meaning:

– r-upd(n,X) means that n steps of the reflective ASM yield the update set X,
where in each step the actual value of self is used.

– r-upm(n, Ẍ) means that n steps of the reflective ASM yield the update mul-
tiset Ẍ.

To be more precise, X and Ẍ in predicates r-upd(n,X) and r-upd(n, Ẍ) are the
union of the n update sets and n updates multisets, respectively, yielded by the
reflective ASM in n steps.

Clearly, we have r-upd(1,X) ↔ upd(therule,X), and analogously,
r-upm(1,X) ↔ upm(therule, Ẍ). For the generalisation to arbitrary values of
n we exploit the definition of upd(r,X) and upm(r, Ẍ) for sequence rules to
inductively define axioms for r-upd and r-upm. We further need the definition
of consistent update sets in the logic:

conUSet(X) ≡
∧

cf∈Fdyn

∀xyz
((

X(cf , x, y) ∧ X(cf , x, z)
) → y = z

)

for the set Fdyn of constants representing the dynamic function symbols in Σ.
Then we can use con(r,X) to expresses that X represents one of the possible
update sets generated by a rule r and that X is consistent:

con(r,X) ≡ upd(r,X) ∧ conUSet(X).

We further define

r-upd(n + 1,X) ↔ (
r-upd(1,X) ∧ ¬conUSet(X)

)∨
(∃Y1Y2(r-upd(1, Y1) ∧ conUSet(Y1) ∧ [Y1]r-upd(n, Y2)∧

∧

cf∈Fdyn

∀xy(X(cf ,x, y) ↔ ((Y1(cf , x, y) ∧ ∀z(¬Y2(cf , x, z))) ∨ Y2(cf , x, y))))
)

100 K.-D. Schewe and F. Ferrarotti

as well as

upm(n + 1, Ẍ) ↔
(
r-upm(1, Ẍ)∧

∀X
(∧

cf∈Fdyn

∀x1x2(X(cf , x1, x2) ↔ ∃x3(Ẍ(cf , x1, x2, x3)))∧

¬conUSet(X)
))

∨
(
∃Ÿ1Ÿ2

(
r-upm(1, Ÿ1)∧

∀Y1

(∧

cf∈Fdyn

∀x1x2(Y1(cf , x1, x2) ↔ ∃x3(Ÿ1(cf , x1, x2, x3)))∧

conUSet(Y1) ∧ [Y1]r-upm(n, Ÿ2)
)
∧

∧

cf∈Fdyn

∀x1x2x3
(
Ẍ(cf , x1, x2, x3) ↔ (Ÿ2(cf , x1, x2, x3)∨

(Ÿ1(cf , x1, x2, x3) ∧ ∀y2y3(¬Ÿ2(cf , x1, y2, y3))))
))

.

4.2 Completeness

Let L(r)
asm denote the logic of rASMs resulting from these extensions using

therule and predicates r-upd(n,X) and r-upm(n,X) for arbitrary n. Let Lr
asm

denote the further extended logic of rASMs, in which in addition quantification
over n is permitted. Let us call L(r)

asm the multi-step logic of rASMs, and Lr
asm

the run logic of rASMs.
Even without updating the rule in every step it is obvious that the run logic

Lr
asm subsumes a full dynamic logic over runs of ASMs. As such it is impossible

to achieve completeness.

Theorem 1. The run logic Lr
asm of rASMs is incomplete.

Concerning the multi-step logic L(r)
asm of rASMs the situation is not so obvi-

ous. We may continue a sublogic L(r,n)
asm using a fixed value of n and formulae of

the form r-upd(m,X) and r-upm(m,X) with fixed m ≤ n. For such a sublogic we
can extend the completeness result of the logic of ASMs using similar arguments.

Theorem 2. For each n ∈ N the bounded fraction L(r,n)
asm of the multi-step logic

L(r)
asm of rASMs is complete.

The remaining part of this section is dedicated to prove this key result.
First note that every subformulae of the form r-upd(m,X) and of the form

r-upm(m,X) that occurs in a L(r,n)
asm -formulae can be replaced by their corre-

sponding definitions above. This is possible, because we have only bounded finite
values for m = 1 . . . n to consider.

Thus, the axioms and rules of the derivation system remain the same as for
the logic of ASMs [4,5]. Starting point is the natural formalism L2 as defined
in [6] for the relational variant of second-order logic on which the logic is based.

A Logic for Reflective ASMs 101

L2 uses the usual axioms and rules for first-order logic, with quantifier rules
applying to second-order variables as well as first-order variables, and with the
stipulation that the range of the second-order variables includes at least all the
relations definable by the formulae of the language. A deductive calculus for L2

is obtained by augmenting the axioms and inference rules of first-order logic as
follows:

– ∃X∀v1, . . . , vk(X(v1, . . . , vk) ↔ ϕ), where k ≥ 1, v1, . . . , vk are first-order
variables, and X is a k-ary second-order variable that does not occur freely
in the formula ϕ.

– ∀X(ϕ) → ϕ[Y/X], provided the arity of X and Y coincides.

–
ψ → ϕ[Y/X]
ψ → ∀X(ϕ)

, provided Y is not free in ψ.

In addition to these axioms and rules and standard axioms and rules for
first-order logic with equality, the logic L(r,n)

asm comprises the following:

– The axioms for upd(r,X) and upm(r,X). Since here we do not need to
consider explicit meta-finite states, these axioms are a simplified version of
Axioms U1–U7 and Axioms Ü1–Ü7 in Section 7.2 and 7.3 in [4], respectively.
For instance, Axiom U1 which states that X represents an update set yielded
by the assignment rule f(t) := s iff it contains exactly one update and this
update is ((f, t), s), can be written as:

U1: upd(f(t) := s,X) ↔ X(cf , t, s)∧
∀zxy(X(z, x, y) → z = cf ∧ x = t ∧ y = s)

– The distribution axiom and the necessitation rule from the axiom system K of
modal logic, and modus ponens, which allow us to derive all modal properties
that are valid in Kripke frames.

– The axiom ¬conUSet(X) → [X]ϕ asserting that if an update set X is not
consistent, then there is no successor state obtained from applying X to the
current state—thus [X]ϕ is interpreted as true for any formula ϕ.

– The axiom ¬[X]ϕ → [X]¬ϕ describing the deterministic accessibility relation
in terms of [X].

– The Barcan axiom ∀v([X]ϕ) → [X]∀v(ϕ), where v is a first-order or second-
order variable.

– Axioms ϕ ∧ upd(r,X) → [X]ϕ and con(r,X) ∧ [X]ϕ → ϕ for static and pure
ϕ asserting that the interpretation of static and pure formulae is the same in
all states.

– The frame axiom conUSet(X) ∧ ∀z(¬X(cf , x, z)) ∧ f(x) = y → [X]f(x) = y
and the update axiom conUSet(X)∧X(cf , x, y) → [X]f(x) = y asserting the
effect of applying an update set.

– The axiom upm(r,X) → ∃Y (upd(r, Y)) stating that if a rule r yields an
update multiset, then it also yields an update set.

– The restricted axiom of universal instantiation ∀v(ϕ(v)) → ϕ[t/v], if ϕ is pure
or t is static, t is a term free for v in ϕ(v).

102 K.-D. Schewe and F. Ferrarotti

– The rule of universal generalisation
ψ → ϕ[v′/v]
ψ → ∀v(ϕ)

if v′ is not free in ψ.

– The axiom

∃X(upd(seq r1 r2 endseq,X) ∧ [X]ϕ) ↔
∃X1(upd(r1,X1) ∧ [X1]∃X2(upd(r2,X2) ∧ [X2]ϕ)).

from dynamic logic asserting that executing a sequence rule is equivalent to
executing its sub-rules sequentially.

– The extensionality axiom

r1 ≡ r2 → (∃X1.upd(r1,X1) ∧ [X1]ϕ) ↔ ∃X2.upd(r2,X2) ∧ [X2]ϕ.

For the proof of completeness we proceed in the same way as for the cor-
responding completeness proof for the logic of ASMs in [4]. First for operators
defined in the background, in particular the multiset functions used in ρ-terms,
are treated as standard non-axiomatised functions. This allows us to assume
without loss of generality that formulae do not contain ρ-terms.

Then we turn formulae into variants of formulae of first-order logic with
types. For this we create a modified signature ΣT , which contains the function
symbols from Σ, a unary relation symbol Tn for each n ≥ 1, an (n + 1)-ary
relation symbol En for each n ≥ 1, and unary relation symbols T0 and Tr. With
these we proceed as follows:

1. Turn formulae upd(r,X) and upm(r,X) into formulae of the form Tr(x) →
upd(x,X) and Tr(x) → upm(x,X), where Tr(x) asserts that x is a tree term
representing a rule.

2. Bring all remaining atomic formulae into the form v1 = v2, f(v2) = v1 or
X(v1, . . . , vn).

3. Eliminate all modal operators expressing them by means of the formula
conUSet(X).

4. Replace each atomic (second-order) formula of the form X(t1, . . . , tn) by
En(t1, . . . , tn,X), and relativise quantifiers over individuals using T , and
quantifiers over n-ary relations in Dn for some n ≥ 1 to Tn.

The main difference to the similar reduction applied in [4] is that subformulae
upd(r,X) and upm(r,X) cannot be completely eliminated. However, by using Tr

and tree terms we turn these formulae into first-order formulae with types. Then
the axioms for upd(r,X) and upm(r,X) have to be adapted to this modification
as well. In the case of upd, we define a new axiom that replaces Axioms U1–U7
and has the form

upd(x,X) ↔ ϕU1(x,X) ∨ · · · ∨ ϕU7(x,X),

where ϕU1, . . . , ϕU7 are modified versions of the formulae in the right-hand side
of Axioms U1–U7, respectively. In particular, ϕU1 can be defined as follows:

∃x0x1x2x3xfxtxs

(
(x0 = Io.root(x) ≺c o ∧ label(o) = update)∧

A Logic for Reflective ASMs 103

label(x1) = func ∧ label(x2) = term ∧ label(x3) = term∧
x0 ≺c x1 ∧ x0 ≺c x2 ∧ x0 ≺c x3 ∧ x2 ≺s x3 ∧ x1 ≺c xf ∧ x2 ≺c xt ∧ x3 ≺c xs

∃yfytys(yf = valS(raise(xf)) ∧ yt = valS(raise(xt)) ∧ ys = valS(raise(xs))∧
∧X(yf , yt, ys) ∧ ∀zfztzs(X(zf , zf , zs) → zf = yf ∧ zt = yt ∧ zs = ys))

)

Note that for simplicity we have assumed, w.l.o.g. (see [4] among others), that
the arity of the functions in the update rules is 1.

Due to space limitations, we leave the definition of the remaining formulae
ϕU2, . . . , ϕU7 as a simple exercise to the reader. Likewise the definition of a new
axiom that replaces Axioms Ü1–Ü7 is also left as an easy exercise to the reader.

Lemma 1. A formula ϕ of L(r,n)
asm is true in a Henkin prestructure S iff the

transformed formula ϕ∗ is true in a first-order structure S∗ over ΣT that is
uniquely determined by S.

The first direction of Lemma 1, i.e., if an L(r,n)
asm -formula ϕ is true in S, then ϕ∗

is true in S∗, can be proven by structural induction. We only need to apply the
transformation described above to each of the cases in the definition of the set of
L(r,n)

asm -formulae and then check that the resulting first-order formulae is satisfied
by the corresponding state S∗. Likewise, the second direction of Lemma 1 can
be proven by structural induction on the definition of first-order formulae, in
this case using the inverse of the transformation described above. We omit these
proofs since both are quite long, but technically straightforward.

Thus, if ϕ∗ is valid, then ϕ is true in all Henkin structures. Note that the
converse does not always hold. For instance ∃x(x = x) is true in all Henkin
structures (since by definition the domain of S is not empty), but ∃x(T0(x)∧(x =
x)) is not valid. In general, not every ΣT -structure is an S∗ structure for some
Henkin Σ-structure S. However, if a ΣT -structure S∗ satisfies the following
properties, then it corresponds to a Henkin structure S (cf. [6]):

1. Σ-correctness:
– Tr(c) for nullary function symbols self ∈ Σ,
– T0(c) for all nullary function symbols c ∈ Σ other than self , and
–

∧
1≤i≤n T0(xi) → T (f(x1, . . . , xn)) for every f ∈ Σ.

2. Non-emptiness: ∃x(T0(x) ∨ Tr(x)).
3. Disjointness:

– Ti(x) → ¬Tj(x) for i, j ≥ 0 with i �= j,
– Tr(x) → ¬Ti(x) and Ti(x) → ¬Tr(x) for i ≥ 0.

4. Elementhood: En(x1, . . . , xn, y) → Tn(y)∧ (T0(x1)∨Tr(x1))∧ · · · ∧ (T0(xn)∨
Tr(xn)) for n ≥ 1.

5. Extensionality: Tn(x) ∧ Tn(y) ∧ ∀z̄(En(z̄, x) ↔ En(z̄, y)) → x = y for n ≥ 1.
6. Comprehension: ∃y∀x̄(En(x̄, y) ↔ ψ) for n ≥ 1 and y non-free in ψ.

104 K.-D. Schewe and F. Ferrarotti

Lemma 2. If A is a first-order structure of signature ΣT which satisfies prop-
erties 1–6 above and sub(A) is the sub-structure of A induced by the elements of⋃

n≥0(Tn)A ∪ (Tr)A, then for some Henkin structure S of signature Σ, sub(A)
is the structure S∗ determined by S.

Proof. Given A with domain dom(A), we define S as follows:

– dom(S) = (T0)A ∪ (Tr)A is the base set (of individuals) of S.
– For each n ≥ 1, the universe Dn of n-ary relations consists of the sets {ā ∈

(dom(S))n | (En)A(ā, s)} for all s ∈ (Tn)A.
– The interpretation of function symbols f ∈ Σ is the same as in A but

restricted to arguments from dom(S).

By the Σ-correctness, non-emptiness and comprehension properties of A, we get
that S is a Henkin structure.

We claim that sub(A) is isomorphic to S∗ via function g : dom(S∗) →
dom(sub(A)) where

g(x) =

{
x if x ∈ (T0)S∗ ∪ (Tr)S∗

{ā ∈ ((T0)S∗ ∪ (Tr)S∗
)n | (En)S∗

(ā, x)} if x ∈ (Tn)S∗
for n ≥ 1

First, we note that g is well defined by the disjointness property and by the fact
that, by definition of S and S∗, every element x in dom(S∗) is in

⋃
n≥0(Tn)S∗ ∪

(Tr)S∗
. That g is surjective follows from the definition of S∗ from A and the fact

that dom(sub(A)) is the restriction of dom(A) to dom(S∗). By the extensionality
property, we get that g is injective. By definition we get that g preserves the
function symbols in Σ as well as the relation symbols Tn for every n ≥ 0. Finally,
for every n ≥ 1, we get that g preserves En by the elementhood property. ��

Let Ψ be the set of formulae listed under properties 1–6 above, we obtain the
following Henkin style completeness theorem:

Theorem 3. An L(r,n)
asm -formula ϕ is true in all Henkin structures iff ϕ∗ is deriv-

able in first-order logic from Ψ (i.e., iff Ψ � ϕ∗).

Proof. Assume that Ψ � ϕ∗, and let S be a Henkin structure. Then S∗ |= Ψ
and therefore S∗ |= ϕ∗. By Lemma 1, we get that S |= ϕ.

Conversely, assume that ϕ is true in all Henkin structures. Towards showing
Ψ |= ϕ∗, let us assume that A |= Ψ , and let sub(A) be its substructure gener-
ated by the elements of

⋃
n≥0(Tn)A ∪ (Tr)A. Then by Lemma 2, sub(A) = S∗

for some first-order structure S∗ determined by a Henkin structure S. Since
by assumption we have that S |= ϕ, it follows from Lemma 1 that S∗ |= ϕ∗

and therefore sub(A) |= ϕ∗. But each quantifier in ϕ∗ is relativised to (Tn)A

for some n ≥ 1, and then we also have that A |= ϕ∗. We have shown that
Ψ |= ϕ∗, and then, by the completeness theorem of first-order logic, we get that
Ψ � ϕ∗. ��

A Logic for Reflective ASMs 105

It is easy to see that the proof system that we have described earlier in this
section is sound. Thus, if ϕ is a formula derivable in L(r,n)

asm , then ϕ is true in all
Henkin structures. It is then immediate from Theorem 3 that ϕ∗ is derivable in
first-order logic from Ψ . On the other hand, via an easy but lengthy induction
on the length of the derivations, we get the following.

Lemma 3. ϕ∗ is derivable in first-order from Ψ iff ϕ is derivable in L(r,n)
asm .

Theorem 3 and Lemma 3 immediately imply that L(r,n)
asm is complete.

5 Conclusion

We have shown before that reflective algorithms are captured by reflective
abstract state machines (rASMs), which exploit extended states that include an
updatable representation of the main ASM rule to be executed by the machine
in that state. Updates to the representation of ASM signatures and rules are
realised by means of a sophisticated tree algebra. This enables the rigorous spec-
ification of reflective algorithms and thus adaptive systems and is one step in the
direction of controlling the risk associated with systems that can change their
own behaviour.

In this paper we made another step in this direction by providing an extension
of the logic of ASMs to rASMs. For this we replaced extra-logical constants
representing rules by terms that are subject to interpretation in the current
state. As reasoning about reflective algorithms only makes sense for multiple
steps, we also extend the one-step ASM logic to a multiple-step logic, and prove
that for a sublogic with the number of steps bound to a fixed constant we preserve
the completeness of the logic, whereas the logic in general will be incomplete.

By providing such a logic we show that it is possible to reason statically over
specifications that are highly dynamic and even unbounded in the sense that
the behaviour of the system after a sequence of adaptations is not known at
all at the time the system is specified. This is of tremendous importance for
the application of rigorous methods to truly adaptive systems. Even more, by
showing that fragments of the logic that deal with bounded sequences of steps
are still complete we even enable tool support for such reasoning.

The use of the logic in an extension of proof obligations for the refinement
of rASMs in the line of [8] will be the next step in our research.

References

1. Börger, E., Stärk, R.: Abstract State Machines. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-36498-6

2. Ferrarotti, F., Schewe, K.-D., Tec, L.: A behavioural theory for reflective sequential
algorithms. In: Petrenko, A.K., Voronkov, A. (eds.) PSI 2017. LNCS, vol. 10742, pp.
117–131. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74313-4 10

https://doi.org/10.1007/3-540-36498-6
https://doi.org/10.1007/978-3-319-74313-4_10

106 K.-D. Schewe and F. Ferrarotti

3. Ferrarotti, F., Schewe, K.-D., Tec, L., Wang, Q.: A new thesis concerning syn-
chronised parallel computing - simplified parallel ASM thesis. Theor. Comput. Sci.
649, 25–53 (2016)

4. Ferrarotti, F., Schewe, K.-D., Tec, L., Wang, Q.: A complete logic for Database
Abstract State Machines. Logic J. IGPL 25(5), 700–740 (2017)

5. Ferrarotti, F., Schewe, K.-D., Tec, L., Wang, Q.: A unifying logic for non-
deterministic, parallel and concurrent Abstract State Machines. Ann. Math. Artif.
Intell. 83(3–4), 321–349 (2018)

6. Leivant, D.: Higher order logic. In: Handbook of Logic in Artificial Intelligence
and Logic Programming, Deduction Methodologies, vol. 2, pp. 229–322. Oxford
University Press (1994)

7. Riccobene, E., Scandurra, P.: Towards ASM-based formal specification of self-
adaptive systems. ABZ 2014. LNCS, vol. 8477, pp. 204–209. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-43652-3 17

8. Schellhorn, G.: Verification of ASM refinements using generalized forward simula-
tion. J. UCS 7(11), 952–979 (2001)

9. Schewe, K., Ferrarotti, F.: Behavioural theory of reflective algorithms I: reflective
sequential algorithms. CoRR, abs/2001.01873 (2020)

10. Schewe, K.-D.: Concurrent reflective Abstract State Machines. In: 19th Interna-
tional Symposium on Symbolic and Numeric Algorithms for Scientific Computing,
(SYNASC 2017), pp. 30–35. IEEE Computer Society (2017)

11. Schewe, K.-D.: Behavioural theory of reflective algorithms II: reflective parallel
algorithms (2019, under review)

12. Schewe, K.-D., Ferrarotti, F.: Behavioural theory of reflective algorithms I: reflec-
tive sequential algorithms (2019, under review)

13. Schewe, K.-D., Ferrarotti, F., Tec, L., Wang, Q., An, W.: Evolving concurrent sys-
tems: behavioural theory and logic. In: Proceedings of the Australasian Computer
Science Week Multiconference, (ACSW 2017), pp. 77:1–77:10. ACM (2017)

14. Schewe, K.-D., Wang, Q.: XML database transformations. J. UCS 16(20), 3043–
3072 (2010)

15. Schewe, K.-D., Wang, Q.: Partial updates in complex-value databases. In: Infor-
mation and Knowledge Bases XXII, Frontiers in Artificial Intelligence and Appli-
cations, vol. 225, pp. 37–56. IOS Press (2011)

16. Smith, B.C.: Reflection and semantics in LISP. In: Proceedings of the 11th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL
1984, pp. 23–35. ACM (1984)

17. Stärk, R., Nanchen, S.: A logic for abstract state machines. J. Univ. Comput. Sci.
7(11), 952–979 (2001)

18. Stemple, D., et al.: Type-safe linguistic reflection: a generator technology. In:
Fully Integrated Data Environments, Esprit Basic Research Series, pp. 158–188.
Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-642-59623-0 8

19. Van den Bussche, J., Van Gucht, D., Vossen, G.: Reflective programming in the
relational algebra. J. Comput. Syst. Sci. 52(3), 537–549 (1996)

https://doi.org/10.1007/978-3-662-43652-3_17
https://doi.org/10.1007/978-3-642-59623-0_8

Analysing ProB’s Constraint Solving
Backends

What Do They Know? Do They Know Things?
Let’s Find Out!

Jannik Dunkelau(B) , Joshua Schmidt , and Michael Leuschel

Institut für Informatik, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1,
40225 Düsseldorf, Germany

{jannik.dunkelau,joshua.schmidt,michael.leuschel}@hhu.de

Abstract. We evaluate the strengths and weaknesses of different back-
ends of the ProB constraint solver. For this, we train a random forest
over a database of constraints to classify whether a backend is able to find
a solution within a given amount of time or answers unknown. The forest
is then analysed in regards of feature importances to determine subsets
of the B language in which the respective backends excel or lack for per-
formance. The results are compared to our initial assumptions over each
backend’s performance in these subsets based on personal experiences.
While we do employ classifiers, we do not aim for a good predictor, but
are rather interested in analysis of the classifier’s learned knowledge over
the utilised B constraints. The aim is to strengthen our knowledge of the
different tools at hand by finding subsets of the B language in which a
backend performs better than others.

Keywords: Constraint solving · Machine learning · Decision trees ·
Feature importances · Association rules · Automated tool selection

1 Introduction

Besides its native CLP(FD)-based backend, the validation tool ProB [30] offers
various backends for solving constraints, e.g. encountered during symbolic ver-
ification. In previous work [18,19], we trained neural networks to decide for a
given constraint which backend should be used. We compared two approaches:
one based on feature vectors derived from domain knowledge, and one based on
encoding constraints as images. While we achieved promising results with the
image-based approach, it was not possible to extract a comprehensible explana-
tion about how the predictions were made. In follow-up work [34] the experiment
was replicated with decision trees [5] using the same feature sets as before. This
was motivated by the fact that decision trees are a transparent machine learning
algorithm allowing to extract and interpret the learned decision rules and thus
the acquired knowledge.

c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 107–123, 2020.
https://doi.org/10.1007/978-3-030-48077-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_8&domain=pdf
http://orcid.org/0000-0003-0819-5554
http://orcid.org/0000-0001-8842-2993
http://orcid.org/0000-0002-4595-1518
https://doi.org/10.1007/978-3-030-48077-6_8

108 J. Dunkelau et al.

In this paper we will expand on the decision tree approach and further anal-
yse the relative importances of the features used for deciding whether the dif-
ferent backends of ProB will be successful or not. Moreover, we will compare
these results with our a priori assumptions about the subdomains in which each
backend should work well. While we will display achievable classification perfor-
mances for our predictors, we do not aim for a good performance, but instead
for an analysis over the whole dataset. In particular, we are not interested in
replacing the decision function in ProB with a predictor presented in this paper.
The goal is to find subsets of the B language in which a backend performs better
than others to strengthen our knowledge of the different tools at hand. With the
gathered information we may be able to improve the ProB constraint solver
and to obtain more suitable features sets for related machine learning tasks for
B in the future.

2 Primer on ProB and its Backends

ProB [29,30] is an animator, model checker, and constraint solver for the formal
specification language B [1]. The B language allows to specify, design, and code
software systems as well as to perform formal proof of their properties. When
using ProB, properties can be checked exhaustively on a state space using
various model checking techniques. B is rooted in predicate logic with arithmetic
and set theory. At the heart of ProB is a constraint solver for the B language.
ProB’s constraint solver is used for many tasks. During animation it has to find
suitable parameters for the B operations and compute the effect of executing
an operation, during disproving [26] it is used to find counter examples to proof
obligations. The constraint solver is also used for test case generation, symbolic
model checking or program synthesis.

ProB has actually not one but three constraint solving backends and each
backend has a variety of options. In Sects. 2.1, 2.2 and 2.3 we will introduce each
backend, outline their differences, and summarise our a priori assumptions about
their performances on subdomains of the B language.

2.1 The Native CLP(FD) Backend

ProB’s kernel [29] is implemented in SICStus Prolog [11] using features such as
co-routines for delayed constraint propagation, or mutable variables for its con-
straint store. The CLP(FD) finite domain library [10] is used for integers and enu-
merated set elements. The library has a limited precision of 59 bits. ProB han-
dles overflows by custom implementations and also supports unbounded domains
as well as symbolic representations for infinite or large sets. Some specific features
of the ProB constraint solver are that it computes all solutions to a constraint
using backtracking. This is important as constraints are often used within set
comprehensions. It is also important for model checking to ensure that the entire
state space is constructed. ProB can deal with higher-order sets, relations and
functions.

Analysing ProB’s Constraint Solving Backends 109

Subdomains in Which CLP(FD) Presumably Performs Better. First and fore-
most, the CLP(FD) backend of ProB is the only backend supporting all con-
structs available in B. It is thus the default backend. It performs best for con-
straints arising in animation, where usually a small number of variables (oper-
ation parameters) have to be enumerated. In this context, it can deal well with
large data values.

Generally speaking, ProB performs well on constraints using enumerated
sets, booleans and/or bounded integers as base types. It performs reasonably
well on unbounded intervals if interval reasoning can be applied. While ProB
is very good at model finding, it can only detect unsatisfiability by exhaus-
tively enumerating all values remaining after deterministic propagation. In case
of unbounded data structures, ProB cannot exhaustively enumerate all cases
and is much less powerful. While CLP(FD) cannot natively handle unbounded
domains or quantifiers, ProB’s backend contains several custom extensions to
do so. A key limitation of the CLP(FD) backend is that it has no features such
as backjumping, conflict-driven clause learning, or random restarts. In conse-
quence, the backend can get stuck in the search space repeatedly enumerating
invalid values which SAT or SMT solvers would rule out by learning.

2.2 The Kodkod Backend

An alternative backend [35] for ProB makes use of Alloy’s Kodkod library [38]
to translate constraints to propositional logic, which are then solved by a SAT
solver. For instance, sets are translated as bit vectors. In particular, a subset x
of the interval 0..2 would be translated into three propositional logic variables
x0, x1, x2 where xi is true if i ∈ x holds. The constraint {1, 2} ⊆ x can then
be translated to the propositional logic formula x1 ∧ x2. As Kodkod does not
allow higher-order values, any such constraint is not passed to Kodkod and is
instead dealt with by ProB’s default CLP(FD) backend after Kodkod has found
a solution for the other constraints.

When using this backend, ProB will first perform an interval analysis and
determine which variables have a finite scope and a first-order type. The con-
straint is then partitioned into a part sent to Kodkod and a part solved by
ProB. During solving, the SAT solver is called first. For every solution obtained
by the SAT solver, ProB’s CLP(FD) backend solves the remaining constraints.
By default, Kodkod’s Sat4j [28] SAT solver is selected.

Subdomains in Which Kodkod Presumably Performs Better. The strengths and
weaknesses of the backend based on Kodkod stem from its internal reliance on
SAT solving. While modern SAT solvers are very fast when it comes to solving
very large boolean formulae, encoding B into propositional logic underlies cer-
tain restrictions. SAT encodings can only be used for data types known to be
finite. In particular, one has to assign an upper and lower bound for integers and
set sizes. Thus, integer overflows might occur and it is hard to ensure soundness
and completeness. Furthermore, arithmetic operations have to be encoded in

110 J. Dunkelau et al.

propositional logic as well such as binary adders. This leads to additional over-
head when generating a conjunctive normal form, especially for large bit widths.
The designers of Alloy argue [25] that lack of integers is not disadvantageous
in general, as integer constraints are often of secondary nature. In B models,
this is not the case. In summary, this backend is not good for arithmetic, large
relations, infinite domains, higher-order constraints, or data structures.

In contrast, SAT solving is ideal for problems involving relations as those
can be expressed in a way suitable for Kodkod’s backends [35]. Furthermore,
given that Kodkod is originally used as a backend for analysing Alloy it has
been tuned towards constraints involving operations on relations. For instance,
the relational image or transitive closure operations of B are handled efficiently
by the translation to SAT using Kodkod.

2.3 The Z3 Backend

The third backend of ProB translates B constraints to SMT-LIB formulae and
targets the SMT solvers Z3 [13] and CVC4 [3]. Here we focus on the Z3 bind-
ing [27] only. The translation works by rewriting the B constraints into a normal
form using a core subset of the B operators which can be mapped to SMT-LIB.
Additional variables, set comprehensions, and quantifiers are introduced for those
operators which have no counterpart in SMT-LIB or Z3, e.g. cardinality, or mini-
mum and maximum of an integer set. Functions and relations are translated to the
Array theory of SMT-LIB. The DPLL(T) [21] algorithm underlying SMT solvers
is fundamentally different from CLP(FD). Just like for the SAT translation, SMT
solvers can perform backjumping and conflict-driven clause learning.

Subdomains in Which Z3 Presumably Performs Better. SMT solvers such as
Z3 are very good at proof for B and Event-B (cf. [14,15]). Our experience in
the context of model finding is that Z3 is good at detecting inconsistencies,
in particular on infinite domains. For example, Z3 is able to detect that the
constraint x < y ∧ y < x is unsatisfiable. The other two backends are unable
to detect this using their default settings. Note that ProB is able to detect
this inconsistency if one enables an additional set of propagation rules based on
CHR.

On the downside, Z3 often has difficulties to deal with quantifiers. Moreover,
the translation from B to SMT-LIB does not yet support various operators
such as general union or general sum nor does it support iteration and closure
operators. Constraints using one of these operators are not translated to SMT-
LIB at all and the backend returns unknown. In summary, the Z3 backend is
good at detecting inconsistencies and reasoning over infinite domains, but for
constraints involving quantifiers, larger data values or cardinality computations
it often answers unknown.

3 Primer on Decision Trees and Random Forests

We utilise techniques of supervised machine learning to train a classifier for B
constraints, which we will then further analyse in Sect. 6.

Analysing ProB’s Constraint Solving Backends 111

The notion of machine learning covers a family of algorithms which are able to
improve their predictions using a dataset processed at a so called training time.
For supervised machine learning, this dataset consists of tuples (x, y) ∈ D ⊆
X × Y , where x ∈ X represents the input data and y ∈ Y is the corresponding
ground truth, which is the correct class label to be predicted by the employed
algorithm. For instance, for a binary classification task, the ground truth can
be either 0 or 1. Usually, X = R

d corresponds to a d-dimensional feature space,
where each problem instance to be classified is represented as a feature vector
x = 〈x1, . . . , xd〉. Each xi hereby refers to a specific characterisation, i.e. feature,
of the problem instance. During training time, the algorithm is supposed to learn
the mapping x �→ y for each (x, y) ∈ D by generalising over recurring patterns
in the input data X. It is important that this learned mapping is accurate yet
as general as possible, so as to cover yet unseen problem instances. A classifier
is said to overfit on the training data if its performance in classifying unseen
data is significantly worse. To detect possible overfitting, the resulting classifier’s
performance is evaluated on a separate test set, i.e. a data set which was not
experienced during training time.

In this article, we employed decision trees as the machine learning algorithm
of choice. They correspond to a supervised learning method where the training
data at the root of the decision tree is progressively split into smaller subsets
using a feature-based splitting criterion. At the leaves of the decision tree only
subsets with the same ground truth remain. Such subsets are referred to as pure
subsets.

A variety of splitting criteria exist. For example, the CART algorithm [5] is
based on the Gini impurity i(t) [31] of a node t defined as

i(t) = 1 −
∑

c∈C

pc(t)2

with C being the set of possible classes, and pc(t) is the relative frequency of the
elements in t belonging to the class c. For a pure subset t′ of a class c, pc(t′) will
be 0 for c 	= c′ and 1 for c = c′. Hence i(t′) = 0. For an evenly distributed node
t′′ we have i(t′′) = 1 − 1

|C| , where |C| is the cardinality of C.
The goal of the decision tree learning algorithm is to reach an impurity of 0

with as few splits as possible. For any split of t into two sub-nodes tL and tR,
we thus measure the impurity decrease by

d(t(L,R)) = i(t) − i(tL)
|tL|
|t| − i(tR)

|tR|
|t| .

The split which maximises the impurity decrease is finally chosen and the algo-
rithm is called recursively on tL and tR respectively. A decision tree is shown
in Fig. 1, where leaves represent actual classes.

3.1 Random Forests

Random forests [7] are a bagging approach [6] to decision trees, i.e. instead of
only training a single decision tree, a set of k decision trees (Ti)1≤i≤k is trained.

112 J. Dunkelau et al.

petal length ≤ 2.45 cm

setosa petal width ≤ 1.75 cm

yes no

versicolor virginica

yes no

Fig. 1. Decision tree classifier over a set of iris flowers [20]. The species iris setosa, iris
versicolor, or iris virginica is classified based on petal length and width.

Each tree is trained on a random subset of the training samples as well as a
random subset of features. This randomisation ensures most trees in the set to be
distinct from each other. For example, the impurity decrease of common features
will vary between the training samples, leading to different choices of splitting.
Due to bagging, the relatively unstable nature of decision trees is countered and
the technique is less prone to overfitting.

A measure for the relative importances of each feature in a random forest is
the mean decrease importance [7]. The mean decrease importance of a feature
averages the impurity decrease per feature over each decision tree in the forest.
Hence, it is a measure of the average impurity decrease the feature offers [2,37].

3.2 Rationale for Using Random Forests

While we had multiple classification algorithms to choose from, we finally settled
on random forests. This choice was motivated by our need for a strong and
interpretable classifier.

In previous work [19] we used convolutional neural networks, but we were
unable to extract the knowledge accumulated by the classifciation due to the
black box nature of the neural networks. Hence, we started to use decision trees,
as one can easily extract classification rules after the training phase. These rules
are comprehensible and can be interpreted by non-experts as well. Decision trees
also offer insights about the relevancy of features: the closer to the root a split
over a specific feature is done, the more impact it has for the decision process.

Alternate machine learning approaches are linear regression and clustering
approaches. For linear regression the relevance of features could be extracted by
examining the relative differences in their coefficients. However, this would not
yield direct rules describing why a particular prediction was made. As we are
particularly interested in extractable knowledge from trained classifiers and rea-
soning for the given predictions, we favoured decision trees over linear regression.
On a similar note, we decided against clustering. However, a clustering approach
for grouping similar constraints together presents an interesting alternative app-
roach to be studied in future work.

In the end, we decided to utilise random forests for the present article.
Although they are again blackbox algorithms, they consist of interpretable
pieces, which can be analysed for more general rules [16,23].

Analysing ProB’s Constraint Solving Backends 113

4 Related Work

The related work in the field is split into two categories: machine learning pow-
ered algorithm portfolios for SMT solving, and knowledge extraction from tree
ensemble learners such as random forests. To the best of our knowledge, no
intersection of both categories exists yet in literature, as we do in this article.

Healy et al. [24] conducted a solver portfolio for the Why3 platform [4]. The
solver selection was done via decision trees which predicted the anticipated run-
time of a proof obligation for each solver, and choosing the fastest one. James
P. Bridge [8] used support vector machines for automating the heuristic selec-
tion for the E theorem solver [36]. While he was able to improve the already
implemented auto-mode in E, he also investigated picking a minimal feature set
which ultimately consisted of only two to three features.

Yang et al. [39] analysed decision trees to extract minimal feature subsets
which need to be flipped to achieve a more favourable outcome. Their applica-
tion area was customer relationship management with focus on increasing the
amount of loyal customers, i.e. detect what needs to be done to turn a regular
customer into a loyal customer. Similarly, Cui et al. [12] proposed an integer
linear program on random forests for finding the minimal subset of features to
change for obtaining a different classification. Deng [16] proposed interpretable
trees (inTrees) for interpreting tree ensembles. In their paper, they propose a set
of metrics to extract learned knowledge from a tree ensemble such as a random
forest. This includes the actual rules learned in an ensemble as well as frequent
variable interactions. Narayanan et al. [32] extracted the most common patterns
for failing solid state drives in datacenters using inTrees. In their work, they
found that these extracted patterns match with previously made observations.

5 Experimental Setup

In this section, we briefly outline the training data and the feature set in use.

5.1 The Training Data

For acquiring the constraints for the training data, we extracted B predicates
from the public ProB examples repository1 and constructed more complex con-
straints inspired by ProB’s enabling analysis [17] or discharging proof obli-
gations [26]. Each backend was given a timeout of 25 s to decide whether the
constraint has a solution or is a contradiction. Constraints for which a definite
answer was found build up the positive class for a solver. The negative class
is made up of the other outcomes: timeouts, errors, or the answer unknown.
Overall, the class distribution was imbalanced, as for instance only about 35%
of samples belonged to the negative class for the CLP(FD) backend. Yet, we do
not deem this as a problem because the decision trees are trained with respect
to a weighted training set.
1 https://www3.hhu.de/stups/downloads/prob/source/ProB_public_examples.tgz.

https://www3.hhu.de/stups/downloads/prob/source/ProB_public_examples.tgz

114 J. Dunkelau et al.

The choice of the 25 s timeout was arbitrary. However, we evaluated how
much more constraints are assigned to the positive class compared to using
ProB’s default timeout of 2.5 s. The CLP(FD) backend is able to solve 65.47%
of the constraints using a timeout of 2.5 s, while the Kodkod and Z3 backends
solve 64.65% and 21.52% respectively. When increasing the timeout by factor 10
to 25 s, these percentages increase to 65.48% for CLP(FD) (+0.01%), 64.67% for
Kodkod (+0.02%), and 21.53% for Z3 (+0.01%). As the percentage of solvable
constraints for each backend only increased by a rather insignificant amount, we
deemed the unsolvable constraints as complex enough for our analysis approach.
We did not test with higher timeouts.

For each backend’s analysis we had around 170,000 unique samples.

5.2 The Feature Set

For training the decision trees, we created a manually selected set of 109 fea-
tures (further referred to as F109) which mainly consists of characteristics such
as the amount of arithmetic operations per top level conjunct, or the ratio of
intersections of all used set operators. Further features consist of maximum and
mean nesting depths for certain language constructs such as negations and pow-
ersets, or the amount of unique identifiers per top level conjunct and number of
interactions between them. Additionally, identifiers are grouped into unbounded,
semi-bounded (only upper or lower bound), and fully bounded (both, upper and
lower bound) identifiers. This grouping is sensitive to whether the boundaries
are explicitly set (e.g. a < 5) or only bounded by another identifier (a < b).

As we are interested in the knowledge gathered by the random forests over
the whole corpus of B constraints at our disposal, we will not split the dataset
into sets for training and testing for our final analysis as is common for classi-
fication tasks aiming for a good predictor. However, as a sanity check that the
selected features are indeed discriminatory enough to actually learn weaknesses
and strengths of each backend, we still analysed the predictive performances of a
random forest for each backend on a classical split into datasets for training and
testing. For measuring performance, we utilised the metrics accuracy, balanced
accuracy [9], and the F1-score [22].

Each prediction of a classifier can either be a true positive (tp), true negative
(tn), false positive (fp) or false negative (fn), i.e. the prediction can be either
correct or false corresponding to either the positive or negative classes 1 and 0.
The utilised performance metrics are defined as follows:

accuracy =
tp + tn

tp + tn + fp + fn
,

balanced acc. =
1
2

[
tp

tp + fn
+

tn
tn + fp

]
.

Accuracy describes the percentage of the test data which were classified cor-
rectly. Balanced accuracy is most suitable for an unbalanced dataset in which
the distribution of classes is not equal. It averages the percentage of correctly

Analysing ProB’s Constraint Solving Backends 115

Table 1. Random Forest classification performances over the set of 109 features.

Backend Dataset Accuracy Balanced acc. F1-score

CLP(FD) F109 0.947 0.926 0.966
Kodkod F109 0.926 0.906 0.950
Z3 F109 0.919 0.873 0.797

predicted samples per class. The F1-score is defined as the harmonic mean over
the notions precision and recall [22]:

precision =
tp

tp + fp
, recall =

tp
tp + fn

F1 = 2 ∗ precision ∗ recall
precision+ recall

.

Precision describes the probability of a positive prediction to be correct. Recall
describes the probability for samples of the positive class to be classified as such.

Table 1 shows the results of this sanity check. We used 80% of the data for
training, whereas the performance measures were taken on the remaining 20%.
Each classification task was concerned with whether a backend would return
a definitive answer for a given constraint (satisfiable or unsatisfiable) or would
yield unknown. As the performance scores are all higher than 0.9, we deem the
feature set F109 to be suitable for our purposes.

6 Analysis and Results

For each backend, we trained a random forest with 50 trees using the Gini
impurity decrease splitting criterion to predict whether the respective backend
can find an answer or leads to unknown. As machine learning framework, we
employed the Scikit-learn Python library [33].

For the following analysis, we utilised the whole dataset of 109 features (F109)
as the training set and did not make use of a test set, as we are more interested
in an analysis of random forests containing information of all the data.

Please note that this work only considered the default settings of each back-
end. It is relevant to mention that multiple settings exist which could influence
the respective outcomes of the analysis. For instance, although the CLP(FD)
backend has problems with detecting inconsistencies over unbounded domains
such as x < y ∧ y < x, one can activate an additional CHR propagation which
improves detection of inconsistencies in general as mentioned in Sect. 2.3.

6.1 Feature Importances

In order to gain a deeper insight in the feature set we compute the Gini impor-
tance which is the mean decrease importance of a feature within a random forest
using the Gini impurity as the splitting criterion.

116 J. Dunkelau et al.

Table 2. Top ten features for each backend ranked by the Gini importance.

Backend Most important features (descending)

CLP(FD) Function application, max conjunct depth, forward
compositions, relational overrides, nested logic with conj.,
nested logic with implications, equalities, function variables,
subset ratio, identifier count

Kodkod Function application, function vars, forward compositions, set
op., nested logic with conj., nested logic with disj., nested logic
with impl., avg. powerset nesting, identifier count, relational
overrides

Z3 Relational operators, domain ops, functions, function vars,
avg. powerset nesting, domain restrictions, unbounded
domains, identifier count, max. conjunct depth, function
application

Table 2 shows the top ten features that are necessary to classify the data at
hand for each backend. The common features of the three subsets are highlighted.
These indicate a particularly high importance as they are used for each of the
three backends’ decisions.

The CLP(FD) backend and the Kodkod backend have the most features
in common. The most important feature for both backends is the presence of
function applications. Indeed, a function application is a complex operation for
a constraint solver since it entails for example the well-definedness condition
that the applied value is an element of the function’s domain. Both backends’
classifiers favour the presence of nested logic formulae with further possibly
nested conjunctions, disjunctions, and implications, indicating more involved
constraint as well. The initial assumption that the Kodkod backend is better
suited to solve constraints over relations is strengthened by the high ranking
of the ratio of relational compositions and overrides in the top 10 features. Of
course, the overall higher similarity of the top ranked features for the CLP(FD)
and Kodkod backend is influenced by the fact that constraints that cannot be
translated to SAT are solved by ProB.

The gathered feature set for the classifier of the Z3 backend favours the pres-
ence of relational operations, in particular, the presence of domain operations. As
initially expected, the feature representing the presence of unbounded domains
has a high importance as well.

While this analysis allows for selection of features for the sole purpose of clas-
sification, it does not yet give us info as of why a feature ranks high. For instance,
it remains uncertain whether the presence of relational operators correlates to
Z3’s positive or negative class. This will be analysed in Sect. 6.2.

Classifying on Reduced Feature Sets. While we are mostly interested in
analysing which language subsets are hard for a backend to solve, we can evaluate
the significance of the most relevant features (determined via Gini relevance

Analysing ProB’s Constraint Solving Backends 117

as done above) by conducting a regular classification over only these relevant
features. When using the ranked feature sets to find a minimal set of features,
we have to consider that at least one feature exists for each B data type or group
of operations, e.g. relational operators, as the dataset might be biased to specific
operations. For instance, the fact that the presence of arithmetic operations is
not ranked high does not mean there should be no such feature at all in general.

Table 3. Random forest classification performances for minimised feature sets.

Backend Dataset Accuracy Balanced acc. F1-score

CLP(FD) F10 0.914 0.875 0.944
F50 0.947 0.929 0.966

Kodkod F10 0.887 0.853 0.923
F50 0.924 0.907 0.949

Z3 F10 0.875 0.804 0.747
F50 0.916 0.870 0.795

We created two features sets containing the top 10 and 50 ranked features
for each backend, referred to as F10 and F50 respectively. The results presented
in Table 3 show that the minimised subsets of 50 features capture the problem
domain as well as the larger set containing 109 features presented in Table 1. The
smaller subset containing 10 features already shows good performance but does
not perform as well as the one using 50 features, indicating that the problem at
hand is complicated at least.

6.2 Association Rule Analysis

Our main goal is to determine how the backends perform on different subsets
of the B language. For this we performed an association rule analysis using the
inTrees framework [16], thereby identifying frequent feature interactions as well
as determining those syntax elements which increase the chance of unsolvability
for each backend. For the analysis, we interpret paths from the root to the
leaves of each decision tree in the forest as a single rule. Each node in these trees
corresponds to a feature along with a threshold value for deciding which path to
follow. An example based on the decision tree from Fig. 1 is given in Fig. 2.

petal length (<) ⇒ setosa
petal length (>) ∧ petal width (<) ⇒ versicolor
petal length (>) ∧ petal width (>) ⇒ virginica

Fig. 2. Association rules extracted from the decision tree in Fig. 1.

118 J. Dunkelau et al.

Different paths might be identical up to the respective threshold values. In
our analysis, we discard the threshold values and only consider the tendency
(below or above threshold) for each rule. This way we can compare rules without
having to worry about mismatching threshold values while still accounting for
the feature’s tendency. Table 4 displays several rules that were collected from the
random forest trained for each backend.

Deng [16] uses two metrics for the association rules, support and confidence.
Given two rules a = {Ca ⇒ Ya} and b = {Cb ⇒ Yb} where Ca, Cb are the
respective conditions and Ya, Yb the respective outcomes. Rule b is said to be in
the support of rule a iff Ca ⊆ Cb. That is, each feature used in Ca is also used
in Cb (with equal threshold tendency). Let σ(a) = {r | r is in the support of a}
denote the support set of a. The confidence of an association rule a is then
defined as c(a) = |{{Cr ⇒ Yr} ∈ σ(a) | Yr = Ya}|/|σ(a)|, i.e. the ratio of rules
in the support of a with the same outcome as a.

For a deeper analysis of the subproblems’ performances for each backend, we
calculated the support and confidence of the respectively 250,000 shortest rules
of the corresponding random forests.

Table 4. Exemplary association rules with their corresponding support and confidence
values (Supp. and Conf. respectively). The operators < and > indicate whether the
feature value is above or below the learned threshold.

Backend Rule Supp. Conf.

CLP(FD) Function applications (<) ∧ conjunctions (<) ∧
quantifiers (>) ∧ logic operators (>) ∧ functions (>)
=⇒ negative

853 0.69

Kodkod Function applications (<) ∧ conjunctions (<) ∧
disjunctions (>) ∧ implications (<) ∧ powersets (<) ∧
inequality (>) ∧ quantifiers (<) ∧ lambda-expression
ratio (<) ∧ relational inversions (<) ∧ sequences (<) ∧
=⇒ negative

2413 0.79

Z3 Relational operations (<) ∧ functions (<) ∧
unbounded variables (>) ∧ set inclusions (member,
subset) (<) ∧ sequences (<) ∧ set operations (<) =⇒
positive

24,479 0.69

Analysis for CLP(FD). For ProB’s native backend, most rules with high
support only had a confidence of 50%, rendering them insignificant for our anal-
ysis. While higher confidence rules had less support such as the one presented
in Table 4, they allowed for a look on certain subareas in the problem domain in
which the backend struggles to find an answer for.

Main concern for the backend appears to be function applications because
they are the most relevant feature for deciding whether the CLP(FD) backend
is able to satisfy or reject a constraint according to the analysis in Sect. 6.1.

Analysing ProB’s Constraint Solving Backends 119

The implementation of function applications in ProB consists of many spe-
cial cases such as different treatment for partial or total functions. Moreover,
function applications entail a well-definedness condition leading to more involved
constraints and possibly weaker propagation. In particular, the constraint solver
has to deduce that the values applied to a function are part of its domain which
increases complexity drastically if domains are (semi-)unbounded. The multi-
tude of such cases might emphasise the overall complexity for constraint solving
and be the reason for function applications leading to negative predictions. This
finding suggests the need for a more involved statical analysis of constraints
with function types by means of discarding well-definedness constraints early to
allow for a more aggressive propagation of function applications. Thus the solver
would not need to wait for verification of whether an element actually resides in
a function’s domain or not.

Further findings show that the use of implications, equivalences, nested pow-
ersets as well as operations on powersets contribute to the probability for the
backend to answer unknown for a given constraint, as do operations concerning
multiple variables representing functions and unbounded domains.

Comparing this to our initial presumptions made in Sect. 2.1, the particular
difficulty associated with function application was mostly unexpected. Further-
more, while we did not anticipate implications or equivalences to have such
significance, their role for unsolvability might be caused by a lot of backtracking
inside the constraint solver for satisfying these constraints. The analysis did not
bring up further results mismatching our assumptions from Sect. 2.1.

Analysis for Kodkod. The Kodkod backend struggles with arithmetic and
powersets, which was to be expected. As already observed with the native back-
end, we also found an increase in logical operators to increase the constraint
complexity significantly. An increase in logical operators naturally increases the
nesting depth of the top-level conjuncts, leading to much more involved con-
straints. The use of functions only appears to be a problem for Kodkod if these
are not manipulated by relational operators, rendering Kodkod as a more suit-
able choice over CLP(FD) in these cases. We generally found our expectations
from Sect. 2.2 met regarding Kodkod’s handling of relations.

Most positive rules favouring relational operators only showed a small sup-
port but had high confidence values and mostly differed in a single feature
describing a different relational operator. If one was to generalise these rules
into a singular one which is independent of the particular relational operator,
these rules should be able to support each other while maintaining their high
confidence. This suggests the use of relational operators for the Kodkod backend.

Note again that the Kodkod backend has a fallback to the CLP(FD) backend
for non-translated structures, hence both backends perform similar overall.

Analysis for Z3. Contrary to the two backends presented above, the Z3
backend’s association rule analysis delivered many high-support/high-confidence
rules for the positive class. Table 4 shows one such rule with high support and

120 J. Dunkelau et al.

confidence. Since the analysis did not provide rules with high support and con-
fidence for the negative class, we compared absence of syntax elements in the
positive rules to their existence in low-support negative rules for analysis of areas
where Z3 does not perform well.

The results suggest that Z3 handles unbounded domains well and favours
integer variables and inequality constraints. This is in line with our expectations
from Sect. 2.3. However, we observed good performance for relational operators
as well which goes against initial presumptions, although this is correlated to
the amount of domain restrictions in use. Otherwise, Z3 lacks performance with
quantifiers, set comprehensions, powersets, or set operations (as was expected).

The main issues for the Z3 backend are the non-translated operators as well
as highly involved translations as outlined in Sect. 2.3. Revisiting these transla-
tions and comparing their implementations to those of well-performing syntax
elements might allow to increase the backend’s performance on further language
subsets significantly. For instance, the translation of relational operators might
inspire the translation of certain set operators.

7 Conclusion

In this article, we identified subproblems of the B language for which the individ-
ual ProB constraint solving backends performed better or worse respectively.

While our findings generally matched our expections stated in Sects. 2.1,
2.2 and 2.3, we found certain results which we did not explicitly expect. For
instance, our evidence suggests a difficulty for dealing with function applications
as well as implications and equivalences. Involved constraints containing many
nested conjunctions and disjunctions also increased the chance for the backends
to return unknown. Surprisingly, the Z3 backend performed much better on
relational operators as expected. As a consequence, our analysis identified the
need for a more sophisticated handling of function application and nested logic
operators.

As by-product of this work, we were also able to train well-performing clas-
sifiers for each backend, which can be used for automated backend selection.

The experimental data as well as corresponding Jupyter notebooks are avail-
able on GitHub:

https://github.com/jdnklau/prob-backend-analysis.

Acknowledgements. Computational support and infrastructure was provided by the
“Centre for Information and Media Technology” (ZIM) at the University of Düsseldorf
(Germany).

https://github.com/jdnklau/prob-backend-analysis

Analysing ProB’s Constraint Solving Backends 121

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, New York (1996)

2. Archer, K.J., Kimes, R.V.: Empirical characterization of random forest variable
importance measures. Comput. Stat. Data Anal. 52(4), 2249–2260 (2008). https://
doi.org/10.1016/j.csda.2007.08.015

3. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1_14

4. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd your herd of
provers. In: Boogie 2011: First International Workshop on Intermediate Verification
Languages, Wrocław, Poland, pp. 53–64, August 2011

5. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression
Trees. Wadsworth and Brooks, Monterey (1984)

6. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996). https://doi.
org/10.1007/BF00058655

7. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
8. Bridge, J.P.: Machine learning and automated theorem proving. Technical report,

University of Cambridge, Computer Laboratory (2010)
9. Brodersen, K.H., Ong, C.S., Stephan, K.E., Buhmann, J.M.: The balanced accu-

racy and its posterior distribution. In: 2010 International Conference on Pattern
Recognition, pp. 3121–3124. IEEE, August 2010. https://doi.org/10.1109/ICPR.
2010.764

10. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint
solver. In: Glaser, H., Hartel, P., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292,
pp. 191–206. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0033845

11. Carlsson, M., et al.: SICStus Prolog User’s Manual, vol. 3. Swedish Institute of
Computer Science Kista, Sweden (1988)

12. Cui, Z., Chen, W., He, Y., Chen, Y.: Optimal action extraction for random forests
and boosted trees. In: International Conference on Knowledge Discovery and Data
Mining KDD 2015, pp. 179–188. Association for Computing Machinery, New York
(2015). https://doi.org/10.1145/2783258.2783281

13. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

14. Déharbe, D., Fontaine, P., Guyot, Y., Voisin, L.: SMT solvers for Rodin. In: Derrick,
J., et al. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 194–207. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30885-7_14

15. Déharbe, D., Fontaine, P., Guyot, Y., Voisin, L.: Integrating SMT solvers in Rodin.
Sci. Comput. Program. 94, 130–143 (2014). https://doi.org/10.1016/j.scico.2014.
04.012

16. Deng, H.: Interpreting tree ensembles with intrees. Int. J. Data Sci. Anal. 7(4),
277–287 (2019). https://doi.org/10.1007/s41060-018-0144-8

17. Dobrikov, I., Leuschel, M.: Enabling analysis for Event-B. Sci. Comput. Program.
158, 81–99 (2018). https://doi.org/10.1016/j.scico.2017.08.004

18. Dunkelau, J.: Machine learning and AI techniques for automated tool selection
for formal methods. In: Proceedings of the PhD Symposium at iFM’18 on Formal
Methods: Algorithms, Tools and Applications, University of Oslo, September 2018.
https://doi.org/10.18154/RWTH-CONV-236485

https://doi.org/10.1016/j.csda.2007.08.015
https://doi.org/10.1016/j.csda.2007.08.015
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/BF00058655
https://doi.org/10.1109/ICPR.2010.764
https://doi.org/10.1109/ICPR.2010.764
https://doi.org/10.1007/BFb0033845
https://doi.org/10.1145/2783258.2783281
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-30885-7_14
https://doi.org/10.1016/j.scico.2014.04.012
https://doi.org/10.1016/j.scico.2014.04.012
https://doi.org/10.1007/s41060-018-0144-8
https://doi.org/10.1016/j.scico.2017.08.004
https://doi.org/10.18154/RWTH-CONV-236485

122 J. Dunkelau et al.

19. Dunkelau, J., Krings, S., Schmidt, J.: Automated backend selection for ProB
using deep learning. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2019. LNCS, vol.
11460, pp. 130–147. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
20652-9_9

20. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann.
Eugen. 7(2), 179–188 (1936)

21. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T):
fast decision procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol.
3114, pp. 175–188. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-27813-9_14

22. Goutte, C., Gaussier, E.: A probabilistic interpretation of precision, recall and
F -score, with implication for evaluation. In: Losada, D.E., Fernández-Luna, J.M.
(eds.) ECIR 2005. LNCS, vol. 3408, pp. 345–359. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31865-1_25

23. Hara, S., Hayashi, K.: Making tree ensembles interpretable. In: ICML Workshop
on Human Interpretability in Machine Learning (WHI 2016) (2016)

24. Healy, A., Monahan, R., Power, J.F.: Evaluating the use of a general-purpose
benchmark suite for domain-specific SMT-solving. In: Symposium on Applied
Computing SAC 2016, pp. 1558–1561. ACM (2016). https://doi.org/10.1145/
2851613.2851975

25. Jackson, D.: Alloy: a lightweight object modelling notation. Trans. Softw. Eng.
Methodol. 11(2), 256–290 (2002)

26. Krings, S., Bendisposto, J., Leuschel, M.: From failure to proof: the ProB dis-
prover for B and Event-B. In: Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS,
vol. 9276, pp. 199–214. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
22969-0_15

27. Krings, S., Leuschel, M.: SMT solvers for validation of B and Event-B models.
In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 361–375.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33693-0_23

28. Le Berre, D., Parrain, A.: The Sat4J library, release 2.2. J. Satisf. Boolean Model.
Comput. 7, 59–64 (2010). System description

29. Leuschel, M., Bendisposto, J., Dobrikov, I., Krings, S., Plagge, D.: From animation
to data validation: the ProB constraint solver 10 years on. In: Boulanger, J.-L. (ed.)
Formal Methods Applied to Complex Systems: Implementation of the B Method,
pp. 427–446. Wiley, Hoboken (2014)

30. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45236-2_46

31. Loh, W.: Classification and regression tree methods. In: Wiley StatsRef: Statistics
Reference Online. American Cancer Society, September 2014. https://doi.org/10.
1002/9781118445112.stat03886

32. Narayanan, I., et al.: SSD failures in datacenters: what? when? and why? In: Sys-
tems and Storage Conference, p. 7. ACM (2016)

33. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

34. Petrasch, J.: The decision does not fall far from the tree: automatic configura-
tion of predicate solving. Master’s thesis, Heinrich Heine Universität Düsseldorf,
Universitätsstraße 1, 40225 Düsseldorf, April 2018

35. Plagge, D., Leuschel, M.: Validating B,Z and TLA+ Using ProB and Kodkod.
In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 372–386.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9_31

https://doi.org/10.1007/978-3-030-20652-9_9
https://doi.org/10.1007/978-3-030-20652-9_9
https://doi.org/10.1007/978-3-540-27813-9_14
https://doi.org/10.1007/978-3-540-27813-9_14
https://doi.org/10.1007/978-3-540-31865-1_25
https://doi.org/10.1145/2851613.2851975
https://doi.org/10.1145/2851613.2851975
https://doi.org/10.1007/978-3-319-22969-0_15
https://doi.org/10.1007/978-3-319-22969-0_15
https://doi.org/10.1007/978-3-319-33693-0_23
https://doi.org/10.1007/978-3-540-45236-2_46
https://doi.org/10.1002/9781118445112.stat03886
https://doi.org/10.1002/9781118445112.stat03886
https://doi.org/10.1007/978-3-642-32759-9_31

Analysing ProB’s Constraint Solving Backends 123

36. Schulz, S.: E-a brainiac theorem prover. Ai Commun. 15(2,3), 111–126 (2002)
37. Strobl, C., Boulesteix, A.L., Zeileis, A., Hothorn, T.: Bias in random forest variable

importance measures: Illustrations, sources and a solution. BMC Bioinf. 8(1), 25
(2007). https://doi.org/10.1186/1471-2105-8-25

38. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Grumberg, O., Huth,
M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-71209-1_49

39. Yang, Q., Yin, J., Ling, C.X., Chen, T.: Postprocessing decision trees to extract
actionable knowledge. In: International Conference on Data Mining, pp. 685–688.
IEEE, November 2003. https://doi.org/10.1109/ICDM.2003.1251008

https://doi.org/10.1186/1471-2105-8-25
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1109/ICDM.2003.1251008

Programming the CLEARSY Safety
Platform with B

Thierry Lecomte(B)

ClearSy, 320 Avenue Archimède, Aix en Provence, France
thierry.lecomte@clearsy.com

Abstract. The CLEARSY Safety Platform (CSSP) is aimed at easing
the development and the deployment of safety critical applications, up to
the safety integrity level 4 (SIL4). It relies on the smart integration of
the B formal method, redundant code generation and compilation, and
a hardware platform that ensures a safe execution of the software. This
paper exposes the programming model of the CSSP used to develop
control & command applications based on digital I/Os.

Keywords: B method · Safety critical · Programming model

1 Introduction

In many industrial standards, formal methods are highly recommended when
developing safety critical software for the highest safety levels. However formal
methods are highly recommended just like many other non-formal (combina-
tion of) techniques, as these recommendations are setup collectively and rep-
resent the industrial best practices. Convinced that formal methods could help
to obtain better products [4,5,7,8], more easily certifiable, a generic, safe exe-
cution platform has been researched for years, combining safety electronics and
defect-free proven software. The software model is proved to be defect-free -
complying with its formal specification and without programming errors. The
code generators and the compilers are not defect-free. They are not required to
be defect-free as the defects are detected with divergent behaviour during exe-
cution. The CLEARSY Safety Platform was initially an in-house development
project before being funded by the R&D collaborative project LCHIP (Low
Cost High Integrity Platform) to obtain a generic version of the platform (i.e.
not only aimed at railway systems). LCHIP [6] is aimed at allowing any engineer
to develop a function by using its usual Domain Specific Language (DSL) and to
obtain this function running safely on a hardware platform. With an automatic
development process, the B formal method will remain “behind the curtain”
in order to avoid expert transactions over several languages (domain specific
language, B language, interactive proof). Indeed the programs developed with
the CLEARSY Safety Platform are considerably simpler than metro automatic
pilot, with few properties, simpler algorithms and hence with an expected excel-
lent automatic proof ratio. The integration of third party provers/solvers is also
c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 124–138, 2020.
https://doi.org/10.1007/978-3-030-48077-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-48077-6_9

Programming the CLEARSY Safety Platform with B 125

expected to improve automatic proof. Based on our previous certification expe-
rience, the safety demonstration of a safety case does not require any specific
feature for the input B model; it could be handwritten or the by-product of a
translation process. Several DSLs are being connected (or planned to be) based
on an Open API (Bxml).

This paper introduces the CLEARSY Safety Platform, presents and explains
the evolution of the supported B0 modelling language. The shape of the programs
developed for this platform are tightly linked with the specific mission of the
platform: ensuring a safety (see Sect. 3.3) out of reach of the developer who
cannot alter it.

This paper is structured in five parts. The Terminology is first introduced as
some terms and concepts are quite specific. Then a description of the CLEARSY
Safety Platform is provided with a focus on its safety features. Third the pro-
gramming model is introduced; the simplification of the proof is also discussed.
Exploitation and dissemination are then exposed. Finally conclusion and per-
spectives are discussed.

2 Terminology

This chapter clarifies a number of unusual terms and concepts used in this paper.

Atelier CSSP is Atelier B extended with diverse code generator toolchain,
bootloader, and a new project type (CSSP project).

B0 is a subset of the B language [1] that must be used at implementation level.
It contains deterministic substitutions and concrete types. B0 definition depends
on the target hardware associated to a code generator [2]. Most railways product
lines use their own own specific code generator.

Bxml is an XML interface to B models, supported by Atelier B.

CRC stands for cyclic redundancy check, is an error-detecting code commonly
used in digital networks and storage devices to detect accidental changes to raw
data.

CSSP abbreviation of CLEARSY Safety Platform. The CLEARSY Safety Plat-
form is made up of a hardware execution platform, an IDE enabling the genera-
tion of diverse binaries from a single B model, and a certification kit describing its
safety features as well as the safety constraints exported to the hosting system.

Diversity intentional differences between redundant components, to reduce the
likelihood of common failures due to systematic causes that would reduce the
benefit of redundancy [3].

Fault tolerance is the property that enables a system to continue operating
properly in the event of the failure of some of its components. In our case, any
electronic part including the processors.

126 T. Lecomte

HEX is a file format that conveys binary information in ASCII text form. It is
commonly used for programming microcontrollers, EPROMs, and other types of
programmable logic devices.

PLC stands for programmable logic controller, is an industrial digital com-
puter which has been ruggedized and adapted for the control of any activity
that requires high reliability control and ease of programming and process fault
diagnosis.

Safety refers to the control of recognized hazards in order to achieve an accept-
able level of risk.

SIL put for Safety Integrity Level, is a relative level of risk-reduction provided
by a safety function. Its range is usually between 0 and 4, SIL4 being the most
dependable and used for situations where people could die.

Reliability is the ability of a system to perform its required functions under
stated conditions for a specified time.

3 The CLEARSY Safety Platform

3.1 Rationale

Developing a safety computer from scratch is not something you easily decide
because of the effort required to obtain such a device. Two kinds of device
are currently available on the market for safety critical applications: PLCs and
SIL3/SIL4-ready boards. Large companies building trains have their own in-
house devices but they are not publicly available. PLCs provide a strict, certi-
fied environment from which it is impossible to escape, requiring systems to be
designed and programmed in specific ways. On the contrary, SIL3/SIL4-ready
boards offer more freedom, come with hardware features not incompatible with
the standards but where the safety principles have to be fully programmed by
the developer in C or similar language.

To overcome this inconvenience, CLEARSY decided to develop its own solu-
tion based on the combination of redundant hardware and proven software devel-
oped with B. Producing its own hardware would reduce by an order of magnitude
its cost compared to PLCs and SILx-ready boards while using Atelier B would
allow more freedom and more control on the software development. The decision
to go for B was easily taken as it is highly recommended by the industry stan-
dard for SIL4 software development. B is also the central formal technology we
have been using during more than 20 years for most of safety critical software
development. Finally the CLEARSY Safety Platform is aimed at easing the cer-
tification process, as the safety principles, embedded in the electronics design
and the B software, are out of reach of the developer who cannot alter them.

Programming the CLEARSY Safety Platform with B 127

3.2 Description

The CLEARSY Safety Platform (abbreviated as CSSP in the rest of the docu-
ment) is a new technology, both hardware and software, combining a software
development environment based on the B language and a secured execution
hardware platform, to ease the development of safety critical applications.

It relies on a software factory that automatically transforms function into
binary code that runs on redundant hardware. The starting point is a text-
based, B formal model that specifies the function to implement. This model may
contain static and dynamic properties that define the functional boundaries of
the target software. The B project is automatically generated (Fig. 5), based on
the inputs/outputs configuration (numbers, names). The project contains all the
machines and implementation components required to program the CLEARSY
Safety Platform. From the developer’s point of view, only one function (name
user logic) has to be specified (machine logic) and implemented properly (imple-
mentation logic i).

Fig. 1. The safe generation and execution of a function on the double processor.

The implementable model is then translated using two different chains:

– Translation into C ANSI code, with the C4B Atelier B code generator
(instance I1). This C code is then compiled into HEX1 binary code with
an off-the-shelf compiler (gcc).

– Translation into MIPS Assembly then to HEX binary code, with a specific
compiler developed for this purpose (instance I2). The translation in two steps

1 A file format that conveys binary information in ASCII text form. It is commonly
used for programming micro-controllers.

128 T. Lecomte

allows to better debug the translation process as a MIPS assembly instruction
corresponds to a HEX line.

The software obtained is the uploaded on the execution platform to be exe-
cuted by two micro-controllers (Fig. 2).

Fig. 2. The CLEARSY Safety Platform Starter Kit 0 (SK0) – documentation available
at https://github.com/CLEARSY/CSSP-Programming-Handbook

3.3 Safety

These two different instances I1 and I2 of the same function are then executed
in sequence, one after the other, on two PIC32 micro-controllers. Each micro-
controller hosts both I1 and I2, so at any time 4 instances of the function are
being executed on the micro-controllers. The results obtained by I1 and I2 are
first compared locally on each micro-controller then they are compared between
micro-controllers by using messages. In case of a divergent behaviour (at least one
of the four instances exhibits a different behaviour), the faulty micro-controller
reboots. The sequencer and the safety functions are developed once for all in

Fig. 3. The pseudo-code of the sequencer.

https://github.com/CLEARSY/CSSP-Programming-Handbook

Programming the CLEARSY Safety Platform with B 129

B by the IDE design team and come along as a library. This way, the safety
functions are out of reach of the developers and cannot be altered. The safety is
based on several features such as:

– the detection of a divergent behaviour,
– micro-controller liveness regularly checked by messages,
– the detection of the inability for a processor to execute an instruction prop-

erly2,
– the ability to command outputs3,
– memory areas (code, data for the two instances) are also checked (no overlap,

no address outside memory range),
– each output needs the two micro-controllers to be alive and providing respec-

tively power and command, to be active (permissive mode). In case of mis-
behaviour, the detecting micro-controller deactivate its outputs and enter an
infinite loop doing nothing.

The code generators are different (code generation paths, specification, pro-
gramming languages, development teams) and as such common failure modes
are neglected. Some of the tools part of the tool-chain have been “certified by
usage” since 1998 (B parser, B compiler, C code generator), but the newest tools
of this tool-chain have no history to rely on for certification. It is not a problem
for railway standards as the whole product is certified (with its environment, its
development and verification processes, etc.), hence it is not required to have
every tool certified. Instead the main feature used for the safety demonstration
is the detection of a misbehaviour among the 4 instances of the function and
the 2 microcontrollers. This way, similar bugs that could affect at the same
time and with the same effects two independent tools are simply neglected. In
its current shape, the CLEARSY Safety Platform provides an automatic way
of transforming a proven B model into a program that safely executes on a
redundant platform while the developer does not have to worry about the safety
aspects.

3.4 Target Applications

The execution platform is based on two PIC32 micro-controllers4. The process-
ing power available is sufficient to update 50k interlocking Boolean equations
per second, compatible with light-rail signalling requirements. The execution
platform can be redesigned seamlessly for any kind of mono-core processor if a
higher level of performance is required.

2 All instructions are tested regularly against an oracle.
3 Outputs are read to check if commands are effective, a system not able to change

the state of its outputs has to shutdown.
4 PIC32MX795F512L providing 105 DMIPS at 80 MHz.

130 T. Lecomte

The IDE provides a restricted modelling framework for software where:

– No operating system is used.
– Software behaviour is cyclic (no parallelism).
– No interruption modifies the software state variables.
– Supported types are Boolean and integer types (and arrays of).
– Only bounded-complexity algorithms are supported (the price to pay to keep

the proof process automatic).

4 Programming Model

Target CSSP applications are controllers. They execute the following infinite
loop: read inputs, perform computation, then set outputs. If a failure happens,
the board deactivates the outputs (they are all OFF – not powered) and enters
an infinite loop doing nothing (Fig. 4). The only way to exit this loop is to reset
the board. The program in Flash memory is copied into RAM and then its
execution starts. If the failure is permanent, the board keeps restarting with the
outputs deactivated – the board remains in a safe, restrictive state.

Fig. 4. A CSSP is either able to execute its software properly (transfer function F)
(left) or is not able (right) and hence does nothing while its outputs are deactivated.

4.1 Development Process

A CSSP project (Fig. 5) is a B project generated from a CSSP board configu-
ration where I/O are selected (some inputs/outputs pins may not be used) and
named. This generated B project is made of:

– the interface with the safety library, containing the definition of all the types
(and related constants) that may be used in a CSSP project, as well as specific
operators (arithmetic, logic) and operations (access to current time, message
to print on serial channel),

– the model of the function to program, that has:
• a read-only access to the safety library, the digital inputs status (OFF,

ON), the current time since the last rest/power-on, and
• the ability to modify the digital outputs (OFF, ON).

Programming the CSSP consists in modifying the components user ctx and
logic, and to possibly add other components to be imported by logic i.

Programming the CLEARSY Safety Platform with B 131

Fig. 5. A CSSP project.

4.2 Pragmas

A component cannot contain both constants (SETS, CONSTANTS) and vari-
ables. Constants are hosted by context machines (machines without variables,
with possibly read-only operations). The compiler is made aware of this situation
by the use of one and only one pragma in each implementation:

– CONSTANTS, to indicate a constants-only module
– SAFETY VARS, to indicate a variables-only module

Fig. 6. Two examples of pragmas.

4.3 Types and Operators

The types available in implementation are:

– uint8 t, uint16 t, uint32 t. These types (unsigned integers coded on 8, 16 and
32 bits) are preferred to the generic type INT, to get a better control over
variable memory size and overflow. Automatic casting is performed when for
example a uint16 t variable is combined with a uint8 t value. The reverse
situation generates a warning from the B32 compiler.

– BOOL

132 T. Lecomte

The values of the digital inputs and outputs (IO OFF, IO ON) are stored as
uint8 t and not as Boolean. It is because a memory glitch could easily transform
a 0 in 1 (or a 1 in 0) without being easily detected. Having these values coded
with 8 bits (with a sufficient Hamming distance) make this undetected mod-
ification unlikely to occur. Moreover setting one output with a value different
from IO OFF and IO ON is detected during execution by the CLEARSY Safety
Platform which enters panic mode.

In order to automate as much as possible the proof process, the arithmetic
operators able to overflow – +, −, x – are replaced by non-overflowing opera-
tors. These operators are modelled as modulo operators (Fig. 7), preventing an
overflow to happen. These operators are defined for the 3 supported arithmetic
types as lambda functions and implemented with native functions in the safety
library. These operators avoid to generate overflow proof obligations and enable
a better automation of the proof process. However well-definedness proof obli-
gations remain and when using the integer division/, the denominator has to be
proved different from 0.

Fig. 7. Arithmetic operators redefined.

Bitwise operators (and, or, xor, not, shift left logical, shift right logical) have
been added similarly (Fig. 8). They allow programs to operate more easily at bit
level. They are defined for 8, 16, and 32 bit sizes.

Fig. 8. Bitwise operators added.

4.4 Time

Time is defined as a uint32 t and represent a number of milliseconds. The oper-
ation get ms tick returns the number of milliseconds elapsed since the last reset
or power on. Storing the current time and then checking its difference with a
future current time allows one to program timers.

Programming the CLEARSY Safety Platform with B 133

4.5 I/O

Inputs and outputs valid values are IO OFF and IO ON. To get the value of
an input, use the operation get xxx where xxx is the name given to the input.
The operation returns a uint8 t. To set the value of an output, use the operation
set xxx where xxx is the name you gave to the output.

4.6 Substitutions

The B0, implementation language, supported by the CLEARSY Safety Platform
is more strict than the one supported by the C code generator C4B. The main
reason for not providing as much freedom to the develop is to keep the B32
compiler simple in order to more easily convince the safety auditor during the
certification process. Several substitutions are constrained as follow:

– IF THEN ELSE supports only single condition. If a test is a disjunc-
tion/conjunction of several expressions, the test will have to be nested into
several levels. Testing operators are restricted to <, ≤ and =.

– assignments are restricted to two operands on the right hand term in order
to avoid to manipulate the stack. The valuation with the addition of more
than two operands will have to be decomposed in successive additions with
two operands.

– variables declared in a VAR substitution have to be typed first with a sub-
stitution “becomes such that”.

Fig. 9. Local variables in user logic are types before use. Tests in triAND are nested
because only single conditions are supported.

5 Ease to Prove Models

One of the objectives of the CLEARSY Safety Platform is to make to proof pro-
cess fully automated. The use of the modulo arithmetic operators contributes

134 T. Lecomte

directly to this objective. The low complexity of the target lightweight applica-
tions (smaller and simpler than metro automatic pilots for example) is another
reason to keep the proof effort low.

However given the modelling choices made for the arithmetic operators and
the heavy use of lambda functions, we had to make sure that trivial arith-
metic assignment with these operators would lead to proof obligations that are
provable automatically. The analysis of the proof obligations initially that were
not demonstrated automatically led to the addition of several proof elements
(Fig. 10):

– two rules to handle properly any predicate containing 2**x. These rules
appear in the PatchProver, a slot for mathematical rules to be applied for
any project. PatchProverA means that these rules are applied after (A put
for After) the one iteration of the main prover.

– several proof tactics in the User Pass of several components.

Fig. 10. Mathematical rules and User Pass proof tactic defined to automate proof.

Finally the default CSSP project generated after creation is fully proved
automatically with the following scenario: select all components, prove force 0,
prove user pass. It also applies for the two examples provided with the Atelier
CSSP: Clock and Combinatorial (Fig. 11).

Fig. 11. Both project Clock and Combinatorial, provided with Atelier CSSP are fully
proved automatically with added rules and predefined tactics.

Programming the CLEARSY Safety Platform with B 135

Of course, the added rules and tactics are not sufficient to automatically prove
all the proof obligations generated for the CSSP but provide a basis for reuse
and extension, together with existing mathematical rules (including packages s1
and b1, added after the end of the development of the automatic metro line 14
in Paris, and able to simplify arithmetic predicates and expressions).

6 Reaching the Limits

The CSSP is intrinsically different from an Arduino as its offers safety features.
However if these safety features cannot be demonstrated, a CSSP is not distin-
guishable from an Arduino. The following situations allow to demonstrate some
of the safety features:

– 2oo2 principle: corrupting the memory is not easily performed as it requires
generating perturbing electromagnetic field and some luck to indeed modify
the memory. Instead the CSSP software interface provides two functions,
get instance id() and get processor id(), which allow to program a behaviour
dependent on the software instance and on the processor executing the soft-
ware. In this case, a divergent behaviour could be obtained leading to the
panic mode.

– regular synchronisation between microcontrollers: the two microcon-
trollers are expected to synchronise every 100ms maximum by checking the
signature (CRC) of their memory spaces. Executing a loop with for example
100 millions steps would similarly trigger the panic mode.

It is also possible to reach the RAM limit by allocating large tables (containing
48700 uint8 t for example) or change the board id (jumper) during program
execution to respectively prevent or stop its execution.

7 Dissemination

A first starter kit, SK0, containing the IDE and the execution platform, was
released by the end of 20175, presented and experimented at the occasion of
several hands-on sessions organized at university sites in Europe, North and
South America. Audience was diverse, ranging from automation to embedded
systems, mechatronics, computer science and formal methods. Results obtained
are very encouraging:

– Teaching formal methods is eased as students are able to see their model
running in and interacting with the physical world. It was the occasion to
demonstrate how formal methods could be used with embedded systems and
IoT. Fruitful discussions took place about how to specify/guaranty perfor-
mances, what can or cannot be proved with such systems, etc.

5 https://www.clearsy.com/en/our-tools/clearsy-safety-platform/.

https://www.clearsy.com/en/our-tools/clearsy-safety-platform/

136 T. Lecomte

– Less theoretic student profiles (computer science, mechatronics, automation)
may be introduced/educated to more abstract aspects of computation. clock
and combinatorial exercises were a starting point for specification enrichment
and the discovery of the formal proof. Of course, the pedagogical objective
in term of formalization was lower than with more formal profiles, but the
students managed to understand the absence of programming error and the
non-deterministic substitutions for simple modelling.

– The platform has demonstrated a certain robustness during all these manip-
ulations and has been enriched with the feedback collected so far. Several
electronics/software errors were detected during the preparation of the course
when designing exercises, others during these exercises.

– The IDE GUI was improved with the automation of the code generation
process and the display of a carousel showing graphically the progress of the
generation. The configuration of the board was also simplified, by displaying
the position of the switches on the board and by filling the configuration file
with default input and output names.

– CLEARSY Safety Platform is used to teach in Master 26 in universities
and engineering schools. Electronic documentation7 is used to structure the
courses and is updated every 2 months. With 3 inputs and 2 inputs, the
starter kit SK0 is for discovering the technology; another version of the board
is planned for 2020 able to handle more I/O (up to 64).

8 Ready for Industry

The SK0 board provides a good introduction to the programming of safety criti-
cal systems. However the framework proposed is mainly aimed at education and
not perfectly fit for industry:

– the number of I/O is reduced (5)
– the programming schema is simple: read inputs, compute, set outputs. Iden-

tical algorithms are executed by I1 and I2.

The CLEARSY Safety Computer 0 (abbreviated as CS0) (Fig. 12) was
designed to offer more flexibility by providing:

– more I/O. The associated mother board brings 32 inputs and 32 outputs, all
digital.

– and a programming model less constrained:
• Safety functions are still programmed and proved in B, but are callable

individually from the C program, in the main loop or associated to an
interrupt vector.

• Mandatory (watchdog-based) safety verification are still performed by the
safety library but the developer is now responsible for calling in time the
verification functions that keep the watchdogs alive.

• Computation could be asymmetric between I1 and I2.

Programming the CLEARSY Safety Platform with B 137

Fig. 12. The CS0 daughter board safety computer on the left, plugged on the mother
board.

The CS0 only embeds the 2 microcontrollers on a smart card format daughter
board while the I/O and the power supply are located on a hosting mother board.

9 Conclusion and Perspectives

The CSSP provides a new way of practising formal methods by allowing stu-
dents/engineers to connect formal models with the surrounding world. The CSSP
is also used to create safety-critical systems, able to be certified at the highest
safety levels8,9,10.

As a consequence, the B0 modelling language has been (even more) restricted
to allow an easier certification because of the simplicity of the tool chain. These
restrictions oblige to have more verbose models (with more lines and more nest-
ing levels). Even if these constraints could be released/removed in the future, the
obtained proof automation level is a real improvement that would certainly ease
its adoption in engineering processes. The invention of the CLEARSY Safety

6 Second year of a Master’s degree.
7 Available at https://github.com/CLEARSY/CSSP-Programming-Handbook.
8 Generic product certificate, CERTIFER 8891/200-1, 27th Feb 2017 SIL4.
9 System certificate BUREAU VERITAS 6393741 3rd March 2017 SIL3.

10 Generic product certificate BUREAU VERITAS 7092509, 23rd July 2019 SIL4.

https://github.com/CLEARSY/CSSP-Programming-Handbook

138 T. Lecomte

Platform also paves the way for a broader use of the B formal method, in the
railways and in other safety-related domains like energy or autonomous vehicles.

Acknowledgements. The work and results described in this article were partly
funded by BPI-France (Banque Publique d’Investissement) and Métropole Aix-
Marseille as part of the project LCHIP (Low Cost High Integrity Platform) selected
for the call AAP-21.

References

1. Abrial, J.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Boulanger, J.: Formal Methods: Industrial Use from Model to the Code. Wiley,
Hoboken (2013)

3. Gashi, I., Povyakalo, A., Strigini, L.: Diversity, safety and security in embedded
systems: modelling adversary effort and supply chain risks. In: Proceedings of 2016
12th European Dependable Computing Conference (EDCC), Gothenburg, pp. 13–24
(2016)

4. Lecomte, T.: Safe and reliable metro platform screen doors control/command sys-
tems. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp.
430–434. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68237-
0 32

5. Lecomte, T.: Applying a formal method in industry: a 15-year trajectory. In:
Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS, vol. 5825, pp.
26–34. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04570-7 3

6. Lecomte, T.: Double cœur et preuve formelle pour automatismes sil4. 8E-Modèles
formels/preuves formelles-sûreté du logiciel (2016)

7. Lecomte, T., Deharbe, D., Prun, E., Mottin, E.: Applying a formal method in indus-
try: a 25-year trajectory. In: Cavalheiro, S., Fiadeiro, J. (eds.) SBMF 2017. LNCS,
vol. 10623, pp. 70–87. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70848-5 6

8. Sabatier, D.: Using formal proof and B method at system level for industrial
projects. In: Lecomte, T., Pinger, R., Romanovsky, A. (eds.) RSSRail 2016. LNCS,
vol. 9707, pp. 20–31. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
33951-1 2

https://doi.org/10.1007/978-3-540-68237-0_32
https://doi.org/10.1007/978-3-540-68237-0_32
https://doi.org/10.1007/978-3-642-04570-7_3
https://doi.org/10.1007/978-3-319-70848-5_6
https://doi.org/10.1007/978-3-319-70848-5_6
https://doi.org/10.1007/978-3-319-33951-1_2
https://doi.org/10.1007/978-3-319-33951-1_2

Modelling Hybrid Programs with Event-B

Meryem Afendi1(B), Régine Laleau1, and Amel Mammar2

1 Université Paris-Est Créteil, LACL, Créteil, France
{meryem.afendi,laleau}@u-pec.fr

2 SAMOVAR, Institut Polytechnique de Paris, Télécom SudParis, Évry, France
amel.mammar@telecom-sudparis.eu

Abstract. Hybrid systems are one of the most common mathemati-
cal models for Cyber-Physical Systems (CPSs). They combine discrete
dynamics represented by state machines or finite automata with continu-
ous behaviors represented by differential equations. The measurement of
continuous behaviors is performed by sensors. When these sensors have
a continuous access to these measurements, we call such model an Event-
Triggered model. The properties of this model are easier to prove, while
its implementation is difficult in practice. Therefore, it is preferable to
introduce a more realistic model, called Time-Triggered model, where
the sensors take periodic measurements. Contrary to Event-Triggered
models, Time-Triggered models are much easier to implement, but much
more difficult to verify. Based on the differential refinement logic (dRL),
a dynamic logic for refinement relations on hybrid systems, it is pos-
sible to prove that a Time-Triggered model refines an Event-Triggered
model. The major limitation of such logic is that it is not supported
by any prover. In this paper, we propose a correct-by-construction app-
roach that implements the reasoning on hybrid programs particularly the
reasoning of dRL in Event-B to take advantage of its associated tools.

Keywords: Cyber-Physical Systems · Hybrid systems · Event-B ·
Refinement · Differential refinement logic

1 Introduction

Recent progress in the industrial sector have allowed the development of a new
production model based on digital network architectures to give birth to a fourth
industrial revolution (“industry 4.0” or “industry of the future”). Cyber Physical
Systems (CPSs) [2] are one of the main technologies in this industry and form the
basis of future technologies. The domain of these systems has rapidly become a
source of innovation with applications in many sectors: health, transport, smart
grid, etc. This type of systems allows to connect the discrete virtual world and
the continuous physical world via a network of sensors and actuators. One of

This work was supported in part by the DISCONT project [1] funded by the French
National Research Agency (ANR).

c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 139–154, 2020.
https://doi.org/10.1007/978-3-030-48077-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_10&domain=pdf
http://orcid.org/0000-0003-0016-6898
https://doi.org/10.1007/978-3-030-48077-6_10

140 M. Afendi et al.

the most common architectures in CPSs is a discrete software controller that
represents the computation part and controls the physical part through a loop
involving sensors and actuators.

A common mathematical model for CPSs is that of hybrid systems that
combine discrete behavior represented by state machines or finite automata
with continuous behavior described by differential equations. The development
of techniques and tools to effectively design hybrid systems has drawn the atten-
tion of many researchers. Traditional approaches are based on simulation tools
like Matlab/Simulink or Stateflow. Since these tools are time-consuming and
produce results tainted with uncertainty, traditional approaches can be very
expensive and difficult to apply. To overcome these limitations, several formal
approaches have been proposed. These approaches can be grouped into two cat-
egories: model-checking-based approaches and proof-based approaches. Model-
checking-based approaches use hybrid automata to model hybrid systems and
algorithmic analysis methods to prove their safety. They are based on the calcu-
lation of the set of reachable states for hybrid automata. These approaches suffer
from the classical problems related to the state space explosion and boundedness
of the considered variables issues. Proof-based approaches use deductive verifica-
tion to prove the properties of hybrid systems. One of the strong points of these
approaches is that they support the description of any kind of hybrid systems.
However, they require significant effort and a high expertise in modelling and
proof phases. This is the main reason why these approaches do not yet scale to
industrial applications.

In CPSs, the measurement of continuous behaviors is performed by sensors.
Ideally sensors have a continuous access to these measurements, this can be cap-
tured by an abstract model of CPSs, called Event-Triggered system by Kopetz
in [3]. However, implementing such models is difficult in practice. Therefore, it is
preferable to introduce a more realistic model, called Time-Triggered system in
[3], where the sensors take periodic measurements. Contrary to Event-Triggered
models, properties on Time-Triggered models are difficult to verify. Platzer et al.
[4,5] use this approach to model hybrid systems. They have proved that a Time-
Triggered model can be a refinement of an Event-Triggered model, by using an
extension of the differential dynamic logic (dL), called the differential refinement
logic (dRL). However dRL is not supported by any prover and dRL formulas can
only be manually proved, which heavily restricts its use, especially in an indus-
trial context. In this paper we propose an approach to model Event-Triggered
systems and Time-Triggered systems in Event-B to take advantage of its well-
defined refinement process and of its support tools. We also reused the work
proposed in [6] that allows to model differential equations in Event-B.

This paper is organised as follows. Section 2 briefly describes dL, dRL and
Event-B. Section 3 presents a state of the art of some proof based-approaches
for CPS modelling. Section 4 presents Event and Time-Triggered systems and
their modelling in dRL. Section 5 then introduces our proposed approach and
discusses the difference between modelling Event and Time-Triggered systems
in dRL and Event-B. Finally, Sect. 6 concludes and presents some future work.

Modelling Hybrid Programs with Event-B 141

2 Background

2.1 Differential Dynamic Logic dL
This section describes a first-order dynamic logic in the domain of real (IR)
introduced by A. Platzer to specify hybrid systems and verify their correctness
using its associated proof calculus [4]. dL formulas are built using logical sym-
bols of first-order logic and the modalities [] (Box-modality) and 〈 〉 (Diamond-
modality). Formula [α]φ is true iff after all runs of the hybrid program α, formula
φ holds. 〈α〉φ is true iff there is at least one run of the hybrid program α, after
which formula φ holds. The major advantage of dL is its ability to handle differ-
ential equations, even those with non-polynomial solutions. Moreover, dL and
its associated proof calculus are supported by two automatic formal verification
tools, KeYmaera [7] and its successor KeYmaera X [8].

In dL, hybrid systems are given operationally as hybrid programs (HPs).
These latter describe both discrete and continuous behaviors of hybrid systems
using sequential composition (;), non-deterministic choice (∪), non-deterministic
repetition (∗), discrete assignments (:=), continuous evolution (′), etc. Most HPs
are defined using the notation, (ctrl; plant)∗, where ctrl denotes the execution
of the controller (discrete evolution), followed by the physical part plant (con-
tinuous evolution). This sequence is non-deterministically repeated as denoted
with the star (*).

Finally, in order to establish a safety property, safeReq, for a system, a typical
formula expressing safety relative to initial conditions needs to be proved, init →
[(ctrl; plant)∗](safeReq) that means: if the initial conditions (init) hold, then,
after all runs of the hybrid program safeReq holds.

2.2 Differential Refinement Logic dRL
dRL is a logic with first-class support for refinement relations on hybrid systems
[5]. It extends dL by introducing a refinement operator (≤) for HPs. In addition
to dL formulas, dRL introduces formulas of the form α ≤ β, α refines β, with α
and β denoting HPs. According to [5], formula α ≤ β is true in a state s iff all
states reachable from s by following the transitions of α could also be reached
from state s by following transitions of β.

dRL preserves the safety properties of refined hybrid programs by showing
that if α ≤ β and [β]φ, then the formula φ is true in all states reachable from s by
following the transitions of α ([α]φ). There is a similar rule for diamond modal-
ities (〈 〉), which states that if α refines β, and there is at least one transition on
α to a state where φ is true, then 〈β〉φ is true. Moreover, dRL establishes that
a Time-Triggered system refines an Event-Triggered system using its associated
proof calculus (Sect. 4).

2.3 Event-B

Event-B [9] is a formal method based on set theory, first-order logic and predicate
logic. An Event-B model is composed of a set of machines and contexts. An

142 M. Afendi et al.

Event-B context consists of sets and constants with their axioms. An Event-B
machine represents the dynamic behavior of a given system, and it may see one
or more Event-B contexts. To any Event-B model, a set of proof obligations
(POs) is associated. These POs must be proved to verify the correctness of a
given Event-B model. They can be automatically generated using for example the
Rodin platform [10], which is an Eclipse-based IDE for Event-B. This platform
allows to add new features as Eclipse plug-ins. For example, the Theory plug-
in [11] is a Rodin extension that allows to define new data types like REAL,
new operators, etc. Event-B has a key feature that consists in using abstract
modelling to represent the abstract behavior of a given system and the refinement
to demonstrate compliance between an abstract model and a concrete one.

3 State of the Art

In this section, we focus on proof-based approaches defined to specify and verify
hybrid systems using Event-B, the dRL approach will be discussed in Sect. 4. We
briefly describe three main approaches. The approach presented in [12] proposes
a new formal method, called Hybrid Event-B, to add continuous aspects to
traditional discrete Event-B. It defines two kinds of events: mode events and
pliant events. mode events represent the traditional discrete Event-B events.
pliant events specify the continuous evolution of continuous measurements. As
dRL, Hybrid Event-B is not supported by any prover.

The authors of [13] propose an approach supported by the Rodin toolset
to model hybrid systems using continuous functions over real intervals. Pre-
serving the properties of these functions is the key for ensuring the correction
of refined machines. This approach uses the Event-B refinement to reduce the
non-determinism in continuous behaviors and introduce periodic control.

Finally, the approach proposed by Dupont et al. in [6] uses the Theory plug-in
of Event-B to define theories that handle continuous aspects of hybrid systems.
The behavior of CPSs is specified by the following three Event-B models:

– System model is used to describe the continuous evolution of the physical
part of a hybrid system. Its machine contains two events:

• the Progress event models the continuous evolution of time by using a pos-
itive real variable t ∈ (TIME = RRealPlus)1. The lt symbol corresponds
to the operator (<) in the RReal theory [6].

Progress
THEN act1: t : | t′ ∈ TIME ∧ (t
→ t′ ∈ lt) END

• the Behave event models the physical part’s evolution represented by the
physical state variable plantV . While modelling a car, plantV will be
replaced by the car’s position p and the car’s velocity v. plantV evolves
according to the differential equation e ∈ DE(S = RReal ∗ RReal)2

1 RRealPlus represents IR+ in the RReal theory developped by Dupont et al.
2 RReal represents IR in the RReal theory developped by Dupont et al.

Modelling Hybrid Programs with Event-B 143

defined as a parameter of the Progress event, where DE(S) is a set of
differential equations defined on S. This differential equation must have
a solution in the interval [t,∞[that is represented by Guard grd2.

Behave
ANY e
WHERE

grd1: e ∈ DE(S)
grd2: Solvable(Closed2Infinity(t), e)

THEN
act1: plantV : | plantV ′ ∈ TIME → S ∧

AppendSolutionBAP (e, TIME, Closed2Open(Rzero, t),
Closed2Infinity(t), plantV, plantV ′)

END

– State System model refines the previous model by adding the evolution of
the discrete part (the controller). It introduces a new variable named x s to
model the possible states of the controller. It also introduces a new event,
named Transition, to update the controller’s state by assigning a non deter-
ministic value to x s. The possible values that can be assigned to this variable
are defined in the associated context as elements of a set STATES defined in
the same context.

– Controlled System model refines the State System model by adding two
new events that allow the interaction between the physical part and the dis-
crete part:

• Sense event allows to modify the controller’s state according to the phys-
ical part’s state. It introduces a parameter p which depends on x s, t and
plantV (t) (p ∈ P (STATES×TIME×S)). This parameter allows to define
the system safety envelope according to its discrete state.

• Actuate event refines the Behave event by adding a constraint on the
controller’s state. This constraint is represented by the following formulas:
s ⊆ STATES and x s ∈ STATES.

4 Event and Time-Triggered Systems

In order to design a model that better corresponds to real CPSs it is preferable
to start with an abstract one, called Event-Triggered model, where the controller
interrupts the physical part when a particular event occurs, and then introduce
a more realistic model, called Time-Triggered model, where the controller inter-
rupts periodically the physical part [3]. Event-Triggered models describe an ideal
behavior where the time is continuous and the sensors have continuous access
to continuous measurements which is not always possible in practice. Time-
Triggered models describe a more realistic behavior where the sensors take peri-
odic measurements. Therefore, the controller of a Time-Triggered system must

144 M. Afendi et al.

make a choice that will be safe until the next sensor’s update, which makes this
type of systems difficult to prove compared to Event-Triggered systems.

dRL allows to specify and prove that a Time-Triggered system refines an
Event-Triggered system. It introduces two generic templates [5], Model 1 and
Model 2, to model and prove these two types of systems. The control part of
these two generic templates has only two modes: the normal mode which is
triggered if the system safety envelope, denoted safe, is satisfied, and the evade
mode which is triggered otherwise. As already mentioned, the major limitation
of dRL is that it is not supported by any prover. This limitation represents a
strong restriction on its application to more complex hybrid systems. This paper
proposes to deal with this restriction through the use of Event-B and its support
tools.

4.1 Event-Triggered Model

Model 1: Event-triggered Generic Model

event∗ ≡ (ctrlEv; plantEv)∗ (1.1)
ctrlEv ≡ (ctrlV := evade value) ∪ (ctrlV := ∗; ?safe(plantV)) (1.2)

plantEv ≡ t := 0; plantV0 := plantV ;
(plantV ′ = f evol(ctrlV), t′ = 1 & evt trig(plantV)
∧ dom evol(plantV)) (1.3)
∪ (plantV ′ = f evol(ctrlV), t′ = 1 & ∼ evt trig(plantV)
∧ dom evol(plantV)) (1.4)

where:
ctrlV : the control variable (acceleration in the case of a car).
plantV : the state variable of the system.
safe(plantV): defines the system safety envelope. It is calculated from the
safety requirement that the system must satisfy.

plantV ′ = f evol(ctrlV): defines the system ODE that describe the
continuous evolution of the system.

evt trig(plantV): the predicate that defines the boundary of the safety
envelope. When this latter becomes false, the controller triggers the evade
mode. It must define a closed domain.

∼ evt trig(plantV) : topological closure of the complement
of evt trig(plantV).

dom evol(plantV): defines the evolution domain of the system. It is a set of
constraints on the state variable.

plantV0: represents the initial value of plantV .

N.B: the variables t and plantV0 have no effect on the state of this model.
They will be used in the second model.

Modelling Hybrid Programs with Event-B 145

Model 1 represents the generic model associated with a controller triggered
by events. When the formula safe is satisfied, the system can evolve continu-
ously according to formula (1.3) until it reaches the boundary of the domain
evt trig(plantV). Once the system reaches the boundary of this domain, the
controller must then switch to the evade mode by affecting a deterministic value
evade value to the control variable (ctrlV). After the switch of the controller
to the evade mode, the system no longer satisfies the formula safe. Therefore,
it can no longer evolve in the domain evt trig(plantV) that’s why dRL defines
formula (1.4). This latter allows the system to evolve continuously when it is in
the evade mode. To prove the safety of this model, dRL provides the following
proof rule where Γ represents other assumptions not affected by the program
event:

evt trig(plantV) ∧ Γ � [event](evt trig(plantV) ∧ Γ)

This proof states that Model 1 is safe if its associated hybrid program event
always satisfies the loop invariant evt trig(plantV) which includes the formula
safe(plantV).

4.2 Time-Triggered Model

Model 2: Time-triggered generic model

time∗ ≡ (ctrlt; plantt)∗ (2.1)
ctrlt ≡ (ctrlV := evade value)

∪ (ctrlV := ∗; ?safeε(plantV, ctrlV)) (2.2)
plantt ≡ t := 0; plantV0 := plantV ; (plantV ′ = f evol(ctrlV),

t′ = 1 & t ≤ ε ∧ dom evol(plantV)) (2.3)

where
ε: maximum time between two sensors updates.
t: allows to know if the duration ε is reached or not.

Model 2 represents the generic model associated with a Time-Triggered system.
The controller of such system reacts at least every ε seconds. To express this
constraint, dRL replaces formulas (1.3) and (1.4) by a single one (2.3). Formula
safe is also replaced by formula safeε, which depends on both the current choice
of ctrlV and the time duration ε, in addition to the current state plantV , in order
to guarantee that the controller will make a choice that will be safe for up to ε
time. To prove that Model 2 satisfies a safety property φ, dRL has introduced
the following proof rule ([≤]) where Δ represents other obligations in the context
not affected by the proof rule.

146 M. Afendi et al.

Γ � [event∗]φ,Δ Γ � (time∗ ≤ event∗),Δ
Γ � [time∗]φ,Δ

[≤]

This proof consists of two sub-goals: the first one is to prove that Model 1
satisfies the system safety property φ, and the second aims at verifying that
Model 2 refines Model 1.

4.3 Time-Triggered Model Refines Event-Triggered Model

To prove that a Time-Triggered system refines an Event-Triggered system, dRL
provides three proof obligations:

– PO 1: evt trig(plantV) ∧ Γ ∧ safeε(plantV, ¯ctrlV) � safe(plantV)

where:
¯ctrlV : represents a non-deterministic choice of the control variable.

This proof expresses that the safety envelope of Model 2 implies that of Model
1, which means that the discrete controller refines the continuous one.

– PO 2: evt trig(¯plantV0) ∧ Γ ∧ safeε(¯plantV0, ¯ctrlV) ∧ 0 ≤ t ≤ ε
∧ dom evol(¯plantV) ∧ ¯plantV = S ¯plantV0, ¯ctrlV (t) � evt trig(¯plantV)

where:
¯plantV0: set of physical state variables values at instant t = 0.
¯plantV : set of physical state variables values at instant t.

S ¯plantV0, ¯ctrlV (t): solutions of the ODE associated with plantV0, given a
control variable choice ¯ctrlV .

This proof expresses that the non-deterministic choice of ctrlV := ∗
expressed by ¯ctrlV guarantees that the system will not cross the boundary
of evt trig(plantV) within time ε.

– PO 3: evt trig(¯plantV0) ∧ Γ ∧ 0 ≤ t ≤ ε ∧ dom evol(¯plantV)
∧ ¯plantV = S ¯plantV0,evade value(t) � evt trig(¯plantV)

This proof is similar to the previous one except that here the control choice
is deterministic ctrlV := evade value.

5 Modelling Hybrid Programs with Event-B

The objective of the DISCONT project [1] is to elaborate a correct-by-
construction method, based on Event-B, to specify hybrid systems models. Two
approaches are considered. The first one, developed by Dupont et al. [6], is based
on a translation of hybrid automata in Event-B extended by theories that handle
differential equations and continuous functions (derivation, Lipschitz condition,
etc.). In our approach we propose to model the high-level structure of hybrid

Modelling Hybrid Programs with Event-B 147

programs, (ctrl;plant)*, in Event-B, and more precisely the generic templates
defined for modelling Event and Time-Triggered systems in dRL.

One of our objectives is to use the Event-B refinement and its associated tools
to demonstrate the compliance between these two models, and also compare the
refinement proof obligations generated in Event-B with those provided by dRL.
The approach consists of three models as depicted in Fig. 1 where System M
and System Ctx are those of [6]. We also reuse the Event-B theories that handle
continuous aspects of hybrid systems. The whole models can be downloaded
from: https://cloud.lacl.fr/index.php/s/K75Lt28ApPbkY7z.

Fig. 1. Structure of the Event-B specification.

5.1 Event and Time-Triggered in Event-B

Event-Triggered Model is a generic model designed to specify and prove
Event-Triggered systems in Event-B. It is based on the first generic template of
dRL, Model 1. As we mentioned above, dRL models an Event-triggered system
by adding the constraint evt trig(plantV) to the system evolution domain. Since
Event-B models the transitions between discrete states as events, we do not need
to use this constraint in Event-B. Moreover, through the use of Event-B, we can
see the different transitions of a given system.

The Event-Triggered model is composed of an Event-B context named Event-
Triggered Ctx and an Event-B machine named EventTriggered M. EventTrig-
gered Ctx defines a set of constants and axioms required to model an Event-
Triggered system, such as the formula safe that represents the safety envelope
for the modeled system. As in dRL, the formula safe depends on the current
physical state variable as well as the control variable since it may contain some
limits on how this latter may be set. The domain of this formula must be included
in that of evt trig(plantV) formula. Moreover, safe must be initially satisfied. In
that case, proving the safety of an Event-Triggered model consists in ensuring
that the specific choice of the evade mode is safe. Machine EventTriggered M
refines that of the abstract model System by adding two new variables:

https://cloud.lacl.fr/index.php/s/K75Lt28ApPbkY7z

148 M. Afendi et al.

– ctrlV represents the control variable and belongs to RReal. The current value
of this variable corresponds to the current controller’s state.

– exec is a flag used to model the alternation between the control part and
the physical part as represented in the high-level structure of hybrid pro-
grams, (ctrl; plant)∗. Therefore, exec can take two values ctrl and plant. In
Event-B, the time must be explicitly handled. To be sure that this explicit
time will only be updated after the execution of the controller and the phys-
ical part, we added a third value, prg, to exec. Moreover, we refined the
Progress event of the Machine System M (page 4) to add the constraint
exec = prg as a guard and exec := ctrl as an action. Therefore, our model
follows the following structure: init; (ctrl; plant; prg)∗, where init represents
the INITIALISATION event.

To model the evolution of the physical part, we have defined the Plant event.
This latter refines the Behave event by replacing the abstract differential equa-
tion e with that defined for a function denoted f evol plantV in order to model
plantV ′ = f evol(ctrlV). The function f evol plantV describes the evolution of
the state variable plantV according to the system discrete state.

Plant
REFINES

Behave
WHERE

grd1: ode(f evol plantV(ctrlV), plantV (t), t) ∈ DE(S)
grd2: Solvable(Closed2Infinity(t), ode(f evol plantV(ctrlV), plantV (t), t))
grd3: exec = plant

WITH
e: e = ode(f evol plantV(ctrlV), plantV (t), t)

THEN
act1: plantV : | plantV ′ ∈ (TIME → S) ∧

AppendSolutionBAP (ode(f evol plantV(ctrlV), plantV (t), t),
TIME, Closed2Open(Rzero, t), Closed2Infinity(t), plantV, plantV ′)

act2: exec := prg
END

Regarding the evolution of the control part, we have added two new events:

– Ctrl normal event representing the normal mode. It is triggered when it is
the controller’s turn (exec = ctrl) and the formula safe is true. It assigns a
non-deterministic value, defined in the ANY clause, to the control variable
ctrlV and gives the turn to the physical part (exec := plant).

– Ctrl evade event representing the evade mode. It assigns the parameter
evade value to the control variable ctrlV and gives the turn to the physi-
cal part (exec := plant). This event can be triggered even if the system has
not yet reached the boundary of evt trig(plantV), i.e. the system still satis-
fies the formula safe. However, we keep the guarantee that it will be triggered
exactly when the system reaches the boundary of evt trig(plantV) since the
controller is continuous.

Modelling Hybrid Programs with Event-B 149

Ctrl normal
ANY nrml value
WHERE

grd1: nrml value ∈ RReal
grd2: exec = ctrl
grd3: safe(plantV (t)
→

nrml value) = TRUE
THEN

act1: ctrlV := nrml value
act2: exec := plant

END

Ctrl evade
ANY evade value
WHERE

grd1: exec = ctrl
grd2: evade value ∈ RReal

THEN
act1: ctrlV := evade value
act2: exec := plant

END

Time-Triggered Model refines the previous model to get a system corre-
sponding to that described by Model 2. As mentioned in the previous section,
the sensors of a Time-Triggered system take periodic measurements of physi-
cal state variables and its controller executes each time those sensors updates
are taken. Moreover, the longest time between sensors updates is bounded by a
symbolic duration named ε. Therefore, the controller can execute at least every
ε time. For this purpose, we have calibrated a new variable named d (variable t
in dRL) to know whether the duration ε is reached or not. This variable is reset
(set to Rzero) before each execution of the physical part and evolves according
to a function f evol d defined in the associated context. We have also added
the constraint d(t′) ≤ ε to the first action of the Progress event to be sure
that the sensors updates occurs at least every ε. Since the controller of a Time-
Triggered system must make a choice that will be safe for up to ε time, we
defined a new safety envelope named safeEpsilon (safeε(plantV, ctrlV) in dRL).
As in dRL, we have replaced safe with safeEpsilon by defining a new event
named Ctrl normal time. This latter refines the Ctrl normal event and is trig-
gered when a given value, nrml value, satisfies the formula safeEpsilon. In that
case, we assign this value to ctrlV and give the turn to the physical part.

5.2 Application

To apply our approach to a concrete system, we define two concrete models,
Concrete System Event-triggered model and Concrete System Time-triggered
model. The first model refines the Event-Triggered model through replacing
plantV by the system physical state variables, defining the system safety proper-
ties as invariants in addition to the associated evolution function f evol plantV ,
then the formula safe is instanciated to define the system safety envelope. The
second model, can either refine the first one or the Time-Triggered model. If
we choose the first alternative, the refined model will then inherit the system
safety properties but on the other hand we must add the notion of control period
epsilon.

150 M. Afendi et al.

5.3 Proof of Refinement

In Event-B, two proof obligations are generated to prove that a concrete Event-B
machine refines an abstract one:

– Guard strengthening (GRD): ensures that a concrete guard is stronger than
the corresponding abstract one.

– Action simulation (SIM): ensures that each concrete action is not contradic-
tory to the corresponding abstract one.

As mentioned earlier, we replaced the safety envelope formula safe by the formula
safeEpsilon in the Ctrl normal time event. In this case, the following Guard
strengthening (GRD) proof obligation has been generated:

(exec = ctrl ∧ safeEpsilon(plantV (t)
→ nrml value) = TRUE)
⇒ safe(plantV (t)) = TRUE

To prove that the concrete machine, TimeTriggered M, refines the abstract
one, EventTriggered M, we must prove that, during a control period ε, the
safety formula safeEpsilon, defined in the concrete model, implies the safety
formula safe defined in the abstract one. This proof is similar to the PO 1 pro-
vided by dRL. PO 2 and PO 3 are not generated as refinement POs by the
proof obligation generator of Event-B, though they are needed to prove the
refinement relation between our two generic models, Time-Triggered model and
Event-Triggered model. Therefore, they must be added manually as Event-B
proof obligations. Since we model the evolution of the physical state variables
using a single event, Plant in the Event-Triggered model and Plant time in the
Time-Triggered model, we will then replace the equations of the dRL POs,

¯plantV = S ¯plantV0, ¯ctrlV (t) and ¯plantV = S ¯plantV0,evade value(t) by the guard
exec = prg. init represents the initial conditions of the modeled system and
plantV(t0) represents the initial value of the physical state variable plantV . In
Event-B, the proof obligations are as follows:

– PO 2:

safeEpsilon(plantV (t0)
→ nrml value) = TRUE ∧ evt trig(plantV (t0))
∧ init ∧ (Rzero
→ t ∈ leq) ∧ (t
→ epsilon ∈ leq) ∧ exec = prg

⇒ evt trig(plantV)

– PO 3:

evt trig(plantV (t0)) ∧ init ∧ (Rzero
→ t ∈ leq) ∧ (t
→ epsilon ∈ leq)
∧ exec = prg ⇒ evt trig(plantV)

These two proof goals are based on the safety envelope of the system and the
choices of the control variable. When the safety envelope of the system is satisfied,
the controller can non-deterministically choose between the normal mode or the
evade mode. In the case of a Event-Triggered system, we have the guarantee
that the controller is able to switch to the evade mode exactly when the safety
envelope is no longer satisfied. While in a Time-Triggered system, we must prove
that nrml value and evade value guarantee that the system will not exceed the
domain of the safety envelope within time ε.

Modelling Hybrid Programs with Event-B 151

5.4 Case Study

To validate our approach, we chose the Stop Sign case study [14] which deals
with a stop sign controller whose objective is to ensure the stopping of a car
before a stop signal SP . The control strategy is to adjust the velocity of the car
by accelerating or braking, without ever backing down. The continuous behavior
of this system is modeled by the position and the velocity of the car specified
respectively by the state variables p and v, as well as its acceleration represented
by the control variable ctrlV . This continuous behavior evolves according to
linear differential equations, p′ = v, v′ = ctrlV ≡ (dp

dt = v, dv
dt = ctrlV), which

describe the evolution of the position and the velocity over time. The system can
behave according to the following two discrete states: State accelerate and State
braking. State accelerate is triggered when the car is very far from the stop signal
SP . In this case, the car velocity can evolve according to a non-deterministic
value assigned to the control variable ctrlV . This value must never exceed the
physical limits of the car expressed by A (maximum limit of acceleration) and
B (maximum limit of braking). State braking is triggered when the car is very
close to the stop signal SP . In this case, we must decrease the car velocity by
assigning −B to ctrlV . To model this system using our approach, we followed
the schema depicted in Fig. 2. The whole models of this development can be
downloaded from https://cloud.lacl.fr/index.php/s/aiKiPxkrfmWpakR.

Fig. 2. Stop sign case study development schema.

Machine Car Event M refines Machine EventTriggered M through replacing the
generic state variable plantV by the physical state variables associated with
the Stop sign case study, p and v. This replacement is done using the oper-
ator bind defined in the differential equations theory [6]. The physical part
is modeled by the Plant event car event. This latter refines the Plant event
by adding a witness that replaces the evolution of the generic state variable
plantV by the evolution of the position p and the velocity v represented by
the f evol plantV defined in the associated context. State accelerate is mod-
eled using the Ctrl acceleration car event that refines the Ctrl normal event.

https://cloud.lacl.fr/index.php/s/aiKiPxkrfmWpakR

152 M. Afendi et al.

State braking is modeled through replacing the value evade value by −B in the
Ctrl evade event.

Machine Car Time M refines Machine Car Event M in order to preserve
the system safety property, p ≤ SP and 0 ≤ v. If we prove that safeT ime
implies safe, and the Car-Event-Triggered model satisfies the property p ≤ SP ,
so we can say that the Car-Event-Triggered model also satisfies this property.
Car Time M is based on the Machine TimeTriggered M, therefore we added the
variable d and its evolution.

To prove that Car Time M refines Car Event M we must prove the three
associated POs presented in Sect. 5.3. As we mentioned above, the choice of
the parameters nrml value and evade value is the key to prove the safety of the
system which can be done by using external mathematical tools for a parametric
analysis since the differential equation of the Stop Sign case study is linear.

5.5 Comparing Event-B Refinement with Differential Refinement
Logic

Type of Refinement. Event-B refinement is based on the execution traces
starting from the initial state. Therefore, to prove that a concrete Event-B
machine refines an abstract one, we have to establish that the set of execu-
tion traces of the concrete one is included in that corresponding to the abstract
one. The refinement of dRL is based on reachable states. In hybrid automata
and hybrid programs, a state is defined by a couple (x s, plantV) composed of
the current discrete state x s and the current value of the continuous variable
plantV . Therefore, to prove that a hybrid program α refines another hybrid pro-
gram β (α ≤ β), we have to establish that the set of reachable states from a
state s following the transitions of α is included in the set of reachable states
from the same state s following some transitions of β.

Both Event-B refinement and dRL allow preserving the safety properties of
the refined model. This is ensured in dRL through combining refinement relations
and modalities. Despite the several features of dRL’s refinement, computing
reachable states for non linear system requires solving non-linear real arithmetic
problems which is difficult in general [15]. Moreover, dRL refinement does not
preserve the safety properties on the traces, but it is less constrained than the
Event-B refinement.

Proofs Complexity. As we mentioned earlier, dRL has introduced a refine-
ment strategy based on comparing reachable states for hybrid programs. Using
this refinement strategy, one can start with an ideal system where the controller
has continuous control over the system behavior (Event-Triggered system), then
introduces a more realistic system where the controller interrupts the physi-
cal part at least every ε time (Time-Triggered system). The main advantage
of dRL is that it uses differential equations to describe the continuous evolu-
tion of a given hybrid system by employing differential invariants, differential
cuts, and differential refinement techniques. Moreover, the refinement relation

Modelling Hybrid Programs with Event-B 153

between Time and Event-Triggered systems have been successfully proved using
the dRL’s refinement proof rules. Despite these advantages, dRL is not sup-
ported by any prover, which makes the proofs difficult to achieve in the case
of complex systems especially for systems with more than two modes. Through
using Event-B, we can overcome this limitation since its support tools aid in dis-
charging proof obligations either automatically or with the interactive prover.
Therefore using our approach, we can model an hybrid system with more than
two modes.

The major limitation in using Event-B to model and verify hybrid systems
is the absence of support for the continuous aspects of CPSs, such as continuous
time and differential equations. As we mentioned, the approach proposed in
[6] has tried to overcome this limitation by defining an Event-B theory that
includes different kinds of differential equations. Using the abstract model of this
approach, it becomes possible to represent the reasoning on hybrid programs in
Event-B.

6 Conclusion and Future Work

In this paper, we have presented a proof-based approach that uses Event-B
and its refinement technique to specify and verify Event-Triggered systems and
Time-Triggered systems. We have defined two generic templates for these sys-
tems, directly inspired from the dRL specification, that represent hybrid systems
as hybrid programs. dRL proof obligations have been defined to establish the
refinement of the Event-Triggered template by the Time-Triggered template.
Then we have compared the Event-B refinement with the dRL refinement and
the generated POs. This led us to define new refinement POs in Event-B. One
of the main advantages of Event-B is its support tools (provers, model-checkers,
. . .) to discharge POs, contrary to dRL.

To demonstrate the usability of our approach, we have experimented it on
a Stop Sign case study. In this case study, the differential equations that repre-
sent the evolution of the physical part are linear and can be easily solved. To
handle more difficult differential equations we need to use an external tool like
Mathematica [16], a symbolic mathematical computation system. Moreover, our
approach is still in the abstract level where all transitions are instantaneous. It
does not take into account the duration between the sending of continuous mea-
surements by the sensors and their processing by the controller as well as the
duration between the sending of actions by the controller and their execution.
As future work, we plan to define a refinement of the Time-Triggered model to
model these durations. We also plan to integrate Mathematica as a back-end
tool in the Rodin platform to resolve differential equations.

References

1. ANR-17-CE25-0005: DISCONT ANR project (2017). https://discont.loria.fr

https://discont.loria.fr

154 M. Afendi et al.

2. Lee, E.A.: Cyber physical systems: design challenges. In: 2008 11th IEEE Inter-
national Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC), pp. 363–369. IEEE (2008)

3. Kopetz, H.: Event-triggered versus time-triggered real-time systems. In: Karshmer,
A., Nehmer, J. (eds.) Operating Systems of the 90s and Beyond. LNCS, vol. 563,
pp. 86–101. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0024530

4. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reasoning
41(2), 143–189 (2008). https://doi.org/10.1007/s10817-008-9103-8

5. Loos, S.M., Platzer, A.: Differential refinement logic. In: 2016 31st Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–10. IEEE
(2016)

6. Dupont, G., Aı̈t-Ameur, Y., Pantel, M., Singh, N.K.: Proof-based approach to
hybrid systems development: dynamic logic and Event-B. In: Butler, M., Raschke,
A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 155–170.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4 11

7. Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-71070-7 15

8. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an
axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp,
A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21401-6 36

9. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

10. Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Tech-
nol. Transf. 12(6), 447–466 (2010). https://doi.org/10.1007/s10009-010-0145-y

11. Butler, M., Maamria, I.: Mathematical extension in Event-B through the Rodin
theory component (2010)

12. Banach, R., Butler, M., Qin, S., Verma, N., Zhu, H.: Core hybrid Event-B I: single
hybrid Event-B machines. Sci. Comput. Programm. 105, 92–123 (2015)

13. Butler, M., Abrial, J.-R., Banach, R.: Modelling and refining hybrid systems in
Event-B and Rodin (2016)

14. Quesel, J.-D., Mitsch, S., Loos, S., Aréchiga, N., Platzer, A.: How to model and
prove hybrid systems with KeYmaera: a tutorial on safety. Int. J. Softw. Tools
Technol. Transf. 18(1), 67–91 (2015). https://doi.org/10.1007/s10009-015-0367-0

15. Chen, X.: Reachability analysis of non-linear hybrid systems using Taylor models.
Ph.D. thesis, Fachgruppe Informatik, RWTH Aachen University (2015)

16. Wolfram, S.: The Mathematica Book, 5th edn. Wolfram Media, Champaign (2003)

https://doi.org/10.1007/BFb0024530
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1007/978-3-319-91271-4_11
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/s10009-010-0145-y
https://doi.org/10.1007/s10009-015-0367-0

Event-B-Supported
Choreography-Defined

Communicating Systems
Correctness and Completeness

Sarah Benyagoub1, Yamine Aı̈t-Ameur1, and Klaus-Dieter Schewe2(B)

1 Université de Toulouse, IRIT/INPT-ENSEEIHT, Toulouse, France
{sarah.benyagoub,yamine}@enseeiht.fr

2 Zhejiang University, UIUC Institute, Haining, China
kd.schewe@intl.zju.edu.cn, kdschewe@acm.org

Abstract. Choreographies prescribe the rendez-vous synchronisation of
messages in a communicating system. Such a system is called realis-
able, if the traces of the prescribed communication coincide with those
of the asynchronous system of peers, where the communication chan-
nels either use FIFO queues or multiset mailboxes. It has recently been
shown that realisability can be characterised by two necessary conditions
that together are also sufficient, whereas in general the synchronisability
of communicating peers is undecidable. The sufficiency of the condi-
tions permits the construction of correct communicating systems; their
necessity shows that all choreography-defined communicating system can
be obtained in this way. This article provides an integrated framework
based on Event-B for such a construction with a major emphasis on
Rodin-based proofs of correctness and completeness.

Keywords: Event-B · Choreography · Realisability · Correctness
proof · Completeness proof

1 Introduction

In a communicating system peers communicate asynchronously through mes-
sages. If the computations performed by the peers are disregarded and only the
sequences of messages sent and received are considered, the system becomes a
system of communicating FSMs with a semantics defined by the traces of sent
messages. In addition, only those traces may be taken into account in which all
sent messages have also been received.

Such a trace semantics can be defined in various ways using channels organ-
ised as FIFO queues for each pair of peers [6] or just for each receiver [1]. Alter-
natively, channels may be organised as multisets [8]. Naturally, one may also
consider the possibility of messages being lost [7]. The synchronisability problem
for such communicating systems is to decide whether the traces remain the same,

c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 155–168, 2020.
https://doi.org/10.1007/978-3-030-48077-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_11&domain=pdf
https://doi.org/10.1007/978-3-030-48077-6_11

156 S. Benyagoub et al.

if a rendez-vous synchronisation of sending and receiving of messages is consid-
ered. This was proven to be undecidable in general [9]. The picture changes in
the presence of choreographies which prescribe the rendez-vous synchronisation
[2]. In this case the peers are projections of a choreography, and synchronisability
becomes realisability of the given choreography. Recently it was shown that in
this case the rendez-vous composition of the projected peers coincides with the
choreography, and language synchronisability based only on the message traces
concides with synchronisability based in addition on the stable configurations
reached [10]. This further enabled the characterisation of realisability of chore-
ographies by two necessary conditions on a communication choreography, which
together are sufficient.

A constructive Event-B-based approach to develop realisable choreographies
and consequently communicating systems was brought up in [4,5]. The general
idea is to exploit construction operators, by means of which realisable choreogra-
phies can be built out of a primitive base [11]. This already contains a hint on
the sufficient conditions used in the associated proofs that were conducted using
Rodin [3]. As the sufficiency proof in [10] removes some unnecessary assump-
tions, this approach becomes general. More importantly, the necessity of the
conditions shows that all choreography-defined communicating systems can be
obtained in this way. In this paper we continue this route and show that also
the necessity proof for realisable choreographies can be supported by Event-B and
Rodin. This further gives us means for repairing choreographies.

The remainder of this article is organised as follows. Section 2 is dedicated
to theoretical foundations, where we review the fundamental definitions around
peer-to-peer (P2P) systems and choreographies as well as the theory of realisable
choreographies developed in [10]. Different to previous work we concentrate only
on the most restrictive composition using a single message queue per peer. In
Sect. 3 we briefly review our previous work on the Event-B-based construction
of choreography-defined P2P systems with a slight extension of the Rodin-based
proofs based on our newer insights. Section 4 is the core of this paper emphasising
the necessary conditions for realisable choreographies and the Rodin-based proof.
We conclude with a brief summary and outlook in Sect. 5.

2 Theoretical Background of Realisable Choreographies

Let M and P be finite, disjoint sets, elements of which are called messages and
peers, respectively. Each message m ∈ M has a unique sender s(m) ∈ P and a
unique receiver r(m) ∈ P with s(m) �= r(m). We use the notation i

m→ j for a
message m with s(m) = i and r(m) = j. We also use the notation !mi→j and
?mi→j for the event of sending or receiving the message m, respectively. Write
Ms

p and Mr
p for the sets of messages, for which the sender or the receiver is p,

respectively.
Let s(M) and r(M) denote the sets of send and receive events defined by a

set M of messages. A P2P system over M and P is a family {Pp}p∈P of finite

Event-B-Supported Choreography-Defined Communicating Systems 157

state machines (FSMs) Pp over an alphabet Σp = s(Ms
p) ∪ r(Mr

p). By abuse of
terminology Pp is also called a peer.

We write Pp = (Qp, Σp, q0,p, Fp, δp), where Qp is the finite set of states of
the FSM, q0,p ∈ Qp is the start state, Fp ⊆ Qp is the set of final states, and δp

is the transition function, i.e. δp : Qp × Σp → Qp. Without loss of generality we
may concentrate on deterministic FSMs (see [10, Prop.1]).

2.1 Composition of Peers

A composition of a P2P system over M and P will be another automaton, the
alphabet of which will be either M or s(M) ∪ r(M).

The rendez-vous composition of a P2P system {Pp}1≤p≤n with Pp =
(Qp, Σp, q0p, Qp, δp) is the FSM Crv = (Q,M, q0, Q, δ) with Q = Q1 × · · · ×
Qn, q0 = (q01, . . . , q0n), and δ((q1, . . . , qn), i m→ j) = (q′

1, . . . , q
′
n) holds if

δi(qi, !mi→j) = q′
i and δj(qj , ?mi→j) = q′

j hold, and qx = q′
x for all x /∈ {i, j}.

The mailbox composition of a P2P system {Pp}1≤p≤n with Pp =
(Qp, Σp, q0p, Qp, δp) is the automaton Cm = (Q,Σ, q0, Q, δ) satisfying the fol-
lowing conditions:

– The set of states is Q = Q1 × · · · × Qn × (cj)1≤j≤n, where each cj is a finite
queue with elements in M .

– The alphabet is Σ = s(M) ∪ r(M).
– The initial state is q0 = (q01, . . . , q0n, ([])1≤j≤n), i.e. initially all channels are

empty.
– The transition function δ is defined by δ((q1, . . . , qn, (cj)1≤j≤n), e) =

(q′
1, . . . , q

′
n, (c′

j)1≤j≤n) if there exists i such that δi(qi, e) = q′
i holds, qx = q′

x

for all x �= i, and
• either e =!mi→j for some j, c′

j = cj
�[i m→ j], and ck = c′

k for all k �= j

• or e =?mj→i for some j and ci = [j m→ i]�c′
i and ck = c′

k for all k �= i.

As above we call a state (q1, . . . , qn, (cj)1≤j≤n) stable if and only if all channels
cj are empty.

Peers as well as any composition of a P2P system are defined by automata,
so their semantics is well defined by the notion of language accepted by them. It
is common to consider just sequences of sending events, i.e. for a word w ∈ M∗

let σ(w) denote its restriction to its sending events. Formally, we have σ(ε) = ε,
σ(i m→ j) = !mi→j , and σ(w1 · w2) = σ(w1) · σ(w2), where · denotes concatena-
tion. Analogously, for words in (s(M) ∪ r(M))∗ we have σ(ε) = σ(?mi→j) = ε,
σ(!mi→j) = !mi→j , and σ(w1 · w2) = σ(w1) · σ(w2).

If L is the language accepted by an FSM A with alphabet M or Σ = s(M)∪
r(M), then L(A) = σ(L) is the trace language of A. This applies for the cases
where A is a peer Pp or a composition Crv or Cm. We use the notation L0(P) =
L(Crv), Lω(P) = L(Cm).

If we restrict final states to be stable, we obtain a different language L̂(Cm) ⊆
L(Cm), which we call the stable trace language of Cm.

158 S. Benyagoub et al.

A P2P system P = {Pp}1≤p≤n is called language-synchronisable, if L0(P) =
Lω(P) holds. P = {Pp}1≤p≤n is called synchronisable, if L0(P) = Lω(P) =
L̂ω(P) holds.

2.2 Choreography-Defined P2P Systems

Let us now look into choreographies. We define a choreography by an FSM C =
(Q,M, q0, F, δ), where M is again a set of messages. As before we ignore final
states and assume F = Q. Then every rendez-vous composition of a P2P system
P = {Pp}1≤p≤n defines a choreography.

Let C = (Q,M, q0, Q, δ) be a choreography with messages M and peers P . For
p ∈ P the projection πp(C) is the FSM (Q,Σ, q0, Q, δp) with Σ = s(M) ∪ r(M)
and δp(q, e) = q′ if e = !mp→j for some j with δ(q, p m→ j) = q′, e = ?mi→p for
some i with δ(q, i m→ p) = q′ or e = ε for δ(q, i m→ j) = q′ with p /∈ {i, j}.

The peer Pp defined by C is the FSM without ε-transitions corresponding to
πp(C). A P2P system P = {Pp}1≤p≤n is choreography-defined if there exists a
choreography with peers Pp for all p.

There is a close relationship between rendez-vous compositions and
choreography-defined P2P systems. In [10] we proved that each choreography
C coincides (up to isomorphism) with the rendez-vous composition of its peers.
Thus, not all P2P systems are choreography-defined. In fact, if a P2P system is
choreography-defined, then it must consist of the peers defined by its rendez-vous
composition.

For choreography-defined P2P systems the synchronisability problem is much
simpler than in the general case. In [10] we proved that a choreography-defined
P2P system P = {Pp}1≤p≤n is synchronisable if and only if it is language-
synchronisable.

Therefore, we may focus only on language-synchronisability: if a trace is
accepted, then it will be accepted in a stable configuration. We may also identify
the rendez-vous composition with the given choreography. Therefore, a chore-
ography C is called realisable, if L0(P) = Lω(P) holds for the P2P system P
defined by the projections of C.

2.3 Characterisation of Realisability

The main result from [10] states that there are two necessary conditions for
realisability, which together are sufficient. The sequence condition expresses that
if two messages appear in a sequence, the sender of the second message must
coincide with either the sender or the receiver of the preceding message. The
choice condition expresses that if there is a choice of continuation with two
different messages, then these messages must have the same sender.

Sequence Condition. Whenever there are states q1, q2, q3 ∈ Q with δ(q1, i
m1→

j) = q2 and δ(q2, k
m2→ �) = q3 for non-independent messages i

m1→ j and
k

m2→ �, we must have k ∈ {i, j}.

Event-B-Supported Choreography-Defined Communicating Systems 159

Choice Condition. Whenever there are states q1, q2, q3 ∈ Q with δ(q1, i
m1→ j) =

q2, δ(q1, k
m2→ �) = q3 and q2 �= q3 for non-independent messages i

m1→ j and
k

m2→ �, we must have k = i.

Both conditions establish constraints on δ for two messages i
m1→ j and k

m2→ �,
but in both cases we need to exclude that these two messages are independent
in the sense that they may appear in any order, i.e. we request that if there are
states q1, q2, q3 with δ(q1, i

m1→ j) = q2 and δ(q2, k
m2→ �) = q3, then we cannot

have both δ(q1, k
m2→ �) = q2 and δ(q2, i

m1→ j) = q3. The following theorem is the
main result in [10].

Theorem 1. A choreography C is a realisable with respect to P2P, queue or
mailbox composition if and only if it satisfies the sequence and choice conditions.

3 Correctness by Construction

We now address the construction of realisable choreographies. For this we will
first introduce several composition operators in Subsect. 3.1. We can easily define
conditions on the constructors to ensure that all choreographies obtained by com-
position will satisfy the choice and sequence conditions and thus are realisable
by Theorem 1. However, following [3,4] we will actually redo the (sufficiency)
proof using specifications of the constructors in Event-B and the Rodin prover.

3.1 Composition Operators

In the following we use the notation CP to refer to a choreography, and we
add indices to distinguish different choreographies, whenever the need arises.
Without loss of generality we also introduce distinguished final states qf

CP , which
ease the proofs. We define three composition operators:sequence composition
⊗(�, qf

CP), branching composition ⊗(+, qf
CP), and loop composition ⊗(�, qf

CP).
Each expression of the form ⊗(op, qf

CP)
(CP ,CPb) assumes that the initial

state of CPb is fused with the final state sf
CP . Informally, we can say that CPb

is appended to CP at state sf
CP .

Definition 1 (Sequential Composition). Given a choreograhy CP with
final state qCP ∈ Qf

CP and a choreography CPb with a single transi-
tion δCPb

(qCPb
, lCPb

) = q′
CPb

, the sequential composition CP� = ⊗(�, sCP)

(CP ,CPb) is defined by QCP� = QCP ∪ {q′
CPb

}, MCP� = MCP ∪ {mCPb
},

Qf
CP� = (Qf

CP \ {qCP}) ∪ {q′
CPb

} and δCP� = δCP ∪ {((qCP , lCPb
), q′

CPb
)}.

Definition 2 (Branching Composition). Given a choreography CP with
final state qCP ∈ Qf

CP and a family of choreographies {CPbi}1≤i≤n, each com-
prising a single transition δCPbi (qCPbi , lCPbi) = q′

CPbi
, the branching composition

CP+ = ⊗(+, qCP)(CP , {CPbi}) is defined by

160 S. Benyagoub et al.

– QCP+ = QCP ∪ {q′
CP1

, . . . , q′
CPbn

| δCPbi
(qCPbi

, lCPbi
) = q′

CPbi
},

– MCP+ = MCP ∪ {lCPbi , . . . , lCPbn
}

– δCP+ = δCP ∪ {((qCP , lCPbi
), q′

CPbi
) | 1 ≤ i ≤ n}, and

– Qf
CP+

= (Qf
CP \ {qCP}) ∪ {q′

CPb1
, . . . , q′

CPbn
}.

Definition 3 (Loop Composition). Given a choreography CP with final
state qCP ∈ Qf

CP and a choreography CPb with a single transition
δCPb

(qCPb
, lCPb

) = q′
CPb

such that q′
CPb

∈ QCP holds, the loop composition
CP� = ⊗(�, sCP)(CP ,CPb) is defined by QCP� = QCP , MCP� = MCP ∪{lCPb

},
δCP� = δCP ∪ {((qCP , lCPb

), q′
CPb

)}, and Qf
CP� = Qf

CP .

Clearly, according to Theorem 1 we must require that in a sequence the sender
of the added message equals the sender or receiver of any message associated with
a transition to qCP ∈ Qf

CP . The same must hold for the new messages introduced
by a branching composition. In addition, the senders associated with the new
messages must be pairwise different. In case of a loop composition we must in
addition require that the sender of any message associated with a transition from
q′
CPb

∈ QCP equals the sender or receiver of the newly introduced message.

3.2 Correctness Proof

We use Event-B to prove the correctness of the compositions thereby giving an
alternative Rodin-based proof of Theorem 1. An Event-B model (see Table 1) is
defined to encode this incremental process.

Table 1. An excerpt of the LTS model.

INITIALISATION�
EVENTS

Add Seq �
Any Some cp b

Where

grd1: Some cp b ∈ cps b

grd2: MESSAGE(Some cp b) �= End

grd3: Some cp b ∈ ISeqF

grd4: SOURCE STATE(Some cp b) ∈ CP Final states

. . .
Then

act1: BUILT CP := BUILT CP ∪ {Some cp b}
act3: CP Final states := (CP Final states ∪

{DESTINATION STATE(Some cp b)})\
{SOURCE STATE(Some cp b)}

. . .
End

Add Choice � . . .

Add Loop � . . .

Add End � . . .

End

Once initialisation (INITIALISATION) is performed, three events (Add
Sequence, Add Choice and Add Loop) for sequence, choice and loop are inter-
leaved to build a choreography CP . All these events are guarded by the identified

Event-B-Supported Choreography-Defined Communicating Systems 161

Table 2. An excerpt of the LTS CONTEXT.

LTS CONTEXT

SETS PEERS, MESSAGES , CP STATES.
CONSTANTS CPs B, DC, ISeqF, NDC, . . .
AXIOMS

axm1: CPs B ⊆ CP STATES × PEERS × MESSAGES× PEERS × CP STATES×N

– Determinstic CP definition DC

axm2 Cond1: NDC ⊆ CPs B

axm3 Cond1: ∀Trans2, Trans1·(Trans1 ∈ CPs B ∧ Trans2 ∈ CPs B∧
SOURCE STATE(Trans1) = SOURCE STATE(Trans2)∧
LABEL(Trans1) = LABEL(Trans2)∧
DESTINATION STATE(Trans1) �= DESTINATION STATE(Trans2))

⇒{Trans1, Trans2} ⊆ NDC

axm4 Cond1: DC = CPs B \ NDC

– Independent sequence freeness definition ISEQF

axm5 Cond2: ISeqF ⊆ CPs B

axm6 Cond2: ∀ cp b · (cp b ∈ CPs B ∧
(PEER SOURCE(cp b) = LAST SENDER PEERS(SOURCE STATE(cp b)) ∨
PEER SOURCE(cp b) = LAST RECEIVER PEERS(SOURCE STATE(cp b))))

⇒ {cp b} ⊆ ISeqF

– Parallel Choice freeness PCF

axm7 Cond3: PCF ⊆ CPs B
axm8 Cond3: ∀ cp b· (cp b ∈ CPs B ∧

{PEER SOURCE(cp b)} = BRANCHES PEERS SOURCE(cp b))
⇒ {cp b} ⊆ PCF

. . .
End

conditions deterministic, sequence and choice conditions defined in the context
LTS CONTEXT of Table 2.

In this context (see Table 2), we introduce using sets and constants, the
whole basic definitions of messages, choreography states, basic choreographies
(i.e. choreographies with a single transition as used in the definitions of the com-
position operators), etc. A set of axioms is used to define the relevant properties
of these definitions. For example, in Axiom axm1, a choreography CP is defined
as a set of transitions with a source and target state, a message and a source and
target peers. Axiom axm3 Cond1 defines that a non-deterministic choreography
is using the NDC set. This NDC set characterises all the non-deterministic
choices in a choreography CP . Note that Axiom axm4 Cond1 defines the
assumed deterministic choice condition. The capture of sequence conditions is
given by Axioms axm5 Cond2 and axm6 Cond2. It compares the source peer
PEER SOURCE(cp b) with the sender peer LAST SENDER PEERS or
with the receiver peer LAST RECEIV ER PEERS of the last transition of
the choreography.

Similarly, to define the choice condition, in Axioms axm7 Cond3 and
axm8 Cond3 the sender peers PEER SOURCE(Trans) of the transitions
involved in a branch are compared.

The correctness proof rebuilds the three decisive parts of the proof of
Theorem 1:

1. It shows that the trace language of the choreography coincides with the one of
the rendez-vous composition of its projected peers. This property was called
equivalence in earlier work [2].

162 S. Benyagoub et al.

2. It shows the language synchronisability between the rendez-vous composition
and the mailbox composition, which was referred to as synchonisability in [2].

3. It shows that all accepted sequence of messages of the mailbox composition
system are accepted in a state, where the mailboxes are empty. This property
was called well-formedness in earlier work [2].

4 Completeness Proof: A Correct-by-Construction
Approach with Event-B

To prove that all the choreographies CP built using the previously defined events,
encoding the composition operators, we rely on refinement offered by Event-B.
As indicated above we can decomposed the realisability property into three prop-
erties, namely equivalence, synchronisability and well-formedness. The Event-B
context in Table 3 defines these properties.

Table 3. An excerpt of the LTS SYNC CONTEXT.

LTS SYNC CONTEXT, EXTENDS LTS CONTEXT

SETS ACTIONS. CONSTANTS CPs B , EQUIV, . . .

AXIOMS

axm1: CPs SY NC B ⊆ CP STATES × ACTIONS × MESSAGES × PEERS×
PEERS × ACTIONS × MESSAGES × CP STATES × N

axm2: CPs ASY NC B ∈ (A STATES × ETIQ × N) �→ A STATES

– Equivalence of CP and Synchronous projection

axm 1.a: EQUIV ∈ CPs B �� CPs SYNC B

axm 1.a1: EQUIV = { Trans �→ S Trans | Trans ∈ CPs B ∧ S Trans ∈ CPs SYNC B ∧
SOURCE STATE(Trans) = S SOURCE STATE(S Trans) ∧
DESTINATION STATE(Trans) = S DESTINATION STATE(S Trans) ∧
PEER SOURCE(Trans) = S PEER SOURCE(S Trans) ∧
PEER DESTINATION(Trans) = S PEER DESTINATION(S Trans) ∧
MESSAGE(Trans) = S MESSAGE(S Trans) ∧
INDEX(Trans) = S INDEX(S Trans) }

– Synchronisability property

axm 1.b: SYNCHRONISABILITY ∈ CPs SYNC B �� R TRACE B
axm 1.b1: SYNCHRONISABILITY = {S Trans�→ R Trans | S Trans ∈ CPs SYNC B ∧

R Trans ∈ R TRACE B ∧ S INDEX(S Trans) = R INDEX(R Trans) ∧
S SOURCE STATE(S Trans) = R SOURCE STATE(R Trans) ∧
S PEER SOURCE(S Trans) = R PEER SOURCE(R Trans) ∧
S MESSAGE(S Trans) = R MESSAGE(R Trans) ∧
S PEER DESTINATION(S Trans) = R PEER DESTINATION(R Trans) ∧
S DESTINATION STATE(S Trans) = R DESTINATION STATE(R Trans)}

– Well formedness property

axm 1.c: WF ∈ A TRACES → QUEUE
axm 1.c1: ∀ A TR,queue · (A TR ∈ A TRACES ∧ queue ∈ QUEUE ∧ queue = ∅)
⇒ A TR �→ queue ∈ WF

. . .
End

Each property is formalised by a set of choreographies satisfying the cor-
responding property. These definitions use the rendez-vous composition CPrv

defined as set CPs SY NC B and the mailbox composition CPm defined as set
CPs ASY NC B in context LTS SY NC CONTEXT of Table 3.

Event-B-Supported Choreography-Defined Communicating Systems 163

4.1 An Event-B Context for the Realisability Property

The definition of the state-transitions system corresponding to the synchronous
projection is given by the set CPs SY NC B defined by Axiom axm1 in Table 3.
Actions (send ! and receive ?) are introduced. Then two other important axioms,
namely axm 1.a and axm 1.a1, are given to define the equivalence between
a choreography CP and its synchronous projection. The EQUIV relation is
introduced. It characterises the set of CP s that are equivalent to their syn-
chronous projection. Axiom axm 1.a1 formalises equivalence. The properties
related to synchronisability are captured by Axioms axm 1.b and axm 1.b1. Well-
formedness is captured by Axioms axm 1.c and axm 1.c1.

4.2 Refinement

We exploit the characterisation of realisability by three properties in a refine-
ment strategy, which establishes the necessity step-by-step. These properties are
introduced as invariants and inductively proven for each composition operator
(sequence, choice and loop). That is, two refinements of the initial machine of
Table 1 are defined:

– The first refinement introduces the equivalence property by defining the (syn-
chronous) rendez-vous projection of the initial choreography CP .

– Synchronisability and well-formedness properties are proven in the second
refinement.

Below we present a sketch of this development focusing on the definition of
the sequence operator. The complete development can be accessed from http://
yamine.perso.enseeiht.fr/ABZ2020EventBModels.pdf.

Table 4. An excerpt of the LTS Synchronous model.

INITIALISATION

. . .

EVENTS

Add Seq Refines Add Seq �
Any

S Some cp b, Some cp sync b

Where

grd1: Some cp sync b ∈ cps sync b

grd3: S SOURCE STATE(Some cp sync b) ∈ CP Final states

grd4: S Some cp b ∈ ISeq

grd8: MESSAGE(S Some cp b) �= End

grd9: MESSAGE(S Some cp b) = S MESSAGE(Some cp sync b)
. . .

With Some cp b: Some cp b = S Some cp b

Then

act1: BUILT CP := BUILT CP ∪ {S Some cp b}
act2: BUILT SY NC := BUILT SY NC ∪ {Some cp sync b}

. . .

End

http://yamine.perso.enseeiht.fr/ABZ2020EventBModels.pdf
http://yamine.perso.enseeiht.fr/ABZ2020EventBModels.pdf

164 S. Benyagoub et al.

First Refinement: Equivalence. The first refinement introduces the syn-
chronous projection of the BUILT CP defined by variable BUILT SY NC in
Table 4.

The event Add Seq or sequence operator (Table 4) refines the same event of
the root model of Table 1. It introduces the BUILT SY NC set corresponding
to the synchronous projection as given in Sect. 2.1. Here, again, the Add Seq
applies only if the conditions in the guards hold. The With clause provides a
witness to glue Some cp b CP with its synchronous version.

Second Refinement: Synchronisability and Well-Formedness. The sec-
ond refinement introduces the asynchronous projection with sending and receiv-
ing peers actions.

Well-formedenss and synchronisability remain to be proven in order to com-
plete realisability preservation. At this level each event corresponding to a com-
position operator is refined by three events: one to handle sending of messages
(Add Seq send), one for receiving messages (Add Seq receive), and a third one
(Add Seq send receive) refining the abstract Add seq event. Queues are intro-
duced as well.

Table 5 defines these events. Sending and receiving events are interleaved
in an asynchronous manner. Once a pair of send and receive events has been
triggered, the event Add Seq send receive records that the emission-reception
is completed. This event increases the number of received messages (Action
act5). Traces are updated accordingly by the events, they are used for proving
the invariants.

4.3 Completeness Proof

The proof of completeness consists in proving a choreography is realisable if
and only if it is built using the defined composition operators. The Rodin-based
proofs exploits that realisability can be equivalently expressed by equivalence,
synchronisability and well-formedness. Note that the proof strategy with the
sufficiency and necessity parts is quite similar, as the same development and
refinement steps are used in both cases. The main difference resides in the def-
inition of two invariants, which correspond to each direction of the implication
corresponding to the necessity and sufficiency conditions.

Sufficiency. Sufficiency consists in proving that, if a choreography is built using
the defined composition operator, then it is realisable. This property has been
proven by proving the invariants described in Table 6.

These invariants state that for each CP built using the composition oper-
ators, the obtained CP fulfils Equivalence, Synchronisability and WF by set
belonging property. Table 6 introduces the equivalence property through invari-
ant inv 1.a. The invariant requires equivalence between a CP and its syn-
chronous projection. inv 1.b and inv 1.c introduce respectively the synchro-
nisability and well-formedness properties.

Event-B-Supported Choreography-Defined Communicating Systems 165

Table 5. An excerpt of the LTS Asynchronous model.

Event Add Seq Send �
Any

send, lts s, lts d,msg, index

Where

grd1: ∃send st src, send st dest·((lts s �→ send st src) ∈ A GS ∧ ((send st src �→
(Send �→ msg �→ lts d) �→ index) �→ send st dest) ∈ CPs ASY NC B∧ . . .
. . .

Then

act1: A TRACE := A TRACE ∪ {Reduces Trace states �→ St Num �→
Send �→ lts s �→ msg �→ lts d �→ Reduces Trace states �→
(St Num + 1) �→ A Trace index}
act2: queue, back := queue ∪ {lts d �→ msg �→ back}, back + 1
act3: A GS := A Next States({send} �→ A GS �→ queue)
. . .

End

Event Add Seq Receive �
Any

send, receive, lts s, lts d,msg, index

Where

grd1: queue �= ∅ ∧ lts d �→ msg �→ front ∈ queue

grd2: ∃receive st src, receive st dest·(((lts d �→ receive st src) ∈ A GS)∧
((receive st src �→ (Receive �→ msg �→ lts s) �→ index) �→ receive st dest)
∈ CPs ASY NC B ∧ . . .

. . .
Then

act1: A TRACE := A TRACE ∪ {Reduces Trace states �→ St Num �→
Receive �→ lts s �→ msg �→ lts d �→ Reduces Trace states �→ (St Num + 1)
�→ A Trace index}
act2: queue := queue \ {lts d �→ msg �→ front}
. . .

End

Event Add Seq Send − Receive Refines Add Seq �
Any

A Some cp b, A Some cp sync b, Send cp async b, Receive cp async b, R trace b

Where

grd1: A MESSAGE(Send cp async b) = A MESSAGE(Receive cp async b)
grd2: ACTION(Receive cp async b) = Receive ∧ ACTION(Send cp async b) = Send

grd3: A Some cp b ∈ ISeq

grd4: MESSAGE(A Some cp b) = A MESSAGE(Send cp async b)
. . .

With S Some cp b : S Some cp b = A Some cp b,

Some cp sync b : Some cp sync b = A Some cp sync b

Then

act1: BUILT CP := BUILT CP ∪ {A Some cp b}
act2: BUILT SY NC := BUILT SY NC ∪ {A Some cp sync b}
act3: BUILT ASY NC := BUILT ASY NC ∪ {Send cp async b} ∪ {Receive cp async b}
act4: REDUCED TRACE := REDUCED TRACE ∪ {R trace b}
. . .

End

. . .
End

Necessity. Necessity consists in proving that if a CP is realisable, then it is
built using the defined composition operator.

This property has been established by proving the invariants described in
Table 7. Invariant inv2.a states that any CPbelonging to the equivalence set is
a peer to peer CP , inv2.b states that any synchronisable CP belongs to the set
of built CP and finally inv2.c states that all the well formed CP exchanging
the ending message is built at the asynchronous level.

Proof Statistics. Table 8 gives the results of our experiments. We can observe
that all the proof obligations (POs) have been proved. A large amount of these

166 S. Benyagoub et al.

Table 6. An excerpt of sufficient model invariants.

Invariants
inv1: BUILT SY NC ⊆ CPs SY NC B

inv2 BUILT ASY NC ⊆ CP ASY NC B

inv3 REDUCED TRACE ⊆ R TRACE B

inv4 A TRACE ⊆ A TRACES

inv 1.a: ∀Trans·∃S Trans·(Trans ∈ BUILT CP ∧ S Trans ∈ BUILT SY NC∧
BUILT CP
= ∅)⇒ Trans �→ S Trans ∈ EQUIV

inv 1.b ∀S Trans·∃R Trans·(S Trans ∈ BUILT SY NC ∧ R Trans ∈
REDUCED TRACE) ⇒

S Trans �→ R Trans ∈ SYNCHRONISABILITY
inv 1.c ∀A Trans·(A Trans ∈ A TRACES ∧ MESSAGE(Last cp trans) = End∧

A TRACE
= ∅)⇒ A Trans �→ queue ∈WF
. . .

Table 7. An excerpt of necessary and sufficient model invariants.

Invariants

inv2.a ∀Trans.∃S Trans.(Trans �→ S Trans ∈ EQUIVALENCE ∧ BUILT CP �= ∅)
⇒ Trans ∈ BUILT CP ∧ S Trans ∈ BUILT SY NCHRONE

inv2.b ∀S Trans.∃R Trans.(S Trans �→ R Trans ∈ SYNCHRONISABILITY∧
BUILT SY NCHRONE �= ∅ ∧ REDUCED TRACE �= ∅)
⇒ S Trans ∈ BUILT SY NCHRONE ∧ R Trans ∈ REDUCED TRACE

inv2.c ∀A Trans.(A Trans �→ queue ∈ WF) ⇒ (A Trans ∈ A TRACES ∧
queue = ∅ ∧ MESSAGE(Last cp trans) = End message)

. . .

Table 8. Rodin proofs statistics

Event-B model Interactive proofs Automatic proofs Proof Obligations

Abstract context 06 (100%) 0 (0%) 06 (100%)

Synchronous context 02 (100%) 0 (0%) 02 (100%)

Asynchronous context 01 (33,33%) 02 (66,67%) 03 (100%)

Abstract model 28 (58,33%) 20 (41,67%) 48 (100%)

Synchronous model 43 (41,34%) 61 (58,65%) 104 (100%)

Asynchronous model 81 (41,32%) 115 (58,67%) 196 (100%)

Total 161 (100%) 198 (100%) 359 (100%)

POs has been proved automatically using the different provers associated to the
Rodin platform. Interactive proofs of POs required to combine some interactive
deduction rules and the automatic provers of Rodin. Few steps were required in
most of the cases, and a maximum of 15 steps was reached.

5 Conclusion

In this article we extended the Event-B-based approach to the construction of
realisable choreographies [4,5] based on recent new insights into choreography-

Event-B-Supported Choreography-Defined Communicating Systems 167

defined P2P systems. In [10] we proved that under the presence of a choreog-
raphy that prescribes the rendez-vous synchronisation of the peers there are
two necessary conditions on realisable choreographies which together guaran-
tee realisability. A consequence is decidability of realisability in the presence
of a choreography. We removed unnecessary assumptions in the Event-B-based
proofs and extended them to cover also necessity of the conditions. In doing
so we demonstrated the power of the Rodin tool. All the models are accessible
through http://yamine.perso.enseeiht.fr/ABZ2020EventBModels.pdf.

Naturally, using Event-B in this context provides an open invitation for
a refinement-based approach taking choreographies to communicating systems
that do not just emphasise the flow of messages. As we are now able to detect
violations of a necessary condition, it allows us to find minimal repairs to the
choreography to restore realisability. Such repairs have to be validated by a
designer. In addition, we need a systematic investigation of refinements based
on Event-B. In this context an analysis of the realisation of the messaging chan-
nels is due, for which we expect the most natural semantics using mailboxes to
be the simplest to be realised. This refinement method provides an open invi-
tation for the continuation of this research towards a verifiable method for the
specification and refinement of correct P2P systems.

References

1. Basu, S., Bultan, T.: On deciding synchronizability for asynchronously communi-
cating systems. Theor. Comput. Sci. 656, 60–75 (2016)

2. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: Field,
J., Hicks, M. (eds.) Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL 2012), pp. 191–202. ACM, New
York (2012)

3. Benyagoub, S., Aı̈t-Ameur, Y., Ouederni, M., Mashkoor, A., Medeghri, A.: Formal
design of scalable conversation protocols using Event-B: validation, experiments
and benchmarks. J. Softw.: Evol. Process 23(2), 129–145 (2019)

4. Benyagoub, S., Ouederni, M., Aı̈t-Ameur, Y., Mashkoor, A.: Incremental construc-
tion of realizable choreographies. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.)
NFM 2018. LNCS, vol. 10811, pp. 1–19. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-77935-5 1

5. Benyagoub, S., Ouederni, M., Singh, N.K., Ait-Ameur, Y.: Correct-by-construction
evolution of realisable conversation protocols. In: Bellatreche, L., Pastor, Ó.,
Almendros Jiménez, J.M., Aı̈t-Ameur, Y. (eds.) MEDI 2016. LNCS, vol. 9893, pp.
260–273. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45547-1 21

6. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

7. Chambart, P., Schnoebelen, P.: Mixing lossy and perfect FIFO channels. In: van
Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 340–355.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-9 28

8. Clemente, L., Herbreteau, F., Sutre, G.: Decidable topologies for communicating
automata with FIFO and bag channels. In: Baldan, P., Gorla, D. (eds.) CONCUR
2014. LNCS, vol. 8704, pp. 281–296. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44584-6 20

http://yamine.perso.enseeiht.fr/ABZ2020EventBModels.pdf
https://doi.org/10.1007/978-3-319-77935-5_1
https://doi.org/10.1007/978-3-319-77935-5_1
https://doi.org/10.1007/978-3-319-45547-1_21
https://doi.org/10.1007/978-3-540-85361-9_28
https://doi.org/10.1007/978-3-662-44584-6_20
https://doi.org/10.1007/978-3-662-44584-6_20

168 S. Benyagoub et al.

9. Finkel, A., Lozes, É.: Synchronizability of communicating finite state machines is
not decidable. In: Chatzigiannakis, I., et al. (eds.) 44th International Colloquium
on Automata, Languages, and Programming (ICALP 2017), volume 80 of LIPIcs,
pp. 122:1–122:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

10. Schewe, K.-D., Aı̈t-Ameur, Y., Benyagoub, S.: Realisability of choreographies.
In: Herzig, A., Kontinen, J. (eds.) FoIKS 2020. LNCS, vol. 12012, pp. 263–280.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39951-1 16

11. Farah, Z., Ait-Ameur, Y., Ouederni, M., Tari, K.: A correct-by-construction model
for asynchronously communicating systems. Int. J. Softw. Tools Technol. Transf.
19(4), 465–485 (2016). https://doi.org/10.1007/s10009-016-0421-6

https://doi.org/10.1007/978-3-030-39951-1_16
https://doi.org/10.1007/s10009-016-0421-6

Formally Verified Architecture Patterns
of Hybrid Systems Using Proof and

Refinement with Event-B

Guillaume Dupont(B), Yamine Aït-Ameur, Marc Pantel, and Neeraj K. Singh

INPT-ENSEEIHT/IRIT, University of Toulouse, Toulouse, France
{guillaume.dupont,yamine,marc.pantel,nsingh}@enseeiht.fr

Abstract. Cyber-Physical Systems (CPS) play a central role in modern
days technology. From simple thermostat controllers to more advanced
autonomous cars, their versatility makes them perfect candidates for
many applications, in particular for safety critical ones. Thus, their cer-
tification is a key issue and formal methods are good candidates to
assess safety and produce associated certificates. Hybrid systems show
continuous-time dynamics depending on mode that is required in several
stages of the architecture of Cyber-Physical Systems. Our work addresses
the problem of formally verifying hybrid systems using refinement and
proof with Event-B. Our previous work [14] presented formally verified
generic architecture patterns for designing centralised hybrid systems,
based on our generic approach [15]. We extend this work and give a for-
mally verified architecture pattern aimed at modelling distributed hybrid
systems, featuring multiple plants and multiple controllers. We validate
the approach and illustrate the use of the defined pattern on an extension
of a very common case study, borrowed from literature.

Keywords: Hybrid systems · Cyber-physical systems · Architecture
design patterns · Event-B · Refinement · Proof

1 Introduction

Cyber-Physical Systems (CPS) can be described as complex systems that inte-
grate both discrete and continuous features [19]. Such system generally consists
of a discrete algorithm or controller that interacts with a continuous process or
plant in order to control its behaviour. The controller can retrieve information
from the plant through sensors and may alter its behaviour with actuators.

Because of this hybridation, CPS are often regarded as quite hard to trust.
However, their versatility, adaptability and price made them unavoidable in our
everyday life, from Internet of Things (IoT) to smart systems (e.g. home automa-
tion, smart factories and so on), including, of course, critical systems such as
transportation and medical devices. Being able to formally model and certify
CPS is thus a major challenge nowadays.

This work was supported by grant ANR-17-CE25-0005 (The DISCONT Project
https://discont.loria.fr) from the Agence Nationale de la Recherche (ANR).
c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 169–185, 2020.
https://doi.org/10.1007/978-3-030-48077-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_12&domain=pdf
https://discont.loria.fr
https://doi.org/10.1007/978-3-030-48077-6_12

170 G. Dupont et al.

The design of formal modelling approaches for CPS development and/or
certification has been addressed in various ways. In [4], Alur defines the hybrid
automata formalism to model hybrid systems. Hybrid model-checkers such as
HyTech, d/dt, PHaVer or SpaceEx can then be used to establish properties such
as reachability.

In terms of modelling techniques, [18] have proposed HybridCSP as a hybrid
extension of CSP [17]. [7] proposes a continuous extension of Action System. In
the same manner, [8] proposes an hybrid extension to the Event-B method.

Proof-based approaches have also been used to try and formally prove CPS.
[9] use Coq to that extent, starting from an annotated C program. [21] uses a
special formalism (hybrid programs) to model and to prove hybrid systems using
KeYmaera. Event-B has been used for modelling similar systems in [23] and [10].

However, all these approaches still require formal modelling expertise, where
the developer needs to establish correctness using complex proof systems involv-
ing discrete and continuous mathematics features and proof rules. As a con-
sequence, the use of these methods on a large scale is hindered, in particular
in formal system engineering. So, easing CPS formal modelling and verifica-
tion activities in presence of both discrete and continuous behaviours is still a
challenge.

To address this challenge, we propose a systematic correct-by-construction
approach to design hybrid systems based on the definition of architecture pat-
terns. Indeed, one commonly used method in formal system engineering is to
provide formalised generic patterns where relevant generic properties are estab-
lished. Furthermore, those patterns can be instantiated for specific systems. In
such a setting, the system developer selects the most adapted pattern and instan-
tiates it. Proof obligations, in particular regarding well-definedness, may need to
be discharged in order to inherit all the properties of the generic pattern.

In our previous work [14], we used Event-B to design and formalise com-
monly used architecture patterns (AP) for centralised hybrid systems. We based
those patterns on our generic approach [15], allowing to model both discrete and
continuous behaviours. In this paper, we extend these architecture patterns to
model distributed hybrid systems i.e. systems that manage multiple autonomous
subsystems, linked together by a communication network. A case study is given
as a possible instantiation of this pattern, involving independent liquid tanks
enforcing a global invariant that expresses safety properties.

This paper is organised as follows: Sect. 2 gives an overview of Event-B and
Sect. 3 presents hybrid modelling features needed for hybrid system development.
Section 4 introduces the architecture patterns identified when modelling hybrid
systems. Section 5 recalls our generic method for designing hybrid systems in
Event-B. Section 6 introduces a case study to support our work, which is solved
in Sect. 7. Finally, Sect. 8 provides an assessment of the approach, and Sect. 9
concludes the paper and discusses possible future research directions.

2 Modelling Hybrid Systems with Event-B

Event-B method [2] supports the development of correct-by-construction com-
plex systems. First order logic and set theory are used as core modeling language.

Formally Verified Design Patterns of Hybrid Systems 171

The design process consists of a series of refinements of an abstract model leading
to the final concrete model. Refinement progressively contributes to add design
decisions to the system.

Event-B machines formalize models described as state-transitions systems
and a set of proof obligations are automatically generated for each model.

Notation. We use the superscripts A and C to denote abstract and concrete
features.

Table 1. Model structure

Context Machine Refinement
CONTEXT Ctx MACHINE MA

MACHINE MC

SETS s SEES Ctx REFINES MA

CONSTANTS c VARIABLES xA
VARIABLES xC

AXIOMS A INVARIANTS IA(xA) INVARIANTS J(xA, xC) ∧ IC (xC)

THEOREMS Tctx THEOREMS Tmch (xA) ...

END VARIANT V (xA) EVENTS

EVENTS EVENT evtC

EVENT evtA REFINES evtA

ANY αA
ANY αC

WHERE GA(xA, αA) WHERE GC (xC , αC)

THEN WITH

xA :| BAPA(αA, xA, xA′
) xA′, αA: W (αA, αC , xA, xA′, xC , xC′

)

END THEN

... xC :| BAPC (αC , xC , xC′
)

END

...

(a) (b) (c)

– Event-B Contexts (Table 1.a). Contexts are the static part of a model. They
set up all the definitions (carrier sets s and constants c), axioms (A) and
theorems (Tctx) needed to describe the required concepts.

– Event-B Machines (Table 1.b). A machine describes the dynamic part of a
model as a transition system. A set of guarded events modifying a set of vari-
ables (state) represents the core concepts of a machine. Variables x, invariants
I(x), theorems Tmch(x), variants V (x) and events evt (possibly guarded by
G and/or parameterized by α) are defined in a machine. Invariants and the-
orems formalize safety system properties while variants define convergence
properties (reachability).

– Event-B Refinements (Table 1.c). A system is gradually designed by intro-
ducing properties (functionality, safety, reachability) at various abstraction
levels. Refinement decomposes a machine, a state-transitions system, into a
more concrete one, with more design decisions (refined states and events)
while moving from an abstract level to a less abstract one. Abstract and

172 G. Dupont et al.

concrete variables are related by gluing invariants ensuring properties preser-
vation between abstract and concrete models.

– Proof Obligations (PO) and Property Verification. To establish the correctness
of an Event-B model, a set of POs are automatically generated from the
calculus of substitutions. They need to be proved.

– Extensions with mathematical theories. In order to handle theories beyond
set theory and first order logic, an Event-B extension to support externally
defined mathematical theories has been proposed. It offers the capability to
introduce new datatypes through the definition of new types, sets operators,
theorems and associated rewrite and inference rules, in so-called theories.

– Event-B and its IDE Rodin. It offers resources for model edition, automatic
PO generation, project management, refinement and proof, model checking,
model animation and code generation. Several provers, like SMT solvers, are
plugged to Rodin. In particular, a plug-in allows to define theories [11].

3 Hybrid Systems Modelling Features

Modelling hybrid systems requires handling of continuous behaviours. We thus
need to access specific mathematical objects and properties, not natively avail-
able in Event-B. These concepts such as differential equations and their associ-
ated properties have been modelled through an intensive use of Event-B theories
and have been used to model various case studies found in [13–15].

In order to deal with continuous objects, theories have been defined for con-
tinuous functions, (ordinary) differential equations as well as for their proper-
ties. They are used throughout the defined models. Their complete definitions
are available at https://irit.fr/~Guillaume.Dupont/models.php. Some of those
concepts as they are used in this paper are recalled below.

VARIABLES t
INVARIANTS

inv1 : t ∈ R
+

· · ·

Time. A notion of time is needed to define continu-
ous behaviors. We thus introduce dense time t ∈ R

+,
modeled as a continuously evolving variable.

System State. According to the architecture of hybrid systems, we have identified
two types of states.

– Discrete state xs ∈ STATES , variable that represents the controller’s inter-
nal state. It evolves in a pointwise manner with instantaneous changes.

– Continuous state xp ∈ R
+ → S represents the plant’s state and evolves

continuously. It is modelled as a function of time with values in space S.

Hybrid Modeling Features. Modeling hybrid systems requires the introduction of
multiple specific features which are defined below.

– DE(S) type for differential equations which solutions evolve over set S
– ode(f, η0, t0) represents the ODE1 η̇(t) = f(η(t), t) with initial condition

η(t0) = η0

1 Ordinary Differential Equation.

https://irit.fr/~Guillaume.Dupont/models.php

Formally Verified Design Patterns of Hybrid Systems 173

Fig. 1. Differential equation theory snippet

– solutionOf(D, η, E) is the predicate stating that function η is a solution of
equation E on subset D

– Solvable(D, E , I) is the predicate stating that equation E has a solution
defined on subset D so that the solution satisfies the constraint I

These features have been encoded in a theory from which we show a snippet on
Fig. 1 (the theory accumulates more than 150 operators and 350 properties).

Other, more specialised expressions and predicates are defined (FlowEquation,
FlowODE) in additional theories. Note that all these definitions use algebraic
datatypes together with axioms, theorems and proof rules.

In the following, we use x to denote the union of discrete and continuous
state variables.

Continuous Assignment. Continuous variables are essentially functions of time
and are at least defined on [0, t] (where t is the current time). Updating such
variables thus requires to 1) make the time progress from t to t′ > t, and 2)
append to the already existing function a new piece corresponding to its extended
behavior (on [t, t′]) while ensuring its “past” (i.e. whatever happened on [0, t])
remains unchanged.

Similarly to the classic Event-B’s before-after predicate (BAP), we define a
continuous before-after predicate (CBAP) operator, denoted :|t→t′ , as follows:

xp :|t→t′ P(xs, xp, x
′
p) & I ≡ [0, t] � x′ = [0, t] � x (PP)

∧P(xs, [t, t′] � xp, [t, t′] � x′
p) (PR)

∧∀t∗ ∈ [t, t′], x′
p(t

∗) ∈ I (LI)

We note CBAP(xs, xp, x
′
p) ≡ PP (xp, x

′
p) ∧ PR(xs, xp, x

′
p) ∧ LI(xp, x

′
p). The

operator consists of 3 parts: past preservation and coherence at assignment
point (PP), before-after predicate on the added section (PR), and local invariant
preservation (LI). The discrete state variables xs do not change in the interval
[t, t′] but the predicate P may use it for control purposes.

Note that this operator is well-defined if and only if t′ > t, as otherwise the
interval [t, t′] would not be well-defined.

174 G. Dupont et al.

From the above definition, shortcuts can be introduced for readability pur-
poses:

– Continuous assignment: x :=t→t′ f & I ≡ x :|t→t′ x′ = f & I
– Continuous evolution along a solvable differential equation E ∈ DE(S):

x :∼t→t′ E & I ≡ x :|t→t′ solutionOf([t, t′], x′, E) & I.

4 Architecture Patterns for Modelling Hybrid Systems

One of the most common architectures found in CPS (see Fig. 2) is a discrete
software controller, which interacts by some means (e.g. actuators) with a plant
and its physical environment (continuous physical phenomenon) in a closed-loop
schema. Input from sensors is processed and output is generated and communi-
cated to actuators [12]. Commands from a user or another controller may also
be addressed to the controller.

Fig. 2. Generic hybrid system repre-
sentation

Controllers are characterised by discrete
state variables and transitions correspond-
ing to control decisions; as for plants, they
are defined by continuous state variables
whose evolution is generally described using
differential equations. Sensors, user com-
mands control decision and actuators modify
these variables.

In this paper, we focus on the verification
of the correctness of such discrete controllers, which require correct composition
of discrete and continuous models. We claim that correctness should arise from
a design process based on sound abstractions and models of the relevant laws of
physics.

Hybrid systems may combine the behaviours of multiple separated compo-
nents (plants or controllers), which can lead to very different control strategies,
following the number of controllers and plants to be controlled. Therefore, the
generic architecture given in Fig. 2 should be refined into three types of archi-
tecture patterns:

– Single-to-Single AP corresponds to hybrid systems with one controller
and one plant. Examples of hybrid systems corresponding to this pattern
addressed in the literature include the automatic car braking [15], the sig-
nalised left-turn assist [13], heating systems [16], etc.

– Single-to-Many AP describes hybrid systems with one controller and many
plants (more than one). This pattern corresponds to centralised control. An
example of hybrid system corresponding to this pattern is the control of a
global volume distributed over several tanks formalised with hybrid automata
and with Event-B in [14].

– Many-to-Many AP characterises hybrid systems with many controllers and
many plants. This pattern refers to the case where several hybrid systems are
integrated together to implement a given function. Examples of such systems
are UAV or rover fleet control modelled in Event-B [22].

Formally Verified Design Patterns of Hybrid Systems 175

All the patterns defined above refine the one of Fig. 2. The controller and
the plant components may be refined to one or many components. These refine-
ments introduce specific properties and behaviours associated to each pattern.
The single-to-single AP defines one discrete state for the controller and one con-
tinuous state for the plant. The single-to-many AP defines a controller with one
discrete state able to build a global continuous state aggregating the many states
of each and every plants.

Finally, the many-to-many AP allows to define distributed hybrid systems
where each component has a partial view of all the other systems. Here, it is
difficult to build a global state of the whole system. Therefore, an approximation
of this global state is used by each system controller to take control decisions.
Then, the correctness of this approximation shall be ensured to establish global
invariants. In other words, local invariants associated to each hybrid system
contribute to ensure the global invariant of the whole system composed of all
the hybrid systems.

Note: it is worth noticing that the case of many-to-many AP may be defined
as a set of hybrid systems corresponding to either single-to-single AP or single-
to-many AP. In the last case, single-to-many is abstracted by a single-to-single
system, providing modular verification.

5 Methodology for Hybrid System Design

The pattern presented in Sect. 4 served as a basis for setting up a methodology
for hybrid system design. This methodology has been first presented in [15]. It
consists of a generic Event-B model that abstracts hybrid systems following the
pattern of Fig. 2. This model is then instantiated via refinement. Discrete models
can be derived in the same manner [6].

Note that the generic model introduces typically continuous concepts such
as differential equations and dense time. It therefore heavily relies on the theory
extension of Event-B implemented as a plug-in (see Sect. 3).

5.1 A Generic Event-B Model for Hybrid Systems

VARIABLES t , xs , xp
INVARIANTS

inv1 : t ∈ R

inv2 : xs ∈ STATES
inv3 : xp ∈ R

+ �→ S
inv4 : [0, t] ⊆ dom(xp)

Model State. The generic model deals with three vari-
ables. xs represents the controller’s discrete state that
belongs to STATES set consisting of the states of the
system’s mode automaton.

xp is the system’s continuous state. It is a function of time (inv3) valued in
the (continuous) state space S, usually R

n. It represents the physical quantities
that are sensed and/or controlled. Last, we recall that variable t models the
physical, dense time.

Model Behaviour. The defined model follows the control-command principle
depicted on Fig. 2. Two categories of events are defined. Discrete events are
instantaneous. They are associated with changes in the state of the mode
automaton either internal (Transition event) or induced by the sensing of the

176 G. Dupont et al.

plant’s state (Sense event). Continuous events, on the contrary, are not instan-
taneous. They describe the Plant’s behaviour, either following environmen-
tal changes (behave event) or caused by actuation (actuate event). Note that
all these generic events will be refined later for developing particular hybrid
systems.

Transition

ANY s
WHERE

grd1 : s ∈ P1(STATES)
THEN

act1 : xs :∈ s
END

Transition. Transition events (corresponding to
command arrow and the Ctrl box of Fig. 2) model
internal changes in the controller. They represent
user commands, internal timers or non-deterministic
choices that occur in the discrete part of the system
(mode automata). It updates the state of the automaton (act1).

Sense

ANY s , p
WHERE

grd1 : s ∈ P1(STATES)
grd2 : p ∈ P(STATES

×R × S)
grd3 : (xs �→ t �→ xp(t)) ∈ p

THEN

act1 : xs :∈ s
END

Sense. Sensing events (corresponding to sense arrow
of Fig. 2) model changes in the controller induced by
the reading of the plant’s state, generally obtained
from sensors. As they are fired according to the
plant’s state and to the mode automaton’s state,
they are guarded by a predicate over xp(t) and xs

(grd3). The purpose is to change state xs in action act1 of the mode automaton.

Behave

ANY eq , t′
WHERE

grd1 : eq ∈ DE(S)
grd2 : Solvable([t, t′], eq, �)

THEN

act1 : t, xp :∼
t→t′ eq & �

END

Behave. Behave events (corresponding to the
environment arrow of Fig. 2) represent changes in
the plant due to the environment: rain, wind, etc.
These events enforce, in action act1, the dynamics
of the plant to comply with a differential equation
under solvability condition (gdr2) but without any condition on the state of the
mode automaton.

Actuate

ANY eq , s , H , t′
WHERE

grd1 : eq ∈ DE(S)
grd2 : Solvable([t, t′], eq, H)
grd3 : s ⊆ STATES
grd4 : xs ∈ s
grd5 : H ⊆ S
grd6 : xp(t) ∈ H

THEN

act1 : t, xp :∼
t→t′ eq & H

END

Actuate. Actuation events (corresponding to the
actuate arrow of Fig. 2) model changes in the plant
induced by the controller (generally performed by
actuators). These events enforce, in action act1,
the dynamics of the plant to comply with a differ-
ential equation under solvability condition (gdr2)
and a constraint H on the plant evolution domain

(gdr5 and gdr6). Moreover, unlike for Behave, since Actuate results from a
change in the controller, it is guarded by a predicate on the mode automaton
(gdr4).

As mentioned above, both Behave and Actuate are continuous events. They
rely on the continuous evolution operators defined in Sect. 3. Both events enforce
plant behaviour by setting up a corresponding differential equation.

5.2 Semantics

The semantics of hybrid models we use is close to the one of Hybrid Event-B [8],
hybrid programs in [21] or continuous action systems [7,20].

Formally Verified Design Patterns of Hybrid Systems 177

In classical Event-B semantics, each model is associated with a discrete state-
transition system, in which transitions are the fired machine events and states
consist of the machine’s variables. A system is hence characterised by a set of
licit traces i.e. a set of fired events that abide by the system’s invariants.

In our approach, discrete events are timeless, while continuous ones have a
duration. In order to properly handle the modelling of continuous behaviours, the
semantics of Event-B is enhanced to handle modelling of continuous phenomena
which are, in nature, different from discrete behaviours. We have identified two
categories of events: discrete (instantaneous) events, which use discrete assign-
ments operators such as :| and := and continuous (not instantaneous) events
that span over some duration and use continuous assignment operators, namely
:|t→t′ and :=t→t′ . Note that, if several (continuous or discrete) events guards are
enabled, these enabled events are fired non deterministically.

A model is then defined as follows. After initialisation, continuous events
(Behave and Actuate events) run continuously unless a discrete, instantaneous
event is enabled (either a Sense or a Transition event). In this case, discrete
events are preemptive. This protocol ensures that when the conditions (events’
guards) are met, the controller is able to trigger control actions (Sense or Transi-
tion) that may or may not change the continuous behaviour of the plant (through
triggering an Actuate event). Unlike Actuate, the Behave event neither requires
control action to be triggered nor any plant evolution constraint H. Sensing
actions using the Sense event will re-establish the correct plant behaviour via
the control loop in order to further trigger an Actuate event.

5.3 The Generic Model in Rodin

The generic model is the entry point for the method. Specific hybrid system
models are obtained by refining it, providing the various witnesses issued from
event parameters and substituted variables. In itself, this model generates 13
proof obligations that are easily discharged. Among them there is an important
obligation stating that if equation e is solvable then x :∼t→t′ e is feasible.

This approach has been successfully applied to various case studies. [13,15]
show a class of systems with one controller and one plant while [14] demonstrates
the possible use of the method for a system with one controller and several plants.

Models for the generic approach, including the above-mentioned case studies
can be found at https://www.irit.fr/~Guillaume.Dupont/models.php.

6 Case Study: The Water Tank Problem

We now illustrate our approach for formally verifying hybrid systems patterns
with a well-known control theory problem: keeping the volume of liquid inside a
tank between specific bounds proposed by [5].

6.1 Abstract System

The problem is depicted on Fig. 3 and can be described as follows: one or more
tanks are filled with a liquid and connected to an input and an output pump.

https://www.irit.fr/~Guillaume.Dupont/models.php

178 G. Dupont et al.

A controller can access the global volume V of all tanks and may control their
pumps to start filling or emptying them. The goal of the controller is to keep
the whole volume between Vlow and Vhigh .

Fig. 3. Abstract tank

The following safety requirements are defined. Let V ,
be the volume of the tanks (continuous state being con-
trolled). V is physically bounded by 0 and Vmax , such
that Vhigh ≤ Vmax, and it shall satisfy the following prop-
erties:

SAF1 The volume never overflows nor underflows:
V (t) ∈ [Vlow , Vhigh]
SAF2 The variation of the volume is bounded (to avoid
excessive turmoil in the tank): |V̇ (t)| < ΔVmax

At this level, it is not needed to know the specific
characteristics of the tanks (i.e. their shapes, their num-

ber, the behaviour of the pumps, the way the controller accesses V and so on).
They are simply abstracted away so as to keep this description as generic as pos-
sible. The system is later refined for specific tanks and using specific architecture
patterns.

6.2 Architecture Patterns as Abstract System Refinements

The system formerly introduced can be refined to illustrate the three architecture
patterns identified in Sect. 4 and depicted on Fig. 4.

(a) Single-to-Single (b) Single-to-Many (c) Many-to-Many

Fig. 4. Three refinement patterns for the case study

Single-to-Single Architecture Pattern. Within a refinement, the abstract
model of Fig. 3 is instantiated by a concrete system composed of one controller
managing one cylinder-shaped tank (see Fig. 4a). The abstract plant’s volume
is refined using the gluing invariant V = B · h, where B is the surface of the
cylinder’s base and h is the height of liquid in the tank (easier to measure than
the direct volume). Constraints on h are strengthened by the well-definedness
condition Vmax ≤ B · Hmax , ensuring that the cylinder can contain (at least)
volume Vmax .

Formally Verified Design Patterns of Hybrid Systems 179

As a matter of simplification, the pumps are associated with a fixed flow rate
and are either open (full flow) or closed (no flow), with no intermediate state.
Therefore, a differential equation for the system is ḣ = in · δin +out · δout , where
in, out are the states of the pumps and δin , δout are their respective flows.

This pattern has been previously instantiated in [13,15].

Single-to-Many Architecture Pattern. The same case study can be used to
illustrate the second architecture pattern, which involves a single controller and
many plants. In this case, we assume that the controller has a global view of the
system. In other words, it knows all the plants’ continuous state variables.

Figure 4b depicts a simplified case for two cylinder tanks, but it scales to
any number of tanks of various shapes provided the differential equations that
governs these plants are known. For two cylindrical tanks, the gluing invariant is
V = B1 ·h1+B2 ·h2 where B1 and B2 are the surface of the cylinders bases and h1

and h2 are the height of liquid in the tanks. The associated differential equations
given as witnesses for instantiation are defined by a linear combination.

However, the interesting property in this instantiation relates to the feasibil-
ity of the refinement. Indeed, an additional well-definedness condition, expressed
as an invariant, states that Vmax ≤ B1 · H1,max + B2 · H2,max as to guarantee
that the maximum abstract volume can be contained by the two cylinders rep-
resenting the concrete plant.

This pattern has been thoroughly instantiated and studied in [14].

Note: All the Event-B models corresponding to the two architecture pat-
terns discussed above are available at https://www.irit.fr/~Guillaume.Dupont/
models.php. We did not discuss them in this paper due to space limitations.
More details can be found in [14,15].

Section 7 below, focuses only on the Event-B models corresponding to the
most complex architecture pattern: many-to-many.

7 Application of the Many-to-Many Architecture Pattern

In this section we present the last refinement chain corresponding to the many-
to-many architecture pattern of Sect. 4. The details of the Event-B models are
given below for the case study of the water tank following the instantiation of
this specific architecture pattern from Fig. 4c.

Refinement Strategy. The refinement strategy is similar to the one used with
the single-to-single and single-to-many patterns. It consists in instantiating the
generic model of Sect. 5. Depending on the number of components (controllers/-
plants), the generic parts for controller and plant are refined.

Note that the instantiation of the generic model is achieved by providing
witnesses to the parameters of the generic events of the Event-B models, i.e.
providing a witness for an existential proof obligation.

Two refinements leading to the final Event-B model are defined. First, an
abstract tank model corresponding to the system presented in Sect. 6.1 is built

https://www.irit.fr/~Guillaume.Dupont/models.php
https://www.irit.fr/~Guillaume.Dupont/models.php

180 G. Dupont et al.

as an instance of the generic model of Sect. 5. Then, the final instantiated archi-
tecture pattern of Fig. 4c is modelled as a refinement of this model, providing
witnesses for generic parameters. The two refinements are summarised below in
Sects. 7.1 and 7.2.

7.1 Abstract Tank Model

MACHINE WaterTank_base REFINES Generic
VARIABLES t , V , xs
INVARIANTS

inv1 : V ∈ R
+ �→ S

inv2 : [0, t] ⊆ dom(V)
inv2 : V = xp
inv3 : V ∈ D1([0, t], R)∧

∀τ · τ ∈ [0, t] ⇒
∣
∣
∣V̇ (τ)

∣
∣
∣ ≤ ΔVmax

inv4 : ∀τ · τ ∈ [0, t] ⇒ Vlow ≤ V (τ) ≤ Vhigh

Machine State. The controlled vari-
able is the volume V . As mentioned in
Sect. 6.1 (SAF1 and SAF2), this quan-
tity shall remain between Vlow and
Vhigh and its derivative (V̇) shall be
bounded by the ΔVmax constant.

The system operates in 4 modes: Emptying (volume decreases), Filling (vol-
ume increases), Normal (volume varies in an arbitrary way between Vlow and
Vhigh) and Stable (volume does not vary) defining the set STATES.

ctrl_sense_too_high REFINES Sense
WHERE

grd1 : Vhigh ≤ V (t)
WITH s : s = {Emptying}

p : p = STATES × R
+ × {V ∗ | Vhigh ≤ V ∗}

THEN

act1 : xs := Emptying
END

ctrl_transition_normal REFINES Transition
WHERE

grd1 : Vlow < V (t)
grd2 : V (t) < Vhigh

WITH s : s = {Normal}
THEN

act1 : xs := Normal
END

Transition and Sense. When the vol-
ume reaches Vlow (resp. Vhigh) the sys-
tem moves to Filling (resp. Emptying)
mode. Outside of these restrictions, the
system may evolve arbitrarily from one
mode to another, via transition events.
Transition events are guarded by a
stricter version of the safety invariant
as to prevent the system from deliber-
ately going into an unsafe mode.

ctrl_actuate_pumps REFINES Actuate
ANY e , ss , t′
WHERE

grd1 : e ∈ DE(S)
grd2 : Solvable([t, t′], e)
grd3 : FlowEq(ss, [t, t′], e)
grd4 : ss ∈ STATES
grd5 : xs = ss
grd6 : Vlow < V (t) < Vhigh

WITH x′
p : x′

p = V ′
s : s = {ss}
H : H = {V ∗ | Vlow < V ∗ < Vhigh}

THEN

act1 :
V :∼

t→t′ e & {V ∗ | Vlow < V ∗ < Vhigh}
END

Behave and Actuate. The system per-
forms actuation on the pumps. At this
level, the shape of the tank(s) and
the behaviour of the pumps are not
known yet. The only constraint the
actuation shall enforce is that when-
ever the system is in a specific state,
the provided differential equation for
actuation is such that its solutions have
the expected behaviour (e.g. decreas-
ing solutions when in Emptying mode,

increasing solutions when in Filling mode, etc.).
This constraint is captured by the FlowEq(xs,D, e) predicate of guard grd3

and is defined in a theory, where xs is the controller’s state, D is the domain
on which the predicated behaviour is expected to be true and e is the given
equation.

Formally Verified Design Patterns of Hybrid Systems 181

7.2 Many-to-many Model

The model presented below corresponds to the system depicted on Fig. 4c.

MACHINE WaterTank_2Ctrl_2Tanks REFINES WaterTank_base
VARIABLES t , V1 , V2 , V sim

1 , V sim
2 , x1

s , x2
s , Δsim

1 , Δsim
2

INVARIANTS

inv11 : V1 ∈ R
+ → S ∧ [0, t] ⊆ dom(V1)

inv12 : V sim
1 ∈ R

+ → S ∧ [0, t] ⊆ dom(V sim
1)

inv13 : x1
s ∈ STATES

inv14 : ∀τ · τ ∈ R
+ ⇒ V1(τ) + V sim

2 (τ) ≤ Vhigh − Δsim
2

∧Vlow + Δsim
2 ≤ V1(τ) + V sim

2 (τ)
inv15 : Δsim

1 ∈ R
+

inv16 : ∀τ · τ ∈ R
+ ⇒ |V2(τ) − V sim

2 (τ)| ≤ Δsim
2

inv21−26 : −− s imi l a r to inv11−16 with V2
inv01 : V = V1 + V2
inv02 : xs = guess_gs(x1

s �→ x2
s)

Machine State. In
this refinement, we
want to control two
tanks (although this
could be extended
to any number of
tanks). Each tank
has its own vol-
ume, V1 and V2

(see Fig. 4c) behav-
ing as a global invariant. The abstract volume V is hence refined using the gluing
invariant V = V1 + V2, and the safety invariant becomes Vlow ≤ V1 + V2 ≤ Vhigh
(corresponding to Vlow ≤ B1 · h1 + B2 · h2 ≤ Vhigh). Each volume Vi is
bounded by Vi,max , and in order to have a coherent refinement we need to have
Vmax ≤ V1,max+V2,max . The controller discrete abstract state xs is glued (inv02)
with the two discrete controllers states using the guess_gs operator.

Each tank is controlled by an independent controller. In a many-to-many
pattern, a controller does not know exactly the state of the other controllers
(i.e. what the other controllers are doing). However, the physics asserts that an
estimation of this other state, and as such of the global state, can be built. To
model this situation, two additional continuous variables, V sim

1 (resp. V2
sim) are

introduced. They allow the controller 2 (resp. 1) to simulate (i.e. estimate) V1

(resp. V2).
Because it is an estimation, V sim

i is associated to a bound, Δsim
i , that repre-

sents the maximum error allowed for the controller to ensure a correct behaviour.
We then need to have, at any time and for all i: |Vi − V sim

i | ≤ Δsim
i , i.e.: V sim

i

is a precise enough approximation of Vi. Again, these properties are borrowed
from the physics.

ctrl_sense_too_low_1 REFINES

ctrl_sense_too_low
WHERE

grd1 : V1(t) + V sim
2 (t) ≤ Vlow + Δsim

2
THEN

act1 : x1
s := Filling

END

Transition and Sense. Controller 1
needs to enforce the (local) invariant
Vlow + Δsim

2 ≤ V1 + V sim
2 ≤ Vhigh −

Δsim
2 , and similarly for controller 2.

This enforcement is used to prove the
initially defined global invariant.

Behave and Actuate. The system’s actuation is established using continuous
refinement as presented in [14]: the witness for e (abstract differential equation)
is a predicate that links the solutions of e1 and e2 (concrete differential equations)
such that the sum V ∗

1 + V ∗
2 of any pair of solutions (V ∗

1 , V ∗
2) of (e1, e2) is a

solution of e, in addition to having the relevant general constraints (namely, a
correct behaviour as per the system’s current state). The witness for V ′ is given
to establish the invariant after actuation.

182 G. Dupont et al.

ctrl_actuate_pumps REFINES ctrl_actuate_pumps
ANY ss , e1 , e2 , ss1 , ss2 , V sim∗

1 , V sim∗
2 , t′

WHERE

grd01−02 : ss ∈ STATES ∧ ss = guess_gs(ss1 �→ ss2)
grd11−13 : e1 ∈ DE(S) ∧ Solvable([t, t′], e1) ∧ FlowEq(ss1, [t, t′], e1)
grd14−15 : ss1 ∈ STATES ∧ x1

s = ss1
grd16 : V sim∗

1 ∈ R
+ �→ S ∧ [t, t′] ⊆ dom(V sim∗

1
grd17 : ∀V ∗

1 · V ∗
1 ∈ R

+ �→ S ∧ [t, t′] ⊆ dom(V ∗
1)∧

solutionOf([t, t′], V ∗
1 , e1) ⇒ (∀t∗ · t∗ ∈ [t, t′] ⇒ |V ∗

1 (t) − V sim∗
1 (t)| ≤ Δsim

1)
grd21−27 : −− s imi l a r to grd11−17 with V2
grd30 : Vlow < V1(t) + V sim

2 (t) < Vhigh
grd31 : Vlow < V sim

1 (t) + V2(t) < Vhigh
WITH

V ′ : V ′ = V ′
1 + V ′

2
e : e ∈ DE(S) ∧ Solvable([t, t′], e) ∧ FlowEq(guess_gs(ss1 �→ ss2), [t, t′], e)∧

(∀V ∗
1 , V ∗

2 · V ∗
1 ∈ R

+ �→ S ∧ [t, t′] ⊆ dom(V ∗
1) ∧ V ∗

2 ∈ R
+ �→ S ∧ [t, t′] ⊆ dom(V ∗

2)∧
solutionOf([t, t′], V ∗

1 , e1) ∧ solutionOf([t, t′], V ∗
2 , e2)

⇒ solutionOf([t, t′], V ∗
1 + V ∗

2 , e))
THEN

act1 : V1, V2, V sim
1 , V sim

2 :|
t→t′

solutionOf([t, t′], V ′
1 , e1) ∧ solutionOf([t, t′], V ′

2 , e2)∧
V sim′
1 = V sim∗

1 ∧ V sim′
2 = V sim∗

2
&{Vlow < V1(t) + V sim

2 (t) < Vhigh ∧ Vlow < V sim
1 (t) + V2(t) < Vhigh}

END

8 Assessment

The work presented in this paper showed that the generic model proposed in
[15] applies to different architecture patterns of hybrid systems. Below, we pro-
vide an assessment of the approach with respect to the proof effort and set up
methodology. The models presented in this paper have been developed on the
Rodin platform and all the generated proof obligations were discharged.

Complete models can be found at https://irit.fr/~Guillaume.Dupont/
models.php.

Proof Effort. The abstract tank model generated 107 proof obligations, most of
which are invariant (about 40%) or well-definedness (about 21%) related. Well-
definedness also appears often in proofs subgoals. These POs are usually easy to
prove, at least on paper. Feasibility POs, related to solution existence, are those
difficult to prove.

As for the many-to-many model, it yields 156 proof obligations, among which
a good proportion (53%) consists of invariant POs alone. Again, most of them
are not hard to discharge. The model also yields quite a few guard strengthening
POs (around 15%) that ensure that the controllers behave properly despite the
estimation it makes of the system. But the hardest POs to discharge are the one
regarding refinement (witness well-definedness and feasibility, and simulation).

A great interest of the proposed methodology is there: the only complex
proofs to carry on are related to refinement. Proofs for complicated invariants
and so on have been realised at the abstract level and are done once and for all.

Tool Support. Because of our heavy use of the theory plug-in in Rodin, proof
automation (including SMTs and external provers) is nearly nonexistent for dis-
charging the generated POs. Proof is thus mostly interactive, and even simple
steps such as basic well-definedness are to be done fully manually using the
interactive prover. That being said, the possibility to define rewrite and infer-
ence rules greatly improves the prover’s overall ergonomy.

https://irit.fr/~Guillaume.Dupont/models.php
https://irit.fr/~Guillaume.Dupont/models.php

Formally Verified Design Patterns of Hybrid Systems 183

Methodology. The use of patterns as methodological basis is not new in system
engineering. The availability of architecture patterns offers a methodological
guide to system designers, who simply need to identify which pattern matches
the hybrid system under design and instantiate it with refinements and witnesses.

The generic model offers a framework that is formally proven once and for
all. It corresponds to a customisation of Event-B to offer resources for modelling
controllers, plants, sensing and actuation, integrating both discrete and contin-
uous behaviours. Proofs are done once for all and the designer does not need to
re-prove them. This generic model is used as a ground model for further designs.

Each defined architecture pattern is formalised as an instance of the generic
model. The pattern to be chosen for instantiation depends on the number of
controllers and plants required in the model. Instantiation is performed using
Event-B refinement.

One of the interests of the Event-B method is the capability to check well-
definedness and feasibility conditions, which is particularly useful during instan-
tiation. In our developments, it has been extensively used to provide conditions
about the soundness of the defined instantiations. For example, it has been used
to state that the cylinders given as refinement are capable of storing an abstractly
specified volume of liquid Vmax .

9 Conclusion and Future Work

This paper presented a framework for modelling hybrid systems. It relies on a
formal model of different hybrid systems architecture patterns formalised with
the Event-B method using the Rodin platform. These patterns, commonly used
when designing hybrid systems, are characterised by the number of controlled
plants and by the kind of control strategy (centralised or distributed). Because
this framework is formalised at a generic level, it offers a systematic methodology
for hybrid systems development and verification.

The approach extensively uses the mathematical extensions capabilities
offered by the theory plug-in of Event-B, allowing to enrich Event-B models
with continuous behaviours. Data types for reals, continuous functions, differen-
tial equations and so on have been defined within a sound Event-B theory. The
available axioms and theorems were used to prove the relevant safety properties
of the developed systems expressed as machine invariants. The developed models
are scalable (modulo proof efforts), as they can deal an arbitrary number of state
variables. Witnesses for the sets STATES and S are provided at instantiation
using gluing invariants.

This work revealed several research perspectives. Below, we summarise the
identified future research actions.

Need for Other Domain Theories. Although the definition of generic architecture
patterns has reduced the number and the complexity of proof obligations and
their proofs, the proof effort still needs to be reduced. Providing other sound
domain theories contributes to such a reduction. One of the main extensions to
our work consists in enriching the proposed framework with other theories. Two
kinds of theories are expected: theories for other types of control and theories

184 G. Dupont et al.

where the physics of considered plants is formalised. A library of such theories
would help for such hybrid systems developments by making explicit knowledge
in physics and in other related domains [3].

Methodology. From the method formalisation point of view, the major improve-
ment is to leverage the formalisation of architecture patterns at a higher abstrac-
tion level to handle controllers and plants as first class mathematical objects.

Other patterns where the number of hybrid systems evolves dynamically
could be considered. In this case, each system would have a partial knowledge of
its environment. This kind of patterns may help to model autonomous aspects.
However, defining safety properties remains a major challenge for such patterns.

Integration of Simulation Tools. To handle the traditional hybrid systems devel-
opment processes where simulation is extensively used, coupling the developed
models with simulation tools, like in [1], would help in animating these models.

Acknowledgment. We thank T. S. Hoang for his help with Rodin’s Theory plug-in
and R. Banach for the helpful discussions related to Event-B hybridation.

References

1. Project INTO-CPS: Integrated Tool Chain for Model-based Design of Cyber-
Physical Systems. http://into-cps.au.dk/about-into-cps

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

3. Aït-Ameur, Y., Méry, D.: Making explicit domain knowledge in formal system
development. Sci. Comput. Program. 121(C), 100–127 (2016)

4. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an
algorithmic approach to the specification and verification of hybrid systems. In:
Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991-1992. LNCS,
vol. 736, pp. 209–229. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57318-6_30

5. Alur, R., Henzinger, T.A.: Modularity for timed and hybrid systems. In:
Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 74–
88. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63141-0_6

6. Babin, G., Aït-Ameur, Y., Singh, N.K., Pantel, M.: A system substitution mech-
anism for hybrid systems in Event-B. In: Ogata, K., Lawford, M., Liu, S. (eds.)
ICFEM 2016. LNCS, vol. 10009, pp. 106–121. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-47846-3_8

7. Back, R.J., Petre, L., Porres, I.: Continuous action systems as a model for hybrid
systems. Nord. J. Comput. 8(1), 2–21 (2001)

8. Banach, R., Butler, M., Qin, S., Verma, N., Zhu, H.: Core hybrid Event-B I: single
hybrid Event-B machines. Sci. Comput. Program. 105, 92–123 (2015)

9. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Trust-
ing computations: a mechanized proof from partial differential equations to actual
program. Comput. Math. Appl. 68(3), 325–352 (2014)

10. Butler, M., Abrial, J.R., Banach, R.: Modelling and refining hybrid systems in
Event-B and Rodin. In: From Action Systems to Distributed Systems: The Refine-
ment Approach. Computer and Information Science Series, pp. 29–42. Chapman
and Hall/CRC (2016)

http://into-cps.au.dk/about-into-cps
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-63141-0_6
https://doi.org/10.1007/978-3-319-47846-3_8
https://doi.org/10.1007/978-3-319-47846-3_8

Formally Verified Design Patterns of Hybrid Systems 185

11. Butler, M., Maamria, I.: Practical theory extension in Event-B. In: Liu, Z., Wood-
cock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods. LNCS, vol.
8051, pp. 67–81. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
39698-4_5

12. Cardenas, A.A., Amin, S., Sastry, S.: Secure control: towards survivable cyber-
physical systems. System 1(a2), a3 (2008)

13. Dupont, G., Aït-Ameur, Y., Pantel, M., Singh, N.K.: Hybrid systems and Event-B:
a formal approach to signalised left-turn assist. In: Abdelwahed, E., et al. (eds.)
MEDI 2018. CCIS, vol. 929, pp. 153–158. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-02852-7_14

14. Dupont, G., Aït-Ameur, Y., Pantel, M., Singh, N.K.: Handling refinement of con-
tinuous behaviors: a refinement and proof based approach with Event-B. In: 13th
International Symposium TASE, pp. 9–16. IEEE Computer Society Press (2019)

15. Dupont, G., Aït-Ameur, Y., Pantel, M., Singh, N.K.: Proof-based approach to
hybrid systems development: dynamic logic and Event-B. In: Butler, M., Raschke,
A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 155–170.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4_11

16. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings of 11th Annual
IEEE Symposium on Logic in Computer Science, LICS, pp. 278–292. IEEE Com-
puter Society (1996)

17. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle
River (1985)

18. Jifeng, H.: From CSP to hybrid systems. In: Roscoe, A.W. (ed.) A Classical Mind,
pp. 171–189. Prentice Hall International (UK) Ltd., Upper Saddle River (1994)

19. Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems - A Cyber-Physical
Systems Approach, 1.5 edn. LeeSeshia.org (2014). http://leeseshia.org/

20. Meinicke, L., Hayes, I.J.: Continuous action system refinement. In: Uustalu, T. (ed.)
MPC 2006. LNCS, vol. 4014, pp. 316–337. Springer, Heidelberg (2006). https://
doi.org/10.1007/11783596_19

21. Logical Foundations of Cyber-Physical Systems. Lecture Notes in Computer Sci-
ence. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63588-0_21

22. Singh, N.K., Aït-Ameur, Y., Pantel, M., Dieumegard, A., Jenn, E.: Stepwise formal
modeling and verification of self-adaptive systems with Event-B. The automatic
rover protection case study. In: 21st International Conference on Engineering of
Complex Computer Systems, ICECCS 2016, pp. 43–52 (2016)

23. Su, W., Abrial, J.R., Zhu, H.: Formalizing hybrid systems with Event-B and the
Rodin platform. Sci. Comput. Program. 94(Part 2), 164–202 (2014). abstract State
Machines, Alloy, B, VDM, and Z

https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1007/978-3-030-02852-7_14
https://doi.org/10.1007/978-3-030-02852-7_14
https://doi.org/10.1007/978-3-319-91271-4_11
http://leeseshia.org/
https://doi.org/10.1007/11783596_19
https://doi.org/10.1007/11783596_19
https://doi.org/10.1007/978-3-319-63588-0_21

Integration of iUML-B and UPPAAL
Timed Automata for Development

of Real-Time Systems with Concurrent
Processes

Fatima Shokri-Manninen1(B), Leonidas Tsiopoulos1,2, Jüri Vain2(B),
and Marina Waldén1

1 Åbo Akademi University, Turku, Finland
{fatemeh.shokri,marina.walden}@abo.fi

2 Tallinn University of Technology, Tallinn, Estonia
{leonidas.tsiopoulos,juri.vain}@taltech.ee

Abstract. Developing safety-critical systems requires to consider safety
and real-time requirements in addition to functional requirements. Event-
B is a formalism that is visualised by iUML-B and supports the develop-
ment of functional aspects having rich verification and validation tools.
However, it lacks well-established support for timing analysis. UPPAAL
Timed Automata (UTA), on the other hand, address timing aspects of
systems, and enable model checking reachability and timing properties.
By integrating iUML-B and UTA, we combine the best verifying and val-
idating practices from the two methods achieving a formal development
of systems. We present the mapping for translating iUML-B constructs to
UTA. The novel aspect is the use of a multi-process trigger-response pat-
tern to address the modelling and verification of reachability properties
of complex systems with concurrent processes. The approach is demon-
strated on an airport control system, where timing, fairness, as well as
liveness properties play a vital role in proving safety requirements.

Keywords: Verification · Model checking · Timed automata ·
Event-B · iUML-B · UPPAAL · Real-time systems · Trigger-response
patterns

1 Introduction

Correct-by-Construction Design (CCD) [1] plays an important role in the devel-
opment of safety critical-systems, since it guarantees their reliability and cor-
rectness with respect to the system requirements. This is vital in cases where
human safety and large financial assets are at stake. Correctness by construc-
tion is gained by the use of formal methods, which are mathematical methods for
deriving a system based on its requirements. The main reasons for applying for-
mal modelling is to avoid ambiguity or misunderstanding of system requirements
and to detect problems early in system development.
c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 186–202, 2020.
https://doi.org/10.1007/978-3-030-48077-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_13&domain=pdf
https://doi.org/10.1007/978-3-030-48077-6_13

Integration of iUML-B and UPPAAL Timed Automata 187

One of the formal methods which supports CCD in the development process
is Event-B [1]. Event-B is based on set theory and supports design by stepwise
refinement. Event-B tool RODIN with its plug-ins provides a rich support for this
CCD. However, in spite of these beneficial aspects, Event-B lacks sufficient sup-
port for timing analysis and refinement of timed specifications. UTA [3] address
timing aspects of systems providing efficient data structures and algorithms for
their representation and verification, but are less focusing on supporting the
refinement-based development and verification.

The goal of this paper is to advocate a model-based design method, where
Event-B and UTA are combined to mutually complement each other. The moti-
vation for selecting Event-B as the base formalism is that Event-B provides
support for verifying infinite-sized models with advanced data structures using
first-order logic. Additionally, it allows for correct-by-construction development
via stepwise refinement. For mapping, we opt for UTA as it supports verification
of real-time properties which are required before the implementation phase of the
model. The design method consists of stepwise refining the system using Event-B
for proving the functional and safety properties in each step. Each development
step is then translated to a UTA model that can be validated via model check-
ing and checked for real-time properties without re-checking non-timing related
properties.

For the work in this paper we extend the earlier work on the Event-B to
UTA mapping by introducing an intermediate representation in iUML-B for the
generation of the control structure that serves as skeleton also for UTA. In par-
ticular, we investigate how the integrated approach addresses the development of
complex real-time trigger-response pattern-based systems with concurrent pro-
cesses and discuss the benefits of the integrated method in contrast to that when
only one of the two formalisms is applied for the development and verification
of safety critical Cyber-Physical Systems (CPS) [12,13].

2 Related Work

Formal development of CPSs requires continuous timing properties to capture
real behaviour of these systems. As discrete timing constraints cannot describe
some of the substantial dynamic properties like Zeno behaviour, essential discon-
tinuities, and other singularities of real-time systems in the physical environment,
continuous time constraints become the inseparable part of modelling CPS.

Event-B is a formal method for modelling a safety critical-system that origi-
nally lacks the notion of real-time. Recent attempts [5,8,10] have been made to
integrate discrete time to Event-B using patterns, such as delay, expriry, deadline
and interval. Since invariants on discrete time introduce noise to the provers [5],
it easily leads to cases that are difficult to prove. All these timing properties con-
tain a trigger and response pattern, which are modelled as events in Event-B. To
capture all these timing properties we focus on their underlying trigger-response
pattern, where a trigger must always be followed by a response.

Due to the lack of concept of time continuity, the above discrete time prop-
erties cannot always be applied to CPSs to embrace their continuous behaviour.

188 F. Shokri-Manninen et al.

Zhu et al. addressed this problem by extension of deadline constraints [12].
Moreover, authors defined discrete task- and scheduler-based timing properties
of each process and of concurrent tasks between processes, respectively. They
refined task-based timing into scheduler-based timing by either a FIFO queue
scheduling policy or a deferrable priority-based scheduling policy with aging.
For addressing intermediate events between trigger and response events, they
propose in [13] the conditional convergent notion. In this approach, intermedi-
ate events can converge if there is no response event enabled, assuming weak-
fairness of intermediate events and eventual execution of the response event.
While [13] addresses a single-process trigger-response pattern, we can model
multiple trigger-response relations in UTA by applying our integrated approach.
It allows verifying that the interleavings between concurrent processes do not
cause deadlock while proving reachability, liveness and non-Zenoness properties
in the model.

Compared to earlier research on combining Event-B and UTA [4,11], we
extend the mapping by considering sequencing of Event-B events in iUML-B
diagrams, and control structures representing trigger-response patterns. Specif-
ically, the iUML-B graphical design provides us with an untimed control struc-
ture identical to that of UTA. This is further elaborated by incorporating timing
analysis at each refinement/design step. The straight-forward mapping proposed
in [4] leads to too large models. In a later approach [11] an event-level mapping
was introduced where each event from the Event-B specification was translated
to an UTA and then parallely composed to form the full model. Additional
optimisations were needed to aggregate the automata which model mutually
exclusive events, and thus, reduce interleaving of model events.

In this paper the mapping is still based on the events but the UTA model
structure is extracted from the iUML-B state diagram. By decorating the
extracted control structure with UTA specific attributes we can verify the sys-
tem’s timing correctness and provide feedback to the Event-B side of the devel-
opment for the feasibility of system events. For capturing the behaviour of pro-
cesses based on the trigger-response pattern, we show in the following sections
how concurrency with multi-process intermediate events is modeled and verified
using an airport control system as a case study.

3 Preliminaries

3.1 Event-B and iUML-B

Event-B [1] is a state-based formalism for the development of reactive and dis-
tributed systems. Event-B uses refinement [2], which enables the system to be
created in a stepwise manner gradually adding details into the model proving
that each refinement step preserves the correctness of the previous steps. A
model in Event-B, a machine, can be interpreted as a transition system where
the variable valuations constitute the states and the events represent the tran-
sitions. Machines can be refined either via superposition refinement [9], where
new features are added to the machine, or by data refinement, where abstract

Integration of iUML-B and UPPAAL Timed Automata 189

features are replaced by more concrete ones. Event-B is well supported by the
Rodin Platform [6], which is extendable with plugins facilitating the modelling
and verification.

iUML-B is an integrated form of the classical UML-B graphical front-end for
Event-B [7] that is an extension of the Rodin Platform. It allows modellers to
build a model through a diagrammatic design in the form of state-machines and
class diagrams. The translator then generates Event-B automatically facilitating
the modelling process. Class diagrams provide a way to model data relationships,
while state-machines show the states and transitions of an Event-B machine.
The guards and actions of the Event-B events form the guards and actions of
the transitions in the state-machine diagrams. The operational semantics of the
events are, hence, visualised with the state-machines.

In a state-machine with an transition e1 between states S1 and S2, transition
e1 can be fired if the state is S1 and the guard of the transition G(t, v) evaluates
to true. When e1 is fired it changes the state to S2 and may also modify other
variables of the state-machine via actions S(t, v). This corresponds to event e1
in Event-B:

e1 = any t where state = S1 ∧ G(t, v) then state := S2 || S(t, v) end

Invariants may also be given in the states. They correspond to invariants in an
Event-B machine. The state-machines can be refined in a corresponding manner
to the Event-B machines concerning variables and events. Additionally, states
can be nested in state-machines (i.e. states in a state), which is also often used
when refining a system to model the increased level of detail in the states.

3.2 UPPAAL Timed Automata

UTA [3] are defined as a closed network of extended timed automata that are
called processes. The processes are combined into a single system by synchronous
parallel composition like that in process algebra CCS. The nodes of the automata
graph are called locations and directed lines between locations are called edges.
For each edge, which is a transition between two locations, conditions or guards
can be defined. Whenever the guard holds, the edge can be fired, which leads to
a new location. Communication and synchronisation between different automata
is taken care of by send and receive actions. An action send over a channel h is
denoted by h! and its co-action, receive is denoted by h?.

Formally, an UTA is defined as the tuple (L, E, V , CL, Init, Inv, TL), where:

– L is a finite set of locations,
– E is the set of edges defined by E ⊆ L × G(CL, V) × Sync × Act × L, where

• G(CL, V) is the set of constraints in guards,
• Sync is a set of synchronisation actions over channels and
• Act is a set of sequences of assignment actions with integer and boolean

expressions as well as with clock resets.

190 F. Shokri-Manninen et al.

– V denotes the set of integer and boolean variables,
– CL denotes the set of real-valued clocks (CL ∩ V = ∅),
– Init ⊆ Act is a set of assignments that assigns the initial values to variables

and clocks,
– Inv : L → I(CL, V) is a function that assigns an invariant to each location,

I(CL, V) being the set of invariants over clocks CL and variables V and
– TL : L → {ordinary, urgent, committed} is the function that assigns the type

to each location of the automaton.

In urgent locations an outgoing edge will be executed immediately when its
guard holds. Committed locations are useful for creating atomic sequences of
process actions since an outgoing edge must be executed immediatelly without
time passing.

UTA Requirement Specification Language. The requirement specification
language (in short, query language) of UTA, used to specify properties to be
model checked, is a subset of Timed Computation Tree Logic (TCTL) [3]. The
query language consists of path formulae and state formulae. State formulae
describe individual states, whereas path formulae quantify over paths or traces
of the model and can be classified into reachability, safety and liveness [3]. For
example, safety properties are specified with path formula A�ϕ stating that
state formula ϕ should be true in all reachable states. In the next section we
describe in more detail the TCTL formulae we apply in the rest of this paper.

4 Mapping from Event-B and iUML-B Models to UTA

We base our work here on the previous work by Vain et al. [11]. We assume
that the system is developed stepwise using Event-B and iUML-B and prove the
safety properties in each step using the proof system of this formalism. The result
of each development step is then translated to UTA in order to have a model
that can be validated via model checking and specifically checked for real-time
properties avoiding re-checking of functional/safety properties. Note that due to
the locality of refinements only those model fragments that are introduced by
Event-B refinements need to be mapped to the corresponding UTA fragments.
The rest of the UTA model defined in earlier steps remains untouched by the
current Event-B refinement step.

Plant and Controller. In Event-B and iUML-B the model represents a holistic
view to the control systems where the controller and the plant events are all given
in one machine. However, when mapping the model to UTA these different kinds
of events have to be identified. The plant events in the iUML-B state-machines
are mapped to UTA plant automaton with corresponding states and transitions.
This leads to a sequential model of the control system in UPPAAL. The states
and state transitions of the state-machines are given in Event-B as global, but
when mapped to UTA the states and transitions are partitioned by automata
that introduces modularity to models and to verification. The controller events
are each translated as in [11] to simple self-loop automata. All these events

Integration of iUML-B and UPPAAL Timed Automata 191

emulating self-loop transitions are composed in parallel. The communication
with the plant takes place via channels by trigger and response actions.

In control systems, there might be several plants (processes) for a controller.
In Event-B the setup of the system is given in the context machine. Only one
state-machine is created for the system, but the plants/processes are specified
as instances of the machine. When mapping this scenario to UPPAAL, one UTA
template is created for the process and instantiated for the multiple processes.

Mapping of Functions and Predicates. Variables of integer and enumerated
types in Event-B become integers in UTA, while finite sets and relations in Event-
B are mapped to (multidimensional) arrays in UTA. We can then implement the
set and relational operators as C-functions in UTA.

Mapping of Events. Transitions in iUML-B are generally translated to state
transitions in UTA [11]. In Fig. 1 we exemplify the translation with an iUML-B
state machine and Event-B code to the left and a corresponding UTA model to
the right. Let

e = any p where G(p, v) then S(p, v) end

be an event of Event-B, then

(i) the parameter p will appear in the select label of the UTA edge, which
contains a comma separated list of p : int expressions where p is a variable
name and int is a defined type (see Fig. 1).

(ii) the event guard G(p,v) is mapped to the guard G(V) of an edge where V
denotes UTA variables corresponding to variables v (p> 5 in Fig. 1).

(iii) the event action S(p,v) corresponds to assignment statements (updates)
V’= S(V) of the UTA edge (num :=num+p in Fig. 1).

For plants consisting of many processes, the instance of a plant is identified
by a unique parameter value. The template may have parameters of type inte-
ger. This allows modelling the ANY-construct of Event-B, where the choice is
finite. The parameter of a template specified by its type defines the instances
(processes) of the template, one for each value in the parameter type.

Timing of Events. When mapping the Event-B model to UTA, we need to add
timing explicitly to the model to be able to consider timing aspects like time-
bounded reachability. When adding explicit timing constraints to UTA events,
it is assumed that the occurrence of an event is instantaneous. An event may
occur within some time interval [lb, ub], where lb stands for lower bound and ub
stands for upper bound, provided it is enabled by guard G. For specifying these
constraints, new variables, namely the set CL of clocks is introduced. We usually
assume the continuous intervals are of shape [lb, ub], where lb and ub ≥ 0, and
ub ≥ lb. Note that having infimum inf of clocks domains inf dom(cl) = 0 and
guards cl ≥ inf it may introduce Zeno computations if there exists a loop in the
model where the maximum of lower bounds of occurrence interval of each edge
is equal to the infimum.

192 F. Shokri-Manninen et al.

In general, the timing specification of events introduces bounded intervals of
occurence that are specified as location invariant inv(CL) ≡ ∧i cli ≤ ubi and the
guard Gi(CL) ≡ ∧j clj ≥ lbj of its self-loop edge ei that models an event. A
set of clock conditions Gi(CL) and inv(CL) indicate time constraints when an
event ei should be fired, i.e. not later than time ubi (deadline) and not before
time lbi (delay) (see cl <= ub and cl >= lb in the UTA in Fig. 1).

Fig. 1. Transition structure in iUML-B (left) and UTA (right)

Undelayed Reaction. In the context of multiple trigger-response patterns,
some response should be fired immediately without delay in a critical situation. It
brings the concept of priority based on timing. According to the timing constraint
proposed in [8], the delay constraint is specified by Delay(Trigger, Response,
delay) that specifies the delay constraint where delay = 0. In UPPAAL, unde-
layed response is modelled with urgent channel (urgent chan) which is defined
to be synchronizing executions of enabled edges without delay. Clock conditions
on these transitions are not allowed. An alternative to model undelayed reac-
tion encoded as a single (not synchronized) edge is to define its source location
type as either committed or urgent or set this location invariant condition upper
bound to 0.

Invariants. The invariants of Event-B are not directly translated into UPPAAL
model-checking queries. However, these invariants can be specified and model
checked as TCTL formulas of form A�p, where p is a first order state formula
and the pair of modalities A� requires p to be true in all reachable states of the
model in UPPAAL. Formula p can involve predicates on model clocks to specify
explicit timing constraints.

Time Bounded Reachability. For real-time applications, we consider time
bounded reachability as one of the most fundamental properties. In UTA, the
reachability of an event E (where E is specified in terms of after state of the

Integration of iUML-B and UPPAAL Timed Automata 193

event and/or valuation of state variables) from model initial state is expressible
using TCTL formula pattern A♦E && Clock ≤ TB, for time bound TB.

Trigger-response properties are expressed as a special case of time bounded
reachability where the reachability of a response event is always considered rela-
tive to its trigger events. Proving multiple trigger-response properties in Event-
B presumes augmentation of the model with auxiliary “boolean property vari-
ables” which are set to true only when considered triggers receive a response (as
Landing permission(selfP) := TRUE in Fig. 5). Conjoining multiple trigger-
response pairs of different processes is non-trivial and can easily cause misin-
terpretation. For instance, reactions to stimuli of different processes may occur
in different states or even be mutually exclusive in some states. Therefore, the
trigger-response properties for multiple concurrent processes need to be specified
and checked separately.

The reachability of a response event (actually its post condition rp) from a
trigger event tr (respectively its post condition tr) is then expressed in UTA
and TCTL using leads to operator as tr ��� rp. The multiple trigger-response
properties can be specified and proved similarly. For instance, TCTL formula
tr1&&...&&trn ��� rp1&&...rpm where auxilliary boolean variables tr1, ..., trn
in the model register the occurrence of trigger 1 to trigger n and auxilliary
variables rp1, ..., rpm register the occurrence of response events 1 to m.

In case of time bounded reachability of a response event, a property clock
constraint should be conjoined to the right hand side of leads to. Here it should
be granted that the property clock is reset in the model at the moment when
the trigger (conjunction tr1&&...&&trn) of considered trigger-response pair is
set to true.

Liveness. In Event-B due to weak fairness, enabled processes will eventually
be executed. If the system is deadlock free, there is always an event that can
be executed. In UTA, the situation, where a transition is enabled but there
is no finite interval specified in the location invariant (or not using location
types urgent, committed), may result in an infinite waiting in that location. This
provides behaviourally similar effect as deadlock. It means that regardless if one
or more of the outgoing edges of that location are enabled, none of them will
ever be executed because there is no upper bound that forces the edge to be
executed in finite time. In that way, weak fairness is not sufficient to guarantee
non-blocking in UTA and the progress must be granted by specifying the location
type either committed or urgent or adding a time bound conjunct to each location
invariant. Liveness can be proved by TCTL query A� not deadlock provided all
legal terminal locations are supplied with self-loop edges.

5 Overview of Case Study

In order to demonstrate the CCD methodology with integrated formal methods,
we use an airport control system example. We propose this case study for pre-
senting the verification of behavioral and timing properties by combining two
complementing formalisms Event-B and UTA. We focus only on the landing

194 F. Shokri-Manninen et al.

control with one runway. Based on system requirements, we have two types of
landing, namely, emergency landing and normal landing. The flight control is
in charge of safe landing by giving airplanes permission to land at appropriate
times. For normal landing planes may queue up to enter the landing runway.
There are two queues with different priorities based on the planes’ fuel level. An
emergency landing has higher priority than both queues. In case of an emergency
landing, no other plane can land and all landing requests are rejected. Only one
emergency landing can take place at a time. As a safety requirement it is ensured
that there is no plane in the runway before allowing another plane to use it.

The model of the airport system1 consists of one abstract model with three
refinement steps. The abstract model presents the general view of the airport
system, with two landing modes. In the first refinement step, we introduce two
queues with different priorities for normal landing. Next, we implement the FIFO
policy of the queues. Finally, we introduce fuel level for each plane.

5.1 M0: An Abstract Model of Airport Control System

In the abstract model the behaviour of the system is depicted in the a state-
machine diagram of iUML-B (in Fig. 2) where the different states of a plane to
reach the final state (At Gate) are modeled. In Event-B, we create a context
that introduces the set PLANES in addition to the generated implicit context
which consists of the states in the state-machine. The state of a plane and
the transitions between the states are generated automatically from the state-
machine. We define a parameter selfP in the iUML-B diagram to represent the
instances of PLANES, which is translated into corresponding Event-B events.

In the abstract Airport Control System in Fig. 2, a plane in state In Air
sends a landing request to the controller. If the response is positive, the plane
can enter the landing queue. We define an invariant (LQ Permission = TRUE)
in the Landing Queue state which ensures that each plane in the landing queue
has a landing queue permission.

The controller checks whether there is an ongoing emergency case or not via
the boolean variable Emergency Prog. In case of an ongoing emergency, no new
plane will get permission to land and will have to leave the airport.

We ensure safety on the critical section, the runway, using mutual exclusion
with boolean variable Runway Busy to ensure that no landing permission is
admitted if there is a plane on the runway. When the plane is on the runway it
will be given a gate by the controller and it moves to the final state At Gate.

Emergency request can be sent in states Landing Queue or In Air. Only
one emergency at a time can be handled at the airport. If there is already an
emergency, emergency landing permission for that plane is rejected, and the
plane has to leave the airport.

In order to be able to introduce timing properties to the airport system, we
map the Event-B and iUML-B model into an UTA. In Event-B, the model of

1 iUML-B and UTA models are found in: https://github.com/fshokri/FormalModels.
git.

https://github.com/fshokri/FormalModels.git
https://github.com/fshokri/FormalModels.git

Integration of iUML-B and UPPAAL Timed Automata 195

Fig. 2. The abstract model in iUML-B

the plane and the controller are integrated. However to model different timing
behaviors of components in UPPAAL, we need to divide the model into plane
and controller (Fig. 3) where simultaneous events are synchronised via channels.

For the plane template, we follow the same structure as in the iUML-B state-
machine diagram, while for the controller we only consider events for giving
permissions. The instantiation of the plane template for modelling the plane
instances is modelled with template parameter id, while the handling of each
plane by the controller is addressed with the select clause in UTA corresponding
to the ANY event parameter in Event-B. This is described in Mapping of events
in Sect. 4.

Fig. 3. The abstract model of plane (left) and controller (right) in UTA

We define clock constraints with upper bounds stated with invariants for
locations waiting before triggering requests. We assign locations as urgent when
waiting for responses from the controller. This way planes can progress immedi-
ately when a response is given. For the Landing Queue location an upper bound
is given allowing flexibility when later refining the behaviour for planes in the
landing queues i.e., allowing time passing when queueing.

Comments on the Modelling. In Event-B, the controller in the abstract
system gives landing queue entry permissions non-deterministically. Since there

196 F. Shokri-Manninen et al.

is no implicit timing in Event-B, this does not create a deadlock. However, in
order to avoid deadlock in the corresponding state Waiting L Permission of
the UTA model, we define a variable (Perm Given) to indicate that permission
has been given to make exit conditions from this state more deterministic. In
this way each plane gets an answer for the landing request, either a positive one
to move to the landing queue or a negative one to leave the airport.

5.2 M1: Introducing Two Queues

In the first refinement, we split the state Landing Queue into two queues states,
High Priority Queue and Low Priority Queue. This is done by adding nested
state-machines in iUML-B, while in UTA two separate states and transitions are
created (Fig. 4).

Fig. 4. The first level of refinement model excerpt in iUML-B (left) and UTA (right)

In M1, we introduce a new boolean variable High Risk which states whether
a plane has a high risk or not in the queueing situation. The plane with a high
risk is eligible to move to High Priority Queue with shorter waiting time, while
in normal situation planes enter Low Priority Queue. If High Priority Queue
is not empty, a plane in Low Priority Queue needs to wait for a number of
planes (here at most three) in High Priority Queue to land.

The nested state with queues in Event-B is translated to a separate state
for each queue in UTA. The guards and actions of the events in Event-B are
translated in a straightforward manner to guards and updates in the UTA model.

5.3 M2: Implementing FIFO Method for Each Queue

In the second refinement step, we implement the FIFO policy for each queue.
Since the functionality of two queues is the same, we focus on the high priority
queue in the Event-B model (Fig. 5).

The queues have positions (@inv1) and are of limited length (@inv4). Via
event Enter High Pqueue(selfP) plane selfP can enter the high priority queue
High Pqueue provided that it is a high-risk plane that has been given landing
permission and that the high priority queue is not full. The plane selfP will be

Integration of iUML-B and UPPAAL Timed Automata 197

Fig. 5. The Event-B code for the second refinement with FIFO queue

inserted in the first free position of the queue which is position one if the queue
is empty. In event Give L Permission HighPQ, landing permission is given
to the first plane in the queue provided that less than three planes from the
high priority queue have landed in a row or low priority queue is empty. Event
Landing High Pqueue(selfP) models plane selfP leaving the high priority
queue and entering the landing runway. As a result of landing, queueing planes
are shifted in the queue. If there is an emergency situation while the plane is in
the queue the plane will leave the queue (event Send HighPQ Emerg Req).

In the UTA model, we use functions for enqueuing and dequeuing, for a
smooth implementation of the FIFO queue corresponding to the lambda expres-
sions in Event-B. For example, action act1 of event Send HighPQ Emerg Req
in Fig. 5 is mapped to C-like functions in UTA as in Fig. 6. The left one
(Em deHPqu idx) appears in the guard and the right one (Em deHPqueue) in
the update of the transition from location High PQ to Waiting EmergLand
in Fig. 8.

5.4 M3: Introducing Fuel Consumption

In the third refinement step, we introduce variables Plane Fuel and Fuel count
in our Event-B model to indicate fuel consumption. Variable Plane Fuel gives
the fuel level (High, Medium and Low) for each plane, while Fuel count is a

198 F. Shokri-Manninen et al.

Fig. 6. UTA C-like functions for the second refinement with FIFO queues

variant of type natural number to show that the superposed fuel consumption
will not take over the behaviour of the system.

Fig. 7. The last level of refinement model in iUML-B

A plane with fuel level Medium enters High Pqueue, while a plane
with fuel level High is eligible for Low Pqueue. Events Fuel Cons HPQ,
Fuel Cons LPQ and Fuel ConsL LPQ will decrease plane fuel while waiting
for permission to enter the landing runway (see Fig. 7). If the fuel level drops to
Low, the plane will send an emergency request. The plane with the emergency
request will reach the At Gate location if there is no other emergency situation
progressing.

The iUML-B state-machine is directly mapped to a UTA (see Fig. 8). However
in the UTA model, the variable Plane Fuel is mapped to a variable of type enu-
merated set which assigns a numerical value for the fuel level of each plane. The
fuel consumption events are the events of the plane which are considered as inter-
mediate events. The execution of these events depends on the delayed response
from the controller for assigning landing permission. For avoiding delays on tran-
sitions triggering emergency cases, we defined the ELP,ELR HPQ,ELR LPQ
channels in UTA to be urgent.

Integration of iUML-B and UPPAAL Timed Automata 199

Fig. 8. The last level of refinement of Plane and Controller in UTA

5.5 Analysis Results

Proof Statistics: Machines M0 (abstract specification) and M1 (first refine-
ment) in Event-B are automatically proved almost (100%) by the Rodin tools.
For machine M2, where we introduce the FIFO mechanism for the queues,
more complex proof obligations were generated of which 57% were automati-
cally proved. In M3, where we define fuel consumption, 85% were automatically
discharged. By triggering the interactive provers the rest of the proof obligations
were discharged to get a fully proved model.

TCTL Queries: To verify the real-time behaviour of our UTA model based on
multi-trigger and response pattern, we specify correctness properties in TCTL
(Table 1). The properties which occur and need analysis in real systems include
concurrency, deadlock freedom, non-Zenoness, liveness and reachability as well
as the existence of intermediate events. Note that the mutual exclusion and
fairness have already been proved using Event-B proof support. The timing
related properties such as time bounded reachability and trigger-response timing

200 F. Shokri-Manninen et al.

correctness are verified in UPPAAL. Some of the most characteristic timing
properties of the case study are exemplified by Queries 1 to 3 in Table 1.

Table 1. TCTL queries based on multi-trigger and response pattern

Id Query Result

1 M3 Planes(1).Waiting L Permission && High Risk[1]
&& fuel[1]! =high && not Emergency Prog && lenH <
Max Queue Size && LQ per[1] ���
M3 Planes(1).High PQ && aux clk <= tb1

Satisfied

2 M3 Planes(1).Waiting EmergLand && Elan per[1] &&
Runway busy && Gate asn[1] ��� M3 Planes(1).At Gate
&& aux clk <= tb2

Satisfied

3 A<> forall (i : int [0,4]) Planes(i).At Gate ||
M3 Planes(i).Leaving Airport & & Gclk <= 120

Satisfied

Query 1 exemplifies a simpler timed trigger-response property satisfied by our
system for plane instance 1. It states that when the plane will trigger its landing
permission request to the controller, including also information about risk and
fuel level, the response by the controller, if there is no ongoing emergency and
if the queue is not full, will lead to the plane reaching location High PQ within
time tb1. Note that aux clk is an auxiliary clock used only for the verification of
the query. Constant tb1 comes from system requirements expressing the upper
time bound explicitly for this trigger-response property.

Query 2 exemplifies a more complex timed trigger-response property, includ-
ing intermediate events, satisfied by our system for plane instance 1. It states
that when the plane triggers an emergency landing case to the controller enter-
ing location Waiting EmergLand this will lead to the plane finally reaching
location At Gate if the intermediate response events by the controller allow it,
i.e., the controller giving the emergency landing permission, keeping the runway
reserved and assigning a gate to this plane instance. Application and assump-
tions for aux clk and time bound tb2 are as for Query 1.

Query 3 represents the full integral time-bounded reachability property sat-
isfied by our system. It states that all plane instances reach eventually the legal
terminal locations At Gate or Leaving Airport by the time the global clock
of the system reaches 120 time bound. The upper bound for the system global
clock for this query is based on the real-time constraints on resolving the landing
situation by traffic situations given by model constraints.

6 Conclusion and Discussion

The novel aspect studied in this paper is the use of multi-process trigger-response
pattern with intermediate events to address the modelling and verification of

Integration of iUML-B and UPPAAL Timed Automata 201

reachability properties of complex systems with concurrent processes. We first
extended the Event-B to UTA mapping by incorporating iUML-B for the genera-
tion of the control structure that serves as the skeleton for UTA avoiding genera-
tion of too large UTA models. We then investigated how the integrated approach
addresses the development of complex real-time trigger-response pattern-based
systems with concurrent processes. We have shown that by using our integrated
method we can address the development of complex real-time systems with con-
current processes without extending Event-B nor UTA standard features.

The co-use of Event-B and UTA and translation between them seems straight
forward since we follow the control structure imposed by the iUML-B state-
machine representation. Therefore, an automated translation from iUML-B is
currently being investigated.

An essential observation is that introducing timing constraints by imposing
them mechanically to Event-B or iUML-B model control structure often reveals
modelling cases that are correct from untimed perspective, but may appear to
be infeasible from the perspective of timing. For example, introducing non-zero
durations to triggering conditions of events, may introduce some blocking condi-
tions that results in violation of liveness properties proved on the initial Event-B
model. Hence, the combination of the two approaches has proved to be beneficial
to the development of coherent well-timed models.

Acknowledgments. This work has received funding from the Electronic Component
Systems for European Leadership Joint Undertaking under grant agreement No 737494.
This Joint Undertaking receives support from the European Union’s Horizon 2020
research and innovation programme and Sweden, France, Spain, Italy, Finland, the
Czech Republic. This was also supported by the ERDF funded centre of excellence
project EXCITE (2014-2020.4.01.15-0018) and the Estonian Ministry of Education
and Research institutional research grant no. IUT33-13.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Back, R.J., von Wright, J.: Refinement Calculus: A Systematic Introduction. Grad-
uate Texts in Computer Science. Springer, Heidelberg (1998). https://doi.org/10.
1007/978-1-4612-1674-2

3. Behrmann, G., David, A., Larsen, K.G.: A tutorial on UPPAAL 4.0. Department
of computer science, Aalborg university (2006)

4. Berthing, J., Boström, P., Sere, K., Tsiopoulos, L., Vain, J.: Refinement-based
development of timed systems. In: Derrick, J., Gnesi, S., Latella, D., Treharne, H.
(eds.) IFM 2012. LNCS, vol. 7321, pp. 69–83. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-30729-4 6

5. Cansell, D., Méry, D., Rehm, J.: Time constraint patterns for event B development.
In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 140–154.
Springer, Heidelberg (2006). https://doi.org/10.1007/11955757 13

6. Jastram, M., Butler, M.: Rodin User’s Handbook: Covers Rodin v 2.8 (2014)
7. Said, M.Y., Butler, M., Snook, C.: A method of refinement in UML-B. Softw. Syst.

Modeling 14(4), 1557–1580 (2013). https://doi.org/10.1007/s10270-013-0391-z

https://doi.org/10.1007/978-1-4612-1674-2
https://doi.org/10.1007/978-1-4612-1674-2
https://doi.org/10.1007/978-3-642-30729-4_6
https://doi.org/10.1007/978-3-642-30729-4_6
https://doi.org/10.1007/11955757_13
https://doi.org/10.1007/s10270-013-0391-z

202 F. Shokri-Manninen et al.

8. Sarshogh, M.R., Butler, M.: Specification and refinement of discrete timing prop-
erties in Event-B. Electron. Commun. EASST 46, 1–15 (2012)

9. Snook, C., Waldén, M.: Refinement of statemachines using Event B semantics.
In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 171–185.
Springer, Heidelberg (2006). https://doi.org/10.1007/11955757 15

10. Sulskus, G., Poppleton, M., Rezazadeh, A.: An interval-based approach to mod-
elling time in Event-B. In: Dastani, M., Sirjani, M. (eds.) FSEN 2015. LNCS,
vol. 9392, pp. 292–307. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24644-4 20

11. Vain, J., Tsiopoulos, L., Boström, P.: Integrating refinement-based methods for
developing timed systems. In: From Action Systems to Distributed Systems, pp.
199–214. Chapman and Hall/CRC (2016)

12. Zhu, C., Butler, M., Cirstea, C.: Refinement of timing constraints for concurrent
tasks with scheduling. In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.)
ABZ 2018. LNCS, vol. 10817, pp. 219–233. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-91271-4 15

13. Zhu, C., Butler, M., Cirstea, C.: Semantics of real-time trigger-response properties
in Event-B. In: 2018 International Symposium on Theoretical Aspects of Software
Engineering (TASE), pp. 150–155. IEEE (2018)

https://doi.org/10.1007/11955757_15
https://doi.org/10.1007/978-3-319-24644-4_20
https://doi.org/10.1007/978-3-319-24644-4_20
https://doi.org/10.1007/978-3-319-91271-4_15
https://doi.org/10.1007/978-3-319-91271-4_15

Formal Distributed Protocol Development
for Reservation of Railway Sections

Paulius Stankaitis1(B), Alexei Iliasov1, Tsutomu Kobayashi2,
Yamine Aı̈t-Ameur3, Fuyuki Ishikawa2, and Alexander Romanovsky1

1 School of Computing, Newcastle University, Newcastle upon Tyne, UK
p.stankaitis@newcastle.ac.uk

2 National Institute of Informatics, Tokyo, Japan
3 INPT–ENSEEIHT, 2 Rue Charles Camichel, Toulouse, France

Abstract. The decentralisation of railway signalling systems has the
potential to increase railway network capacity, availability and reduce
maintenance costs. Given the safety-critical nature of railway signalling
and the complexity of novel distributed signalling solutions, their safety
should be guaranteed by using thorough system validation methods. In
this paper, we present a rigorous formal development and verification of a
distributed protocol for reservation of railway sections, which we believe
could deliver benefits of a decentralised signalling while ensuring safety
and liveness properties. For the formal distributed protocol development
and verification, we devised a multifaceted framework, which aims to
reduce modelling and verification effort, while still providing comple-
mentary techniques to study protocol from all relevant perspectives.

Keywords: Formal verification · Distributed resource allocation ·
Performance analysis · Event-B · PRISM model checker · Railway
signalling

1 Introduction

Railway signalling is a safety-critical system whose responsibility is to guaran-
tee a safe and efficient operation of railway networks. In recent decades there
have been proposals to utilize distributed system concepts (e.g. [13,24]) in rail-
way signalling as a way to increase railway network capacity and reduce main-
tenance costs. These emerging distributed railway signalling concepts propose
using a radio-based communication technology to decentralise contemporaneous
signalling systems1. Because of their complex concurrent behaviour, distributed
systems are notoriously difficult to validate and this could curtail the develop-
ment and deployment of novel distributed signalling solutions.

In recent years there has been a push (e.g. [12,22]) by the industry with a
strong focus on distributed systems to incorporate formal methods into their
1 A single signalling computer may be responsible for controlling tens of routes (case

studies [18,20]) whereas novel distributed systems would reduce that number.

c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 203–219, 2020.
https://doi.org/10.1007/978-3-030-48077-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_14&domain=pdf
https://doi.org/10.1007/978-3-030-48077-6_14

204 P. Stankaitis et al.

system development processes to improve system assurance and time-to-market.
Yet, despite that for years the railway domain has proved to be a fruitful area for
applying various formal methods [3,7], considerably less has been done in apply-
ing them for distributed railway systems by industry and academia. Therefore,
the long-term aim of our research is to lower the effort the barriers to apply-
ing formal methods in developing correct-by-construction distributed signalling
systems.

In order to manage the modelling and verification complexity of distributed
protocols we are working towards an integrated multifaceted methodology, which
is based on three concepts: stepwise renement, communication modelling pat-
terns and validation through proofs. In spite of advancements in proof automa-
tion, it might be too onerous to mathematically prove the model in early devel-
opment stages. Therefore, it is also desirable that the framework should sup-
port model animation and scenario validation. It is also paramount that the
framework should support quantitative evaluation; as stated by Fantechi and
Haxthausen [10], distributed signalling solutions will only be adopted in prac-
tice if system availability is demonstrated. The authors (as discussed in [10])
of related researches did not consider liveness and fairness properties, which
directly affect system availability. In our proposed multifaceted methodology we
integrate stochastic simulators for quantitative analysis.

In this paper, we present a research, which uses the proposed methodology
to formally develop and verify a distributed railway signalling protocol, which
would deliver decentralised signalling benefits, while meeting high safety require-
ments. The developed distributed signalling protocol is based on serialisability
and is inspired by protocols used in transactions processing [4,8,11] in centralised
and distributed database systems. The main objective of our protocol is to guar-
antee mutual exclusion of railway sections while ensuring systems liveness. In
a nutshell, our key contributions are the formally proved distributed railway
section allocation protocol inspired by past protocols for database systems and
the formalisation of the multifaceted verification framework.

Related Work. In Fantechi and Haxthausen [10] the authors formalise the rail-
way interlocking problem as a distributed mutual exclusion problem and discuss
the related literature on distributed interlocking (e.g. [9,13,24]). In principle all
railway models share similar high-level safety, liveness and fairness requirements,
as summarised on page 2 in [10]. One difference between our work and the studies
overviewed in [10] is the interlocking engineering concept and the system model
(e.g. allowed message delays). Another difference is the formal consideration of
liveness and fairness requirements. In our work we not only prove the safety
properties of the protocol, but also ensure systems liveness, fairness and analyse
performance.

A similar distributed signalling concept is presented as a case study in [1].
The authors verified their system design via a simulation approach and only
considered scenarios with up to two trains. In our verification approach we prove
the distributed signalling system mathematically and hence guarantee its safety
for any number of trains. In the paper by Morley [21] the author formally proved

Distributed Protocol for Railway Resource Allocation Verification 205

a distributed protocol, which is used in the real-world railway signalling systems
to reserve a route, which is jointly controlled by adjacent signalling systems.
Even though, the distributed signalling concepts of our works are different, the
effects of message delays to the safety were considered in both works.

The rest of the paper is organised as follows. Section 2 outlines the motivation
for developing the protocol, semi-formally describes its functionality, elicits the
requirements and introduces its specifications and the properties to be proved.
Section 3 further discusses the integrated methodology we are proposing. The
following section briefly discusses formal model development and also provides
technical details on property verication and performance analysis. In the last
section we summarise our work and discuss future work directions.

2 Distributed Resource Allocation Model and Protocol

The distributed railway signalling can increase networks capacity (as trains could
run closer), improve systems agility to delays and possibly reduce repair costs.
On the other hand, an increased system complexity and a safety-critical (SIL4)

nature requires the highest level of safety assurance. In order to apply formal
methods one must clearly state system requirements and specifications. In the
following subsections we describe an abstract model of the distributed railway
system and its requirements as well as the stage1 of the distributed protocol,
which guarantees the safety and liveness of the distributed system.

2.1 High-Level Distributed System Model and Requirements

We abstract the railway model and instead of trains, routes and switches our
system model consists of agents and resources (resources controllers). The sys-
tem model permits message exchanges only between agents and resources, and
messages can be delayed. Each resource controller has an associated queue-like
memory, where agents allocation order can be stored. A resource also has a
promise (ppt) and read pointers (rpt), which respectively indicate the currently
available slot in the queue and the reserved slot (with an associated agent) that
currently uses the resource. An agent has an objective, which is a collection of
resources an agent will attempt to reserve (all at the same time) before using
and eventually releasing them.

SAF1 | A resource will not be allocated to different agents at the same time.
SAF2 | An agent will not use a resource until all requested resources are allo-
cated.
LIV1 | An agent must be eventually allocated requested set of resources.
LIV2 | Resource allocation must be guaranteed in the presence of message
delays.

Requirements 1: High-level systems safety and liveness requirements

206 P. Stankaitis et al.

The main objective of the protocol is to enable safe and deadlock-free dis-
tributed atomic reservation of collection of resources. Where by a safe resource
reservation we mean that no two different agents have reserved the same resource
at the same time. The protocol must also guarantee that each agent eventually
gets all requested resources - partial request satisfaction is not permitted. The
main high-level safety and liveness requirements of the distributed system are
expressed in Requirements 1.

The following section attempts to justify the need for an adequate distribute
protocol by discussing problematic distributed resource allocation scenarios.

2.2 Problematic Distributed Resource Allocation Scenarios

Let us consider Scenarios 1–2 (visualised in Fig. 1) to see how requirement LIV1

could not be guaranteed (while ensuring SAF2) without an adequate distributed
resource allocation protocol.

Scenario 1. In this scenario, agents a0 and a1 are attempting to reserve the
same set of resources {r0, r1}. Agents start by firstly sending request messages
to both resources. Once a resource receives a request message, it replies with the
current value of the promised pointer (ppt(rk)) and then increments the ppt(rk).
For instance, in this scenario, resource r0 firstly received a request message from
agent a0 and thus replied with the value ppt(r0) = 0, which was then followed
by a message to a1 with an incremented ppt(r0) value of 1. In Figure, we denote
a*n as the ppt(rk) value sent to an. Request messages at resource r1 have been
received and replied in the opposite order.

In this preliminary protocol, after an agent receives promised pointer values
from all requested resources, it sends messages to requested resources to lock them
at the promised queue-slot. In this scenario, agent a0 was promised queue-slots
{(r0, 0), (r1, 1)} while a1 queue-slots {(r0, 1), (r1, 0)}. If agents would lock these
exact queue-slots, resource r0 would allow a0 to use it first, while r1 would con-
currently allow a1. The distributed system would deadlock and fail to satisfy LIV2

requirement as both agents would wait for the second use message to ensure SAF2.

a0 a1

r0 r1

a0 a1

r0 r1

slot r0
0 a∗

0

1 a∗
1

dl0 2 a0
dl1 3 a1

·
n

slot r1
0 a∗

1

1 a∗
0

2 a0
3 a1
·
n

slot r0
0 a∗

0

1 a∗
0

2
3
·
n

slot r1
dl0 0 a1

1 a∗
0

2 a∗
0

3
·
n

Fig. 1. Problematic scenarios: Scenario 1 (left) and Scenario 2 (right)

Distributed Protocol for Railway Resource Allocation Verification 207

In order to prevent the cross-blocking type of deadlocks, an agent should
repeatedly re-request the same set of resources (and not lock them) until all
received promised queue slot values are the same. We define a process of an
agent attempting to receive the same promised queue slots as an agent forming
a distributed lane (dl).

A distributed lane of agent an is dl(an) = {(rk, s), (rk+1, s), . . . , (rk+m, s)},
where {rk, rk+1, . . . , rk+m} are all resources requested by agent an and s is the
queue slot value promised by all requested resources. Important to note, that
this solution relies on the assumption, that there is a non-zero probability of
distinct messages arriving at the same destination in different orders, even if
they are simultaneously sent by different sources.

The modified situation is depicted in Scenario 1, where, after agents {a0, a1}
initially receiving {(r0, 0), (r1, 1)} and {(r0, 1), (r1, 0)} slots, mutually re-request
resources again. This time they receive {(r0, 2), (r1, 2)} and {(r0, 3), (r1, 3)} slots,
and are able to form distributed lanes dl0(a0) and dl1(a1).

Scenario 2. However, simply re-requesting the same resources might result in a
different problem. In Scenario 2, agent a1 has requested and has been allocated
a single resource r1 which in turn modified ppt(r1) to 1 while ppt(r0) remained
0. If another agent a0 attempts to reserve resources {r0, r1}, it will never receive
the same promised pointer values from both resources, and hence, will not be
able to lock them.

To address the two issue described above, we developed a two-stage protocol,
where the stage1 of the distributed protocol specifies how an agent forms a dis-
tributed lane. Stage2 of the protocol, which is out of this paper scope, addresses
other deadlock scenarios, which can occur after agents form distributed lanes.
In the following subsection we semi-formally describe the stage1 of the protocol.

2.3 Semi-formal Description of the Stage1

An agent, which intends to reserve a set of resources starts by sending request
messages to resources. The messages are sent to those resources which are part
of agents current objective. In the provided pseudocode excerpt, we first denote
relations sent requests and objective where they are mappings from agents to
resource collections (ln. 1–3 Algorithm 1). The messages request are sent by an
agent an to a resource rk (rk ∈ objective[an]) until sent requests[an] = objective[an]
(images are equal). When a resource rk receives a request message from an agent
an it responds with a reply message which contains the current promised pointer
value of resource ppt(rk) to that agent and increments the promised pointer (ln.
2–4 Algorithm 2). After sending all request messages an agent waits until reply
messages are received from requested resources and then makes a decision.

208 P. Stankaitis et al.

Algorithm 1 Agent stage1 communication algorithm
1: while sent requests[an] �= objective[an] do
2: request(an) → rk sending request message from agent an to resource rk
3: end
4: wait until received replies[an] = objective[an]
5: while |replies[an]| �= 1 do cardinality of agents received slot indices
6: m′ = max(replies[an]) + 1
7: sent srequests[an]′ = ∅ reset sent special request messages buffer
8: received replies[an]′ = ∅ reset received reply messages buffer
9: while sent srequests[an] �= objective[an] do
10: srequest(an,m) → rk
11: end
12: wait until received replies[an] = objective[an]
13: end
14: while sent write[an] �= objective[an] do
15: m′ = max(replies[an])
16: write(an,m) → rk
17: end The end of stage1 of the protocol.

When all received promised pointer values are the same (a distributed lane
can be formed) an agent completes the stage1 by sending write, to all requested
resources, messages which contain the negotiated index (ln. 14–17 Algorithm 1).
But if one of the received promised pointer values is different an agent will start a
renegotiation cycle (ln 5–13 Algorithm 1). By sending a srequest messages which
contain a desired slot index to resources. A desired index is computed by taking
the maximum of all received promised pointer values and adding a constant (one
is sufficient) - ln. 6 Algorithm 1. A resource will reply to srequest message with
the higher value of the current ppt(rk) or received srequest message value and will
update the promised pointer (ln. 5–7 Algorithm 2). After sending all srequest
messages, an agent waits for reply messages and then restarts the loop if received
slot indices are not the same.

Algorithm 2 Resource stage1 communication algorithm
1: switch received message do
2: case request(an)
3: reply(ppt(rk), rk) → an
4: ppt(rk)′ = ppt(rk) + 1
5: case srequest(an, n)
6: reply(max(ppt(rk), n), rk) → an
7: ppt(rk)′ = max(ppt(rk), n) + 1

SAF3 | An agent will not send write (form a distributed lane) messages until
all receive promised pointer values are identical.
SAF4 |Agents with overlapping resource objectives will negotiate distributed
lanes with different index.
LIV3 | An agent will eventually negotiate a distributed lane.

Distributed Protocol for Railway Resource Allocation Verification 209

Requirements 2: Low-level protocol stage1 safety and liveness requirements
It is important to note that the stage1 protocol solution to the described

deadlock scenarios has a stochastic nature and one needs to guarantee that a
desirable state is probabilistically reachable. In Requirements 2 we summarise
requirements for the stage1 of the protocol.

After an agent completes stage1 and thus negotiates a distributed lane it will
start protocol stage2 to prevent other deadlock scenarios. Predominantly because
of papers verification focus towards properties from stage1 (all complimentary
verification/analysis techniques used) we provide protocol stage2 description in
the online appendix2.

3 Multifaceted Modelling and Verification Framework

As stated before, the long-term objectives of our research are to reduce mod-
elling and verification effort of distributed systems and to have a multifaceted
framework to study protocols from all relevant perspectives. In the introduction,
we defined key formal concepts the framework should rely on and in the following
section we discussed protocol requirements we need to guarantee.

The following subsections proposes an engineering process with different for-
mal techniques each of which is efficient to handle parts of above requirements
and help to manage modelling and verification complexity.

3.1 Formalised Multifaceted Verification Framework

For any adequate formal system development, system requirements should be
clearly stated, and so, this is the first step (Step 1 in Fig. 2) in the modelling
process. Currently, we do not suggest or provide a specific structural approach
for defining distributed system requirements. The next step (Step 2) in the pro-
cess is developing and verifying a pivotal formal model. The purpose of formally
modelling a distributed system is to have a formal artefact, which can be ani-
mated, analysed and formally verified.

Requirements

Event-B

ProB ATPs PRISM

Stochastic Sim.

Step 2

Step 1

Step 3

Fig. 2. Multifaceted modelling and verification framework

2 A complete protocol description and formal models can be found at http://stankaitis.
uk/2019/02/.

http://stankaitis.uk/2019/02/
http://stankaitis.uk/2019/02/

210 P. Stankaitis et al.

For the development and verification of pivotal functional system models
we selected the Event-B [2] specification language, which has previously been
successfully used for modelling and verification of various distributed protocols
[5,15,16]. The Event-B method provides an expressive modelling language, flex-
ible refinement mechanism and is also proof driven, meaning model correctness
is demonstrated by generating and discharging proof obligations with available
automated theorem provers [6,17]. The method is supported by tools such as
ProB [19] which enable animating and model-checking a model. On the other
hand, the Event-B method does not have an adequate probabilistic reasoning
support, which, for example, was essential for verifying the distributed railway
section reservation protocol. Therefore, it was decided to integrate the well-
known PRISM [14] stochastic model checker into the framework, so stochastic
system’s properties can be verified.

The last step (Step 3) in the proposed engineering process is analysing a
developed distributed system’s performance. For that, we have implemented a
high-fidelity protocol simulator which could help to evaluate protocols under
normal or stressed conditions. Following subsections provide more detail on how
each of the formal techniques would be used in the development and verification
of a distributed protocol.

3.2 Step 2: Developing Functional Pivot Models in Event-B

A formal functional Event-B model can have a multitude of uses, but the main
application is for formally proving properties about the distributed system. The
completed distributed system’s model in Step 2 should cover all requirements
and specifications, and would be considered correct when all generated proof
obligations are proved.

The model development approach we propose is a rather standard and starts
with the abstract model which formally specifies the objective of the distributed
protocol. In fact, distributed aspects of the system are ignored at this model level
and the abstract model considers a centralised configuration. The abstract model
is then iteratively refined by introducing more details about the distributed
protocol, primarily by modelling communication aspects. To reduce modelling
effort we previously developed communication modelling patterns and described
a generic model refinement plan in [23]. A key aspect of our methodology is
the scenario validation and analysis. Particularly, in early protocol development
stages, it might be too onerous to verify a model only to discover design mistakes.
To facilitate design exploration we apply animation and model-checking enabled
by ProB. Nonetheless, the final (concrete) model should be proved by adding
invariants to the model and proving generated proof obligations with available
automated theorem provers.

3.3 Step 2: Proving Stochastic Properties with PRISM

As the distributed signalling protocol had a stochastic nature it was important
to formally demonstrate that a satisfying state could be reached. Probabilistic

Distributed Protocol for Railway Resource Allocation Verification 211

or liveness properties are hard to formalise and prove in the Event-B method.
Therefore, it was decided to prove progress of the protocol outside of Event-B
by redeveloping part of the model (stage1) in the PRISM model checker.

The drawback of using PRISM model checker, if a bounded problem abstrac-
tion cannot be found, the verification is limited to bounded models. As we could
not find protocol’s stage1 abstraction, we created a skeleton model, which then
could be instantiated to model specific scenarios of stage1 with n agents, m
resources and other initial conditions. Additionally, we developed a model gen-
erator, which can automatically instantiate the skeleton model to capture a
random scenario and run probabilistic verification conditions.

3.4 Step 3: Analysing System’s Performance

With Event-B and PRISM we aim to demonstrate that the protocol addresses
the formulated requirements but it is necessary in our application domain to
understand how the protocol is going to perform under various conditions if it
were deployed in a real system. To conduct such a simulation we have imple-
mented a high fidelity protocol simulator that can be populated with any number
of resources and agents while realising any conceivable agents’ goal formation
and message delivery policies.

The simulator is parametrised with a function of probability of picking a
certain message out of a pool of available messages. The probability function
is itself parametrised by message source, destination, timestamp and type. The
simulation would help to answer how fast, in terms of vital steps such as messages
sent, a protocol’s stage1 can be completed and how the performance is affected
by messages delays. With function D we can simulate slow agents and resources,
fair, arbitrary and unfair delivery policies, agents that operate much faster than
others and so on.

4 Formal Protocol Modelling, Verification and Analysis

In this section we present the application of previously introduced modeling and
verification framework for developing distributed railway signalling protocol. In
Sect. 2 we defined protocol’s requirements (Step 1), thus following subsections
focuses on formal methodology aspects.

4.1 Step 2. Formal Protocol Model Development in Event-B

We apply the Event-B formalism to develop a high-fidelity functional model and
prove the protocol functional correctness requirements. We follow the modelling
process presented in Sect. 3.2. Important to note that the protocol model was
redeveloped multiple times as various deadlock scenarios were found with ProB
animator and model-checker. Below, we overview the final (verified) model.

Modelling was started by creating an abstract model context which contains
constants, given sets and uninterpreted functions. In the abstract context, we

212 P. Stankaitis et al.

introduced three (finite) sets, to respectively represent agents (agt), resources
(res) and objectives (obj). The context also contains an objective function which
is a mapping from objectives to a collection of resources (ob ∈ obj → P(res)) and
an enumerated set for agents status counter.

The dynamic protocol parts, such as messages exchanges, are modelled as
variables and events computing next variable states and contained in a machine.
According to the proposed model development process, the initial machine
(abstract) should summarise the objective of protocol, which is an agent complet-
ing an objective (locking all necessary resources). To capture that, the abstract
protocol machine contains two events, respectively modelling an agent locking
and then releasing a free objective (ob ∈ obj). The abstract model is refined by
mostly modelling communication aspects of the distributed signalling protocol
and for that we use a backward unfolding style where the next refinement step
introduces preceding protocol step. Below, we overview the refinement chain and
properties we proved at that modelling stage.

Refinement 1 (Abstract ext.). In this refinement we introduce resources into
the model and now an agent tries to fulfill the objective by locking resources.
Previous two events (lock/release) are now decomposed to two for each and
capture iterative locking and releasing of resources.

Refinement 2. The abstract models are firstly refined with stage2 part of the
protocol. In the refinement, r 2, we introduced lock, response and release mes-
sages and associated events into the model. In this step we also demonstrated
that the protocol stage2 ensures safe distributed resource reservation by proving
an invariant. The invariant states that no two agents will be both at resource
consuming stage if both requested intersecting collections of resources.

Refinement 3. Model r 3, is the bridge between protocol stages stage1 and
stage2 and introduces two new messages write and pready into the model.

Refinement 4. The final refinement step - r 4 - models stage1 of the distributed
protocol which is responsible for creating distributed lanes. Remaining messages
request, reply, srequest and associated events are introduced together with the
distributed lane data structure. In this refinement we prove that distributed
lanes are correctly formed (req. SAF3-4).

4.2 Step 2: Proving Functional Correctness Properties in Event-B

As shown in Sect. 2.2 (Scenarios 1 - 2) high-level system’s requirements can
only be met if an agent invariably and correctly forms a distributed lane. The
probabilistic lane forming eventuality (LIV3) is discussed separately while in the
following paragraphs we focus on the proof regarding requirements SAF3-4.

SAF3 is required to ensure that agent’s resource objectives are not satisfied or
satisfied on full. The model addresses this via event guards restricting enabling
states of the event that generates an outgoing write message. To cross-check this
implementation we add an invariant that directly shows that SAF3 is maintained

Distributed Protocol for Railway Resource Allocation Verification 213

in the model. For illustrative purposes we focus on details of verifying a slightly
more interesting case of SAF4 and assume that SAF3 is proven.

Requirement SAF4 addresses potential cross-blocking deadlocks or resource
double locking due to distributed lane overriding. The strategy is to prove the
requirement is to show that agents that are interested in at least one common
resource (related) always form distributed lanes with differing indices. We start
by assuming that agents only form distributed lanes if all received indices are
the same (proved as SAF3). Then, if a resource (or resources) shared between
any two related agents send unique promised pointer values to these agents,
these indices will be distributed lane deciders as all other indices from different
resources must be the same to form a distributed lane. Hence, to prove SAF4 it is
enough to show that each resource replies to a request or special request message
with a unique promised pointer value.

resource reply general =̂
ANY

rq, rp
WHERE

grd1 rq ∈ req take a sent request message
grd2 rp ∈ REQ \ rep create a new reply message
grd3 repd(rp) = reqs(rq) destination of reply message is source of request message
grd4 reps(rp) = reqd(rq) source of reply message is destination of request message
grd5 repn(rp) = ppt(reps(rp)) reply message contains promised pointer

THEN
act1 rep := rep ∪ {rp} add new message to reply channel
act2 req := req \ {rq} remove request message from request channel
act3 ppt(res) := ppt(res) + 1 increment promised pointer
act4 hisppt(res) := hisppt(res) �− {(hiswr(res)) �→ ppt(res)}
act5 hiswr(res) := hiswr(res) + 1

END

Fig. 3. Event-B model excerpt of a resource sending a reply message (Color figure
online)

To prove that all resources replies to a request or special request message
with a unique promised pointer value, we firstly introduced a history variable
hisppt of type hisppt ∈ (res → (N �→ N)) into our model. The main idea behind
the history variable was to chronologically store the promised pointer values
sent by a resource. We also introduced a time-stamp variable hiswr of the type
hiswr ∈ res → N to chronologically order the promised pointer values stored in
the history variable.

After introducing history variables, we modified events resource reply general
and resource reply special, which in the protocol update the promised pointer
variables, by adding two new actions (see Fig. 3). The first action act4 updates
the history variable with the promised pointer value (ppt(res)) that was sent

214 P. Stankaitis et al.

to the agent at the time stamp (hiswr(res)). The second action, act5, simply
increments resource’s res time-stamp (hiswr(res)) variable.

inv saf 4 ∀r, n1, n2 · r ∈ RES ∧ n1, n2 ∈ dom(hisppt(r)) ∧ n1 < n2 ⇒
hisppt(r)(n1) < hisppt(r)(n2)

Action act4 updates a history variable for a resource res with the current write
stamp and promised pointer (ppt(res)) value sent. The next action act5 simply
updates the resource’s write stamp. We can then add the main invariant to
prove (inv saf 4) which states that if we take any two entries n1, n2 of the
history variable for the same resource where one is larger, then that larger entry
should have larger promised pointer value.

inv his ppt ∀res· (hiswr(res) = 0 ∧ hisppt(res) = ∅)
∨(dom(hisppt(res)) = 0 .. hiswr(res) − 1

∧ hisppt(res)(hiswr(res) − 1) = ppt(res) − 1)

To prove that resource reply {general, special} preserve inv saf 4, the follow-
ing properties play the key role: (1) the domain of hisppt (i.e., ‘indices’ of hisppt) is
{0, . . . , hiswr − 1}, (2) hisppt(hiswr − 1) < hisppt(hiswr). Property (2) holds because
hisppt(hiswr) is the maximum of promised pointer (ppt) and special request slot
number and promised pointer is incremented as resource reply {general, special}
occurs. We also specified these properties as an invariant (inv his ppt) and
proved they are preserved by the events which helped to prove inv saf 4.

Proof Statistics. In Table 1 we provide an overall proof statistics of the Event-
B protocol model which may be used as a metric for models complexity. The
majority of the generated proof obligations were automatically discharged with
available solvers and even a large fraction of interactive proofs required minimum
number of steps. We believe that a high proof automation was due to modelling
patterns [23] use and SMT-based verification support [6,17].

Table 1. Event-B protocol model proof statistics

Model No. of POs Aut. discharged Int. discharged

context c0 0 0 0

context mes. 9 9 0

machine m0 12 12 0

machine m1 23 21 2

machine m2 59 43 16

machine m3 43 32 11

machine m4 103 57 46

Total 249 174 75

Distributed Protocol for Railway Resource Allocation Verification 215

4.3 Step 2: Proving Liveness (req. LIV3) with PRISM

In this subsection, we discuss stochastic model checking results with which we
intend to prove level that LIV3 requirement is preserved. In particular, we focus
on showing that LIV3 requirement is ensured in Scenario 2 (Sect. 2.2).

In order to demonstrate that LIV3 requirement holds in Scenario 2 (Sect. 2.2)
we used stage1 protocol’s skeleton PRISM model to replicate Scenario 2. In this
experiment we were interested in observing the effects a promised pointer offset
has on an probability of agent forming a distributed lane while the upper limit of
the promised pointer is increased3 (n in Scenario 2). Early experiments showed
that verification would not scale well (several hours for a single data-point) if we
would increase the number of resources and agents above two resources and three
agents (each agent trying to reserve both resources) so we kept these parameters
constant.

For each scenario, we would run a quantitative property: P = ? [F dist0 > -1]
which asks what is the probability of an agent negotiating a distributed lane until
the upper promised pointer limit is reached. The three curves (red, green and
violet) in Fig. 4 show the effect a promised pointer offset has on negotiation
probability as queue depth is increased. Results suggest that increasing the off-
set reduces the probability of negotiating a distributed lane as queue depth is
increased, but the probability still approaches one as the number of rounds is
increased (Fig. 4).

Fig. 4. Scenario 2 with varied resource promised pointer offset and queue depth.

To further see the effects of the offset, we considered a different experiment
where the same quantitative property would be run when the number of possible
renegotiations value is kept constant and offset is increased (light blue plot).

3 Instead, of ppt upper limit we decided plot the probability against the queue depth,
(offset - n) as it directly shows how many times an agent can renegotiate resources.

216 P. Stankaitis et al.

Results indicate that offset has only effect until a specific threshold and after
that the probability of agent negotiating a distributed lane is not affected by
the offset. These results suggest that the situation in Scenario 2 does not violate
LIV3 requirement as distributed lanes can be negotiated.

4.4 Step 3: Analysing Performance

The goal of this part is to study the protocol performance under various stress
conditions and thus provide assurances of its applicability in real life situations.
To build simulation, we simply capture protocol’s stage1 behaviour using a pro-
gram. We are also able to obtain bounds on the number of messages required to
form lanes in different setups. This can be directly translated into real-life time
bounds on the basis of point to point transmission times.

Simulation Construction. Simulation is setup as a collection of actors of two
types - agents and resources - and an orchestration component observing and
recording message passing among the actors. A message is said to be in transit
as soon as it is created by an actor. Every act of message receipt (and receipt
only) advances the simulation (world) clock by one unit. Hence, any number
of computations leading to message creation can occur in parallel but message
delivery is sequential. To model delays we define a function that probabilistically
picks a message to be delivered among all the messages currently in transit. A
special message, called skip, is circulated to simulate idle passage of time. This
message is resent immediately upon receipt by an implicit idle actor.

Fig. 5. Time to form all or first lanes, logarithmic scale.

Let M be set of all messages that can be generated by agents and resources.
Also, let skip /∈ M denote the skip message and M

′ = M ∪ {skip}. By its
structure, set M

′ is countable (each message identified by unique integer) and
one can define a measure space over M

′. Let D signify the probability that
some message m ∈ M ⊆ M

′ from message pool M is selected for reception.
We shall define D via the current message pool, the attributes of m such

Distributed Protocol for Railway Resource Allocation Verification 217

its source, destination, time stamp and protocol stage, and the world time:
D = D(M,m, t) = D(M,m.s,m.d,m.c,m.o, t). Here M is the set of available
message, m.s and m.d are the message source and destination agent or resource,
m.c is the message type (e.g., WRITE), m.o is the message timestamp (the point
of its creation) and t is the world clock. Defining differing probabilities D we are
able to address most scenarios of interest.

Uniform Distribution. With D(M,m, t) = card(M)−1 the simulator picks
a message from M using a uniform distribution. It is an artificial setting as
the time in transit bears no influence over the probability of arrival. Counter-
intuitively, the said probability may decrease with the passage of time when
new messages are created quicker than they are delivered. The skip message has
equal probability with the rest so the system “speeds up” when M is large. The
plots in Fig. 5 shows how the protocol performance changes when the number of
resources (Resource line), agents (Agent lines), and resources an agent attempts
to acquire (Agent goal) increase. We plot separately time to form all lanes and
any first lane. The values plotted are averaged over 10000 runs.

5 Conclusions and Future Work

In this paper we proposed a multifaceted framework with which we aim to reduce
modelling and verification of distributed (railway signalling) systems. The frame-
work was applied in the development of the novel distributed signalling protocol.
Starting only with high-level system requirements we developed an early formal
protocol prototype which with the help of ProB was refined as subtle deadlock
scenarios were discovered. This in part is the advantage of a stepwise develop-
ment supported by Event-B as complex distributed models can be decomposed
into smaller problems and errors found earlier. The stepwise distributed pro-
tocol development as also shown before [5,15,16] together with adequate tools
[6,17] helped to achieve fairly high verification automation. On the other hand,
protocol verification was complicated by the need of stochastic reasoning and
not adequate Event-B support for reasoning about probabilistic properties. The
current solution relied on a model redevelopment in stochastic model checker
PRISM which did not scale well for verification of larger scenarios. As a future
direction it is essential to address this problem by most likely improving stochas-
tic reasoning in Event-B. In the future we would also like to a much closer tool
integration and support an automatic translation to PRISM and the stochastic
simulator.

References

1. INTO-CPS Project. Case Studies 2, Deliverable D1.2. Technical report, November
2016. http://projects.au.dk/fileadmin/D1.2a Case Studies.pdf

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York (2013)

http://projects.au.dk/fileadmin/D1.2a_Case_Studies.pdf

218 P. Stankaitis et al.

3. Behm, P., Benoit, P., Faivre, A., Meynadier, J.-M.: Météor: a successful application
of B in a large project. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999.
LNCS, vol. 1708, pp. 369–387. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48119-2 22

4. Bernstein, P.A., Shipman, D.W., Rothnie Jr., J.B.: Concurrency control in a Sys-
tem For Distributed Databases (SDD-1). ACM Trans. Database Syst. 5(1), 18–51
(1980)

5. Cansell, D., Méry, D.: Formal and incremental construction of distributed algo-
rithms: on the distributed reference counting algorithm. Theor. Comput. Sci.
364(3), 318–337 (2006)

6. Déharbe, D., Fontaine, P., Guyot, Y., Voisin, L.: Integrating SMT solvers in rodin.
Sci. Comput. Program. 94(P2), 130–143 (2014)

7. Essamé, D., Dollé, D.: B in large-scale projects: the canarsie line CBTC experience.
In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 252–254.
Springer, Heidelberg (2006). https://doi.org/10.1007/11955757 21

8. Eswaran, K.P., Gray, J., Lorie, R.A., Traiger, I.L.: The notions of consistency and
predicate locks in a database system. Commun. ACM 19(11), 624–633 (1976)

9. Fantechi, A., Haxthausen, A.E., Nielsen, M.B.R.: Model checking geographically
distributed interlocking systems using UMC. In: 25th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing (PDP), pp.
278–286, March 2017

10. Fantechi, A., Haxthausen, A.E.: Safety Interlocking as a distributed mutual exclu-
sion problem. In: Howar, F., Barnat, J. (eds.) FMICS 2018. LNCS, vol. 11119, pp.
52–66. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00244-2 4

11. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques, 1st edn.
Morgan Kaufmann Publishers Inc., San Francisco (1992)

12. Hawblitzel, C., et al.: IronFleet: proving safety and liveness of practical distributed
systems. Commun. ACM 60(7), 83–92 (2017)

13. Haxthausen, A.E., Peleska, J.: Formal development and verification of a distributed
railway control system. IEEE Trans. Softw. Eng. 26(8), 687–701 (2000)

14. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: a tool for automatic
verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS
2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006). https://doi.org/
10.1007/11691372 29

15. Hoang, T.S., Kuruma, H., Basin, D., Abrial, J.R.: Developing topology discovery
in event-B. Sci. Comput. Program. 74(11), 879–899 (2009)

16. Iliasov, A., Laibinis, L., Troubitsyna, E., Romanovsky, A.: Formal derivation of a
distributed program in event B. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS,
vol. 6991, pp. 420–436. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-24559-6 29

17. Iliasov, A., Stankaitis, P., Adjepon-Yamoah, D., Romanovsky, A.: Rodin platform
why3 plug-in. In: Butler, M., Schewe, K.-D., Mashkoor, A., Biro, M. (eds.) ABZ
2016. LNCS, vol. 9675, pp. 275–281. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-33600-8 21

18. Iliasov, A., Taylor, D., Laibinis, L., Romanovsky, A.: Formal verification of sig-
nalling programs with SafeCap. In: Gallina, B., Skavhaug, A., Bitsch, F. (eds.)
SAFECOMP 2018. LNCS, vol. 11093, pp. 91–106. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-99130-6 7

19. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45236-2 46

https://doi.org/10.1007/3-540-48119-2_22
https://doi.org/10.1007/3-540-48119-2_22
https://doi.org/10.1007/11955757_21
https://doi.org/10.1007/978-3-030-00244-2_4
https://doi.org/10.1007/11691372_29
https://doi.org/10.1007/11691372_29
https://doi.org/10.1007/978-3-642-24559-6_29
https://doi.org/10.1007/978-3-642-24559-6_29
https://doi.org/10.1007/978-3-319-33600-8_21
https://doi.org/10.1007/978-3-319-33600-8_21
https://doi.org/10.1007/978-3-319-99130-6_7
https://doi.org/10.1007/978-3-319-99130-6_7
https://doi.org/10.1007/978-3-540-45236-2_46

Distributed Protocol for Railway Resource Allocation Verification 219

20. Limbrée, C., Cappart, Q., Pecheur, C., Tonetta, S.: Verification of railway inter-
locking - compositional approach with OCRA. In: Lecomte, T., Pinger, R.,
Romanovsky, A. (eds.) RSSRail 2016. LNCS, vol. 9707, pp. 134–149. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-33951-1 10

21. Morley, M.: Safety assurance in interlocking design. Ph.D. thesis, University of
Edinburgh, College of Science and Engineering, School of Informatics (1996)

22. Newcombe, C.: Why Amazon chose TLA+. In: Ait Ameur, Y., Schewe, K.D. (eds.)
ABZ 2014. LNCS, vol. 8477, pp. 25–39. Springer, Berlin (2014). https://doi.org/
10.1007/978-3-662-43652-3 3

23. Stankaitis, P., Iliasov, A., Ait-Ameur, Y., Kobayashi, T., Ishikawa, F.,
Romanovsky, A.: A refinement based method for developing distributed protocols.
In: IEEE 19th International Symposium on High Assurance Systems Engineering
(HASE), pp. 90–97, January 2019

24. Whitwam, F., Kanner, A.: Control of automatic guided vehicles without wayside
interlocking. Patent US 20120323411, A1 (2012)

https://doi.org/10.1007/978-3-319-33951-1_10
https://doi.org/10.1007/978-3-662-43652-3_3
https://doi.org/10.1007/978-3-662-43652-3_3

Short Articles

Verifying SGAC Access Control Policies:
A Comparison of ProB, Alloy and Z3

Diego de Azevedo Oliveira(B) and Marc Frappier(B)

Université de Sherbrooke, Québec, Canada
{dead1401,marc.frappier}@usherbrooke.ca

Abstract. This paper describes the formalisation of SGAC access con-
trol policies using Z3 and then we compare the performance with ProB
and Alloy. SGAC is an attribute-based, fine-grain access control model
that uses acyclic subject and resource graphs to provide rule inheritance
and streamline policy specification. To ensure patient privacy and safety,
four types of properties are checked: accessibility, availability, contextu-
ality and rule effectiveness. Automatic translation of SGAC policies into
each specification language has been defined. ProB offers the best veri-
fication performances, by two orders of magnitude. The performances of
Alloy and Z3 are similar.

Keywords: Access control · Consent management · Verification ·
ProB · Formal model · Alloy · Z3

1 Introduction

SGAC (Solution de Gestion Automatisée du Consentement/ Automated consent
management solution) [2] is a powerful, attribute-based, fine-grain access con-
trol model for EHR that uses acyclic subject and resource graphs to provide rule
inheritance and streamline policy specification. To ensure patient privacy and
safety, four types of properties are defined: Accessibility, Availability, Contextu-
ality, and Rule effectiveness.

In [2], ProB [4] and Alloy [3] are investigated to verify these SGAC proper-
ties. ProB is mainly based on constraint logic programming using the CLP(FD)
finite domain library of SICStus Prolog, while Alloy relies on Kodkod and SAT
solvers. In this paper, we intend to complement this study by exploring a differ-
ent technology, SMT solvers, using Z3 [1]. We present the translation of SGAC
to SMT-LIB2 using the Python API for Z3. We then compare the performance
of Z3 with that of ProB and Alloy using the translation described. We also
improve this translation by fully taking into account rule conditions in contexts,
instead of an abstraction as proposed in [2].

This work was supported in part by NSERC (Natural Sciences and Engineering
Research Council of Canada).

c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 223–229, 2020.
https://doi.org/10.1007/978-3-030-48077-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_15&domain=pdf
https://doi.org/10.1007/978-3-030-48077-6_15

224 D. de Azevedo Oliveira and M. Frappier

This paper is structured as follows. A brief overview of SGAC is presented in
Sect. 2. Section 3 presents the formalisation of the SGAC model in Z3. Section 4
describes the formalisation of the properties to check. Section 5 brings the per-
formance tests and compares each tool. We conclude this paper in Sect. 6.

2 Brief Introduction to SGAC

SGAC is an access control model with conflict resolution. Conflict resolution
is based on a definition of precedence between rules; the rule with the highest
precedence is chosen to determine the access decision. The precedence relation
is not a total order. When there are several maximal elements, access is granted
when all of them are permissions. The definitions provided in this section are
taken from [2]. SGAC uses directed acyclic graphs (DAG). A sink of a DAG G
is a vertex without any successor; sink(G) denotes the set of all sinks of G.

An SGAC policy P = (S,R,L) consists of a DAG S denoting subjects, a
DAG R denoting resources, and a set of rules L. A rule l ∈ L permits to specify
who (subject) has access (action and modality) to what (resource) and when
(priority and condition). A request is a demand the subject issues in order to
execute an action on a document. A rule l applies to a request iff all of the
following conditions are satisfied: the request subject is a descendant of the rule
subject; the request resource is a descendant of the rule resource; the request
action is the same as the rule action; the rule condition holds.

One strong point of SGAC is how it deals with conflict resolution. A conflict
occurs when more than one rule apply to a request, and if they have different
modalities. It is necessary to decide which rule has the highest precedence and
determine the access decision. Let r1, r2 be two different applicable rules for a
request:

1. If r1 has a smaller priority than r2, we say that r1 has precedence over r2.
2. If r1 and r2 have the same priority, and if the subject of r1 is more specific

than the subject of r2 (i.e., the subject of r1 is a descendant of the subject of
r2 in the subject graph), then r1 has precedence over r2.

3. If r1 and r2 have the same priority, and neither of their subjects is more
specific than the other, then a prohibition has precedence over a permission.

Figure 1 provides a small example where a hospital has just one doctor,
Edward, and he is part of the GP Physicians and the Psychologists groups. A
patient was accepted to the hospital and the resources available are the exams:
a blood test and an urine test. Four rules with the same priority are defined.
In rule 1 there is a prohibition of access from the hospital to the exams. That
way, just more specific groups may have access to content. In rule 2 the GP
Physicians are permitted to access blood tests. In rule 3, the Psychologists are
prohibited to access blood tests. In rule 4, Edward is allowed to access urine
tests. Edward is only granted access to the urine test of the patient. Since rule 2
is overridden by rule 3, he is prohibited from accessing blood tests. This happens
because the rules have the same priority, also neither rule2 is less specific than
rule3 or vice-versa, and rule4 is more specific than rule1.

Verifying SGAC Access Control Policies 225

Rule3

Rule2

Rule1

Rule4

Hospital

GP Physician Psychologist

Edward

Exams

BloodTest UrineTest

Subject Graph Resource Graph

Permission
Prohibition
Membership

Fig. 1. SGAC graphs with rules

3 Formalisation of SGAC with Z3

Z3 [1] is a Satisfiability Modulo Theories (SMT) solver developed by Microsoft
Research. It is specialized for solving background theories. Z3 supports arith-
metic, fixed-size bit-vectors, extensional arrays, algebraic datatypes, uninter-
preted functions and quantifiers. Several programming languages are available
as front-end to interface with Z3, such as Ocaml, C++ and Python. Z3 uses
combination theory and novel algorithms. It is composed of a congruence clo-
sure engine, a SAT solver-based and several default theory solvers or plug-ins.

Z3 does not natively support sets and relations. A set S that is a subset of a
sort T can be represented by a boolean function Sf ∈ T →BOOL. The predicate
s ∈ S is represented by Sf (s). Similarly, an n-ary relation r ⊆ T1 × . . . × Tn is
represented by a function rf ∈ T1 × . . . × Tn → BOOL. A record w ∈ W , with
W = struct(a1 : T1, . . . , an : Tn), is represented by one function ai,f for each
attribute ai such that ai,f ∈ TW → Ti, where TW is a sort representing the set
of all records. The value of an attribute ai of w is given by ai,f (w).

The formalisation of SGAC in Z3 is highly inspired from the B specification
of [2]. Z3 is not able to solve the SGAC specification in a single model, thus
model staging is needed. Z3 does not natively support model staging. Thus, we
use Python scripts to do model staging. In the first stage we calculate the graphs,
their transitive closure and determine rule precedence. The second stage calcu-
lates the maximal applicable rules. The third stage verifies the SGAC properties.
After solving a stage, we use Python to get the instance found and generate new
constraints representing the values of the symbols solved in the next stage.

The sets of clause SETS of the B model are represented by sorts in our
Z3 model. Although a sort in Z3 is infinite, it is possible to restrain its set of
elements using constraints. For SGAC it is mandatory to use the elements that
we nominated, and not let the solver choose others.

It is then possible to name the elements of the sort, using constants, and use
them in the constraints. In our model, each element of subject, resource, rule,
context and the two modalities is unique. A constraint must be added to state
that each pair of constants are distinct from each other (i.e., pairwise inequality).

226 D. de Azevedo Oliveira and M. Frappier

To build the subject and resource graphs, we use a relation as previously
described. We also compute the transitive closure of the subject and resource
graphs externally in Python, taking advantage of their acyclicity, which is more
efficient than the generic transitive closure operator provided in Z3Py.

A rule is represented by a structure as explained above. The set of requests is
represented by a relation using the sinks of the subject and resource graphs, as in
B. The next step is to specify conflict resolution and how the rules are ordered.
We then define: applicable, takes the pair subject-resource, as a request, and
decides if the rule is applicable to the pair, returning a boolean; maxElem, a
function that was declared in the B definitions, responsible for giving the max-
imal rule elements for a given request; isPrecedeBy, that connects a subject, a
resource, to two rules (r1, r2) and a boolean. The boolean only holds true when
r1 is less specific than r2 and the two rules are part of the same request, repre-
sented as the subject and resource; pseudoSink (psdSink), returns all maximal
applicable rules for a given request for a given context.

4 Properties Verification

Accessibility and Contextuality. Accessibility verifies whether a subject sub
can access a resource res in a context con. Contextuality determine which con-
texts make a given request granted. Access is granted when the maximal appli-
cable rules of each request (sub, res) under the context con are all permissions.
We define the function accessibility(sub, res, con) that returns true when access
is granted. Then, we add a constraint that holds if the request for the given
context is accessible and we ask Z3 to solve it. In contrast to [2], where two
formulas are used, we use a single formula to compute both.

accessibility(sub, res, con)
⇔ ∀(rule).(psdSink(sub, res, con, rule) ⇒ r mod(rule, perm))

∧ ∃(rule).(psdSink(sub, res, con, rule))

Availability. Finding hidden data allows one to warn the patient that within
some conditions, their data may be out of reach. A document is defined hidden
or unreachable under the context con if there is not a valid request under con.

The formalisation in Z3 checks if there is a document under the context
that cannot be accessed by anyone. Z3 will return the context with hidden
documents.

hiddenDataSet(con, res)
⇔ res /∈ dom(graph res) ∧ ∀(sub).(Request(sub, res)

⇒ ¬(∀(rule).(psdSink(sub, res, con, rule) ⇒ r mod(rule, perm))
∧ ∃(rule).(psdSink(sub, res, con, rule))))

Verifying SGAC Access Control Policies 227

Rule Effectivity. A rule that can never be the determinant for the evaluation
of a request is said ineffective. For instance, if we take two rules with different
priorities, one of them has to be ineffective since one will always have precedence
over the other. Effectivity of a rule r is formally defined in [2] as follows: Case r
is a prohibition: there is at least one pair request-context where r is a maximal
applicable rule, and r is the sole prohibition among the maximal rules for this
pair; Case r is a permission: there is at least one pair request-context where r is
the sole maximal rule.

ineffectiveSet(rule1)
⇔ ¬(∃(sub, res, con).

(Request(sub, res) ∧ conRule(con, rule1)
∧ psdSink(sub, res, con, rule1)
∧ (¬(∃(rule2).(psdSink(sub, res, con, rule2) ∧ rule1
= rule2)))

∨ (r mod(rule1, proh)
∧ ∀(rule2).(psdSink(sub, res, con, rule2)

∧ rule1
= rule2 ⇒ r mod(rule2, perm)))))

5 Performance Test

In this section, we discuss the results of the performance tests we executed for
the four checked properties. Tests were performed with randomly SGAC models.
We vary the following parameters: the number of vertices in each graph (subject
and resource), the number of rules, the number of contexts and the number of
requests. We check all four SGAC properties by modifying only one parameter

Fig. 2. SGAC performance tests.

228 D. de Azevedo Oliveira and M. Frappier

at a time. For each defined value of the parameters, at least 6 randomly gener-
ated models are created and solved with Z3, ProB and Alloy. The tests were
performed on a Windows 10 64-bit OS, with 16 GB of RAM and Intel R©CoreTM

i7-7700 3.60 GHz as CPU.
As shown in Fig. 2, ProB is faster than the other two solvers by two orders of

magnitude in every occasion. Z3 is consistently better than Alloy when varying
the number of rules, while Alloy outperforms Z3 when varying the the number
of contexts. When varying the number of vertices, Z3 is slightly faster up to 75
vertices, after which Alloy performs better than Z3. As detailed in [2], we use
a staged model finding in ProB to solve the properties. The B model of SGAC
uses constants to define the subject and resource graphs. The transitive closure of
graphs are computed using the B closure operator, for which ProB provides an
efficient implementation. B machine operations using set and relation operators
are used to solve the four properties checked.

In our experiment, Alloy is the only model that does not use staged model
finding. We decided to investigate if staging could help in increasing its perfor-
mance. We divided the Alloy model into three smaller models, following the
approach used in the B model. The instances found in one stage are used to
build the next stage. This staged model finding cuts the computation time in
half, but it is still outperformed by ProB.

6 Conclusion

In this paper we compared Z3 with the B and Alloy models of SGAC [2] for
checking SGAC properties. Our experiment shows that ProB is still the most
adequate of the three solvers for this task. It is quite easy to use staged model
finding in B to increase performance, compared to Z3 and Alloy. B operations
can be easily used to compute the state variables needed to check the properties.
During the development of the Z3 model, improvements were made to better
take into account rule conditions. We were able to add constraints to the con-
texts, representing the formula of rule conditions. These modifications were also
deployed on the B model. In future work, we plan to investigate the use of Z3 to
further analyse rule conditions when a policy is constructed. Another approach
would be to explore αRby [5], a deep embedding of Alloy in Ruby.

References

1. De Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

2. Huynh, N., Frappier, M., Pooda, H., Mammar, A., Laleau, R.: SGAC: a multi-
layered access control model with conflict resolution strategy. Comput. J. 62(12),
1707–1733 (2018)

3. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
Cambridge (2012)

https://doi.org/10.1007/978-3-540-78800-3_24

Verifying SGAC Access Control Policies 229

4. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method.
JSTTT 10(2), 185–203 (2008)

5. Milicevic, A., Efrati, I., Jackson, D.: αRby - an embedding of alloy in ruby. In:
Ameur, Y.A., Schewe, K. (eds.) ABZ 2014. LNCS, vol. 8477, pp. 56–71. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-43652-3 5

https://doi.org/10.1007/978-3-662-43652-3_5

Account and Transaction Protocol
of the Open Banking Standard

Abdulaziz Almehrej1, Leo Freitas1, and Paolo Modesti2(B)

1 School of Computing, Newcastle University, Newcastle upon Tyne, UK
2 Computer Science and Information Systems,

Teesside University, Middlesbrough, UK
p.modesti@tees.ac.uk

Abstract. To counteract the lack of competition and innovation in the
financial services industry, the EU has issued the Second Payment Ser-
vices Directive (PSD2) encouraging account servicing payment service
providers to share data. The UK, similarly to other European countries,
has promoted a standard API for data sharing: the Open Banking Stan-
dard. We present an overview of the results of a formal security analysis
of the Account and Transaction API protocol.

1 Introduction

The lack of competition in the financial services industry has been one of the
main factors that led the European Union to introduce the second version of
the Payment Services Directive (PSD2) [14], which aims to improve competition
by enabling and encouraging bank account holders to share, in a controlled and
secure way, their account data. To provide a standard API for the sharing of cus-
tomer data across different banks, the UK, similarly to other European countries,
introduced the Open Banking Standard [13]. The regulation encompasses sev-
eral API specifications suitable for different Third Party Providers (TPPs) who
aim to service consumers that consent to sharing their data. The adoption of a
standardised interface allows interoperability and simplifies the implementation
of systems for sharing data between banks and TPPs.

Contribution. In this paper, we present an overview of a formal security anal-
ysis of the Open Banking Standard APIs, focusing on the verification of the
correctness of the Account and Transaction API protocol. The work relies on
a previously proposed methodology [5] which provided a practical approach to
protocol modelling and verification. The methodology utilises the Alice and Bob
notation (AnB) [9] to specify a formal model of the protocol that can be formally
verified with the OFMC model checker [2]. We formalised and verified a number
of security goals that are implicit in the requirements. Although most goals were
satisfied in our analysis, the lack of rigourous definition of security properties in
the standard can be a source of ambiguity, potentially leading to different inter-
pretations of the security requirements in the implementation. To the best of
c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 230–236, 2020.
https://doi.org/10.1007/978-3-030-48077-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_16&domain=pdf
https://doi.org/10.1007/978-3-030-48077-6_16

Account and Transaction Protocol of the Open Banking Standard 231

our knowledge, our model, fully presented in [1], is the first attempt to formally
analyse Open Banking protocols. Recently, other authors [7] made an evaluation
of the integration of a web application with the Danish Nordea’s Open Bank-
ing APIs considering the security threats of the underlying technology, in light
of OWASP Top 10 Web Application Security Risks list. However, they did not
analyse the security of Open Banking itself considering and assessing security
goals as we did. Therefore, we believe this formal analysis can be valuable for
stakeholders considering the adoption of a standard that can have a significant
and long impact on the efficiency and security of the financial sector.

2 Open Banking Standard

The Open Banking Standard [13] aims at two key outcomes. The first one is
an open API for sharing data regarding the services offered by Account Servic-
ing Payment Service Providers (ASPSPs), e.g. banks. The other one is an open
API for sharing the account data of Payment Service Users (PSUs) provided
by ASPSPs. Open Banking is not only concerned about the API endpoints (e.g.
location of resources accessible by third parties, such as developers, to build
banking and financial applications), but also about data and security standards.
The data standard provides data models to the API data format. The API stan-
dard covers the API’s operational requirements. The security standard covers
API security requirements. An Account Information Service Provider (AISP) is
a regulated entity allowed by ASPSPs to access a PSU’s account data if the
PSU provides their consent. This type of access is read-only as the AISPs are
not expected to directly affect the payment accounts they are allowed access
to. An AISP can then provide different services having the PSU’s account and
transaction data, including applications that provide a user-friendly view of the
states of the different payment accounts held by the PSU, budgeting advice,
price comparisons and product recommendations.

Account and Transaction Protocol. The protocol is initiated with the PSU
asking for information regarding their payment account(s) from an AISP (Step
1). The AISP then attempts to create an account access consent with the corre-
sponding ASPSP, based on the access permissions agreed upon with the PSU.
First, the AISP authenticates itself to the ASPSP through a client credential
grant, which is an approach for machine-to-machine authentication. The ASPSP
then provides the AISP with an access token used to request the creation of the
consent resource (Step 2). At this point, the created account access consent has
to be authorised to be used by the AISP to access the PSU’s account data.
This requires the PSUs to authenticate themselves to the ASPSP, followed by
authorising the consent. During this phase, the PSU has to select the payment
account(s) for which the chosen permissions should apply. The AISP then obtains
an access token to the account data (Step 3). With this token, the AISP has to
first retrieve the accessible accounts, including their unique IDs, through the
accounts endpoint. The IDs can later be used to request the data of specific

232 A. Almehrej et al.

accounts (Step 4). To retrieve specific PSU account data (e.g. balances, transac-
tions, direct debits, beneficiaries, etc.) the AISP will have to request the data via
the appropriate link using the correct endpoint and method from the ASPSP.

3 Methodology and Security Goals

The formal verification of Open Banking API presented in this work is based on
a protocol verification methodology proposed in [5]. The methodology utilises
the Alice and Bob notation (AnB) [9] to specify a formal model of the protocol
that can be formally verified through information flow (secrecy and authenticity)
goals. Such notation abstracts from implementation details, but allows formal
representation and analysis of the security-relevant characteristics of protocols.

An AnB specification comprises of several sections. The Types section
declares the different identifiers used in the protocol. This includes the agents,
constant and variable (random) numbers and transparent functions. Transparent
functions are user-defined through their signature, thereby abstracting from their
implementation details (i.e. they are uninterpreted). The Knowledge section
describes the initial data each agent has before running the protocol. Fresh val-
ues are initialised at runtime. The information flow is described in the Actions
section, where details about messages exchanged by agents are specified. Fur-
thermore, the model can be used to verify specific security properties, such as
(weak and strong) authentication and secrecy goals:

– A weakly authenticates B on M: agent A has evidence that the message
M has been endorsed by agent B with the intention to send it to A (i.e.
non-injective agreement [8]);

– A authenticates B on M: weak authentication plus evidence of the fresh-
ness of the message M (i.e. injective agreement [8]);

– M secret between A, B: message M is kept secret among listed agents.

The formal model captures the protocol requirements [12]. While the Open
Banking API describes in details the information-flow, it lacks definitions of
security goals that the exchanges between agents are meant to convey. Therefore,
part of our work consisted in identifying suitable goals for the protocol model.

For the verification, we used the Open-Source Fixed-Point Model-Checker
(OFMC) [10], a symbolic model-checker supporting the AnB notation. Moreover,
the AnBx Compiler and Code Generator [11] was used to pre-process the model
to benefit from a stricter type system and support the extension to AnB that
allows named expression abstractions (Definitions section).

The goals we identified (and verified) are based on our understanding of the
protocol and on its dependencies. For example, OAuth 2.0 security considera-
tions [6, pp. 52–60], protocol use cases in [13, pp. 20–23] and our expectations
of the protocol.

We identified eight goals: four on message secrecy, and four on authentication.

Account and Transaction Protocol of the Open Banking Standard 233

Two goals (G1 and G2) are obvious: the exchanged secrets/credentials between
the AISP and PSU and the authorisation server remain secret whilst requesting
for a client token (Action 2.1 in the specification) and acquiring consent autho-
risation (A3.1.2 and A3.3.3). That is because if the AISP credentials are leaked
(A2.1), many attacks would be possible (for instance [6, Sect. 10.2] discusses
client impersonation). Another secrecy goal (G3) states that various exchanged
tokens (A2.2–A2.3 and A3.3.4–A4.1) remain secret between the AISP and the
authorisation and resource servers. As tokens are AISP bound, a compromised
token cannot be directly used. However, [6, Sect. 10.3] requires tokens to be con-
fidential, to prevent attacks involving valid token injection [6, Sect. 10.12]. These
goals clearly indicate the inherited potential vulnerabilities of the Account and
Transaction Protocol (ATP) dependencies. The final secrecy goal (G7) is about
the resource server message to the AISP (A4.2) and is obvious: account infor-
mation must remain secret.

The authentication goals relate to the PSU authenticating the consent
resource to authorise (G4), the resource server authenticating the PSU’s selected
accounts information (G5) and the AISP authenticating the PSU’s account infor-
mation from the resource server (G8). This last goal between the AISP and the
resource server is crucial in verifying the integrity of the account data sent to
the AISP by the resource server. In addition to direct data modification, it is
important to verify that old data cannot be replayed. For instance, in the case of
affordability check, if the PSU was an intruder and modified the data, they could
trick an AISP into providing a product they are not eligible for. This goal also
enforces fraud detection: if the transactional data can be modified by an intruder
to hide fraudulent activity. Given the redirections from the PSU to the autho-
risation server and AISP (A3.1.1 and A3.3.1–A3.3.2), we weakly authenticate
that those endpoints cannot be modified by an intruder to help avoid redirected
URI manipulation [6, Sect. 10.6] and phishing attacks [6, Sect. 10.11] (G6).

Model Development. The Open Banking ATP is complex and with multi-
ple dependencies. The AnB model aims to provide an abstract and accurate
view of its essential aspects and to verify key properties. The initial AnB model
was overly detailed with unnecessary data exchanges. To reach the right level
of abstraction, we then decided to first determine the protocol goals prior to
abstracting. Even after such endevour, verification was unwieldy: it ran for over

234 A. Almehrej et al.

two days without response. As is common within model checking problems, state
explosion must be tackled beyond abstracting details, abstract on irrelevant data.

Restricting the role of the PSU, where it had to be different from the AISP
and servers, considerably reduced the state space. This led to termination with
goal verification to be reduced to about seven hours. This enabled us to identify
further steps to abstract related to data, which reduced the verification time
to about six minutes. A final abstraction, related to the various TLS-related
steps, was to abstract them using AnB bullet channels, used to model chan-
nels providing authentication and/or secrecy properties at the end-points. The
internal efficiency of OFMC dealing with such channels led the final version to
verify within eight seconds. This exponential efficiency (up to 5 orders of mag-
nitude) increase is not uncommon in model checking problems, so long the right
abstractions are taken alongside expert knowledge of the tool’s implementation.

Model Correctness. We used the OFMC model checker [2] to verify the
eight goals described above. At first, three goals (G4,G7,G8) about PSU intent
authentication and account information secrecy and integrity failed. This led
us to check these goals independently in order to study their reason for fail-
ure quickly. The witness for the PSU authentication failure (G4) relates to the
resource server authenticating with an unknown agent rather than the PSU. This
was fixed by having the resource server being aware of the PSU’s identity early
on when setting up the access consent with the AISP (A3.2). Thus, this failure
identifies a previously undocumented vulnerability, which our modification fixes.

The account information goals fail due to a limitation of bullet channels: they
do not protect against replay attacks, hence their use here allowed breaking both
secrecy (G7) and integrity (G8). The intruder could respond to the AISP’s
request for account data by replaying a previous message. This breaks integrity
as the response received by the AISP, and perceived to be the account data,
has been modified. As the data replayed is known to the intruder, it also breaks
secrecy of the account data. However, the TLS protocol does protect against
message replay [4, pp. 93–94]. To deal with this limitation and ensure that fresh-
ness would resolve the issue, we modified the model to include a nonce generated
and sent by the AISP when requesting for the PSU account data and is expected
to be part of the response.

These modifications enable checking all goals for one session. Multiple ses-
sions verification is important as there could be attacks relying on multiple
concurrent protocol runs. Due to increased state space and limited hardware, we
were unable to fully verify the model for two parallel sessions. As customary in
under such conditions (e.g. [3] for iKP and SET), we were able to obtain partial
results by increasing the search space up to the available resource limits (search
space depth: 15 plies, 14.5 GB RAM, 50 h to run) without being able to reach
any attack state.

Account and Transaction Protocol of the Open Banking Standard 235

4 Conclusion

The novel Open Banking Account and Transaction protocol is a security-critical
protocol, which is being enforced on the largest banks in Europe. Given the
protocol’s significance and expected wider use, verifying its correctness is crucial.
Our findings were disseminated as part of a presentation on PSD2 at a UK
Finance event, with representatives from Visa and MasterCard, as well as several
banks. Some of the identified goals were known, others not. The audience was
particularly keen on the time/cost analysis. Our future work will focus on the
modelling of the protocol’s state and transparent functions specification in VDM-
SL: this is aimed at discovering underlying vulnerabilities related to the myriad
of dependant technologies (e.g. OAuth2, TLS, etc.).

References

1. Almehrej, A., Freitas, L., Modesti, P.: Security analysis of the Open Banking
Account and Transaction API Protocol. arXiv:2003.12776 (2020)

2. Basin, D., Mödersheim, S., Viganò, L.: OFMC: a symbolic model checker for secu-
rity protocols. Int. J. Inf. Secur. 4(3), 181–208 (2005). https://doi.org/10.1007/
s10207-004-0055-7

3. Bugliesi, M., Calzavara, S., Mödersheim, S., Modesti, P.: Security protocol specifi-
cation and verification with AnBx. J. Inf. Secur. Appl. 30, 46–63 (2016). https://
doi.org/10.1016/j.jisa.2016.05.004

4. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2,
August 2008. https://tools.ietf.org/html/rfc5246. Accessed 22 Aug 2019

5. Freitas, L., Modesti, P., Emms, M.: A methodology for protocol verification applied
to EMVR© 1. In: Massoni, T., Mousavi, M.R. (eds.) SBMF 2018. LNCS, vol. 11254,
pp. 180–197. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03044-
5 12

6. Hardt, D.: The OAuth 2.0 Authorization Framework, October 2012. https://tools.
ietf.org/html/rfc6749. Accessed 22 Aug 2019

7. Kellezi, D., Boegelund, C., Meng, W.: Towards secure open banking architecture:
an evaluation with OWASP. In: Liu, J.K., Huang, X. (eds.) NSS 2019. LNCS, vol.
11928, pp. 185–198. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
36938-5 11

8. Lowe, G.: A hierarchy of authentication specifications. In: CSFW 1997, pp. 31–43.
IEEE Computer Society Press (1997)

9. Mödersheim, S.: Algebraic properties in Alice and Bob notation. In: International
Conference on Availability, Reliability and Security (ARES 2009), pp. 433–440
(2009). https://doi.org/10.1109/ARES.2009.95

10. Mödersheim, S., Viganò, L.: The open-source fixed-point model checker for sym-
bolic analysis of security protocols. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.)
FOSAD 2007-2009. LNCS, vol. 5705, pp. 166–194. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03829-7 6

11. Modesti, P.: AnBx: automatic generation and verification of security protocols
implementations. In: Garcia-Alfaro, J., Kranakis, E., Bonfante, G. (eds.) FPS 2015.
LNCS, vol. 9482, pp. 156–173. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-30303-1 10

http://arxiv.org/abs/2003.12776
https://doi.org/10.1007/s10207-004-0055-7
https://doi.org/10.1007/s10207-004-0055-7
https://doi.org/10.1016/j.jisa.2016.05.004
https://doi.org/10.1016/j.jisa.2016.05.004
https://tools.ietf.org/html/rfc5246
https://doi.org/10.1007/978-3-030-03044-5_12
https://doi.org/10.1007/978-3-030-03044-5_12
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://doi.org/10.1007/978-3-030-36938-5_11
https://doi.org/10.1007/978-3-030-36938-5_11
https://doi.org/10.1109/ARES.2009.95
https://doi.org/10.1007/978-3-642-03829-7_6
https://doi.org/10.1007/978-3-319-30303-1_10
https://doi.org/10.1007/978-3-319-30303-1_10

236 A. Almehrej et al.

12. Open Banking Limited: Account and Transaction API Specification - v3.1.1.
https://tinyurl.com/qs643hq. Accessed 22 Aug 2019

13. Open Banking Working Group: The Open Banking Standard, February 2016
14. The European Parliament and the Council of the European Union: DIRECTIVE

(EU) 2015/2366. Official Journal of the European Union, November 2015

https://tinyurl.com/qs643hq

Structuring the State and Behavior
of ASMs: Introducing a Trait-Based

Construct for Abstract State
Machine Languages

Philipp Paulweber1(B), Emmanuel Pescosta2, and Uwe Zdun1

1 Faculty of Computer Science, Research Group Software Architecture,
University of Vienna, Währingerstraße 29, 1090 Vienna, Austria

{philipp.paulweber,uwe.zdun}@univie.ac.at
2 Vienna, Austria

Abstract. Abstract State Machine (ASM) theory is a well-known state-
based formal method to analyze, verify, and specify software and hard-
ware systems. Nowadays, as in other state-based formal methods, the
proposed specification languages for ASMs still lack easy-to-comprehend
language constructs for type abstractions to describe reusable and
maintainable specifications. Almost all built-in behaviors are implicitly
defined inside a concrete ASM language implementation and thus, the
behavior is hidden from the language user. In this paper, we present a
new ASM syntax extension based on traits, which allows the specifier
(language user) to define new type abstractions in the form of structure
and behavior definitions to reuse, maintain, structure, and extend the
functionality in ASM specifications. We describe the proposed language
construct by defining its syntax and semantics. The decision to use a
trait-based syntax extension over other object-oriented language con-
structs like interfaces or mixins was motivated and driven by the results
of previously conducted empirical studies. Moreover, we outline details
about the implementation of the trait-based syntax extension in our
Corinthian Abstract State Machine (CASM) language implementation.

Keywords: Abstract State Machine · Trait · Structure ·
Modularization · CASM

1 Introduction

In 1993, Gurevich [1] introduced the ASM theory, which is a well-known state-
based formal method consisting of transition rules and algebraic functions. It has
been used extensively by scientists for a broad research field ranging from soft-
ware and hardware to system engineering perspectives in order to specify, ana-
lyze, and verify systems in a formal way. ASMs are used to formally describe the

E. Pescosta—Member of CASM organization.

c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 237–243, 2020.
https://doi.org/10.1007/978-3-030-48077-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_17&domain=pdf
https://doi.org/10.1007/978-3-030-48077-6_17

238 P. Paulweber et al.

evolution of function states in a step-by-step manner1 and are used to describe
sequential, parallel, concurrent, reflective, and even quantum algorithms. Based
on the ASM theory by Gurevich [1], several theory improvements and ASM-
based language implementations were developed, which were summarized by
Börger and Stärk [2] and Börger and Raschke [3].

Prominent ASM languages and tools are AsmetaL [4], CASM [5], and Core-
ASM [6]. Today, a common thread in the various ASM languages and tools, as
well as in most other state-based formal methods, is that the proposed spec-
ification languages lack easy-to-comprehend abstractions to describe reusable
and maintainable type specifications. While very few have embraced basic
object-oriented abstractions such as classes and inheritance, more advanced type
abstractions are usually missing. Therefore, in this paper we propose a new lan-
guage construct for ASM specification languages to express type abstractions
in the form of traits [7] to modularize specifications into structural state and
behavioral parts.

2 Motivation

Modern object-oriented languages offer a variety of advanced type abstractions,
and most offer either interfaces [8], mixins [9], or traits [7] in addition to classes
and inheritance concepts. Interfaces establish a protocol and define method sig-
natures to which a type has to conform [8]. They are often compared to a con-
tract. Mixins define reusable behavior and structure that can be used to com-
bine and form new types [9,10]. Traits are similar to interfaces except that they
can define stateless behavior which depends on the trait itself [11]. There is a
heated debate in the object-oriented community2, which of these abstractions is
best suited to promote reusable and maintainable type specifications, and many
implementations combine different language constructs to define type abstrac-
tions. A notable example would be the programming language Scala [12], which
offers a trait syntax that is similar to the Java 8 [13] interface syntax and offers
mixins type abstractions through the class-based implementation and extension
syntax. Another example of mixed type abstraction concepts, namely interfaces
and traits, can be found in the programming language Rust [14], where the lan-
guage user has to express every interface definition through traits, and the types
have to conform to specified traits and implement all required functionalities.

In the world of ASMs, only AsmL [15] has introduced an object model in the
language through classes and interfaces to represent type abstractions, and to
achieve structuring of the ASM specifications. Only the ASM implementation
and language XASM by [16] has introduced a sub-ASM construct to achieve a
component-based modularization approach. A more generic concept called ambi-
ent ASMs [3] introduces the possibility to achieve hierarchical state partitioning
through nesting of context-sensitive (sub)program environments. Based on this

1 ASM theory was formerly called Evolving Algebra.
2 See, e.g.: https://stackoverflow.com/questions/925609.

https://stackoverflow.com/questions/925609

Structuring the State and Behavior of ASMs 239

state of the art, we started to investigate the introduction of a new type abstrac-
tion language construct in ASMs. But which language construct is suitable for
ASMs to represent such type abstractions?

Basically every language construct for forming type abstractions is suitable
for ASMs, but it influences the understandability of the language considerably.
For such an ASM extension, we consider the following properties important:
(1) reuse and embed existing specifications; (2) describe built-in behavior of a
language itself in the language; and (3) allow encapsulation of ASM states and
corresponding behavior through modularization. Driven by the properties and
questions raised, we conducted empirical studies to determine, which language
construct – interfaces, mixins, or traits – is most understandable to ASM lan-
guage users for expressing type abstractions [17]. The result of the experiments
showed that the participants with strong object-oriented backgrounds (highly
familiar with interfaces, not familiar with traits at all) had a similar to equal
understanding of an interface and traits language construct in the experimental
ASM syntax variants. Mixins, on the other hand, had a significantly lower under-
standability compared to traits and interfaces. Since the interface and traits type
abstraction language constructs offer a similar to equal understandability, and
novice language users seem to understand traits without even knowing the con-
cept of traits, we investigated introducing traits into ASMs.

Moreover, the object-oriented communities often discuss traits more favor-
ably than interfaces3 and even point out that “Traits are Interfaces”4 just with
code-level reuse functionality. To gain a better understanding of how specifiers
(language users) comprehend such trait-based specifications, we performed an
eye-tracking experiment [17], where we observed the participants’ gaze patterns.
The results of this experiment showed that the participants could easily distin-
guish between behavioral and non-behavioral aspects of a given specification,
when we applied our trait-based language construct to form state/behavior type
abstractions.

3 A Trait-Based Construct for ASMs

This section proposes our trait-based language construct to extend the syntax of
ASM specification languages. The syntax rules are defined and expressed in BNF
(see Listing 1.1). The semantics of the proposed trait-based syntax extension is
defined by lowering and transforming the new syntax elements to appropriate
Turbo ASM [2] equivalent definitions (see example trait-based ASM Listing 1.2
and the transformed Turbo ASM Listing 1.3). The ASM specifications presented
use the syntax of the CASM specification language5. The trait-based syntax
extension is divided into three parts, namely structural types, basic type behavior,
and extended type behavior.

3 See, e.g.: https://stackoverflow.com/questions/9205083.
4 See, e.g.: https://blog.rust-lang.org/2015/05/11/traits.html.
5 For the CASM syntax description, see: https://casm-lang.org/syntax.

https://stackoverflow.com/questions/9205083
https://blog.rust-lang.org/2015/05/11/traits.html
https://casm-lang.org/syntax

240 P. Paulweber et al.

In order to modularize the states (functions not classified as derived) in
ASM, we introduce a structural type construct (see Listing 1.1, Line 2–4), which
allows a language user to group one or multiple functions together (similar
to members of an object-oriented class) to form a new structure type (see
StructureDefinition grammar rule). Each structure type defines a trait type
through the defined state functions. The access to these functions is only allowed
inside a proper basic behavior definition to clearly specify the access to an instan-
tiated structure’s state over dedicated behaviors (data encapsulation).

1 // Structural Types
2 StructureDefinition ::= ’structure’ Identifier ’=’ ’{’ (FunctionDefinition)+ ’}’.
3 StructureLiteral ::= [Type] ’{’ [Identifier ’:’ Term (’,’ Identifier ’:’ Term)*] ’}’.
4 Literal ::= StructureLiteral | /* other literals */.
5 // Basic Type Behavior
6 ImplementDefinition ::= ’implement’ Identifier ’=’ ’{’
7 (ObjectRuleDefinition | ObjectDerivedDefinition)+ ’}’.
8 ObjectRuleDefinition ::= ’rule’ Identifier ’(’ ’this’
9 (’,’ Identifier ’:’ Type)* ’)’ [’->’ Type] ’=’ Rule.

10 ObjectDerivedDefinition ::= ’derived ’ Identifier ’(’ ’this’
11 (’,’ Identifier ’:’ Type)* ’)’ ’->’ Type ’=’ Term.
12 MethodCall ::= Term ’.’ Identifier [’(’ Term (’,’ Term)* ’)’].
13 CallRule ::= MethodCall | (Identifier [’(’ Term (’,’ Term)* ’)’]).
14 Term ::= MethodCall | ’this’
15 // Extended Type Behavior
16 BehaviorDefinition ::= ’behavior ’ Identifier ’=’ ’{’
17 (ObjectRuleDeclaration | ObjectDerivedDeclaration
18 | ObjectRuleDefinition | ObjectDerivedDefinition)+ ’}’.
19 ImplementForDefinition ::= ’implement’ Identifier ’for’ Identifier ’=’ ’{’
20 (ObjectRuleDefinition | ObjectDerivedDefinition)+ ’}’.
21 ObjectRuleDeclaration ::= ’rule’ Identifier ’:’ ’Object ’ (’*’ Type)* ’->’ Type.
22 ObjectDerivedDeclaration ::= ’derived ’ Identifier ’:’ ’Object ’ (’*’ Type)* ’->’ Type.

Listing 1.1: Trait-Based ASM Syntax Extension

1 structure X = {
2 function f1 : -> Integer
3 function f2 : Integer -> Boolean
4 }
5
6
7
8
9

10
11 rule R1 =
12 let v1 = X{ f1: 1,
13 f2: (2) -> false } in skip
14 implement X = {
15 derived d1(this) -> Integer =
16 this.f1
17
18 rule R2(this , a1 : Integer) =
19 if a1 > -5 and this.d1 < 5 then
20 this.f2(a1) := true
21 }
22 behavior Y = {
23 derived d2 : Object -> Integer
24
25 derived d3(this) -> Boolean
26 = this.d2 * this.d2 > 100
27 }
28 implement Y for X = {
29 derived d2(this) -> Integer = this.f1
30 }
31 // ...

Listing 1.2: Trait-Based ASM

1 domain X
2 function X_f1 : X -> Integer
3 function X_f2 : X * Integer -> Boolean
4 rule X_instantiate(a1 : Integer
5 , a2 : Integer -> Boolean) -> X =
6 let object = new X in {
7 X_f1(object) := a1
8 X_f2(object) := a2
9 result := object

10 }
11 rule R1 =
12 let v1 = X_instantiate(1,
13 { (2) -> false }) in skip
14
15 derived X_d1(this : X) -> Integer =
16 X_f1(this)
17
18 rule X_R2(this : X, a1 : Integer) =
19 if a1 > -5 and X_d1(this) < 5 then
20 X_f2(this , a1) := true
21
22
23
24
25 derived X_d3(this : X) -> Boolean
26 = X_d2(this) * X_d2(this) > 100
27 }
28
29 derived X_d2(this:X) -> Integer = X_f1(this)
30
31 // ...

Listing 1.3: Turbo ASM Equivalent

Structuring the State and Behavior of ASMs 241

A basic type behavior (see Listing 1.1, Line 6–14) defines a set of rules and
derived functions, which are associated with a certain domain type. We intro-
duce a new ImplementDefinition to define a basic behavior consisting of one
or more object-based derived function and/or rule definitions. The syntax for
ObjectRuleDefinition and ObjectDerivedDefinition introduce a new key-
word this as the first argument for all object-based rule and/or derived func-
tion definitions. The type of the argument variable this equals the type of the
ImplementDefinition and it enables the access to the domain’s or structure’s
behavior. The access happens through a MethodCall syntax, which uses a dot
operator between a term, a target name, and a non-negative arity of arguments.
The target name can be a function name or a rule name.

An extended type behavior (see Listing 1.1, Line 16–22) defines a set of
rules and derived functions, and forms a new type in the type system. If a
domain and/or structural type wants to use the functionality, it has to imple-
ment the extended behavior. The BehaviorDefinition defines an explicit trait
with type name consisting of zero or more ObjectRuleDeclaration rule names
and/or ObjectDerivedDeclaration derived function names. Please note that
for all object-based declarations we introduced a generic Object argument
type at the first position. The Object type gets checked against the domain
or structural type which is implementing this declared behavior. A specifier
can use the Object type for any other argument or target type in a declara-
tion. Additionally, a trait can define a default behavior through zero or more
ObjectRuleDefinition rule names and/or ObjectDerivedDefinition derived
function names, which depends only on the functionality of the trait itself. Each
domain and/or structural type that wants to support a certain behavior has
to specify an ImplementForDefinition and provide the missing definitions of
the trait declarations. If the trait defines a default behavior, the domain and/or
structural type inherits this definition. This enables code reuse capabilities.

Listing 1.2 depicts an example trait-based ASM specification using all new
syntax grammar rules and Listing 1.3 depicts the equivalent semantics-preserving
Turbo ASM specification. The proposed trait-based syntax extension is realized
in our CASM language implementation6. In order to provide a clean solution,
we updated our CASM language front-end implementation and introduced two
new internal AST representations before the specification gets transformed to
the CASM-IR [5].

By introducing the proposed trait-based construct, we were able to explicitly
specify the behavior of the CASM language itself in CASM in the form of a pre-
lude (See footnote 6) specification, which gets automatically loaded (imported)
for every parsed CASM specification. Each functionality of the CASM language
(e.g. operators) is mapped to a behavior (trait) in the prelude specification.
The language user can explore and extend the behaviors of CASM in CASM.
Moreover, the prelude specification reduced the complexity of the CASM imple-
mentation.

6 For sources, see: https://github.com/casm-lang/libcasm-fe/pull/205.

https://github.com/casm-lang/libcasm-fe/pull/205

242 P. Paulweber et al.

4 Conclusion

In this paper, we present a trait-based construct for ASM languages. It allows
to specify composable models through the usage of domain and structural type
objects, where the behavior can be defined and implemented in a reusable man-
ner. The modularization and composing of object-oriented models is achieved by
specifying structural states along with their behaviors clearly separated through
traits. Novel about this contribution is that ASM language users can directly
define the semantics of operations over domain (structure) types through this
trait-based construct in the ASM language itself. To clearly separate structure
and behavior, we only allow the definition of modifications to structural objects
through a proper behavior definition. Based on previously conducted empiri-
cal studies, the current state of the art, and our current proposed trait-based
construct, we believe that this is the first step towards clearer and more under-
standable ASM specifications by separating the structural (state) and behavioral
elements through dedicated definitions.

References

1. Gurevich, Y.: Evolving Algebras 1993: Lipari Guide - Specification and Validation
Methods, pp. 9–36. Oxford University Press Inc., New York (1995)

2. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
642-18216-7

3. Börger, E., Raschke, A.: Control state diagrams (meta model). Modeling Compan-
ion for Software Practitioners, pp. 297–315. Springer, Heidelberg (2018). https://
doi.org/10.1007/978-3-662-56641-1 9

4. Gargantini, A., Riccobene, E., Scandurra, P.: A metamodel-based language and
a simulation engine for abstract state machines. J. Univ. Comput. Sci. 14(12),
1949–1983 (2008)

5. Paulweber, P., Pescosta, E., Zdun, U.: CASM-IR: uniform ASM-based intermediate
representation for model specification, execution, and transformation. In: Butler,
M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp.
39–54. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4 4

6. Farahbod, R., Gervasi, V., Glässer, U.: CoreASM: an extensible ASM execution
engine. Fundam. Informaticae 77(1–2), 71–104 (2007)

7. Curry, G., Baer, L., Lipkie, D., Lee, B.: Traits: an approach to multiple-inheritance
subclassing. In: Proceedings of the SIGOA Conference on Office Information Sys-
tems, New York, NY, USA, pp. 1–9. ACM (1982)

8. Canning, P.S., Cook, W.R., Hill, W.L., Olthoff, W.G.: Interfaces for strongly-typed
object-oriented programming. In: OOPSLA, pp. 457–467. ACM (1989)

9. Flatt, M., Krishnamurthi, S., Felleisen, M.: Classes and mixins. In: ACM
SIGPLAN-SIGACT POPL, New York, NY, USA, pp. 171–183. ACM (1998)

10. Bracha, G., Cook, W.: Mixin-based inheritance. ACM Sigplan Not. 25(10), 303–
311 (1990)

11. Schärli, N., Ducasse, S., Nierstrasz, O., Black, A.P.: Traits: composable units of
behaviour. In: Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, pp. 248–274.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45070-2 12

https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-662-56641-1_9
https://doi.org/10.1007/978-3-662-56641-1_9
https://doi.org/10.1007/978-3-319-91271-4_4
https://doi.org/10.1007/978-3-540-45070-2_12

Structuring the State and Behavior of ASMs 243

12. Odersky, M., Spoon, L., Venners, B.: Programming in Scala. Artima Inc., Walnut
Creek (2008)

13. Potts, A., Friedel, D.H.: Java Programming Language Handbook. Coriolis Group
Books, Scottsdale (2018)

14. Matsakis, N.D., Klock II, F.S.: The rust language. ACM SIGAda Ada Lett. 34,
103–104 (2014)

15. Gurevich, Y., Rossman, B., Schulte, W.: Semantic essence of AsmL: extended
abstract. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.)
FMCO 2003. LNCS, vol. 3188, pp. 240–259. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-30101-1 11

16. Anlauff, M.: XASM- an extensible, component-based abstract state machines lan-
guage. In: Gurevich, Y., Kutter, P.W., Odersky, M., Thiele, L. (eds.) ASM 2000.
LNCS, vol. 1912, pp. 69–90. Springer, Heidelberg (2000). https://doi.org/10.1007/
3-540-44518-8 6

17. Simhandl, G., Paulweber, P., Zdun, U.: Design of an executable specification lan-
guage using eye tracking. In: EMIP 2019 (at ICSE 2019), May 2019

https://doi.org/10.1007/978-3-540-30101-1_11
https://doi.org/10.1007/978-3-540-30101-1_11
https://doi.org/10.1007/3-540-44518-8_6
https://doi.org/10.1007/3-540-44518-8_6

Exploring the Concept of Abstract State
Machines for System Runtime

Enforcement

Elvinia Riccobene1 and Patrizia Scandurra2(B)

1 Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy
elvinia.riccobene@unimi.it

2 Department of Economics and Technology Management, Information Technology
and Production, Università degli Studi di Bergamo, Bergamo, Italy

patrizia.scandurra@unibg.it

Abstract. Modern intelligent software systems are rapidly growing in
complexity and scale, and many real usage scenarios might be impos-
sible to reproduce and validate at design-time. As envisioned by the
Models@run.time research community, the use of formal models at run-
time are fundamental to address this challenge. In this paper, we explore
the concept of ASM@run.time and put this definition into the context
of the runtime enforcement technique to address the runtime assurance
of software systems. This is a work-in-progress research line.

1 Introduction

Modern intelligent software systems, such as those employed in smart infrastruc-
tures using big data, AI and IoT technologies, are rapidly growing in complexity
and scale, and many real usage scenarios might be impossible to reproduce and
validate at design-time. To address this challenge, the Models@run.time research
community [4] has identified a reference architecture to equip a software system
with a model running in tandem with the system to address software runtime
assurance. Similar ideas have been proliferating in other contexts, such as Digi-
tal twins in the manufacturing domain [11], and Living models [9] in the field of
Computer Automated Multi-Paradigm Modelling.

Among the different approaches and techniques proposed in literature that
exploit the concept of model@runtime, runtime enforcement [6] is a runtime
verification method that focuses on steering system executions with the goal
of preventing and reacting to misbehaviours and failures. Runtime enforcement
techniques enforce the software system to run according to its specification, for
example the specification of safety assertions that describe situations (states) or
actions that must be avoided (e.g., a train must not open its doors when moving).
When a new (input) event occurs that may change the state of the software
system, the model, if available, is used to evaluate safety assertions and prevent
the system change if it violates an assertion on the runtime model of the system.
This enforcement mechanism can be, therefore, used for input sanitisation [6] to
c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 244–247, 2020.
https://doi.org/10.1007/978-3-030-48077-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_18&domain=pdf
http://orcid.org/0000-0002-1400-1026
http://orcid.org/0000-0002-9209-3624
https://doi.org/10.1007/978-3-030-48077-6_18

Abstract State Machines for the Runtime Enforcement of Software Systems 245

protect the system from its (untrusted) environment. All inputs to the system
shall enter first the enforcement mechanism which filters out those that could
harm the system or ensure that all the necessary inputs are provided to the
system. While classical runtime verification approaches (like [2,5] and [7] to
name a few) generally focus on the oracle problem, namely assigning verdicts to a
system execution, runtime enforcement focuses on ensuring the correctness of the
sequence of events by possibly modifying or preventing the system execution [6].

In this paper we present some preliminary results of our work-in-progress
investigation on the use of Abstract State Machines as models@run.time for
runtime enforcement. In particular, we present the architecture of a runtime
enforcement tool we have been developing within the ASMETA framework1

– a set of tools for the ASM formal method – to check safety assertions of
software systems at runtime. This mechanism exploits the concept of executable
ASM models and it is based on a new component, the AsmetaS@run.time, that
simulates the ASM models in tandem with the real software systems. We also
envision some real scenarios in the context of safety-critical systems where we
are applying the ASM@run.time enforcement approach.

2 Runtime Enforcement with AsmetaS@run.time

We here present a conceptual view of a runtime enforcement for input
sanitisation [6] to protect the system from its (untrusted) environment.
The proposed mechanism exploits the runtime simulator for ASMs, namely
AsmetaS@run.time. This last tool was recently developed as part of the
ASMETA toolset to allow the use of ASM models as runtime models. It sup-
ports simulation as-a-service features including model roll-back to the initial
state after a failure of the model execution (e.g., invariant violations, inconsis-
tent updates, ill-formed inputs, etc.) while processing an input event.

The intent of the proposed runtime enforcement mechanism is to evaluate
safety assertions when there is a new (input) event that may change the state of
the system and prevent the change if it violates an assertion on the ASM runtime
model of the system. As shown in Fig. 1, every attempt (or only those considered
critical) to change the system state is mediated by a process (the enforcer) that
decides whether the change is safe. To make this decision (one per each observed
event), the enforcer process evaluates the effect of the event on an ASM model
of the behavior of the system (or a subpart of it dealing with the most critical
requirements) that runs on-board the system as runtime model. If we are in a
safe state (both the system and its runtime ASM model) and there is a new
(input) event that may change this state, the enforcer performs first the state
transfer on the ASM model (by feeding the input event to the ASM in terms
of a monitored function value) and makes sure that the transition (that may
take several machine steps – an ASM run) will take the ASM to a state without
violating an invariant or generating an inconsistent update. If the ASM will
produce a (safe) change of state, the enforcer confirms the state transfers also to
1 http://asmeta.sourceforge.net/.

http://asmeta.sourceforge.net/

246 E. Riccobene and P. Scandurra

Fig. 1. Runtime safety assertion enforcement by AsmetaS@run.time

the system, otherwise (the change is considered unsafe) it prevents the system to
react to the event and a state rollback of the ASM model is performed to move it
back to its previous (safe) state before the input event was processed. Therefore,
the system is allowed to react to an event only when the model successfully
checked the safety constraints for the event.

We assume that there exists a catalog of safety assertions (expressed in any
suitable language) describing all possible situations that may produce a violation
of safety, and that these assertions have been expressed in the ASM runtime
model in terms of ASM invariants. The catalog may be dynamically updated
at runtime in case dangerous situations have not been foreseen at design time
or because of unanticipated changes in the requirements when such changed
requirements are added at runtime as effect of unanticipated adaptation (such
as service-based applications plugging in new services and components discov-
ered at runtime to improve quality of service). We assume that the invariants
corresponding to the assertions added to the catalog dynamically are added to
the ASM runtime model dynamically, as well.

The runtime enforcement technique could be useful to prevent the execution
of unsafe commands in cyber physical systems where the environment is only
partially observable [8], and, in general, in any safety-critical system, where the
effects of not enforcing the safety assertions would lead to human hazards, as it
happens for medical software [1]. We do not target hard real-time systems since
these systems require dedicated solutions (e.g., real-time operating systems) and
pose specific challenges.

3 Conclusion

In this paper, we have presented our long-term vision of using the ASM exe-
cutable models as formal support to the runtime enforcement technique to assure

Abstract State Machines for the Runtime Enforcement of Software Systems 247

safe execution of a software system. Our short-term plan is to complete the imple-
mentation of the other components (the Assertion Catalog and the Assertion
Enforcer) of the proposed runtime enforcement mechanism based on the new
AsmetaS@run.time component. We also want to test its effective operation in
the area of safety-critical systems, as for example those in the medical software
domain.

In the future, we plan to extend the ASM@run.time enforcement approach
in the context of self-adaptive systems [3,10]. Our long term goal is to develop
a complete framework able to deal with requirements changes also affecting the
model behavior, and therefore providing model adaptation features at runtime.

References

1. Alemzadeh, H., Kalbarczyk, Z., Iyer, R., Raman, J.: Analysis of safety-critical com-
puter failures in medical devices. IEEE Secur. Priv. 11(4), 14–26 (2013). https://
doi.org/10.1109/MSP.2013.49

2. Arcaini, P., Gargantini, A., Riccobene, E.: CoMA: conformance monitoring of Java
programs by abstract state machines. In: Khurshid, S., Sen, K. (eds.) RV 2011.
LNCS, vol. 7186, pp. 223–238. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29860-8 17

3. Arcaini, P., Riccobene, E., Scandurra, P.: Formal design and verification of self-
adaptive systems with decentralized control. ACM Trans. Auton. Adapt. Syst.
11(4), 25:1–25:35 (2017)

4. Bencomo, N., Götz, S., Song, H.: Models@run.time: a guided tour of the state
of the art and research challenges. Softw. Syst. Model. 18(5), 3049–3082 (2019).
https://doi.org/10.1007/s10270-018-00712-x

5. Calinescu, R., Kikuchi, S.: Formal methods @ runtime. In: Calinescu, R., Jack-
son, E. (eds.) Monterey Workshop 2010. LNCS, vol. 6662, pp. 122–135. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21292-5 7

6. Falcone, Y., Mariani, L., Rollet, A., Saha, S.: Runtime failure prevention and reac-
tion. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS,
vol. 10457, pp. 103–134. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-75632-5 4

7. Liang, H., Dong, J.S., Sun, J., Wong, W.E.: Software monitoring through for-
mal specification animation. ISSE 5(4), 231–241 (2009). https://doi.org/10.1007/
s11334-009-0096-1

8. Pinisetty, S., Roop, P.S., Smyth, S., Allen, N., Tripakis, S., von Hanxleden, R.:
Runtime enforcement of cyber-physical systems. ACM Trans. Embed. Comput.
Syst. 16(5s), 178:1–178:25 (2017). https://doi.org/10.1145/3126500

9. Tendeloo, Y.V., Mierlo, S.V., Vangheluwe, H.: A multi-paradigm modelling app-
roach to live modelling. Softw. Syst. Model. 18(5), 2821–2842 (2019). https://doi.
org/10.1007/s10270-018-0700-7

10. Weyns, D., Iftikhar, M.U.: ActivFORMS: a model-based approach to engineer self-
adaptive systems. CoRR abs/1908.11179 (2019). http://arxiv.org/abs/1908.11179

11. Zhuang, C., Liu, J., Xiong, H.: Digital twin-based smart production management
and control framework for the complex product assembly shop-floor. Int. J. Adv.
Manuf. Technol. 96(1), 1149–1163 (2018)

https://doi.org/10.1109/MSP.2013.49
https://doi.org/10.1109/MSP.2013.49
https://doi.org/10.1007/978-3-642-29860-8_17
https://doi.org/10.1007/978-3-642-29860-8_17
https://doi.org/10.1007/s10270-018-00712-x
https://doi.org/10.1007/978-3-642-21292-5_7
https://doi.org/10.1007/978-3-319-75632-5_4
https://doi.org/10.1007/978-3-319-75632-5_4
https://doi.org/10.1007/s11334-009-0096-1
https://doi.org/10.1007/s11334-009-0096-1
https://doi.org/10.1145/3126500
https://doi.org/10.1007/s10270-018-0700-7
https://doi.org/10.1007/s10270-018-0700-7
http://arxiv.org/abs/1908.11179

ProB and Jupyter for Logic, Set Theory,
Theoretical Computer Science

and Formal Methods

David Geleßus and Michael Leuschel(B)

Institut für Informatik, Universität Düsseldorf, Universitätsstr. 1,
40225 Düsseldorf, Germany

{dagel101,michael.leuschel}@hhu.de

Abstract. We present a tool for using the B language in computational
notebooks, based on the Jupyter Notebook interface and the ProB tool.
Applications of B notebooks include executable documentation of for-
mal models, interactive manuals, validation reports but also teaching of
formal methods, logic, set theory and theoretical computer science. In
addition to B and Event-B, the tool supports Z, TLA+ and Alloy.

1 Introduction and Motivation

The computational notebook concept has recently become popular in teaching
and research, as it allows mixing executable code with rich text descriptions and
graphical visualizations. We present a tool which enables B and other formal
methods to be used in computational notebooks. Such notebooks have many
applications, from teaching formal methods to documenting formal models or
generating executable reference documents. Given the foundations of B in set
theory and logic, and given that the Unicode syntax of B is identical to or very
close to standard mathematical notation, our tool can also be used to produce
notebooks for teaching mathematical foundations in general or theoretical com-
puter science in particular. Given that our tool is based on the ProB tool, the
notebooks also provide convenient access to its constraint solver.

2 Jupyter Kernel for B

Architecture. Jupyter Notebook [4] is a cross-platform computational notebook
interface implemented in Python with a web-based frontend. Originally it was
developed under the name IPython Notebook and only supported Python-based
notebooks, but it has since been extended to allow using languages other than
Python. Support for each language is provided by a Jupyter kernel : a language-
specific backend that receives input from Jupyter Notebook, processes it using
the target language, and returns the results to Jupyter. Jupyter communicates
with kernels using a language-agnostic protocol, which allows implementing ker-
nels in languages other than Python. In the case of ProB, the kernel was imple-
mented in Java, as ProB provides a high-level Java API [1], and there is an
c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 248–254, 2020.
https://doi.org/10.1007/978-3-030-48077-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_19&domain=pdf
http://orcid.org/0000-0002-4595-1518
https://doi.org/10.1007/978-3-030-48077-6_19

ProB and Jupyter for Logic, Set Theory, Theoretical Computer Science 249

existing Java implementation of the Jupyter kernel protocol by the jupyter-jvm-
basekernel project [7].

The Jupyter Notebook web interface can also be extended using JavaScript-
based plugins. This capability was used to implement syntax highlighting for B.

Interacting with B. At its core, the ProB Jupyter kernel is a simple REPL. It
accepts standalone B expressions and predicates as input, which are evaluated
or solved using ProB. The results are output as LATEX formulas and rendered
by Jupyter Notebook, as shown in the following screenshot:

Markup cells can be used to provide documentation for the evaluation cells:

Many ProB features can be accessed using notebook commands. For exam-
ple, prefixing a B expression with the command :table displays the result as a
table, which is useful for viewing complex values, such as sets of tuples. Addi-
tional commands include :prettyprint to pretty-print a predicate without eval-
uating it, :type to display an expression’s static type, and :solve to solve a
predicate using ProB’s various solver backends (such as Kodkod or Z3).

To load a B machine, the B code can be input directly into a notebook cell,
which allows for quick testing and prototyping of short machines. When written
this way, the entire B machine needs to be placed in a single notebook cell (it is
currently not possible to insert text cells in the middle of the machine), and it
cannot refine, extend, or otherwise reference other machines. It is also possible to
load external machine files using the :load command, which is more convenient
for larger machines, and also supports loading machines that reference other
machine files.

The loaded machine can be animated, using the :exec command to execute
operations or events. While a machine is loaded, the input is evaluated in the
current state of the animator, meaning that the loaded machine’s constants and
variables can be used in expressions and predicates. Additional commands such

250 D. Geleßus and M. Leuschel

as :check and :browse are provided to examine the current state of invariants,
assertions and operations. It is also possible to exercise ProB’s model checker.

ProB’s state visualisation features can be called using the :show and :dot
commands, which can for example be used to visualise the current machine state
or the animator’s state space. The visualisation results are displayed directly in
the notebook as raster or SVG images.

Jupyter Notebook’s advanced code editing features, such as syntax high-
lighting and code completion, are also supported by the ProB kernel. Both
regular B syntax and custom commands are highlighted, and completion is pro-
vided for B keywords, variable names, command names and parameters, etc. The
“inspect” feature (accessed using Shift+Tab) provides quick access to command
help directly inside the notebook interface.

Working with Notebooks. The ProB Jupyter kernel only handles the actual eval-
uation of the code in the notebook. Jupyter Notebook provides all other parts
of the system: including the web frontend responsible for editing notebooks and
rendering the kernel’s outputs, and the file format used when saving notebooks.

Using the nbconvert tool provided by Jupyter, B notebook files can be con-
verted to a variety of standard formats, including HTML, LATEX, and PDF. This
allows distributing notebooks in a format that can be viewed without Jupyter
Notebook, although the resulting files cannot be edited and re-executed like the
original notebook.

3 Applications

Industrial. As B notebooks can load and animate external machine files, they
can be used to document the behavior of existing models. This is conceptually
similar to a trace file, with the advantage that notebooks can include not just
operation execution steps, but also explanatory text and evaluation/visualisation
calls to demonstrate specific aspects of the machine’s state.

Some of ProB’s own documentation is currently being converted from static
documentation pages to B notebooks. The Modelling Examples section, e.g., con-
tains pages which start with an introductory text, usually describing a short logic
puzzle or part of a real-world use case of ProB, followed by B code fragments
modelling the problem in B and explanations of how ProB can be used to visu-
alize, verify or solve the model. The notebook format is well-suited for this kind
of documentation: the code in notebooks can be directly executed by the user
and the respective visualisation features can be called directly from the note-
book. Below is part of the documentation of ProB’s external functions. This
documentation is automatically up-to-date and users can experiment themselves
with the various external functions before integrating them into their models:

ProB and Jupyter for Logic, Set Theory, Theoretical Computer Science 251

Teaching. In the context of teaching the B language as well as theoretical com-
puter science in general, B notebooks can be used as a format for writing lecture
notes and worksheets.

Lecture notes involving B expressions or machines can be written and dis-
tributed as notebooks, allowing students to execute the code for themselves and
experiment with modifications. Due to its foundations in set theory, the B lan-
guage can also be used to express many general theoretical computer science
concepts, such as finite automata. These concepts can be demonstrated using B
notebooks, taking advantage of the LATEX output and graph visualisation capa-
bilities to display the results in a format familiar to students.

B notebooks can also be used as a format for exercise sheets. Students are
provided with a notebook that contains the exercise text and possibly some
initial code. They can solve the exercises directly in the notebook and turn in
the finished notebook file with their solutions. The nbgrader [9] extension for
Jupyter provides support for writing exercise sheet notebooks: it allows marking
cells with exercise text as read-only, and cells with solutions so they are removed
when the exercises are distributed to students. The extension also assists with
grading and also enables automated verification of solutions.

4 Conclusion, Related and Future Work

A formal model is usually derived from a natural language requirements doc-
ument. A big issue is that of keeping the formal model and natural language
in sync. A related issue is that of traceability, tracing natural language require-
ments to the formal model. In that setting the idea of literate programming [5],
mixing the natural language documentation with the program, is appealing. The
Z language [8] has always allowed literate programming by interleaving LATEX
commands with Z constructs. A similar capability for the B language is provided
by ProB’s LATEX mode [6]. In comparison, the ProB Jupyter kernel focuses
more on interactivity. Individual cells of a B notebook can be quickly edited
and re-rendered/evaluated, whereas the ProB LATEX mode can only render the
entire document at once. However, the ability to write LATEX code directly offers
more flexibility in terms of formatting and layout, compared to a B notebook
converted to LATEX or PDF using nbconvert.

An open-source Jupyter kernel for TLA+ [3] is available. Its feature set is
similar to the basic features of the ProB Jupyter kernel: it supports evaluation of
standalone TLA+ expressions, as well as loading and checking of TLA+ models
using the TLC model checker.

252 D. Geleßus and M. Leuschel

A previous attempt at implementing a notebook-like interface for B was the
ProB worksheet interface [2]. Its design and goals were very similar to our
work, but the implementation provided its own custom web UI, server, and
file format, mainly because extensible notebook implementations like Jupyter
were not available at the time (2012–2013). In comparison, using Jupyter as a
base significantly reduces the required implementation and maintenance work,
and allows B notebooks to benefit from existing tooling for Jupyter, such as
nbconvert and nbgrader.

In summary, this new tool provides a notebook interface to a variety of
state-based formal methods. Along with some extensions of ProB itself, such as
allowing Greek letters or subscripts in identifiers, it is also of use for applications
in teaching of discrete mathematics or theoretical computer science.

Our tool is available for download at:

https://gitlab.cs.uni-duesseldorf.de/general/stups/prob2-jupyter-kernel

A Appendix

Below we show two partial screenshots of a notebook for theoretical computer
science. Observe that mathematical Unicode symbols, subscripts and Greek let-
ters can be used in the B formulas and machines.

https://gitlab.cs.uni-duesseldorf.de/general/stups/prob2-jupyter-kernel

ProB and Jupyter for Logic, Set Theory, Theoretical Computer Science 253

References

1. Bendisposto, J., Clark, J.: ProB Handbook. ProB 2.0. https://www3.hhu.de/stups/
handbook/prob2/prob_handbook.html#prob2.0. Assessed 30 Jan 2020

2. Goebbels, R.: Worksheets für die Integration mit ProB. Bachelor’s thesis, Heinrich-
Heine-Universität Düsseldorf, 18 March 2013

3. Kelvich, S.: kelvich/tlaplus_jupyter: Jupyter kernel for TLA+, 9 December 2019.
https://github.com/kelvich/tlaplus_jupyter/. Accessed 17 December 2019

https://www3.hhu.de/stups/handbook/prob2/prob_handbook.html#prob2.0
https://www3.hhu.de/stups/handbook/prob2/prob_handbook.html#prob2.0
https://github.com/kelvich/tlaplus_jupyter/

254 D. Geleßus and M. Leuschel

4. Kluyver, T., et al.: Jupyter notebooks – a publishing format for reproducible com-
putational workflows. In: Loizides, F., Schmidt, B. (eds.) Positioning and Power in
Academic Publishing: Players, Agents and Agendas, pp. 87–90. IOS Press (2016)

5. Knuth, D.E.: Literate programming. Comput. J. 27(2), 97–111 (1984). https://doi.
org/10.1093/comjnl/27.2.97

6. Leuschel, M.: Formal model-based constraint solving and document generation. In:
Ribeiro, L., Lecomte, T. (eds.) SBMF 2016. LNCS, vol. 10090, pp. 3–20. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-49815-7_1

7. Spencer Park. SpencerPark/jupyter-jvm-basekernel: an abstract kernel implemen-
tation for Jupyter kernels running on the Java virtual machine. Revision ccfb7bb1,
14 May 2018. https://github.com/SpencerPark/jupyter-jvm-basekernel/. Accessed
02 Aug 2018

8. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice-Hall, Upper Saddle
River (1992)

9. Jupyter Development Team. nbgrader—nbgrader 0.5.4 documentation. Revision
808caf33, 18 July 2017. https://nbgrader.readthedocs.io/en/stable/. Accessed 20
Aug 2018

https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1007/978-3-319-49815-7_1
https://github.com/SpencerPark/jupyter-jvm-basekernel/
https://nbgrader.readthedocs.io/en/stable/

Existence Proof Obligations
for Constraints, Properties and Invariants

in Atelier B

Héctor Rúız Barradas, Lilian Burdy, and David Déharbe(B)

CLEARSY Systems Engineering, Aix-en-Provence, France
david.deharbe@clearsy.com

Abstract. Proof obligations of the B method and of Event B use
predicates in the Constraints, Sets, Properties and Invariant clauses
as hypotheses in proof obligations. A contradiction in these predicates
results in trivially valid proof obligations and essentially voids the devel-
opment. A textbook on the B method [3] presents three “existence proof
obligations” to show the satisfiability of the Constraints, Properties and
Invariant clauses as soon as they are stated in a component. Together
with new existence proof obligations for refinement, this prevents the
introduction of such contradictions in the refinement chain. This paper
presents a detailed formalization of these existence proof obligations,
specifying their implementation in Atelier B.

1 Introduction

The vaunted rigour of formal methods, such as B and Event-B, not only come
from the use of a formal notation, but also from the generation and subsequent
verification of proof obligations (POs). For instance, in Event-B [2], the model
of a system is considered sound only when all POs have been demonstrated. In
the B method [1], they guarantee that the refinement-based construction results
in implementations faithful to their specification.

Typically, POs are generated at key steps of the design process. Invalid POs
reveal errors in the source artefact. By inspecting these proof obligations, the
user then identifies, possibly, remaining errors and fixes the source artefact. The
process is repeated until all POs are discharged. To conduct the demonstrations,
these methods demand that they are conducted with tools. In practice, this is
accomplished by a mix of automatic proof and interactive proof. POs are thus
the cornerstone of every such formal development.

A PO has the form H � G, with H a set of hypotheses, and G the goal.
Its validity may stem from a contradiction in H, i.e. have nothing to do with
the goal. In the context of B and Event-B, a component with contradictory
hypotheses in its POs will be (trivially) correct. In large developments, a contra-
diction may stay undetected. B addresses this issue with POs associated at the
implementation level, i.e. at the very end of the development. At that point, this
requires fixing the refinement chain up to the source of the contradiction, which
c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 255–259, 2020.
https://doi.org/10.1007/978-3-030-48077-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_20&domain=pdf
https://doi.org/10.1007/978-3-030-48077-6_20

256 H. Rúız Barradas et al.

is costly. Also, components in a B project that do not have an implementation
(e.g., foreign interfaces) are not protected. Event-B does not fully address this
issue.

Such situations can be easily avoided by adding so called “existence” POs
whenever a contradiction may be introduced. An existence PO has the form
Γ ⇒ ∃V · (ϕ), where Γ is the context predicate, ϕ the predicate that shall not
be contradictory, and V a list of identifiers. A textbook on B [3] presents these
POs, but without considering component visibility, inclusion and refinement.
Existing tools for B and Event-B do not generate these, and we decided to add
it to Atelier B. We present the formalization of the POs for the specification
(Sect. 2) and the refinement (Sect. 3) levels. We discuss the case of standalone
components, and generalize to components with dependencies.

2 Existence Proof Obligations in Specifications

Existence for Parameters. In B, specification components may have sets and
scalar parameters. The constraints clause can be used to constrain these
parameters. When the machine is instantiated, a PO asks to prove the establish-
ment of the constraints clause, thus guaranteeing the absence of contradic-
tions. If the parametrized machine is not instantiated, the constraints clause
can contain undetected contradictions because no PO exists to detect them. Let
p denote the parameters, C the predicate in the constraint clause, the existence
PO given by [3] for parameters is ∃p · C. It has been implemented as such in
Atelier B.

Existence for Sets and Constants. The properties clause state constraints on
sets and constants declared respectively in the sets and constants clauses.
Enumerated sets have a single possible valuation, and abstract sets must satisfy
the implicit constraint that they are finite non-empty sets of integers. In this
way, in order to prove the absence of contradictions in the predicate P of the
properties clause of a single machine, with no seen or included components,
we define the following PO: e sets ⇒ ∃(c, s) · (P ∧ a sets), where e sets is the
conjunction of declarations of enumerated sets in the sets clause, c is the list of
abstract and concrete constants, s is the list of abstract sets, and a sets is the
conjunction of predicates t ∈ FIN 1(INTEGER) for each variable t in s. Notice
that the visibility rules of the language prohibit parameters in the predicate P ,
so it is useless to have predicate C as an antecedent.

If there are seen components in the machine, the predicates in the prop-
erties clause from the seen components and their included components are in
the antecedent of the PO. Moreover, for each abstract set u declared in the seen
machine or declared in a machine included by the seen machine, the antecedent
of the PO contains a predicate u ∈ FIN 1(INTEGER). The definition of each
enumerated set w declared in these machines is also in the antecedent.

If the machine includes components, the definition of their enumerated sets
are in the antecedent of the PO, their abstract and concrete constants and the

Existence Proof Obligations for B and Event-B 257

identifiers of their abstract sets are existentially quantified in the consequent
and the predicates of their properties clauses, together with the corresponding
a sets predicates, are in the body of the existential quantifier.

Following is an example of the existence PO for the sets, constants and
properties clauses for a standalone component:

sets
S1;S2 = {UM ,DOIS ,TRES};
S3 = {UN ,DEUX }
constants
c1, e1, e2, e3
properties
c1 ∈ NAT ∧ e1 ∈ INT ∧
e2 ∈ S2 ∧ e3 ∈ S1 ∧
(e2 = UM ⇒ e1 = 1))

PO:

S2 = {UM ,DOIS ,TRES} ∧
S3 = {UN ,DEUX }
⇒
∃(c1, e1, e2, S1) · (
S1 ∈ FIN (INTEGER) − {{}} ∧
c1 ∈ NAT ∧ e1 ∈ INT ∧
e2 ∈ S2 ∧ e3 ∈ S1 ∧
(e2 = UM ⇒ e1 = 1))

Existence for State Variables. The predicate invariant may also contain con-
tradictions. To prevent this, the existence PO of the invariant clause for a
standalone machine is C ∧ P ∧ all sets ⇒ ∃(v) · (I). The antecedent of this
PO contains the predicates C and P from the constraints and properties
clauses. The predicate all sets is the conjunction of e sets and a sets seen above.
The quantifed variable v denotes the list of abstract and concrete variables of
the machine.

If there are seen or included components, the antecedent is strengthened
with the conjunction of their properties, assertions, invariants and their all sets
predicates. In this conjunction, we also consider the clauses of the components
possibly included by the seen machines. Moreover, for the included components,
the consequent of the PO quantifies over their variables and invariants.

3 Existence Proofs in Refinements

Refinement in B or Event B is used for stepwise development. Refinement POs
are designed to be monotonic: If a component S is refined by a component T ,
these POs guarantee that the invariant of S is also preserved by operations in T .
However, existence POs in a refinement are not monotonic in that sense. When
an abstract constant or variable is refined by a concrete one, we still need to
prove that the properties or invariants specified in the abstraction hold in the
refinement.

Existence for Sets and Constants. For a refinement with no seen or included
components and no seen or included components in any of its abstractions, the
existence PO is intended to avoid contradictions in the predicate P of the prop-
erties clause of the refinement and all properties of the previous refinements,
denoted by the following predicate:

258 H. Rúız Barradas et al.

e sets ∧ abs e sets ⇒ ∃(c, ca, s, sa) · (P ∧ a sets ∧ abs P ∧ abs a sets)

The predicates e sets and a sets are defined as before, abs e sets denotes the
conjunction of declarations of enumerated sets, and abs a sets denotes the con-
junction of t ∈ FIN 1(INTEGER), for abstract sets t in previous refinements.
Predicate abs P is the conjunction of the properties predicates in the previous
refinements. The variable lists c and s contain the constants of the refinement
and its abstract sets. Finally, the lists ca and sa denote all constants and abstract
sets in previous refinements. If the refinement or any of its abstractions contains
seen or included components, the antecedent and the consequent are strength-
ened with the clauses of these components as it was done in the corresponding
PO of the specification.

Existence for State Variables. The corresponding PO defined for specification
components guarantees the absence of contradictions in the invariant. Also, the
PO of the establishment of the invariant by the initialization Inita guarantees
the existence of values of the abstract variables va satisfying the abstract invari-
ant I(va). The PO of the refinement of Inita by the initialization of a refined
component Initc is not sufficient to guarantee the absence of contradictions in
the refined invariant J(vc, va). Therefore, in order to prove the absence of con-
tradictions in the invariant J(vc, va) we need to show that the assignment of
some concrete values v to the concrete variables vc is a refinement of Inita. For-
mally this refinement is stated by ∃v · ([vc := v]¬[Inita]¬J which must be proved
under the context of the refinement. After simplification, the existence PO for
a standalone refinement and only standalone components in its abstractions is
defined as follows:

C ∧ P ∧ all sets ∧ abs all sets ∧ abs P ⇒ ∃(vc) · (¬[Inita]¬J)

where abs all sets is the conjunction of predicates all sets of previous refine-
ments, vc is the list of abstract and concrete variables of the refinement and J
is its invariant.

If there are seen or included components, the antecedent and consequent of
the PO are strengthened with the corresponding clauses of these components.

4 Conclusion

This paper presents details of the generation of existence POs for the formal
methods B and Event-B. These POs detect inconsistencies that would make
trivial, but useless, the correctness of the components, as soon as they are intro-
duced in the development. Their generation has been implemented and will be
available in a future release of Atelier B.

Existence Proof Obligations for B and Event-B 259

References

1. Abrial, J.-R.: The B-Book, Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. Abrial, J.-R.: Modelling in Event-B, System and Software Engineering. Cambridge
University Press, Cambridge (2010)

3. Schneider, S.: The B-Method. Macmillan International, New York (2001)

VisB: A Lightweight Tool to Visualize
Formal Models with SVG Graphics

Michelle Werth and Michael Leuschel(B)

Institut für Informatik, Universität Düsseldorf, Universitätsstr. 1,
40225 Düsseldorf, Germany

{michelle.werth,michael.leuschel}@hhu.de

Abstract. Visualization is important to present formal models to
domain experts and to spot issues which are hard to formalise or have not
been formalised yet. VisB is a visualization plugin for the ProB animator
and model checker. VisB enables the user to create simple visualizations
for formal models. An important design criterion was to re-use scalable
vector graphics (SVG) generated by off-the-shelf graphic editors using
a lightweight and easy-to-use annotation mechanism. The visualizations
can be used to formal models in B, Event-B, Z, TLA+ and Alloy.

1 Introduction and Background

The animator and model checker ProB [3] supports both classical B and Event-
B, as well as several other formalisms (Z, Alloy and TLA+) which are translated
to B. Animation allows the user to experiment with a model, inspecting states,
and interactively choose events or operations to execute. Animation is very useful
to validate functional behaviour of a model, but also to uncover unexpected
behaviour related to issues or requirements the modeller has not yet thought
about. Here graphical visualization of the current state of a formal model is
often essential so that a human can more quickly validate the behaviour or spot
unexpected behaviour. To cite Bryan Cantrill:1 “The visual cortex is unparalleled
at detecting patterns.” and “The value of visualization is not merely providing
answers but especially provoking new questions.”

There are several visualization tools for formal models such as PVSio-Web [7]
for PVS, various co-simulation tools for VDM such as [6], and JEB [8], AnimB2

or Brama [5] for Event-B. There have been several visualization based on ProB
in the past, such as the animation functions of [4], BMotionStudio [2] or BMo-
tionWeb [1]. The animation function feature is based on declaring a set of images
and writing a B expression which generates a matrix of image numbers. It is still
available in current versions of ProB, but it is hard to generate larger, visually
appealing visualizations. BMotionStudio still exists within Rodin for Event-B,
but is not available for other formalisms and it can be cumbersome to generate

1 https://www.slideshare.net/bcantrill/visualizing-systems-with-statemaps.
2 Available at http://wiki.event-b.org/index.php/AnimB.

c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 260–265, 2020.
https://doi.org/10.1007/978-3-030-48077-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_21&domain=pdf
https://www.slideshare.net/bcantrill/visualizing-systems-with-statemaps
http://wiki.event-b.org/index.php/AnimB
https://doi.org/10.1007/978-3-030-48077-6_21

VisB: A Lightweight Tool to Visualize Formal Models with SVG Graphics 261

complex visualizations using its editor. BMotionWeb is based on web technolo-
gies, and allows to generate very refined visualizations. However, its learning
curve is quite steep, and due to its heavy use of web technology and associated
frameworks can no longer be maintained by the ProB team. This situation was
the starting point for the development of the present VisB technology: it should
be both easy to use and maintain, it should not be bound to an editor but allow
a user to generate the images using off-the-shelf applications or even to re-use
existing images.

2 VisB Principles and Architecture

The core idea of VisB is to use SVG files as the basis of the visualization.
An SVG file is shown in Listing 1.1. Such files can be produced by most off-
the-shelf editors and their textual XML representation can be programmatically
generated.

1 <svg height="200" width="200">
2 <circle id="button" cx="100" cy="100" r="80"
3 stroke="black" stroke -width="3" fill="green" />
4 </svg >

Listing 1.1. Small SVG file (button.svg)

Moreover, SVG files can contain object identifiers (such as button for the
circle in Listing 1.1) and it is possible (e.g. using jQuery and JavaScript) to
load an SVG file and programmatically find objects from an identifier and set
attributes of the found objects, and immediately display the changes. This is the
basis of VisB, whose core is written in Java, JavaFX and JavaScript, and whose
architecture is shown in Fig. 1.

VisB
JSON
Glue
File

Formal
Model

SVG
Graphics

File

ProB2
Animator

UI
VisB

SVG
Graphics

Evaluation
of Formulas
from Glue

File

Setting Attributes
and On-click Callbacks

object ids
and attributes

expressions over
variables, constants

and events

Fig. 1. VisB architecture

262 M. Werth and M. Leuschel

This architecture makes VisB easy to maintain because it allows the ProB
team to mostly use Java and JavaFX in development, while cutting down the
interactions with web languages (such as JavaScript) to a bare minimum.

The link to the formal model is provided by a lightweight glue file (see List-
ing 1.2), that provides two lists. VisB-items consist of SVG object identifiers,
attributes, and expressions that provide the value the attribute should take
depending on the state of the formal model. VisB-events link formal model
events (aka operations or actions, depending on the formalism) to object identi-
fiers. These events are executed when the object is clicked by the user.

The motivation was to keep the foundation of VisB simple, and not to require
the user to learn any new programming language (e.g., JavaScript, Flash, ...).
The user just has to know relevant expressions or variables from the formal
model and corresponding object identifiers in the SVG graphics file. Moreover,
VisB works for all of ProB’s supported state-based formalisms (B, Event-B, Z,
TLA+, Alloy) in an identical fashion.

1 {
2 "svg":"button.svg",
3 "items":[
4 {
5 "id":"button",
6 "attr":"fill",
7 "value":"IF button=TRUE THEN \"green\" ELSE \"red\" END"
8 }
9],

10 "events":[
11 {
12 "id":"button",
13 "event":"press_button",
14 "predicates":[
15 "status=TRUE"
16]
17 }
18]
19 }

Listing 1.2. Minimal example for VisB file

3 VisB Examples

One of the simpler examples of a VisB file is shown in Listing 1.2. The corre-
sponding machine contains a bool variable and an operation called press button
that changes the status of this variable. We use the fact that ProB allows IF-
THEN-ELSE and LET for expressions (to simplify the syntax of the VisB file).
In Listing 1.2 the fill attribute of the SVG object with the identifier “button”
is changed to green whenever the button variable “button” in the correspond-
ing machine is set to true. This is realized with the IF-THEN-ELSE expression
in the value attribute. For the visualization this means that the circle’s color is
changed from red to green, when the operation press button is executed. Thanks
to the VisB-events, the user can also execute press button directly by clicking
on the SVG object with the identifier “button”.

VisB: A Lightweight Tool to Visualize Formal Models with SVG Graphics 263

Fig. 2. Example of VisB visualization of lift model

The first visualisation created with VisB can be seen in Fig. 2. In the formal
model, the state of a lift is represented by three variables: the current floor, an
integer value between the ground floor and the top floor (topf), the current
direction of the lift and a boolean variable indicating whether the door is open
or not. In addition, the lift controller maintains the status of calling buttons
inside the lift and on each floor. To cater for different number of floors, repre-
sented by the constant topf, we have made use of the SVG “visibility” attribute
to hide unused floors (see right of Fig. 2). Note that each floor is represented
by five graphical objects. To avoid having to hide each object of a given floor
individually, we have grouped the objects for each floor together. VisB can then
be used to hide or show all objects of a floor in one go, as shown in Listing 1.3.

1 ... {
2 "id":"gFloor_2",
3 "attr":"visibility",
4 "value":"IF topf >=2 THEN \"visible\" ELSE \"hidden\" END"
5 }, ...

Listing 1.3. VisB item with grouping of SVG elements

1 ... {
2 "id":"lift",
3 "attr":"y",
4 "value":"IF cur_floor =2 THEN \"3.207\" ELSIF cur_floor =1 THEN \"76.

974\" ELSIF cur_floor =0 THEN \"150.474\" ELSE \"224.574\" END"
5 },
6 {
7 "id":"door_right",
8 "attr":"y",
9 "value":"IF cur_floor =2 THEN \"3.207\" ELSIF cur_floor =1 THEN \"76.

974\" ELSIF cur_floor =0 THEN \"150.474\" ELSE \"224.574\" END"
10 },
11 {
12 "id":"door_left",
13 "attr":"y",
14 "value":"IF cur_floor =2 THEN \"3.207\" ELSIF cur_floor =1 THEN \"76.

974\" ELSIF cur_floor =0 THEN \"150.474\" ELSE \"224.574\" END"
15 }, ...

Listing 1.4. Change “y” Attribute of the lift

264 M. Werth and M. Leuschel

Unfortunately, not all attributes can be changed for groups of SVG objects
in this way. For example, the x and y coordinates cannot be changed for groups.
Hence, to achieve the vertical movement of the lift cabin, we need three VisB
items, each changing the attribute y to the same value (see Listing 1.4).

Fig. 3. Example of VisB visualization of N-queens problem

A solution to this drawback is to use embedded SVGs (i.e., nested SVG
graphics embedded in the master SVG file) where it is possible to change the
coordinates of those embedded SVGs. We have used this for the VisB visual-
ization of the n-queens problem, partially shown in Listing 1.5, where the VisB
items needed for the visualization of one given queen is shown. (Note, that the
value of the second VisB item is not complete.) Additionally, each chess tile has
a VisB event which triggers a B event to place a queen on that tile.
1 ... {
2 "id": "svgQueen1",
3 "attr": "visibility",
4 "value" : "IF 1:dom(queens) THEN \"visible\" ELSE \"hidden\" END"
5 },
6 {
7 "id": "svgQueen1",
8 "attr": "y",
9 "value" :"IF 1|->2:queens THEN \"45\" ELSIF 1|->3:queens THEN \"90

\" ELSIF 1|->4:queens THEN \"135\" [...] ELSIF 1|->20: queens
THEN \"855\" ELSE \"0\" END"

10 },
11 {
12 "id": "svgQueen1",
13 "attr": "fill",
14 "value" : "IF is_attacked (1) & 1:dom(queens) THEN \"red\" ELSE \"

black\" END"
15 }, ...

Listing 1.5. Example of VisB items for one queen in n-queens problem

For the n-queens problem, we programatically created the VisB file for the
chess field and queens, which enabled us to visualize bigger chess fields (120 ×
120), as you can see on the right in Fig. 3.

VisB: A Lightweight Tool to Visualize Formal Models with SVG Graphics 265

A more complex example can be found in our ABZ 2020 case study article
in the present proceedings, where SVGs were received from coordinators of the
case study and used to visualize various classical B and Event-B models.

In conclusion, thus far we seem to have met our goals of developing
lightweight, easy-to-use and easy-to-maintain visualization technology, which
nonetheless is flexible enough for creating simple academic visualizations up to
complex, full-fledged industrial applications. VisB is available for download at:

https://www3.hhu.de/stups/prob/index.php/VisB

References

1. Ladenberger, L.: Rapid creation of interactive formal prototypes for validating
safety-critical systems. Ph.D. thesis (2016)

2. Ladenberger, L., Bendisposto, J., Leuschel, M.: Visualising event-B models with B-
motion studio. In: Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS,
vol. 5825, pp. 202–204. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04570-7 17

3. Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method.
STTT 10(2), 185–203 (2008). https://doi.org/10.1007/s10009-007-0063-9

4. Leuschel, M., Samia, M., Bendisposto, J., Luo, L.: Easy graphical animation and
formula viewing for teaching B. In: The B Method: From Research to Teaching, pp.
17–32 (2008)

5. Servat, T.: BRAMA: a new graphic animation tool for B models. In: Julliand, J.,
Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 274–276. Springer, Heidelberg
(2006). https://doi.org/10.1007/11955757 28

6. Thule, C., Lausdahl, K., Gomes, C., Meisl, G., Larsen, P.G.: Maestro: the INTO-
CPS co-simulation framework. Simul. Model. Pract. Theory 92, 45–61 (2019)

7. Watson, N., Reeves, S., Masci, P.: Integrating user design and formal models within
PVSio-web. In: Masci, P., Monahan, R., Prevosto, V. (eds.) Proceedings Workshop
Formal Integrated Development Environment. EPTCS, vol. 284, pp. 95–104 (2018)

8. Yang, F., Jacquot, J., Souquières, J.: JeB: safe simulation of event-B models in
JavaScript. In: Muenchaisri, P., Rothermel, G. (eds.) Proceedings APSEC 2013, pp.
571–576. IEEE Computer Society (2013)

https://www3.hhu.de/stups/prob/index.php/VisB
https://doi.org/10.1007/978-3-642-04570-7_17
https://doi.org/10.1007/978-3-642-04570-7_17
https://doi.org/10.1007/s10009-007-0063-9
https://doi.org/10.1007/11955757_28

Towards a Shared Specification
Repository

Philipp Körner(B) , Michael Leuschel(B) , and Jannik Dunkelau

Institut für Informatik, Universität Düsseldorf,
Universitätsstr. 1, 40225 Düsseldorf, Germany

{p.koerner,michael.leuschel,jannik.dunkelau}@uni-duesseldorf.de

Abstract. Many formal methods research communities lack a shared
set of benchmarks. As a result, many research articles in the past have
evaluated new techniques on specifications that are specifically tailored
to the problem or not publicly available. While this is great for proving
the concept in question, it does not offer any insights on how it performs
on real-world examples. Additionally, with machine learning techniques
gaining more popularity, a larger set of public specifications is required.
In this paper, we present our public set of B machines and urge contri-
bution. As we think this to be an issue in other communities in scope
of the ABZ as well, we are also interested in specifications expressed in
other formalisms, for example Alloy, TLA+ or Z.

1 Introduction and Motivation

Our group in Düsseldorf has collected since 2003 thousands of B and Event-B
machines: our ProB repository contains around 13 000 machines, of which more
than 3500 are publicly available. The examples are used for ProB’s regression,
performance and feature tests. Those public examples contain some duplicates,
as they are compiled from different sources: e.g., from tickets in our bug tracker,
teaching, literature, case studies, or student projects.

Naturally, not all machines are relevant to all research questions: infinite
state spaces might be interesting in order to evaluate symbolic model checking
techniques [11], whereas large yet finite state spaces are the important class
for distributed model checking [10]. Other use cases, such as data validation [7]
work by executing a model along one particular, linear path, while others, like
constraint solving problems, sometimes work on machines without variables,
consisting of a single state. Most recently, machine learning (ML) techniques
are applied to model checking or synthesis as well, and require a large number
of specifications, e.g., in order to extract and re-combine predicates [6]. Even
with access to numerous machines, it is time-consuming and cumbersome to
identify machines to use for benchmarking, especially since only a small amount
of data can be presented in a typical research article. Without any doubt, other
research groups have their individual set of B machines they use for testing and
evaluation. Thus, we propose that individual sets of benchmarks from different
c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 266–271, 2020.
https://doi.org/10.1007/978-3-030-48077-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_22&domain=pdf
http://orcid.org/0000-0001-7256-9560
http://orcid.org/0000-0002-4595-1518
http://orcid.org/0000-0003-0819-5554
https://doi.org/10.1007/978-3-030-48077-6_22

Towards a Shared Specification Repository 267

parts of the community are combined into a global, shared repository. With
this paper, we start this endeavour, and create an index of our specifications as
described in Sect. 2. Benefits include:

– Benchmarks are publicly available and experiments can be replicated easily.
– Performance comparisons of several tools in different versions can be drawn.
– Suitable benchmarks can be quickly identified.
– Examples for translations between formalisms or ML are available.
– Particularly successful examples can be shared for teaching.

While we are most involved in the B and Event-B community, we think that
similar issues are present in other communities which make up the ABZ con-
ference. Thus, we explicitly want to invite everyone to contribute specifications
written in other formalisms as well. The repository is located at:

https://github.com/hhu-stups/specifications

2 Proposed Index

Since our initial set of models is rather large, it is vital that a sufficient amount of
meta-information is attached to the models. For this, we suggest usage of edn1,
a serialisation format with parsers available in most mainstream programming
languages. For each specification, some basic information should be offered:

– Which formalism is this specification written in?
– A SHA-256 hash code to identify duplicates, and to ensure reproducibility of

experiments regarding the specification.
– Number of deferred sets, enumerated sets, constants, state variables and oper-

ations/events, number of included machines, etc.
– Number of states and state transitions in the machine (if known).2
– Presence of invariant violations, deadlocks, etc. (if the property is known).
– Optional link to another (previous) model (e.g., a correction or evolution).

The information above is known to never change, but can be extended once
further properties are considered. Additional information depending on the tool,
its configuration or the use case altogether can be included as well, such as
temporal properties (e.g., expressed in LTL or CTL) which are expected to
hold or to be violated, tool name and version/revision which is able to parse or
execute the specification, or settings, walltime and memory usage required for
application of a technique such as model checking.
1 Extensible Data Notation, see: https://github.com/edn-format/edn.
2 Note that different tools count the number of transitions and states slightly differ-

ently. it might be necessary to keep track of the number of initial states and, e.g., the
virtual constants setup states of prob. then, one can derive the expected statistics
for other validation tools. some settings can also influence the number of states, e.g.,
the default scope for deferred sets or maximum number of transitions per operations.
in that case, it is preferable not to specify a number of states, but rather include
that number in a specific run of the tool (see below), that also includes the settings
needed for replication.

https://github.com/hhu-stups/specifications
https://github.com/edn-format/edn

268 P. Körner et al.

Optional Fields. Naturally, this data must also be extensible via optional fields.
For instance, additional information due to a new use case can be gathered, e.g.,
the amount of states when using state space reduction techniques. As runtime
might depend on the hardware it was ran on, relevant data should be included
as well. They also allow extension of the information, e.g., for further tools
such as Atelier-B [4] or handling of entirely different file formats, e.g., Rodin [1]
archives. In order to select suitable set of specifications, one can simply apply
a filter predicate testing the formalism or dialect of it. Furthermore, optinal
fields enable links between different machines (e.g., due to refinement or differ-
ent parameter instantiation) and to external information, such as references to
articles describing the model, descriptions of the models as well as the author(s)
and their contact information. Finally, certain metrics do not make sense for
specific use cases of a formalism, or cannot be applied to other formalisms at
all. Thus, such data must not be a mandatory field (but may be mandatory for
a given formalism)3.

Filtering Specification. As previously mentioned, we use edn for the meta infor-
mation because this format can easily be processed. A short example written in
Clojure is given in Listing 1.1. There, all files containing meta-information in the
directory are located (ll. 1–5). Then, they are read in and filtered (ll. 7–15). The
expression starting in l. 9 returns a list of all file names of specifications written
in the B formalism that are known to have a state space of at least 100 000
states. At the time of writing, there are 45 such machines. This example shows
that finding specifications based on certain criteria is fairly easy and necessary
for verification tool maintainers.

3 It would be sensible to define different standard formats for different formalisms.
These can be automatically enforced in a CI pipeline, e.g., by Clojure Spec [5],
before pull requests are accepted.

Towards a Shared Specification Repository 269

Table 1. Overview of available machine meta data with a timeout of 30 min.

Errors on Load 310

Formalism 763 Event-B 2886 Classical B

Deadlock found 1080 yes 1576 no 683 timeout

Invariant violated 255 yes 2498 no 586 timeout

max avg usage in # machines

States 1 000 002 8743 2624

Transitions 5 570 544 53 296 2624

Included Machines 13 1.18 3339

State Variables 10 000 7.49 2282

Operations 2000 6.00 2497

Deferred Sets 50 0.44 669

Enumerated Sets 19 0.79 1310

Invariants 10 000 9.39 1958

Constants 10 000 8.63 2090

Properties 12 015 17.51 2094

Static Assertions 188 1.46 646

Dynamic Assertions 54 0.20 200

Definitions 374 2.75 1265

Table 1 provides an overview of the information of B machines currently
present in the repository, compiled after running each machine with a timeout
of 30 min in the ProB model checker.

On Updating Versions. We strongly argue that the published version of a spec-
ification must not be replaced. Once they are online, they may be used by any
researcher. Even though git clearly documents the history of a file, it would be
unclear which version was used as a benchmark or presented in an article. If
mistakes were spotted, new versions can be submitted as a modified copy.

3 Conclusions, Related and Future Work

We firmly believe that a shared repository of specifications will benefit all com-
munities coming together at ABZ. Aside from making benchmarks available for
replication, it can assist courses teaching the formal methods. Furthermore, it
builds the foundation for exciting new research that relies on such a dataset.

Similar issues have been found in other communities. This led to the creation
of central benchmarking sets, e.g., BEEM for models written in DVE [13], or
the PRISM benchmark suite [12] for models written in PRISM. Yet, to our
knowledge, it is not possible to contribute to these databases. This has led to
criticism that, e.g., not many models that are large enough are featured. Also,

270 P. Körner et al.

a fixed set of benchmarks is not a viable approach in the B community, that
creatively uses the B language in order to solve very different types of problems.

In other communities, such as SMT and SAT solving, shared benchmark sets
are established for many years [3,8]. They both grow via community contri-
butions and are the foundation for solver competitions [2,9]. SMT-LIB in par-
ticular is a success story, containing more than 100 000 benchmarks. There are
many other examples for competitions and problem collections, e.g., SV-COMP4,
TPLP5 [15], which we cannot exhaustively list here due to page limitations.

An interesting question we could not answer in this paper is to what extent
our examples match the reality of (confidential) industrial specifications. An
answer requires to take a closer look at the data that is available to us. When
considering state space size, number of variables and operations as well as idioms
used, e.g., usage of program counters or certain data structures, it might be
possible to label some public machines accordingly.

Furthermore, research papers often contain links to download pages not only
for benchmarks, but also tools themselves. Some tools presented years ago are
hard or near impossible to find now. Some conferences, e.g., POPL, established
artifact evaluation committees, yet making artifacts permanently available often
is optional. ACM conferences offer different badges6 depending on availability,
replicability, etc. A similar, mandatory repository containing at least one binary
version or even the source code of tools presented at conferences might prove
useful to the research community as well. Worth mentioning here is the StarExec
platform [14], that allows storage and execution of tools and benchmark prob-
lems, which may serve this effort to a satisfactory extent already.

In order for the presented endeavour to be successful, the effort of the entire
community is required and their contributions to this repository will be appre-
ciated.

Acknowledgement. Computational support and infrastructure was provided by the
“Centre for Information and Media Technology” (ZIM) at the University of Düsseldorf
(Germany). We thank the many persons who contributed to the repository (a list is
available at the project’s website).

References

1. Abrial, J.-R., Butler, M., Hallerstede, S., Voisin, L.: An open extensible tool envi-
ronment for Event-B. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp.
588–605. Springer, Heidelberg (2006). https://doi.org/10.1007/11901433 32

2. Barrett, C., de Moura, L., Stump, A.: SMT-COMP: satisfiability modulo theories
competition. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 20–23. Springer, Heidelberg (2005). https://doi.org/10.1007/11513988 4

4 https://sv-comp.sosy-lab.org/2020/.
5 Which inspired the second author to generate another library, Dozens of Problems

for Partial Deduction https://github.com/leuschel/DPPD.
6 Cf. https://www.acm.org/publications/policies/artifact-review-badging.

https://doi.org/10.1007/11901433_32
https://doi.org/10.1007/11513988_4
https://sv-comp.sosy-lab.org/2020/
https://github.com/leuschel/DPPD
https://www.acm.org/publications/policies/artifact-review-badging

Towards a Shared Specification Repository 271

3. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard - version 2.0. In: Pro-
ceedings SMT 2010, July 2010

4. ClearSy. Atelier B, User and Reference Manuals. Aix-en-Provence, France (2016).
http://www.atelierb.eu/

5. Clojure Spec Guide. https://clojure.org/guides/spec. Accessed 12 Mar 2020
6. Dunkelau, J., Krings, S., Schmidt, J.: Automated backend selection for ProB using

deep learning. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2019. LNCS, vol. 11460,
pp. 130–147. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20652-9 9

7. Hansen, D., Schneider, D., Leuschel, M.: Using B and ProB for data validation
projects. In: Butler, M., Schewe, K.-D., Mashkoor, A., Biro, M. (eds.) ABZ 2016.
LNCS, vol. 9675, pp. 167–182. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-33600-8 10

8. Hoos, H.H., Stützle, T.: SATLIB: an online resource for research on SAT. In: SAT
2000, pp. 283–292. IOS Press (2000)

9. Järvisalo, M., Le Berre, D., Roussel, O., Simon, L.: The international SAT solver
competitions. Ai Mag. 33(1), 89–92 (2012)

10. Körner, P., Bendisposto, J.: Distributed model checking using ProB. In: Dutle,
A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-77935-5 18

11. Krings, S.: Towards infinite-state symbolic model checking for B and Event-B.
Ph.D. thesis, Universitäts-und Landesbibliothek der HHU Düsseldorf (2017)

12. Kwiatkowska, M., Norman, G., Parker, D.: The PRISM benchmark suite. In: Pro-
ceedings QEST 2012, pp. 203–204. IEEE CS Press, September 2012

13. Pelánek, R.: BEEM: benchmarks for explicit model checkers. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73370-6 17

14. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: a cross-community infrastructure
for logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014.
LNCS (LNAI), vol. 8562, pp. 367–373. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-08587-6 28

15. Sutcliffe, G.: The TPTP problem library and associated infrastructure. From CNF
to TH0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)

http://www.atelierb.eu/
https://clojure.org/guides/spec
https://doi.org/10.1007/978-3-030-20652-9_9
https://doi.org/10.1007/978-3-319-33600-8_10
https://doi.org/10.1007/978-3-319-33600-8_10
https://doi.org/10.1007/978-3-319-77935-5_18
https://doi.org/10.1007/978-3-540-73370-6_17
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1007/978-3-319-08587-6_28

Refinement and Verification
of Responsive Control Systems

Karla Morris1(B), Colin Snook2, Thai Son Hoang2, Geoffrey Hulette1,
Robert Armstrong1, and Michael Butler2

1 Sandia National Laboratories, Livermore, CA, USA
knmorri@sandia.gov

2 ECS, University of Southampton, Southampton, UK

Abstract. Statechart notations with ‘run to completion’ semantics, are
popular with engineers for designing controllers that respond to events
in the environment with a sequence of state transitions. However, they
lack formal refinement and rigorous verification methods. Event-B, on
the other hand, is based on refinement from an initial abstraction and
is designed to make formal verification by automatic theorem provers
feasible. We introduce a notion of refinement into a ‘run to completion’
statechart modelling notation, and leverage Event-B’s tool support for
theorem proving. We describe the difficulties in translating ‘run to com-
pletion’ semantics into Event-B refinements and suggest a solution. We
outline how safety and liveness properties could be verified.

Keywords: Run-to-completion · Statecharts · Refinement

1 Introduction

Reactive Statecharts are open systems capable of receiving potentially non-
deterministic input. This work, which builds on our previous work [7,8], exposes
a srhallow embedding of open Statecharts semantics in Event-B. Statecharts pro-
vide a graphical language, generalized from state machines, that is popular with
engineers, variants of which appear in Matlab Simulink/Stateflow [6] and the
Ansys tools. Particularly attractive is providing accessibility to abstraction/re-
finement via Rodin/Event-B which has an intuitive metaphor in the Statechart
semantics [7,8]. The commercial tools have similar ideas expressed as encapsula-
tion and composition but not entailing any formal guarantees. The hope is that
engineers can better understand the origin of proof obligations in refinements
and achieve formal guarantees earlier in their designs where it is most tractable.

Related work has developed a number of different semantics all with different
purposes and outcomes [2,3,5]. Because our contribution is focused on a mapping
to Event-B, safety property preserving refinement is key. Event-B provides not
only a definition of refinement but a rubric for finding valid refinements and this

Under the terms of Contract DE-NA0003525, there is a non-exclusive license for use
of this work by or on behalf of the U.S. Government.

c© National Technology & Engineering Solutions of Sandia, LLC. 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 272–277, 2020.
https://doi.org/10.1007/978-3-030-48077-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_23&domain=pdf
https://doi.org/10.1007/978-3-030-48077-6_23

Refinement of Control Systems 273

is carried over into the Statecharts work presented here. In our version of Stat-
echart semantics, refinement means a subsetting of traces from an abstraction.
This has the beneficial effect of preserving safety properties from abstraction to
refinement and permits proofs to be discharged at the highest tractable level of
abstraction. It is at the highest level of abstraction that proofs are presumably
the easiest to discharge.

2 Background

SCXML is a modelling language based on Harel statecharts [12]. State-Chart
XML (SCXML) follows a ‘run to completion’ semantics, where trigger events
may be needed to enable transitions. Trigger events are queued when they are
raised, and then one is de-queued and consumed by firing all the transitions
that it enables, followed by any (un-triggered) transitions that then become
enabled due to the change of state caused by the initial transition firing. This
is repeated until no transitions are enabled, and then the next trigger is de-
queued and consumed. There are two kinds of triggers: internal triggers are
raised by transitions and external triggers are raised by the environment (non-
deterministically for the purpose of our analysis). An external trigger may only
be consumed when the internal trigger queue has been emptied.

Event-B is a formal method for system design [1,4]. It uses refinement to intro-
duce system details gradually into the formal model. An Event-B model con-
tains two parts: contexts and machines. Contexts contain carrier sets, constants,
and axioms constraining the carrier sets and constants. Machines contain vari-
ables v, invariants I(v) constraining the variables, and events. An event con-
sists of a guard denoting its enabled-condition and an action defining the value
of variables after the event is executed. In general, an event e has the form:
any twhere G(t, v) then S(t, v) end where t are the event parameters, G(t, v) is
the guard of the event, and S(t, v) is the action of the event.

Machines can be refined by adding more details. Refinement can be done by
extending the machine to include additional variables (superposition refinement)
representing new features of the system, or by replacing some (abstract) variables
by new (concrete) variables (data refinement).

UML-B State-machines provides a diagrammatic modelling notation for Event-
B in the form of state-machines and class diagrams [9–11]. The diagrammatic
models relate to an Event-B machine and generate or contribute to parts of it.

Each state is encoded as a boolean variable and the current state is indicated
by one of the boolean variables being set to TRUE. An invariant ensures that only
one state is set to TRUE at a time. Events change the values of state variables
to move the TRUE value according to the transitions in the state-machine.

While the UML-B translation deals with the basic data formalisation of state-
machines it differs significantly from the semantics discussed in this manuscript.
UML-B adopts Event-B’s simple guarded action semantics and does not have a
concept of triggers and run-to-completion. Here we make use of UML-B’s state-
machine translation but provide a completely different semantic by generating

274 K. Morris et al.

a behaviour into the underlying Event-B events that are linked to the generated
UML-B transitions.

3 Run to Completion

The run to completion semantics is specified via an abstract basis that is
extended by the model. The specification of this basis consists of an Event-B
context and machine that are the same for all input models and are refined by
the specific output of the translation. This allows us to introduce an abstract
behaviour of transitions queueing and using triggers which is gradually refined to
introduce the actual triggering and transitions of the specific example being mod-
elled. It would not otherwise be possible for newly introduced transitions to mod-
ify the abstract queues. The basis context introduces a set of all possible triggers,
which is partitioned into internal and external triggers (e.g. FutureInternalTrigger
and FutureExternalTrigger respectively), some of which will be introduced in
future refinements. Each refinement partitions these trigger sets further to intro-
duce concrete triggers, leaving a new abstract set to represent the remaining
triggers yet to be introduced.

The basis machine declares variables that correspond to the internal and
external queues, the dequeued trigger and a flag that signals when a run to com-
pletion macro-step has been completed (no un-triggered transitions are enabled).
The abstract event futureTriggeredTransitions represents a combination of tran-
sitions that are triggered by the trigger presently ready to dequeue, dt. The
actions of these transitions may also raise triggers of their own.

In the process of refining a model, a designer takes advantage of the
non-determinism in the abstraction to introduce new triggers and state-
chart behaviour that refines abstract events. By default a run may non-
deterministically complete at any stage until no un-triggered transitions are
enabled (when completion is the only choice left). This allows for future refine-
ments that may strengthen the guards of transitions (e.g. by introducing new
nested states as the source of a transition) Such guard strengthening refinements
correspond to earlier (i.e. weaker) completion, hence the need to allow for this
behaviour in the abstraction. When a refinement level is reached for which the
designer wants to verify a property that relies on a particular control response
within the current run, early completion must be disallowed. This is done by
specifying (as an annotation in the SCXML model) that the transitions involved
in the run are finalized. The SCXML translation tool will then automatically
strengthens the guards of the completion events to ensure that the run to com-
pletion sequence is not interrupted early by non-deterministic behaviour.

The translation of a specific SCXML model extends that described in [7,8]
with the following additions:

Trigger Queues in Basis: The encoding of trigger queues in the abstract basis
machine has been improved so that triggers are properly dequeued before
potential use, which allows triggers to be discarded if the controller cannot
respond to them. This more accurately reflects the SCXML semantics.

Refinement of Control Systems 275

Finalisation: Transitions can be flagged as finalised which means their guards
can not be strengthened in subsequent refinements. This allows them to be
‘enforced’ when they are enabled (i.e. completion cannot occur until they
have fired) which is needed for verification.

Restricted Raising of Internal Triggers: Once a trigger is introduced it must
immediately be raised at that refinement level by any transitions that wish
to do so. It cannot be raised in later refinements except by newly introduced
transitions. This restriction was necessary to make simulation more useful by
removing non-deterministic raising of triggers in anticipation of refinements.

Context Instantiation: The axioms of the basis context, that allow future
triggers to be added, have been improved so that ProB1can automatically
create an instantiation.

A tool to automatically translate SCXML models into UML-B has been
produced.

4 Statechart Refinement

Our system includes three refinement rules.

1. Guard conditions on a transition can be strengthened; this can done by adding
textual guards to the transition, or changing the source of the transition to
a nested state.

2. Transitions can have additional actions, provided they do not modify variables
appearing in the abstraction; this can be accomplished by adding textual
action to the transition or by changing the target to nested state.

3. A statechart can be embedded within a state of another statechart – some-
times called hierarchical composition or hierarchical refinement.

Via the translation explained in Sect. 3, these rules rely on the usual Event-B
proof obligations to ensure that they do indeed yield refinements in the Event-B
semantics.

5 Verification of Safety Properties

In a state-chart model we naturally wish to verify properties P, about other
parallel statechart regions and auxiliary data, that are expected to hold true in
a particular state S. Hence, all of the safety properties that we consider are of
the form: S=TRUE ⇒ P, where the antecedent is implicit from the containment
of P within S.

SCXML models represent components that respond to received triggers and
are not perfectly synchronised with changes in the monitored properties. Hence,
P may be temporarily violated until the system responds by leaving the state

1 ProB is an animator, constraint solver and model checker for the B-Method. https://
www3.hhu.de/stups/prob.

https://www3.hhu.de/stups/prob
https://www3.hhu.de/stups/prob

276 K. Morris et al.

S in which the property is expected to hold. To cater for this we express P in
a modified form P’ that allows time for the response to take place. There are
two forms of reaction that can be used to exit S; a) an untriggered transition,
or b) a transition that is triggered by an internally raised trigger. For a), the
modified property P’ becomes P ∨ untriggered transitions are not complete, and
for b) P’ becomes P ∨ trigger t is in the internal queue or dequeued (where t is
the internal trigger raised when the violation of P is detected).

6 Verification of Control Responses

It is sometimes possible to construct a model that satisfies some invariant (e.g.
safety) properties, but does not behave in a useful way. Therefore, as well as
verifying invariant properties, we would like to verify the system’s responsiveness.
More specifically in this case, we want to ensure that the controller responds
to external triggers to make appropriate modifications to the system variables.
These kind of live responses can not be verified by proof of invariants since they
are temporal properties. Instead, we can express the property in Linear Temporal
Logic (LTL) and use the ProB model checker to verify it.

In general, our liveness properties will have the following form:

G([external trigger event] ⇒ F{predicate}),

where the predicate concerns variables v that the system maintains, and may
refer to old values old(v) that existed when the external trigger occurred. To
specify a liveness property to be verified, a special LTL element is added to
the SCXML model with attributes, property (a string of the above form) and
refinement (an integer indicating the refinement level at which the property
should be verified). The translator generates a separate ‘branch’ refinement for
each LTL property to be verified. In this special refinement, history variables
are added to record the value at the state when the external trigger occurs,
of any variables that are referenced as ‘old’ values. A text file is automatically
generated containing the LTL property to be checked.

In this generated version, an assumption of strong fairness is added for all
other events in the model. (This assumption is stronger than necessary since some
events will not affect the outcome, but is easier to generate and is sufficient for
our verification aim).

SF[e1] ∧ SF[e2]... ⇒G([external trigger event] ⇒ F[predicate])

This property is then verified using the LTL facility of the ProB model checker.

7 Conclusion

Statecharts are useful and widely used by engineers for modelling the design
of control systems that respond to sensed changes in the environment. Event-B
provides an effective language for formally verifying properties via incremental

Refinement of Control Systems 277

refinements. However, it is not straightforward to apply the latter to the former.
We have developed a technique for introducing refinement of Statecharts that
can be translated to Event-B for verification. Invariant properties about the
expected coordination of states can be added and are interpreted with additional
allowance for the reactions to take place in the control system. Such invariants
prove automatically with the existing Rodin theorem provers. We use an LTL
model checker as a complementary process for verifying expected reactions to
environmental triggers.

In future work we intend to formalise the semantics of our extended SCXML
notation in order to define its notion of refinement and correspondence to
Event-B.

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Syriani, L.L.E., Sousa, V.: Structure and behavior preserving statecharts refine-
ments. Sci. Comput. Program. 170(15), 45–79 (2019)

3. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-
gram. 8(3), 231–274 (1987)

4. Hoang, T.S.: An introduction to the Event-B modelling method. In: Romanovsky,
A., Thomas, M. (eds.) Industrial Deployment of System Engineering Methods, pp.
211–236. Springer, Heidelberg (2013)

5. Maraninchi, F.: The Argos language: graphical representation of automata and
description of reactive systems. In: IEEE Workshop on Visual Languages (1991)

6. MATLAB. 9.7.0.1190202 (R2019b). The MathWorks Inc., Natick, Massachusetts
(2019)

7. Morris, K., Snook, C.: Reconciling SCXML statechart representations and Event-B
lower level semantics. In: HCCV - Workshop on High-Consequence Control Verifi-
cation (2016)

8. Morris, K., Snook, C., Hoang, T.S., Armstrong, R., Butler, M.: Refinement of
statecharts with run-to-completion semantics. In: Artho, C., Ölveczky, P.C. (eds.)
FTSCS 2018. CCIS, vol. 1008, pp. 121–138. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-12988-0 8

9. Said, M.Y., Butler, M., Snook, C.: A method of refinement in UML-B. Softw. Syst.
Model. 14(4), 1557–1580 (2015)

10. Snook, C.: iUML-B statemachines. In: Proceedings of the Rodin Workshop 2014,
Toulouse, France, pp. 29–30 (2014). http://eprints.soton.ac.uk/365301/

11. Snook, C., Butler, M.: UML-B: formal modeling and design aided by UML. ACM
Trans. Softw. Eng. Methodol. 15(1), 92–122 (2006)

12. W3C. State chart XML SCXML: State machine notation for control abstraction,
September 2015. http://www.w3.org/TR/scxml/

https://doi.org/10.1007/978-3-030-12988-0_8
https://doi.org/10.1007/978-3-030-12988-0_8
http://eprints.soton.ac.uk/365301/
http://www.w3.org/TR/scxml/

Articles Contributing to the Case Study

Adaptive Exterior Light and Speed
Control System

Frank Houdek1 and Alexander Raschke2(B)

1 Research and Development, Mercedes-Benz AG, Sindelfingen, Germany
frank.houdek@daimler.com

2 Institute of Software Engineering, Ulm University, Ulm, Germany
alexander.raschke@uni-ulm.de

1 Introduction

This case study continues the successful series of case studies for formal spec-
ification and verification of the ABZ conference series, which started with the
landing gear system [1] and expanded with the hemodialysis medical device [4]
and the European Train Control System (ETCS)[2] in the following years. This
document describes two systems from the automotive domain: an adaptive exte-
rior light system (ELS) and a speed control system (SCS). This specification is
based on the SPES XT running example [3]. Besides their general architectures,
the requirements of the software based controllers are described. Both systems
are only loosely coupled, which makes it possible to handle them independently.

Conventions. Throughout this document, we use the following conventions to
better distinguish different terms: Main functions are set in bold, sub-functions
are italicized. Predefined signals are written in typewriter and for the values
of signals we use a font without serifs.

The structure of the document is as follows: First, the general hardware
architecture of a modern car is sketched in Sect. 3. Then, the adaptive exterior
light system is described in Sect. 4, followed by the requirements of the speed
control system (Sect. 5). For each of the systems, the user interface, the needed
sensors and the available actuators are described before the different features
are explained in detail. In Sect.A, all available signals and their value ranges are
summarized in a table.

2 Disclaimer

The example in this document is inspired from real-world systems as they are
available in many recent cars. However it is important to note that the given
description does not describe a current or past real-world system of any vehicle
of the Daimler AG.

c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 281–301, 2020.
https://doi.org/10.1007/978-3-030-48077-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_24&domain=pdf
https://doi.org/10.1007/978-3-030-48077-6_24

282 F. Houdek and A. Raschke

3 General Architecture

A modern car offers many different safety and comfort functions. Most of them
are nowadays realized in software running on a bunch of electronic control units
(ECUs) with connected actuators and sensors. These ECUs are connected via
several bus and network techniques like CAN, LIN, or FlexRay (depending on
the needed band width and reliability). The avoidance of a single central unit is
three-fold: First, the risks with a single-point of failure are reduced, second, the
limited space and energy of a car restricts the possible technologies, and third,
there is the constant need to balance the weight and space consumption of wiring
harness with space and weight consumption of decentral control units that are
placed nearby the actuators. Despite the pressure to realize more and more in
software, some functions are still implemented in hardware. For example, in this
specification it is assumed that the detection of a defective bulb is realized by a
corresponding electronic circuit.

Additional to the complexity of a distributed system, each car can be config-
ured individually, either by law restrictions of different countries or by customer’s
preferences. For example, the rear direction indicator in USA and Canada is real-
ized by a blinking red tail light, whereas in Europe it is an extra yellow light.

Figure 1 presents an exemplary excerpt of a connection diagram for the two
systems described in this case study. In this case study, we do not focus on
the communication between the different ECUs which is necessary because of
the distribution of each functionality over several ECUs. For example, to realize
left blinking, the body controller front, the door control unit left, and the body
controller rear must be involved to execute the commands given by the steering
column switch module. In this case study, we focus on the functionalities and
simplify reality by allowing signals to be read and commands to be sent directly.

Turn Indicator lamps

Turn indicator lamps
Cornering light lamps

Turn indicator lamps
Rear position lamp

Front Lamps

Pitman arm

Hazard warning lamp switch

Accelerator pedal

Radar-Sensors

Infotainment CAN (F-CAN)

Chassis-Flexray (F-FLEX)

LIN

Door control unit
left (DCU)

Brake pedal,
Wheel speed sensor

Ignition lock

Body CAN (I
-

CAN)

Overhead control
panel (OCP) LVDS

Door control unit
right (DCU)

High-beam module
(HBM)

Instrument
cluster (IC)

Body controller rear
(BC_R)

Engine control
module (ECM)

Electronic ignition
starter switch (EIS)

Central
gateway (CGW)

Rain-/Light-
Sensor

Turn Indicator lamps

Infotainment
gateway (IGW)

Body controller
front (BC_F)

Electronic stability
program (ESP)

Brake

Advanced driver assistance
system module (ADAS)

Darkness switch
Upper control panel (UCP)

Cruise control arm
Steering column switch

module (SCSM)

Exterior lamp
switch (ELS)

Head-Unit
(HU)

Fig. 1. System overview

Adaptive Exterior Light and Speed Control System 283

In order to save costs, the software of each control unit is parameterized with
the different necessary configurations according to the country specification and
the individual order. In the context of this case study, the following parameters
are defined. They must be taken into account for the formal specification.

– driverPosition holds the information, if the car is configured for left-hand
or right-hand traffic.

– The Boolean armoredVehicle indicates, if the current car is an armored
vehicle or not.

– The marketCode parameter specifies the market for which the car is to be
built. Some example codes are: 001 = USA, 002 = Canada, 003 = EU.

4 Adaptive Exterior Light System

The headlights of a modern car are no longer simply switched on and off by a
simple mechanical switch, but the exterior light system integrates various sub-
systems, like the control of turn signals and comfort functions such as a cor-
nering light. Specifically the following light system functions, among others, are
described in detail in this study:

– Turn Signal: Control of the driving direction indicators.
– Low beam headlights: Control of the low beam headlights. If daytime

running light is activated, low beam headlights are active all the time and
ambient light illuminates the vehicle surrounding while leaving the car during
darkness. The function low beam headlight also includes parking light.

– Cornering light: Control of additional headlights that illuminate the cor-
nering area separately when turning left or right.

– Adaptive high beam: Control of the high beam headlights.
– Emergency brake light: Following drivers are warned by a flashing brake

light in case of an emergency brake.

In the following sections, we first introduce the user interface, necessary sen-
sors and the attached actuators of an exterior light system.

4.1 User Interface

The car driver can control the different functions of the lighting system by several
buttons and switches, which are described in the following.
The light rotary switch has the following positions: Off, Auto, On (see Fig. 2). The
light rotary switch position is transmitted via the signal lightRotarySwitch.

The control lever attached to the steering column is called pitman arm and
allows for the following movements (see Fig. 3). The pitman arm position is
transmitted via the signals pitmanArmForthBack and pitmanArmUpDown.

– By pushing away from the driver 4© (backward): Permanent activation of the
adaptive high beam (with pitman arm engaged).

284 F. Houdek and A. Raschke

0 Auto

Fig. 2. Light rotary switch

– By pulling towards the driver 1© (forward): Temporary activation of the high
beam (without engaging, so-called flasher).

– By moving up or down 2©/ 3©: Temporary or permanent activation of the
direction indicator to the left or right. The temporary activation (so called
tip-blinking) happens by a deflection of about 5◦ (Downward5, Upward5), the
permanent activation (engage) by about 7◦ deflection (Downward7, Upward7).
The engagement ends either by manually bringing the pitman back to neutral
position or automatically by a mechanical reset mechanism if the steering
wheel has been turned more than 10◦.

– The neutral position of the pitman arm is signaled by Neutral.

Fig. 3. Pitman arm with four directions of movement

The Hazard Warning Light Switch (see Fig. 4, hazardWarningSwitchOn) is
just like the Darkness Switch (only available at armored vehicles, see Fig. 5,
darknessModeSwitchOn) a simple toggle switch which turns on the correspond-
ing function when pushed (value True) and turns it off when pushed again (value
False).

The user can activate or deactivate the functions daytime running light and
ambient light in the instrument cluster settings menu (which is not described
in this specification). The instrument cluster settings are transmitted via
daytimeLights and ambientLighting.

Adaptive Exterior Light and Speed Control System 285

Fig. 4. Hazard warning light switch

OFF

Fig. 5. Darkness switch (only armored
vehicles)

4.2 Sensors

Besides the elements that can be manipulated by the user, several sensors are
necessary to provide the desired features.

– Status and position of the key (and thus the information, if the ignition is on).
This information is transmitted via keyState and has the values NoKeyIn-
serted, KeyInserted, KeyInIgnitionOnPosition.

– Engine status engineOn (True, False).
– Brightness of the environment brightnessSensor, offering the measured out-

side brightness in values 0 to 100000.
– Deflection of the brake pedal brakePedal, where 0 means no deflection and

225 means a maximum deflection of 45◦.
– Available battery voltage voltageBattery, measured in 0.1 V.
– Angle of the steering wheel steeringAngle.
– Information about the status of the doors (open or closed). For the sake of

simplicity there is only the information available if all doors are closed or not
(via allDoorsClosed).

– A camera to detect oncoming vehicles, signaled via oncommingTraffic. The
state of the camera (Ready, Dirty, NotReady) is signaled via cameraState.

– The current vehicle speed is available via currentSpeed.
– If the reverse gear is engaged, reverseGear becomes True.

4.3 Actuators

Figure 6 schematically shows the possible positions A (front), B (exterior mirror),
C (rear), and D (rear center) of exterior lighting elements of a vehicle.

The following lighting actuators1 are installed at the given positions (each
left and right, except D which exists only once):

– Direction indicator (blinker) (A, B, C), controlled via the signals blinkLeft
and blinkRight.

– Headlights for low beam headlight (A), controlled via lowBeamLeft and
lowBeamRight.

– Headlights for high beam headlight (A), controlled via highBeamOn to acti-
vate and deactivate the high beam, highBeamRange to control the high beam
luminous, and highBeamMotor to control the high beam illumination distance.

1 Details about the design of the lighting elements are regulated by the directive
93/92/EEC.

286 F. Houdek and A. Raschke

Aright Bright Cright

Ale Ble Cle

D

Fig. 6. Schematic position of the exterior lighting elements

– Lamp for cornering light left or right (integrated in front bumper) (A), con-
trolled via corneringLightLeft and corneringLightRight.

– Brake lamp (C, D), controlled via brakeLight
– Tail lamp (C), controlled via tailLampLeft and tailLampRight.
– Reverse lamp (C), controlled via reverseLight.

Cars that are sold in USA or Canada do not have a separate direction indicator
at position C. Here, the tail lamps take on the task of the rear indicator lamps.

4.4 Functional Requirements

This section lists the functional requirements for the different functions of the
adaptive light system. These functions are not completely independent of each
other. Moreover, they interfere at several points, mainly because of the shared
use of the given actuators.

Direction Blinking. The function direction blinking defines different ways to
indicate the desired direction of the driver at crossings or at lane changes. It is
only available, if the ignition is on (KeyInIgnitionOnPosition).

ELS-1 Direction blinking left : When moving the pitman arm in position “turn
left” 3©, the vehicle flashes all left direction indicators (front left, exte-
rior mirror left, rear left) synchronously with pulse ratio bright to dark
1:1 and a frequency of 1.0 Hz ± 0.1 Hz (i.e. 60 flashes per minute ± 6
flashes).

ELS-2 Tip-blinking left : If the driver moves the pitman arm for less than 0.5 s
in position “Tip-blinking left”, all left direction indicators (see Req.
ELS-1) should flash for three flashing cycles.

Adaptive Exterior Light and Speed Control System 287

ELS-3 If the driver activates the pitman arm in another direction or activates
the hazard warning light switch during the three flashing cycles of the
tip-blinking, the tip-blinking cycle must be stopped and the requested
flashing cycle must be started (i.e. direction blinking, tip-blinking, or
hazard warning light, depending on the interrupting request).

ELS-4 If the driver holds the pitman arm for more than 0.5 s in position “tip-
blinking left”, flashing cycles are initiated for all direction indicators
on the left (see Req. ELS-1) until the pitman arm leaves the position
“tip-blinking left”.

ELS-5 Direction blinking right and tip-blinking right : Analogous to the left
side (see Req. Req. ELS-1 to Req. ELS-4).

ELS-6 For cars sold in USA and Canada, the daytime running light must be
dimmed by 50% during direction blinking on the blinking side.

ELS-7 If the driver activates the pitman arm during the three flashing cycles
of tip-blinking for the same direction again, only the current flashing
cycle is completed and then the new command is processed (either three
flashing cycles due to tip-blinking or constant direction blinking).

Hazard Warning Light. Tightly coupled with the direction blinking is the
hazard warning light, which requirements are described in the following.

ELS-8 As long as the hazard warning light switch is pressed (active), all direc-
tion indicators flash synchronously. If the ignition key is in the ignition
lock, the pulse ratio is bright to dark 1:1. If the ignition key is not in
the lock, the pulse ratio is 1:2.

ELS-9 The adaptation of the pulse ratio must occur at the latest after two
complete flashing cycles.
Note: The reduction of the pulse is performed due to energy saving rea-
sons, such that, in case of an emergency situation, the hazard warning
light is active as long as possible before the car battery is empty.

ELS-10 The duration of a flashing cycle is 1 s.
ELS-11 A flashing cycle (bright to dark) must always be completed, before a

new flashing cycle can occur.
Note: By the fact, that a flashing cycle must always be completed, a
“switching” behavior of the indicator is avoided. Thus, for example a
change of the pitman arm from “tip-blinking” to “direction blinking”
or back has no visible effect.

ELS-12 When hazard warning is deactivated again, the pitman arm is in posi-
tion “direction blinking left” or “direction blinking right” ignition is
On, the direction blinking cycle should be started (see Req. ELS-1).

ELS-13 If the warning light is activated, any tip-blinking will be ignored or
stopped if it was started before.

Low Beam Headlights and Cornering light. The function low beam head-
lights includes the functions daytime running light, ambient light, and parking
light.

288 F. Houdek and A. Raschke

ELS-14 If the ignition is On and the light rotary switch is in the position On,
then low beam headlights are activated.

ELS-15 While the ignition is in position KeyInserted: if the light rotary switch
is turned to the position On, the low beam headlights are activated
with 50% (to save power). With additionally activated ambient light,
ambient light control (Req. ELS-19) has priority over Req. ELS-15.
With additionally activated daytime running light, Req. ELS-15 has
priority over Req. ELS-17.

ELS-16 If the ignition is already off and the driver turns the light rotary switch
to position Auto, the low beam headlights remain off or are deactivated
(depending on the previous state). In case of conflict, Req. ELS-16
has priority over Req. ELS-17 (i.e. the later manual activitiy overrules
running daytime light if ignition is KeyInserted). If ambient light is
active (see Req. ELS-19), ambient light delays the deactivation of the
low beam headlamps.

ELS-17 With activated daytime running light, the low beam headlights are acti-
vated after starting the engine. The daytime running light remains
active as long as the ignition key is in the ignition lock (i.e. KeyInserted
or KeyInIgnitionOnPosition). With additionally activated ambient light,
ambient light control (Req. ELS-19) has priority over daytime running
light.

ELS-18 If the light rotary switch is in position Auto and the ignition is On, the
low beam headlights are activated as soon as the exterior brightness
is lower than a threshold of 200 lx. If the exterior brightness exceeds
a threshold of 250 lx, the low beam headlights are deactivated. In any
case, the low beam headlights remain active at least for 3 s.

ELS-19 Ambient light prolongs (keeps low beam headlamps at 100% if they
have been active before) the activation of low beam headlamps
(as ambient light) if ambient light has been activated, engine has
been stopped (i.e. keyState changes from KeyInIgnitionOnPosition to
NoKeyInserted or KeyInserted) and the exterior brightness outside the
vehicle is lower than the threshold 200 lx. In this case, the low beam
headlamps remain active or are activated. The low beam headlights are
deactivated or parking light is activated (see Req. ELS-28) after 30 s.
This time interval is reset by

– Opening or closing a door
– Insertion or removal of the ignition key

ELS-20 — Deleted requirement —
ELS-21 With activated darkness switch (only armored vehicles) the ambient

lighting is not activated. As long as the darkness switch is activated, it
supresses low beam headlights due to ambient light.

ELS-22 Whenever the low or high beam headlights are activated, the tail lights
are activated, too.

ELS-23 In USA or Canada, tail lights realize the direction indicator lamps. In
case of direction blinking or hazard blinking, blinking has preference
against normal tail lights.

Adaptive Exterior Light and Speed Control System 289

ELS-24 Cornering light : If the low beam headlights are activated and direc-
tion blinking is requested, the cornering light is activated, when the
vehicle drives slower than 10 km/h. 5 s after passing the corner (i.e. the
direction blinking is not active any more for 5 s), the cornering light is
switched off in a duration of 1 s (gentle fade-out). Activating cornering
light means that if driving to the left is indicated, the left cornering
light is activated. If driving to the right is indicated, the right cornering
light shall be activated.

ELS-25 With activated darkness switch (only armored vehicles) the cornering
light is not activated.

ELS-26 The cornering light is also activated, if the direction blinking is not
activated, but all other constraints (see Req. ELS-24) are fulfilled and
the steering wheel deflection is more than ±10◦.

ELS-27 If reverse gear is activated, both opposite cornering lights are activated.
ELS-28 Parking light. The parking light is the low beam and the tail lamp on

the left or right side of the vehicle to illuminate the vehicle if it is parked
on a dark road at night. The parking light is activated, if the key is
not inserted, the light switch is in position On, and the pitman arm is
engaged in position left or right (2©/ 3©). To save battery charge, the
parking light is activated with only 10% brightness of the normal low
beam lamp and tail lamp. An active ambient light (see Req. ELS-19)
delays parking light.

ELS-29 The normal brightness of low beam lamps, brake lights, direction indi-
cators, tail lamps, cornering lights, and reverse light is 100%.

Manual High Beam Headlights. The low beam light is designed in such
a way that it does not dazzle oncoming traffic. On country roads in particular,
however, it is useful to illuminate a larger area when there is no oncoming traffic.
High beam light fulfills this purpose.

ELS-30 The headlamp flasher is activated by pulling the pitman arm, i.e. as long
as the pitman arm is pulled 1©, the high beam headlight is activated.

ELS-31 If the light rotary switch is in position On, pushing the pitman arm to
4© causes the activation of the high beam headlight with a fixed illumi-

nation area of 220 m and 100% luminous strength (i.e. highBeamMotor
= 7 and highBeamRange = 100).

Adaptive High Beam Headlights. Frequent switching of the high beam is
tiring for the driver. With the help of a built-in camera, which detects oncoming
vehicles, this task can be automated so that the driver has better illumination of
the road as often as possible without endangering oncoming traffic. In addition,
the high beam headlight is optimized to always illuminate the appropriate area
according to the current speed.

ELS-32 If the light rotary switch is in position Auto, the adaptive high beam
is activated by moving the pitman arm to the back 4©.

290 F. Houdek and A. Raschke

ELS-33 If adaptive high beam headlight is activated and the vehicle drives
faster than 30 km/h and no light of an advancing vehicle is recognized
by the camera, the street should be illuminated within 2 s according to
the characteristic curve in Fig. 7 (for light illumination distance) and
Fig. 8 (for luminous strength).

ELS-34 If the camera recognizes the lights of an advancing vehicle, an activated
high beam headlight is reduced to low beam headlight within 0.5 s
by reducing the area of illumination to 65 m by an adjustment of the
headlight position as well as by reduction of the luminous strength to
30%.

ELS-35 If no advancing vehicle is recognized any more, the high beam illumi-
nation is restored after 2 s.

ELS-36 The light illumination distance of the high beam headlight is within
100 m and 300 m, depending on the vehicle speed (see characteristic
curve in Fig. 7).

Li
gh

ti
llu

m
in

a
on

di
st

an
ce

(m
)

Vehicle speed (km/h)

0 30 60 90 120 150 180 210 240
0

50

100

150

200

250

300

Fig. 7. Characteristic curve of the high
beam headlight illumination distance
depending on the vehicle speed

0 30 60 90 120 150 180 210 240
0

20

40

60

80

100

He
ad

lig
ht

lu
m

in
ou

ss
tr

en
gt

h
(%

)

Vehicle speed (km/h)

Fig. 8. Characteristic curve of the high
beam headlight luminous depending on
the vehicle speed

ELS-37 If an adaptive cruise control is part of the vehicle, the light illumination
distance is not calculated upon the actual vehicle speed but the target
speed provided by the advanced cruise control.

ELS-38 If the pitman arm is moved again in the horizontal neutral position,
the adaptive high beam headlight is deactivated. The illumination of
the street is reduced immediately (i.e. without gentle fade-out) to low
beam headlights.

Emergency Brake Light. For safety reasons, it is important to indicate brak-
ing to the drivers behind the vehicle. Studies have shown that a flickering brake
light during an emergency stop shortens the reaction time of the following driver.

ELS-39 If the brake pedal is deflected more than 3◦, all brake lamps have to be
activated until the deflection is lower than 1◦ again.

Adaptive Exterior Light and Speed Control System 291

ELS-40 If the brake pedal is deflected more than 40.0◦ (i.e. full-brake appli-
cation), all brake lamps flash with pulse ratio bright to dark 1:1 and
a frequency of 6 ± 1 Hz (i.e. 360 ± 60 flashes per minute). The flashing
stops only when the brake pedal is in its neutral position again (i.e.
brakePedal = 0).

Reverse Light. Indicates that the reverse gear in engaged, i.e. the vehicle will
move backwards.

ELS-41 The reverse light is activated whenever the reverse gear is engaged.

Fault Handling. A malfunctioning lighting system is safety critical and must
therefore be avoided. E.g. the failure of individual lamps is checked using a hard-
ware circuit and indicated to the driver accordingly. In the following we describe
how the software should react to over- or subvoltage in order to guarantee the
most important functionality for as long as possible.

ELS-42 A subvoltage is present if the voltage in the vehicle electrical system is
less than 8.5 V. With subvoltage, the adaptive high beam headlight is
not available.

ELS-43 If the light rotary switch is in position Auto and the pitman arm is
pulled, the high beam headlight is activated (see Req. ELS-31) even in
case of subvoltage.

ELS-44 With subvoltage the ambient light is not available.
ELS-45 With subvoltage the cornering light is not available.
ELS-46 With subvoltage an activated parking light is switched off.
ELS-47 An overvoltage is present if the voltage in the vehicle electrical sys-

tem is more than 14.5 V. With overvoltage, activated lights must not
exceen the maximum light intensity of (100 − (voltage− 14.5) · 20)%.
This reduction serves the protection of the illuminant (protection from
“burning out”).

ELS-48 With overvoltage, the illumination area requirements do not need to
be respected (see Req. ELS-33 and Req. ELS-36). Instead, illumination
area is fixed to 220 m.

ELS-49 If the camera is not Ready, adaptive high beam headlights is not avail-
able. This means, if cameraState is unequal Ready, light rotary switch
is in position Auto and the pitman arm is in position 4©, manual
high beam headlights are activated (see Req. ELS-31), which means
that high beam headlights are activated with a fixed illumination area
of 220 m and 100% luminous strength (i.e. highBeamMotor = 7 and
highBeamRange = 100).

5 Speed Control System

The speed control system is a comfort function that tries to maintain or adjust
the speed of the vehicle according to various external influences. In various traffic

292 F. Houdek and A. Raschke

situations, this relieves the driver, who no longer has to keep the gas pedal in
the corresponding position with his right foot. It includes the following user
functions:

– Cruise Control: The vehicle automatically maintains a set speed indepen-
dently of the distance to other vehicles. Here, the driver is in charge to main-
tain safety distance.

– Adaptive Cruise Control: The vehicle maintains the distance to the pre-
ceding vehicle including braking until a full standstill and starting from a
standstill.

– Distance Warning: The vehicle warns the driver visually and/or acous-
tically if the vehicle is closer to the car ahead than allowed by the safety
distance.

– Emergency Brake Assist: The vehicle decelerates in critical situations to
a full standstill.

– Speed Limit: The vehicle does not exceed a set speed.
– Sign Recognition: The vehicle sets the speed limit automatically according

to the recognized signs.
– Traffic Jam Following: The vehicle accelerates from a standstill when the

preceding vehicle departs.

Similar to the exterior light system, the speed control system provides a
specific user interface, uses sensors and controls actuators, which are described
in the following sections.

5.1 User Interface

Cruise Control Lever (Fig. 9). The cruise control lever combines the functionality
for the cruise control and the speed limiter. It is a little bit smaller than the
pitman arm lever and is mounted below it on the steering wheel switch module.
The cruise control lever also contains the rotary switch with which the safety
distance can be set (see Req. SCS-24). The lever always returns to the neutral
position when not touched by the user. The position of the cruise control lever
is signaled via SCSLever.
The following movements are possible with the lever:

– By pulling towards the driver 1© (Forward): The cruise control is activated
with the current speed as the desired speed or the last saved desired speed.

– By moving up or down 2©/ 3©: The desired speed is increased/decreased in
several steps.

– By pushing the lever away from the driver 4© (Backward): The cruise control
is deactivated.

– By turning the head 6©: The safety distance (safetyDistance) for the adap-
tive cruise control is modified in three steps (see Req. SCS-24, values 2 s, 2.5 s,
3 s).

Adaptive Exterior Light and Speed Control System 293

Fig. 9. Speed limiting lever integrated in the cruise control lever

– The cruise control lever can be used as speed limiting lever by pushing the
button at the head 5© of the cruise control lever. The position of the button
is signalled via speedLimiterSwitchOn. If the lever controls the speed limit
function, an orange LED integrated in the cruise control lever is on (imple-
mented by hardware). The movements have similar functions as for the cruise
control (activation, setting of the speed limit, deactivation).

Brake Pedal. The brake pedal is mounted in the footwell area of the driver. Its
position is signaled via brakePedal.

Gas Pedal. The gas pedal is mounted in the footwell area of the driver. Its
position is signaled via gasPedal.

Instrument Cluster. The user can activate or deactivate the functions traffic sign
detection and adaptive cruise control in the instrument cluster settings menu
(which is not described in this specification). The instrument cluster settings
are transmitted via trafficSignDetectionOn and cruiseControlMode.

5.2 Sensors

The following sensors are connected to the system in order to enable the driver
assistance system.

– Status and position of the key (and thus the information, if the ignition is on).
This information is transmitted via keyState and has the values NoKeyIn-
serted, KeyInserted, KeyInIgnitionOnPosition.

– Engine status engineOn (True, False).
– Deflection of the brake pedal brakePedal, where 0 means no deflection and

225 means a maximum deflection of 45◦.
– A radar system that measures the distance to the nearest obstacle. The state

of the radar sensors is reported via rangeRadarState, its obstacle detection
via rangeRadarSensor.

294 F. Houdek and A. Raschke

5.3 Actuators

The following actuators are controlled by the speed control system:

– The engine is controlled by the two inputs gasPedal and setVehicleSpeed.
The engine applies the maximum of both inputs if speedLimiterSwitchOn =
False. If speedLimiterSwitchOn = True, the engines applies setVehicle
Speed it this value is greater 0, otherwise gasPedal.
Please note:
(1) The scales of gasPedal and setVehicleSpeed are different. A maximum
gasPedal (=45◦) is equal to maximum setVehicleSpeed.
(2) There is no direct relation of gasPedal (or setVehicleSpeed) to the
vehicle speed. In fact, as long as gasPedal (or setVehicleSpeed) is greater
0, the vehicle accelerates. This acceleration is reduced by the inertia of the
vehicle and limited by the car physics that result in a maxmimum speed of
approx. 250 km/h.
(3) The maximum acceleration is approx. 3 m/s2.

– The brake is controlled by the system in order to decelerate or even emer-
gency brake if necessary via brakePressure. The maximum brake-implied
decelaration is approx. 6 m/s2. For sake of simplicity it may be assumed that
the deceleration d can be determined via brakePedal as

d =
brakePedal

37.5◦s2/m

– An acoustic warning and a visual warning are given in dangerous situations
via acousticWarningOn and visualWarningOn.

5.4 Software Functions

Setting and Modifying Desired Speed. This section describes how to set
and modify the desired speed both for adaptive cruise control and (normal)
cruise control. When changing the desired speed, the instrument cluster displays
the current value. This is not covered in this specification.

SCS-1 After engie start, there is no previous desired speed. The valid values
for desired speed are from 1 km/h to 200 km/h.

SCS-2 When pulling the cruise control lever to 1©, the desired speed is either
the current vehicle speed (if there is no previous desired speed) or the
previous desired speed (if already set).

SCS-3 If the current vehicle speed is below 20 km/h and there is no previous
desired speed, then pulling the cruise control lever to 1© does not
activate the (adaptive) cruise control.

SCS-4 If the driver pushes the cruise control lever to 2© up to the first resis-
tance level (5◦) and the (adaptive) cruise control is activated, the
desired speed is increased by 1 km/h.

Adaptive Exterior Light and Speed Control System 295

SCS-5 If the driver pushes the cruise control lever to 2© above the first resis-
tance level (7◦, beyond the pressure point) and the (adaptive) cruise
control is activated, the desired speed is increased to the next ten’s
place.
Example: Current desired speed is 57 km/h −→ new desired speed is
60 km/h.

SCS-6 Pushing the cruise control lever to 3© reduces the desired speed accord-
ingly to Req. SCS-4 and Req. SCS-5. The lowest desired speed that can
be set by pushing the cruise control lever beyond the pressure point is
10 km/h.

SCS-7 If the driver pushes the cruise control lever to 2© with activated cruise
control within the first resistance level (5◦, not beyond the pressure
point) and holds it there for 2 s, the desired speed of the cruise control
is increased every second by 1 km/h until the lever is in neutral position
again.
Example: Current desired speed is 57 km/h −→ new desired speed is
58 km/h (due to Req. SCS-4), after holding 2 s, desired speed is set to
59 km/h, after holding another second, desired speed is set to 60 km/h,
after holding another second, desired speed is set to 61 km/h, etc.

SCS-8 If the driver pushes the cruise control lever to 2© with activated cruise
control through the first resistance level (7◦, beyond the pressure point)
and holds it there for 2 s, the speed set point of the cruise control is
increased every 2 s to the next ten’s place until the lever is in neutral
position again.
Example: Current desired speed is 57 km/h −→ new desired speed is
60 km/h (due to Req. SCS-5), after holding 2 s, desired speed is set
to 70 km/h, after another 2 s, desired speed is set to 80 km/h, after
holding another 2 s, desired speed is set to 90 km/h, etc.

SCS-9 If the driver pushes the cruise control lever to 3© with activated cruise
control within the first resistance level (5◦, not beyond the pressure
point) and holds it there for 2 s, the desired speed of the cruise control
is reduced every second by 1 km/h until the lever is in neutral position
again.
Example: Current desired speed is 57 km/h −→ new desired speed is
56 km/h (due to Req. SCS-6) after holding 2 s, desired speed is set to
55 km/h, after another second, desired speed is set to 54 km/h, after
holding another second, desired speed is set to 53 km/h, etc.

SCS-10 If the driver pushes the cruise control lever to 3© with activated cruise
control through the first resistance level (7◦, beyond the pressure point)
and holds it there for 2 s, the speed set point of the cruise control is
increased every 2 s to the next ten’s place until the lever is in neutral
position again.

SCS-11 If the (adaptive) cruise control is deactivated and the cruise control
lever is moved up or down (either to the first or above the first resis-
tance level), the current vehicle speed is used as desired speed.

296 F. Houdek and A. Raschke

SCS-12 Pressing the cruise control lever to 4© deactivates the (adaptive) cruise
control. setVehicleSpeed = 0 indicates to the car that there is no
speed to maintain.

Cruise Control. The following requirements describe the simple cruise control
system without adaption to the traffic situation which is the basis for the adap-
tive cruise control system. The distinction between cruise control and adaptive
cruise control is made via cruiseControlMode.

SCS-13 The cruise control is activated using the cruise control lever according
to Reqs. SCS-1 to SCS-12.

SCS-14 As long as the cruise control is activated, the vehicle maintains the
current vehicle speed at the desired speed without the driver having
to press the gas pedal or the brake pedal.

SCS-15 If the driver pushes the gas pedal and by the position of the gas pedal
more acceleration is demanded than by the cruise control, the acceler-
ation setting as demanded by the driver is adopted.
Note: This handling is done by the engine autonomously.

SCS-16 By pushing the brake, the cruise control is deactivated until it is acti-
vated again.

SCS-17 By pushing the control lever backwards, the cruise control is deacti-
vated until it is activated again.

Adaptive Cruise Control. In the adaptive cruise control mode, maintenance
of the speed does not only depend on the desired speed but also vehicles ahead.
For this purpose, the desired speed of the driver must be distinguished from the
target speed of the control system. The Reqs. SCS-13 to SCS-17 still hold except
SCS-14. The distinction between cruise control and adaptive cruise control is
made via cruiseControlMode.

SCS-18 When the driver enables the cruise control (by pulling the cruise control
lever or by pressing the cruise control lever up or down), the vehicle
maintains the set speed if possible.

SCS-19 The adaptive cruise control desired speed is controlled using the cruise
control lever according to Reqs. SCS-1 to SCS-12.

SCS-20 If the distance to the vehicle ahead falls below the specified speed-
dependent safety distance (see Req. SCS-24), the vehicle brakes auto-
matically. The maximum deceleration is 3 m/s2.

SCS-21 If the maximum deceleration of 3 m/s2 is insufficient to prevent a colli-
sion with the vehicle ahead, the vehicle warns the driver by two acous-
tical signals (0.1 s long with 0.2 s pause between) and by this demands
to intervene.

SCS-22 If the distance to the preceding vehicle increases again above the speed-
dependent safety distance, the vehicle accelerates with a maximum of
1 m/s2 until the set speed is reached.

Adaptive Exterior Light and Speed Control System 297

Example: Fig. 10 shows an exemplary situation with a desired speed of
120 km/h. At the beginning, the car drives at this speed until another
car appears with 80 km/h. The adaptive cruise control decelerates to
80 km/h with a maximum deceleration of 3 m/s2. If this is not sufficient,
two acoustical signals warn the driver. As soon as the vehicle in front
accelerates to 100 km/h, the adaptive cruise control also accelerates
with a maximum of 1 m/s2. When the vehicle in front finally accelerates
to a speed of more than 120 km/h the adaptive cruise control increases
the speed back to 120 km/h.

SCS-23 If the speed of the preceding vehicle is 20 km/h or below, the distance is
set to 2.5 s·currentSpeed, down to a standstill. When both vehicles are
standing the absolute distance is regulated to 2 m. When the preceding
vehicle is accelerating again, the distance is set to 3 s · currentSpeed.
This distance is valid until the vehicle speed exceeds 20 km/h, inde-
pendent of the user’s input via the distance level (turning the cruise
control lever head).

SCS-24 By turning the cruise control lever head, the distance to be maintained
to the vehicle ahead can be selected. Three levels are available: 2 s, 2.5 s
and 3 s. The desired level only applies within the velocity window >
20 km/h. Below this level, the system autonomously sets the distance
according to Req. SCS-23.

Driver‘s se ng: 120 km/h

cruise control

Actual speed

Reeving vehicle
with 80 km/h

Running ahead vehicle
accelerates to 100 km/h

120 km/h

100 km/h

80 km/h

Running ahead vehicle
accelerates to > 120 km/h

Target speed advance

Fig. 10. Illustration of the difference between “actual speed”, “desired speed”, and
“target speed” of the adaptive cruise control

Distance Warning. The adaptive cruise control system has to calculate the
distance (time) to the vehicle ahead and has to issue the following warnings
depending on the calculated value:

SCS-25 A visual warning is activated if the actual distance is less than
(current speed/3.6) · 1.5.

SCS-26 An acoustic alarm is activated if the actual distance is less than
(current speed/3.6) · 0.8.

298 F. Houdek and A. Raschke

Emergency Brake Assistant. The emergency brake assistant initiates brak-
ing in critical situations.

SCS-27 The emergency brake assistant must be available in the following speed
windows: 0–60 km/h, for emergency braking to stationary obstacles,
0–120 km/h on moving obstacles.

SCS-28 The time necessary to perform braking to standstill is determined by
the value for the maximum deceleration. If an object is ahead of the
vehicle and the time until an impact is less or equal to the time until
a standstill plus 3 s, three acoustic signals are given (0.1 s long with
0.05 s pause between) is issued and the brakes are activated by 20% (i.e.
1.2 m/s2). If the time until an impact is less or equal to the time until a
standstill plus 1.5 s, the brake is activated by 60% (i.e. 3.6 m/s2. If the
time until an impact is less or equal to the time until standstill then
the brake is activated at 100% (i.e. 6 m/s2). In case that both adaptive
cruise control (see Req. SCS-20) and the emergency brake assistand
request braking, the higher deceleration value shall be applied.

Speed Limit. The speed limit function prevents the driver from accidentally
driving faster than a preset desired speed. In case of emergency, the driver can
overrule the speed limit.

SCS-29 The speed limiter mode is activated by pressing the button at the head
of the control lever.

SCS-30 An active speed limit function of the cruise lever is indicated by an
orange LED integrated in the control lever (realized in hardware).

SCS-31 Activating speed limit desired speed and modifying the desired speed
is done according to Reqs. SCS-1 to SCS-12.

SCS-32 As long as the speed limit function is activated, the current speed must
not exceed the set speed limit.

SCS-33 By pressing the gas pedal beyond 90% the speed limit is temporarily
deactivated.

SCS-34 When the pressure on the gas pedal decreases below 90%, the speed
limit is automatically activated again.

SCS-35 An active speed limit can be deactivated by either pushing the cruise
control lever backwards 4© or by pushing the head of the cruise control
lever 5©.

Traffic Sign Detection. If a road sign is indicating a speed limit with active
traffic sign detection (controlled by trafficSignDetectionOn), the desired
speed is modified by the recognized traffic sign value.

SCS-36 Traffic sign detection is active, while adaptive cruise control is active
and the driver has activated traffic sign detection in the instrument
cluster.

Adaptive Exterior Light and Speed Control System 299

SCS-37 With active traffic sign detection and gas pedal in position 0, a recog-
nized traffic sign sets the desired speed to the detected value.

SCS-38 A later manual modification of the desired speed via the cruise control
lever (see Reqs. SCS-1 to SCS-12) modifies the desired speed again.
Hint: The desired speed is determined by the latest modification: A
user setting via cruise control lever is overruled by a later traffic sign
detection and this is again overruled by a later modification via cruise
control lever.

SCS-39 If traffic sign detection recognizes Unlimited, the new desired speed is
set to
– 120 km/h, if the previous desired speed has been lower than

120 km/h
– the desired speed dman, where dman is the last manually set desired

speed that has been higher than 120 km/h
Note: For the sake of simplicity, country dependence and road type
dependence has been omitted.

Fault Handling and General Properties. A malfunctioning speed control
system might be safety critical and must therefore be avoided. E.g. a wrong
detection of the distance to the car in front could lead to dangerous situations.
These situations should be avoided with the following requirements.

SCS-40 The radar system carries out a self-test at each start and also con-
tinuously checks the plausibility of the values of the various sensors.
If one of the values is found to be extremely close, the status is set
to “Dirty”. During the self-test and with other errors (strong fluctua-
tions, very different values of the individual sensors) the status is set
to “NotReady”.

SCS-41 If the radar sensor self-test device reports a fault (Dirty or NotReady),
all systems depending on the distance to the vehicle must be suspended
and the driver must be warned by an appropriate light in the instru-
ment cluster (not part of this specification). In this case, the self-test
of the radar system is restarted every 10 min.

SCS-42 The gas or brake pedal depressed by the driver must always be able to
override a target speed specified by the system.

SCS-43 If the system performs a brake action, the brake lights must be acti-
vated as if the brake pedal has been pressed by the driver (see light
system specification).

A Interface

The following table defines all signals that either reflect the determined input of
the various user interfaces and sensors or are used to control the actuators. For
the sake of simplicity, all signals are available all the time. There are no timeouts
or delays.

300 F. Houdek and A. Raschke

Signal identifier Description Value range

keyState Status of ignition key NoKeyInserted, KeyInserted,

KeyInIgnitionOnPosition

engineOn Status of engine True, False

allDoorsClosed Status of vehicle doors True, False

gasPedal Deflection of the gas pedal

from the neutral position

Resolution: 0.2◦

Value range: 0–225 (0.0–45.0 ◦)

brakePedal Deflection of the brake

pedal from the neutral

position

Resolution: 0.2◦

Value range: 0–225 (0.0–45.0 ◦)

reverseGear Status of the reverse gear True, False

voltageBattery Available battery voltage Resolution: 0.1 V

Value range: 0–500 (0.0–50.0 V)

currentSpeed Current vehicle speed in

km/h

Resolution: 0.1 km/h

Value range: 0–5000 (0.0–500.0 km/h)

steeringAngle Steering angle (deflection

of the steering wheel)

0 = sensor is calibrating 1–410 =

steering wheel rotation to the left

(Resolution: 1◦ starting from 10◦

deflection) 411–510 = steering wheel

rotation to the left (Resolution: 0.1◦ for

0◦–10◦ deflection) 511–513 = steering

wheel in neutral position 514–613 =

steering wheel rotation to the right

(Resolution: 0.1◦ for 0◦–10◦ deflection)

614–1022 = steering wheel rotation to

the right (Resolution: 1◦ starting from

10◦ deflection)

daytimeLights True, if option is selected in

instrument cluster

True, False

ambientLighting True, if option is selected in

instrument cluster

True, False

lightRotarySwitch Status of light rotary

switch

Off, Auto, On

pitmanArmForthBack Status of pitman arm

regarding high beam

(horizontal position)

Neutral, Backward, Forward

pitmanArmUpDown Status of pitman arm

regarding blinker (vertical

position)

Neutral, Downward5, Downward7, Upward5,

Upward7

hazardWarningSwitchOn Status hazard warning

switch

True, False

darknessModeSwitchOn Status darkness switch

(only armored vehicles)

True, False

brightnessSensor Measurement of rain/light

sensor regarding brightness

Resolution: 1 lx Value range: 0–100000

cameraState Status of camera Ready, Dirty, NotReady

oncomingTraffic Advancing vehicle detected True, False

brakeLight Brake light command 0–100%

blinkLeft Perform left blinking 0–100%

blinkRight Perform right blinking 0–100%

lowBeamLeft Low beam command left 0–100%

lowBeamRight Low beam command right 0–100%

taillampleft Tail lamp command left 0–100%

taillampright Tail lamp command right 0–100%

highBeamOn High beam command True, False

Adaptive Exterior Light and Speed Control System 301

Signal identifier Description Value range

highBeamRange High beam light range

(brightness)

0–300 desired light range

highBeamMotor Desired position for high

beam motor

0–14 desired position: 0 = 65m 1 =

100m 2–14 = 120–360 m (20m step size)

corneringLightLeft Cornering light left 0–100%

corneringLightRight Cornering light right 0–100%

reverseLight Reverse light command 0–100%

SCSLever Position of cruise control

lever

Neutral, Downward5, Downward7, Upward5,

Upward7, Forward, Backward

safetyDistance Safety distance level

(turning knob at

SCSLever)

2 s, 2.5 s, 3 s

speedLimiterSwitchOn Status speed limiter switch True, False

rangeRadarState status of long-range radar

sensors

Ready, Dirty, NotReady

rangeRadarSensor Evaluation of long-range

radar sensor

0 = no dectected obstacle in the travel

corridor 1–200 = distance in meters of

obstacle detected in the travel corridor

255 = radar state is Dirty or NotReady

cruiseControlMode Operation mode of cruise

control

1 = (normal) cruise control,

2 = adaptive cruise control

trafficSignDetectionOn Operation mode of traffic

sign detection

True, False

detectedTrafficSign Speed limit of observed

traffic sign

None, 20–130, Unlimited

setVehicleSpeed Used to control the engine

via cruise control

0–100

brakePressure The pressure of the brake

shoes

0–100%

acousticWarningOn Acoustic warning command True, False

visualWarningOn Visual warning command True, False

driverPosition Vehicle configuration of

driver position

LeftHandDrive, RightHandDrive

armoredVehicle True, if vehicle is armored True, False

marketCode The market region for

which the car is built for

001 = USA, 002 = Canada, 003 = EU,

References

1. Boniol, F., Wiels, V.: The landing gear system case study. In: Boniol, F., Wiels, V.,
Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp. 1–18. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-07512-9 1

2. Hoang, T.S., Butler, M., Reichl, K.: The hybrid ERTMS/ETCS level 3 case study.
In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol.
10817, pp. 251–261. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
91271-4 17

3. Houdek, F.: Automotive example: exterior lighting and speed control. In: Pohl, K.,
Broy, M., Daembkes, H., Hönninger, H. (eds.) Advanced Model-Based Engineering
of Embedded Systems, pp. 13–19. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-48003-9 1

4. Mashkoor, A.: The hemodialysis machine case study. In: Butler, M., Schewe, K.-D.,
Mashkoor, A., Biro, M. (eds.) ABZ 2016. LNCS, vol. 9675, pp. 329–343. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-33600-8 29

https://doi.org/10.1007/978-3-319-07512-9_1
https://doi.org/10.1007/978-3-319-91271-4_17
https://doi.org/10.1007/978-3-319-91271-4_17
https://doi.org/10.1007/978-3-319-48003-9_1
https://doi.org/10.1007/978-3-319-48003-9_1
https://doi.org/10.1007/978-3-319-33600-8_29

Modelling an Automotive Software-Intensive
System with Adaptive Features Using ASMETA

Paolo Arcaini1 , Silvia Bonfanti2(B) , Angelo Gargantini2 , Elvinia Riccobene3 ,
and Patrizia Scandurra2

1 National Institute of Informatics, Tokyo, Japan
arcaini@nii.ac.jp

2 Department of Economics and Technology Management, Information Technology
and Production, Università degli Studi di Bergamo, Bergamo, Italy

{silvia.bonfanti,angelo.gargantini,patrizia.scandurra}@unibg.it
3 Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy

elvinia.riccobene@unimi.it

Abstract. In the context of automotive domain, modern control systems are
software-intensive and have adaptive features to provide safety and comfort.
These software-based features demand software engineering approaches and for-
mal methods that are able to guarantee correct operation, since malfunctions may
cause harm/damage. Adaptive Exterior Light and the Speed Control Systems are
examples of software-intensive systems that equip modern cars. We have used the
Abstract State Machines to model the behaviour of both control systems. Each
model has been developed through model refinement, following the incremental
way in which functional requirements are given. We used the ASMETA tool-set
to support the simulation of the abstract models, their validation against the infor-
mal requirements, and the verification of behavioural properties. In this paper,
we discuss our modelling, validation and verification strategies, and the results
(in terms of features addressed and not) of our activities. In particular, we pro-
vide insights on how we addressed the adaptive features (the adaptive high beam
headlights and the adaptive cruise control) by explicitly modelling their software
control loops according to the MAPE-K (Monitor-Analyse-Plan-Execute over a
shared Knowledge) reference control model for self-adaptive systems.

1 Introduction

Modern control systems, like those in the automotive domain, are software-intensive,
have adaptive features, and must be reliable. Formal methods can be applied in order
to improve their development and guarantee their correct operational behaviour and
safety assurance. In this paper, we report our experience in applying the Abstract State
Machine (ASM) formal method to the Adaptive Exterior Light (ELS) and the Speed
Control Systems (SCS), which are examples of software-intensive systems that equip
modern cars. We used the ASMETA framework, which provides a wide tool support to

P. Arcaini is supported by ERATO HASUO Metamathematics for Systems Design Project (No.
JPMJER1603), JST. Funding Reference number: 10.13039/501100009024 ERATO.

c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 302–317, 2020.
https://doi.org/10.1007/978-3-030-48077-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_25&domain=pdf
http://orcid.org/0000-0002-6253-4062
http://orcid.org/0000-0001-9679-4551
http://orcid.org/0000-0002-4035-0131
http://orcid.org/0000-0002-1400-1026
http://orcid.org/0000-0002-9209-3624
https://doi.org/10.1007/978-3-030-48077-6_25

Modelling an Automotive Software-Intensive System with Adaptive Features 303

Modelling

Editor AsmetaL - AsmEE ASM 0 ASM 1 ASM n

Valida�on and verifica�on At
 a

ny

le
ve

l

Code Generator

Asm2C++

Conformance Checking

Model-Based Tes�ng
ATGT

Run�me Verifica�on
CoMA

Valida�on Property
Verifica�on

Model Checking
AsmetaSMV

Model Review
AsmetaMA

Interac�ve Simula�on
AsmetaS

Scenarios
AsmetaV

Animator
AsmetaA

Fig. 1. ASM-based development process

ASMs. ASMETA tries to combine the formality of ASMs with a tools set that supports
the editing, simulation and animation of the abstract models, their validation against
the informal requirements, and the verification of behavioural properties. Moreover,
ASMETA adopts a refinement-based process, and employs several constructs in order
to allow modularity.

To address the adaptive features of the case study, i.e., the adaptive high beam
headlights and the adaptive cruise control, we exploited the concept of self-adaptive
ASMs [5], which allows modelling adaptation logics in terms of MAPE-K (Monitor-
Analyse-Plan-Execute over a shared Knowledge) feedback control loops.

The paper is structured as suggested by the call for paper of the case study. The fol-
lowing subsection briefly presents the ASM formal method and its supporting tool-set
ASMETA. Section 2 explains our modelling strategy. Details about our models and how
they capture the requirements are provided in Sect. 3. We have applied several valida-
tion and verification (V&V) activities that are presented in Sect. 4. Section 5 discusses
some observations that we draw from this experience, together with some limits of our
approach. Section 6 concludes the paper.

1.1 The ASM Method and the ASMETA Tool-Set

Basic Definition. ASMs [10,11] are an extension of Finite State Machines (FSMs)
where unstructured control states are replaced by states comprising arbitrary com-
plex data (i.e., domains of objects with functions defined on them), and transitions are
expressed by transition rules describing how the data (state function values saved into
locations) change from one state to the next. ASM models can be read as “pseudocode
over abstract data” which comes with a well defined semantics: at each computation
step, all transition rules are executed in parallel by leading to simultaneous (consistent)
updates of a number of locations.

Modelling Process and Tools. ASMs allow an iterative design process, shown in Fig. 1,
based on model refinement. Tools supporting the process are part of the ASMETA
(ASM mETAmodeling) framework1 [4]. Requirements modelling starts by developing
a high-level model called ground model (ASM 0 in Fig. 1). It is specified by reason-
ing on the informal requirements (generally given as a text in natural language) and
using terms of the application domain, possibly with the involvement of all stakehold-
ers. The ground model should correctly reflect the intended requirements and should

1 http://asmeta.sourceforge.net/.

http://asmeta.sourceforge.net/

304 P. Arcaini et al.

be consistent, i.e., without possible ambiguities of initial requirements. It does not
need to be complete, i.e., it may not specify some given requirements. The ground
model and the other ASM models can be edited in AsmEE by using the concrete syntax
AsmetaL [14]. Starting from the ground model, through a sequence of refined models,
further functional requirements can be specified until a complete model of the system is
obtained. The refinement process allows to tackle the system complexity, and to bridge,
in a seamless manner, specification to code. At each refinement level, already at the level
of the ground model, different V&V activities can be applied. In Sect. 4, we explain in
detail how model validation and property verification are performed in ASMETA tools.

Model to code transformation are supported for C++ code [9], and conformance
checking is possible to check if the implementation, if externally provided, conforms to
its specification. The tool ATGT [13] can be used to automatically generate tests from
ASM models and, therefore, to check the conformance offline; CoMA [3], instead, can
be used to perform runtime verification, i.e., to check the conformance online.

1.2 Distinctive Features of the Modelling Approach

Machine and Modules. As better explained in Sect. 2, in our modelling activity we
strongly make use ofmodularization. To concretely support it, we exploited the concept
of ASMmodule as introduced in [11] and provided by the language of the ASMETA tool
set. Specifically, an ASM module contains the declaration and definitions of domains,
functions, invariants, and rules; an ASM machine is an ASM module that additionally
contains a (unique) main rule representing the starting point of the machine execution,
and an initial state. The keyword asm introduces the main ASM while the keyword
module indicates a module.

Self-adaptive ASMs. To model the adaptive features of the two automotive subsystems,
we exploit the concept of MAPE-K (a sequence of four computations Monitor, Analyze,
Plan, and Execute over a shared Knowledge) feedback control loop [16] commonly
used to structure the adaptation logic of self-adaptive software systems. To this end, we
adopt self-adaptive Abstract State Machines (self-adaptive ASMs) as defined in [5] to
formalize the sequential execution of the four MAPE computations of a MAPE-K loop
in terms of ASM transitions rules (see Sect. 3.1, CarSystem003).

2 Modelling Strategy

We here describe the general strategy adopted while modelling the ELS and the SCS
using ASMs. We explain how our model is structured, how the structure relates to the
requirements, the model purpose (in terms of properties addressed and not addressed
by our solution), and our formalization approach.

Model Structure. The ELS and SCS sub-systems are loosely coupled (i.e., they work
in parallel and share some external signals), so we handle their requirements inde-
pendently. More specifically, for each subsystem, we developed an ASM specification
through a sequence of refined models, following the incremental way in which func-
tional requirements of the software based controllers are described in the requirements

Modelling an Automotive Software-Intensive System with Adaptive Features 305

document [15]. The models are numbered from 1 to 9: models from CarSystem001
to CarSystem004 refer to the ELS, while the SCS is modelled from CarSystem005 to
CarSystem007. CarSystem008 merges the two systems and CarSystem009 introduces
the faults handling and general properties.

Fig. 2. ASM structure of the first 3 levels

Since, at a given refinement level, only some parts of the model were refined,
to keep track of maintained and refined parts and to relate abstract and refined sub-
models, we structure an ASM model in modules. Therefore, at each level, an ASM
results in the horizontal and vertical composition of ASM modules (by exploiting the
import module feature). For example, Fig. 2 illustrates the ASM models structure in
terms of horizontal and vertical imports for the first three refined levels of the CarSys-
tem related to the ELS subsystem. Level 1 consists of an ASM CarSystem001main
that imports module CarSystem001HW that imports module CarSystem001Blink, till
the final module CarSystem001Domains is imported2. At this level, module relations
are all horizontal imports. Similarly, ASM CarSystem002main imports (horizontally)
module CarSystem002Cornering from the same refinement level, and it imports (ver-
tically) module CarSystem001HW from the previous refinement level. Note that mod-
ule CarSystem002Domains imports module CarSystem001Domains, since the former
enlarges (as expected during refinement) the latter. Vertical relations can be also mod-
ule refinement relations. For example, Fig. 3 focuses on level 4 and illustrates the ASM
CarSystem004main that imports, among the others, the module CarSystem004HW
refining module CarSystem001HW from level 1, and module CarSystem004Cornering
refining module CarSystem002Cornering from level 2. Other depicted import/refine-

2 Note that common functions and common domains are declared and defined into specific mod-
ules (CarSystem00XFunctions and CarSystem00XDomains) which are imported by others.

306 P. Arcaini et al.

ment relations are self-explanatory. More details on the refinement levels and corre-
sponding models are given in Sect. 3.

Fig. 3. ASM structure of level 4

To model the overall behaviour resulting from the union of the behaviours of all
distributed software we simply exploit the notion of parallel ASMs [7]. Therefore, we
model software running on ECUs as parallel algorithms working in sequential global
time. Whenever necessary (as stated in the requirements document) and to avoid inter-
ference, the machine follows only one or a restricted subset of all possible parallel
execution paths by using the mutual exclusive guards pattern at the level of rules, i.e.,
the simultaneous activation of certain rules is avoided by modelling them as conditional
rules with mutual exclusive guards.

Model Purpose. The proposed ASM model is primarily tailored to the formalization
and analysis of functional aspects of the ELS and SCS subsystems in order to provide
guarantees of their operational correctness. Modelling and validation activities revealed,
however, some statements where the requirements were wrong or unambiguous. We had
the possibility to check our doubts with the chairs (working as domain experts) and we
got corrected version of the requirements. Further details on these missing/ambiguous
aspects are given in Sect. 5.

Except for some features not addressed by our solution (see below), our model(s)
capture(s) all requirements described in the document [15]. Each refined model was
analyzed using different techniques (see Sect. 4), considering also the description of
the operational scenarios that are given as annex part of the requirements. The most
important properties addressed by our solution are:

– On the ELS subsystem: a) The priority of hazard warning over blinking is guaran-
teed; b) Low beam headlights are turned on and off as required; c) Priority of ELS-19

Modelling an Automotive Software-Intensive System with Adaptive Features 307

over other requirements has been addressed when the ambient light is activated; d)
High beam headlights are automatically turned on/off when the light rotary switch
is set to Auto; e)When subvoltage/overvoltage occurs the system reacts as required.

– On the SCS subsystem: a) (Adaptive) cruise control desired speed is set as required:
the adaptive cruise control sets automatically the speed to reach the target based on
different factors like the current speed and the speed of the vehicle ahead. b) Emer-
gency brake intervenes to avoid collisions; c) Speed limit and traffic sign detection
set the threshold speed when they are activated by the user.

Not Addressed Features. The main feature not addressed by our solution is the time
management. We are not able to deal with continuous time, although a notion of reactive
timed ASMs has been proposed [17], there is no tool support for it. To overcome this
limitation, we assume that a monitored function notifies the system whether an inter-
val time is passed. For example, requirement ELS-18 states that low beam headlights
remain active at least for 3 s. As shown in Code 1, we have introduced a monitored
function passed3Sec that notifies if 3 s had elapsed since the low beam headlights
received the command to be turned off. A further not addressed feature is the frequency
of blinking. Since the model does not support continuous time it is not possible to set
the direction lamps state (ON or OFF) every second (the duration of a flashing cycle is
1 s). Due to this limitation, we have introduced an enumerative value that indicates the
current pulse ratio and we have supposed that the Head-Unit sets the state of direction
lamp given the pulse ratio value.

Requirements Formalization Approach. To understand and specify the behaviour, we
started from the textual description of the systems, and we tried to express the text in
terms of transition rules, by supplying the necessary definitions of domains and func-
tions. In naming functions, domains and transition rules, we have used an domain-
specific terminology that can be understood by the stakeholders. Furthermore, for the
functions defined in the tables at the end of the document of specification we have
used the names proposed. An example of requirement formalization is shown in Code 1
that reports the requirement ELS–18 and the corresponding ASM rule. Sometimes the
requirements are not independent of each other, for this reason more than one require-
ment is modelled by one rule.

308 P. Arcaini et al.

CarSystem001:
Direction Blinking, Hazard warning light

ELS-1 to ELS-13

CarSystem002:
Low Beam headlights, Cornering light,

Emergency Brake Light and Reverse Light
ELS-14 to ELS-29 and ELS-39 to ELS-41

CarSystem003:
Manual High Beam Headlights and
Adaptive High Beam Headlights

ELS-30 to ELS-38

CarSystem004:
Faults

ELS-42 to ELS-49

CarSystem006:
Speed limit and Traffic sign detection

SCS-29 to SCS-39

CarSystem005:
Setting and modifying desired speed, Cruise Control

SCS-1 to SCS-17

CarSystem007:
Adaptive cruise control, Distance warning

and Emergency Brake Assistant
SCS-18 to SCS-28

CarSystem008:
ELS and SCS systems
ELS-1 to SCS-39

CarSystem009:
Faults and general properties

SCS-40 to SCS-43

Fig. 4. Chain of refined models and captured requirements

3 Model Details

In this section, we present the result of our modelling of the Adaptive Exterior Light
and Speed Control systems3.

We have proceeded through refinement of the two systems independently and finally
we have merged them together to obtain the complete system. Figure 4 shows the model
refinement chain and lists the requirements introduced in each model.

Table 1. Models dimension

Functions Rules

Monitored Controlled Derived Static n rules declarations n rules

CarSystem001 4 12 6 1 14 103

CarSystem002 14 26 14 4 26 218

CarSystem003 18 31 24 5 33 244

CarSystem004 19 31 31 5 33 252

CarSystem005 8 4 1 10 78

CarSystem006 12 8 2 14 125

CarSystem007 21 17 6 24 183

CarSystem008 36 46 36 5 56 433

CarSystem009 36 46 37 5 56 433

Table 1 shows the model dimensions in terms of number of functions and rules
and the traceability table between requirements and rules/functions (see Table 2). In the
sequel, we will show some parts of the models for each subsystem and then we will
explain the merging of two systems.

3 Artifacts are at https://github.com/fmselab/ABZ2020CaseStudyInAsmeta.

https://github.com/fmselab/ABZ2020CaseStudyInAsmeta

Modelling an Automotive Software-Intensive System with Adaptive Features 309

Table 2. Traceability table between requirements and rules/functions

CS001 CS002 CS003 CS004 CS005 CS006 CS007 CS008 CS009
Exterior Light System
Direction Blinking

ELS-1 to ELS-7
Hazard Warning

ELS-8 to ELS-13
Low Beam Headlights Cornering Light

ELS-14 to ELS-29
Manual Hight Beam Headlights

ELSL-30 to ELS-31
Adaptive High Beam Headlights

ELS-32 to ELS-38
Emergency Brake Light

ELS-39 to ELS-40
Reverse Light

ELS-41
Fault Handling

ELS-42 to ELS-49
Speed Control System

Setting and modifying desired speed
SCS-1 to SCS-12

Cruise Control
SCS-13 to SCS-17

Adaptive Cruise Control
SCS-18 to SCS-24

Distance Warning
SCS-25 to SCS-26

Emergency Brake Assistant
SCS-27 to SCS-28

Speed Limit
SCS-29 to SCS-35

Traffic Sign Detection
SCS-36 to SCS-39

Fault Handling and General Properties
SCS-40 to SCS-43

3.1 Adaptive Exterior Light System

ELS has been modelled into 4 refinement steps which are explained below.

CarSystem001. This model describes the functions of direction blinking and hazard
warning. The critical features found in this modelling phase are the following: a) the
hazard warning has the priority over direction blinking (ELS-3); b) the tail lamp is used
as an indicator for cars sold in USA and Canada (ELS-6). Code 2 shows that if haz-
ard warning request is activated and any kind of blinking is running, blinking must be
stopped and hazard warning is started. In case of direction blinking, the value of pit-
man arm is stored to restart the request as soon as hazard warning is deactivated; if the
pitman arm is moved back to neutral position, the request is cancelled. The tail lamp
status is updated to FIX or BLINK. It is BLINK only if blinking is active and car is
sold in USA or Canada, otherwise it is FIX. Moreover, the value of light is dimmed
by 50% during blinking (see Code 3). To address the requests from the pitman arm,
we have defined three functions, pitmanArmUpDown for the incoming request, pit-
manArmUpDown RunnReq for the running request and pitmanArmUpDown Buff to
save the incoming request if it cannot be satisfied in the current state. When the run-

310 P. Arcaini et al.

ning request has been processed, the request in the buffer is executed unless a new one
arrives.

CarSystem002. This introduces the low beam headlights and cornering light, emer-
gency brake light, and reverse light functions. Each of these functions is modelled in an
ASMmodule. Common functions and domains are extended starting from those defined
in the CarSystem001, while hazard warning and direction blinking are unchanged.
Requirements ELS-15, ELS-16, ELS-17, and ELS-19 are interconnected because ELS-
19 has the priority over the others if ambient light activated. We have defined a guard
called ambientLightingAvailable which is true if ambient lighting is activated, the vehi-
cle is not armoured and darkness mode is switched off. Some requirements state that
the system performs an action if function X changes its value from state s to state
s + 1. To detect the value change, we store the value of function X in the previous
state (X Previous) and we compare that value with the current value. When the model
detects a value change, the system acts as defined by rules. An example is the require-
ment ELS-19: the low beam headlamps are activated if engine has been stopped. We
have captured the key state mutation by checking the value of keyState Previous com-
pared to keyState.

CarSystem003. This step introduces the control features for the manual and adaptive
high beam headlights (ELS-30 to ELS-38). We first modelled the manual control of the
high beam headlights and then, in the same refinement level, the adaptive one. The con-
trol variables are the high beam luminous strength (a percentage) and the illumination
distance (expressed in meters).

Modelling an Automotive Software-Intensive System with Adaptive Features 311

In manual mode (ELS30-ELS31), the user can set a fixed illumination area of 220m
and 100% of luminous strength, or activate the high beam headlights temporary (so-
called flasher). We had to make the following assumptions due to missing requirements:
(i) a maximum illumination area of 360m and 100% of luminous strength in the flasher
mode; (ii) the key is inserted or the engine is on to activate high beam in a fixed way.

In adaptive mode (ELS32-ELS38), the illumination of the road is automated
depending on the incoming vehicles (as detected by a built-in camera) and optimized
to illuminate the appropriate area according to the vehicle speed, the last being the cur-
rent speed of the vehicle or the target speed provided by the advanced cruise control
in case it is activated. The illumination distance and the luminous strength are adjusted
according to characteristic curves provided in the requirements document. In order to
calculate such values, we had to reverse engineered the formulas as suggested in the
additional information provided with the specification document. We modelled this
adaptive behaviour in terms of a MAPE-K feedback control loop that starts with the
rule r MAPE HBH (see Code 4). A control loop in self-adaptive systems is a sequence
of four computations: Monitor-Analyse-Plan-Execute (MAPE) over a knowledge base.
In self-adaptive ASMs [5], it is modelled by means of four rules, one per MAPE compu-
tation, while the knowledge is modelled by means of functions, since in ASMs system
memory is represented in terms of functions. In our case, the MAPE loop consists of
the following rules invoked in a waterfall manner within one single ASM-step machine
(see Code 4): r Monitor Analyze HBH, where monitor and analyze computations are
modelled as a unique activity; r IncreasingPlan HBH and r DecreasingPlan HBH to
plan the adaptation if necessary: light illumination distance and luminous strength are
increased or decreased according to the vehicle speed; r Execute HBH to set the val-
ues as planned: highBeamOn to activate/deactivate the high beam, highBeamRange and
highBeamMotor for the high beam luminous strength and illumination distance.

312 P. Arcaini et al.

CarSystem004. This modelling phase introduces fault handling, in particular how
the software reacts to overvoltage or subvoltage. When subvoltage is present, some
functionalities like cornering light and parking light are not available. This has been
addressed by adding a guard that, in case of subvoltage (the voltage value is less than
8.5V), disables them (see Code 5). In case the voltage is more than 14.5V, the system
is in overvoltage. The maximum value of lights is computed by the setOvervoltage-
ValueLight function: it returns the minimum between current light value and the value
calculated by overVoltageMaxValueLight function. In this step of refinement, we have
refined the modules whose behaviour is affected by the voltage value.

3.2 Speed Control System

The final model of Speed Control System has been addressed through three steps of
refinement explained in the following.

CarSystem005. In the first model of SCS, we have implemented the functionalities
of cruise control and setting and modifying desired speed (see CarSystem005Desired-
SpeedCruiseC module). Desired speed and target speed are modified based on SCS
lever position when (adaptive) cruise control is activated.

CarSystem006. This step of refinement introduces the speed limit and traffic sign
detection functionalities. If traffic sign detection is on, the target speed is modified by
the recognized traffic sign value. The speed limit modifies the desired speed which must
not be exceeded by the current speed.

CarSystem007. This step of refinement introduces the adaptive cruise control and dis-
tance warning from the vehicle ahead (from SCS-18 to SCS-26), and the brake assistant
(from SCS-27 to SCS-28) to initiate braking in critical situations. Similarly to the adap-
tive high beam headlights (see refinement CarSystem003), we modelled the adaptive
behaviour of the cruise control in terms of a MAPE-K feedback control loop that mon-
itors the distance from the vehicle ahead, plans and executes acceleration/deceleration
automatically, including braking until a full standstill and starting from a standstill.

3.3 Merging ELS and SCS Models

Once we have developed the ELS and SCS separately, we have merged them to obtain
a model that includes both systems.

Modelling an Automotive Software-Intensive System with Adaptive Features 313

CarSystem008. This step of refinement has been obtained easier than what we expected
due to the modularity followed in the previous steps of refinement. Once the main mod-
ule (CarSystem008main) has been defined, we have simply imported the modules pre-
viously developed. All rules are executed in parallel and no inconsistent update has
been found because the systems are independent of each other, they have only common
inputs. A schema that shows how we have imported modules is available on-line.

CarSystem009. We have introduced the requirements from SCS-40 to SCS-43. The
dangerous situations in SCS-40, SCS-41 and SCS-42 are already managed by the
model; in this step of refinement we have integrated SCS-43 by refining the guards
of CarSystem004EmergencyBrakeLights module. The brake lights are activated either
by the brake pedal pressed by the user or the system activates the emergency brake.

4 Validation and Verification

Validation and verification are supported by a set of ASMETA tools. In this section, we
report results and tools used for each activity, and explain the changes to the models
that resulted from the validation and the verification.

Validation. Model validation helps to ensure that the specification really reflects the
intended requirements, and to detect faults and inconsistencies as early as possible with
limited effort. While writing models, we have started the validation activity by using the
animator AsmetaA [8] which uses tables to convey information about states and their
evolution. We have performed interactive animation that consists in providing inputs
(i.e., values of monitored functions) to the machine and observing the computed state.
The animator, at each step, performs consistent updates checking to check that all the
updates are consistent (in an ASM, two updates are inconsistent if they update the same
location to two different values at the same time), and invariant checking.

With the increasing complexity of the ELS and SCS system models, we have
intensely used the scenario-based validation AsmetaV [12] that allows to build and
execute scenarios of expected system behaviours. In scenario-based validation, the
designer provides a set of scenarios specifying the expected behaviour of the mod-
els (using the textual notation Avalla [12]). These scenarios are used for validation
by instrumenting the simulator AsmetaS [14]. During simulation, AsmetaV captures
any check violation and, if none occurs, it finishes with a PASS verdict. Avalla pro-
vides constructs to express execution scenarios in an algorithmic way, as interaction
sequences consisting of actions committed by the user to set the environment (i.e.,
the values of monitored/shared functions), to check the machine state, to ask for the
execution of certain transition rules, and to enforce the machine itself to make one
step as reaction of the user actions. Code 7 shows an example of scenario: it specifies
the behaviour of the second validation sequence for the exterior light provided as part
of the documentation4. More scenarios are available on our online repository, including
all those provided with the case study document.

4 See the ValidationSequences v1.8.xlsx document in the web site of the case study.

314 P. Arcaini et al.

Although interactive and scenario-based simulations are very useful to get a fast
understanding of the developed models and quickly detect possible modelling errors,
they do not allow to perform an exhaustive check. Therefore, we performed model
review using the AsmetaMA tool [2], as a complementary validation technique: it is a
form of static analysis to determine if a model has sufficient quality attributes (as mini-
mality, completeness, consistency). This automatic activity can find problems that could
pass undetected during interactive simulation and scenario validation, which cannot
be exhaustive and perform only some system executions. For example, CarSystem003
has a rule that decides when to switch on the parking lights (parkingLightON :=
true). By introducing requirement ELS-46, however, we added a rule to switch the
lights off in case of subvoltage (parkingLightON := false). In the first version
of the CarSystem004, the two rules sometimes conflicted, so leading to an inconsistent
update. Model review allowed us to spot this problem, that we solved by introducing a
guard to avoid the conflict.

Verification. Formal verification of ASMs is possible by means of the tool
AsmetaSMV [1], and both Computation Tree Logic (CTL) and Linear Temporal Logic
(LTL) formulas are supported. To perform model checking with NuSMV (the model
checker AsmetaSMV is built on) that requires a finite state space, we reduce infinite
domains in the original models to finite domains.

For the case study, some properties can be naturally derived from the requirements.
The typical form of a requirement is “when/if . . . then . . . ” describing that when some-
thing happens (a given external input received, a given state condition, etc.), some
actions must be taken. Such kind of properties are naturally translated in temporal
properties as �(φ → ©(ψ)) or �(φ → ♦(ψ)). However, these kinds of properties
(in particular the first one) are also reflected in the structure of ASM rules derived from
the requirements, that take the form of if ... then ... else ... endif rules. In this case, tempo-

Modelling an Automotive Software-Intensive System with Adaptive Features 315

ral properties assume the form of redundant specifications that can be used to enforce
the model and make it robust against possible wrong future modifications of the model.
An example of such kind of property that we developed related to requirement ELS-18
is the CTL property: ag((lightRotarySwitch = AUTO and engineOn and brightnessSensor <
200)implies ax(lowBeamLightingOn)).

In addition to these straightforward properties, we specified more general proper-
ties that are not directly related to single requirements. For example, we specified the
following three properties:

– both direction indicators blink iff the car is in hazard warning:
ag((blinkLeft != 0 and blinkLeftPulseRatio != NOPULSE and blinkRight != 0 and
blinkRightPulseRatio != NOPULSE)= hazardWarningSwitchOn Runn)

– if tail lamps are blinking, the car is not European:
ag((tailLampLeftStatus=BLINK or tailLampRightStatus=BLINK)implies marketCode!=EU)

– the market code of a car cannot be changed:
forall $c inMarketCode with (marketCode = $c implies ag(marketCode = $c))

5 Discussion

We here provide a more detailed discussion about our experience in modelling and
analysing the case that took totally less than one month (around one week for under-
standing the requirements, and the remaining time for the model development and
V&V). We report flaws we discovered in the requirements documents, features that we
would have expected in the documents, and also missing functionalities of our frame-
work that would have been helpful (besides the temporal aspects discussed in Sect. 2).

Scenarios. The scenarios provided with the case study requirements turned out to be
very useful as, in some cases, allowed us to clarify some misunderstanding we had
when we developed the models starting from the requirements document. For exam-
ple, observing the scenarios, we realized that desiredSpeed and targetSpeed
are two separate entities that can assume different values with two updating policies,
while, only reading the requirements document, we thought that the user could modify
both at the same time. However, in other cases, the description of the scenarios and
the description of the requirements were inconsistent. For some of such inconsisten-
cies, it was clear that the document to trust was the scenario description; for example,
the requirements document uses in an improper way the terms desired, target, and set
speed, sometimes using them interchangeably; the scenarios document, instead, clearly
distinguishes them and allows to observe their different roles. Other inconsistencies,
instead, were less easy to disambiguate. This was the case of traffic sign detection for
which the requirements document states that only the target speed is modified when the
sign is recognized; however, scenario 6 of Validation Sequences Speed shows a case in
which the car, when detects the sign, modifies both desired and target speed.

Requirements Coverage. Since the scenarios turned out to be so useful, we would
have liked to have a more exhaustive validation sequences in the informal documenta-
tion in order to build a set of scenarios covering all the requirements; using the coverage
feature of our validator AsmetaV, we realized that this is not the case. For example,

316 P. Arcaini et al.

requirements ELS-42 to ELS-47 are not covered by any validation sequence and there-
fore by any of our scenario. Moreover, when doing this coverage checking, we realized
a limit of our coverage tool that can only provide coverage information at the level
of macro rule (similarly to call coverage). This coarse grained level of coverage may
be not informative enough in situations in which requirements are mapped at the level
of, e.g., branches of conditional rules. As future work, we plan to extend our coverage
evaluator to provide information as decision and condition coverage.

Scenario Derivation and Animation. As said previously, we have extensively used
scenario-based validation during the modelling activity. We realized that a better inte-
gration with model animation [8] would permit to save animation sessions in terms of
scenarios, and also to animate existing scenarios. For this work, we have developed the
former technique that allows us to export into Avalla scripts the animations we perform,
and re-execute them later when changing the model (in a kind of regression testing using
“record and replay”).

Parametric ASMs. The systems described in the case study actually represent a family
of systems that can be configured on the base of the market and type of car. Different
configurations lead to different behaviours of the systems. In order to model all these
features, we had to introduce flags to be set in the initial state: this reduces the readabil-
ity and maintainability of the models. It would be useful to have a parametric version of
the ASM model, similarly to what done for software programs using Software Product
Lines. A recent approach has been proposed in this context for ASM [6], and we plan
to consider it in future usages.

Implementation. In modelling the case study, we did not consider any implementa-
tion. However, the ASMETA framework provides support in this sense. First of all, a
translator to C++ [9] is available; it could be applied to generate a first prototype of
the implementation, which could be then further extended by developers. Instead, if a
system implementation is available, conformance checking approaches can be applied,
in terms of model-based testing and runtime verification both supported by ASMETA.

6 Conclusions

We have presented the specification, validation, and property verification of an automo-
tive system by using ASMs. We have discussed our experience in modelling an adaptive
exterior light and the speed control systems that equip modern cars, also addressing the
adaptive features of the two systems in terms of MAPE-K feedback control loops. We
have also shown how to write and run scenarios and verify properties addressed by
our models. We have found some misunderstanding in the document of requirements,
because the described behaviour was different from the behaviour expected in valida-
tion sequences. We have found some limitations in our tools, e.g., the coverage eval-
uator provides only coverage in terms of macro rules, that we plan to overcome with
future improvements. On the other hand, this case study has provided us the oppor-
tunity to test our framework in terms of robustness and user experience in modelling
complex systems. We have noticed that the framework is particularly suitable to handle
the increasing complexity of the models: the support for modularization (at the level

Modelling an Automotive Software-Intensive System with Adaptive Features 317

of modelling and scenario construction) allows producing refined model and refined
scenarios with limited effort.

References

1. Arcaini, P., Gargantini, A., Riccobene, E.: AsmetaSMV: a way to link high-level ASM mod-
els to low-level NuSMV specifications. In: Frappier, M., Glässer, U., Khurshid, S., Laleau,
R., Reeves, S. (eds.) ABZ 2010. LNCS, vol. 5977, pp. 61–74. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-11811-1 6

2. Arcaini, P., Gargantini, A., Riccobene, E.: Automatic review of abstract state machines by
meta property verification. In: Proceedings of the Second NASA Formal Methods Sympo-
sium (NFM 2010), pp. 4–13. NASA (2010)

3. Arcaini, P., Gargantini, A., Riccobene, E.: CoMA: conformance monitoring of Java programs
by abstract state machines. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp.
223–238. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29860-8 17

4. Arcaini, P., Gargantini, A., Riccobene, E., Scandurra, P.: A model-driven process for engi-
neering a toolset for a formal method. Softw. Pract. Exp. 41, 155–166 (2011)

5. Arcaini, P., Riccobene, E., Scandurra, P.: Formal design and verification of self-adaptive sys-
tems with decentralized control. ACM Trans. Auton. Adapt. Syst. 11(4), 25:1–25:35 (2017)

6. Benduhn, F., Thüm, T., Schaefer, I., Saake, G.: Modularization of refinement steps for
agile formal methods. In: Duan, Z., Ong, L. (eds.) ICFEM 2017. LNCS, vol. 10610, pp.
19–35. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68690-5 2

7. Blass, A., Gurevich, Y.: Abstract state machines capture parallel algorithms. ACM Trans.
Comput. Log. 4, 578–651 (2003)

8. Bonfanti, S., Gargantini, A., Mashkoor, A.: AsmetaA: animator for abstract state machines.
In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp.
369–373. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4 25

9. Bonfanti, S., Gargantini, A., Mashkoor, A.: Design and validation of a C++ code generator
from abstract state machines specifications. J. Softw. Evol. Proc. 32(2), e2205 (2020)

10. Börger, E., Raschke, A.: Modeling Companion for Software Practitioners. Springer, Heidel-
berg (2018). https://doi.org/10.1007/978-3-662-56641-1

11. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System Design and
Analysis. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-642-18216-7

12. Carioni, A., Gargantini, A., Riccobene, E., Scandurra, P.: A scenario-based validation lan-
guage for ASMs. In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.) ABZ 2008.
LNCS, vol. 5238, pp. 71–84. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-87603-8 7

13. Gargantini, A., Riccobene, E., Rinzivillo, S.: Using spin to generate tests from ASM speci-
fications. In: Börger, E., Gargantini, A., Riccobene, E. (eds.) ASM 2003. LNCS, vol. 2589,
pp. 263–277. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36498-6 15

14. Gargantini, A., Riccobene, E., Scandurra, P.: A metamodel-based language and a simulation
engine for abstract state machines. J. UCS 14(12), 1949–1983 (2008)

15. Houdek, F., Raschke, A.: Adaptive exterior light and speed control system (2019)
16. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50

(2003)
17. Slissenko, A., Vasilyev, P.: Simulation of timed abstract state machines with predicate logic

model-checking. J. Univers. Comput. Sci. 14(12), 1984–2006 (2008)

https://doi.org/10.1007/978-3-642-11811-1_6
https://doi.org/10.1007/978-3-642-29860-8_17
https://doi.org/10.1007/978-3-319-68690-5_2
https://doi.org/10.1007/978-3-319-91271-4_25
https://doi.org/10.1007/978-3-662-56641-1
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-540-87603-8_7
https://doi.org/10.1007/978-3-540-87603-8_7
https://doi.org/10.1007/3-540-36498-6_15

Validating Multiple Variants of an
Automotive Light System with Electrum

Alcino Cunha, Nuno Macedo(B), and Chong Liu

INESC TEC and Universidade do Minho, Braga, Portugal
nfmmacedo@di.uminho.pt

Abstract. This paper reports on the development and validation of a
formal model for an automotive adaptive exterior lights system (ELS)
with multiple variants in Electrum, a lightweight formal specification
language that extends Alloy with mutable relations and temporal logic.
We explore different strategies to address variability, one in pure Elec-
trum and another through an annotative language extension. We then
show how Electrum and its Analyzer can be used to validate systems
of this nature, namely by checking that the reference scenarios are
admissible, and to automatically verify whether the established require-
ments hold. A prototype was developed to translate the provided vali-
dation sequences into Electrum and back to further automate the vali-
dation process. The resulting ELS model was validated against the pro-
vided validation sequences and verified for most of requirements for all
variants.

1 Introduction

Electrum [10] is a state-based modelling language that extends the structural
definitions and first-order relational logic of Alloy [8] with mutable relations
and (past and future) linear temporal logic (LTL) operators. Its companion
Analyzer [2], itself an extension of the Alloy Analyzer, provides support for val-
idation – through scenario animation – and verification – through two auto-
matic model checking backends, one bounded and another complete. Both ani-
mation instances and verification counter-examples are presented back to the
user in a unified graphical interface. The combination of first-order and tempo-
ral logic makes Electrum well-suited to address systems rich in both structural
and dynamic properties, such as automotive software product lines with archi-
tectural and behavioural variability. To further ease the feature-oriented design
of software families, language extensions to Alloy have also been proposed [1,9].

This paper reports the modelling and subsequent validation and verification
of an adaptive exterior lights system (ELS) with multiple variants in Electrum1,
carried out as an answer to the ABZ’20 call for case study submissions, follow-
ing the successful submission to ABZ’18 [4]. The employed approach – which we
1 All resources relevant for the ELS case study are available at https://github.com/

haslab/Electrum2/wiki/ELS.
c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 318–334, 2020.
https://doi.org/10.1007/978-3-030-48077-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_26&domain=pdf
https://github.com/haslab/Electrum2/wiki/ELS
https://github.com/haslab/Electrum2/wiki/ELS
https://doi.org/10.1007/978-3-030-48077-6_26

Validating Multiple Variants of an Automotive Light System with Electrum 319

hope can be applied to similar signal-based systems – is presented in Sect. 2. As
described in Sect. 3, we have been able to model most ELS requirements by find-
ing an abstraction sweet-spot – in particular for real-time issues. The Electrum
language is presented throughout this section as needed. Section 4 describes two
explored approaches to modelling multiple variants, one in pure Electrum and
another using language extension for feature-oriented design [9]. The ELS model
was validated against all the provided validation sequences [7], and verified for
most of the ELS requirements, as described in Sect. 5. To ease validation, a pro-
totype was developed to translate tabular validation sequences into Electrum and
back for inspection by domain experts. Lastly, Sect. 6 discusses issues identified
in the requirements and limitations of the followed approach.

2 Modelling Strategy

The main goal of this work was to validate the ELS requirements by checking
their feasibility and consistency for all valid variants. We started by modelling a
single variant of the ELS as a (rough) state machine against which the validation
sequences were tested and the requirements subsequently verified. An Electrum
model contains both the system specification and the analysis commands, thus
our model, described in detail in Sect. 3, is structured as follows:

Environment the available input and output signals, their acceptable values,
and possible restrictions to their evolution [6, §4.1–4.3].

ELS state machine a predicate calculating the state of output signals (mostly)
from the current state of the input ones, allowing alternative behaviours;
inferred from the requirements [6, §4.4].

Animation scenarios simple state sequences, and associated run commands,
that exercise the ELS for preliminary validation and regression testing.

Reference scenarios the encoding of the provided validation sequences [7],
and associated run commands, with imposed inputs and expected outputs,
for validating the modelled ELS state machine; a prototype was developed to
translate them from the provided tabular format [7].

Visual elements elements ignored by the analyses but aiding the visualization
of scenarios (accompanied by a theme, stored in a separate file).

Requirement assertions the formalization of the requirements [6, §4.4] in
temporal logic, and associated check commands to automatically verify them;
these assess the overall consistency of the ELS requirements.

The ELS has both structural – that introduce additional signals – and
behavioural – that change certain signal outcomes – variability points [6, §3],
which Electrum is well-suited to address. Once a single variant was modelled
and validated, two strategies were explored to address the remaining variants,
as described in Sect. 4: one based on an Electrum idiom where features and vari-
ability points are modelled in plain Electrum, and another adapting a language
extension developed by us for Alloy [9] where variability points are annotated

320 A. Cunha et al.

with features. This introduces another component in the ELS model for impos-
ing the set of valid variants – the feature model.

As expected, the development of these components was not sequential but
rather iterative as new ELS functions were added to the model. This process
was applied to all 9 main ELS functions divided in 48 requirements as of ver-
sion 1.17 [6], for all 12 valid variants (although only 4 effectively have distinct
behaviour) and to all 9 validation sequences of version 1.7 [7]. This work focused
on the ELS, but we believe a similar approach could be followed for the speed
control system (SCS) [6], although the SCS is richer in continuous aspects, which
would require additional abstractions. It should also be noted that the authors
had no particular domain knowledge, and that the process was solely based on
the provided reference material [6,7] and discussions with the case study chair.

The most challenging features of the ELS were those dealing with real-time
aspects and the integer nature of the signals. For both we developed proper
abstractions – respectively arbitrary duration events and value discretization,
described in the next section – that still allowed us to address most requirements.
Only requirements requiring arithmetic operations were not addressed at all.

3 The ELS Model

This section describes the main features of the ELS model developed for the
simplest variant, that is, when the vehicle is not armoured and aimed at the EU
market (the driver position does not affect the ELS).

System Environment. The ELS follows a typical architecture that communicates
with the external world through input – from the user interface and sensors –
and output signals – to actuators. Our model mimics this architecture so that
the translation can be streamlined. In Electrum, likewise Alloy, structure is intro-
duced through the declaration of signatures – sets of uninterpreted atoms – and
fields declared within them – relations of arbitrary arity between signatures.
A hierarchy on signatures can be imposed through simple inclusion or through
extension, in which case children must be disjoint; signatures can also be declared
as abstract, meaning all atoms must belong to its children. Signatures and fields
can be restricted by simple multiplicity constraints. Lastly, both may be static
(by default) or declared as variable, in which case their state may change over
time.

The ELS environment specification declares signals, the values that can be
assigned to such signals, and how these assignments are represented in time.
Signals form a static hierarchy starting from an (abstract) Signal signature.
Although the ELS signals are “flat”, related signals are often better handled
together. Thus, for instance, all light signals are aggregated in an abstract sig-
nature Light, and left and right low beam signals in the abstract signature
LowBeam. At the bottom of the hierarchy are the concrete signals themselves as
singleton signatures (multiplicity one), such as LowBeamRight and LowBeamLeft,
whose names match those specified in the reference documents. The hierarchy
relevant for the low beams function is encoded in Electrum as

Validating Multiple Variants of an Automotive Light System with Electrum 321

Fig. 1. Meta-model of the system environment model for low beam headlights.

abstract sig Light extends Signal { var state : one LightState }
abstract sig Beam, ... extends Light {}
abstract sig LowBeam, TailLamp extends Beam {}
one sig LowBeamLeft, LowBeamRight extends LowBeam {}
one sig TailLampLeft, TailLampRight extends TailLamp {}

where field state will be explained shortly. To simplify the modelling process,
we distinguish Boolean signals (BooleanSignal, a sub-signature of Signal) from
the others. Those relevant for the low beams function are declared as:

abstract sig BooleanSignal extends Signal {}
one sig AmbientLighting, DaytimeLights extends BooleanSignal {}

Although signals are integer, most requirements simply test whether they
are within certain ranges. Thus, to keep the model manageable and avoid state
explosion, we discretize the values of each signal into those ranges relevant for
the requirements. For instance, it is only relevant to detect whether the ambient
brightness levels are below 200, over 300 or between the two, while low beam
headlights are only set to 20%, 50% or 100% intensity [6, 4.4]. Thus only these
distinct classes of values are encoded in our model. Values form a hierarchy
matching that of the signals, topped by State, whose direct children group the
states of related signals, such as LightState for Light signals. The next layer
provides the discretized values, such as Off, Low, Half or Full for beam intensity.
Lastly, since our model abstracts real-time aspects, occasionally we require addi-
tional temporal context regarding the state of the signals. For instance, when low
beams are activated due to ambient darkness, they must remain active for 3 s
even if ambient brightness is detected (ELS-18); thus, within Full beam intensity
we distinguish between this temporary state (Temp) and permanent activation
(On). Part of this hierarchy relevant for the low beam function is encoded as:

abstract sig LightState extends State {}
abstract sig Full, Off extends LightState {}
one sig Half, Low extends LightState {}
one sig On, Temp, ... extends Full {}
one sig OffP, ... extends Off {}

322 A. Cunha et al.

Lastly, we model the evolution of the state of the signals. For Boolean signals
a variable sub-signature SignalOn will contain at each state all active signals:

var sig SignalOn in BooleanSignal {}

For the other signals, a variable field called state will contain at each state
exactly one respective value, such as the one declared above for Light and
respective LightState. Often the requirements impose certain restrictions on
the evolution of the environment. In Electrum these restrictions are imposed
through facts, representing model axioms, which can contain arbitrary temporal
constraints. In the ELS, e.g., a fact forces the pitman arm to go back to neutral
when the steering wheel returns to the vertical position [6, §4.1].

We have encoded the over 30 signals of the ELS in this manner, including
those of the user interface [6, §4.1], the sensors [6, §4.2] and the actuators [6, §4.3].
An excerpt of the resulting environment signature hierarchy for the low beam
headlights function is depicted in Fig. 1 as generated by the Analyzer. Dashed
elements are variable and singleton signatures are in thicker lines (some state
names are abbreviated). Throughout the rest of the paper we will rely on this
function to demonstrate the features of the developed model.

State Machine. Next we derived a state machine from the ELS requirements.
Electrum formulas are written in relational linear temporal logic with transi-
tive closure. Relational expressions combine signatures and fields (and constants,
namely the universe of atoms univ, the unary empty relation none and the iden-
tity relation iden) with typical set theory operators such as union (+), intersec-
tion (&), difference (--), Cartesian product (→), binary relation overriding (++),
and relational join (.). In Electrum everything is seen as a relational expression,
so s.state can be used to retrieve the current state of a concrete signal s or all
the states of a set of signals s. Primed expressions can be used to refer to their
value in the succeeding state, e.g., s.state’for the next value of s.state. Atomic
formulas either test relational expressions for inclusion in or equality = or are
simple multiplicity tests. So, s in SignalOn tests whether a Boolean signal s is
currently active, and s.state in v whether signal s currently has value v (if s

singleton). Complex formulas are composed by Boolean operators (e.g. not, and,
or, iff, implies or implies-then- else), first-order operators (e.g. all or some),
and future (unary after, always or eventually, or binary until or releases) and
past (unary before, historically or once, or binary since or triggered) linear
temporal logic operators. Predicates and functions can be defined for auxiliary
formulas and expressions and let-expressions for local definitions.

A predicate is defined for each function encoding the expected behaviour,
which are subsequently called in a fact that enforces the full state machine. For
the low beam headlights function, this predicate mostly restricts the succeeding
state of the low beam headlights given the current state of the other signals.
For instance, if the light rotary switch (LightRotarySwitch.state) is set to LSOn

while the key (KeyState.state) is in the ignition on position, the succeeding
state of the low beams is set to On (ELS-14):

Validating Multiple Variants of an Automotive Light System with Electrum 323

KeyState.state in KeyInIgnitionOnPosition and
LightRotarySwitch.state in LSOn implies LowBeam.state’ in On

Expression LowBeam.state aggregates the state of both the left and right low
beams; since every light must have a state assigned, LowBeam.state in On sets
both to full intensity. As a more complex example, consider ELS-17 that specifies
daytime running lights, which activate the low beams when the engine is started
until the key is removed from ignition, unless ambient light control is also active:

DaytimeLights in SignalOn and
KeyState.state not in KeyInIgnitionOnPosition or
(LowBeam.state in On and KeyState.state in KeyInserted and

AmbientLighting not in SignalOn) implies LowBeam.state’ in On

In our model, real-time is abstracted away and no particular duration is
imposed to states, meaning that within a certain interval of time an arbitrary
number of events may occur. This affects the modelling of events with a bounded
duration, since we must identify when the trace is within that bound and allow
multiple steps within. For this purpose, such events are explicitly identified in
our state but not forced to last any particular number of states. For instance,
the mandatory 3 s for automatic low beams (ELS-18) is identified by the state
Temp; when brightness is detected, the low beams may be turned Off or the Temp

state propagated. This could be encoded in the following relational formula:

let low = LowBeam.state |
LightRotarySwitch.state in LRSAuto and

KeyState.state in KeyInIgnitionOnPosition implies
one low’ and
BrightnessSensor.state in Dark implies

low’ in low.(univ→Temp+Temp→On++On→On) else
BrightnessSensor.state in Bright implies

low’ in low.(univ→Off+Temp→Temp) else
BrightnessSensor.state in Grey and low not in Temp implies

low’ in low.(iden+Temp→On)

Here low abbreviates the state of both left and right low beams and we rely
on relational operators to specify alternative updates. For instance, expression
univ→Off+Temp→Temp relates every state with Off and additionally Temp with
itself; thus, low.(univ→Off+Temp→Temp) returns Temp and Off when the current
state is Temp and solely Off otherwise. This allows the exploration of transitions
with different durations: either low beams activation remains within the 3 s, or
the 3 s are exceeded and they are deactivated. Formula one low’ guarantees that
left and right beams are updated consistently (i.e., with the same value). Live-
ness properties then guarantee that the system eventually evolves. In Electrum
arbitrary temporal constraints can be imposed, this one taking the shape:

low in Temp implies eventually low not in Temp

This strategy was employed to model all the ELS main functions – direction
blinking, hazard warning light, low beams, cornering lights, manual and adaptive
high beams, emergency brake and reverse lights, and fault handling.

324 A. Cunha et al.

4 Handling Variability

The ELS assumes the existence of variability points, namely the market region,
whether it is an armoured vehicle and the driver position (although this last does
not affect the behaviour of the ELS) [6, §3]. The model described in the previ-
ous section represented a single ELS variant, and multiple independent models
could be developed in such a way for each of the valid variants. However, such
a strategy has poor maintainability and will not scale as the number of features
increase. Electrum is sufficiently flexible to support systems with structural and
behavioural variability points and effectively model families of software prod-
ucts. However, such idioms may be cumbersome, error-prone, and reduce com-
prehension, so to explore alternative approaches we implemented in Electrum an
annotative language extension to natively support feature-oriented design. This
extension was previously developed for Alloy but its adaptation to Electrum was
straightforward. This section describes the design of the ELS family of products
in both approaches, which allow simultaneously specifying and analysing all the
12 ELS variants. For both approaches, we assume the variant presented in the
previous section to be the base variant, which is extended into a multi-variant
model.

A Pure Electrum Idiom. The first step in both approaches is to encode the fea-
ture model – the possible features and the constraints over them denoting the
valid variants. When relying on a variability idiom, this is done by making fea-
tures first-class elements of the model. A possibility is to create a signature
(here, Feature) with an atom for each available feature (through singleton sub-
signatures, such as EU or ArmoredVehicle for the ELS). A sub-signature then
contains a particular selection of these features, representing the variant under
analysis (here, Variant). Lastly, a fact restricts which variants are considered
valid, in the case of ELS forcing a single market to be selected through a multi-
plicity test:

fact FeatureModel { one (EU+USA+Canada) & Variant }

To model architectural variability, conditional signatures and fields can be
assigned a loose multiplicity that is restricted depending on the variant under
analysis. In the ELS the darkness mode switch only exists on armoured vehicles,
so its multiplicity is set to lone (at most one such signal exists), and then a fact
forces its existence exactly when the respective feature is selected:

fact darknessModeSwitchOn {
some DarknessModeSwitchOn iff ArmoredVehicle in Variant }

Behavioural variability can be modelled by testing which features are selected
in Variant and adapting the relevant transitions of the state machine predicates.
In the case of low beams, for instance, ambient lights should be ignored with
active darkness mode in armoured vehicles (ELS-21), so the pre-condition for
activating them when the engine is started (ELS-19) is adapted to:

Validating Multiple Variants of an Automotive Light System with Electrum 325

not (ArmoredVehicle in Variant and DarknessModeSwitchOn in SignalOn)
and AmbientLighting in SignalOn and BrightnessSensor.state in Dark
and before KeyState.state in KeyInIgnitionOnPosition and
KeyState.state not in KeyInIgnitionOnPosition implies

LowBeam.state’ in Temp

Notice that since features are regular signatures, it may become difficult to
identify which parts of the predicate are variability points. It may also led to
unpredictable issues if the architectural variability is not handled with care:
the distracted developer could simply write DarknessModeSwitchOn in SignalOn

to test whether darkness mode is active without testing the feature pres-
ence, which is always true in variants without feature ArmoredVehicle since
DarknessModeSwitchOn is empty, thus permanently disabling ambient lighting.

For an example regarding the USA and Canada market variants, during
direction blinking, for instance, the intensity of daytime running lights (ELS-17)
must be reduced to half in the respective side (ELS-6), so the transition shown
in the previous section would be adapted to:

DaytimeLights in SignalOn and ... implies
LowBeamLeft.state’ in

(some (USA+Canada) & Variant and BlinkLeft.state’ not in OffP)
implies Half else On and

LowBeamRight.state’ in
(some (USA+Canada) & Variant and BlinkRight.state’ not in OffP)

implies Half else On

where the state of the blinking lights BlinkLeft and BlinkRight is tested in case
the USA or Canada markets are selected.

A Colourful Electrum Extension. Approaches to explicitly introduce variability
in a system usually fall in two categories: compositional approaches where fea-
tures are implemented as distinct code units which are then composed when
creating a variant, and annotative approaches where the code is annotated to
dictate which fragments will appear in each variant. Both compositional [1] and
annotative [9] approaches have been proposed to enable feature-oriented design
in Alloy, the latter by us relying on colourful annotations that have been shown
to improve understandability [5]. Annotative approaches are better suited for
small granularity variability points, which in our experience is often the case in
Alloy/Electrum, such as the examples above where one needs to change part of a
formula or expression rather than replace the predicate altogether.

In our lightweight annotative approach model elements can be marked with
features, identified by a digit, to control their presence/absence without obfus-
cating the code. Positive and negative annotations are introduced, respectively,
by delimiters i and i for 1 ≤ i ≤ 9, and colour highlighted by the Analyzer.
These can be nested, representing the conjunction of presence conditions, and
be applied to most declarations or branches of certain operators (namely con-
junction, disjunction, intersection and union). Semantically, when the presence
conditions are not met the element is interpreted as the neutral element of the

326 A. Cunha et al.

respective operator. For instance, in 1 p 1 and 2 q 2 , p is only tested in vari-
ants with feature 1, and q in those without feature 2, being replaced by true
otherwise.

The multi-variant ELS model under this extension uses five feature annota-
tions, one for each variability point. To model the feature model one can rely on
annotated facts to forbid certain variants. For the ELS this could be achieved
by the following fact, which mimics the colour highlighting of the Analyzer:

fact FeatureModel {
// 1 USA, 2 Canada, 3 EU, 4 Armored, 5 DriverPosition
1 2 some none 2 1 and 2 3 some none 3 2

1 3 some none 3 1 and 1 2 3 some none 3 2 1 }

where, for instance, 1 2 some none 2 1 forbids the coexistence of USA and
Canada market codes, and 1 2 3 some none 3 2 1 forces the selection of at least
one market code2. At the level of abstraction of Electrum, feature models are
usually small and simple to encode with facts like the one above, but we are
studying whether dedicated support for encoding feature models is necessary.

Architectural variability is trivially modelled, as one may mark the signature
(or field) declaration with the relevant annotations, as in the case of the darkness
mode switch signal, that only exists for armoured vehicles:

4 one sig DarknessModeSwitchOn extends BooleanSignal 4

One type rule imposed by colourful Electrum is that element calls must
respect the annotations in which they were declared, thus guaranteeing that
they are never called in variants where the element is absent. Thus, the interac-
tion between ELS-19 and ELS-21 would now be encoded as:

4 not DarknessModeSwitchOn in SignalOn 4 and
AmbientLighting in SignalOn and BrightnessSensor.state in Dark and

... implies LowBeam.state’ in Temp

In variants without 4 this test will be disregarded (i.e., interpreted as true).
The same mechanism can be applied to relational expressions. For instance, the
interaction of ELS-17 and ELS-6 for USA and Canada markets is encoded as:

DaytimeLights in SignalOn and ... impliesLowBeamLeft.state’ in
3 On 3 + 3 BlinkLeft.state’ not in OffP implies Half else On 3 and
LowBeamRight.state’ in
3 On 3 + 3 BlinkRight.state’ not in OffP implies Half else On 3

where the beams are always set to On in the EU market, but in other markets
(through the negative 3) the state of blinking lights is tested. A union branch
is interpreted as the empty relation when the presence conditions do not hold.

2 Electrum, like Alloy, does not natively support Boolean constants, so some none is
commonly used to denote a trivially unsatisfiable formula.

Validating Multiple Variants of an Automotive Light System with Electrum 327

5 Validation and Verification

The Analyzer is able to execute animation and verification commands. Both
instances and counter-examples are graphically depicted in a visualizer that can
be customized for improved interpretation. This section describes how these
functionalities were used to validate and verify the ELS model.

5.1 Animation and Validation

Validation Scenarios. Animation commands are defined through run instructions,
which can be provided arbitrary constraints that must hold for the generated
instances. This allows the quick definition of scenarios for early validation, which
are also useful as regression tests as the model evolves. For the ELS we have
defined over 60 such scenarios exercising simple behaviours of the system. We
follow an idiom where one predicate defines the evolution of the environment
(state of input signals) and another the expected behaviour of the system (state
of output signals). For instance, to test basic low beam headlights sub-functions
such as having the light rotary switch set to on with key inserted, a predicate is
defined to encode the behaviour of the relevant input signals:

pred LowBeam2Env {
always AmbientLighting not in SignalOn
always KeyState.state in KeyInserted
let lrs = LightRotarySwitch.state |
lrs in LSOff;always lrs in LSOn }

where always p forces p to hold in all states of the trace and p;q abbreviates
p and after q, an operator introduced precisely to ease scenario specification [4].
A predicate then encodes the expected outcome of the ELS for these inputs:

pred LowBeam2Exp {
LowBeam.state in OffP;always LowBeam.state in Half }

This predicate states that the beams should be activated with intensity reduced
to half. Lastly, a command to generate this scenario by enforcing the environment
and the expected behaviour (in the succeeding state, since output signals are
calculated from the previous state) is defined:

run LowBeam2 { LowBeam2Env and after LowBeam2Exp } for 5 Time

Commands must have scopes assigned to signatures, but in our ELS model all
signatures are exactly bound, since all signals and possible states are known
a priori. For bounded model checking – more efficient and thus better suited
for validation – the maximum number of states that form a trace must also be
provided (the scope of Time). Since this is a simple scenario that bound is set
to 5. Once instances are generated, the user is able to iterate over alternative
scenarios for which the constraints hold. Scenario exploration operations (see the
toolbar of Fig. 2) include changing the configuration (here, the selected variant),
the initial state, or the current transition [3].

328 A. Cunha et al.

In the multi-variant ELS models one is able to restrict which subset of vari-
ants should be analysed. As an example, let us consider the animation of the
effect of darkness mode when ambient lighting is activated. In the Electrum vari-
ability idiom the part of this environment predicate could be specified as:

ArmoredVehicle in Variant
let key = KeyState.state |

key in KeyInIgnitionOnPosition;always key in KeyInserted
always AmbientLighting in SignalOn
always DarknessModeSwitchOn in SignalOn

Fig. 2. A step of sequence 1 in the Analyzer under the developed theme. (Color figure
online)

which includes the selection of the feature ArmoredVehicle and the behaviour of
the DarknessModeSwitchOn. The same scenario in the colourful extension would
instead be specified as:

let key = KeyState.state |
key in KeyInIgnitionOnPosition;always key in KeyInserted

always AmbientLighting in SignalOn
4 always DarknessModeSwitchOn in SignalOn 4

where the behaviour of the darkness mode switch is annotated with the corre-
sponding feature. The execution of this scenario must then also be restricted to
only variants where feature 4 is selected. In colourful Electrum this is defined
through the command scope as:

run LowBeam19 {
LowBeam19Env and after LowBeam19Exp } with 4 for 5 Time

Theme Customizations. In our experience, the proper graphical representation
of instances is key to promote the interpretation of the model among interested
parties. Inheriting from Alloy, the Analyzer depicts instances as graphs, applying a
graph representation algorithm and distributing nodes among layers, obliviously
of the underlying semantics of the nodes and edges. Themes may be defined

Validating Multiple Variants of an Automotive Light System with Electrum 329

to ease interpretation. From our experience the most useful customizations are
simply changing the colour, shape or label of elements, hiding elements, showing
relations as edges or attributes, and inverting edges (the easiest way to change
the shape of the graph). Visualization can also be projected over a signature,
focusing the visualization on the elements related to the selected atom. These
customizations are hierarchical, meaning that subsets of elements may inherit
the parameters of their parents or change them. Although simple, these features
can become extremely powerful given another key functionality of the visualizer
– after analysis, and during the creation of the graph, auxiliary functions defined
in the model are introduced into the instance. These can be of arbitrary arity,
and thus can represent subsets of atoms or new relations between them.

In our ELS model we have used such features to produce a visualization
such as that of Fig. 2. Since the signals are mostly flat, we introduce elements to
somehow layout signals according to their role in the system. Singleton signatures
– which do not affect the solving process since they are exactly bound and not
referred elsewhere – simulate the vehicle architecture, such as the Car itself or
the driver’s Menu

one sig Car, LeftSide, RightSide, Menu, UCP {}

Auxiliary relations (defined as functions with zero arguments) then connect such
elements to signals, such as assigning the sensors to the car (which are set to be
shown as attributes of Car rather than edges) or the lights to the respective side
of the car, and can be defined as follows:

fun _lightsensor : Car → BrightnessSensorState {
Car → BrightnessSensor.state }

fun _actuators : univ → univ {
LeftSide → (BlinkLeft+LowBeamLeft+TailLampLeft+...) +
RightSide → (BlinkRight+LowBeamRight+TailLampRight+...) }

Auxiliary sets grouping together signals under certain states were also defined
to ease the theme customization. For instance, all active signals are grouped so
that they can easily be painted with a distinguishing colour (yellow in Fig. 2):

fun _on : set univ { state.Full+state.(LSOn+LSAuto)+SignalOn+... }

The theme file is available alongside the model specification.

5.2 Reference Validation Sequences

To effectively validate the developed model we checked its behaviour against that
of the reference validation sequences [7]. These are complex – each step specifying
the value of all the over 30 input and output signals, with some containing over
20 steps – rendering their manual codification infeasible. Thus, we implemented
a prototype to automatically translate tabular data that represents signal values
over time into Electrum and back. This validator is able to i) given a sequence
of input and output signals, report whether it is a valid execution in our model;
and ii) given a sequence of only input signals, generate possible executions of
the output signals to be subsequently validated by domain experts.

330 A. Cunha et al.

We implemented the prototype so that the process could be reproducible for
other signal-based systems. Thus, besides the sensor data, two additional pieces
of information must be provided to the validator for each specific application: i)
how the signal values should be discretized; and ii) the presence conditions for
signals. For our prototype, this information is passed in the header of the tabular
data, as depicted in Table 1 for validation sequence 1 of the ELS (note that this
is only an excerpt of the codification of the more than 30 signals over 17 steps).
Single-value ranges are assumed to have the same lower- and upper-bound. It
also assumes, as described in Sect. 3, that all signals are leaves of the hierarchy
on Signal with the exact same name as that of the sequence header, and that
elements representing the discretized values are at the second layer of the State

hierarchy, again with the same name as the discretization in the header.

Table 1. Snippet of tabular data provided to our validator for sequence 1.

... Time ambient
Lighting

darknessMode
SwitchOn

lightRotary
Switch

brightnessSensor marketCode armored
Vehicle

... lowBeam
Left

...

... 0=False;
1=True

0=False;
1=True

0=Off;
1=Auto;
2=On

0-199=Dark;
200-250=Grey;
251-
100000=Bright

1=USA;
2=Canada;
3=EU

1=True;
0=False

... 0=Off;
10=Low;
50=Half;
100=Full

...

... armored
Vehicle=True

... ...

...

... 0:03 0 0 1 500 3 0 ... 0 ...

... 0:04 0 0 1 200 3 0 ... 0 ...

... 0:05 0 0 1 199 3 0 ... 100 ...

...

Fig. 3. Electrum encoding of the sequence from Table 1.

The translation can then be streamlined as follows. The presence/absence of a
Boolean signal s can simply be stated as s in SignalOn and s not in SignalOn,

Validating Multiple Variants of an Automotive Light System with Electrum 331

respectively, while the state of the others is encoded as s.state in v for a dis-
cretized value v. Sequences of signal states are encoded using the operator ;,
and let-expressions are used to simplify this codification. The particular variant
of the sequence must also be encoded. The validator currently implements only
the pure variability idiom, forcing the exact value of signature Variant.

The resulting predicates resemble the one in Fig. 3 for the sequence from
Table 1 (including steps that have been omitted for simplicity). The expected
variant (ll.11–12) and both the sequence of input (ll. 1–10) and output (ll. 15–17)
signals are encoded, relying on let-expressions for improved readability (recall
that unlike the validation sequences, our output signals are only updated in
the succeeding state, hence the after). At the last state an always operator is
applied, since outputs are expected to stabilize when inputs do. Although the
reference sequences provide timestamps for the events (the first column), these
are ignored since real-time is abstracted in our model.

Figure 2 depicts the outcome of running this predicate (with Time scope deter-
mined from the length of the sequence), particularly the transition where the
brightness is below the threshold and the low beam headlights are activated. We
were able to model all 9 validation sequences of version 1.8 and show that they
hold for our ELS model, except for concrete values for the high beam illumination
distance and strength in sequence 9 (ELS-33) due to arithmetic operations.

5.3 Requirement Verification

The last step of the process was to effectively verify whether the requirements
hold for the modelled ELS. In Electrum assertions (assert) can be specified in
full relational temporal logic, which the Analyzer is instructed to verify (within
given scopes) with check commands.

As an example, consider requirement ELS-14, stating that whenever the
engine is on and the light switch set to on, low beams will be active. This can
be specified in the following temporal assertion:

assert ELS14 {
always (KeyState.state in KeyInIgnitionOnPosition and

LightRotarySwitch.state in LSOn implies LowBeam.state’ in Full) }

For a more complex example, consider ELS-17, stating that with daytime
running light but without ambient light, the low beams are activated until the
engine is turned off. This can be encoded as:

assert ELS17 {
let keyPos = KeyState.state in KeyInIgnitionOnPosition,

amb = AmbientLighting in SignalOn,
day = DaytimeLights in SignalOn |

always (day and not amb) implies always (
(LowBeam.state’ in Full+Half until not keyPos) or always keyPos) }

stating that in traces where daytime running light is active but not ambient
lighting, the engine is turned off and the low beams are deactivated (temporal
operator until) or the engine remains on forever.

332 A. Cunha et al.

We were able to check most ELS requirements except for the limitations
discussed in the following section. The described checks (that verify the property
for all variants at once) take around 6 s and 10 s, respectively, using the bounded
engine of Electrum under the Glucose SAT solver and for 15 Time in a commodity
2,3GHz Intel Core i5 with 16GB RAM. More complex requirements – like those
including periodic events such as ELS-2 and ELS-4 – take around 1min.

6 Results Discussion

The Reference Document. Throughout the development of the ELS model we
encountered 14 issues with the reference documents, mostly during modelling and
preliminary validation, and when running the reference sequences. We reported
them to the case study chair who promptly replied. Of the first 4 reported issues,
3 resulted in fixes to the reference document (version 1.11); unfortunately, at the
time of submission no new version has been released after the other interactions
(unofficially, at least 3 resulted in validation sequence fixes). Roughly, the issues
encountered were either with the

Environment model inconsistencies or missing features related to the signals
detected in the early modelling process (e.g., the lack of a signal for the
middle brake light, making it impossible to flash (ELS-40); or inconsistent
representations of the pitman arm signals when it was split into two distinct
signals for vertical and horizontal movement);

Behavioural model ambiguities detected in the requirements while modelling
and animating the state machine (e.g., conflicting requirements where the
precedence is not explicitly stated, such as whether ELS-18 or ELS-19 has pri-
ority on low beam behaviour; ambiguous nomenclature, such as what activat-
ing high beams means for the 3 relevant signals; or under-specified behaviour,
such as the beam intensity of tail lamps);

Validation sequences inadmissible sequences, meaning that the expected out-
put signals could not be achieved from the input signals in our model (e.g.,
tail lamps not being activated or not blinking in sequence 7).

It must also be noted that, since the modelling and validation process was iter-
ative, some requirement ambiguities were clarified by observing the reference
sequences. For instance, it is not clear from ELS-22 that when tail lamps are
activated, they are so with the same intensity as that of the low beams, but the
sequences showed that to be the case (e.g., in ELS-15).

In our experience, there were two main sources of confusion in the require-
ments. One has to do with the blinking lights and the nature of the dark cycles:
it was not clear under which situations, if any, such cycles should be interrupted,
and under which situations do they impact the tail lamps. The second has to do
with high beam headlights, which are controlled by 3 distinct signals: it is often
not clear what it means to activate the high beams and how the 3 signals should
be updated and again how they relate to the intensity of the tail lamps.

Validating Multiple Variants of an Automotive Light System with Electrum 333

The Followed Approach. As already stated, we only failed to address require-
ments requiring arithmetic operations (ELS-33 for calculating the illumination
distance and luminous strength of high beams, and ELS-47 for calculating the
maximum light intensity under over-voltage) since concrete integer values are not
represented. The abstracted time also renders reasoning about real-time require-
ments infeasible, such as ELS-10 enforcing the duration of blinking cycles to
1 s, or the part of ELS-18 forcing the activation of the automatic low beams for
3 s. Some features were simplified to avoid additional internal states, namely the
gentle fade-out of cornering lights (ELS-24) or the flashing of emergency brake
lights (ELS-40). ELS-37, dealing with the interaction with the SCS, has been
disregarded. Requirements related to periodic events – such as the bright and
dark cycles of blinking lights – proved to be the most cumbersome to specify.

The multiple variants of the ELS requirements motivated the implementa-
tion of the feature annotations for Electrum and its Analyzer. Since the ELS is
not particularly rich in variability, we did not find multi-variant modelling in a
pure Electrum idiom to be unmanageable, but it did affect the comprehension
of the model. In general, the colourful Electrum model is easier to understand.
The exception is the axiomatization of the feature model, and we are already
studying sensible ways to improve it, that we also expect to be useful in more
advanced feature-oriented analysis procedures. The complexity of the case study
also helped us identify additional operators whose annotation would be useful
in colourful Electrum – namely, if-then-else expressions common in the definition
of state machines, when certain branches are only relevant in certain variants.

Acknowledgements. The authors would like to thank Frank Houdek for helping
clarifying the requirements. This work is financed by National Funds through the Por-
tuguese funding agency, FCT – Fundação para a Ciência e a Tecnologia, within project
UIDB/50014/2020. The third author was financed by the ERDF – European Regional
Development Fund through the Operational Programme for Competitiveness and Inter-
nationalisation – COMPETE 2020 Programme and by National Funds through the
FCT, within project POCI-01-0145-FEDER-016826.

References

1. Apel, S., Scholz, W., Lengauer, C., Kästner, C.: Detecting dependences and inter-
actions in feature-oriented design. In: ISSRE, pp. 161–170. IEEE (2010)

2. Brunel, J., Chemouil, D., Cunha, A., Macedo, N.: The electrum analyzer: model
checking relational first-order temporal specifications. In: ASE, pp. 884–887. ACM
(2018)

3. Brunel, J., Chemouil, D., Cunha, A., Macedo, N.: Simulation under arbitrary tem-
poral logic constraints. In: F-IDE@FM. EPTCS, vol. 310, pp. 63–69 (2019)

4. Cunha, A., Macedo, N.: Validating the hybrid ERTMS/ETCS level 3 concept with
Electrum. Int. J. Softw. Tools Technol. Transfer 22, 281–296 (2020). https://doi.
org/10.1007/s10009-019-00540-4

5. Feigenspan, J., et al.: Do background colors improve program comprehension in the
#ifdef hell? Empir. Softw. Eng. 18(4), 699–745 (2013). https://doi.org/10.1007/
s10664-012-9208-x

https://doi.org/10.1007/s10009-019-00540-4
https://doi.org/10.1007/s10009-019-00540-4
https://doi.org/10.1007/s10664-012-9208-x
https://doi.org/10.1007/s10664-012-9208-x

334 A. Cunha et al.

6. Houdek, F., Raschke, A.: Adaptive exterior light and speed control system, v1.17
(2019)

7. Houdek, F., Raschke, A.: Validation sequences for ABZ case study “adaptive exte-
rior light and speed control system”, v1.8 (2019)

8. Jackson, D.: Software Abstractions: Logic, Language, and Analysis, revised edn.
MIT Press, Cambridge (2012)

9. Liu, C., Macedo, N., Cunha, A.: Simplifying the analysis of software design variants
with a colorful alloy. In: Guan, N., Katoen, J.-P., Sun, J. (eds.) SETTA 2019. LNCS,
vol. 11951, pp. 38–55. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
35540-1_3

10. Macedo, N., Brunel, J., Chemouil, D., Cunha, A., Kuperberg, D.: Lightweight spec-
ification and analysis of dynamic systems with rich configurations. In: SIGSOFT
FSE, pp. 373–383. ACM (2016)

https://doi.org/10.1007/978-3-030-35540-1_3
https://doi.org/10.1007/978-3-030-35540-1_3

Modelling and Validating an Automotive
System in Classical B and Event-B

Michael Leuschel(B), Mareike Mutz, and Michelle Werth

Institut für Informatik, Universität Düsseldorf, Universitätsstr. 1,
40225 Düsseldorf, Germany
michael.leuschel@hhu.de

Abstract. We have modelled parts of the ABZ automotive case study
using the B-method. For the early phases of modelling we have used the
classical B for software, while for proof we have used Event-B and Rodin.
It is maybe surprising that classical B’s machine inclusion mechanism
along with operation calls can be used for modular system modelling.
Moreover, for one particular style of modelling, the result can then be
translated to superposition refinement with event extension in Event-B.
Before conducting the proof, we have validated our models using model
checking and animation with visualizations. The graphical visualizations
were constructed using a new plugin (VisB) which helped uncover errors
and transforms our model into an executable, interactive reference spec-
ification which can be examined by users without formal background.

1 Introduction and Background

In this work we have used both classical B and Event-B as modelling languages
with ProB and rodin for tool support. The classical B-method [1] is a formal
method rooted in predicate logic, set theory, arithmetic. B arose out of Z, with
a focus on tool support and successive refinement to derive provably correct
software out of high-level specifications. This initial version of B, supported by
the tool Atelier-B, is now called classical B or also “B for software”.

Event-B was developed to enable systems modelling. It also tried to correct a
few issues in classical B, simplifying the language (e.g., making it easier to parse
and removing the complex inclusion mechanism) and trying to make refinement
proofs easier and more scalable. The main addition though is a more flexible
refinement concept targeted at systems modelling rather than software devel-
opment. The foundations of Event-B are laid out in the book [2]. Event-B is
supported by the rodin platform [3], which we have used for proving. In our
development of the case study we made heavy use of the animator and model
checker ProB [10] which supports both classical B and Event-B. ProB is also
available as a plugin for rodin.

The goals we set ourselves were as follows:

– Validate the usability of the new visualization plugin VisB for ProB, in
particular whether images from the case study description [7] can be reused
with little effort.

c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 335–350, 2020.
https://doi.org/10.1007/978-3-030-48077-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_27&domain=pdf
https://doi.org/10.1007/978-3-030-48077-6_27

336 M. Leuschel et al.

– Examine whether systems modelling can be conducted in classical B.
– Examine whether a componend-based model in classical B can be converted

to Event-B for use by the rodin for proof.

Indeed, in earlier work we have often realised that classical B can also be used
for systems modelling and may have some advantages. However, for proving sys-
tems, Event-B and rodin provide a nice platform and simpler1 proof obligations
than classical B. We have modelled a subset of the lighting system, as well as a
subset of the adaptive cruise control system. For the latter some insights found
during modelling have led to improvements in the case study specification (see
Sect. 6). In this article we only show details of the lighting system models, which
we have developed using a development methodology described in Sect. 2, which
consisted of using classical B during the exploration phase and Event-B for the
proving phase.

The contributions of this article thus consist in showing the usefulness of
visualisation using a new lightweight SVG-based tool, comparing classical B
and Event-B for systems modelling, and illustrating a development methodol-
ogy. Together with the visualisation, our model provides an executable reference
specification for a subset of the specification, which can be used by domain
experts without formal methods training. We plan on extending this subset in
future.

2 Modelling Methodology and Strategy

The methodology we used was inspired by earlier experience on modeling and
validating railway systems (e.g., [4,5]). We divided the modelling into three
phases (see Fig. 1):

1. an exploratory modelling phase where one tries to understand the specifi-
cation and domain and identifies important subcomponents.

2. a synthesis phase, where the subcomponents are integrated to form ever
larger subsystems and the integration is at least partially verified. We could
have named this also the combination or structuring phase.

3. an exhaustive verification phase, where the completed system is now for-
mally proven to be safe and functionally correct.

The exploratory phase 1 is dominated by editing and animation. Here it is
important that one can quickly change the model, and one wants to use a max-
imally powerful language. Hence, in our case, we have used classical B with its
rich substitution language for this phase. Also, the fact that we have a textual
representation (which was versioned in Git) allows for easy editing and collab-
oration. Animation and graphical visualization are vital to check the presence
of desired functionality, but also to check for unexpected behaviour and to gain

1 E.g., due to the absence of an if-then-else substitution and the use of witnesses the
refinement proof obligations are much simpler.

Modelling and Validating an Automotive System in Classical B and Event-B 337

Component A
eva1, eva1

Component B
evb1, evb2

Composition C

evabc1

 evai || evbj

INCLUDES INCLUDES

Component A
eva1, eva2

A+C

evac1 extends evai

A+B+C

evabc1 extends evac1

Component D
evd1, evd2

INCLUDES

Composition E

evabcde1

 evabc1 || evdk

A+B+C+D+E

evabcde1 extends evabc1

INCLUDES

Component A
eva1, eva1

Component B
evb1, evb2

Component D
evd1, evd2

1. Exploratory Phase
(classical B)

2. Synthesis Phase
(classical B with

operation calls and inclusion)
(Rodin with superposition

Fig. 1. Machines and events in the three modelling phases

a better understanding of the problem domain. To cite Bryan Cantrill:2 “The
visual cortex is unparalleled at detecting patterns.” and “The value of visualiza-
tion is not merely providing answers but especially provoking new questions.”
The outcome of phase 1 is a first decomposition of the system into functional
subcomponent models which can be animated.

In phase 2 the model starts to stabilise, but we still experimented with various
ways to integrate the components. In a refinement-based approach (e.g., Event-B)
one has to decide upon a particular refinement order in which components are inte-
grated, which can be sometimes difficult to find and tedious to change. Hence we
again stayed in the classical B paradigm where the powerful machine inclusion
features allowed us to experiment with various ways of assembling the entire sys-
tem (see also Fig. 1). To ensure the proper functioning we start to write safety
invariants in this phase. The verification in this phase was dominated by (safety)
model checking and trace replay in the animator. The outcome of phase 2 is a
functional composition into an overall system which can be animated and where
various safety invariants can be checked using model checking.

The last phase is dominated by proof. Here, the rodin platform’s proof
system is a key technology and the simplicity of Event-B’s proof obligations
can pay off. In this phase the decomposition of the system has stabilised and it
was hence possible to transform the classical B model into a linear refinement
hierarchy. This requires translating machine inclusion to machine refinement and
operation calls to event extension (see Fig. 1 and Sect. 4). For functional aspects
of the system we complemented proof with LTL model checking.

2 https://www.slideshare.net/bcantrill/visualizing-systems-with-statemaps.

https://www.slideshare.net/bcantrill/visualizing-systems-with-statemaps

338 M. Leuschel et al.

3 Classical B Modelling Details

Initially we had modelled a subset of the cruise control system, which led to a
few interesting insights and issues (see also Sect. 6). However, to illustrate our
modelling strategy (Sect. 2) and new visualization tool (Sect. 2) we then modelled
a subset of the light system. Our models are available at: https://github.com/
hhu-stups/abz2020-models.

Due to time restrictions we were unable to model the complete case
study. We concentrated on the management of the blinkers, i.e., the
blinkLeft and blinkRight actuators as influenced by the vertical position
of the Pitman arm (PitmanArmUpDown sensor), the hazard warning switch
(hazardWarningSwitchOn sensor), as well as obviously by timing constraints.
The engineOn and keyState sensor values were also used.

3.1 Components

At the end of the exploratory phase (see Sect. 2) we had separated out the system
into three components (see Fig. 2):

1. A small component Sensors to manage the state of all sensors of the system
and their updates.

2. A component BlinkLamps for managing the blinking cycle and the actua-
tors blinkLeft and blinkRight, based on a logical state variable stipulating
which blinkers are active and how often blinking should be repeated.

3. The PitmanController composed component which reacts to changes in the
sensors and sets the logical state variable of the BlinkLamps components.

4. A GenericTimer component which manages current time evolution and man-
ages hard deadlines. There are actually two versions of this component, one
for animation or simulation and one for finite state model checking.

5. The main PitmanController TIME system, which adds treatment of real time
issues to the PitmanController model.

3.2 Blink Lamps Controller

The purpose of the BlinkLamps component is to separate the management of the
blink lamps from a logical state of the system. This logical state is modelled by a
variable active blinkers which is a subset of {left blink,right blink}, i.e.,
it has four possible logical states (from all blinkers off to all blinkers on). This
model does not worry about real time and deadlines yet; it manages various lamp
states using an internal state variable onCycle but, e.g., does not stipulate how
long lamps should remain on or off and does not have a variable representing time
at all. The model also manages a remaining blinks variable, which stipulates
how often the blinker still has to run independently (used later to implement tip
blinking). A special value denotes unlimited continuous blinking. A small part
of the model is shown in Listing 1.1. Safety invariants ensure the consistency

https://github.com/hhu-stups/abz2020-models
https://github.com/hhu-stups/abz2020-models

Modelling and Validating an Automotive System in Classical B and Event-B 339

BlinkLamps

blinkLeft,
blinkRight,

active_blinkers,
remaining_blinks,

onCycle

Sensors

pitmanArmUpDown,
keyState, engineOn,

hazardWarningSwitchOn

PitmanController

INCLUDES INCLUDES

GenericTimers

curTime,
curDeadlines

INCLUDES

PitmanController_TIME

INCLUDES

Fig. 2. Hierarchy of final classical B model with variables

between the logical variables active blinkers and remaining blinks with the
blink lamp actuators. Early versions of our model had several errors in that
respect, e.g., when events such that turning an engine on or off changed the
system’s state without consistently updating the actuators.

1 MACHINE BlinkLamps ...
2 DEFINITIONS
3 blinkersOff == (blinkLeft=lamp_off & blinkRight=lamp_off)
4 INVARIANT
5 active_blinkers <: BLINK_DIRECTION &
6 remaining_blinks : BLINK_CYCLE_COUNTER &
7 blinkLeft: LAMP_STATUS & blinkRight : LAMP_STATUS & onCycle: BOOL &
8 /* @label "SAF1" */
9 ((remaining_blinks =0 & blinkersOff) <=> active_blinkers ={}) & ...

10 /* @label "SAF6" */
11 (onCycle=TRUE & active_blinkers /={} => not(blinkersOff))
12 OPERATIONS
13 SET_BlinkersOn(direction ,rem) = PRE direction: BLINK_DIRECTION & rem:

BLINK_CYCLE_COUNTER & rem /= 0
14 THEN
15 active_blinkers := {direction} || remaining_blinks := rem ||
16 IF direction=right_blink THEN
17 blinkLeft := lamp_off ||
18 blinkRight := cycleMaxLampStatus(onCycle)
19 ELSE
20 blinkLeft := cycleMaxLampStatus(onCycle) ||
21 blinkRight := lamp_off
22 END
23 END; ...

Listing 1.1. Blink Management Machine

340 M. Leuschel et al.

3.3 Integrating with Pitman Controller

The PitmanController reacts to changes in the sensors and sets the logical
blinking state using the operations provided by the BlinkLamps machine. For
example, Listing 1.2 shows how this is achieved using two parallel operation calls,
one to to SET EngineOn from the Sensors machine and one to SET BlinkersOn
from BlinkLamps shown above in Listing 1.1. It is also interesting to note that
the second operation call is wrapped into a conditional.

1 ENV_Turn_EngineOn =
2 BEGIN
3 SET_EngineOn ||
4 IF pitmanArmUpDown : PITMAN_DIRECTION_BLINKING &
5 hazardWarningSwitchOn = switch_off THEN
6 SET_BlinkersOn(pitman_direction(pitmanArmUpDown),continuousBlink)
7 END
8 END;

Listing 1.2. Pitman Controller Machine Event

3.4 Modelling Time

We have modelled time as a discrete integer variable representing elapsed time
in milliseconds. The GenericTimers machine partially shown in Listing 1.3 man-
ages a set of deadlines. The parameter TIMERS specifies a set of timers for
which one can associate individual deadlines using the AddDeadline operation.
Time can be advanced using the IncreaseTime operation, but it cannot pro-
ceed beyond a deadline, thus forcing events associated with the deadlines to be
executed first. This is a typical scheme to model time in B, but variations and
different approaches (e.g., using a controller event executed at fixed intervals).

For our modelling we needed two timers: one for the blinking phases and
one for the management of “tip blinking”. Future extensions of the model will
probably require additional deadlines which can be easily added.

1 MACHINE GenericTimers(TIMERS)
2 ...
3 INVARIANT
4 curTime : NATURAL &
5 curDeadlines : TIMERS +-> NATURAL
6 OPERATIONS
7 AddDeadline(timer ,deadline) = PRE timer:TIMERS & deadline:NATURAL THEN
8 curDeadlines(timer) := curTime+deadline
9 END;

10 IncreaseTime(delta) = SELECT delta:NATURAL &
11 (curDeadlines /={} => curTime+delta <= min(ran(curDeadlines))) THEN
12 curTime := curTime + delta
13 END; ...

Listing 1.3. Generic Timer Machine for Simulation

The complete system model PitmanController TIME then combines the
untimed pitman controller with the GenericTimers. The Listing 1.4 shows how
a deadline is set for the tip blinking event. When the deadline expires without
the pitmanArmUpDown sensor changing the tip blinking is converted to a regular
direction blinking.

Modelling and Validating an Automotive System in Classical B and Event-B 341

1 MACHINE PitmanController_TIME
2 SETS PTIMERS = {blink_deadline , tip_deadline}
3 INCLUDES Blinking ,
4 GenericTimers(PTIMERS)
5 ...
6 OPERATIONS
7 ENV_Pitman_Tip_blinking_start(newPos) =
8 SELECT newPos : PITMAN_TIP_BLINKING &
9 newPos /= pitmanArmUpDown THEN

10 ENV_Pitman_Tip_blinking_short(newPos ,pitman_direction(newPos)) ||
11 AddDeadline(tip_deadline ,500)
12 END;
13 ...

Listing 1.4. Pitman controller with time

The above version of GenericTimers in Listing 1.3 is good for simulation or
replaying traces with explicit timing information such as the ones accompanying
[7] (see Appendix A). As curTime is unbounded, however, it leads to an infinite
state space for model checking. Hence we also developed a second “drop-in-
replacement” of this machine, which has no curTime variable: the deadlines are
always rescaled as if the current time was 0 (see Listing 1.5). In our case this was
sufficient to produce a finite state model. Model checking the full system with
ProB takes about 2.3 s, generating 2095 states and 16472 transitions. (See [12]
or [9] for related ways of model checking timed systems in state-based formal
methods.)

1 MACHINE GenericTimersMC(TIMERS)
2 ...
3 INVARIANT
4 curDeadlines : TIMERS +-> NATURAL
5 OPERATIONS
6 AddDeadline(timer ,deadline) = PRE timer:TIMERS & deadline:NATURAL THEN
7 curDeadlines(timer) := deadline
8 END;
9 IncreaseTime(delta) = SELECT delta:NATURAL &

10 (curDeadlines /={} => delta <= min(ran(curDeadlines))) THEN
11 curDeadlines := %x.(x:dom(curDeadlines)|curDeadlines(x)-delta)
12 END;
13 ...

Listing 1.5. Generic timer machine for model checking

4 Systems Modelling with Classical B and Translation
to EventB

When translating a classical B composition such as the one in Fig. 2, one has to
linearise the inclusion into a refinement chain. As you can see in Fig. 3, we have
chosen the BlinkLamps as the top-level Event-B machine. In the translation, we
had to split certain B operations into multiple events (as rodin does not provide
an IF-THEN-ELSE). E.g., the operation SET BlinkersOn from Listing 1.1 is
translated into two events: SET LeftBlinkersOn and SET RightBlinkersOn.

Let us now look at the PitmanController classical B machine, including
Sensors and BlinkLamps. To translate this inclusion into refinement, we con-
struct a superposition refinement of BlinkLamps, i.e., we add new variables and

342 M. Leuschel et al.

c0
DIRECTIONS

LAMP_STATUS

c1
KEY_STATE

PITMAN_POSITION
SWITCH_STATUS

extends

PitmanController_TIME

PitmanController

pitmanArmUpDown,
keyState, engineOn,

hazardWarningSwitchOn

BlinkLamps
blinkLeft,

blinkRight,
active_blinkers,

remaining_blinks,
onCycle

sees

sees

sees

Fig. 3. Hierarchy of final Rodin model, translated from classical B model in Fig. 2

do not remove existing variables.3 Moreover, as Event-B does not allow operation
calls, we need to encode them using event refinement, more precisely refinement
using the rodin extends keyword which only adds actions and guards to an
existing abstract event.

Let us look again at the operation ENV Turn EngineOn in Listing 1.2 from
Sect. 3.3 above. It calls SET EngineOn from Sensors and conditionally calls
SET BlinkersOn from BlinkLamps. This operation is translated into three
events refining either skip or extending SET LeftBlinkersOn or SET Right
BlinkersOn:

Event ENV Turn EngineOn Noblink
where

grd1: engineOn = FALSE ∧ keyState = KeyInsertedOnPosition
grd2: pitmanArmUpDown /∈ PITMAN DIRECTION BLINKING ∨

hazardWarningSwitchOn = switch on
then

act1: engineOn := TRUE
end

Event ENV Turn EngineOn BlinkLeft extends SET LeftBlinkersOn
where

grd11: engineOn = FALSE ∧ keyState = KeyInsertedOnPosition
grd12: pitmanArmUpDown ∈ PITMAN DIRECTION BLINKING
grd13: pitman direction(pitmanArmUpDown) = left blink
grd14: hazardWarningSwitchOn = switch off
grd15: rem = continuousBlink

then
act11: engineOn := TRUE

end
Event ENV Turn EngineOn BlinkRight extends SET RightBlinkersOn

where
grd11: engineOn = FALSE ∧ keyState = KeyInsertedOnPosition
grd12: pitmanArmUpDown ∈ PITMAN DIRECTION BLINKING
grd13: pitman direction(pitmanArmUpDown) = right blink
grd14: hazardWarningSwitchOn = switch off
grd15: rem = continuousBlink

then
act11: engineOn := TRUE

end

One can see that the translation has resulted in code duplication, making it
more tedious to adapt the model. A similar issue occurs at the next refinement

3 Machine inclusion in classical B can only add variables, not remove them.

Modelling and Validating an Automotive System in Classical B and Event-B 343

level, where we introduce timing. As again we cannot refine multiple components,
the code for the timer logic gets interspersed and duplicated in multiple events.
Here we show just two instances in the PitmanController TIME MC model, which
show how the guards and actions are replicated in multiple events.

Event TIME BlinkerOn extends TIME BlinkerOn
any delta
where

grd21: delta ∈ N

grd22: blink deadline ∈ dom(curDeadlines)
grd23: delta = curDeadlines(blink deadline)
grd24: delta = min(ran(curDeadlines))

then
actTm: curDeadlines := (λx · x ∈ dom(curDeadlines) \ {blink deadline} |

curDeadlines(x) − delta) ∪ {blink deadline �→ 500}
end

Event TIME BlinkerOff extends TIME BlinkerOff
any delta
where

grd21: delta ∈ N

grd22: blink deadline ∈ dom(curDeadlines)
grd23: delta = curDeadlines(blink deadline)
grd24: delta = min(ran(curDeadlines))

then
actTm: curDeadlines := (λx · x ∈ dom(curDeadlines) \ {blink deadline} |

curDeadlines(x) − delta) ∪ {blink deadline �→ 500}
end

If we want to modify the time management we need to edit multiple events
in a consistent fashion, which is tedious and error-prone. The classical B model
called the same operation in both cases; changing details about how time is
handled just means changing or substituting the GenericTimers machine. Hence
the conversion to Event-B in our methodology (Sect. 2) is delayed until the model
has sufficiently stabilised.

Proof Statistics and Insights. We checked the correctness of our translation by
checking the state spaces generated by ProB is identical for those three models
that can be compared. The results are summarised in Table 1.

Table 1. Size of classical B and Event-B model state spaces and model checking times

Model States Transitions Model checking time

BlinkLamps (B) 31 417 0.10 s

BlinkLamps (Event-B) 31 417 0.07 s

PitmanController (B) 74 514 0.13 s

PitmanController (Event-B) 74 514 0.10 s

PitmanController TIME MC (B) 2096 16742 2.39 s

PitmanController TIME MC (Event-B) 2096 16742 2.00 s

In summary, the translation resulted in a model with many more events and
more duplication, but was worth it in the end. The proving process was relatively
painless, the rodin prover was easy to use. The proof statistics can be found in

344 M. Leuschel et al.

Table 2, and the proving process itself helped to uncover a few interesting invari-
ant properties and some issues in our sub-components (which were not reachable
by the model checking, but would have appeared if the subcomponents were used
differently). Also, the generation and discharging of the well-definedness proof
obligations provides another safety guarantee, which is not exhaustively covered
by model checking with ProB.

Table 2. Rodin proof statistics

Element Name Total Auto Manual Rev. Und.

ABZ2020 v4 228 204 24 0 0

c0 2 1 1 0 0

c1 1 0 1 0 0

ctimers 0 0 0 0 0

BlinkLamps 72 64 8 0 0

PitmanController 107 100 7 0 0

PitmanController2 TIME 19 17 2 0 0

PitmanController2 TIME MC 27 22 5 0 0

LTL Model Checking. As the rodin model contains a series of events for one
particular action, like turning the engine on or off, we wanted to check that it
is always possible to turn the engine on or off and that there is exactly one
event which describes the system’s evolution. For this we introduced the relative
deadlock and controller state LTL properties in [8], which we used here. One
particular property is the following one, which was violated by earlier versions
of our translation:

1 G not(deadlock(ENV_Turn_EngineOn_BlinkLeft ,
2 ENV_Turn_EngineOn_BlinkRight ,ENV_Turn_EngineOn_Noblink ,
3 ENV_TurnEngineOff_Blink , ENV_TurnEngineOff_Noblink))

Listing 1.6. LTL Formula

5 VisB Visualization of the Light System

The core idea of our new ProB plugin called VisB is to have a lightweight
visualization engine which can be easily maintained and which make use of
graphics generated with off-the-shelf editors. More concretely, VisB makes use
of a SVG (scalable vector graphics) file and a JSON markup file. The markup
files contains formal model expressions which specify attributes of objects which
should be updated according to the current state of a formal model.

The present case study description [7] contains several appealing images,
which we kindly obtained from the coordinators of the case study. Luckily, some
were already in the SVG format and as such relatively little effort was needed
to obtain a first visualisation (after about one hour the first visualisation was

Modelling and Validating an Automotive System in Classical B and Event-B 345

Fig. 4. SVG graphics used for VisB without modifications

Fig. 5. Erroneous state uncovered via the visualisation

working). The main work was to combine the images into a single one, iron
out a few quirks in the SVG files, and change the relevant object identifiers to
mnemonic names and then write a JSON glue file referring to these identifiers.
The original, unmodified SVG file is shown in Fig. 4 and the start of the JSON
glue file in Listing 1.7.

As one can see, it specifies the original SVG file and provides instructions on
how to update the attributes of objects (such as stroke-opacity) of particular
objects (such as A-right corresponding to the front left light of the car). The
value is given by a B expression which can reference the state of the formal
model, in this case the active blinkers variable. The glue file also specifies
events which should be executed when certain objects are clicked upon.
1 {
2 "svg":"LichtUebersicht_v4.svg",
3 "items":[
4 {
5 "id":"A-right",
6 "attr":"stroke -opacity",
7 "value":"IF right_blink:active_blinkers THEN \"0.5\" ELSE \"1\" END"
8 },
9 ...

Listing 1.7. Start of VisB JSON glue file

346 M. Leuschel et al.

The effect of applying the VisB glue file to the original SVG can be seen
in Fig. 5. This visualization shows the state of the actuators blinkLeft and
blinkRight, as well as the state of the sensors keyState, pitmanArmUpDown,
hazardWarningSwitchOn and engineOn. It also shows the internal state of the
controller, e.g., the active blinkers variable by changing the stroke-opacity
and using a light orange fill. This state is an actual error that was spotted thanks
to the visualisation: the hazard warning switch is on, but only the right blinkers
are on. We can also see that the pitman arm is pushed up, but the controller
correctly considers both left and right blinkers to be active, but somehow the
blink management component has not set blinkLeft to the expected value (100).

VisB works for all of ProB’s supported state-based formalisms (B, Event-B,
Z, TLA+, Alloy), and as such we reused the same visualization for our classical
B and Event-B models. A visualisation of the important states of the validation
trace 7 from [7] can be found in AppendixA.

In conclusion, with relatively little effort it was possible to generate a visu-
alisation from the graphics of the case study specification. In addition, the visu-
alisation glue file was re-usable for a wide variety of models (several version of
the classical B and Event-B models).

6 Description of Issues Uncovered

Some of the issues we found during implementing and especially during model
checking the models are:

– Per specification, the system is not commutative. In ELS-13 it is stated that
any tip-blinking is ignored or will be stopped by the hazard warning lights
when hazard warning is active, respectively activated. So, we do have possible
traces where at the same time hazard warning light is switched off and tip-
blinking to either side is activated. Depending on which signal gets processed
first, we either get three cycles of blinking or none at all. Same holds for
switching on the engine and tip-blinking.

– In cruise control: while model checking we got shown errors in the activation of
the cruise control as well as in the increasing and decreasing the desired speed,
these errors seemed intended or at least directly caused by the specification.
Depending on the version of the specification, there were different errors:
• The desired speed in an activated cruise control could be lowered arbi-

trarily in previous versions (up to 1.14). This led to invariant violations
while model checking, as by pushing down the lever from a desired speed
of 0, it was further decreased.

• The same invariant violation was caused by increasing the desired speed
further than said maximum.

• In the current version (1.17), those are fixed, as some upper and lower
thresholds are specified, as well as a minimum velocity when activating it.
But as of now, when no previous desired speed is set, the scs is required
to be activated at current speed (scs-2) as long as the current speed is
above or at 20 km/h. Here an activation at a speed of above 200 km/h
should be possible according to the specification, thus directly violating
the invariant of being in the range of 1..2000.

Modelling and Validating an Automotive System in Classical B and Event-B 347

• As we have a reverse gear specified (but our speed being in the range of
0..5000), obviously the speed is measured in absolutes. That means that
activation of the speed control system is also possible when in reverse gear
(as long as going over 20 km/h in reverse). With possible high previous
desired speed, this should either wreck our motor or gearbox fast if it
keeps going and accelerating in reverse.

– There was a problem with the distance in adaptive cruise control, as the
distance could be set to f.e. 3 s – with speeds of 240 km/h we would have had to
measure distances that are outside our possible range. The latest specification
solves this issue by setting a maximum target speed of 200 km/h.

– Ambient lights: els-19 states the low beam headlight should stay active for
30 more seconds with the interval being reset for example any time a door
is opened or shut. We don’t have sensors to measure that, as we only have a
sensor to state if any door is open. So basically, this requirement has to be
changed to either the 30 s cycle being reset continuously until the status of
all doors is closed or to the cycle being reset only for the first door opened
and respectively the last door shut.

7 Related Work and Conclusion

The importance of animation and visualization seems now accepted; see e.g. the
applications [13] and earlier ABZ case studies [5,6,8]. The idea of exploratory
phases has also been promoted elsewhere, e.g., in [11].

The modelling approach described in Sect. 2 has been successful. Along the
way we gained insights about the relationship between classical B machine inclu-
sion and Event-B refinement. We were successful in re-using existing graphics to
generate a custom graphical visualization, which helped us validate the model
and allowed us to spot one error at least (cf. Fig. 5).

A weak point of our approach is the manual translation from classical B
to Event-B in phase 3. An automated translation of a subset of classical B to
Event-B would reduce human effort and avoid errors in the translation. Another
alternative would be to stay with Atelier-B and use its Event-B syntax, which
does allow a more powerful substitution language. However, we were much more
comfortable with the proving environment of rodin, hence the effort to translate
the models was worth it for us here (and for an industrial system modeling
project undertaken by the first author). Finally, why did we not simply do all of
the modelling in Rodin to start with? The reasons are the limited tool support
for structuring, editing and sharing of models. Future improvements to rodin
could obviate the need to conduct the phases 1 and 2 of Sect. 2 in classical
B. These improvements would require improved editing4 with git integration,
improved model composition and decomposition features.

Acknowledgements. We thank Frank Houdek, Alexander Raschke and anonymous
reviewers for their useful feedback.

4 CamilleX developed by the Univ. of Southampton is step in the right direction.

348 M. Leuschel et al.

A Trace 7 from Case Study Specification with VisB

For convenience we include a condensed form of the visualisation of trace 7 from
https://github.com/hhu-stups/abz2020-models. This shows trace 7 of the case
study specification graphically as replayed with ProB and VisB.

https://github.com/hhu-stups/abz2020-models

Modelling and Validating an Automotive System in Classical B and Event-B 349

References

1. Abrial, J.-R.: The B-Book. Cambridge University Press, Cambridge (1996)
2. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge

University Press, Cambridge (2010)
3. Abrial, J.-R., Butler, M., Hallerstede, S., Voisin, L.: An open extensible tool envi-

ronment for Event-B. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp.
588–605. Springer, Heidelberg (2006). https://doi.org/10.1007/11901433 32

4. Comptier, M., Leuschel, M., Mejia, L.-F., Perez, J.M., Mutz, M.: Property-based
modelling and validation of a CBTC zone controller in Event-B. In: Collart-
Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2019. LNCS, vol. 11495,
pp. 202–212. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18744-
6 13

5. Hansen, D., et al.: Using a formal B model at runtime in a demonstration of the
ETCS hybrid level 3 concept with Real Trains. In: Butler, M., Raschke, A., Hoang,
T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 292–306. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-91271-4 20

6. Hoang, T.S., Snook, C., Ladenberger, L., Butler, M.: Validating the requirements
and design of a hemodialysis machine using iUML-B, BMotion studio, and co-
simulation. In: Butler, M., Schewe, K.-D., Mashkoor, A., Biro, M. (eds.) ABZ
2016. LNCS, vol. 9675, pp. 360–375. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-33600-8 31

https://doi.org/10.1007/11901433_32
https://doi.org/10.1007/978-3-030-18744-6_13
https://doi.org/10.1007/978-3-030-18744-6_13
https://doi.org/10.1007/978-3-319-91271-4_20
https://doi.org/10.1007/978-3-319-33600-8_31
https://doi.org/10.1007/978-3-319-33600-8_31

350 M. Leuschel et al.

7. Houdek, F., Raschke, A.: Adaptive exterior light and speed control system (2019).
https://abz2020.uni-ulm.de/case-study

8. Ladenberger, L., Hansen, D., Wiegard, H., Bendisposto, J., Leuschel, M.: Valida-
tion of the ABZ landing gear system using proB. STTT 19(2), 187–203 (2017).
https://doi.org/10.1007/s10009-015-0395-9

9. Lamport, L.: Real-time model checking is really simple. In: Borrione, D., Paul, W.
(eds.) CHARME 2005. LNCS, vol. 3725, pp. 162–175. Springer, Heidelberg (2005).
https://doi.org/10.1007/11560548 14

10. Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method.
STTT 10(2), 185–203 (2008). https://doi.org/10.1007/s10009-007-0063-9

11. Oda, T., Araki, K., Larsen, P.G.: A formal modeling tool for exploratory modeling
in software development. IEICE Trans. 100–D(6), 1210–1217 (2017)

12. Rehm, J., Cansell, D.: Proved development of the real-time properties of the IEEE
1394 root contention protocol with the event b method. In: ISoLA, pp. 179–190
(2007)

13. Yang, F., Jacquot, J.-P., Souquières, J.: The case for using simulation to validate
Event-B specifications. In: Leung, K.R.P.H., Muenchaisri, P. (eds.) APSEC, pp.
85–90. IEEE (2012)

https://abz2020.uni-ulm.de/case-study
https://doi.org/10.1007/s10009-015-0395-9
https://doi.org/10.1007/11560548_14
https://doi.org/10.1007/s10009-007-0063-9

An Event-B Model of an Automotive
Adaptive Exterior Light System

Amel Mammar1(B) , Marc Frappier2 , and Régine Laleau3

1 SAMOVAR, Institut Polytechnique de Paris, Télécom SudParis, Évry, France
amel.mammar@telecom-sudparis.eu

2 Laboratoire GRIF, Département d’informatique, Faculté des sciences,
Université de Sherbrooke, Québec, Canada

marc.frappier@usherbrooke.ca
3 LACL, Université Paris-Est Créteil, Créteil, France

laleau@u-pec.fr

Abstract. This paper introduces an Event-B formal model of the
adaptive exterior light system for cars, a case study proposed in the con-
text of the ABZ2020 conference. The system describes the different pro-
vided lights and the conditions under which they are switched on/off in
order to improve the visibility of the driver without dazzling the oncom-
ing ones. The system can be viewed as a lights controller that reads
different information form the available sensors (key state, exterior lumi-
nosity, etc.) and takes the adequate actions by acting on the actuators of
the lights in order to ensure a good visibility for the driver according to
the information read. Our model is built using stepwise refinement with
the Event-B method. We consider all the features of the case study,
all proof obligations have been discharged using the Rodin provers. Our
model has been validated using ProB by applying the different provided
scenarios. This validation has permitted us to point out and correct some
mistakes, ambiguities and oversights in the first versions of the case study.

Keywords: Adaptive exterior light system · Event-B method ·
Refinement · Verification

1 Introduction

This paper presents a formal system model of an adaptive exterior light system
(ELS) for a car. This system has been proposed as a case study for the ABZ2020
conference. We use Event-B to construct and represent this formal model.

The exterior light system subject of this case study has objective to adapt
the brightness of the different lights with respect to the status of the car but
also the oncoming ones. For that purpose, the cars are equipped with different
lights that can be switched on/off under specific conditions. In this paper, we

This work was supported in part by NSERC (Natural Sciences and Engineering
Research Council of Canada).

c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 351–366, 2020.
https://doi.org/10.1007/978-3-030-48077-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_28&domain=pdf
http://orcid.org/0000-0003-0016-6898
http://orcid.org/0000-0002-4402-2514
https://doi.org/10.1007/978-3-030-48077-6_28

352 A. Mammar et al.

stress more on the modeling of low beams, tail lamps and direction indicators.
Roughly speaking, the low beams illuminate the road when the vehicle is running
or vehicle surrounding while leaving the car during darkness; tail lamps permit
to illuminate the vehicle if it is parked on a dark road at night, whereas the
direction indicators allow to inform the following vehicle that the car will turn
on the right/left. To control these exterior lights, the driver acts on the different
physical elements like the key, the hazard switch etc. The position of the key
(NoKeyInserted, KeyInserted, KeyInIgnitionOnPosition) is transmitted to the
controller of the lights via the sensor keyState. Similarly, the hazard warning
switch, with two positions (On/Off), permits to make both director indicators
flashing at the same time.

The rest of this paper is structured as follows. After a brief overview of the
Event-B method provided in Sect. 2, Sect. 3 presents our modelling strategy.
Section 4 describes our model in more details. The validation and verification
of our model are discussed in Sect. 5. Section 6 identifies the weaknesses of the
requirements document provided for the case study, and the adequacy of the
Event-B method for constructing a model of this case study. We conclude in
Sect. 7.

2 Event-B Method

Event-B is a formal system modeling notation [1] proposed by Abrial. It allows
for the stepwise construction of models using refinement. It is inspired from
actions systems originally proposed by Back [2] and extended by several others.
An Event-B model is made of components of two types: machine and context.
A machine consists of events that modify state variables. An event has a set
of guards and actions. When the guards hold, the event can be triggered; its
actions can then modify the system state. A machine has state invariants that
can be proved by discharging proof obligations.

A machine can refine another machine by replacing or adding state variables
and by adding new events. System elements can be gradually taken into account
through refinement. Existing variables can also be replaced by new variables; to
show behavior preservation, a gluing invariant must relate the old variables to the
new variables. An event refines an existing event by reducing its nondeterminacy,
by strengthening its guards and/or choosing a value v, called witness, for a
parameter p of the event. In that case, we should replace each occurrence of p by
the value v in the guard and the substitution of the event. New events implicitly
refine a skip event, so they cannot modify existing variables; they can only
modify the added (new) variables. System constants are specified in contexts.
A context can extend another context. Invariants are preserved by refinement,
so invariants are introduced at the most appropriate step that simplifies their
proof.

Event-B is supported by the Rodin platform [10], an Eclipse-based tool
that provides editors, provers and several other plugins for various tasks (e.g.,

An Event-B Model of an Automotive Adaptive Exterior Light System 353

animation and model checking with ProB [5], integration with UML class dia-
grams and state machines with UML-B [13]). In this paper, we have used Rodin
with the ProB and AtelierB provers plugins. We did not use any other plugin.

In this paper, we report on the use of this formal method for the modeling and
the verification of the automotive adaptive exterior light system whose behavior
is briefly described in the introduction. The chose of this formal method can
be justified by the refinement technique it provides to gradually introduce the
details of the system and also its different available support tools for modeling,
animating and proving a specification.

3 Modelling Strategy

We reuse the terminology introduced in [11]. A control system interacts with
its environment using sensors and actuators. A sensor measures the value of
some environment characteristic m, called a monitored variable (e.g., the state
of the ignition key), and provides this measure (e.g., whether the key is inserted
or not) to the software controller as an input variable i. In a perfect world,
we have m = i, but a sensor may fail. The software controller can influence
the environment by sending commands, called output variable o to actuators.
An actuator influences the value of some characteristics of the environment,
call a controlled variable c. Variables m and c are called environment variables.
Variables i and o are called controller variables. Finally, a controller has its
own internal state variables to perform computations. We use Event-B state
variables to represent environment (i.e., monitored and controlled) variables,
and controller variables. We do not model sensor/actuator failures.

3.1 Control Abstraction

A typical implementation of a control system such as the ELS is either a control
loop that reads all input variables at once and then computes all output variables
in the same iteration, or it can be driven by interruption triggered when a sensor
provides a new value. The body of a control loop represents a single event and
state transition. This allows for the definition of priorities between input variable
changes. In our model, we use a more abstract approach, as it is common in the
Event-B style of system modeling. We define one event for each input variable
change, which allows for a more modular specification that is easier to prove.
This is closer to an interrupt-driven control system. Our Event-B abstraction
is also a reasonable abstraction for a control loop, considering that in most cases,
a single input variable changes between two control loop iterations. The control
loop can be derived from our specification by merging all events and defining
priorities between events.

3.2 Modeling Structuration

The specification is structured into five refinements steps (five contexts and
six machines). At the most abstract level we introduce various kinds of lights

354 A. Mammar et al.

controlled by the system. They are declared as constants in Context C0. The con-
sidered lights are: the direction indicators (left or right), the low beam headlights
(left and right), the tail lamp (left and right), the reverse light (that indicates
that the vehicle will move backwards), the brake lights and the cornering lights
(that illuminate the cornering area separately when turning left or right). The
high beam headlights are considered in Context C4 and Machine M5 since their
behavior is different from the other lights, as it can be adaptive. Constant Lignt-
nessLevel indicates the high beam light range, as specified in the requirement
document [3].

Machine M0 in Fig. 1 contains a unique variable headingState that associates
a level of brightness to each light declared in Context C0, and a unique event
headLightSet that assigns an arbitrary level of brightness to these lights.

Fig. 1. Machine M0

The first refinement, Machine M1 and Context C1, introduces the elements
that the car driver can control and that can have an impact on the state of the
lights declared in Context C0, namely the ignition key, the pitman arm, the light
rotary switch, the brake pedal and the hazard warning light switch. For each of
these elements, there is one event that refines headLightSet and that arbitrary
modifies the lights impacted by this element.

Each of the subsequent refinements describes the behavior of particular lights.
The choice of the lights taken into account in the refinements is arbitrary.
Machine M2 and Context C2 consider the direction indicators, the hazard warn-
ing light and the emergency brake light. Machine M3 and Context C3 consider
the low beam lights. Machine M4 considers the cornering lights and Machine M5
and Context C4 consider the high beam headlights.

An Event-B Model of an Automotive Adaptive Exterior Light System 355

3.3 Formalization of the Requirements

Table 1 relates the components of our model with the requirements listed in [3].
As one can remark, some requirements are specified as invariant whereas others
are only considered in the related events. Requirement ELS-10 for instance stat-
ing the duration of a flashing cycle does not correspond to an invariant but it
is considered in the event flashingDark that makes the current time progress by
a unit of time. Specifying such requirements as an invariant would require the
introduction of two extra variables to store the starting and the ending moment
of the cycle to set that the difference should be equal to a unit of time. Roughly
speaking, a timed requirement, an action duration more precisely, is modelled as
an event if there is no other requirement that refers to such a duration otherwise
an invariant is associated with it. Moreover, let us note that M3 is the refinement
with the most invariants number because it models several interrelated lights,
that is the low beams, the tail lamps, the parking lights etc.

3.4 Modeling of Temporal Requirements

Some properties of the requirements depend on two consecutive states. For exam-
ple, requirement ELS-16 applies only when the rotary switch is turned to Auto
while the ignition is already Off. This requirement can be expressed using an
LTL formula as follows:

G ((keyState �= KeyInIgnitionOnPosition ∧ lightSwitch �= Auto)
⇒

X (lightSwitch = Auto ⇒ headingState[LowBeams] = 0))

Unfortunately Event-B does not support the expression of LTL formula as part
of the specification even if the ProB model-checker can check LTL formulas on
an Event-B specification with a finite state space, but it does not terminate
for our model on such properties, because of the size of the state space. On the
other hand, a proof-based approach for temporal formulas is proposed in [7],
but it generates a large number of proof obligations for a model of this size.
Thus, we have chosen to express these properties as invariants by adding an
extra variable to store the previous value of a state variable that is needed in a
two-consecutive-state property. For example, to express ELS-16 as an invariant,
we have to say that: (1) the current and previous states of the ignition are not
equal to On, (2) the previous state of the switch is different from Auto, and (3)
the current state of the switch is equal to Auto, which is represented by the
following invariant (Machine M3, Invariant inv18)

ELS16 = TRUE ∧ ELS16P = FALSE
⇒
keyState �= KeyInIgnitionOnPosition ∧
keyStateP �= KeyInIgnitionOnPosition ∧
lightSwitch = Auto ∧ lightSwitchP �= Auto

356 A. Mammar et al.

Table 1. Cross-reference between the components of our model and the requirements
of [3]

Requirements [3] Component Invariant/event

ELS-1, ELS-2, ELS-4, ELS-23 M2 inv5, inv7

ELS-3 movePitmanUD

ELS-5, ELS-23 M2 inv8

ELS-6 M3 inv10

ELS-7 M2 movePitmanUD

ELS-8 M2 inv6, inv8

ELS-10 M2 flashingDark

ELS-11 to ELS-13 M2 movePitmanUD

ELS-14 M3 inv2

ELS-15 M3 inv3

ELS-16 M3 inv4

ELS-17 M3 inv5

ELS-18 M3 inv6, 7, 8, 9

ELS-19 M3 inv10

ELS-21 M3 inv3–5, inv10, inv14

ELS-22 M3 inv11, 12, 13

ELS-24, 25, 26, 27 M4 inv2–inv13

ELS-28 M3 inv14

ELS-29 All invariants defining
the brightness level

ELS-30, ELS-31 M5 inv3, 5

ELS-32..38 M5 inv6–11

ELS-39 M2 inv12, 13

ELS-40 M2 inv14

ELS-41 M1 inv12, 13

ELS-42 M5 inv4

ELS-43...49 M5 inv6–11

Variable ELS16 represent the satisfaction of the conditions of ELS-16 and it
is maintained by event moveSwitchAuto representing the state change of the
rotary switch to position Auto. Variable ELS16P represents its previous value.
It conditions the invariant to the state change of the rotary switch.

These extra variables storing previous values must obviously be maintained
in the events that change the value of the corresponding variable, but also in
events that rely on the previous value for making a decision, even if they do not
modify the corresponding variable.

An Event-B Model of an Automotive Adaptive Exterior Light System 357

4 Model Details

In this section, we briefly describe some specific ways of modelling that character-
ize our specification. The complete archive of the Event-B project is available
in [6].

4.1 Modeling Complex User Interface Elements

There are elements manipulated by the car driver that have several positions
and that control several lights depending on their positions. This is the case of
the key and the light rotary switch. For each of these elements, the position it
can take depends on the current position and thus can be described by a state-
transition diagram. In the more abstract levels, we have chosen to gather all the
possible transitions into a single event because at these levels the invariants do
not depend on a specific position.

Let us take the case of the key. In Context C1, set keyStates describes all the
states of the key:

partition(keyStates,
{NoKeyInserted}, {KeyInserted}, {KeyInIgnitionOnPosition})

In Machine M1, Variable keyState represents the current state of the key,
Variable keyStateP contains the previous state of the key and the authorized
transitions are specified in Invariants inv2, inv3:

keyState = NoKeyInserted
⇒ keyStateP = NoKeyInserted ∨ keyStateP = KeyInserted

keyState = KeyInIgnitionOnPosition
⇒ keyStateP = KeyInIgnitionOnPosition ∨ keyStateP = KeyInserted

Event moveKey specifies the new state of the key according to its previous
state and restricts the value of the event parameter hl to the lights controlled
by the key.

Event moveKey =̂
refines headLightSet

any
hl,valkey

where
grd1: hl ∈ LowBeams ∪ tailLamps ∪ directionIndicators

∪ {corneringLightLeft, corneringLightRight}
�→ LigntnessLevel

grd2: (keyState = NoKeyInserted ⇒ valkey = KeyInserted)

∧ (keyState = KeyInserted ⇒ valkey ∈
{NoKeyInserted,KeyInIgnitionOnPosition})

∧ (keyState = KeyInIgnitionOnPosition ⇒ valkey = KeyInserted)

358 A. Mammar et al.

then
act1: headingState := headingState �− hl

act2: keyState := valkey

act3: keyStateP := keyState

act4: pitmanArmUDP := pitmanArmUD
end

In Machine M2, Event moveKey is refined to specify the behavior of the direction
indicator and the tail lamps according to the position of the key and the position
of the hazard warning switch.

In Machine M3, we have split Event moveKey into four events (i.e., insertKey,
insertKeyputIgnitionOn, insertKeyputIgnitionOff, removeKey) to be more precise on
the state of the lights according to the position of the key.

Let us take the two events insertKey and insertKeyputIgnitionOn. In Event
insertKey, Action act4 specifies that if the hazard warning switch is not activated
then the direction indicator is off, otherwise it is on and the two flashing lights
are on.

Event insertKey =̂
refines moveKey

any
hl

where
grd1: hl ∈ LowBeams ∪ tailLamps ∪ directionIndicators

→ LigntnessLevel

grd2: keyState = NoKeyInserted

grd3: ...

grd4: hazardWarningSwitchOn = FALSE

⇒ (directionIndicators) × {0} ⊆ hl

...
with

valkey: valkey= keyInserted
then

act1: headingState := headingState �− hl

act2: keyState := KeyInserted

act3: keyStateP := keyState

act4: direcIndF lash :=

{TRUE �→ {blinkRight �→ FALSE, blinkLeft �→ FALSE},
FALSE �→ directionIndicators × {TRUE}
}(bool(hazardWarningSwitchOn = FALSE))

...
end

In Event putIgnitionOn, Action act4 specifies that if the hazard warning switch
is not activated then the direction indicator is activated to the left or right
according to the position of the pitman arm, otherwise it is on and the two
flashing lights are on.

An Event-B Model of an Automotive Adaptive Exterior Light System 359

Event putIgnitionOn =̂
refines moveKey

any
hl

where
grd1: hl ∈ LowBeams ∪ tailLamps ∪ directionIndicators

→ LigntnessLevel

...
with

valkey: valkey= KeyInIgnitionOnPosition
then

act1: headingState := headingState �− hl

act2: keyState := KeyInIgnitionOnPosition

act3: keyStateP := keyState

act4: direcIndF lash :=

{TRUE �→ {blinkRight �→ bool(pitmanArmUD ∈ Upward),

blinkLeft �→ bool(pitmanArmUD ∈ Downward)},
FALSE �→ directionIndicators × {TRUE}
}(bool(hazardWarningSwitchOn = FALSE))

...
end

We have applied the same modeling process to the Light Rotary Switch.
Splitting the event makes the proof obligations easier to discharge even if

more proof obligations are generated.

4.2 Managing Priorities Between Requirements

Some requirements can be in conflict because they have common system states
with different transitions. This is the case for Requirements ELS-16 and ELS-17.
On one hand, ELS-16 states that if the key state is inserted then the low beam
headlights are off. This is specified in Invariant inv4 of Machine M3:

ELS16 = TRUE ∧ ... ⇒ headingState[LowBeams] = 0

where Variable ELS16 is TRUE if the key state is inserted.
On the other hand, ELS-17 states that if the daytime running light is acti-

vated then the low beam headlights are activated after starting the engine and
remain activated as long as the key is not removed, that is, either the key position
is inserted or the ignition is on.

We have detected the conflict when we have animated the specification. The
solution is to prioritize the requirements. After discussing with the case study
authors, a priority for ELS-16 over ELS-17 has been set; this is specified in
Invariant inv5 of Machine M3 that translates ELS-17:

(... ∨ dayT imeLightCont = TRUE) ∧ ... ∧ ELS16 = FALSE ∧ ...
⇒ headingState[LowBeams] = 100

where Variable dayTimeLightCont is true if the daytime running light is acti-
vated.

360 A. Mammar et al.

4.3 Modeling Time Duration

In Event-B, a specification of requirements that involves time duration requires
to explicitly model time. In this case study, time can trigger changes on the
state of lights (e.g. Requirements ELS-18, 19, 24, ... specify time intervals where
particular lights have to be activated or not). A variable currentTime has been
introduced in Machine M1 to model the time progression together with Event
progress that increments this variable by an arbitrary positive number (Action
act2). Action act1 specifies the lights whose state can be modified by a time
progress.

Event progress =̂
refines headLightSet

any
hl

step
where

grd1: hl ∈ LowBeams ∪ tailLamps ∪ directionIndicators ∪
{corneringLightLeft, corneringLightRight} �→ LigntnessLevel

grd2: step ∈ N1
then

act1: headingState := headingState �− hl

act2: currentT ime := currentT ime + step

...
end

Event progress is refined in Machines M3, M4, M5 by detailing how each
kind of lights is impacted. For instance, in M3, the exterior brightness (ELS-18)
and the ambient light (ELS-19) imply to activate the low beam headlights for
a given time interval.

4.4 Model Statistics

Table 2 describes the size of the model. Since Rodin does not use text files
to store models, there are various ways of counting the lines of code (LOC)
of a model. Moreover, code is inherited when refinement and event extension
is used. Lines of code are computed using the Camille editor representation
of the Event-B model, which does not count inherited LOC through event
extension and puts all variables on the same line. Total LOC, which includes
inherited LOC, is provided within “()”, and computed using the pretty printer
of the Rodin Event-B Machine Editor. Comments are excluded. Since we do
not use data refinement (i.e., no variable is replaced through refinement), we
provide the total number of variables for each machine along with the number
of new variables (i.e., introduced in a refinement) enclosed by “()”. Invariants
are specific to each machine. Since some events are renamed by refinement, we
provide the total and new events introduced in each machine.

An Event-B Model of an Automotive Adaptive Exterior Light System 361

Table 2. Model size

Component Size in LOC Constants/ Axioms/ Events

(extended) variables invariants

Total (New) New Total (New)

C0 15 (17) 7

C1 15 (17) 7

C2 8 (2) 2

C3 10 (2) 2

C4 16 1 10

M0 21 (28) 1 (1) 1 1

M1 215 (320) 15 (14) 13 12 (11)

M2 382 (691) 25 (10) 18 14 (2)

M3 908 (1619) 37 (12) 36 19 (5)

M4 885 (2377) 50 (13) 15 20 (1)

M5 416 (2694) 61 (11) 15 23 (3)

Total 2875 126

5 Validation and Verification

To verify and validate the Event-B models presented in the previous sections,
we have proceeded into three steps detailed hereafter.

5.1 Model Checking of the Specification

In this step, the ProB tool is used as a model checker in order to ensure that
the specification is invariant violation-free, that is, there is no trivial scenario
that violates the invariants. From a practical point of view, ProB can find a
sequence of events that, starting from a valid initial state of the machine, leads
to a state that violates its invariant. Such scenarios (or counterexamples) may
result from a guard/action missing but also from an incorrect invariant. This
step permits us to fix trivial bugs before the proof phase that can be very long
and hard. It is worth noting that even if the tool does not find any invariant
violation, it does not mean that the specification is correct. Indeed, there may
be a scenario that the tool fails to find for different reasons like a timeout on
the model checking process. In the present case study, the model checking step
permits us to detect missing actions in particular those related to the variables
representing the previous state of an element. Indeed, this makes the invariants
depending on such variables violated as they should be verified only when the
current and the previous values of these variables are different.

362 A. Mammar et al.

5.2 Validation with Scenarios

The goal of this phase is to be sure that the specification satisfies the require-
ments. To this aim, we used the animation capability of ProB and played the
different scenarios provided with the case study. This step permits us to exhibit
several flaws/ambiguities in the initial release of the description documents (see
Sect. 6 for more details). As examples of such flaws, we can cite the lack of pri-
oritization between some requirements like ELS-16 and ELS-17 that share the
same activation conditions when the daytime running light option is activated
with the ignition in the Off position and the driver turns the switch in the Auto
position. To correct these flaws/ambiguities, we have discussed with the case
study authors because we are not specialists of the domain. For the above par-
ticular example, a priority is given to ELS-16 over ELS-17. It is worth noting
that such flaws/ambiguities can not be detected in the model checking phase
because they make the guard of some events unsatisfied, thus the event is not
enabled and the invariant is thus not violated. Let us note that we had some
problems to animate the first version of our models where we have kept the event
parameter hl as a partial function on the set of all the lights. Indeed in that case,
ProB checks all the possible partial functions on these lights which leads to a
timeout. To overcome this issue, we have replaced each partial function by a
more restrictive total function on the right domain, that is, the lights whose
state actually changes after the execution of the event.

5.3 Proof of the Specification

It is the last step, whose goal is to ensure the correctness of the specification
by discharging proof obligations generated by Rodin. These proof obligations
aim at proving invariant preservation by each event, but also to ensure that the
guard of each refined event is stronger than that of the abstract event. These
guard strengthening refinement proof obligations ensure that event parameters
like hl mentioned above are properly refined. For instance, hl is defined as a
partial function in the abstract event headLightSet; it is refined using total func-
tions by giving its value for each refining event. So, we have to ensure that
these values satisfy the initial guard. Figure 2 provides the proof statistics of
the case study: 1643 proof obligations have been generated, of which 23% (385)
were automatically proved by the various provers. The remaining proof obliga-
tions were discharged interactively since they needed the use of external provers
like the Mono Lemma prover that has shown to be very useful for arithmetic
formulas. In addition, we have added some theorems on min/max operators (a
min/max of a finite set is an element of the set, etc).

Let us note that the results of this phase has especially impacted some mod-
eling choices. For instance, to speed up the proof phase, we have included in the
guards some properties tagged as theorems in order to prove them only once and
reuse them in all the proofs that need them for that event. This is the case of
Guards grd9, grd10 of insertKey in Machine M3 that state:

An Event-B Model of an Automotive Adaptive Exterior Light System 363

grd9: lowBeamRight ∈ dom(hl) ⇒ hl(lowBeamRight) ∈ 0..100

grd10: lowBeamLeft ∈ dom(hl) ⇒ hl(lowBeamLeft) ∈ 0..100

Fig. 2. Rodin proof statistics of the case study

6 Other Points

6.1 Feedback on the Requirements Document

The formal modeling of the requirements document [3] lead us to identify a
number of ambiguities and some contradictions with the test scenarios provided.
We have communicated these to the authors of the requirements document, and
a number of revisions were produced, following our comments. Our comments
induced 9 of the 17 versions produced after the publication of the initial ver-
sion of the requirements document. These modifications impacted 18 of the 49
requirements of the Exterior Light System. A detailed list of these elements
are described in the last version (i.e., 1.17) of the requirements document. We
have mainly rephrased some requirements for which the applicability conditions
should hold at different time points. For instance, in requirement ELS-16, the
condition “the switch in position Auto” should happen after the condition “the
ignition is already Off”. Moreover, we have defined priorities between require-
ments to make the specification deterministic: ELS-16 has priority over ELS-17,
ELS-19 has priority over ELS-17, etc. We have also rephrased some sentences
to clarify them. For instance in the first version of the document, the word
“released” was used with the meaning “button pushed” in some places and with
the meaning “button not pushed” in some others. To remove this ambiguity,
we have replaced it with the terms “active” and “not active”. Finally to make
the modeling easier and after a discussion with the case study authors, the
signal pitmanArm has been splitted into signals pitmanArmForthBack and pit-
manArmUpDown with their corresponding positions (states) and the possible
transitions between them.

364 A. Mammar et al.

6.2 Modeling Temporal Properties

Dealing with previous values to prove temporal properties turned out to be a
significant burden. To improve/facilitate the specification of such kind of proper-
ties, which are probably very common in control systems, it would be interesting
to study how they could be handled in Rodin or in some other plugin like the
Event-B State machines plugin1. This plugin permits to generate Event-B
events from a state machine including their guards that specify the requirements
modeled by the state machine but without producing the related invariants. In
that case, it becomes difficult to trace and justify the usefulness of the generated
guards.

6.3 Identifying a Refinement Strategy

The crux in defining the structure of the Event-B model was to define the
requirements elements to include at each refinement level. Recall that once a
variable is introduced in a model, it cannot be modified by new events of subse-
quent refinements. Thus, when a variable is introduced, each event that needs to
update it must be also introduced. In this case study, there are several dependen-
cies between requirements elements. As many lights mutually rely on the same
sensors and are correlated in terms of behavior, we have defined a single event,
in the first machine, to model the light state changes and refined it according
to the different actuators/sensors. But, we think that it would be interesting
to look deeper into the existing structuring approaches for Event-B: decom-
position [12] or modularization [4], in order to structure the specification into
smaller logical units to make the proofs easier. A refactoring tool based on the
read/update dependencies between events and state variables would be nice. It
could help in finding an optimal decomposition based on the connected compo-
nents of a dependency graph for a given machine. Building such a graph from
the requirements is not easy, as one typically needs to formalize the requirements
to precisely understand which variables are needed and where. So, the specifier
typically finds the ideal refinement structure only after creating a potentially
non optimal refinement structure. Often a lot of effort has been invested in cre-
ating this first model, and there is no resource left to do a refactoring to obtain
a better model. By better, we mean a model whose refinement decomposition
would yield easier proofs for the same set of properties.

7 Conclusion

We have presented an Event-B model for the ELS case study. Our model takes
into account all of the requirements. The model was verified by proving a large
number of properties (98 invariants) and by simulation using ProB. Temporal
properties involving two consecutive states were proved using variables storing
previous state values. Due to the model size (61 state variables), ProB was
1 http://wiki.event-b.org/index.php/Event-B Statemachines.

http://wiki.event-b.org/index.php/Event-B_Statemachines

An Event-B Model of an Automotive Adaptive Exterior Light System 365

unable to verify invariant or temporal properties. The proof effort was quite
significant: 1258 proofs obligation (76%) had to be manually discharged. The
last Event-B machine is quite large (2 694 LOC), which denotes that the case
study was an interesting modeling and verification challenge. The Rodin provers
were less efficient than in previous ABZ case studies, where the manual proofs
ratio was closer to 30% [8,9].

The formalization lead us to identify several small ambiguities in the require-
ments. They have been discussed with the case study authors as they were dis-
covered, which lead to 9 out of the 17 revisions of the case study text that were
published during the modeling process. This shows that formalization is an effec-
tive technique to discover defects early in the software development process. It
is well-known in the software engineering literature that the earlier a defect is
found, the cheaper it is to fix it.

Determining the best refinement strategy remains a challenge in Event-B.
We fell short of time to try out the model decomposition plugins available
in Rodin. They might have been useful in decomposing the specification into
smaller, more manageable parts. This case study is of a different nature than
the previous ones in the ABZ conference series (i.e., 2014 Landing gear, 2016
Hemodialysis, 2018 ERTMS). Its elements are more tightly coupled, which made
it more difficult to find an appropriate refinement strategy. It contains more
properties to prove than the previous ones, but they are more localized proper-
ties (i.e., each property referring to a small number of events on at most two
consecutive states) that do not depend on the relationship between monitored
variables and controlled variables. However, we really think that the Event-B
method must include modularization clauses as native structuring mechanisms
like those of the B method that permit to have a modular specification since the
first phases of the development. This will make Event-B more suitable for the
development of big and complex systems. For comparison, in the ERTMS case
study, we had to build a relationship between the real (actual) positions of the
trains and the controller view of the train positions to prove safety properties.
There were no such issues in the ELS case study.

Acknowledgments. The authors would like to thank the case study authors, and
Frank Houdek in particular, for his responsiveness and useful feedback during the
modeling process when questions were raised or when ambiguities were found. The
authors would also like to thank Michael Leuschel for his quick feedback on using
ProB for this large case study.

References

1. Abrial, J.: Modeling in Event-B. Cambridge University Press, Cambridge (2010)
2. Back, R.J.R., Sere, K.: Stepwise refinement of action systems. In: van de Snep-

scheut, J.L.A. (ed.) MPC 1989. LNCS, vol. 375, pp. 115–138. Springer, Heidelberg
(1989). https://doi.org/10.1007/3-540-51305-1 7

3. Houdek, F., Raschke, A.: Adaptive exterior light and speed control system, Novem-
ber 2019. https://abz2020.uni-ulm.de/case-study#Specification-Document

https://doi.org/10.1007/3-540-51305-1_7
https://abz2020.uni-ulm.de/case-study#Specification-Document

366 A. Mammar et al.

4. Iliasov, A., et al.: Supporting reuse in Event B development: modularisation app-
roach. In: Frappier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves, S. (eds.)
ABZ 2010. LNCS, vol. 5977, pp. 174–188. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11811-1 14

5. Leuschel, M., Bendisposto, J., Dobrikov, I., Krings, S., Plagge, D.: From animation
to data validation: the ProB constraint solver 10 years on. In: Boulanger, J.L. (ed.)
Formal Methods Applied to Complex Systems: Implementation of the B Method,
chap. 14, pp. 427–446. Wiley ISTE, Hoboken (2014)

6. Mammar, A., Frappier, M., Laleau, R.: An Event-B model of an auto-
motive adaptive exterior light system, January 2020. http://www-public.
imtbs-tsp.eu/∼mammar a/LightControlSystem.html and http://info.usherbrooke.
ca/mfrappier/abz2020-ELS-Case-Study/

7. Mammar, A., Frappier, M.: Proof-based verification approaches for dynamic prop-
erties: application to the information system domain. Formal Aspects Comput.
27(2), 335–374 (2014). https://doi.org/10.1007/s00165-014-0323-x

8. Mammar, A., Frappier, M., Tueno Fotso, S.J., Laleau, R.: An Event-B model of
the hybrid ERTMS/ETCS level 3 standard. In: Butler, M., Raschke, A., Hoang,
T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 353–366. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-91271-4 24

9. Mammar, A., Laleau, R.: Modeling a landing gear system in Event-B. In: Boniol,
F., Wiels, V., Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp.
80–94. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07512-9 6

10. Event-B Consortium. http://www.event-b.org/
11. Parnas, D.L., Madey, J.: Functional documents for computer systems. Sci. Comput.

Program. 25(1), 41–61 (1995)
12. Silva, R., Pascal, C., Hoang, T.S., Butler, M.J.: Decomposition tool for Event-B.

Softw. Pract. Exper. 41(2), 199–208 (2011)
13. Snook, C., Butler, M.: UML-B: a plug-in for the Event-B tool set. In: Börger,

E., Butler, M., Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, p. 344.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87603-8 32

https://doi.org/10.1007/978-3-642-11811-1_14
https://doi.org/10.1007/978-3-642-11811-1_14
http://www-public.imtbs-tsp.eu/~mammar_a/LightControlSystem.html
http://www-public.imtbs-tsp.eu/~mammar_a/LightControlSystem.html
http://info.usherbrooke.ca/mfrappier/abz2020-ELS-Case-Study/
http://info.usherbrooke.ca/mfrappier/abz2020-ELS-Case-Study/
https://doi.org/10.1007/s00165-014-0323-x
https://doi.org/10.1007/978-3-319-91271-4_24
https://doi.org/10.1007/978-3-319-07512-9_6
http://www.event-b.org/
https://doi.org/10.1007/978-3-540-87603-8_32

Modeling of a Speed Control System
Using Event-B

Amel Mammar1(B) and Marc Frappier2

1 SAMOVAR, Institut Polytechnique de Paris, Télécom SudParis, Évry, France
amel.mammar@telecom-sudparis.eu

2 Laboratoire GRIF, Département d’informatique, Faculté des sciences,
Université de Sherbrooke, Québec, Canada

marc.frappier@usherbrooke.ca

Abstract. The present paper presents our proposal of an Event-B
model of a speed control system, a part of the case study provided in
the ABZ2020 conference. The case study describes how the system regu-
lates the current speed of a car according to a set criteria like the speed
desired by the driver, the position of a possible preceding vehicle but also
a given speed limit that the driver must not exceed. For that purpose,
this controller reads different information form the available sensors (key
state, desired speed, etc.) and takes the adequate actions by acting on
the actuators of the car’s speed according to the read information. To
formally model this system, we adopt a stepwise refinement approach
with the Event-B method. We consider most features of the case study,
all proof obligations have been discharged using the Rodin provers. Our
model has been validated using ProB by applying the different provided
scenarios. This validation has permitted us to point out and correct some
mistakes, ambiguities and oversights contained in the first versions of the
case study.

Keywords: Speed control system · Event-B method · Refinement ·
Verification

1 Introduction

The case study, proposed in the context of the ABZ2020 conference, is com-
posed of two parts: Adaptive Exterior Light and Speed Control Systems. Since
the whole case study is quite lengthy/complex and the two parts are only loosely
coupled as stated in the description document, we chose to handle each part in a
separate paper. The present paper deals with the speed control system whereas
a companion paper considers the adaptive exterior light system [7].

The goal of the speed control system is to regulate the current speed of a car
according to a set of criteria like the speed desired by the driver, the position of

This work was supported in part by NSERC (Natural Sciences and Engineering
Research Council of Canada).

c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 367–381, 2020.
https://doi.org/10.1007/978-3-030-48077-6_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_29&domain=pdf
http://orcid.org/0000-0003-0016-6898
http://orcid.org/0000-0002-4402-2514
https://doi.org/10.1007/978-3-030-48077-6_29

368 A. Mammar and M. Frappier

a possible preceding vehicle but also a given speed limit that the driver must not
exceed. The system can behave according to two options: the first one regulates
the speed independently on the any preceding vehicle, the second component
takes into account the position of a possible preceding vehicle by maintaining a
safety distance. The driver has the possibility to choose which option to activate
at a given moment. Like a controller, in both options, the system reads different
informations from the available sensors (key state, desired speed, the preceding
vehicle position, etc.) and takes the adequate actions by acting on the actuators
of the car’s speed according to the read information.

The present paper describes the formal modeling of the speed control sys-
tem using the Event-B method and its refinement technique that permits to
master the complexity of a system by gradually introducing its different ele-
ments/characteristics. Proposed by Abrial as a successor of the B method [1],
the Event-B method [2] permits to model discrete systems using mathemati-
cal notations. An Event-B specification is made of two elements: context and
machine. A context describes the static part of an Event-B specification; it
consists of constants and sets (user-defined types) together with axioms that
specify their properties. The dynamic part is included in a machine that defines
variables and a set of events. The possible values that the variables can hold
are specified by an invariant using a first-order formula on the state variables.
The different machines composing an Event-B specification are related with
a refinement relation whereas the contexts are linked with an extension link
(extends). Each refinement adds new information to a model; these could be
new state variables, new events or new properties. Event-B refinement allows
for guard strengthening, nondeterminism reduction, and new events introduc-
tion. New events of a model M ′ that refines a model M are considered to refine
a skip event of M , hence they cannot modify a variable of M . Therefore, all
events that need to modify a variable v must be defined in the same model
where v is first introduced. The correctness of an Event-B model is ensured by
proof obligations that verify that the invariant is preserved by each event and
that the refinement preserves the properties of the system.

The development of our Event-B models has been done under the Rodin
platform [3] that provides editors, provers and several other plugins for various
tasks like animation and model checking with ProB [5]. We use ProB in order to
animate the built models with two purposes: exhibiting the problematic scenarios
that violate the invariant prior to the hard/long proof phase, but also validating
the specification by playing the provided scenarios in order to be sure that we
have specified the right system.

The rest of this paper is structured as follows. Section 2 describes our mod-
elling strategy. Section 3 describes our model in more details. Section 4 describes
the validation and verification of our model. Section 5 identifies the weaknesses
of the requirements document provided for the case study, and the adequacy of
the Event-B method for constructing a model of this case study. We conclude
in Sect. 6.

Modeling a Speed Control System Using Event-B 369

2 Modelling Strategy

The speed control system subject of this paper can be seen as a control system
that interacts with its environment through a set of sensors, which provide it
with information about the state of the physical elements, and a set of actu-
ators that are used to transmit the adequate orders to these elements. In this
paper, we use the concepts described in [10]. A sensor measures the value of
some environment elements m, called a monitored variable (e.g., the state of
the ignition key), and provides this measure (e.g., whether the key is inserted
or not) to the software controller as an input variable i. The software controller
can influence the environment by sending commands, called output variable o to
actuators. An actuator influences the value of some characteristics of the envi-
ronment, call a controlled variable c. Variables m and c are called environment
variables. Variables i and o are called controller variables. Finally, a controller
has its own internal state variables to perform computations. In this case study,
we use Event-B state variables to represent both environment and controller
variables. We do not model sensor or actuator failures.

A well-known architecture of a control system is a control loop that reads
all input variables at once, at a given moment, and then computes all output
variables in the same iteration. But, it can be also viewed as a continuous system
that can be interrupted by any change in the environment represented by a new
value sent by a sensor. In this paper, we see the controller as a distributed system;
each sub-system is associated to a given sensor. In that case, the system reacts
to each single modification of the sensor. This approach can be seen as a more
abstract approach, as it is common in the Event-B style of system modeling. We
define one event for each input variable change, which allows for a more modular
specification that is easier to prove. This is closer to an interrupt-driven control
system. Our Event-B abstraction is also a reasonable abstraction for a control
loop, considering that in most cases, a single input variable changes between two
control loop iterations. The control loop can be derived from our specification
by merging all events and defining priorities between events.

3 Model Details

This section briefly describes the main modeling elements that characterize
our specification. The complete archive of the Event-B project is available
in [6]. Let us note that the development of our model (Event-B components,
proofs, animation, etc.) took about two months including the different exchanges
with the authors of the case study. Our model contains 4 contexts and 4
machines/refinements. Table 1 relates the components of our model with the
requirements listed in [4]. As one can remark, some requirements are modelled
as invariants whereas others are dealt with in the adequate events. We chose to
do not model some requirements as invariants because this would make the mod-
eling and the proof activities more complex and difficult. Requirement SCS-41
for example: “. . . the self-test of the radar system is restarted every 10min” is

370 A. Mammar and M. Frappier

modeled by a variable nextTest that is set to the current time plus 10 min in the
events that represent the movement of the key and the progression of the time
because the self-test of the radar system should be performed at the start (the
key is in the ignition position) and then every 10 min. Modeling this requirement
as an invariant would require the introduction of two extra variables to store the
moments of two consecutive self-test activities, then we have to state that 10 min
should be elapsed between these two moments.

Machine M0 models the current speed of the studied car independently from
any preceding vehicle and also without giving any condition on its evolution.
This machine defines the following unique invariant:

currentSpeed ∈ rangeSpeed

where rangeSpeed denotes a constant defined in the context C0 to set the range
values for the speed (rangeSpeed = 0..5000). Machine M0 defines a unique event
updateV ehicleSpeed to set the current speed of the car as follows:

Event updateVehicleSpeed =̂
any

val
where

grd1: val ∈ rangeSpeed
then

act1: currentSpeed := val
end

Machine M1 introduces the physical elements that are manipulated by the driver
and that have an impact on the current speed of the car. These elements include
gas/brake pedal, key, cruise control lever, etc. Machine M1 describes how the
position of each of these elements evolves depending on its current position. In
this same machine, we also introduce the event progress that makes the current
time keep progressing. Machine M2 models the desired speed together with
the activation of the normal/adaptive cruise control and also the traffic sign
detection that has an impact on the value of the desired speed according to the
requirements (SCS-36,SCS-39). It is worth noting that some events, like that
related to the traffic sign detection, are introduced in M1 even if this aspect
is really dealt with in Machine M2. Indeed, these events need to modify some
variables that are introduced in M1 and, as noted before, a new event cannot
modify a variable defined in a previous refinement level. Machine M3 specifies
the different aspects that depend on or impact the desired/current speed like
speed-dependent safety distance that also depends on the speed of the preceding
vehicle but also the faults that can happen on the radar system. The main
elements of these Event-B components are described hereafter.

3.1 Machine M1: Physical Elements

This machine refines Machine M0 by introducing the different elements that
impact the current speed of the car. This includes the physical elements that

Modeling a Speed Control System Using Event-B 371

Table 1. Cross-reference between the components of our model and the requirements
of [4]

Requirements [4] Component Invariant/event

SCS-1, SCS-31 M2 inv4

SCS-2, SCS-31 M2 inv5

SCS-3, SCS-12, SCS-13,
SCS-16, SCS-17, SCS-31

M2 inv6 and inv7

SCS-4, SCS-19, SCS-31 M2 inv8

SCS-5, SCS-19, SCS-31 M2 inv9

SCS-6, SCS-19, SCS-31 M2 inv10 and inv11

SCS-7, SCS-19, SCS-31 M2 inv12

SCS-8, SCS-19, SCS-31 M2 inv13

SCS-9, SCS-31 M2 inv14

SCS-10, SCS-31 M2 inv15

SCS-11, SCS-31 M2 inv16

SCS-14 Not covered since no information is given on
how the system reaches/ maintain the desired
speed

SCS-15 M3 inv13

SCS-18 M3 inv24, inv25, inv26

SCS-20 M3 inv12

SCS-21 Not covered

SCS-22 M3 inv11

SCS-23 M3 inv14, inv15 and inv16

SCS-24 M3 inv17

SCS-25 M3 inv19

SCS-26 M3 inv20

SCS-27-SCS-28 Not covered

SCS-29 M3 Event moveSpeedLimiterSwitch

SCS-30 Not covered since it is related to the interface
appearance

SCS-32, SCS-33, SCS-34 M2 inv21

SCS-35 M2 inv26 and moveSpeedLimiterSwitch

SCS-36, SCS-37, SCS-38,
SCS-39

M2 inv24

SCS-40 and SCS-41 M2 Event moveKey and progress

SCS-42 M3 inv13

SCS-43 Not covered since the light system is not
included

the driver manipulates, the radar system that gives the distance to the nearest
obstacle but also the time progression since it makes some variables evolve like
the desired speed. For that purpose, several variables/invariants are introduced
to model how the position of the physical elements evolves depending on its

372 A. Mammar and M. Frappier

current position. In this paper, we give details about the radar the system, the
time progression and also the cruise control lever.

The state of the radar system is modelled by a Boolean variable
rangeRadarState. This variable is initialized to FALSE since the ignition is
Off at the beginning then its state is updated each 10 min. Therefore, we define
a variable nextTest to store the moment of the next radar system self-test. These
variables are defined by the following invariants:

keyState = KeyInIgnitionOnPosition∧
keyStateP �= KeyInIgnitionOnPosition

=⇒
nextTest = currentT ime + 6000

where KeyState is a variable representing the position of the key
({NoKeyInserted,KeyInserted,KeyInIgnitionOnPosition}). This invariant
expresses that the state of the radar system is checked 10 min after the state
(keyState = KeyInIgnitionOnPosition). Let us remark the value of 6000 is
equal to (10×600) since we choose a progression time step of a tenth of a second
because some data in the case study are with 0.1 precision as depicted by the
following progress event that models the time progression:

Event progress =̂
refines updateVehiculeSpeed

any
val

radstate
where

grd1: keyState �= KeyInIgnitionOnPosition∨
nextTest �= currentT ime + 1 =⇒ radstate = rangeRadarState

grd2: keyState = KeyInIgnitionOnPosition∧
nextTest = currentT ime + 1 =⇒ radstate ∈ BOOL

....
then

act1: currentT ime := currentT ime + 1

act2: rangeRadarState := adstate

act3: nextTest := {TRUE �→ 6000, FALSE �→ nextTest}
(bool(keyState = KeyInIgnitionOnPosition∧

nextTest = currentT ime + 1))

...
end

Guard grd1 specifies that when the time progresses to the next self-test moment
(nextTest = currentT ime + 1) and the stating of the system (keyState =
KeyInIgnitionOnPosition), the state of the radar system is chosen ran-
domly (rdstate ∈ BOOL) otherwise its state remains the same (radstate =
rangeRadarState in grd2).

Similarly, cruise control lever is modeled by the variable SCSLeverUD
and its typing invariant: SCSLeverUD ∈ SCSLeverPositions where
SCSLeverPositions is a given set defined in Context C1 seen by M1:

Modeling a Speed Control System Using Event-B 373

partition(SCSLeverPositions, Upward,Downward,
{Backward}, {Forward}, {Neutral})

partition(Upward, {Upward5}, {Upward7})
partition(Downward, {Downward5}, {Downward7})

For each of these elements, invariants are defined in Machine M1 to specify
the authorized position changes together with the event that models them. The
following invariant states that the cruise control level cannot directly move from
an Upward position to a Downward position bypassing the Neutral position. As
we can remark, the above invariant uses an extra variable SCSLeverUDP to
model the previous position of the cruise control level. In the next section, we
show that this kind of variables is also relevant for modeling some requirements
that need to make reference to the current and previous states of the system.

SCSLeverUDP �= Neutral =⇒
SCSLeverUD = SCSLeverUDP

∨
(SCSLeverUDP ∈ Upward ∧ SCSLeverUD ∈ Upward)

∨
(SCSLeverUDP ∈ Downward ∧ SCSLeverUD ∈ Downward)

∨
SCSLeverUD = Neutral

Machine M1 defines event moveSCSLeverUD that models the cruise control
level movements where grd2 permits to make the invariant preserved after the
observation of this event:

Event moveSCSLeverUD =̂
any

valSCS
where

grd1: valSCS ∈ Upward ∪ Downward ∪ {Neutral}
grd2: SCSLeverUD �= Neutral =⇒

(SCSLeverUD ∈ Upward ∧ valSCS ∈ Upward)

∨
(SCSLeverUD ∈ Downward ∧ valSCS ∈ Downward)

∨
(valSCS = Neutral)

then
act1: SCSLeverUD := valSCS

act2: SCSLeverUDP := SCSLeverUD

...
end

3.2 Machine M2: Desired Speed

This machine describes how the desired speed evolves according to the require-
ments (SCS-1 to SCS-12) by moving the cruise control level into different posi-
tions. We also model the activation of the normal/adaptive cruise control as

374 A. Mammar and M. Frappier

described in the document. In addition, we specify the speed limit requirements
(SCS-29 to SCS-34) because the calculation of the current speed must respect
such a limit.

Mainly, this machine introduces some additional variables to model
the desired speed (desiredSpeed) and the normal/adaptive cruise control
(normContr and adapContr) with their associated variables to represent their
previous values. For instance, the following invariant defines the activation of
the normal cruise control:

normContr = TRUE
⇔

((SCSLeverFB = Forward ∧ SCSLeverFBP �= Forward∧
(currentSpeed ≥ 2000 ∨ desiredSpeed �= 0))

∨
(normContrP = TRUE ∧ SCSLeverFB �= Backward))∧

cruiseControlMode = 1 ∧ brakePedal = 0

The invariant states that, if the normal mode is selected for the cruise control
and the brake pedal is not activated, the normal cruise control is activated the
first time when the cruise control level moves to the forward position while the
current speed is greater than 200 km/h and or the desired speed is not null and
remains activated as long as the cruise control level is not put in the Backward
position.

To model the desired speed whose evolution depends on the time, we store
the last time (lastT imeSCSLeverUD) when the cruise control level has been
in the Up/down positions. Thus requirements SCS-4 and SCS-7 are modeled as
follows. Requirement SCS-4 specifies that, while the cruise control is activated,
the desired speed increases by 1 the first time the cruise control level is put in
position Upward5 whereas Requirement SCS-7 states that the desired speed
continues to increase by 1 by each second as long as the cruise control level
stays in that position for more than 2 s. Variable lastdesiredSpeed represents
the desired speed when the lever has been moved into a given position.

SCSLeverUDP �= Upward5 ∧ SCSLeverUD = Upward5
∧

(adapContrP = TRUE ∨ normContrP = TRUE)
=⇒

desiredSpeed = min({200, desiredSpeedP + 1})

and

(normContr = TRUE ∨ adapContr = TRUE) ∧ SCSLeverUD = Upward5
∧

currentT ime − lastT imeSCSLeverUD ≥ 20
=⇒

desiredSpeed =
min({200, lastdesiredSpeed + (currentT ime − lastT imeSCSLeverUD − 10) ÷ 10})

Modeling a Speed Control System Using Event-B 375

Let us give more explanation about the last invariant. Expression
(currentT ime − lastT imeSCSLeverUD − 10) permits to update the desired
speed immediately after 2 s, this is why we subtract 10 units of time and not 20.
As stated before, as we chose a progression step of tenth of a second, we must
divide by 10 each data related to the time. To make these invariants preserved,
we have refined the moveSCSLeverUD event according to Requirement SCS-4
but also the progress event with respect to Requirement SCS-7. Event progress
for instance is refined by adding the following guard that calculates the new
desired speed:

(normContr = TRUE ∨ adapContr = TRUE) ∧ SCSLeverUD �= Neutral
=⇒
despeed=

{TRUE �→
{TRUE �→

{TRUE �→ min({200, lastdesiredSpeed+
((currentT ime + 1 − lastT imeSCSLeverUD − 10)÷10)}), //(*case 2*)
FALSE �→ min({200, lastdesiredSpeed+

((currentT ime + 1 − lastT imeSCSLeverUD) ÷ 2)}) //(*case 3*)
} (bool(SCSLeverUD = Upward5)),

FALSE �→
{TRUE �→ max({10, lastdesiredSpeed−

(currentT ime + 1 − lastT imeSCSLeverUD − 10)÷10}),//(*case 4*)
FALSE �→ max({10, lastdesiredSpeed−

((currentT ime + 1 − lastT imeSCSLeverUD) ÷ 2)})//(*case 5*)
}(bool(SCSLeverUD = Downward5))

}(bool(SCSLeverUD ∈ Upward)),
FALSE �→ desiredSpeed //(*case 1*)
}(bool(currentT ime + 1 − lastT imeSCSLeverUD ≥ 20))

The above guard distinguishes different cases according to the position of the
control lever and the time elapsed since its last position change(currentT ime +
1 − lastT imeSCSLeverUD ≥ 20). The term (currentT ime + 1) denotes the
after-value of currentT ime when Event progress is observed. The following cases
have been distinguished:

1. if the time elapsed from the last movement of the lever is less than 2 s then,
the desired speed does not change (case 1), otherwise

2. if the lever is at the Upward5 position, the desired speed increases by 1 every
second (10 × tenth of a second): SCS-7, case 2. otherwise the lever is in the
Upward7 position and the desired speed increases to the next ten’s place after
each 2 s: SCS-8, case 3.

3. if the lever is at the Downward5 position, the desired speed decreases by 1
every second (10 × tenth of a second): SCS-9, case 4. otherwise the lever is in
the Upward7 position and the desired speed increases to the next ten’s place
after each 2 s: SCS-10, case 5.

Let us note that the Event-B method and its underlying language is not
well-adapted to model the evolution of the speed vehicle according to its accel-
eration/speed and the time passing. Indeed, since the language does not support

376 A. Mammar and M. Frappier

real numbers, we model the current speed as an integer amount that evolves
according to the usual equation (V = γ × t + Vp) where the γ represents the
acceleration/deceleration of the vehicle, (t = 1) the time progression and Vp the
previous speed. As our time progression is by a tenth of a second, the progression
of the speed is very small, that is, less than one kilometer. This progression can
not be taken into account using the B language. To overcome such a limit, we
proceed as follows. We do not include the increasing/decreasing of the current
speed in the event that makes the time progress but we introduce a new event
setSpeed that sets the current speed to a given value. This also permits to play
and produce the scenarios provided in the case study. Another alternative to
overcome the lack of reals in the Event-B language is to define or reuse an
existing theory plugin that models them [11]. However, this will make the devel-
opment and the proofs more complex since the interactive prover of Rodin does
not adequately support such a concept, that it a proof that uses a theory can
not be saved.

3.3 Machine M3: Other Elements

In this level, we model the different aspects that depend on or impact the
desired/current speed, like speed-dependent safety distance and the speed of the
preceding vehicle. Moreover, we model the faults that can happen on the radar
system. Machine M3 introduces two new events turnHead and VehicHeadDetect
to model respectively the selection of a safety level by turning the cruise control
lever head and the detection of a preceding vehicle by catching its speed that is
relevant for determining the speed-dependent safety distance and also to make
the system decelerates if it is necessary. Event VehicHeadDetect for instance is
specified as follows:

Event VehicHeadDetect =̂
any

val stv brk secdis speh
where

grd1: val ∈ rangeRadarSensorV alues

grd2: rangeRadarState = FALSE ⇔ val = 255

grd3: speh ∈ rangeSpeed

grd4: speh ≤ 200 ∧ speedOfHead > speh ∧ speh �= 0 ∧
adapContr = TRUE ∧ val /∈ {0, 255}
=⇒
secdis = 25 × currentSpeed ÷ 360

grd5: speh = 0 ∧ currentSpeed = 0 ∧ adapContr = TRUE ∧
val /∈ {0, 255}
=⇒
secdis = 2

grd6: speedOfHead < speh ∧ speh �= 0 ∧ speh ≤ 200 ∧
adapContr = TRUE ∧ val /∈ {0, 255}
=⇒
secdis = 30 × currentSpeed ÷ 360

Modeling a Speed Control System Using Event-B 377

grd7: speh > 200 ∧ adapContr = TRUE =⇒ secdis = safetyDistance ×
currentSpeed ÷ 360

grd8: ...
then

act1: rangeRadarSensor := val

act2: speedOfHead := speh

act3: securedistanceToHead:= secdis

act4: . . .
end

Event parameter val represents the distance between the studied car and a
possible preceding vehicle as provided by the radar. Guard grd2 states that such
a value should be equal to 255 if the radar system is not ready. Guards grd4-
grd7 permit to calculate the new value for the speed-dependent safety distance
according to the requirements SCS-23 and SCS-24 with the event parameter
speh denoting the speed of the preceding vehicle.

Already existing events of M2 are refined in M3 in similar way by calculating
the value of the different variables. For instance, the desired speed should be
updated when a traffic sign is detected, the speed-dependent safety distance is
updated when the current speed is modified or the speed of a preceding vehicle
changes. More details can be found in [6].

4 Validation and Verification

To ensure the correctness and validate the built Event-B models, we have
proceeded into three steps detailed hereafter.

4.1 Model Checking of the Specification

We used the ProB tool as a model checker in order to ensure that all the
invariants of each machine are preserved after the observation of each event,
that is, there is no sequence of events that makes an invariant not satisfied.
Basically, when an invariant becomes violated, ProB exhibits such a sequence
of events that, starting from a valid initial state of the machine, leading to a
state that violates the related invariant. Such specification errors can be due
to a guard/action missing, to an incorrect specification of the invariant but
sometimes also to an incorrect property, that is the system really does not satisfy
the property. Let us note that even if no invariant violation is found by the tool,
there may still exist scenarios that violate the invariant that the tool cannot
find due to their complexity or/and the timeout on the model checking process.
This is why a proof phase should be performed to ensure that the specification
is invariant-violation free.

378 A. Mammar and M. Frappier

4.2 Validation with Scenarios

This step aims at verifying that we have built the right model whose behaviors
conform to the desired ones as described by the scenarios of the specification
document. For that purpose, the animation capability of ProB is used to play
the different scenarios provided in the case study. This step allows us to point
out some flaws/ambiguities in the initial release of the description document.
For instance, the initial examples provided to illustrate the requirements SCS-
5-SCS-9 were incorrect with respect to the requirements. In addition, in some
place like SCS-7-SCS-9, the term “target speed” is used instead of “desired
speed”, etc. All these aspects have been discussed with the case study authors
because we are not specialists of the domain. Let us note that we have faced some
difficulties to play the provided scenarios since no information is provided on how
the controller calculates the acceleration at each step. So, we have made our best
to “simulate” these values without any representation about their suitability,
reliability.

4.3 Proof of the Specification

This last phase aims at ensuring the correctness of the specification by discharg-
ing all the proof obligations generated by Rodin to prove that the invariants are
preserved by each event, but also that the guard of each refined event is stronger
than that of the abstract one. Figure 1 provides the proof statistics of the case
study: 579 proof obligations have been generated, of which 60% (345) were auto-
matically proved by the various provers. The remaining proof obligations were
discharged interactively since they needed the use of external provers like the
Mono Lemma prover that has shown to be very useful for arithmetic formulas
even if we had to add some theorems on min/max operators (a min/max of a
finite set is an element of the set, etc) but also on the transitivity property of
the comparison operator (≥, ≤, etc.).

5 Other Points

This section reports on some points about the choices made during the Event-B
modeling of the speed control system.

5.1 Feedback on the Specification Document

The formal modeling of the specification document [4] lead us to question our-
selves about the semantics of some requirement and identify a number of ambigu-
ities and some contradictions with the test scenarios provided. Being not special-
ist of the domain, we have communicated these to the authors of the requirements
document, and a number of revisions were produced, following our comments.
Our discussion and exchange lead to the modification/revision of a set of require-
ments to make them clearer and consistent. A detailed list of these elements are
described in the last version (i.e., 1.17) of the requirements document:

Modeling a Speed Control System Using Event-B 379

Fig. 1. Rodin proof statistics of the case study

1. Correction of the examples in SCS-7, SCS-8 and SCS-9 since the values do
not respect the requirements.

2. Modification of signal description setV ehicleSpeed to make its meaning
clearer.

3. Replacing ‘target speed’ by ‘desired speed’ in requirements SCS-7 and SCS-8.
4. Adjustment of the maximum acceleration and deceleration values in SCS-20,

SCS-22.
5. Stating that SCS-23 applies when the speed is 20 km/h or below.
6. Clarification of priority between adaptive cruise control and emergency brak-

ing assistant in case of brake activation in SCS-28
7. the signal SCSLever has been splitted into signals SCSLeverForthBack and

SCSLeverUpDown with their corresponding positions (states) and the possi-
ble transitions between them.

As already well-known, the use of a formal method does not only permit
to built a correct system but it also allows to make the requirement document
clearer and precise by removing ambuities and errors.

5.2 Modeling Temporal Properties

As stated before, a number of requirements refer to the current and previous
state of an element. In order to be able to verify these requirements using a proof
strategy, we modeled them as invariants by introducing two variables for each
element to store their current and previous values. The obtained specification
is quite cumbersome especially that we have to add for each event that does
not modify a variable that its previous value is equal to its current value. We
think that it would be interesting to investigate existing tools/approaches that
could help us specify this kind of properties in a simpler manner. An example
of such tools is the Event-B State machines plugin1 that produces Event-B

1 http://wiki.event-b.org/index.php/Event-B Statemachines.

http://wiki.event-b.org/index.php/Event-B_State machines

380 A. Mammar and M. Frappier

events from a state machine including their guards that specify the requirements
modeled by the state machine but without producing the related invariants. This
plugin makes difficult to trace and justify the usefulness of the generated guards.

6 Conclusion

This paper presents a formal modeling proposal of a speed control system using
the Event-B method. We have modelled most of requirements that permits
us to point out some ambiguities in the requirements that we have discussed
and clarified with the case study authors by rephrasing them. These ambiguities
have been discovered during during different development phases: formalization,
proof and validation using the provided scenarios. This experience has affirmed
that the formal modeling of a system helps the software users detect error in
early development phase that makes its correction cheaper.

The main difficulty when modeling the speed control system is to determine
the order in which elements should be introduced during the refinement espe-
cially that many elements are interdependent. Due to time constraints, we were
unfortunately not able to explore the different decomposition plugins of Rodin
that might produce smaller specification parts that would be easier to under-
stand and maintain. We plan to explore some decomposition techniques as future
work even if we really think that the Event-B method should include modu-
larization clauses as native structuring mechanisms like those of the B method
that permit to have a modular specification since the early development phases
to make Event-B method more usable for the development of big and complex
systems. Another point concerns the ProB plugin under Rodin that unfortu-
nately does not permit to store an already played scenario, so we are obliged to
manually replay each scenario; this is a very time-consuming for long traces.

The work presented in this paper can also be extended by considering the
remaining requirements that need more clarifications. Requirement SCS-21 for
instance needs more information on how the system can deduce that decelera-
tion of 3 m/s2 is insufficient to prevent a collision without having any information
about the acceleration of the preceding vehicle. Also, we think that more infor-
mation should be provided on the internal variables like setV ehicleSpeed that
represents the automatic acceleration of the system in order to able to build a
more complete system. Finally through the different case studies proposed in the
ABZ conference [8,9], we are now convinced of the need to improve the Event-B
language to make it supports the real numbers as basic types. Its prover should
be also extended to include more rules on arithmetic and set theories.

Acknowledgements. The authors would like to thank the case study authors, and
Frank Houdek in particular, for his responsiveness and useful feedback during the
modeling process when questions were raised or when ambiguities were found. The
authors would also like to thank Michael Leuschel for his quick feedback on using
ProB for this large case study.

Modeling a Speed Control System Using Event-B 381

References

1. Abrial, J.: The B-Book - Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. Abrial, J.: Modeling in Event-B. Cambridge University Press, Cambridge (2010)
3. Event-B Consortium. http://www.event-b.org/
4. Houdek, F., Raschke, A.: Adaptive exterior light and speed control system, Novem-

ber 2019. https://abz2020.uni-ulm.de/case-study#Specification-Document
5. Leuschel, M., Bendisposto, J., Dobrikov, I., Krings, S., Plagge, D.: From animation

to data validation: the prob constraint solver 10 years on. In: Boulanger, J.L. (ed.)
Formal Methods Applied to Complex Systems: Implementation of the B Method,
Chap. 14, pp. 427–446. Wiley ISTE, Hoboken (2014)

6. Mammar, A., Frappier, M.: Modeling of a Speed Control System using Event-B,
January 2020. http://www-public.imtbs-tsp.eu/∼mammar a/SpeedControl.html

7. Mammar, A., Frappier, M., Laleau, R.: An Event-B Model of an Auto-
motive Adaptive Exterior Light System, January 2020. http://www-public.
imtbs-tsp.eu/∼mammar a/LightControlSystem.html and http://info.usherbrooke.
ca/mfrappier/abz2020-ELS-Case-Study/

8. Mammar, A., Frappier, M., Tueno Fotso, S.J., Laleau, R.: An Event-B model of
the hybrid ERTMS/ETCS level 3 standard. In: Butler, M., Raschke, A., Hoang,
T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 353–366. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-91271-4 24

9. Mammar, A., Laleau, R.: Modeling a landing gear system in Event-B. In: Boniol,
F., Wiels, V., Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp.
80–94. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07512-9 6

10. Parnas, D.L., Madey, J.: Functional documents for computer systems. Sci. Comput.
Program. 25(1), 41–61 (1995)

11. Su, W., Abrial, J.R., Zhu, H.: Formalizing hybrid systems with Event-B and the
Rodin platform. Sci. Comput. Program. 94, 164–202 (2014)

http://www.event-b.org/
https://abz2020.uni-ulm.de/case-study#Specification-Document
http://www-public.imtbs-tsp.eu/~mammar_a/SpeedControl.html
http://www-public.imtbs-tsp.eu/~mammar_a/LightControlSystem.html
http://www-public.imtbs-tsp.eu/~mammar_a/LightControlSystem.html
http://info.usherbrooke.ca/mfrappier/abz2020-ELS-Case-Study/
http://info.usherbrooke.ca/mfrappier/abz2020-ELS-Case-Study/
https://doi.org/10.1007/978-3-319-91271-4_24
https://doi.org/10.1007/978-3-319-07512-9_6

A Verified Low-Level Implementation
of the Adaptive Exterior Light
and Speed Control System

Sebastian Krings1(B) , Philipp Körner2 , Jannik Dunkelau2 ,
and Chris Rutenkolk2

1 Institute for Information Security, Niederrhein University of Applied Sciences,
Mönchengladbach, Germany

sebastian@krin.gs
2 Institut für Informatik, Heinrich-Heine-Universität, Universitätsstr. 1,

40225 Düsseldorf, Germany
{p.koerner,jannik.dunkelau,chris.rutenkolk}@hhu.de

Abstract. In this article, we present an approach to the ABZ 2020 case
study, that differs from the ones usually presented at ABZ: Rather than
using a (correct-by-construction) approach following a formal method,
we use MISRA C for a low-level implementation instead. We strictly
adhere to test-driven development for validation, and only afterwards
apply model checking using CBMC for verification. In consequence, our
realization of the ABZ case study can serve as a baseline reference for
comparison, allowing to assess the benefit provided by the various formal
modeling languages, methods and tools.

1 Introduction

The ABZ 2020 Case Study [18] describes two assistants commonly found in
modern cars. The overall system consists of two loosely coupled components,
namely an adaptive exterior light system (ELS) and a speed control system
(SCS). The ELS controls head- and taillights, setting their brightness depending
on the surroundings and user preference. At the same time, the SCS controls
the vehicle’s speed, again by taking into account the environment as well as
parameters given by the driver. Obviously, both are safety critical components,
rendering safety and security a development priority.

Used Methods and Tools. In this article, we present our implementation of the
ABZ 2020 Case Study. Our approach differs from the ones usually followed by
the ABZ community: we do not employ a fully formal development method.
Instead, we attempted an approach closer to what might happen in industries,
where formal methods are not common yet. To do so, we implemented both the
ELS and the SCS directly in (MISRA) C, following a test-driven development
workflow. Only afterwards, we performed formal verification attempts directly
on the C code, using the CBMC model checker [11]. Both MISRA C and CBMC
c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 382–397, 2020.
https://doi.org/10.1007/978-3-030-48077-6_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_30&domain=pdf
http://orcid.org/0000-0001-6712-9798
http://orcid.org/0000-0001-7256-9560
http://orcid.org/0000-0003-0819-5554
http://orcid.org/0000-0002-6751-0369
https://doi.org/10.1007/978-3-030-48077-6_30

A Verified Low-Level Implementation 383

will be introduced more thoroughly in Sects. 2.1 and 4.2 respectively. Test-driven
development and mocking of test objects will be presented in Sect. 2.2.

Rationale. Often, formal methods practitioners claim to hold a high ground over
“traditional” software development or at least that there rarely are disadvantages
[7,14]. The argument seems convincing; yet, we are not aware of any (case) study
comparing two teams working on the same project, one employing a formal
approach and the other working “traditionally”. For this case study, we aim
at providing a baseline that can be compared to fully formal approaches or
other approaches combining formal and informal verification, e.g., as suggested
for spacecrafts [21]. We opted to postpone verification as much as possible, as
one would expect a group focusing on embedded systems to work. This allows
a fair evaluation of (dis-)advantages of the individual approaches. Our aim is
to examine, whether a rigorous approach is beneficial in the context of the case
study. If so, we hope to add to the body of evidence that formal methods actually
are beneficial compared to “traditional” software development.

Distinctive Features. There are several features rendering our approach unique:
Firstly, as the implementation is written in C, it could be directly deployed to an
embedded system. Models written in formal specification languages would have
to be refined to an implementation level before code can be generated. Further-
more, code generators usually are not proven and might introduce new errors.
In cases where code generation is not easily applicable, side-by-side development
of code is suggested. However, this approach is error-prone as well.

Secondly, the implementation is close to the actual hardware. Code that
interacts with sensors or user input is separated, i.e., it could immediately be
linked to actual hardware. Additionally, our implementation makes use of real
threads, just as the sub-components of the system would run in parallel. We
expect that most specifications using formal methods simply allow some non-
determinism concerning the ordering of state transitions. This has some more
consequences: Our implementation allows real-time simulation of the system,
whereas state transitions using formal methods usually happen instantly and
do not amount for any time elapsed during calculations. This also allows usage
of our implementation for hardware-in-the-loop tests, which are common for
automotive (cf. [13,20]) in order to test the entire system.

Thirdly, MISRA C is a language that stems from the automotive industry.
It is a somewhat formal language, in the sense that certain rules are required to
be followed. Yet, it is also relatively flexible, since other rules are only advisory.

2 Modeling Strategy and Implementation

In the following section, we will discuss how we approached the initial implemen-
tation in C, starting with details on the C dialect we use in Sect. 2.1. Afterwards,
the general structure of our implementation is presented in Sect. 2.3, followed by
a discussion of the limitations of our approach and implementation in Sect. 2.4.

384 S. Krings et al.

For the sake of brevity, we will only show small code snippets in this paper. The
full model is available at

https://github.com/wysiib/abz2020-case-study-in-c-public.

2.1 MISRA C

MISRA C is a set of development and style guidelines for C, introduced by
MISRA, the Motor Industry Software Reliability Association. The standard [1]
defines a subset of C meant to be used for safety critical systems, in particular in
the automotive sector. In fact, both ISO 26262 [19] and the software specification
by AUTOSAR [2] reference or suggest the usage of MISRA C for automotive
applications.

The overall goal of MISRA C is to increase both safety and security by avoid-
ing common pitfalls. Thus, the rules prohibit or discourage the use of unsafe
constructs, try to avoid ambiguities, and so on. The MISRA C standard distin-
guishes between three kinds of rules: those that are mandatory, those that are
required but could be ignored if a rationale is given and rules that are meant
as advisory only. For instance, there is a required rule stating that any switch
statement should have a default label and mandatory rule stating that any path
through a non-void function should end in a return statement.

While of course all coding rules could be checked by hand in theory, we used
cppcheck1 to verify compliance of our code to most of the MISRA rules. However,
given that not all rules can be statically checked the result is only an indication
and some manual review is required as well.

Despite its prevalence in the automotive industry, MISRA C has been crit-
icized regarding both efficiency and ease of use. In particular, the possibilities
of false positives [17] and of introducing new errors by (unreflectingly) chang-
ing code to adhere to the rules [6] should be carefully considered. Both factors
again allow for comparison to the formal development methods present at ABZ.
Despite the criticism, MISRA C remains the de facto standard in the automotive
industry and is used throughout all production code in this case study.

2.2 Test-Driven Development and Mocking

Test-driven Development is an approach to software development, that follows a
certain development cycle: before implementing a new feature of fixing an issue,
an appropriate test case is formulated and execute [4]. Naturally, the test fails,
as no code implementing the scenario has been added yet.

Only afterwards, the code is extended and improved to make the test pass. As
a result, a high confidence can be achieved. Furthermore, the test suite developed
helps during refactoring later on.

To simplify formulating tests and to allow testing program parts in isolation,
mocks can be used. A mock is an object or library that simulates the input
and output behavior of program parts [4]. However, rather than implementing

1 http://cppcheck.sourceforge.net.

https://github.com/wysiib/abz2020-case-study-in-c-public
http://cppcheck.sourceforge.net

A Verified Low-Level Implementation 385

Fig. 1. System architecture and internal communication

the full functionality, a mock is usually much simpler than the code it replaces.
For instance, mocks are often supposed to behave deterministically or even to
provide constant outputs. For testing purposes, mocks often record the inputs
to them and provide them to assertions.

2.3 Code Structure

The overall architecture of our implementation is depicted in Fig. 1. We follow
a structure that is fairly similar to the one the specification provides. Since
two subsystems are specified, the code is separated into two folders, one for the
cruise control and the other for the light system. This is to help ensure that
the systems are independent of each other. Shared type definitions, e.g., the
pedal deflection, the sensor state enumeration, and shared sensors, are stored
separately. An artificial time sensor was introduced for testing, but can easily
be replaced by an actual clock.

Each of the subsystems is split into three header files and implementations.
The first header file declares the accessible and shared sensors for the subsys-
tem, and contains relevant type definitions. Another header file defines the user
interface, e.g., how the pitman arm may be moved or what input the pedals
for gas and brakes may yield. The last header file contains definitions for the
actuators, i.e., what the system is allowed to do. Only the latter two header files
are actually implemented, eventually resulting in three C files:

386 S. Krings et al.

Table 1. Development time

Task Time in hours

Basic implementation and code structure 2

ELS implementation, tests and scenarios 30

SCS implementation, tests and scenarios 22

Model checking 3

Refactoring and code cleanup 2

State visualization 6

– A state struct that contains all the data relevant to the subsystem.
– The user interface such that user input can be simulated. This changes some

internal variables that keeps track of the state of the UI; in a deployed system,
this can be replaced by additional sensors. The attributes correspond to the
signals that the subsystem has to communicate.

– The realization of the state machine with several guarded state transitions.
This is the actual implementation of the specified safety properties.

For the test cases, sensors are mocked. In order to get an actual executable,
real sensors have to be linked during compilation. The time spend for develop-
ment, validation and verification is given in Table 1.

2.4 Limitations

Due to time constraints, we opted not to implement every single requirement
but tried to cover as much as possible. Aside from the emergency brake light,
all requirements have been taken into account for the ELS. For the SCS, we
implemented about two-thirds of the requirements, up to (including) SCS-28.
While it would be nice to have a more complete implementation, we do not
think that it would impact our gathered conclusions.

A feature of the requirements that is not addressed satisfyingly are timers. We
are convinced that any modern CPU to be used in cars is fast enough to execute
an iteration of the state machine withing a reasonable time frame. Thus, any real
system realized following our approach should be able to guarantee execution
within the smallest time resolution that is relevant to the subsystems and their
respective requirements.

Yet, it is hard to give any real-time guarantees. The only evidence that can
be given is to run the system often enough and measure whether execution is
kept in the specified tolerances. However, this is still better than what we expect
of more formal approaches, which usually do not account for wall time at all.

2.5 Formalization Approach

As mentioned earlier, we postponed actual verification work as much as possible.
Instead, as our first step, we set up the validation sequences as unit tests first.

A Verified Low-Level Implementation 387

Then, in a test-driven development manner, we added to the implementation
code by only considering the next assertion in a scenario. Once the test passed,
we moved on to the next. In a second step, we added test cases that are directly
related to one or sometimes several requirements.

Finally, we set up CBMC and tried to verify the properties described by
the requirements. As stated, we use the same code for testing and formal ver-
ification, avoiding any translation between formal verification and testing envi-
ronment as done for instance by Chen et al. [10] and others. However, both
approached remain distinct rather than being combined into a single verification
procedure [22].

As part of possible future work, we intend to use CBMC to try to provide
real-time guarantees and to verify the correct behavior in presence of scheduling
and limited by the actual specifications of an embedded device. Both could be
verified by providing a Verilog model of the hardware, sensors and connections.
Afterwards, co-verification of the implementation in C with the Verilog circuit
model can be performed by CBMC [12]. Additionally, we would like to consider
other tools that work directly on the C code, e.g., Symbiotic [9] or Klee [8].

3 Model Details

In the following, we will detail our implementation idioms we employed to ensure
easier handling and verification of the involved state machine, and explore some
crucial snippets of our code to show these idioms in practice. Contrary to the
proposed outline, we will present key snippets as well in Sect. 4.

3.1 Idioms

Types. We opted to define all types as enumeration types. This is to be expected
for some data types, which are true enumerations, such as:

typedef enum {Ready, Dirty, NotReady} sensorState;

Yet, we also defined integer types as enumerations, e.g.:

typedef enum {
percentage_low = 0,
percentage_high = 100

} percentage;

The reasons for this are twofold: first, we can easily identify thresholds and
the value range for each type. While percentages are straightforward to every-
one, e.g., the translation of the steering wheel angle into human-understandable
semantics is hard. An excerpt of the corresponding type definition is as follows
(analogously for turning the steering wheel to the right):

388 S. Krings et al.

typedef enum {
st_calibrating = 0,
st_hard_left_max = 1, /* 1.0 deg */ st_hard_left_min = 410,
st_soft_left_max = 411, /* 0.1 deg */ st_soft_left_min = 510,
st_neutral_maxl = 511, st_neutral = 512, ...

} steeringAngle;

Such a type definition renders it easier to identify, e.g., in what direction the
steering wheel is turned and how far, i.e., To check if it is turned far to the left,
st_hard_left_max <= angle && angle <= st_hard_left_min can be used.

C behavior is undefined if a value that is out of range of the corresponding
enumeration is passed. Thus, our second intention was that model checking tools
could easily deduce the actual value range and do not consider, e.g., the full range
of 32-bit integers in their stead. This will be discussed further in Sect. 4.3.

Do Not Expose Mutability. It is easy to write broken code when using
mutable structs, especially if they are used in order to communicate between
threads. Instead, we pass values to and from interface functions. This means, that
values are copies of the data which are not referenced from anywhere else in the
program and the receiver may do however they please with it. An example is that
the state from the light sub-system can be queried (for test cases). The returned
value will never change unless the test case chooses to do so; no action in the
ELS influences it. This also allows reading multiple output variables consistently.

On the other hand, internal variables that may change frequently, which are
not meant to be read by anyone else, are declared as local (using the static
keyword). They are always stored in the same “place” and may not be exposed;
in particular, there are no getter functions for these variables.

3.2 Timers

When writing code that takes time into account, one is easily tempted to access
the current time provided by the operating system. This is a bad idea when
such time properties shall be tested: then, tests would have to be enriched with
additional sleep statements in order to achieve proper timing for the situation
under test.

Instead, we introduced an artificial sensor that may be accessed by both
sub-systems. The sensor reports the current time in milliseconds, comparable to
a common unix timestamp. During test cases, this sensor is mocked and some
artificial time is provided. The code does not know anything about time, but
just reads a sensor returning an integer value.

The implementation only assumes that one cannot go back in time, no fur-
ther assumptions regarding the progression of time are made. In consequence,
the step functions can simply be called in a continuous loop, independent of the
computing speed and time needed for a single iteration. On fast hardware, there
might even be several executions within the same timestamp (e.g., if the reso-
lution is milliseconds) or timestamps might pass without an execution following

A Verified Low-Level Implementation 389

(e.g., when using nanoseconds). Mocking the sensor also has the advantage that
test scenarios, that would take several minutes of wall time, can be executed in
milliseconds instead.

If the entire piece of software was to be shipped, it would be trivial to swap
out the sensor: One only has to link an implementation that provides the real
time, which may be the provided by the operating system.

4 Validation and Verification

We tried to validate our implementation throughout the whole development
process by using test-driven development, as we will discuss in Sect. 4.1. In addi-
tion, we used the CBMC model checker to fully verify different properties of our
implementation directly on the C code as we will describe in Sect. 4.2.

4.1 Test-Driven Development Using Cmockery

We used test-driven development based on the provided scenarios. For this, we
rely on Google’s cmockery library2, which provides a unit testing framework and
allows mocking functions. Since we did not want to execute all tests in real-time,
we mocked functions that extract sensor data as well as the current time in our
test cases.

We used two different kinds of test cases for a first quick validation:

– The provided scenarios were automatized and used as integration tests.
– In addition, we implemented unit tests for all requirements given in the spec-

ification document. Of course, each unit test only covers a minimal scenario
that shows how the requirement is supposed to be understood and automa-
tizes the verification of that single scenario.

A snippet taken from the test case of the requirement ELS-3 is show in
Listing 1. The system is initialized to belong to an EU-based car with left-hand
drive and without any extras such as ambient light. Initialization and assertions
regarding the correctness of the initial state are not shown in the snippet. After-
wards, in lines 2 to 9, we update the sensors to the values they should hold at the
start of the test scenario and the code setting up the mocked functions is called.
In particular, we set the time sensor that is used to simulate the actual clock
as described in Sect. 3.2. Overall, the test setup phase ensures that our artificial
sensors inside the mock report the required values if and when the system reads
them.

Line 10 shows the difference between sensors and driver interaction: While
sensors have to be mocked in order to simulate an actual system, user input is
given directly. This corresponds to what will happen in an actual car: the system
has to react to user input immediately and at any time, while it can read sensor
data arbitrarily.

2 https://github.com/google/cmockery.

https://github.com/google/cmockery

390 S. Krings et al.

Listing 1. Test of Requirement ELS-3

1 // ignition: key inserted + ignition on

2 sensor = update_sensors(sensor, sensorTime, 1000);
3 sensor = update_sensors(sensor, sensorBrightnessSensor, 500);
4 sensor = update_sensors(sensor, sensorKeyState, KeyInIgnitionOnPosition);
5 sensor = update_sensors(sensor, sensorEngineOn, 1);
6
7 mock_and_execute(sensor_states);
8
9 sensor = update_sensors(sensor, sensorTime, 2000);

10 pitman_vertical(pa_Downward5);
11 mock_and_execute(sensor_states);
12
13 assert_partial_state(blinkLeft, 100, blinkRight, 0);
14 pitman_vertical(pa_ud_Neutral);
15 sensor = update_sensors(sensor, sensorTime, 2000);
16 mock_and_execute(sensor);
17
18 pitman_vertical(pa_Upward7);
19
20 progress_time_partial(2000, 2499, blinkLeft, 100, blinkRight, 0);
21 progress_time_partial(2500, 2999, blinkLeft, 0, blinkRight, 0);
22
23 int i;
24 for (i = 3; i < 6; i++) {
25 progress_time_partial(i * 1000, i * 1000 + 499,
26 blinkLeft, 0, blinkRight, 100);
27 progress_time_partial(i * 1000 + 500, i * 1000 + 999,
28 blinkLeft, 0, blinkRight, 0);
29 }

Line 13 asserts that the left blinker is on 100% and the right one is on
0% once the step function was executed after the user input was given. We
use assert partial state, since we only make an assertion regarding the two
variables blinkLeft and blinkRight, rather than making an assertion over all
state variables.

Finally, Lines 20–21 as well as 25–28 assert that for each millisecond in the
time interval, the provided values remain the same, i.e., that the step function
does not change output values during that time frame.

As can be seen, we have implemented different C macros to simplify test case
development:

– assert(partial) state which checks if the internal states of ELS and SCS
correspond to given assertions. The assertions can specify the state both
partially, as done in the listing, and fully.

– progress time(partial) combines assertions on the state with a progres-
sion of time as reported by the time sensor.

A Verified Low-Level Implementation 391

Validation Results. As expected, using unit and integration testing as parts of
a test-driven development workflow helped us during the initial development.
Using test-driven development provided the usual benefits:

– having to formulate test cases helped us gain an understanding of the require-
ments and how they are supposed to work,

– refactoring was made easier and more secure, and
– the implementation was closer to the actual specification from the start.

The fact that we are working with an actual implementation made test-driven
development come naturally. However, different ways of combining formal meth-
ods with test-driven development have been discussed [3] as well. In addition,
developing specifications using continuous testing has been suggested for former
ABZ case studies in the context of the B method [15,16].

Influences on Code. Using the macros above, our initial design of splitting sen-
sors, user input and actuators did not have to be adapted further to be testable.
Yet, it created a vast amount of code entirely dedicated to testing. Of 5223 source
code lines (which also contain a Makefile and code for state (graph) visualiza-
tion), 3786 lines are test code. Comments and blank lines are already excluded.

4.2 Model Checking Using CBMC

As stated above we used CBMC [11] to verify properties of our implementation
directly on the MISRA C code. CBMC is a model checker for programs written
in C. It uses bounded model checking [5] to verify a default set of properties,
mostly related to common programming errors, such as: memory safety, including
bounds checks and pointer safety, occurrence and treatment of exceptions, and
presence of undefined behavior due to C quirks.

Additionally, it can be used to verify user-given assertions stated as C-style
assertions using the macros in assert.h. Depending on where they are placed
in the code, they correspond to different kinds of properties commonly used in
state-based formal methods:

– If placed at the end of the loop implemented by the ELS and the SCS state
machines depicted in Fig. 1, assertions correspond to safety invariants that
have to hold in every state reachable by one of the subsystems.

– If placed anywhere inside the loop, assertions can be used as invariants on
intermediate states.

– If placed outside the loop, we can check if properties hold after a certain
number of iterations (controlled by CBMC’s unrolling preferences).

– By using additional variables, we can communicate between states and imple-
ment a lightweight verification of temporal properties. Of course, this is not
as powerful as LTL or CTL, as we have to rely on unrolling.

392 S. Krings et al.

Listing 2. Partial CBMC Output

State 59 file light/light-impl.c line 242 function light_do_step thread 0

--

ks=/*enum*/NoKeyInserted (00000000000000000000000000000000)

State 63 file light/light-impl.c line 242 function light_do_step thread 0

--

ks=/*enum*/KeyInIgnitionOnPosition (00000000000000000000000000000010)

State 65 file light/light-impl.c line 244 function light_do_step thread 0

--

engine_on=FALSE (00000000)

State 69 file light/light-impl.c line 244 function light_do_step thread 0

--

engine_on=TRUE (00000001)

4.3 Example: Verification of ELS-22

Requirement ELS-22 is a great example for an invariant. It states “Whenever
the low or high beam headlights are activated, the tail lights are activated, too”.
For this, we can add an assertion such as:

assert(implies(get_light_state().lowBeamLeft > 0,
get_light_state().tailLampLeft > 0 ||

get_light_state().tailLampRight > 0));

The disjunction in the second part of the implication is important for American
cars: as tail lamps are used for indicators, it is accepted behavior if one tail
lamp is temporary deactivated during a flashing cycle. When running CBMC, it
immediately came up with a counterexample. A snippet can be found in Listing 2.

The counterexample shows how the two system variables ks, i.e., the key
state, and engine on, i.e., the engine’s ignition state, change while our main
step function light do step is executed.

The main issue with such a counterexample is that each variable assignment,
function call and return from a function introduces a new state. While this
representation mimics the internal workings of the C code, it does not correspond
to the mental model: comparable to common state-based formal methods, we
regarded a state change to include multiple variables at once.

Hence, as we were only interested in comparing state variables per full itera-
tion of light do step, the output was barely readable to us (the counterexample
consists of more than 200 lines).

CBMC can optionally reduce the output by removing assignments that are
unrelated to the property. This did not work well for us, as the assignment of
signals for the low beam headlights was removed as well. We ended up manually

A Verified Low-Level Implementation 393

Table 2. Example trace violating ELS-22.

State variable Iteration 1 Iteration 2

key state NoKeyInserted KeyInIgnitionOnPosition

engine on FALSE TRUE

all doors closed FALSE TRUE

brightness 0 37539

speed 0 936

daytime light was on FALSE TRUE

low beam left 0 100

low beam right 0 100

last engine FALSE TRUE

last key state NoKeyInserted KeyInIgnitionOnPosition

last all door closed FALSE TRUE

writing state variables in a spreadsheet to comprehend the scenario. A (con-
densed) version can be found in Table 2. Here, the state changes between two
full iterations of our step function are shown, rather than changes of individual
variables during the execution. This representation aligned better to our mental
model of the implementation and was thus more helpful for debugging.

The error in our code was that, based on ELS-17, only the low beam head-
lights were activated due to activated daytime running light. This was not uncov-
ered by the test scenarios, since daytime light was only tested by night, where,
coincidentally, other triggers activated the tail lamps.

Verification Results. However, the assertion still failed to verify. Upon further
analysis of the property, we discovered a conflict between ELS-22 and hazard
blinking in Canadian and US cars. In those cases, hazard blinking deactivates
both tails lights for the dark cycle, thus violating the property. We extended our
assertion by checking our variable for blinking direction beforehand:

assert(implies(blinking_direction != hazard, /* old assertion */));

Afterwards, we were able to successfully verify the property using CBMC.

Influences on Code. At first glance, using CBMC only required to add assertions
to the code. As assertions are often introduced as part of understanding certain
scenarios, this does not change the modeling strategy itself. Yet, CBMC comes
with a flaw: it is not able to detect integer ranges given by enumerations. This
means it frequently finds errors with values for enumerations, that are out of
scope. As a consequence, one has to add assumptions about value ranges to the
code, which cannot be compiled to actual code. Another assumption that needs
to be added is that consecutive timestamps cannot get smaller. Thus, for useful
verification, some form of conditional compilation is required.

394 S. Krings et al.

5 Specification Ambiguities and Flaws

During development, we identified several shortcomings or ambiguities within
the specification. These issues were found during analysis of the requirements
and during implementing test cases for test-driven development. As we only per-
formed validation steps after implementation, the validation steps just uncovered
shortcomings of our own implementation and non-compliances w.r.t. the speci-
fication. Due to page limitations, we will only present some of them:

ELS-37 is somewhat broken or at least highlights an incompleteness in the
specification. For now, there is no way to discern whether an adaptive cruise
control is part of the vehicle; from the specification, we had to assume that it is
installed in every system. Then, according to SCS-1, there does not even have
to be a desired speed. We think that, in order to make sense at all, it rather
should be “is active” than “is part of the vehicle”. Also, this is the only part of
the specification that refers to an advanced cruise control.

ELS-42 does not specify what should happen in case of sub-voltage. The
only given information is that the adaptive high beam headlight is not available.
Should manual high beam headlight be triggered instead? Should the high beam
remain dark? This remains absolutely unclear.

ELS-19 contains a contradiction: first, it states that ambient lighting prolongs
already active low beam headlights. Later, it says that the headlamps “remain
active or are activated”. We think that some actions are reasonable to activate
the headlight even if it was not on before (e.g., opening the doors). Others
definitely should not activate the headlight (e.g., if the brightness falls below
the specified threshold, as passing cars and the setting sun might trigger the
brightness sensor). Also, it does not have any constraints regarding the light
rotary switch: if the switch is in the “off” position, we think the ambient light
should not activate at all. This requirement needs some serious polishing.

While currentSpeed is specified as a sensor in the ELS, it is not clear how the
SCS accesses this value. No sensor is provided according to the specification, and
only the brake pressure is mentioned as actuator but not the gas pedal. Thus, the
SCS as specified appears to only be responsible for determining the desired speed
but not for actually deploying it to the current speed? To our understanding,
the measured current speed should be a sensor to the SCS, let alone for the
possibility to ensure whether more acceleration is required to maintain it or not.

SCS-23 specifies a safety distance of 2.5 s · currentSpeed for the adaptive
cruise control when the current speed is below 20 km/h. It further specifies an
absolute distance of 2 m if both vehicles are standing. Assuming currentSpeed ∈
]0, 2.88[however, the safety distance according to SCS-23 is below 2 m and effec-
tively approaches 0 the closer the vehicle gets to a standstill. But once a stand-
still is reached, the safety distance is set to 2 m and thus is violated instantly. It
remains unclear whether these 2 m distance is meant as minimum or is intended
to delay the reaction to eventual acceleration of the vehicle in front.

SCS-28 references a maximum deceleration value, which was only described
for the adaptive cruise control in SCS-20 and SCS-21. We assume that it refer-
ences the same maximum deceleration of 5 m/s2. It further specifies the acoustic

A Verified Low-Level Implementation 395

Fig. 2. Ad-hoc visualization

signal which is to be played if the time to reach a standstill with maximum
deceleration (5 m/s2) is greater than the time until impact. This acoustic signal
however may overlap with the signal specification given in SCS-21.

6 Conclusions

To summarize, we have implemented a low-level version of the ABZ 2020 case
study in MISRA C, a language commonly used in the automotive industry. We
relied both on common programming techniques such as test-driven development
and formal verification using model checking. As we have not followed a fully
formal development method, our implementation can serve as a baseline for
comparison with the more formal approaches usually presented at ABZ.

We suspect that more rigorous approaches to software development will show
both advantages and disadvantages to our approach. In particular, our approach
stays close to the actual system and can easily be deployed to an actual car.
Furthermore, our code can be used for simulation and hardware-in-the-loop tests.

However, we certainly missed the expressiveness and mathematical clarity
that comes with more rigorous approaches. Compared to a formal method, we
could only do very lightweight verification of temporal properties and would

396 S. Krings et al.

certainly have favored to be able to model check LTL or CTL properties. Thus,
while we were able to verify our implementation to a certain degree, we suspect
that a more thorough approach would be able to provide stronger guarantees.

In particular, our approach has only very limited support for verifying tem-
poral properties (i.e., just by unrolling properties to a certain degree). Further-
more, we currently do not validate any properties on time constraints aside from
simulating an external clock in the test cases.

That aside, all state properties given in the specification could in theory
be verified using our approach even though we have not fully implemented all
of them. Furthermore, given that we can place assertions everywhere in our C
source code, we could reason about intermediate states as well.

Method and Tool Review. We are surprised how easy it was to implement the case
study in C, especially as none of the authors is a professional C developer. While
we were unsure during implementation, given our test harness and the results of
CBMC, we now have more confidence in the correctness of our implementation.

CBMC was a great tool that found counterexamples, e.g., to the requirement
ELS-22. Yet, we have to make the following observations: first, the output was
barely readable, i.e., 52 state transitions represent two high level states after the
initialization. As a result, we wrote our own state graph visualization tool based
on plantuml3 (cf. Fig. 2). Second, for the initial error, a simple assertion would
already have tripped the test case.

The majority of our time, we spent implementing test cases for the individual
requirements. Being aware of typical formal method workflows, we think that
this must be done in every case study. Otherwise, without using animation to
verify that the behavior is correct, one cannot have sufficient confidence in the
model. This, combined with the tooling that is available for C code, makes us
excited to see other case studies, and challenge them to name benefits of their
individual approaches, as we now know the extent of access to (semi)-formal
development the embedded software community has.

Nonetheless, we think these tools allow for interesting research for code gener-
ators: proven invariants on a high-level model could be compiled to C assertions.
Then, they could be verified on the low-level code as well. It remains open how
hard the translation process is and whether the power of these tools is sufficient.

References

1. MISRA C:2012 - Guidelines for the use of the C language in critical systems.
MISRA (2013)

2. General Specification of Basic Software Modules. AUTOSAR, Munich (2019)
3. Baumeister, H.: Combining formal specifications with test driven development. In:

Zannier, C., Erdogmus, H., Lindstrom, L. (eds.) XP/Agile Universe 2004. LNCS,
vol. 3134, pp. 1–12. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-27777-4 1

3 https://plantuml.com/.

https://doi.org/10.1007/978-3-540-27777-4_1
https://doi.org/10.1007/978-3-540-27777-4_1
https://plantuml.com/

A Verified Low-Level Implementation 397

4. Beck, K.: Test-Driven Development: By Example. Kent Beck Signature Book.
Addison-Wesley, Boston (2003)

5. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 14

6. Boogerd, C., Moonen, L.: Assessing the value of coding standards: an empirical
study. In: Proceedings ICSM, pp. 277–286. IEEE (2008)

7. Bowen, J.P., Hinchey, M.G.: Seven more myths of formal methods. IEEE Softw.
12(4), 34–41 (1995)

8. Cadar, C., Dunbar, D., Engler, D.R., et al.: KLEE: unassisted and automatic
generation of high-coverage tests for complex systems programs. In: Proceedings
OSDI, vol. 8, pp. 209–224. USENIX Association (2008)

9. Chalupa, M., Vitovská, M., Strejček, J.: SYMBIOTIC 5: boosted instrumentation.
In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 442–446.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89963-3 29

10. Chen, M., Ravn, A.P., Wang, S., Yang, M., Zhan, N.: A two-way path between
formal and informal design of embedded systems. In: Bowen, J.P., Zhu, H. (eds.)
UTP 2016. LNCS, vol. 10134, pp. 65–92. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-52228-9 4

11. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

12. Clarke, E., Kroening, D., Yorav, K.: Behavioral consistency of C and Verilog pro-
grams using bounded model checking. In: Proceedings DAC, pp. 368–371. IEEE
(2003)

13. Fathy, H.K., Filipi, Z.S., Hagena, J., Stein, J.L.: Review of hardware-in-the-loop
simulation and its prospects in the automotive area. In: Modeling and Simulation
for Military Applications, vol. 6228. SPIE (2006)

14. Hall, A.: Seven myths of formal methods. IEEE Softw. 7(5), 11–19 (1990)
15. Hansen, D., Ladenberger, L., Wiegard, H., Bendisposto, J., Leuschel, M.: Valida-

tion of the ABZ landing gear system using ProB. In: Boniol, F., Wiels, V., Ait
Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp. 66–79. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-07512-9 5

16. Hansen, D., et al.: Using a formal B model at runtime in a demonstration of the
ETCS hybrid level 3 concept with real trains. In: Butler, M., Raschke, A., Hoang,
T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 292–306. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-91271-4 20

17. Hatton, L.: Language subsetting in an industrial context: a comparison of MISRA
C 1998 and MISRA C 2004. Inf. Softw. Technol. 49(5), 475–482 (2007)

18. Houdek, F., Raschke, A.: Adaptive exterior light and speed control system (2020)
19. ISO: Road vehicles - functional safety (2011)
20. Short, M., Pont, M.J.: Assessment of high-integrity embedded automotive control

systems using hardware in the loop simulation. J. Syst. Softw. 81(7), 1163–1183
(2008)

21. Yang, M., Zhan, N.: Combining formal and informal methods in the design of
spacecrafts. In: Liu, Z., Zhang, Z. (eds.) SETSS 2014. LNCS, vol. 9506, pp. 290–
323. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29628-9 6

22. Yuan, J., Shen, J., Abraham, J., Aziz, A.: On combining formal and informal
verification. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 376–387.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63166-6 37

https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-319-89963-3_29
https://doi.org/10.1007/978-3-319-52228-9_4
https://doi.org/10.1007/978-3-319-52228-9_4
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-319-07512-9_5
https://doi.org/10.1007/978-3-319-91271-4_20
https://doi.org/10.1007/978-3-319-29628-9_6
https://doi.org/10.1007/3-540-63166-6_37

Short Articles of the PhD-Symposium
(Work in Progress)

A Correct by Construction Approach
for the Modeling and the Verification
of Cyber-Physical Systems in Event-B

Meryem Afendi(B)

Université Paris-Est Créteil, LACL, 94010 Creteil, France
meryem.afendi@u-pec.fr

Abstract. Cyber-Physical Systems (CPSs) connect the real world to
software systems through a network of sensors and actuators: physical
and discrete components interact in complex ways by involving different
spatial and temporal scales. One of the most common architectures for
CPSs is a discrete software controller which interacts with its physical
environment in a closed-loop schema where input from sensors is pro-
cessed and output is generated and communicated to actuators. We are
concerned with the construction and verification of the correctness of
such discrete controller using a correct by construction approach, which
requires correct integration of discrete and continuous models.

1 Introduction

In CPSs [1], the measurement of continuous behaviors is performed by sensors.
Ideally sensors have a continuous access to these measurements, which can be
captured by an abstract model of CPSs, called Event-Triggered system by Kopetz
in [2]. However, implementing such models is difficult in practice. Therefore, an
approach to develop CPSs is to introduce a more realistic model called Time-
Triggered system where sensors take periodic measurements [2]. Contrary to
Event-Triggered models, properties on Time-Triggered models are difficult to
verify since their controllers are discrete. Platzer et al. [3,4] use this approach to
model hybrid systems, which represent the most common mathematical models
for CPSs. They have proved that a Time-Triggered model is a refinement of an
Event-Triggered model, by using hybrid programs (HPs) [3] and an extension of
the differential dynamic logic (dL), called the differential refinement logic (dRL).
In addition to dL formulas, dRL introduces formulas of the form α ≤ β, α refines
β, with α and β denoting HPs. However dRL is not supported by any prover
and dRL formulas can only be manually proved, which heavily restricts its use,
especially in an industrial context. This is why we propose the development of
an approach that takes advantage of dRL and applies the reasoning of HPs in
Event-B [5], a formal method based on set theory, first-order logic and predicate
logic.

c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 401–404, 2020.
https://doi.org/10.1007/978-3-030-48077-6_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_31&domain=pdf
https://doi.org/10.1007/978-3-030-48077-6_31

402 M. Afendi

2 State of the Art

The development of techniques and tools to effectively design hybrid systems
has drawn the attention of many researchers [6–10]. Traditional approaches are
based on simulation tools like Matlab/Simulink [11]. Since these tools are time-
consuming and produce results tainted with uncertainty, these approaches can be
very expensive and difficult to apply. To overcome these limitations, several for-
mal approaches, which can be grouped into two categories, have been proposed:
model-checking-based approaches [6,7] and proof-based approaches [3,8–10], have
been proposed. Proof-based approaches use deductive verification to prove the
properties of hybrid systems. One of the strong points of these approaches is
that they support the description of any kind of hybrid systems. However, they
require significant effort and a high expertise in modelling and proof phases. A.
Platzer introduced in [3] a first-order dynamic logic in the domain of real (IR),
called dL, to specify hybrid systems and verify their correctness using its asso-
ciated proof calculus. The major advantage of this logic is its ability to handle
differential equations, even those with non-polynomial solutions. Moreover, dL
and its associated proof calculus are supported by two automatic formal veri-
fication tools, KeYmaera and its successor KeYmaera X [12]. In [10], Dupont
et al. introduced a proof-based approach to model and prove hybrid systems in
Event-B. They use the Theory plug-in of Event-B to define theories that handle
continuous aspects of hybrid systems such as differential equations. The behav-
ior of CPSs is specified by three Event-B models: System model that is used to
describe the continuous evolution of the physical part, State-System model that
refines the previous model by adding the evolution of the discrete part (the con-
troller) and Controlled-System model that refines State-System model by adding
the interaction between the physical part and the discrete part.

3 Proposed Approach

Our work is supported in part by the DISCONT project [13] funded by the
French National Research Agency (ANR). The objective of this project is to
elaborate a correct-by-construction method, based on Event-B, to specify hybrid
systems models. Two approaches are considered. The first one, developed by
Dupont et al. [10], is based on a translation of hybrid automata in Event-B. In
our approach we propose to model the high-level structure of hybrid programs in
Event-B, and more precisely the generic templates defined for modelling Event
and Time-Triggered systems in dRL to take advantages of its proof obligations.
To handle continuous aspects of hybrid systems in Event-B, we use the abstract
model System of Dupont et al. as a starting model, as well as their theories
developed to handle differential equations and continuous functions. To validate
our approach, we chose the Stop Sign case study [14] which deals with a stop sign
controller whose objective is to ensure the stopping of a car before a stop signal
SP . In this case study, the differential equation that represents the evolution
of the physical part is linear and can be easily solved. To handle more difficult

A Correct by Construction Approach for the Modeling and the Verification 403

differential equations we plan to integrate an external mathematical tool as a
back-end tool in Event-B associated tools.

4 Current Results and Future Work

Fig. 1. Approach schema.

So far, our approach has focused on
the most abstract level of hybrid
systems design where all transitions
are instantaneous, that is, duration
issues are not considered. It consists
of three models (see Fig. 1). Event-
Triggered model (EventTriggered Ctx
and EventTriggered M of Fig. 1) is a
generic abstract model designed to
specify and prove systems with con-
tinuous controllers in Event-B. It defines a formula safe used in dRL to rep-
resent the system’s safety envelope. To model the alternation between the con-
troller and the physical part as represented in HPs ((ctrl; plant)∗, where ctrl
denotes the discrete evolution, followed by the continuous evolution plant),
Event-Triggered model defines a variable exec that can take two values ctrl
and plant. In Event-B, the time must be explicitly handled. To be sure that this
explicit time will only be updated after the execution of the controller, we added
another value, prg, to exec. Therefore, our model follows the following structure:
init; (ctrl; plant; prg)∗.

To model Time-Triggered systems in Event-B, we designed a new model,
named Time-Triggered (TimeTriggered Ctx and TimeTriggered M of Fig. 1),
that refines the previous one. The sensors of such systems take periodic mea-
surements of physical state variables and the longest time between these sensors
updates is bounded by a symbolic duration ε. For this purpose, Time-Triggered
model defines a variable d to know whether the duration ε is reached or not.
Since the controller of such systems must make a choice that will be safe for
up to ε time, we replaced the formula safe by a new safety envelope named
safeEpsilon that depends on both the current discrete state and the time dura-
tion ε, in addition to the current physical state. Finally, to prove that TimeTrig-
gered M refines EventTriggered M, we establish that, during a control period
ε, safeEpsilon implies safe. Moreover, we must guarantee that the continuous
controller is able to execute exactly when safe is no longer satisfied. In addition,
in the Time-Triggered model, we must also guarantee that the system will not
exceed the domain of the safety envelope within time ε.

As future work, we plan to integrate Mathematica [15], a symbolic mathe-
matical computation system that resolves differential equations, as a back-end
tool in the Rodin platform to resolve differential equations. We also plan to
define a refinement of the Time-Triggered model to take into account duration
between the sending of continuous measurements by sensors and their process-
ing by the controller as well as duration between the sending of actions by the

404 M. Afendi

controller and their execution in order to get a model that corresponds better
to real CPSs, and consequently implements this concrete model.

References

1. Lee, E.A.: Cyber physical systems: design challenges. In: 2008 11th IEEE Inter-
national Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC), pp. 363–369. IEEE (2008)

2. Kopetz, H.: Event-triggered versus time-triggered real-time systems. In: Karshmer,
A., Nehmer, J. (eds.) Operating Systems of the 90s and Beyond. LNCS, vol. 563,
pp. 86–101. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0024530

3. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason. 41(2),
143–189 (2008)

4. Loos, S.M., Platzer, A.: Differential refinement logic. In: 2016 31st Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–10. IEEE
(2016)

5. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

6. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: a model checker for hybrid
systems. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 460–463. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-63166-6 48

7. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. In:
Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31954-2 17

8. Butler, M., Maamria, I.: Practical theory extension in Event-B. In: Liu, Z., Wood-
cock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods. LNCS, vol.
8051, pp. 67–81. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
39698-4 5

9. Banach, R., Butler, M., Qin, S., Verma, N., Zhu, H.: Core hybrid Event-B I: single
hybrid Event-B machines. Sci. Comput. Program. 105, 92–123 (2015)

10. Dupont, G., Aı̈t-Ameur, Y., Pantel, M., Singh, N.K.: Proof-based approach to
hybrid systems development: dynamic logic and Event-B. In: Butler, M., Raschke,
A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 155–170.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4 11

11. Sanfelice, R., Copp, D., Nanez, P.: A toolbox for simulation of hybrid systems
in Matlab/Simulink: Hybrid equations (HyEQ) toolbox. In: Proceedings of the
16th International Conference on Hybrid Systems: Computation and Control, pp.
101–106 (2013)

12. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an
axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp,
A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21401-6 36

13. ANR-17-CE25-0005: DISCONT ANR project (2017). https://discont.loria.fr
14. Quesel, J.-D., Mitsch, S., Loos, S., Aréchiga, N., Platzer, A.: How to model and

prove hybrid systems with KeYmaera: a tutorial on safety. Int. J. Softw. Tools
Technol. Transfer 18(1), 67–91 (2016)

15. Wolfram, S.: The Mathematica, 5th edn. Wolfram Media, Champaign (2003)

https://doi.org/10.1007/BFb0024530
https://doi.org/10.1007/3-540-63166-6_48
https://doi.org/10.1007/978-3-540-31954-2_17
https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1007/978-3-319-91271-4_11
https://doi.org/10.1007/978-3-319-21401-6_36
https://discont.loria.fr

Improving Trustworthiness of Self-driving
Systems

Fahad Alotaibi(B)

ECS, University of Southampton, Southampton, UK
faa2n19@soton.ac.uk

1 Introduction

Self-Driving Vehicles (SDVs) are considered to be safety-critical system. They
may jeopardize the lives of passengers in the vehicle and people in the street, or
damaging public property such as the transportation infrastructure. According
to the National Transportation Safety Board report [1] of an Uber self-driving
crash, the accident was caused by the internal components of SDVs when the
AI module failed to detect a victim. The autonomous system was implemented
to give a human driver control of a vehicle on the unmanaged areas; however,
the driver was distracted and did not react within the appropriate time.

In order to ensure the safety of SDVs, properties of the system must
be demonstrated, especially the interactions between autonomous system and
human driver in performing driving tasks. Event-B would help to emphasize the
properties of the system and ensure a safe transition among multiple components
of that system. Event-B uses a variety of extensive tools to support both theorem
proving and model checking. According to a survey of formal verification tools
[2], Event-B and its toolset (Rodin) provide a useful technique to support the
goals of a correct-by-construction design. Therefore, Event-B and its extensive
tools can be used to address issues related to SDVs.

2 Problems, Aims, and Objectives of the Research

Problems: Developers of SDVs are faced with one of the main challenges, specif-
ically, establishing techniques for verifying safety properties. There are
three problems related to SDVs from the safety engineering perspective. The
challenge in ensuring safety in the SDV starts from (1) the complexity of the
autonomous system, (2) the interactions between autonomous functions and the
human driver, and (3) the ambiguous safety constraints. Firstly, the complex-
ity of SDVs system is determined by the automation level and its autonomous
functions. According to SAE International [3], the levels of autonomy are classi-
fied from 0–5. The automation levels 1 to 4 (semi-automation) involve a human
driver within the driving tasks, while automation level 5 (full automation) does
not engage a human driver within the driving tasks. Secondly, based on the level
of autonomy, the human driver and autonomous system may work together to

c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 405–408, 2020.
https://doi.org/10.1007/978-3-030-48077-6_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_32&domain=pdf
http://orcid.org/0000-0001-8545-907X
https://doi.org/10.1007/978-3-030-48077-6_32

406 F. Alotaibi

perform driving tasks. Therefore, ensuring a secure transition of vehicle control
between a human driver and the autonomous system is an important aspect.
Thirdly, due to the variety of scenarios and faults that might occur in the
SDV system, gathering the safety constraints to ensure the functionality of the
autonomous system is a challenging task.

Aim and Objectives: The main aim of this research is to improve the trust-
worthiness of SDVs by proposing a new methodology . This aim can be
split into a set of objectives as follows. The first objective is to reconsider and
analyse the taxonomy requirements [3] in order to identify the safety require-
ments for the autonomous functions of SDVs on different levels of automation.
The second objective focuses on the interaction among different components
of an SDV at the system level in order to find the potential relationships among
these components, especially when a human driver component and autonomous
controller component frequently take control of the vehicle. The third objec-
tive deals with the input and output of autonomous functions and their relation-
ships in order to identify the safety constraints for the autonomous functions.

3 The Current Development and Related Works

3.1 The General Approaches of Using Formal Methods Within
the Autonomous System

Due to the complexity of the autonomous system architecture, there are many
approaches that have been developed to verify and validate a system from the
low- or high-level perspective. At the high level, the concept of a rational agent is
used to focus on the autonomous controller, who is responsible for making deci-
sions, and simplify the complexity of SDV system. A rational agent is a software
that can perceive its environment via sensors and can explain its intentions [4].
The set of rules can be defined and formally verified into a rational agent entity
[4]. In order to use the concept of the rational agent, the logical requirements
(rules) must be defined. Consequently, formal methods such as LTL (linear tem-
poral logic) can be used to verify the rational agent software.

There are some work in the literature that address the low-level issues of the
SDV. The implementation of an SDV mainly relies on machine learning (ML)
and its deep neural network (DNN). Although ML algorithms would perform
with high accuracy in the image classification task, the work of ML might be
affected by the input perturbations of image and lead to an incorrect classifica-
tion. The input perturbations can be anything such as a ‘shadow’ and ‘weather’
which can affect the functionality of the SDV. This kind of manipulation is
known as ‘adversarial perturbations’ [5]. Therefore, Huang et al. [5] proposed
an automated verification framework for proving the adversarial robustness of
the DNN. This approach is based on applying constraints through the layers
of the DNN in order to prevent any misclassifications that might be caused by
the adversarial examples. These constraints bound the regions of inputs for all
points that are related to the same classification result. Satisfiability Modulo

Improving the Trustworthiness of Self-driving Systems 407

Theory (SMT) is used to develop this verification framework. However, in order
to apply this type of approach, the diameter of each region that belongs to a
specific classification result must be known, and also the potential adversarial
examples must be identified as well.

3.2 The Approaches of Using Event-B for Autonomous System

Constructing the Event-B Models at the System Level for Ensuring
Interactions Between the Human Driver and Autonomous Systems:
The inspired details of this approach are obtained from the cookbook [6] for
the modelling and refinement of control systems. The guidelines mentioned in
the cookbook suggest that the phenomenon of a system can be divided into
two categories: 1) variables that identify between environment and controller, 2)
variables that represent the interaction between human operators and the envi-
ronment. There were two contributions related to this approach for modelling
the functionality of the autonomous controller: a cruise control system, and lane
departure warning system (LDWS) [7]. These autonomous functions belong to
a lower level of automation (Level-1). However, reconsidering the ideas that
were mentioned in [6,7] might help in either analysing the features of taxonomy
requirements or modelling forward to the next automation level.

Constructing the Event-B Models Based on the Safety Constraints
of an Autonomous Function: The SDV must implement fail-safe mecha-
nisms, often known as the ‘policing function’ [8]. The concept of fail-safe mech-
anisms focuses on the functional requirements and is part of the system require-
ments. The policing function can check output values of autonomous functions
such as an ML model at runtime. The important step of using a validation tech-
nique such as a policing function is to demonstrate the safety constraints for the
autonomous functions, and are used either to validate the result of autonomous
functions or detect failures in the runtime. According to Hoang et al. [8], the
concept of metamorphic relationships that aim to discover an expected relation-
ship between inputs and outputs can be used to identify the safety constraints
which can be used to build a validation model.

4 Proposed Approach and Future Work

Finding a novel method to extract and identify either the safety constraints or
the validation requirements for an autonomous function would be an important
task. In order to achieve that, there are three layers that would be used to
simplify the complexity of the SDV system as follows: the specification of the
features layer, the decision mechanism layer, and the actuation layer. The aim
of specification layer is to specify features that would be considered for making a
driving decision by modifying the vehicle control variables at the actuation layer.
Due to the driving decision might be made by the human-driver or autonomous
controller, the local and global features are introduced. The local features focus

408 F. Alotaibi

on the autonomous functions and its safety constraints, while the global features
consider the entire system and try to hold features that might be used when an
autonomous function can not perform a driving task.

The local features can be identified from the in-deep knowledge about the
expected output of autonomous function. For example, the centring lane lines
function tries to keep the vehicle in the road lanes by identifying the lane bound-
aries and modifying the vehicle control variables. Therefore, ‘left and right lane
boundary ’ and ‘Yaw angel ’ would be the local features which be controlled and
monitored by the local monitor function in order to validate the work of the
autonomous function. The local monitor function involves the constraints and
procedures that can be used when an autonomous function cannot work as
expected. For example, when an autonomous function cannot detect the lane
lines, the local monitor function may need to notify the SDV system to use a
global feature.

The global features such as ‘Driver monitored feature’ and ‘emergency stop’
might be applied to ensure the safety of system and avoid any potential mistakes
of autonomous function. According to the taxonomy requirements (SAE) [3], the
automation levels 1–4 require a human-driver in the loop of automation system.
Therefore, it is necessary to implement a system for measuring the awareness
level of a human-driver by installing a camera inside a vehicle and monitoring
the eyes of driver. The global monitor function would hold global features for
establishing a safe transition to the human-driver when an autonomous controller
fails to preform the driving task.

Finally, Event-B models can be constructed based on the local and global
monitor functions in order to emphasize the main properties of the SDV system.
The next step is to apply the proposed approach to a practical case study. We
will extend the work of the LDWS [7] to move forward into the next automation
level (Level-2) where a monitored human driver feature is required.

References

1. National Transportation Safety Board (NTSB) (2018). Preliminary Report
HWY18MH010

2. Armstrong, R.C., Punnoose, R.J., Wong, M.H., Mayo, J.R.: Survey of Existing Tools
for Formal Verification (2014). https://doi.org/10.2172/1166644

3. SAE J3016: Taxonomy and definitions for terms related to on-road motor vehicle
automated driving systems. Revision September 2016, SAE International

4. Fisher, M., Dennis, L., Webster, M.: Verifying autonomous systems. Commun. ACM
56(9), 84–93 (2013). https://doi.org/10.1145/2494558

5. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. Technical report (2016). http://arxiv.org/abs/1610.06940

6. Butler, M.: Modelling Guidelines for Discrete Control Systems, Deploy Deliverable
D15, D6.1 Advances in Methods Public Document, Chapter 8 (2009)

7. Yeganefard, S., Butler, M.: Structuring functional requirements of control systems
to facilitate refinement-based formalisation. ECEASST 46, 8–11 (2011). https://
eprints.soton.ac.uk/337259/1/695-2096-1-PB.pdf

8. Hoang, T.S., Sato, N., Myosin, T., Butler, M., Nakagawa, Y., Ogawa, H.: Policing
functions for machine learning systems (2018)

https://doi.org/10.2172/1166644
https://doi.org/10.1145/2494558
http://arxiv.org/abs/1610.06940
https://eprints.soton.ac.uk/337259/1/695-2096-1-PB.pdf
https://eprints.soton.ac.uk/337259/1/695-2096-1-PB.pdf

A Formal Approach for the Modeling
of High-Level Architectures Aligned

with System Requirements

Racem Bougacha(B)

Institut de Recherche Technologique Railenium, 59300 Famars, France
racem.bougacha@railenium.eu

1 Problem Statement and Motivations

IRT Railenium (http://railenium.eu/fr/) is a test and applied research center
for the rail industry in France. One of its three R&D and innovation programs
aims in particular to provide the technological tools and bricks necessary for the
development of the Autonomous Train. This Autonomous Train program will
thus address signaling, control-command, driving and railway operating systems.
The Autonomous Freight Train project under the Autonomous Train program
with the cooperation of several partners (“SNCF”, “ALSTOM”, “Hitachi Rail
STS France”, “ALTRAN” and “APSYS”) targets performance improvements of
the system thanks to the implementation of autonomy in railways operations.
This system is classified as Cyber-Physical System (CPS) and depends more
and more on effective solutions that can address heterogeneity and interplay
of physical and software elements. In particular, modeling languages used for
specifying CPS should incorporate, in a consistent manner, the essential concepts
from multiple engineering disciplines that take part in the design of such systems.

In response to this need, our work addresses (1) the lack of a common mod-
eling language between these disciplines, which can hamper reasoning about
system properties. This issue is stemming from, on the one hand, several model-
ing languages specified for designing CPS that have been standardized but none
of them provide the full range required to deal effectively with the heterogene-
ity of CPS elements. On the other hand, complex systems such as autonomous
freight trains may include many concerns from different modeling formalisms.

A second issue addressed in our work is (2) the non-existence of a holistic
approach for designing Autonomous Freight Trains from a high-level architec-
ture to a formal specification where it can be possible to check the compliance
with system requirements. Therefore, this issue could be divided into two sub-
issues. The first sub-issue is deduced from the fact that architecture models
actually used are semi-formal and/or informal, so their specifications are still
no valid because they are not proved. Thus, formal specifications are needed in
order to guarantee the consistency and the completeness of architecture models
specification.

c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 409–413, 2020.
https://doi.org/10.1007/978-3-030-48077-6_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_33&domain=pdf
http://railenium.eu/fr/
https://doi.org/10.1007/978-3-030-48077-6_33

410 R. Bougacha

The quality of a system is the main measure of its success, that depends on the
degree to which it fulfills its requirements. Requirements modelling is an impor-
tant activity in the process of designing and managing high-level architectures
of systems. From this context the second sub-issue is raised, i.e alignment links
between requirements models, domain models and architecture models should
be established. These semantic links can be the support to prove the compliance
of an architecture specification with the expression of system requirements.

From this perspective, we formulate the following research questions:

– RQ1: Can we provide a modeling language for High-Level architectures of
Autonomous Freight Train?

– RQ2: What are the criteria for defining such a language?
– RQ3: How can we provide a formal specification of High-Level Architectures

to verify its consistency?
– RQ4: How can we establish and verify alignment links between High-Level

Architectures and System Requirements?

2 Related Work

Several architecture modeling languages have been proposed to reason about het-
erogeneous properties of CPS, and assessing multidisciplinary design languages.
The authors of paper [1] propose an approach to combine SysML [2] and AADL
[3]. These formalisms are two modeling languages specified for designing Inte-
grated Control Systems (ICSs). These languages have been standardized but
none of them provides the full range required to deal effectively with more gen-
eral kinds of complex systems like CPS. In fact, SysML supports requirements
engineering, traceability, and modeling of diverse physical phenomena. On the
other hand, AADL is oriented to model real-time embedded systems. It provides
software-to-hardware bindings allowing analyses of different system properties
such as performance, timing, etc. This combination consists in extending SysML
using the UML extension mechanism profiles to cover all AADL concepts and is
called Extended SysML for Architecture Analysis Modeling (ExSAM).
This approach allows to design high-level architectures of complex systems. How-
ever, in this approach only semi-formal graphical models can be produced and
thus no formal verification can be carried out. Furthermore, they do not per-
mit to specify alignment links that can be used to ensure the compliance of
architecture models with system requirements.

Authors in [5] proposes a multi approach for real-time systems specification
and design. The purpose of the work is to couple MARTE [4] with the Event-B
method. Papers [6] and [7] consider a meaningful subset of AADL which allows
to specify respectively a class of embedded control systems and AADL data port
protocols, and assign this subset a semantics in terms of Event-B refinements and
model decomposition. Despite these approaches provide formal specifications,
they do not consider high-level architectures but propose a temporal model of
tasks execution on GPU.

A FA for the Modeling of High-Level Architecture Aligned with SR 411

Requirements Engineering (RE) is defined as the branch of software engi-
neering which is focused on real-world goals, requirements development and
management. [8] presents a review on Goal-Oriented Requirements Engineer-
ing (GORE) methods. This kind of methods defines goals as objectives that
the system under consideration should achieve. [9] and [10] present an approach
which aims to combine requirements engineering methods with formal methods.
The main idea is to specify goal models by using a SysML-based language [2]
extended with concepts of the KAOS goal language [8], to specify domain models
by using an ontology-based language, and then to map them into an Event-B
specification. However, these methods are just concerned by requirements models
and do not provide formalism to specify system architecture models.

3 The Proposed Approach and Methodology

We propose to define a method for modeling high-level architectures for
autonomous freight trains that integrates concepts from the different engineer-
ing disciplines that take part in the design process of such systems. The method
needs to be multiviews: graphical in order to be validated by all the stakehold-
ers and formal in order to verify both architecture models and their compliance
with system requirements. This is a three-steps method based on the MDE app-
roach shown in Fig. 1. In the first step, we propose to combine three graphical
modeling languages: SysML, AADL and MARTE, in order to provide the full
range required to deal effectively with Autonomous Freight Train concerns such
as timing properties, non-functional properties, software-to-hardware bindings,
etc. The second step consists in formalizing the concepts of the graphical lan-
guage with Event-B in order to obtain an Event-B specification of architecture
models. Thus their correctness and consistency can be proved. We have chosen
the Event-B method since it is a formal method, widely used in industry, based

Fig. 1. The proposed approach

412 R. Bougacha

on refinement and decomposition mechanisms and supported by tools (provers,
model-checkers, animators...). In the final step, we propose to specify alignment
links between requirements models and high-level architecture models in order
to prove that all the industrial stakeholders requirements are satisfied by high-
level architecture models. We will reuse the SysML/KAOS method to produce
requirements models (goal and domain models) and the corresponding Event-B
specifications.

4 Current Assessment and Future Work

The current focus of this doctoral work, which is in its first year, is on the
design of a graphical language for modeling high-level architectures. This first
step attempts to answer RQ1 and RQ2 (step 1 of Fig. 1). The proposed mod-
eling approach will be applied on industrial case studies. For instance we will
consider the standard logical system architectures composed of three subsystems:
on-board subsystem, trackside subsystem and communication subsystem, from
the Autonomous Freight Train project. These case studies will be validated by
the project partners (system, sub-system and requirements engineers) and veri-
fied by design models tools (for instance AADL verification tools) and Event-B
verification tools (for instance ProB model checker and Atelier B prover).

References

1. Behjati, R., Yue, T., Nejati, S., Briand, L., Selic, B.: An AADL-based SysML profile
for architecture level systems engineering: approach, metamodels, and experiments.
ModelME! report, 2001-03 (2011)

2. OMG systems modeling language (2005). http://www.omgsysml.org/
3. Feiler, P.H., Gluch, D.P., Hudak, J.J.: The architecture analysis & design lan-

guage (AADL): an introduction (No. CMU/SEI-2006-TN-011). Software Engineer-
ing Institute, Carnegie Mellon University, Pittsburgh, PA (2006)

4. OMG, UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded
systems, Beta 2 (2008)

5. Zouaneb, I., Belarbi, M., Chouarfia, A.: Multi approach for real-time systems spec-
ification: case study of GPU parallel systems. IJBDI 3(2), 122–141 (2016)

6. D’Souza, M., Ramesh, S., Satpathy, M.: Architectural semantics of AADL using
Event-B. In 2014 International Conference on Contemporary Computing and Infor-
matics (IC3I), pp. 92–97. IEEE (2014)

7. Filali-Amine, M., Lawall, J.: Development of a synchronous subset of AADL. In:
Frappier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves, S. (eds.) ABZ 2010.
LNCS, vol. 5977, pp. 245–258. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-11811-1 19

8. Van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In:
Proceedings Fifth IEEE International Symposium on Requirements Engineering,
pp. 249–262. IEEE (2001)

9. Matoussi, A., Gervais, F., Laleau, R.: A goal-based approach to guide the design
of an abstract Event-B specification. In: ICECCS 2011, pp. 139–148 (2011)

http://www.omgsysml.org/
https://doi.org/10.1007/978-3-642-11811-1_19
https://doi.org/10.1007/978-3-642-11811-1_19

A FA for the Modeling of High-Level Architecture Aligned with SR 413

10. Tueno Fotso, S.J., Mammar, A., Laleau, R., Frappier, M.: Event-B expression
and verification of translation rules between SysML/KAOS domain models and B
system specifications. In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.)
ABZ 2018. LNCS, vol. 10817, pp. 55–70. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-91271-4 5

https://doi.org/10.1007/978-3-319-91271-4_5
https://doi.org/10.1007/978-3-319-91271-4_5

Automatic Generation of DistAlgo
Programs from Event-B Models

Alexis Grall1,2(B)

1 LORIA UMR 7503, Vandœuvre-lès-Nancy, France
alexis.grall@loria.fr

2 Université de Lorraine, Vandœuvre-lès-Nancy, France

1 Motivations

The development of distributed algorithms offers challenges in verifying that
they meet their specifications. The correct-by-construction approach consists
in developing a model of the algorithm before transforming this model into a
program. This transformation can introduce errors that were not present in the
model. Our objective is to develop an automatic transformation of distributed
algorithm Event-B [2] models into DistAlgo [7] programs. The Event-B language
combines refinement techniques and state based modelling and is adapted to
the verification of distributed systems [3,12]. The DistAlgo language is a high-
level programming language for distributed algorithms. Its high-levelness makes
DistAlgo closer to the mathematical notations of Event-B and improves the
clarity of DistAlgo programs. A verified automatic transformation ensures that
the properties proved in the model still hold in the program and facilitates the
developing process.

2 Related Works

Code generation from Event-B models has been a subject of interest in the B
community. The B0 [11] language defines constraints on classical B for code
generation and an equivalence between B types and usual programming types
such as arrays, integers etc. B0 can be translated to Ada, C, C++ using the Ate-
lierB [4] tools. In Event-B, several plugins have been developed for the Rodin [10]
software. The EB2ALL [8] framework provides a list of transformations of Event-
B models into classical programming languages (C, C++, Java, . . .) and this
work can be considered as adding a new target programming language but with
the target of a distributed program. Automatic generation of distributed pro-
grams was proposed in ViSiDiA [1,9] together with Event-B with the plugin
B2VISIDIA [12] relating the local Event-B model and a ViSiDiA program. A
Tasking Event-B [6] plugin for Rodin extends the Event-B language to provide
features for specifying concurrent multi-tasking systems. The plugin enables the
decomposition of a model into several machines performing tasks and provides
a tool support for translating a tasking specification into Ada code. However, a
global state is preferable for verifying global properties on distributed algorithms.
c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 414–417, 2020.
https://doi.org/10.1007/978-3-030-48077-6_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_34&domain=pdf
https://doi.org/10.1007/978-3-030-48077-6_34

Automatic Generation of DistAlgo Programs from Event-B Models 415

AM
Service machine

Service
context

InM
Induction machine

Induction
context

CoM
Comm. machine

Communication
context

... ...

CM
Implementation

machine

CONTEXT-CM
Implementation

context

Event-B specification

problem
(contract)

C1.da,C2.da, . . . , Cn.da
DistAlgo Components

program.da

DistAlgo Program

REFINES

specification

REFINES

REFINES

REFINES

transformation

configuration

verification

SEES

SEES

SEES

SEES

EXTENDS

EXTENDS

EXTENDS

EXTENDS

Fig. 1. The global methodology for correct-by-construction distributed algorithms.

3 General Approach

The general methodology, presented in Fig. 1, starts by stating the problem to
solve by listing the requirements attached to the problem. One has then to specify
the abstract Event-B machine AM translating the main requirements for the
given problem. The process is progressing by a list of formal Event-B refined
machines leading to a final concrete Event-B machine and context, CM and
CM-CONTEXT. Finally, the translations of these final context and machine
into DistAlgo components and programs are generated in two main steps: the
automatic transformation of CM and CM-CONTEXT into a DistAlgo pro-
gram and the possible tuning of the obtained DistAlgo components using some
auxiliary configurations (e.g. the number of processes).

416 A. Grall

The final pair of machine and context, CM and CM-CONTEXT are sup-
posed to be specified in a language LB (Local Event-B) which restricts the Event-
B language to models of distributed algorithms that are local, which means that
the constants and variables are local to processes (they are associated to pro-
cesses.) and that events only use local variables and constants of one process.
Transformations of this LB model into a DistAlgo program are based on the
extraction of information concerning the network and the process classes from
the context CONTEXT-CM, and on the analysis of the localization of the dif-
ferent variables and events of the machine CM. Constants whose values are not
defined in the context are instantiated during the configuration phase.

4 Development of the Transformation

The LB language [5] defines a distributed algorithm in Event-B as a collection of
processes with a specific local algorithm for each process. We derive the general
architecture of the distributed algorithm from the context CONTEXT-CM
which specifies the topology of the network, the processes, the local constants of
the processes and the communication operations. We derive the local algorithms
from the machine CM which specifies the local variables of the processes and the
variable specifying the state of the channels. These variables define the global
state of the distributed algorithm while the local state of a process is defined
by the values of its local variables and the states of the channels involving this
process. The transition relation between the local states of a process are then
defined by the local events (of this process) in the machine CM. An additional
variable pc in the machine helps specifying the flow of the algorithm and can be
used for constructing control flow graphs describing the local algorithms.

The transformation rules add constraints on LB that are specific to DistAlgo
and that ensure that the expressions used in the model can be translated into
DistAlgo by specifying a correspondence between Event-B and DistAlgo types.
The transformation into DistAlgo generates programs based on the local control
flow graphs, therefore giving a tool to help understanding the program.

Refined models of distributed algorithms have been manually and successfully
transformed into DistAlgo programs following the given transformation rules.
These models describe a simple communication between two processes, a simple
communication algorithm between processes in a star network and the election
in a connected acyclic network.

We need to ensure that any safety property that was proved with invariants
in an Event-B model still holds in the DistAlgo program obtained from the
transformation of the model, i.e. the soundness of the transformation. We have
already shown the soundness of the translation for an earlier version of LB, i.e. a
program obtained by the transformation refines the machine it is obtained from.
We have thus, that for any possible execution of the program, an equivalent
behaviour can be observed for the model machine. However, the completeness
of the transformation is not guaranteed when no restrictions are imposed on the
corresponding programs.

Automatic Generation of DistAlgo Programs from Event-B Models 417

5 Future Work

The implementation of the transformation as a Rodin plugin is currently a work
in progress with so far encouraging results on simple cases. The proof of the
soundness of the transformation remains to be completed and modified with
respect to the current version of the transformation. Other future work includes
the extension of LB to enable more possibilities in modelling, such as enabling the
broadcast of messages, the use of user defined functions/libraries in the resulting
programs or the addition of configurable timeout delays. Additional case stud-
ies of parallel computing are to be refined into LB and transformed. These case
studies will be an occasion to compare the performance of the automatically gen-
erated program with an hand written version of this program. Long term future
work includes the derivation of other transformations into other programming
languages from the transformation to DistAlgo.

References

1. Abdou, W., Abdallah, N.O., Mosbah, M.: Visidia: A java framework for design-
ing, simulating, and visualizing distributed algorithms. In: 2014 IEEE/ACM 18th
International Symposium on Distributed Simulation and Real Time Applications,
pp. 43–46. IEEE (2014)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

3. Abrial, J.R., Cansell, D., Méry, D.: A mechanically proved and incremental devel-
opment of IEEE 1394 tree identify protocol. Formal Aspects Comput. 14(3), 215–
227 (2003)

4. Atelier, B.: The Industrial Tool to Efficiently Deploy the B Method. http://www.
atelierb.eu/en/

5. Cirstea, H., Grall, A., Méry, D.: Generating Distributed Programs from Event-B
Models. Technical report, Loria & Inria Grand Est, March 2020. https://hal.inria.
fr/hal-02496623

6. Edmunds, A., Butler, M.: Tasking Event-B: an extension to Event-B for generating
concurrent code. In: PLACES 2011, February 2011

7. Liu, Y.A., Stoller, S.D., Lin, B., Gorbovitski, M.: From clarity to efficiency for
distributed algorithms. In: ACM SIGPLAN Notices, vol. 47, pp. 395–410. ACM
(2012)

8. Méry, D., Singh, N.K.: EB2C : A Tool for Event-B to C Conversion Support (2011–
2019). http://eb2all.loria.fr

9. Mosbah, M.: VISIDIA (2009). http://visidia.labri.fr
10. Project RODIN: Rigorous open development environment for complex systems

(2004). http://rodin-b-sharp.sourceforge.net/. 2004-2007
11. Tatibouët, B., Requet, A., Voisinet, J.-C., Hammad, A.: Java card code generation

from B specifications. In: Dong, J.S., Woodcock, J. (eds.) ICFEM 2003. LNCS,
vol. 2885, pp. 306–318. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-39893-6 18

12. Tounsi, M., Mosbah, M., Méry, D.: From event-b specifications to programs for
distributed algorithms. IJAACS 9(3/4), 223–242 (2016). https://doi.org/10.1504/
IJAACS.2016.079623

http://www.atelierb.eu/en/
http://www.atelierb.eu/en/
https://hal.inria.fr/hal-02496623
https://hal.inria.fr/hal-02496623
http://eb2all.loria.fr
http://visidia.labri.fr
http://rodin-b-sharp.sourceforge.net/
https://doi.org/10.1007/978-3-540-39893-6_18
https://doi.org/10.1007/978-3-540-39893-6_18
https://doi.org/10.1504/IJAACS.2016.079623
https://doi.org/10.1504/IJAACS.2016.079623

Event-B: From Systems to Sub-systems
Modeling

Kenza Kraibi(B)

Institut de Recherche Technologique Railenium, 59300 Famars, France
kenza.kraibi@railenium.eu

1 Introduction

Event-B [3] is a formal method that allows the verification of critical systems
properties. This method is based on the refinement reasoning which consists in
adding more details step by step from the abstraction. Modeling critical systems
in Event-B requires several steps of refinement in order to take into account all
the details of the specification. Therefore, the whole system modeling and proof
become more difficult because of the huge size of data and system properties like
safety properties described in the system specification.

PRESCOM project (Global Safety Proofs for Modular Design/PREuves de
Sécurité globale pour la COnception Modulaire) is an IRT Railenium project
in partnership with Clearsy Systems Engineering and under the supervision of
Gustave Eiffel University (UGE/COSYS/ESTAS) and Polytechnic University of
Hauts-de-France (UPHF/LAMIH). As part of this project, the goal of our thesis1

is to answer the industrial need, i.e. find a solution to the models voluminosity
issue in Event-B when we put the whole specification in the model progressively
by the refinement mechanism. This conduces to: study what exists in the liter-
ature; apply these approaches on a railway case study, analyze the results and
identify their limitations. Based on these identified limitations, we propose a new
approach of decomposition called the decomposition by refinement.

2 Related Work and Analysis

Many approaches have been proposed to deal with the Event-B decomposition
issue, among others one finds: the shared variable decomposition and the shared
event decomposition. The shared variable decomposition [4], A-style, consists in
distributing events of a system in several sub-systems. This approach proposes to
manage shared variables between several events in different sub-systems. It is also
used for decomposing parallel programs [6]. The shared event decomposition [5],
B-style, is based on the variables partition in each sub-system. Each sub-system

1 This thesis is supervised by: Rahma Ben Ayed (IRT Railenium), Joris Rehm
(Clearsy), Simon Collart-Dutilleul (UGE/COSYS/ESTAS), Philippe Bon (UGE/
COSYS/ESTAS) and Dorian Petit (UPHF/LAMIH).

c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 418–422, 2020.
https://doi.org/10.1007/978-3-030-48077-6_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_35&domain=pdf
https://doi.org/10.1007/978-3-030-48077-6_35

Event-B: From Systems to Sub-systems Modeling 419

contains the chosen variables, and the shared events between the resulting sub-
systems are defined in two different signatures for each sub-system. In addition
to these two approaches, one finds others such as generic instantiation [4], mod-
ularization [7], fragmentation and distribution [10].

The aim of this work is to model the behavior of railway signaling systems in
Event-B and at the same time manage the complexity of the resulting models.
For this reason, we choose to proceed with the study and analysis of A-style and
B-style, because the other cited approaches imply some classical-B [1] method
semantics or use other languages.

The analysis of A-style and B-style leads to these results: both approaches
require several steps of refinement in order to simplify the model decomposi-
tion. For A-style, the shared variables should be copied in the sub-systems and
shouldn’t be refined. The invariants involving the shared variables are not con-
sidered in the sub-systems. As for the shared events decomposition, the distribu-
tion of the variables is not always possible because of complex actions involving
partitioned variables in different sub-systems or complex predicates (invariants
and guards). This requires the separation of these variables by several steps of
refinements with mathematical proofs. The detailed description of the state of
the art, the application on a railway case study, the analysis and the identified
limitations have been presented in [8].

3 Proposed Approach

On the basis of the industrial need and the identified limitations, we define a new
approach called the decomposition by refinement method. The approach consists
in the decomposition using the refinement technique for the purpose of keeping
the semantic link between the system and the resulting sub-systems. So, a system
is decomposed into one or more sub-systems in such a way they are refining this
later. This can be applied to a system either in the abstraction level or in a cer-
tain level of refinement as shown in Fig. 1. By this way the sub-systems are still
preserving the defined system properties in the abstraction through the refine-
ment. Also, we define a new link between the sub-systems named REFSEES.
This link will provide to each sub-system the visibility to the other sub-systems:
the state of the private variables, the corresponding invariants, the constants,
the sets and the properties.

Let us consider the example of Fig. 1 and let M be the system to decompose2.
M defines the state variables v where v = (x, y, z) for example, the invariants
to preserve involving the state variables I(v) and the abstract events ae. The
goal is to decompose M into two sub-systems Ma and Mb where: Ma (resp. Mb)
is a refinement of M ; wa (resp. wb) are the state variables refining some state
variables of M . For example, wa are refining x and y, and wb are refining y and
2 Due to the limited place in this paper, we show a simple example, but we have already
performed our approach on interesting case studies from the railway domain [8].

420 K. Kraibi

z; Ja(wa) (resp. Jb(wb)) is the gluing invariant of Ma (resp. Mb); The events rea
(resp. reb) are the events of Ma (resp. Mb) refining a part of the abstract ones
in M .

The clause REFSEES in Ma (resp. Mb) allows to see the state of the private
variables of Mb (resp. Ma). So, the private variables of Ma (resp. Mb) can be
used in the guards of the events of the machine Mb (resp. Ma). More details
about REFSEES clause are in [8,9].

Fig. 1. Proposed approach: decomposition by refinement

Some rules should be considered in order to formalize this approach:

Rule1: Some state variables of the decomposed system M can only be in one
of the sub-systems Ma or Mb. But, these variables should all be present at
least in one of the sub-systems.
Rule2: The sub-system Ma (resp. Mb) can refer in the guards of their events
to the private variables of Mb (resp. Ma).
Rule3: The transition system of the resulting sub-systems Ma and Mb should
correspond to one transition system of the behavior of M .
Rule4: Ma and Mb transitions are not synchronized contrary to the decom-
position by shared events. So, following what has been presented in [2], we
can demonstrate that the theoretical re-composition/combination of the sub-
systems is a refinement of the system M .
Rule5: For each sub-system, a variant proof obligation rule VAR should be
defined because a transition should not be triggered indefinitely. As for the
deadlock freedom rules, there are two types: the weak deadlock freedom rule
DLFw and the strong one DLFs. DLFw verifies that at least one of the events
is triggered. Whereas DLFs proves that each event is triggered at least one
time. This verification should also be done in case of the definition of new
events.

Event-B: From Systems to Sub-systems Modeling 421

4 Conclusion and Future Work

Several approaches have been proposed to deal with the complex and huge sys-
tem specifications issue in Event-B such as A-style and B-style. The realized
analysis and the study conduce to the identification of some limitations of those
approaches regarding the industrial need. So, we propose a new approach: the
decomposition by refinement based on decomposing a system by the refinement
technique into several sub-systems. A new clause REFSEES is defined to link
the sub-systems to each other which allows the visibility of the state variables.
This approach will ensure the preservation of invariants through the refinement
technique. Currently, we are working on the definition of the strategy to follow
for the application of the approach. This strategy will define: the way to decom-
pose the state variables of the system and its events, and how to define, in each
sub-system, new invariants, new state variables and new events. As a short-term
perspective, we will demonstrate that the fact of combining -theoretically- the
sub-systems constitutes a one refining component of the initial system regarding
the theoretical definition of the refinement in B method. As a long-term per-
spective, new proof obligations will be specified, through the new defined link,
to ensure the behavior preservation in each of the resulting sub-systems. for the
purpose of its scaling up, the approach will be applied to a railway signaling
system case study.

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, New York (1996)

2. Abrial, J.R.: Event Model Decomposition. Technical report/[ETH, Department of
Computer Science 626 (2009)

3. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York (2010)

4. Abrial, J.R., Hallerstede, S.: Refinement, decomposition, and instantiation of dis-
crete models: application to event-B. Fundamenta Informaticae 77(1–2), 1–28
(2007)

5. Butler, M.: Decomposition structures for event-B. In: Leuschel, M., Wehrheim, H.
(eds.) IFM 2009. LNCS, vol. 5423, pp. 20–38. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00255-7 2

6. Hoang, T.S., Abrial, J.-R.: Event-B decomposition for parallel programs. In:
Frappier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves, S. (eds.) ABZ 2010.
LNCS, vol. 5977, pp. 319–333. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-11811-1 24

7. Hoang, T.S., Iliasov, A., Silva, R.A., Wei, W.: A survey on event-B decomposition.
Electron. Commun. EASST 46 (2011)

8. Kraibi., K., Ben Ayed., R., Rehm., J., Collart-Dutilleul., S., Bon., P., Petit., D.:
Event-B decomposition analysis for systems behavior modeling. In: Proceedings of
the 14th International Conference on Software Technologies, vol. 1: ICSOFT, pp.
278–286. INSTICC, SciTePress (2019). https://doi.org/10.5220/0007929602780286

https://doi.org/10.1007/978-3-642-00255-7_2
https://doi.org/10.1007/978-3-642-00255-7_2
https://doi.org/10.1007/978-3-642-11811-1_24
https://doi.org/10.1007/978-3-642-11811-1_24
https://doi.org/10.5220/0007929602780286

422 K. Kraibi

9. Kraibi., K., Ben Ayed., R., Rehm., J., Collart-Dutilleul., S., Bon., P., Petit., D.:
Towards a method for the decomposition by refinement in event-B. In: Refinement
Workshop at Formal Methods Congress (Refine@FM), Accepted paper but not yet
published (2019)

10. Siala, B., Tahar Bhiri, M., Bodeveix, J.P., Filali, M.: Un processus de
Développement Event-B pour des Applications Distribuées. Université de Franche-
Comté (2016)

A Framework for Critical Interactive
System Formal Modelling and Analysis

Ismäıl Mendil(B)

IRIT/INPT-ENSEEIHT, 2 rue Charles Camichel, 31071 cedex 7 Toulouse, France
ismail.mendil@toulouse-inp.fr

1 Introduction

The human-computer interface (HCI) is the component of an interactive system
that allows users to interact with a system. Interactive system development does
not follow the same life cycle as software system development. The essential dif-
ferences lie in the iterative nature of the interactive system development. Hence,
the completion of such systems requires usually several iterations. Through-
out iterations, the requirements undergo many changes due to the evolution of
customer’s needs and user feedback after experiencing the prototypes. Further-
more, the formalization of user interaction requirements into HCI specification
is a complex task that needs a thorough observation of user behaviour. The
challenge is tougher in the case of critical HCI (cockpits, medical systems, etc.).
Indeed, critical HCI requires to be designed and built such that safety is put at
the forefront of the requirements dictated by standards and norms.

Formal methods offer both theoretical background and support tool enabling
the validation and verification of system specification beforehand, i.e. before the
system is put into production. In fact, such methods allow dealing with abstract
mathematical models of the system on which mathematical proofs are performed.
So, different kinds of properties (e.g. safety and usability) are proved, hence
providing a higher level of confidence in the system. Several modelling formalisms
and tools have been developed to model, analyse and animate HCI models,
however, they do not offer HCI domain knowledge integration at modelling level.

In our Ph.D. project, we aim to complete an operational framework for formal
verifying and validating critical interactive systems with a special emphasis on
the aeronautic field.

2 Challenges

As part of the ANR FORMEDICIS1 project, an abstract-level language describ-
ing the interaction between the system and the user is being developed: FLUID
(Formal Language for User Interface Design). The core raison d’être of this lan-
guage is to allow the design and analysis of critical interactive systems at a high
level of abstraction. This endeavour faces, however, several challenges:
1 ANR (French National Research Agency), https://anr.fr/Projet-ANR-16-CE25-
0007.

c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 423–426, 2020.
https://doi.org/10.1007/978-3-030-48077-6_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_36&domain=pdf
https://anr.fr/Projet-ANR-16-CE25-0007
https://anr.fr/Projet-ANR-16-CE25-0007
https://doi.org/10.1007/978-3-030-48077-6_36

424 I. Mendil

– Defining of a domain theory to formalize HCI design knowledge.
– Ensuring effective integration of the user’s requirements in the design process

(Human In The Loop).
– Endowing FLUID language with verification capabilities.
– Supplying FLUID with animation extension for the sake of validation.
– Assessing and evaluating the FLUID expressivity and its easiness of use.
– Contributing to the certification of critical interactive systems.

3 FLUID Language

3.1 FLUID Language Main Features

In this section, we sketch the FLUID language definition. It allows describing and
verifying the system behaviour. Moreover, it addresses the lack of integration
of domain-specific knowledge in HCI development at modelling level. FLUID
models are built out of the INTERACTION component which consists of three
parts: contextual part (DECLARATION), behaviour part (STATE and EVENT) and
properties part(ASSUMPTIONS, EXPECTATIONS and REQUIREMENTS) (Fig. 1).

INTERACTION component_name
DECLARATION

TYPE Ti
CONSTANT Ci

STATE
vari@{tagij } : Ti

EVENTS
INIT =

statementi
EVENT event_namei @ {tagij }[argik] =

WHERE
G(Ti, Ci, vari, argik ,

vari @tagij , argik @tagikl)
THEN

vari:| BA(Ti, Ci, vari, argik ,
vari @tagij , argik @tagikl, vari ’, vari @tagij ’)
END

ASSUMPTIONS
A(Ti, Ci)

EXPECTATIONS
E(Ti, Ci)

REQUIREMENTS
PROPERTIES

P(Ti, Ci, vari, vari @tagij)
SCENARIOS

NOMINAL
SC(Ti, Ci, vari, vari @tagij)

NONNOMINAL
NSC(Ti, Ci, vari, vari @tagij)

END component_name

Fig. 1. FLUID basic component template

FLUID models are state-based
with interleaving asynchronous event-
driven semantics. It allows the des-
igner to express the user require-
ments in different ways either as
general properties (e.g. usability,
safety) abstracted away from require-
ments, or individual scenarios con-
veying some expected storyboard
(SCENARIOS.NOMINAL) or, at the
contrary, precise forbidden scenarios
(SCENARIOS.NONNOMINAL).

Variables and events in FLUID
models are annotated with tags
whose definitions lie in domain the-
ory. Hence, we split the domain-
specific knowledge and constraints
apart from the system model. In
addition, proof obligations are gen-
erated to integrate the HCI domain
constraints into the verification and validation process.

3.2 Analysing FLUID Models: Event-B and ICO

In our work, two formalisms and two tools are devised to support FLUID lan-
guage. For the purpose of verifying FLUID models, Event-B2 will be used. It
2 http://wiki.event-b.org/.

http://wiki.event-b.org/

A Framework for Critical Interactive System Formal Modelling and Analysis 425

is a formal method for system-level modelling and analysis. Basically, it relies
on set theory and first-order logic to formalize systems into models and uses
refinement to represent systems at different abstraction levels. Furthermore, it
leverages mathematical proof theory for discharging proof obligations [1]. The
Event-B language defines two main building blocks to model, in principle, any
system: firstly, a context construct for describing the static characteristics of a
system through carrier sets, constants, axioms and theorems, secondly, a machine
building block for expressing the dynamic aspects through variables, invariants,
theorems, variants and events. Rodin3 [2] is an Integrated Development Envi-
ronment (IDE) for Event-B modelling language based on Eclipse. It has many
features making the modelling and V&V process easier and more efficient. Rodin
features project management, incremental model development, proof assistance,
model checking, animation and automatic code generation.

For the sake of animation and validation of FLUID models, ICO [6] associ-
ated to its PetShop [7] tool will be used as a basis. ICO formal modelling is
dedicated to expressing and describing interactive systems. Interactive Coop-
erative Objects follows the object oriented-paradigm so it incorporates con-
cepts such as dynamic instantiation, classification, encapsulation, inheritance
and client/server relationships. It provides means to model the static side of the
interactive system inspired by the object-orientation, and it uses the Petri Nets
notation to express the behavioural side. Moreover, the ICO notation is fully
supported by the PetShop CASE tool.

4 Methodology and Approach

In order to bridge the gap and build a framework resolving the identified chal-
lenges listed in Sect. 2, we envision to meet the objectives we present hereafter:

– Modelling HCI domain using Event-B theory extension as supported by Rodin
Theory Plugin4. Indeed, HCI domain theories connected to design models via
tags and the automatic proof obligation generation shall be viewed as a major
feature of our approach.

– Developing a transformation schema to embed FLUID models in Event-B [1]
[4] to incrementally design interactive system models [3]. The schema needs
to integrate the specification and verification of scenarios and properties. This
dual specification of requirements is a key feature of our framework addressing
the HCI development process, in particular handling of storyboards.

– Defining and implementing transformation rules in order to dive FLUID
and/or Event-B models into ICO for the sake of animation using PetShop.

– For the purpose of assessment and evaluation of the framework, case stud-
ies will be developed and extended to comply with the HCI domain-specific
constraints. In addition, formal methods (Event-B, ICO, LIDL [5]) will be
compared, on the basis of different criteria (expressivity, conciseness, etc.), to
our framework through development of case studies.

3 http://www.event-b.org/install.html.
4 http://wiki.event-b.org/index.php/Theory Plug-in.

http://www.event-b.org/install.html
http://wiki.event-b.org/index.php/Theory_Plug-in

426 I. Mendil

5 What’s Next?

This article framed the problem tackled in our Ph.D. research project and identi-
fied its coarse-grained challenges: mainly, the need for a comprehensive abstract-
level HCI modelling framework covering the development cycle of critical HCI.
Then, the high-level objectives are set down and enumerated.

Within our Ph.D. work, the next steps are twofold. Firstly, we plan to develop
an HCI domain theory to enrich models at the early stages of system develop-
ment. This theory must encompass the domain knowledge and it connects to the
system model via the tag notation. Next, the transformation schema needs to be
formalized and implemented, allowing the translation from FLUID into Event-
B and ICO. Then, in order to demonstrate the effectiveness, cases studies are
planned to be developed based on the novel framework. Finally, a development
process will be defined around the novel framework so to facilitate and struc-
ture HCI developments. Ultimately, we believe that a successful landing of our
project would provide more confidence to tackle the bigger problem of extending
our framework to other system development fields.

References

1. Abrial, J.R.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.-R., et al.: Rodin: an open toolset for modelling and reasoning in Event-B.
Int. J. Softw. Tools Technol. Transf. 12(6), 447–466 (2010)

3. Aı̈t-Ameur, Y., et al.: Encoding a process algebra using the Event B method. STTT
11, 239–253 (2009). https://doi.org/10.1007/s10009-009-0109-2

4. Geniet, R., Singh, N.K.: Refinement based formal development of human-machine
interface. In: Mazzara, M., Ober, I., Salaün, G. (eds.) STAF 2018. LNCS, vol. 11176,
pp. 240–256. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04771-9 19

5. Lecrubier, V.: A formal language for designing, specifying and verifying critical
embedded human machine interfaces. Ph.D. thesis. ISAE - Universitéde Toulouse,
June 2016. https://hal.archives-ouvertes.fr/tel-01455466

6. Navarre, D., et al.: ICOs a model-based user interface description technique ded-
icated to interactive systems addressing usability, reliability and scalability. ACM
Trans. Comput. Hum. Interact. 16, 18:1–18:56 (2009)

7. Palanque, P., Ladry, J.-F., Navarre, D., Barboni, E.: High-fidelity prototyping of
interactive systems can be formal too. In: Jacko, J.A. (ed.) HCI 2009. LNCS, vol.
5610, pp. 667–676. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
02574-7 75

https://doi.org/10.1007/s10009-009-0109-2
https://doi.org/10.1007/978-3-030-04771-9_19
https://hal.archives-ouvertes.fr/tel-01455466
https://doi.org/10.1007/978-3-642-02574-7_75
https://doi.org/10.1007/978-3-642-02574-7_75

Author Index

Afendi, Meryem 139, 401
Aït-Ameur, Yamine 155, 169, 203
Almehrej, Abdulaziz 230
Alotaibi, Fahad 405
Arcaini, Paolo 302
Armstrong, Robert 272

Benyagoub, Sarah 155
Bodenmüller, Stefan 6
Bonfanti, Silvia 302
Börger, Egon 78
Bougacha, Racem 409
Burdy, Lilian 255
Butler, Michael 272

Cabot, Jordi 27
Carvalho, Renato 61
Cavalcanti, Ana 3
Chen, Jiachen 44
Clarisó, Robert 27
Cunha, Alcino 61, 318

de Azevedo Oliveira, Diego 223
Déharbe, David 255
Dunkelau, Jannik 107, 266, 382
Dupont, Guillaume 169

Ferrarotti, Flavio 93
Frappier, Marc 223, 351, 367
Freitas, Leo 230

Gargantini, Angelo 302
Geleßus, David 248
Grall, Alexis 414

Hoang, Thai Son 272
Houdek, Frank 281
Hulette, Geoffrey 272

Iliasov, Alexei 203
Ishikawa, Fuyuki 203

Jahanian, Mohammad 44

Kobayashi, Tsutomu 203
Körner, Philipp 266, 382
Kraibi, Kenza 418
Krings, Sebastian 382

Laleau, Régine 139, 351
Lecomte, Thierry 124
Leuschel, Michael 107, 248, 260, 266, 335
Liu, Chong 318

Macedo, Nuno 61, 318
Mammar, Amel 139, 351, 367
Mendil, Ismaïl 423
Modesti, Paolo 230
Morris, Karla 272
Mutz, Mareike 335

Paiva, Ana C. R. 61
Pantel, Marc 169
Paulweber, Philipp 237
Pereira, José 61
Pescosta, Emmanuel 237
Pfähler, Jörg 6

Ramakrishnan, K. K. 44
Ramalho, Miguel Sozinho 61
Raschke, Alexander 281
Reif, Wolfgang 6
Riccobene, Elvinia 244, 302
Romanovsky, Alexander 203
Ruíz Barradas, Héctor 255
Rutenkolk, Chris 382

Scandurra, Patrizia 244, 302
Schellhorn, Gerhard 6
Schewe, Klaus-Dieter 78, 93, 155
Schmidt, Joshua 107
Shokri-Manninen, Fatima 186
Silva, Daniel 61

Silva, Ricardo 61
Singh, Neeraj K. 169
Snook, Colin 272
Stankaitis, Paulius 203

Tsiopoulos, Leonidas 186

Vain, Jüri 186

Waldén, Marina 186
Werth, Michelle 260, 335

Zdun, Uwe 237

428 Author Index

	Preface
	Organization
	Contents
	Keynotes and Invited Papers
	Modelling and Verification of Robotic Platforms for Simulation Using RoboStar Technology
	References

	Adding Concurrency to a Sequential Refinement Tower
	1 Introduction
	2 The Refinement for Wear Leveling
	3 Adding Concurrency and Ownership
	4 Linearizabilty and Atomicity Refinement
	5 Proof Strategy for Atomicity Refinement
	5.1 Rely-Guarantee Proofs and Reduction
	5.2 Proving the Case Study

	6 Related Work
	7 Conclusion
	References

	Regular Research Articles
	Diverse Scenario Exploration in Model Finders Using Graph Kernels and Clustering
	1 Introduction
	2 Method Overview
	3 Graph Abstraction
	4 Graph Kernels
	5 Clustering
	6 Experimental Results
	7 Related Work
	8 Conclusions
	References

	Formal Verification of Interoperability Between Future Network Architectures Using Alloy
	1 Introduction
	2 Background and Related Work
	2.1 Information-Centric Networking (ICN) and Interoperability
	2.2 Alloy

	3 Modeling Information-Centric Interoperability
	4 Satisfying Information-Centric Service Properties
	4.1 Pull-Based Retrieval: Request/Response
	4.2 Push-Based Retrieval: Publish/Subscribe

	5 Reasoning About Failure and Mobility
	5.1 Failure
	5.2 Mobility

	6 Implementation and Results
	7 Conclusion
	References

	Experiences on Teaching Alloy with an Automated Assessment Platform
	1 Introduction
	2 Alloy4Fun Overview
	3 Experiences on Teaching with Alloy4Fun
	3.1 Alloy4Fun Exercises
	3.2 Student Usage and Adoption
	3.3 Insights on Learning Alloy

	4 Concluding Remarks and Future Work
	References

	A Characterization of Distributed ASMs with Partial-Order Runs
	1 Introduction
	2 The Recursion Postulate
	3 Recursive ASMs Are Distributed ASMs with Partial-Order Runs
	3.1 Finitely Composed Concurrent Algorithms
	3.2 Partial-Order Runs
	3.3 Concurrent Runs
	3.4 Simulation of Recursive by Partial-Order Runs

	4 Distributed ASMs with Partial-Order Runs Are Recursive ASMs
	4.1 Partial Order Runs of Petri Nets

	5 Conclusions
	References

	A Logic for Reflective ASMs
	1 Introduction
	2 Reflective Abstract State Machines
	3 The Logic of Abstract State Machines
	4 Reasoning About Reflection
	4.1 Extension of the Logic of ASMs
	4.2 Completeness

	5 Conclusion
	References

	Analysing ProB's Constraint Solving Backends
	1 Introduction
	2 Primer on ProB and its Backends
	2.1 The Native CLP(FD) Backend
	2.2 The Kodkod Backend
	2.3 The Z3 Backend

	3 Primer on Decision Trees and Random Forests
	3.1 Random Forests
	3.2 Rationale for Using Random Forests

	4 Related Work
	5 Experimental Setup
	5.1 The Training Data
	5.2 The Feature Set

	6 Analysis and Results
	6.1 Feature Importances
	6.2 Association Rule Analysis

	7 Conclusion
	References

	Programming the CLEARSY Safety Platform with B
	1 Introduction
	2 Terminology
	3 The CLEARSY Safety Platform
	3.1 Rationale
	3.2 Description
	3.3 Safety
	3.4 Target Applications

	4 Programming Model
	4.1 Development Process
	4.2 Pragmas
	4.3 Types and Operators
	4.4 Time
	4.5 I/O
	4.6 Substitutions

	5 Ease to Prove Models
	6 Reaching the Limits
	7 Dissemination
	8 Ready for Industry
	9 Conclusion and Perspectives
	References

	Modelling Hybrid Programs with Event-B
	1 Introduction
	2 Background
	2.1 Differential Dynamic Logic dL
	2.2 Differential Refinement Logic dRL
	2.3 Event-B

	3 State of the Art
	4 Event and Time-Triggered Systems
	4.1 Event-Triggered Model
	4.2 Time-Triggered Model
	4.3 Time-Triggered Model Refines Event-Triggered Model

	5 Modelling Hybrid Programs with Event-B
	5.1 Event and Time-Triggered in Event-B
	5.2 Application
	5.3 Proof of Refinement
	5.4 Case Study
	5.5 Comparing Event-B Refinement with Differential Refinement Logic

	6 Conclusion and Future Work
	References

	Event-B-Supported Choreography-Defined Communicating Systems
	1 Introduction
	2 Theoretical Background of Realisable Choreographies
	2.1 Composition of Peers
	2.2 Choreography-Defined P2P Systems
	2.3 Characterisation of Realisability

	3 Correctness by Construction
	3.1 Composition Operators
	3.2 Correctness Proof

	4 Completeness Proof: A Correct-by-Construction Approach with Event-B
	4.1 An Event-B Context for the Realisability Property
	4.2 Refinement
	4.3 Completeness Proof

	5 Conclusion
	References

	Formally Verified Architecture Patterns of Hybrid Systems Using Proof and Refinement with Event-B
	1 Introduction
	2 Modelling Hybrid Systems with Event-B
	3 Hybrid Systems Modelling Features
	4 Architecture Patterns for Modelling Hybrid Systems
	5 Methodology for Hybrid System Design
	5.1 A Generic Event-B Model for Hybrid Systems
	5.2 Semantics
	5.3 The Generic Model in Rodin

	6 Case Study: The Water Tank Problem
	6.1 Abstract System
	6.2 Architecture Patterns as Abstract System Refinements

	7 Application of the Many-to-Many Architecture Pattern
	7.1 Abstract Tank Model
	7.2 Many-to-many Model

	8 Assessment
	9 Conclusion and Future Work
	References

	Integration of iUML-B and UPPAAL Timed Automata for Development of Real-Time Systems with Concurrent Processes
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Event-B and iUML-B
	3.2 UPPAAL Timed Automata

	4 Mapping from Event-B and iUML-B Models to UTA
	5 Overview of Case Study
	5.1 M0: An Abstract Model of Airport Control System
	5.2 M1: Introducing Two Queues
	5.3 M2: Implementing FIFO Method for Each Queue
	5.4 M3: Introducing Fuel Consumption
	5.5 Analysis Results

	6 Conclusion and Discussion
	References

	Formal Distributed Protocol Development for Reservation of Railway Sections
	1 Introduction
	2 Distributed Resource Allocation Model and Protocol
	2.1 High-Level Distributed System Model and Requirements
	2.2 Problematic Distributed Resource Allocation Scenarios
	2.3 Semi-formal Description of the Stage1

	3 Multifaceted Modelling and Verification Framework
	3.1 Formalised Multifaceted Verification Framework
	3.2 Step 2: Developing Functional Pivot Models in Event-B
	3.3 Step 2: Proving Stochastic Properties with PRISM
	3.4 Step 3: Analysing System's Performance

	4 Formal Protocol Modelling, Verification and Analysis
	4.1 Step 2. Formal Protocol Model Development in Event-B
	4.2 Step 2: Proving Functional Correctness Properties in Event-B
	4.3 Step 2: Proving Liveness (req. LIV3) with PRISM
	4.4 Step 3: Analysing Performance

	5 Conclusions and Future Work
	References

	Short Articles
	Verifying SGAC Access Control Policies: A Comparison of ProB, Alloy and Z3
	1 Introduction
	2 Brief Introduction to SGAC
	3 Formalisation of SGAC with Z3
	4 Properties Verification
	5 Performance Test
	6 Conclusion
	References

	Account and Transaction Protocol of the Open Banking Standard
	1 Introduction
	2 Open Banking Standard
	3 Methodology and Security Goals
	4 Conclusion
	References

	Structuring the State and Behavior of ASMs: Introducing a Trait-Based Construct for Abstract State Machine Languages
	1 Introduction
	2 Motivation
	3 A Trait-Based Construct for ASMs
	4 Conclusion
	References

	Exploring the Concept of Abstract State Machines for System Runtime Enforcement
	1 Introduction
	2 Runtime Enforcement with AsmetaS@run.time
	3 Conclusion
	References

	ProB and Jupyter for Logic, Set Theory, Theoretical Computer Science and Formal Methods
	1 Introduction and Motivation
	2 Jupyter Kernel for B
	3 Applications
	4 Conclusion, Related and Future Work
	A Appendix
	References

	Existence Proof Obligations for Constraints, Properties and Invariants in Atelier B
	1 Introduction
	2 Existence Proof Obligations in Specifications
	3 Existence Proofs in Refinements
	4 Conclusion
	References

	VisB: A Lightweight Tool to Visualize Formal Models with SVG Graphics
	1 Introduction and Background
	2 VisB Principles and Architecture
	3 VisB Examples
	References

	Towards a Shared Specification Repository
	1 Introduction and Motivation
	2 Proposed Index
	3 Conclusions, Related and Future Work
	References

	Refinement and Verification of Responsive Control Systems
	1 Introduction
	2 Background
	3 Run to Completion
	4 Statechart Refinement
	5 Verification of Safety Properties
	6 Verification of Control Responses
	7 Conclusion
	References

	Articles Contributing to the Case Study
	Adaptive Exterior Light and Speed Control System
	1 Introduction
	2 Disclaimer
	3 General Architecture
	4 Adaptive Exterior Light System
	4.1 User Interface
	4.2 Sensors
	4.3 Actuators
	4.4 Functional Requirements

	5 Speed Control System
	5.1 User Interface
	5.2 Sensors
	5.3 Actuators
	5.4 Software Functions

	A Interface
	References

	Modelling an Automotive Software-Intensive System with Adaptive Features Using ASMETA
	1 Introduction
	1.1 The ASM Method and the ASMETA Tool-Set
	1.2 Distinctive Features of the Modelling Approach

	2 Modelling Strategy
	3 Model Details
	3.1 Adaptive Exterior Light System
	3.2 Speed Control System
	3.3 Merging ELS and SCS Models

	4 Validation and Verification
	5 Discussion
	6 Conclusions
	References

	Validating Multiple Variants of an Automotive Light System with Electrum
	1 Introduction
	2 Modelling Strategy
	3 The ELS Model
	4 Handling Variability
	5 Validation and Verification
	5.1 Animation and Validation
	5.2 Reference Validation Sequences
	5.3 Requirement Verification

	6 Results Discussion
	References

	Modelling and Validating an Automotive System in Classical B and Event-B
	1 Introduction and Background
	2 Modelling Methodology and Strategy
	3 Classical B Modelling Details
	3.1 Components
	3.2 Blink Lamps Controller
	3.3 Integrating with Pitman Controller
	3.4 Modelling Time

	4 Systems Modelling with Classical B and Translation to EventB
	5 VisB Visualization of the Light System
	6 Description of Issues Uncovered
	7 Related Work and Conclusion
	A Trace 7 from Case Study Specification with VisB
	References

	An Event-B Model of an Automotive Adaptive Exterior Light System
	1 Introduction
	2 Event-B Method
	3 Modelling Strategy
	3.1 Control Abstraction
	3.2 Modeling Structuration
	3.3 Formalization of the Requirements
	3.4 Modeling of Temporal Requirements

	4 Model Details
	4.1 Modeling Complex User Interface Elements
	4.2 Managing Priorities Between Requirements
	4.3 Modeling Time Duration
	4.4 Model Statistics

	5 Validation and Verification
	5.1 Model Checking of the Specification
	5.2 Validation with Scenarios
	5.3 Proof of the Specification

	6 Other Points
	6.1 Feedback on the Requirements Document
	6.2 Modeling Temporal Properties
	6.3 Identifying a Refinement Strategy

	7 Conclusion
	References

	Modeling of a Speed Control System Using Event-B
	1 Introduction
	2 Modelling Strategy
	3 Model Details
	3.1 Machine M1: Physical Elements
	3.2 Machine M2: Desired Speed
	3.3 Machine M3: Other Elements

	4 Validation and Verification
	4.1 Model Checking of the Specification
	4.2 Validation with Scenarios
	4.3 Proof of the Specification

	5 Other Points
	5.1 Feedback on the Specification Document
	5.2 Modeling Temporal Properties

	6 Conclusion
	References

	A Verified Low-Level Implementation of the Adaptive Exterior Light and Speed Control System
	1 Introduction
	2 Modeling Strategy and Implementation
	2.1 MISRA C
	2.2 Test-Driven Development and Mocking
	2.3 Code Structure
	2.4 Limitations
	2.5 Formalization Approach

	3 Model Details
	3.1 Idioms
	3.2 Timers

	4 Validation and Verification
	4.1 Test-Driven Development Using Cmockery
	4.2 Model Checking Using CBMC
	4.3 Example: Verification of ELS-22

	5 Specification Ambiguities and Flaws
	6 Conclusions
	References

	Short Articles of the PhD-Symposium (Work in Progress)
	A Correct by Construction Approach for the Modeling and the Verification of Cyber-Physical Systems in Event-B
	1 Introduction
	2 State of the Art
	3 Proposed Approach
	4 Current Results and Future Work
	References

	Improving Trustworthiness of Self-driving Systems
	1 Introduction
	2 Problems, Aims, and Objectives of the Research
	3 The Current Development and Related Works
	3.1 The General Approaches of Using Formal Methods Within the Autonomous System
	3.2 The Approaches of Using Event-B for Autonomous System

	4 Proposed Approach and Future Work
	References

	A Formal Approach for the Modeling of High-Level Architectures Aligned with System Requirements
	1 Problem Statement and Motivations
	2 Related Work
	3 The Proposed Approach and Methodology
	4 Current Assessment and Future Work
	References

	Automatic Generation of DistAlgo Programs from Event-B Models
	1 Motivations
	2 Related Works
	3 General Approach
	4 Development of the Transformation
	5 Future Work
	References

	Event-B: From Systems to Sub-systems Modeling
	1 Introduction
	2 Related Work and Analysis
	3 Proposed Approach
	4 Conclusion and Future Work
	References

	A Framework for Critical Interactive System Formal Modelling and Analysis
	1 Introduction
	2 Challenges
	3 FLUID Language
	3.1 FLUID Language Main Features
	3.2 Analysing FLUID Models: Event-B and ICO

	4 Methodology and Approach
	5 What's Next?
	References

	Author Index

