Alexander Raschke
Dominique Méry
Frank Houdek (Eds.)

Rigorous State-Based
Methods

7th International Conference, ABZ 2020
Ulm, Germany, May 27-29, 2020
Proceedings

LNCS 12071

@ Springer

Lecture Notes in Computer Science

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino

Purdue University, West Lafayette, IN, USA
Wen Gao

Peking University, Beijing, China
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Gerhard Woeginger

RWTH Aachen, Aachen, Germany
Moti Yung

Columbia University, New York, NY, USA

12071

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Alexander Raschke - Dominique Méry -
Frank Houdek (Eds.)

Rigorous State-Based
Methods

7th International Conference, ABZ 2020
Ulm, Germany, May 27-29, 2020
Proceedings

@ Springer

Editors

Alexander Raschke Dominique Méry

Institute of Software Engineering LORIA, Campus Scientifique
and Programming Languages Université de Lorraine

Ulm University Vandoeuvre-les-Nancy, France

Ulm, Germany

Frank Houdek

Research and Development
Mercedes-Benz AG
Sindelfingen, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-48076-9 ISBN 978-3-030-48077-6 (eBook)

https://doi.org/10.1007/978-3-030-48077-6
LNCS Sublibrary: SL1 — Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-6088-8393
https://orcid.org/0000-0001-5231-6611
https://orcid.org/0000-0003-3132-6698
https://doi.org/10.1007/978-3-030-48077-6

Preface

The International Conference on Rigorous State-Based Methods (ABZ 2020) is an
international forum for the cross-fertilization of related state-based and machine-based
formal methods, mainly Abstract State Machines (ASM), Alloy, B, TLA+, VDM, and
Z. Rigorous state-based methods share a common conceptual foundation and are
widely used in both academia and industry for the design and analysis of hardware and
software systems.

The name ABZ was invented at the first conference held in London in 2008, where
the ASM, B, and Z conference series merged into a single event. The second ABZ 2010
conference was held in Orford, Canada, where the Alloy community joined the event;
ABZ 2012 was held in Pisa, Italy, which saw the inclusion of the VDM community
(but not in the title); ABZ 2014 was held in Toulouse, France, which brought the
inclusion of the TLA+ community into the ABZ conference series. Lastly, the ABZ
2016 conference was held in Linz, Austria, and ABZ 2018 in Southampton, UK. In
2018 the Steering Committee decided to retain the (well-known) acronym ABZ and
add the subtitle “International Conference on Rigorous State-Based Methods” to make
more explicit the intention to include all state-based formal methods. Consequently, the
title of the proceedings was also modified to “Rigorous State-Based Methods”.

Started 2014 in Toulouse, each ABZ asked for the application of formal specifi-
cations on industrial case studies. This year, we extend the previous areas (aerospace,
medical equipment, rails) with the automotive domain. A specification of an adaptive
light and speed control system similar to the available real systems was provided by
Frank Houdek, who also answered almost a hundred questions and gave clarifying
explanations, for which we would like to thank him. The objective of these case studies
is to provide an opportunity to demonstrate the applicability of the ABZ methods to
real examples and also to allow for a better comparison of them. These proceedings
include the case study as well as several accepted papers outlining solutions to it.

ABZ 2020 received 55 submissions from 21 countries around the world. The
selection process was rigorous, where each paper received at least three reviews. The
Program Committee (PC), after careful discussions, decided to accept 12 full research
papers, 6 case study papers, and 9 short research papers. One extended abstract of one
of the keynote speakers and one invited research paper are also included in the pro-
ceedings. All accepted papers cover broad research areas on both theoretical systems
and practical aspects of state-based methods.

For the first time in the conference’s history, ABZ 2020 organized a doctoral
symposium and PhD students had to submit a short paper presenting their PhD topics;
those six submissions were evaluated by a separate PC including the two chairs of ABZ
2020.

The conference was to be held during May 27-29, 2020, in Ulm, Germany, but due
to the historical crisis caused by the corona virus with an unprecedented international
lock-down, travel-restrictions, and sadly many deaths around the world, we had to

vi Preface

cancel the conference and postpone it to next year (2021). At ABZ 2021, all authors of
accepted papers of ABZ 2020 are requested to present their research in addition to the
new accepted papers.

We are honored that all three distinguished guests as keynote speakers agreed to
give their keynotes next year: Ana Cavalcanti, University of York, UK, will give a talk
entitled “RoStar technology—a roboticist’s toolbox for combined proof and sound
simulation;” Uwe Glédsser, Simon Fraser University, Canada, will give a talk entitled
“Quantifying Uncertainty in ASM Models with Markov Processes;” and we will hear
from Gilles Dowek, INRIA/ENS Paris-Saclay, France.

The EasyChair conference management system was set up for ABZ 2020, sup-
porting submission, review, and volume edition processes. We acknowledge it as an
outstanding tool for the academic community.

We would like to thank all the authors who submitted their work to ABZ 2020. We
are grateful to the PC members and external reviewers for their high-quality reviews
and discussions. Finally, we wish to thank the Organizing Committee members for
their continuous support.

We hope the corona crisis will be over within the next weeks or months and that the
enormous economic consequences of this crisis will be outweighed by more humanity
in the world. We look forward to welcoming many conference attendants in Ulm next
year and hope they will enjoy the technical program, informal meetings, and interac-
tions with colleagues from all over the world; and of course, we are confident they will
like the city of Ulm, Germany. For readers of these proceedings, we hope these papers
are interesting and they inspire ideas for future research.

March 2020 Dominique Méry
Alexander Raschke
Frank Houdek

Program Committee

Yamine Ait Ameur
Paolo Arcaini
Richard Banach
Egon Boerger
Eerke Boiten
Michael Butler
Andrew Butterfield
David Deharbe
Juergen Dingel
Flavio Ferrarotti
Mamoun Filali-Amine
Marc Frappier

Leo Freitas

Angelo Gargantini
Vincenzo Gervasi
Uwe Glisser
Gudmund Grov

Stefan Hallerstede
Klaus Havelund
Ian J. Hayes

Thai Son Hoang
Frank Houdek
Alexei Iliasov
Jeremy Jacob
Felix Kossak
Regine Laleau
Thierry Lecomte
Michael Leuschel
Alexei Lisitsa
Amel Mammar
Atif Mashkoor
Jackson Mayo
Stephan Merz
Stefan Mitsch
Rosemary Monahan
Mohamed Mosbah
Dominique Méry

Organization

IRIT/INPT-ENSEEIHT, France

National Institute of Informatics, Japan

The University of Manchester, UK

University of Pisa, Italy

De Montfort University, UK

University of Southampton, UK

Trinity College Dublin, Ireland

ClearSy System Engineering, France

Queen’s University, Canada

Software Competence Centre Hagenberg, Austria

IRIT, France

Université de Sherbrooke, Canada

Newcastle University, UK

University of Bergamo, Italy

University of Pisa, Italy

Simon Fraser University, Canada

Norwegian Defence Research Establishment (FFI),
Norway

Aarhus University, Denmark

Jet Propulsion Laboratory, USA

The University of Queensland, Australia

University of Southampton, UK

Daimler AG, Germany

Newcastle University, UK

University of York, UK

Software Competence Center Hagenberg, Austria

Paris-Est Créteil University, France

ClearSy, France

University of Diisseldorf, Germany

The University of Liverpool, UK

Télécom SudParis, France

Johannes Kepler University, Austria

Sandia National Laboratories, USA

Inria Nancy, France

Carnegie Mellon University, USA

Maynooth University, Ireland

LaBRI, University of Bordeaux, France

Université de Lorraine, LORIA, France

viii Organization

Shin Nakajima
Uwe Nestmann
Jose Oliveira
Philipp Paulweber
Luigia Petre
Andreas Prinz
Shengchao Qin
Philippe Queinnec
Alexander Raschke
Elvinia Riccobene
Victor Rivera
Thomas Santen
Patrizia Scandurra
Gerhard Schellhorn
Klaus-Dieter Schewe
Steve Schneider
Colin Snook
Michael Stegmaier
Maurice H. ter Beek
Laurent Voisin
Alan Wassyng
Virginie Wiels
Frank Zeyda

Wolf Zimmermann

Additional Reviewers

Bannister, Callum
Bonfanti, Silvia
Charalampous, Tilemachos
Dghaym, Dana
Fantechi, Alessandro
Mazzanti, Franco
Pollitt, Alastair

Salehi Fathabadi, Asieh
Tayebi, Mohammad
Tounsi, Mohamed
Winter, Kirsten

National Institute of Informatics, Japan
TU Berlin, Germany

University of Minho, Portugal
University of Vienna, Austria

Abo Akademi University, Finland
University of Agder, Norway

Teesside University, UK

IRIT, Université de Toulouse, France
Ulm University, Germany

University of Milan, Italy

The Australian National University, Australia
TU Berlin, Germany

University of Bergamo, Italy
Universitaet Augsburg, Germany
Zhejiang University, China

University of Surrey, UK

University of Southampton, UK

Ulm University, Germany

ISTI-CNR, Italy

Systerel, France

McMaster University, Canada
ONERA/DTIM, France

University of York, UK

Martin Luther University Halle-Wittenberg, Germany

Contents

Keynotes and Invited Papers

Modelling and Verification of Robotic Platforms for Simulation
Using RoboStar Technology. 3
Ana Cavalcanti

Adding Concurrency to a Sequential Refinement Tower. 6
Gerhard Schellhorn, Stefan Bodenmiiller, Jorg Pfdhler,
and Wolfgang Reif

Regular Research Articles

Diverse Scenario Exploration in Model Finders Using Graph Kernels
and CIUSteringttt 27
Robert Clariso and Jordi Cabot

Formal Verification of Interoperability Between Future Network
Architectures Using Alloy 44
Mohammad Jahanian, Jiachen Chen, and K. K. Ramakrishnan

Experiences on Teaching Alloy with an Automated Assessment Platform. . . . 61
Nuno Macedo, Alcino Cunha, José Pereira, Renato Carvalho,
Ricardo Silva, Ana C. R. Paiva, Miguel Sozinho Ramalho,
and Daniel Silva

A Characterization of Distributed ASMs with Partial-Order Runs 78
Egon Bérger and Klaus-Dieter Schewe

A Logic for Reflective ASMs. 93
Klaus-Dieter Schewe and Flavio Ferrarotti

Analysing ProB’s Constraint Solving Backends: What Do They Know? Do

Jannik Dunkelau, Joshua Schmidt, and Michael Leuschel

Programming the CLEARSY Safety Platform with B 124
Thierry Lecomte

Modelling Hybrid Programs with Event-B 139
Meryem Afendi, Régine Laleau, and Amel Mammar

X Contents

Event-B-Supported Choreography-Defined Communicating Systems:
Correctness and Completeness, 155
Sarah Benyagoub, Yamine Ait-Ameur, and Klaus-Dieter Schewe

Formally Verified Architecture Patterns of Hybrid Systems Using

Proof and Refinement with Event-B 169
Guillaume Dupont, Yamine Ait-Ameur, Marc Pantel,
and Neeraj K. Singh

Integration of iUML-B and UPPAAL Timed Automata for Development

of Real-Time Systems with Concurrent Processes 186
Fatima Shokri-Manninen, Leonidas Tsiopoulos, Jiiri Vain,
and Marina Waldén

Formal Distributed Protocol Development for Reservation

of Railway Sections. 203
Paulius Stankaitis, Alexei Iliasov, Tsutomu Kobayashi,
Yamine Ait-Ameur, Fuyuki Ishikawa, and Alexander Romanovsky

Short Articles

Verifying SGAC Access Control Policies: A Comparison of ProB,
Aoy and Z3. . .. 223
Diego de Azevedo Oliveira and Marc Frappier

Account and Transaction Protocol of the Open Banking Standard 230
Abdulaziz Almehrej, Leo Freitas, and Paolo Modesti

Structuring the State and Behavior of ASMs: Introducing a Trait-Based
Construct for Abstract State Machine Languages. 237
Philipp Paulweber, Emmanuel Pescosta, and Uwe Zdun

Exploring the Concept of Abstract State Machines for System
Runtime Enforcement 244
Elvinia Riccobene and Patrizia Scandurra

ProB and Jupyter for Logic, Set Theory, Theoretical Computer Science
and Formal Methods 248
David Geleflus and Michael Leuschel

Existence Proof Obligations for Constraints, Properties and Invariants
in Atelier B 255
Héctor Ruiz Barradas, Lilian Burdy, and David Déharbe

VisB: A Lightweight Tool to Visualize Formal Models
with SVG Graphics. 260
Michelle Werth and Michael Leuschel

Contents

Towards a Shared Specification Repository
Philipp Korner, Michael Leuschel, and Jannik Dunkelau

Refinement and Verification of Responsive Control Systems
Karla Morris, Colin Snook, Thai Son Hoang, Geoffrey Hulette,
Robert Armstrong, and Michael Butler

Articles Contributing to the Case Study

Adaptive Exterior Light and Speed Control System.
Frank Houdek and Alexander Raschke

Modelling an Automotive Software-Intensive System with Adaptive

Features Using ASMETA.
Paolo Arcaini, Silvia Bonfanti, Angelo Gargantini, Elvinia Riccobene,
and Patrizia Scandurra

Validating Multiple Variants of an Automotive Light System
with Electrum. e
Alcino Cunha, Nuno Macedo, and Chong Liu

Modelling and Validating an Automotive System in Classical B
and Event-B.
Michael Leuschel, Mareike Mutz, and Michelle Werth

An Event-B Model of an Automotive Adaptive Exterior Light System.
Amel Mammar, Marc Frappier, and Régine Laleau

Modeling of a Speed Control System Using Event-B.
Amel Mammar and Marc Frappier

A Verified Low-Level Implementation of the Adaptive Exterior Light

and Speed Control System
Sebastian Krings, Philipp Korner, Jannik Dunkelau,
and Chris Rutenkolk

Short Articles of the PhD-Symposium (Work in Progress)

A Correct by Construction Approach for the Modeling and the Verification
of Cyber-Physical Systems in Event-B.
Meryem Afendi

Improving Trustworthiness of Self-driving Systems.
Fahad Alotaibi

A Formal Approach for the Modeling of High-Level Architectures Aligned
with System Requirements
Racem Bougacha

xi

Xii Contents

Automatic Generation of DistAlgo Programs from Event-B Models. 414
Alexis Grall

Event-B: From Systems to Sub-systems Modeling. 418
Kenza Kraibi

A Framework for Critical Interactive System Formal Modelling
and Analysis. 423
Ismail Mendil

Author Index e 427

Keynotes and Invited Papers

®

Check for
updates

Modelling and Verification of
Robotic Platforms for Simulation
Using RoboStar Technology

Ana Cavalcanti®

Department of Computer Science, University of York, York YO105GH, UK
Ana.Cavalcanti@york.ac.uk

The RoboStar framework! supports model-based engineering of robotic appli-
cations. Modelling is carried out using diagrammatic domain-specific lan-
guages: RoboChart [13] and RoboSim [3]. Verification and generation of artefacts
is justified by a formal semantics given using a state-rich hybrid version of a pro-
cess algebra for refinement [7]. It is inspired by CSP [19] and cast in Hoare and
He’s Unifying Theories of Programming (UTP) [10] formalised in Isabelle [6].

RoboChart is an event-based language for design, while RoboSim is a cycle-
based language for simulation. Tool support is provided by RoboTool, which
includes facilities for graphical modelling, validation, and automatic generation
of CSP (for analysis with the model checker FDR [9]) and PRISM [11] scripts (for
verification of probabilistic controllers), and simulations. RoboChart and
RoboSim are based on the use of state machines to specify behaviour, akin to
notations already in widespread use [2,5,16,20], but RoboChart and RoboSim
are enriched with facilities for verification and traceability of artefacts.

Recent work has focussed on enriching RoboSim for physical modelling. Cur-
rent practice in robotics often uses simulation to understand the behaviour of
a robotic controller for a particular robotic platform and environment. A wide
variety of simulators for robotics use different tool-dependent or even propri-
etary programming languages and API [8,12,14,17,18]. Physical modelling of
the platforms are encoded by programs in customised notations, generated from
graphical tools, or in C++, Java, Python, or C#, for example.

RoboSim, on the other hand, is a tool-independent notation. For physical
modelling, we have defined a notation based on SysML block diagrams [15].
Our profile is inspired by XML-based notations used by robotics simulators?. It
defines a physical model by a diagram that captures the physical components
of a platform as links (rigid bodies), joints, sensors, and actuators. Properties
of these blocks capture their attributes that are relevant for simulation and for
capturing behaviour: movement and use of sensors and actuators.

In contrast with XML-based notations in current use, RoboSim block dia-
grams encourage readability and support modularisation via several mechanisms.
Models can be parametrised by constants that represent, for example, key mea-
sures of physical bodies. The pose of an element is defined always in reference to

! www.cs.york.ac.uk/robostar/.

2 sdformat.org.
© Springer Nature Switzerland AG 2020

A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 3-5, 2020.
https://doi.org/10.1007 /978-3-030-48077-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_1&domain=pdf
www.cs.york.ac.uk/robostar/
http://sdformat.org
https://doi.org/10.1007/978-3-030-48077-6_1

4 A. Cavalcanti

the element that contains it. A richer notion of connection captures flexible and
fixed compositions. A library fosters reuse by the possibility of defining parts
and fragments that can be instantiated or simply included to define a complete
model. Finally, well-formedness rules ensure validity of models.

The most distinctive feature of RoboSim block diagrams, however, is the
possibility of defining systems of differential algebraic equations that capture
behaviour of the platform. For sensors, these equations define how inputs (from
the environment) are reflected in sensor outputs for use with the software. For
actuators, the equations define how inputs from the software affect the outputs
of the actuators, and therefore, affect the platform itself (in the case of motors,
for example), or the environment. For joints, the equations define how their
movement induces movement on the links connected to them.

A system view is provided by connecting a RoboSim block diagram that
specifies a physical model for a robotic platform, to a RoboSim module that
specifies a control software. This is achieved by a platform mapping, which spec-
ifies how software elements that abstract services of the platform are defined. In
specifying these services, we can use outputs of sensors and inputs of actuators.

Ongoing work, provides support to translate RoboSim block diagrams to
XML for use in simulation (using Coppelia, formerly, v-rep). For mathemati-
cal modelling, the UTP semantics constructs a hybrid model, with constructs
inspired by those of Circus [4], combining Z [1,21] and CSP.

Acknowledgements. The work mentioned is a collaboration with colleagues at the
RoboStar group, in particular, Alvaro Miyazawa and Sharar Ahmadi. The author’s
work is funded by the Royal Academy of Engineering grant CiET1718/45, and UK
EPSRC grants EP/M025756/1 and EP/R025479/1. No new primary data was created
as part of the study reported here.

References

1. ISO/IEC 13568:2002. Information technology - Z formal specification notation -
syntax, type system and semantics. International Standard

2. Brunner, S.G., Steinmetz, F., Belder, R., Domel, A.: Rafcon: a graphical tool for
engineering complex, robotic tasks. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 3283-3290 (2016)

3. Cavalcanti, A.L.C., et al.: Verified simulation for robotics. Sci. Comput. Program.
174, 1-37 (2019)

4. Cavalcanti, A.L.C., Sampaio, A.C.A., Woodcock, J.C.P.: A refinement strategy for
Circus. Formal Aspects Comput. 15(2-3), 146-181 (2003)

5. Dhouib, S., Kchir, S., Stinckwich, S., Ziadi, T., Ziane, M.: RobotML, a domain-
specific language to design, simulate and deploy robotic applications. In: Noda, I.,
Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS (LNAI), vol.
7628, pp. 149-160. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34327-8_16

6. Foster, S., Baxter, J., Cavalcanti, A., Miyazawa, A., Woodcock, J.: Automating
verification of state machines with reactive designs and Isabelle/UTP. In: Bae, K.,
Olveczky, P.C. (eds.) FACS 2018. LNCS, vol. 11222, pp. 137-155. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-02146-7_7

https://doi.org/10.1007/978-3-642-34327-8_16
https://doi.org/10.1007/978-3-642-34327-8_16
https://doi.org/10.1007/978-3-030-02146-7_7

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

Modelling and Verification of Robotic Platforms 5

Foster, S., Cavalcanti, A.L.C., Canham, S., Woodcock, J.C.P., Zeyda, F.: Unifying
theories of reactive design contracts. Theoret. Comput. Sci. 802, 105-140 (2020)
Gerkey, B., Vaughan, R.T., Andrew, H.: The player/stage project: tools for
multi-robot and distributed sensor systems. In: 11th International Conference on
Advanced Robotics, pp. 317-323 (2003)

Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3—a mod-
ern refinement checker for CSP. In: Abrahém, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 187-201. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54862-8_13

Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice-Hall, Upper
Saddle River (1998)

Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking
with PRISM: a hybrid approach. Int. J. Softw. Tools Technol. Transf. 6(2), 128-142
(2004). https://doi.org/10.1007/s10009-004-0140-2

Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: Mason: a multiagent
simulation environment. Simulation 81(7), 517-527 (2005)

Miyazawa, A., Ribeiro, P., Li, W., Cavalcanti, A., Timmis, J., Woodcock, J.:
RoboChart: modelling and verification of the functional behaviour of robotic appli-
cations. Softw. Syst. Modeling 18(5), 3097-3149 (2019). https://doi.org/10.1007/
$10270-018-00710-z

Olivier, M.: Webots™: professional mobile robot simulation. Int. J. Adv. Robot.
Syst. 1(1), 39-42 (2004)

OMG. OMG Systems Modeling Language (OMG SysML), Version 1.3 (2012)
Pembeci, 1., Nilsson, H., Hager, G.: Functional reactive robotics: an exercise in
principled integration of domain-specific languages. In: 4th ACM SIGPLAN Inter-
national Conference on Principles and Practice of Declarative Programming, pp.
168-179. ACM (2002)

Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-
robot systems. Swarm Intell. 6(4), 271-295 (2012)

Rohmer, E., Singh, S.P.N., Freese, M.: V-REP: a versatile and scalable robot sim-
ulation framework. In: IEEE International Conference on Intelligent Robots and
Systems, vol. 1, pp. 1321-1326. IEEE (2013)

Roscoe, A.W.: Understanding Concurrent Systems. Texts in Computer Science.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-1-84882-258-0
Wachter, M., Ottenhaus, S., Krohnert, M., Vahrenkamp, N., Asfour, T.: The
ArmarX statechart concept: graphical programing of robot behavior. Front. Robot.
Al 3, 33 (2016)

Woodcock, J.C.P., Davies, J.: Using Z - Specification, Refinement, and Proof.
Prentice-Hall, Upper Saddle River (1996)

https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/s10009-004-0140-2
https://doi.org/10.1007/s10270-018-00710-z
https://doi.org/10.1007/s10270-018-00710-z
https://doi.org/10.1007/978-1-84882-258-0

l‘)

Check for
updates

Adding Concurrency to a Sequential
Refinement Tower

Gerhard Schellhorn®™) | Stefan Bodenmiiller, Jorg Pfihler, and Wolfgang Reif

Institute for Software and Systems Engineering,
University of Augsburg, Augsburg, Germany
{schellhorn,stefan.bodenmueller,reif}@informatik.uni—augsburg.de,
joerg.pfaehler@gmx.de

Abstract. This paper defines a concept and a verification methodology
for adding concurrency to a sequential refinement tower of abstract state
machines, that is based on data refinement and a component structure.
We have developed such a refinement tower for the Flashix file system
earlier, from which we generate executable (C and Scala) Code.

The question we answer in this paper, is how to add concurrency
based on locks to such a refinement tower, without breaking the initial
modular structure. We achieve this by just enhancing the relevant compo-
nents, and adding intermediate atomicity refinements that complement
the data refinements that are already there. We also give a verification
methodology for such atomicity refinements.

1 Introduction

Development of formally proved software systems using incremental refinement
has been successfully used in many case studies. Often the system developed is
a sequential system, e.g. a compiler. The standard technique used then is data
refinement [8,9,14] or closely related definitions [2].

Our group has developed a verified file system for flash memory [12,13,22,26]
using a strategy based on data types specified as abstract state machines (ASMs,
[4]), data refinement, and subcomponents. The resulting refinement tower is
shown in Fig. 1. It starts with an abstract state machine that specifies the POSIX
file system operations. This interface is then refined to an implementation VFS
(denoted by VFS C POSIX), which calls operations of a submachine AFS. This
machine acts as an abstract interface to the next implementation. This continues
until the MTD layer is reached, which is the generic interface for flash hardware
used in Linux.

Scala code for simulations as well as C code integrated into the Linux kernel
has been generated from the implementations (shown in grey). The file system so
far is strictly sequential, i.e., all operations are called in sequential order. Adding

Supported by the Deutsche Forschungsgemeinschaft (DFG), “Verifikation von Flash-
Dateisystemen” (grants RE828/13-1 and RE828/13-2).
© Springer Nature Switzerland AG 2020

A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 6-23, 2020.
https://doi.org/10.1007/978-3-030-48077-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-48077-6_2

Adding Concurrency to a Sequential Refinement Tower 7

concurrency is however relevant for practical usability and efficiency on at least
three levels: top-level operations, garbage collection and wear leveling.

Since existing refinement strategies are typically designed to start with an
atomic specification that is refined to a concurrent system, this raises the ques-
tion how to add concurrency a posteriori to intermediate levels of such a refine-
ment tower without losing modularity and without having to start verification
from scratch. This paper gives a positive answer to the question, by “shifting”
parts of the refinement towers, i.e., by modifying individual specifications and
implementations, to make them concurrent.

We will use erase block management (the EBM | POSIX |
interface) and the concurrent implementation of ; :
wear leveling (WL) based on the interface Blocks | VES | AFS |
as an example to demonstrate how concurrency is o
added. A specification of the sequential specifica-
tions and refinements involved has already been

published in [23]. e
The next section will give a simplified version AiE |—C0-| Blocks |

of the relevant sequential specifications and imple-
mentation, to demonstrate in Sect.3 how concur-

rency using locks is added and how restrictions are

encoded as ownership constraints. Section4 infor- Fig 1. Flashix refinement
mally introduces the well-known concept of lineariz- tower

ability as the relevant concept to verify correctness

of concurrent implementations, and shows how the proof of linearizability can
be split into one of data refinement (that reuses the original proof) and one of
atomicity refinement. Section 5 will give a proof strategy based on rely-guarantee
proofs and reduction. Both have been implemented in our KIV [11] theorem
prover. The specifications and proofs for the case study are available online [18].
Section 6 gives related work, and Sect. 7 concludes.

2 The Refinement for Wear Leveling

Flash hardware is partitioned into erase blocks. Blocks can be written sequen-
tially, and erased as a whole. Erasing wears out the block until it becomes unus-
able. Therefore, for efficient usage of a flash device, blocks must be worn out
evenly. In particular if a device is filled to a large part with static data, the blocks
with these data must sometimes be swapped with other (currently empty) blocks,
that have often been modified and erased. This is called wear leveling. Wear lev-
eling is hidden from the more abstract levels of the file system by the erase block
manager (EBM) interface. The interface offers access to logical blocks. The task
of the implementation (WL) is to map them to the physical blocks offered by the
hardware, and to change the mapping when this is advisable, using an internal
operation for wear leveling that has no effect (implements skip) for the interface
EBM.

8 @G. Schellhorn et al.

An abstract specification of the erase block manager is given with the ASM
EBM. The state consists of a function that maps logical block numbers to actual
content and a set of currently used (“mapped”) block numbers.

state Contents : nat — content Mapped : set{nat)

initial state Contents = A n. empty A Mapped = ()

For simplicity, we do not specify content, except for a default value empty. The
interface of EBM shown in Fig. 2 allows to read and to write the content of logical
blocks. The operations use a semicolon to separate input and output parameters.

ebm_write(lnum, c) The implementation of EBM is given by the
Contents(lnum) = c . . .
Mapped S:(%:Z;))ed ¥ (numy ~ ASM WL together with a specification Blocks

as a submachine. This refinement introduces the
e?;n ;F?SESLZZWAZ;LG J then distinction between logical and physical blocks.
¢ = empty Blocks allows reading and writing of physical
elje: Contents(prum) blocks while WL is responsible for the mapping
of logical to physical blocks. Furthermore, the

Fig. 2. Sequential specification Wwear leveling algorithm is implemented in WL.
of the erase block manager (EBM) To enable wear leveling each physical block
in Blocks contains a header. This header stores
which logical block is mapped to the physical
block or if the block is currently unmapped (L).

data header = mapped(blockno : nat) | L

data block = mkb(header : header, content : content)

The state of Blocks is a function that maps physical block numbers to blocks.
Initially all blocks are unmapped and empty.

state Blocks : nat — block initial state Blocks = A\ m. mkb(L, empty)

The interface of Blocks as shown in Fig.3 provides additional functionality
to write and read the header of a physical block. Accessing the content of a
block requires it to be mapped, i.e., the header of the block must not be L. For
wear leveling the interface also offers an interface operation blocks_get_wl that
returns two physical blocks from and to, that are suitable for wear leveling. The
actual decision is based on erase counts (also stored in block headers), but we
leave the concrete implementation open here. To signal that wear leveling is
currently unnecessary, the operation returns a block from with an unmapped
header.

The operations of WL are depicted in Fig. 4. To avoid scanning the headers of
all blocks, the state of WL maintains an in-memory mapping from logical block
numbers to headers, which contain the corresponding physical block numbers if
the logical block is mapped.

state LMap : nat — header initial state LMap = A n. L

Adding Concurrency to a Sequential Refinement Tower 9

blocks_map(; pnum)
choose m with
Blocks(m).header = L
in
pnum = m

blocks_write(pnum, c)
pre Blocks(pnum).header # L
Blocks(pnum).content = c

blocks_read(pnum; c)
pre Blocks(pnum).header # L

¢ := Blocks(pnum).content blocks_get_wl(; from, to)

choose m;, my with
Blocks(mg).header = L
/* N my, mg are suitable
for wear leveling */

blocks_write_h(pnum, h)
h = Blocks(pnum).header

in

blocks_read_h(pnum; h) From = my, to = ms

Blocks(pnum).header = h

Fig. 3. Sequential specification of the physical block layer (Blocks)

Reading and writing of content delegates to the corresponding operations of
Blocks by following LMap. If a logical block is unmapped, the write operation
first maps this block to an unused physical block by writing a header and updat-
ing LMap. Therefore Blocks provides an operation blocks_map that returns a
fresh block that can be mapped.

The wear leveling operation wl wear_leveling, that is not visible to the
clients, first requests a pair of blocks to be wear leveled by calling blocks_get_wl.
If the from Block is mapped, its header and content are copied to the to Block
and LMap is updated. We leave away many details here, that ensure, that crash-
ing in the middle of wear leveling will result in a consistent state, see [23].

To prove the refinement WL C EBM three invariants are established in WL.

injective(lmap) <

YV ni,ne. Imap(n;) # L A lmap(ng) # L — Imap(n;) # lmap(ng)
Imapblocks(Imap, blocks) —

V n. Imap(n) # L — blocks(lmap(n).blockno).header = mapped(n)
blockslmap(blocks, lmap)

V m. blocks(m).header # L — Imap(blocks(m).header.blockno) = mapped(m)

The three predicates guarantee a valid mapping between logical and physical
blocks. injective prohibits that two logical blocks are mapped to the same phys-
ical block, Imapblocks ensures that each mapped physical block in lmap points
to the correct logical block, and blocksimap ensures that each mapped physical
block also has a matching entry in Imap.

The abstraction relation between states of the specification and states of the
implementation ensures that mapped blocks in Mapped conform with mapped
logical blocks in LMap and that contents of Contents conform to the contents
of the mapped physical blocks in Blocks.

(V n. n € Mapped — LMap(n) # 1)
A (VY n. n € Mapped — Contents(n) = Blocks(LMap(n).blockno).content)

10 @G. Schellhorn et al.

wl_write(lnum, c)
let pnum = 0 in
if LMap(lnum) = L then
blocks_map(; pnum);
blocks_write_h(pnum, mapped(lnum));
blocks_write(pnum, empty);
LMap(Inum) = mapped(pnum);
else
pnum = LMap(Inum).blockno;
blocks_write(pnum, c);

wl_wear_leveling()
internal
let h = 1, ¢ = empty,
from =0, to =0
in
blocks_get_wl(; from, to);
blocks_read_h(from; h);
if h # L then
let inum = h .blockno in
blocks_read(from; c);
. blocks_write_h(to, h);
wl_read(lnum; c) . .
if LMap(lnum) = L then blocks_write(to, c);
LMap(Inum) = mapped(to);

¢ = empty; blocks_write_h(from; 1) ;
else

let pnum = LMap(Inum).blockno in
blocks_read(pnum; c);

Fig. 4. Sequential implementation of the wear leveling layer (WL)

Together with the invariants this is sufficient to prove a data refinement using
forward simulation.

3 Adding Concurrency and Ownership

The sequential code calls the wear leveling operation at the end of every other
operation. This causes small pauses in between operations. A better solution is
to call wear leveling in a separate thread concurrently. This exploits that even
the MTD hardware interface is capable of reading and writing different blocks
concurrently. This is not possible for individual blocks, since these do not provide
random access, but can be written sequentially only.

Adding concurrency implies that interface operations are now called concur-
rently by several threads, and it is natural to assume that they now have an
atomic semantics (which is the natural semantics of ASMs, but was not required
in a sequential context). We emphasize this, by writing EBMa; and Blocksay for
EBM and Blocks with atomic semantics, although the machines are the same.
Assuming an atomic semantics for the implementation is however unrealistic.

A simple solution that enforces an atomic semantics for an implementation
is to use a single global mutex, that is set before each operation and released
afterwards. Doing so for the operations of WL would however prevent wear leveling
from running concurrent.

An implementation of Blocks that uses such a simple locking strategy would
be correct to enforce atomicity, but too restrictive as it would prevent concurrent
access to different blocks. It would also not be sufficient for the correctness
of WL. To understand this, consider the implementation of wl write in Fig. 4
and a potential interleaving of two concurrent executions of this operation as
depicted in Fig. 5. Here two threads tid; and tids write two contents to different
logical blocks Inum; resp. Inumg. Both logical blocks are unmapped so by calling
blocks_map unmapped physical blocks are chosen to be mapped. Although the

Adding Concurrency to a Sequential Refinement Tower 11

operation is atomic it is possible that for tids the same physical block pnum is
returned as for #id; since tid; has not written the new header yet. Both threads
would then write to the same physical block, first different headers that point to
Inum; resp. Inumy, then different contents cs resp. c¢;. After both writes finish
an inconsistent state is reached to the effect that the written data of tidy is lost
and the injectivity of the block mapping is violated.

wl_write(lnumy, c;)

blocks_map blocks_write_h blocks_write
. | | ! >
tld] T I ! ’
wlwrite(lnumgz, cg)
blocks_map blocks_write_h blocks_write
tids : : :)

Fig. 5. Critical interleaving of two wl_write executions

A concept is needed that enforces on the level of Blocks that its implemen-
tation can assume that only one thread is writing each block at one time, and
that headers are written by a single thread only.

The concept we use is that of threads owning data structures.

data owner = readers(tids : set(threadid)) | writer(tid : threadid)

ghoststate OBlocks : nat — owner OHeaders : owner

An owner can either own a data structure non-exclusively (typically for read-
ing) or exclusively for writing. That a thread owns all headers or some block for
reading or writing is specified as two ghost variables OHeaders and OBlocks.
To ensure, that clients of the extended interface Blocksowns shown in Fig. 6
respect the ownership, we add preconditions to the operations, that request
read-ownership for reading and write-ownership for writing blocks and head-
ers. A thread that wants to call an operation of Blocksgwns Must now acquire
ownership before it and can release ownership afterwards. For this purpose the
interface is extended with two auxiliary acquire and release operations. These
acquire and release full ownership, which is sufficient for the concurrent imple-
mentation of wear leveling given below. It is possible to add operations that
acquire and release read-ownership too. Acquiring full ownership has the pre-
condition that there is no current owner. If two threads now try to write the
same block, one of them will violate the precondition of acquire (if it tries to
acquire) or it will violate the precondition of writing (if it does not). But this
is impossible, since submachine calls in implementations are checked to satisfy
their preconditions.

12 @G. Schellhorn et al.

data mutexr = free locked(tid : threadid)

blocks_acquire(pnum)
pre OBlocks(pnum) = readers(()
atomic ghost

OBlocks(pnum) := writer(tid)

blocks_acquire_h()
pre OHeaders = readers(0)
atomic ghost

OHeaders = writer(tid)

blocks_release(pnum)
pre tid € OBlocks(pnum).readers
atomic ghost
OBlocks(pnum) = release(tid, OBlocks(pnum))

blocks_release_h()
pre tid € OHeaders.readers
atomic ghost

OHeaders = release(tid, OHeaders)

blocks_write(pnum, c)
pre Blocks(pnum).header # L
A tid € OBlocks(pnum).writers
atomic
Blocks(pnum).content = ¢

blocks_read(pnum; c)
pre Blocks(pnum).header # L
A tid € OBlocks(pnum).readers
atomic
¢ := Blocks(pnum).content

blocks_write_h(pnum, h)
pre tid € OHeaders.writers
A tid € OBlocks(pnum).uriters
atomic
h = Blocks(pnum).header

blocks_read_h(pnum; h)

pre tid € OHeaders.readers

atomic
Blocks(pnum).header = h

blocks_map(; pnum)

pre tid € OHeaders.readers

atomic

choose m;, ms with choose m with
Blocks(mg).header = L . Blocks(m).header = L
/* A my is good for WL */ n]

in pnum = m

from = my, to = my

blocks_get_wl(; from, to)
pre tid € OHeaders.readers
atomic

Fig. 6. Atomic specification of the physical block layer with ownership (Blocksowns)

Calls to acquire and release in the augmented code of wear leveling will now
ensure, that ownership is properly acquired. They are used for verification, but
are “ghost code” that is eliminated when generating executable code.

To make sure, that calls to acquire never violate their precondition, we have
to use locks in the extended implementation of WL given in Fig. 8. The simple
implementation we give here just uses mutexes.

data mutex = free | locked(tid : threadid)

The locking and unlocking operations mutex_lock and mutex_unlock are
specified as the atomic program statements given in Fig.7. The definition of
mutex_lock uses the program construct atomic ¢ { a }. The atomic construct
blocks the current thread until its guard ¢ is satisfied. Immediately afterwards,
the program « is executed in a single, indivisible step.

Figure 8 shows the result of applying suffi-
cient locking and ownership acquisition to WL.
Additionally, each atomic step gets an individ-
ual label (W1-W18, R1-R8, and WL1-WL21) to give
assertions for this program point when reason-
ing about atomicity (see Sect. 5). We refer to
this concurrent implementation as WLcone. The
state of WLcoone is enhanced by a lock that pro-
tects the headers of all blocks, and locks for each
logical block that protects its contents.

Adding Concurrency to a Sequential Refinement Tower 13

state ... Lock : mutex

mutex_lock(mutex)
atomic (mutex = free) {
mutex = locked(tid)

}

mutex_unlock(mutez)
pre mutex = locked(tid)
mutexr = free

Fig.7. Mutex locking opera-
tions

Locks : nat — mutex

We use mutexes for all locks, since they match our simplification of acquiring
write-ownership only. The actual Erase-Block-Manager in Flashix employs reader-
writer locks whenever parallel reading is unproblematic. The general locking con-
cept of WLoone is to acquire Lock only if the mapping from logical to physical blocks
needs to be updated. This is the case when writing to an unmapped block or when
wear leveling is active. Otherwise, locking only one individual Locks(lnum) of a
specific logical block Inum is sufficient. This lock protects the corresponding entry
LMap(lnum) of the block mapping as well as the content of the physical block
LMap(lnum).blockno. With this strategy multiple reads and writes to different,
mapped logical blocks are possible, even in parallel to wear leveling.

wl_write(lnum, c)
let pnum = 0 in

mutex_lock(Lock);

mutex_lock(Locks(lnum));

if LMap(inum) = L then
blocks_acquire_h();
blocks_map(; pnum);
blocks_acquire(pnum);

blocks_write_h(pnum, mapped(lnum));

blocks_write(pnum, empty);

blocks_release(pnum);

LMap(Inum) = mapped(pnum);

blocks_release_h();
else

pnum = LMap(Inum).blockno;
mutex_unlock(Lock);
blocks_acquire(pnum);
blocks_write(pnum, c);
blocks_release(pnum);
mutex_unlock(Locks(inum));

wl_read(lnum; c)
mutex_lock(Locks(Ilnum));
if LMap(lnum) = L then

c = empty

else
let pnum = LMap(Inum).blockno in

blocks_acquire(pnum);
blocks_read(pnum; c);
blocks_release(pnum);

mutex_unlock(Locks(inum));

WL1

WL10
WL11
WL12
WL13
WL14
WL15
WL16
WL17
WL18
WL19
WL20

wl_wear_leveling/()
internal
let h = 1, ¢ = empty,
from =0, to =0
in
mutex_lock(Lock);
blocks_acquire_h();
blocks_get_wl(; from, to);
blocks_read_h(from; h);
if h # L then
let Inum = h .blockno in
mutex_lock(Locks(Ilnum));
blocks_acquire(from);
blocks_read(from; c);
blocks_acquire(to);
blocks_write_h(to, h);
blocks_write(to, ¢);
LMap(lnum) = mapped(to);
blocks_write_h(from; L);
blocks_release(to);
blocks_release(from);
mutex_unlock(Locks(lnum));
blocks_release_h();
mutex_unlock(Lock);

Fig. 8. Concurrent implementation of the wear leveling layer (WLconc)

14 @G. Schellhorn et al.

One exception is that the Lock has
EBM,,
to be acquired in every wl-write exe- : — .
cution (W2-W14 in Fig.8), at least for a ; Lincarizability ;
short ar.noun.t of time. This is due to | WLcone l—(o—|BlocksownS|
the locking hierarchy that is employed to
avoid deadlocks. When running in par- WL + Locks Blocks, + Ownership

allel, it is possible that a wl_write and

wl.wear_leveling may both need to Fig. 9. Concurrency refinement of the
acquire Lock and the same Locks(Inum), erase-block-manager

so it must be ensured that those opera-

tions request the locks in the same order. Because wl wear_leveling needs
to be owner of OHeaders to get suitable physical blocks at WL4 before a log-
ical block can be locked, wl_write must request Lock (W2) ahead of requesting
Locks(Ilnum) (W3).

Figure9 shows the resulting refinement of EBMa;. Proving WLoone & EBMag
using linearizability is discussed in detail in the next sections. It remains to
integrate the new “shifted” refinement into the refinement tower. The layers
above EBMa¢ can remain untouched since EBM,; is identical to EBM, and sequential
use of EBMp; is not problematic. Below Blocksowns an adjustment is necessary:
a simple one is to use a global lock around the operations of its implementation.
Since the level is already close to the MTD hardware interface, the real solution
propagates ownership down to ownerships at the hardware level (where blocks
store a sequence of bytes instead of a header and content).

4 Linearizabilty and Atomicity Refinement

The standard correctness criterion we use to prove correctness of the refinement
of EBMat to WLoone from Fig. 9 is linearizability. A formal definition can be found
in [15], we only give an informal description here.

A concurrent implementation CASM with nonatomic programs COP; is lin-
earizable to an atomic specification AASM with atomic operations AOP;, if the
input/output behaviors of each concurrent run can be explained by mapping
them to the sequential input/output behavior of some sequential run of AASM.

The mapping between a concurrent and a
sequential run is as follows: for each concur- | EBM,, |
rent call of an operation COP; that is started
at time ¢; and returns at time ¢, find some : :
point in time I; with ¢; < l; < ¢, such that | WLy, I—(o—| Blocksy, |
all [; are different. The point is called the lin- : :

Data Refinement

. . . . Abstraction
earization point of the operation call. Then

construct some sequential run of AASM that |at(WLConc)|_(°—| BIOCkSOWHS|
executes each corresponding abstract opera- Atomicity Refinement
tion AOP; atomically at time [;. Note that i i

. S . . WL Blocksgyps
even for fixed linearization points this may I Conc |—(o—| o bo‘““'
give several sequential runs if the abstract
operations are nondeterministic.

Fig. 10. Splitting the refinement

Adding Concurrency to a Sequential Refinement Tower 15

A refinement from AASM to CASM then is linearizable, if for every concurrent
run linearization points and an abstract sequential run can be found, such that
all operation calls have the same inputs and outputs.

The clients of the interface then cannot distinguish the concurrent run from
one, where each operation call is delayed until time I;, executes AOP; atomically
and then is delayed again until time ¢;.

Our proof technique will use an intermediate machine at(WLconc) that is
the same as WLcone, but executes the code of each operation as one atomic
step. This splits the refinement problem into three parts as shown in Fig. 10.
The data refinement WLay T EBMat, that we have already proved (since the
ASMs are the same as WL and EBM). Second, a trivial refinement at(WLcoone) T
WLt that abstracts from the locking/unlocking (and acquire/release) instruc-
tions in at(WLconc), since the overall effect of locking/unlocking in one atomic
step is empty. Finally, the atomicity refinement WLcone C at(WLcone), where both
machines have the same data and operations, but different atomicity. Splitting
the refinement from an atomic AASM to a concurrent CASM by using an inter-
mediate at(CASM), which executes the operations of CASM atomically, has the
advantage that data refinement is completely decoupled from atomicity refine-
ment.

The next section will describe a proof strategy for proving the atomicity
refinement between at(WLcone) and WLcone, which is the new problem we get
from adding concurrency to the refinement tower.

5 Proof Strategy for Atomicity Refinement

The proof strategy we use to prove atomicity refinement consists of two steps.
First we prove that the concurrent runs of WLcone satisfy some assertions at all
program points. These proofs use thread-local reasoning with the rely-guarantee
calculus. They additionally ensure termination and deadlock-freedom, which are
not implied by linearizability alone. Second we prove that based on the assertions,
atomic program steps can be reduced to larger and larger atomic steps, until we
arrive at at(WLconc). We sketch the basic strategy in the first subsection, and
give results for the case study in Sect. 5.2.

5.1 Rely-Guarantee Proofs and Reduction
The variant of the rely-guarantee calculus used here is similar to the one given

in [30], Section 5. The basic correctness statement! is of the form

pre A I — (R, G, I, run,ca) post

! The notation in [30] is: « sat (pre, R A (I — I(z')), run, G A (I — I(2)), post).

16 @G. Schellhorn et al.

where program « is assumed to be the sequential program of some thread, that
executes atomic steps. These alternate with environment steps, where one envi-
ronment step is an arbitrary sequence of steps of other threads.

The program is assumed to use the state variables . Precondition pre, post-
condition post, predicate run, and global invariant I are predicates over this
state. The rely R and the guarantee G restrict environment and program steps.
They are predicates over z and 2’ We write arguments in predicates if they differ
from the standard ones only.

The formula asserts, that program «, when started in a state that satisfies
precondition pre and global invariant I, will execute steps that satisfy G and
preserve the invariant I, as long as all previous environment steps satisfy R and
preserve I too. No program step will block, when at that time run holds. In
addition, when all environment steps satisfy R and preserve I, then the program
will either terminate and the final state will satisfy post, or it will stop in a
blocked state where run is false.

The calculus to prove such formulas in KIV is based on symbolic execution.
The basic rule to execute one atomic step at label L, that is annotated with an
assertion ¢y, is

pre N I — or A (run — @)

pre NI A{a)yz=2" — G(z,z') N I(z)

pre(zo) A {alzy)) zo = z; A R(zy,z) A I(z) — (R, G, I, run,8) post
pre NI — (R,G,1I,run,L: /% oL */ atomic ¢ {a};3) post

The rule reduces the conclusion at the bottom to premises. The first premise
states that before executing « the assertion at the initial label holds, and that
the first step does not block (¢ holds) whenever the run predicate is true.

The second premise uses the Dynamic Logic formula (o) = 2’ which asserts
that the sequential program « has a terminating run that yields a state z’. The
premise ensures that the first atomic step of the program, which executes « is a
step that satisfies G and preserves the invariant I.

The third premise continues symbolic execution with the rest of the program.
Its precondition uses two sets x, and z; of fresh variables, to represent the
two old states before and after the first atomic program step. The subsequent
environment step from z; to the current state z is assumed to satisfy R. Since
rely steps preserve the invariant, it can be assumed for the current state again.

One common instance of the rule is a parallel assignment y := ¢, which can
be viewed as an abbreviation for atomic true {y := t}. In this case the formula
(o) x = 2/ reduces to y' =1t A 2/ = z, where z are the remaining variables from
x that are not assignea

The rules for other constructs like conditionals resemble the usual rules for
symbolic execution of programs, except that similar to the rule above they have
rely steps in between program steps and side conditions for assertions and guar-
antee. For loops, a loop invariant (that holds at the start of each iteration) and a

Adding Concurrency to a Sequential Refinement Tower 17

variant, that decreases with a wellfounded order are needed. Proofs for recursive
routines need wellfounded induction.

Individual rely-guarantee proofs for single threads can be combined to a
rely-guarantee property of a concurrent system. The crucial property that needs
to hold for this to work, is that the relies and guarantees must be compatible:
the guarantee of each thread Gy;y must imply the relies R4 of other threads
tid" # tid. For our state machines where all threads are known to execute the
same operations, the guarantee can be chosen to be Gyq = /\tid,#id Ry, the
weakest guarantee possible that is trivially compatible. The system is deadlock-
free, if the disjunction of all \/,,; runsq holds. When a mutex is used, runq
is chosen to be lock = locked(tid) V lock = Free which implies this condition.
This easily generalizes to the hierarchy of locks used in the case study.

In summary, to verify assertions for a specification of a concurrent state
machine with operations OP;, the user has to provide an invariant I, a rely Ryyq
and a predicate idlesq. The latter describes states, where a thread is not cur-
rently executing an operation. From these predicate logic proof obligations (e.g.
the R must be reflexive, initial states satisfy the invariant etc.) are generated,
together with the following rely guarantee proof obligation for each operation.

tid # tid/71,idletid7pretid F (Riids Riiars I, runiia, OP;) idletia

Successful verification guarantees that each of the assertions ¢y, holds every time
a thread reaches label L, that the operations terminate and that the implemen-
tation is deadlock-free.

The verified assertions are then used to combine atomic statements to larger
ones following Lipton’s [19] strategy of reduction. The idea is that a thread
executing two atomic steps Atr; and Atrs (at labels L1 and L2) with an envi-
ronment step in between is often equivalent to first executing the environment
step, then Aty and Aty with no intermediate environment step. In this case
the two steps can be merged together to form one atomic step.

Reverting the order of first executing , Aty atomic {Atr1; Atzo}
At and then an environment step is pos- Aty 1T % At
sible, if all steps of other threads, that Aty Atu h Atrs
could be a part of the environment step, 50 — S1 —> 52 — S3 —> 54

commute to the right with Aty;, in the
sense that executing them in both orders
gives the same final state. In this case
Atp, is called a right mover. Analogous to this, a step that commutes to left
with all steps is called a left mover. Figure 11 shows an example, where the envi-
ronment step consists of two steps Aty; and Aty of other threads. The original
run is shown at the bottom, the alternative run which allows executing Aty
and Aty as one atomic step at the top. The intermediate states of the runs are
different, but they reach the same final state.

Fig. 11. Atr1 commutes to the right of
environment step Atar; Aty

18 @G. Schellhorn et al.

The atomic steps of the programs can all be written in the form
Aty =L: /xpL * / atomic e, {ar}

where L is the label, and ¢, the assertion established. The guard €y, is true for
all statements, except locking instructions, cf. Figure 7. Program «j, is either an
assignment, or the call of a submachine operation. For a conditional or a while
loop with test 0, «f, is defined to be b := § using a fresh variable b, while binding
a local variable let y = t in... gives ay, = {y := ¢}. The formal condition for
Aty to commute to the right with Atyo executed by another thread is

oL A @ AeL A A tid # tid A {arp;aly) =z, — (@ ar) x =z, (1)

In the formula, ¢, €),, &), are variants, that rename thread local variables used
in Aty to new, primed variables disjoint from the shared state and the local
variables of Aty. The criterion critically uses the assertions at both labels, since
they often show that the preconditions of the implication contradict each other,
trivializing the proof. If, for example the two steps are both in a region where a
common lock is needed, they commute trivially: ¢y, implies lock = locked(tid),
while ¢, implies lock = locked(tid"), so the proof obligation trivially holds. A
general result is that locking is always a right mover, while unlocking is always
a left mover.

Combining steps to larger steps can be translated into rules for making state-
ments like sequential composition, conditionals and loops atomic, when their
parts are atomic already. We use rules similar to the reduction rules given in
[10]. Tterated application gives larger and larger atomic blocks. Ideally, the final
result is that the whole concurrent program of one operation has been combined
into a single atomic step. If this is possible, then a linearizability proof becomes
trivial, as the linearizability point then simply is the single atomic step.

5.2 Proving the Case Study

The main task for proving the atomicity refinement of the case study is to find
assertions, rely conditions and a global invariant that are strong enough to allow
atomicity refinement.

The rely conditions are derived from the crucial ideas what data structures
are protected from being changed, when thread tid has a certain lock or owner-
ship. This results in the following clauses.

tid € OHeaders.readers — V m. Blocks(m).header = Blocks’(m).header
tid € OBlocks(m).readers — Blocks(m) = Blocks'(m)
Lock = locked(tid) — LMap' = LMap
Locks(n) = locked(tid) — LMap’(n) = LMap(n)
Locks(n) = locked(tid)
— V m. Blocks(m).header = mapped(n) «+ Blocks’(m).header = mapped(n)

Adding Concurrency to a Sequential Refinement Tower 19

The only rely that is somewhat difficult to find is the last one: if a thread locks
logical block n, then other threads are not allowed to change the block header
to point to or to point away from n.

The global invariant and the assertions are derived from several sources.
First, ownership as used in the interface Blocksowns has to be compatible with
the use of locks.

OHeaders C Lock.owner (2)

Y m. Blocks(m).header # L
— OBlocks(m) C Locks(Blocks(m).header.blockno).owner (3)

V' m. Blocks(m).header = | — OBlocks(m) C Lock.owner (4)

The invariant (2) states that headers are owned only if the lock has been taken.
Invariant (3) states that a mapped physical block m can be owned (and therefore
changed) only if the corresponding logical block that is stored in its header is
locked. For unmapped blocks property (4) states that they can be owned only if
WLcone has taken the header lock.

Second, the three global invariants of the sequential code are relevant. Drop-
ping them completely would result in illegal states where e.g. the block mapping
is no longer injective. However, the invariants of the sequential verification are
only guaranteed to hold in idle states, where no thread is running. So it is nec-
essary to give weaker assertions for intermediate states, that are still sufficient
to avoid illegal ones.

For the given case study, it turns out that Imapblocks and injective are pre-
served by all steps, but that blockslmap does not hold while the headers are
locked. As a result the global invariant can include blockslmap(Blocks, LMap)
only when the headers are currently not owned (Oheaders = readers(f)). To
establish this assertion, after a step that releases OHeaders, assertions have to
be given for all labels, where OHeaders is taken. For writing the predicate is
violated between line W9 after the header of block pnum has been set to Inum
and line W11, where LMap(lnum) is set to pnum. For all lines in this range
blockslmap(Blocks, LMap(Inum; pnum)) holds: if LMap were already updated,
then blockslmap would hold. The wear leveling algorithm gives similar assertions
for the range WL13-WL15.

Finally, assertions are sometimes necessary for the code after a test or
after assignments to a variable. In a purely sequential setting, the test for
LMap(lnum) # L at R2 ensures that this formula holds, until the subse-
quent let binding pnum = LMap(n).blockno at line R4, which will ensure
pnum = LMap(Inum).blockno when the variable pnum is used later on. How-
ever, in the concurrent setting LMap may be assigned by other threads, destroy-
ing each of these properties. In the given case, the rely conditions are strong
enough to propagate the formulas, so we assert that at line R4 the first formula
holds, while for lines R5-R7 the second holds. A number of similar assertions are
needed for other local variables.

20 @G. Schellhorn et al.

Proving the rely-guarantee proof obligations for the individual programs
requires the main effort in proving the concurrent setting correct. This is in
line with case studies we have done for lock-free algorithms [25,27-29], where
proving rely-guarantee assertions caused the main effort too.

After establishing assertions for all program points, the program can then be
reduced, combining atomic steps to larger ones. This requires to find out, which
steps are left or right movers (or both). The current strategy implemented in
KIV does simple syntactic checks to check whether the resulting commutativ-
ity requirement (1) is trivial: either the accessed variables are disjoint, or the
preconditions of the proof obligation trivially reduce to false. Otherwise it is
possible to generate proof obligations, by manually asserting that certain steps
(identified by their label) are left or right movers (or both).

For the case study, manual specifications of mover types are currently nec-
essary for the atomic calls blocks_acquire (right mover) and blocks_release
(left mover) of Blocksas. The reader may check, that this trivially implies that
the other operations of Blocksa; are left and right movers. After the mover
types have been determined, the reduction rules are then applied automatically,
to form maximally large atomic blocks.

This immediately results in a single atomic block for wl_write and wl_read.
Reducing wl_wear_leveling creates three atomic blocks. The first ends at the
conditional at line WL6 and is a right mover. The second is for the let-block
WL7-WL19. The third is for the last two lines WL20-WL21, and is a left mover.
The conditional cannot be reduced, since its then-branch requires the lock for
block Inum to be free, while the empty else-branch does not have this guard.
With the atomic blocks now being much larger than before, it becomes possible
to prove much stronger invariants that just hold in between blocks, but did not
hold for the original programs. In particular, since all locking and unlocking of
blocks is now within atomic regions, the simple invariant that all Locks(lnum) are
always free can be established using another simple rely-guarantee proof. With
the new invariant established, another reduction step finds, that the conditional
at line WL6 can now be reduced to an atomic block. Together with the initial
and the final block being right resp. left movers already, the wear leveling code
is combined by another reduction step into a single step. This implies that the
concurrent implementation of wear leveling is indeed linearizable and a correct
refinement.

6 Related Work

Related work on wear leveling and the flash file system we have developed has
already been given in [23], where the full version of the sequential wear leveling
algorithm has been specified.

This paper is based on the PhD of Jorg Pfahler [21], where concurrency was
added to the full wear leveling algorithm. The full version needs to add ownership
annotations and locks to several refinements. This version is now used in our
actual flash file system implementation. The PhD also contains extensions that
allow verifying crash-safety, which we could not address in this paper.

Adding Concurrency to a Sequential Refinement Tower 21

The flash file system by Damchoom et al. [7] has concurrent wear leveling.
The synchronization between threads is implicitly performed by the semantics of
Event-B models, i.e., an event in an Event-B model is always executed atomically,
and not explicitly via locks or other synchronization primitives. This makes the
step to actual running code more difficult and less straightforward. The full erase
block management used in our flash file system is also more general, because it
does not use additional bits of out-of-band data of an erase block.

Verification of concurrent, lock-based systems is of course a very broad topic
with lots of important contributions, and the proof techniques we use are from
this field. We are not aware of other formal methods that specifically address the
question of this paper: how to add concurrency a posteriori to an existing modu-
lar, sequential system, without having to prove the system from scratch. Adding
concurrency to components of an existing software system to increase efficiency
is however a recurring software engineering task that should be supported by
formal methods.

Refinement and abstraction of atomicity is quite common for concurrent
systems, and many refinement definitions for concurrent systems like [1] or [20]
address refinements of atomicity. The refinement calculus of Back [3] uses the
opposite direction. It starts out with an atomic program and splits it into smaller
actions in refinement steps.

The calculus of atomic actions due to Elmas et al. [10] is an extension of
Lipton’s [19] original approach for highly concurrent, linearizable programs. It
provides a more incremental verification methodology than the calculus given
here for highly concurrent systems and its implementation is better automated.
The assertions and invariants are incrementally validated in [10], whereas here
a rely /guarantee proof is used to validate them before applying any reductions.
The rules of the calculus in [10] address partial correctness, so termination would
have to be proven differently. Nevertheless, many of the reduction rules given in
this paper are directly used in our approach too.

Ownership annotations are used in the C verifier VCC [6] and Spec# [16]
in order to ensure data-race freedom of the code. They are typically coupled to
objects of the programming language, while we decouple the use of ownership
from objects. Fractional permissions [5] in concurrent versions of separation log-
ics [24] serve a similar purpose as ownership. These are for example supported
by the C code verifier VeriFast [17].

7 Conclusion

We have presented an approach for adding concurrency to an existing refine-
ment tower. The given approach allows to add concurrency by enhancing some
of the components of the refinement tower. Abstract interfaces are extended
with acquire and release operations, that specify allowed concurrency. In our
case study concurrent writes on different blocks are possible, while concurrent
writes on the same block are disallowed. Concurrent code using these interfaces
is then possible, that enhances the existing sequential code with suitable locking

22

@G. Schellhorn et al.

strategies. We have evaluated this strategy of “shifting parts of the refinement”
tower by making wear-leveling concurrent in the Flashix file system. Specifica-
tions using the same concept have been defined for concurrent garbage collection,
with executable code already running. Verification is work in progress. We also
work on a allowing concurrent calls for POSIX file system operations.

References

10.

11.

12.

13.

14.

15.

. Abadi, M., Lamport, L.: The existence of refinement mappings. Theoret. Comput.

Sci. 2, 253-284 (1991). Also appeared as SRC Research Report 29

. Abrial, J.-R.: Modeling in Event-B - System and Software Engineering. Cambridge

University Press, Cambridge (2010)

Back, R.J.R.: A method for refining atomicity in parallel algorithms. In: Odijk, E.,
Rem, M., Syre, J.-C. (eds.) PARLE 1989. LNCS, vol. 366, pp. 199-216. Springer,
Heidelberg (1989). https://doi.org/10.1007/3-540-51285-3_42

Borger, E., Stark, R.F.: Abstract State Machines—A Method for High-Level Sys-
tem Design and Analysis. Springer, Heidelberg (2003). https://doi.org/10.1007/
978-3-642-18216-7

Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55-72. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-44898-5_4

Cohen, E., et al.: VCC: a practical system for verifying concurrent C. In: Berghofer,
S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp.
23-42. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9_2
Damchoom, K., Butler, M.: Applying event and machine decomposition to a flash-
based filestore in Event-B. In: Oliveira, M.V.M., Woodcock, J. (eds.) SBMF 2009.
LNCS, vol. 5902, pp. 134-152. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-10452-7_10

. de Roever, W., Engelhardt, K.: Data Refinement: Model-Oriented Proof Methods

and their Comparison. Cambridge Tracts in Theoretical Computer Science, vol.
47. Cambridge University Press, Cambridge (1998)

. Derrick, J., Boiten, E.: Refinement in Z and in Object-Z: Foundations and

Advanced Applications. FACIT. Springer, Heidelberg (2001). https://doi.org/10.
1007/978-1-4471-5355-9. Second, revised edition 2014

Elmas, T., Qadeer, S., Tasiran, S.: A calculus of atomic actions. In: Proceeding
POPL 2009, pp. 2-15. ACM (2009)

Ernst, G., Pfahler, J., Schellhorn, G., Haneberg, D., Reif, W.: KIV - overview and
verifythis competition. Softw. Tools Techn. Transf. 17(6), 677-694 (2015)

Ernst, G., Pfahler, J., Schellhorn, G., Reif, W.: Inside a verified flash file system:
transactions & garbage collection. In: Gurfinkel, A., Seshia, S.A. (eds.) VSTTE
2015. LNCS, vol. 9593, pp. 73-93. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-319-29613-5_5

Ernst, G., Pfahler, J., Schellhorn, G., Reif, W.: Modular. Crash-Safe Refinement
for ASMs with Submachines. Science of Computer Programming (SCP) (2016)
He, J., Hoare, C.A.R., Sanders, J.W.: Data refinement refined resume. In: Robi-
net, B., Wilhelm, R. (eds.) ESOP 1986. LNCS, vol. 213, pp. 187-196. Springer,
Heidelberg (1986). https://doi.org/10.1007/3-540-16442-1_14

Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. (TOPLAS) 12(3), 463-492 (1990)

https://doi.org/10.1007/3-540-51285-3_42
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-10452-7_10
https://doi.org/10.1007/978-3-642-10452-7_10
https://doi.org/10.1007/978-1-4471-5355-9
https://doi.org/10.1007/978-1-4471-5355-9
https://doi.org/10.1007/978-3-319-29613-5_5
https://doi.org/10.1007/978-3-319-29613-5_5
https://doi.org/10.1007/3-540-16442-1_14

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Adding Concurrency to a Sequential Refinement Tower 23

Jacobs, B., Leino, K.R.M., Piessens, F., Schulte, W.: Safe concurrency for aggregate
objects with invariants. In: Software Engineering and Formal Methods (SEFM)
2005, pp. 137-146. IEEE (2005)

Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. NASA Formal
Methods 6617, 41-55 (2011)

KIV proofs for wear leveling (2020). https://kiv.isse.de/projects/WearLeveling.
html

Lipton, R.J.: Reduction: a method of proving properties of parallel programs. Com-
mun. ACM 18(12), 717-721 (1975)

Lynch, N., Vaandrager, F.: Forward and backward simulations - part i: untimed sys-
tems. Inf. Comput. 121(2), 214-233 (1995). Also: Technical Memo MIT/LCS/TM-
486.b, Laboratory for Computer Science, MIT

Pféhler, J.: A modular verification methodology for caching and lock-based con-
currency in file systems. Ph.D. thesis, Universitdt Augsburg, Fakultat fiir Infor-
matik (2018). https://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/in
dex/docld/41890

Pféahler, J., Ernst, G., Bodenmiiller, S., Schellhorn, G., Reif, W.: Modular verifica-
tion of order-preserving write-back caches. In: Polikarpova, N., Schneider, S. (eds.)
IFM 2017. LNCS, vol. 10510, pp. 375-390. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66845-1_25

Pféahler, J., Ernst, G., Schellhorn, G., Haneberg, D., Reif, W.: Formal specification
of an erase block management layer for flash memory. In: Bertacco, V., Legay, A.
(eds.) HVC 2013. LNCS, vol. 8244, pp. 214-229. Springer, Cham (2013). https://
doi.org/10.1007/978-3-319-03077-7_15

Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Proceedings of 17th Annual IEEE Symposium on Logic in Computer Science, pp.
55-74. IEEE (2002)

Schellhorn, G., Derrick, J., Wehrheim, H.: A sound and complete proof technique
for linearizability of concurrent data structures. ACM Trans. Comput. Logic 15(4),
31:1-31:37 (2014)

Schellhorn, G., Ernst, G., Pfahler, J., Haneberg, D., Reif, W.: Development of a
verified flash file system. In: Ait Ameur, Y., Schewe, K.D. (eds.) ABZ 2014, vol.
8477. LNCS, pp. 9-24. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-43652-3_2

Schellhorn, G., Travkin, O., Wehrheim, H.: Towards a thread-local proof technique
for starvation freedom. In: Abrahém, E., Huisman, M. (eds.) IFM 2016. LNCS,
vol. 9681, pp. 193—209. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
33693-0_13

Tofan, B., Schellhorn, G., Reif, W.: Formal verification of a lock-free stack with
hazard pointers. In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol.
6916, pp. 239-255. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23283-1_16

Tofan, B., Travkin, O., Schellhorn, G., Wehrheim, H.: Two approaches for proving
linearizability of multiset. Sci. Comput. Program. 96(P3), 297-314 (2014)

Xu, Q., de Roever, W.-P.; He, J.: The rely-guarantee method for verifying shared
variable concurrent programs. Formal Aspects Comput. 9(2), 149-174 (1997)

https://kiv.isse.de/projects/WearLeveling.html
https://kiv.isse.de/projects/WearLeveling.html
https://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/41890
https://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/41890
https://doi.org/10.1007/978-3-319-66845-1_25
https://doi.org/10.1007/978-3-319-66845-1_25
https://doi.org/10.1007/978-3-319-03077-7_15
https://doi.org/10.1007/978-3-319-03077-7_15
https://doi.org/10.1007/978-3-662-43652-3_2
https://doi.org/10.1007/978-3-662-43652-3_2
https://doi.org/10.1007/978-3-319-33693-0_13
https://doi.org/10.1007/978-3-319-33693-0_13
https://doi.org/10.1007/978-3-642-23283-1_16
https://doi.org/10.1007/978-3-642-23283-1_16

Regular Research Articles

®

Check for
updates

Diverse Scenario Exploration in Model
Finders Using Graph Kernels and
Clustering

Robert Claris6!®@® and Jordi Cabot?

! Universitat Oberta de Catalunya (UOC), Barcelona, Spain
rclariso@uoc.edu
2 ICREA, Barcelona, Spain
jordi.cabot@icrea.cat

Abstract. Complex software systems can be described using modeling
notations such as UML/OCL or Alloy. Then, some correctness properties
of these systems can be checked using model finders, which compute
sample scenarios either fulfilling the desired properties or illustrating
potential faults. Such scenarios allow designers to validate, verify and
test the system under development.

Nevertheless, when asked to produce several scenarios, model finders
tend to produce similar solutions. This lack of diversity impairs their
effectiveness as testing or validation assets. To solve this problem, we
propose the use of graph kernels, a family of methods for computing the
(dis)similarity among pairs of graphs. With this metric, it is possible to
cluster scenarios effectively, improving the usability of model finders and
making testing and validation more efficient.

Keywords: Model-driven engineering - Verification and validation -
Testing - Graph kernels - Clustering - Diversity

1 Introduction

The structure and behavior of a software system can be described by means of
software models, using notations such as Alloy [10], graph-based formalisms [20]
or UML/OCL [17]. These notations describe software systems at a high level of
abstraction, hiding implementation details while preserving its salient features.
Analysing these models can reveal complex faults in the underlying systems.

In this analysis, the key assets for checking the correctness of software models
are model finders [8], tools capable of computing instances of a model that
satisfy a set of constraints and properties of interest. Each model finder targets

This work is partially funded by the H2020 ECSEL Joint Undertaking Project
“MegaM@Rt2: MegaModelling at Runtime” (737494) and the Spanish Ministry of
Economy and Competitivity through the project “Open Data for All: an API-based
infrastructure for exploiting online data sources” (TIN2016-75944-R).

© Springer Nature Switzerland AG 2020

A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 27-43, 2020.
https://doi.org/10.1007 /978-3-030-48077-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_3&domain=pdf
http://orcid.org/0000-0001-9639-0186
http://orcid.org/0000-0003-2418-2489
https://doi.org/10.1007/978-3-030-48077-6_3

28 R. Clarisé and J. Cabot

a particular modeling notation and uses a different reasoning engine, like search-
based methods [1,24], SAT [10], SMT [24,28] or constraint programming [3].

For verification purposes, it is usually enough to search for one instance,
which either proves or disproves the property of interest. However, for test-
ing and validation purposes several instances are usually required to increase
our confidence in the correctness of the model. It is highly desirable that those
instances exhibit diversity, i.e., distinct configurations of the system and inter-
esting corner cases [11]. Lack of diversity may make validation and testing more
time consuming, as the analysis includes almost-duplicate instances that do not
provide added value; and less effective, as the sample of instances may fail to
include relevant scenarios.

Nevertheless, most model finders focus on efficiency and expressiveness of
the input modeling notation, so few of them ensure diversity of the generated
instances [6,11,20,23,26]. In these few, diversity assurance is integrated into the
solver: it guides the search process to look for diverse instances. However, this
integration makes it harder to transfer the proposed methods to other solvers and
notations. Thus, designers are limited in terms of expressiveness (e.g., no support
for integer or string attributes [11,20,26] or dynamic properties [6,11,23,24]) and
cannot benefit from additional features provided by others model finders (e.g.,
computation of minimal instances [16] or support for max-satisfiability [28]).

This paper proposes a method for distilling diverse instances in the model
finder output based on the use of clustering. Instances are classified into cate-
gories according to their similarity, which is calculated using information about
their structure (the existing objects and the links between them), typing (the
specific type of each object) and attribute values. This calculation is based on
the use of graph kernels, a family of methods for computing distances among
graphs. Selecting a representative instance from each category ensures diversity
while reducing testing and validation time, as redundant instances can be safely
discarded. As a drawback, this method does not force the model finder to look
for diverse instances, it only distills the most diverse ones.

Compared with related works, our approach offers the following advantages:

— It is independent of the solver used by the model finder (SAT, SMT, ...) and
the modeling notation being analyzed (Alloy, UML/OCL, ...).

— It does not require manual intervention from the designer to define what kind
of instances are “relevant” or when two instances are “similar”.

— The similarity computation can be customized, e.g., by selecting a trade-off
between precision and accuracy.

Paper Organization. The remainder of the paper is structured as follows.
Section 2 presents an overview of the method illustrated with a simple example.
Then, we describe the three steps of our method: the abstraction process for
transforming instances into graphs (Sect. 3); graph kernels (Sect.4), the frame-
work for computing similarities among graphs; and clustering algorithms that
can use this similarity to build groups of related instances (Sect.5). Section 6
presents some experimental results of the application of this method. After that,

Diverse Scenario Exploration in Model Finders 29

Sect. 7 describes previous work on diversity and model finding. Finally, Sect. 8
outlines the conclusions and lines for future work.

2 Method Overview

The overview of our approach for identifying diverse instances in model finder
output is depicted in Fig. 1. Our input is a set of instances computed by a model
finder, and our output is a set of clusters grouping those instances according to
their similarity. From this output, it is possible to select a representative instance
for each cluster, e.g., choosing the smallest instance.

The method can be divided into three steps:

1. Graph abstraction: First, each instance is abstracted as a labeled graph,
where labels store type and attribute value information and the underlying
graph captures the objects and the links among them.

2. Graph kernel: Then, the pairwise similarity among the n graphs is com-
puted using a state-of-the-art labeled graph comparison technique. The result
of this computation is a 7 X n matrix S where each cell S;; provides informa-
tion about the similarity between graphs i and j.

3. Clustering: Finally, the similarity data is used by a clustering procedure to
classify instances into groups of similar instances. The most suitable number
of groups is determined by using clustering validity indices, which measure
whether elements in the cluster are similar to each other and different from
elements in other clusters.

To illustrate how the method works and the type of results it can achieve,
we will use the UML class diagram in Fig. 2(a). This model describes the rela-
tionships between employees who work in or lead a department. There are two
constraints regarding the salary, defined as OCL invariants: all salaries must be
below a salary threshold and also below the salary of the department’s director.

e
Model — | i 1 : ——
Model | |

Finder E:> oolloo E:> :Proposed method: E:> 00
Property — w ! :
Instances L | Clusters

|

|

|

Graph 511 812 513 i !

: I

E:> kernel E:> [ggi 522 ggg} E:> Clustering :
|

|

|

Similarity matrix

Fig. 1. Overview of the method presented in this paper.

30 R. Clarisé and J. Cabot

Employee
salary: Integer
boss|1 |* alice: Employee bob: Employee
Leads WorksIn salary: 450 salary: 200

Leads
0.1 1 |dept WorksIn cads /{'orksln

Department
hr: Department

maxSalary: Integer

maxSalary: 500

context Employee inv maxSalary:
self.salary < self.dept.maxSalary

context Employee inv bossSalary:
self.salary < self.dept.boss.salary

(a) (®) (©)

Leads
‘WorksIn caas Leads
‘WorksIn

Fig. 2. Motivating example: (a) UML/OCL class diagram; (b) Sample instance; (c)
Encoding of the instance as a labeled graph; (d) Graph shapes of the three clusters.

(d)

To be usable in practice, this model should be strongly satisfiable [3]: it should
have some instance where all integrity constraints are satisfied with each class
having a non-empty population. In our example, the class diagram is satisfiable
and a potential solution is the instance shown in Fig.2(b). Instances like this
can then be used for validating and testing the UML/OCL model.

We have used the USE Model Validator [12] to generate 25 valid instances
for this model. By manually inspecting these instances, we can easily realize that
most of them are very similar. A designer would be interested in a smaller and
more diverse set of instances that gives the same or even more information as
the 25 original ones. We explain next how this can be achieved with our method.

Applying our method, each object diagram is abstracted as a labeled graph.
As an example, Fig.2(c) shows the abstraction for the object diagram in
Fig.2(b). We then apply hierarchical clustering to our 25 graphs using the simi-
larity information provided by a graph kernel algorithm. From the results, valid-
ity indices recommend choosing 3 clusters. Thus, we have discovered that out
of the 25 instances, there are only 3 types of solutions worth considering. The
common pattern in each cluster is depicted in Fig. 2(d).

Notice that one cluster identified by our method (the middle one) highlights
a potential problem in the model: a department where the director works in
another department. This is a corner case worth studying, to decide whether it
should actually be allowed or it is a mistake in the model that needs to be fixed.

The following sections describe the different phases of our approach in detail.

Diverse Scenario Exploration in Model Finders 31

3 Graph Abstraction

Depending on the model finder, instances have a different structure, e.g., an
object diagram, an enriched graph or a set of tuples. In order to take advantage
of off-the-shelf graph comparison algorithms, we translate these instances into
labeled undirected graphs. To this end, we define the vertices, edges and labels
in the graph in terms of the original instance.

Intuitively, the vertices of the graph will describe the object elements in the
instance, while the edges will describe the relationships among them. Labels are
integer values assigned to vertices. Labels will be used to describe information
such as the type of each element or the values of attributes that can, later on,
help to establish whether a pair of vertices from two different graphs can be
considered “equivalent”.

The complexity of this step depends on the kind of output provided by the
model finder. Our approach provides a specific solution for each type of out-
put. As shown in Fig. 2, the abstraction of object diagrams is straightforward
according to this pattern: objects and attributes becomes vertices, links become
edges, and types and attribute values become labels. Similarly, the mapping
from instances in graph-based modeling notations is also trivial: the vertices
and edges of the original graph are preserved while the type of each element is
used as a label for the corresponding vertex. Nevertheless, the transformation
from the relational notation used by Alloy is more involved. Thus, we devote the
remainder of this Section to formalize the abstraction of Alloy instances.

Alloy Models. An Alloy specification is defined as a collection of signatures
and constraints, followed by a command.

Signatures (sig) describe the data in the model. Each signature has a unique
name and represents a set of atoms, the base individuals in Alloy’s logic. Sig-
natures can have fields which take values for each atom of the signature. These
values can be basic data types like integers, other signatures or complex values
like functions or sets. Internally, these values are managed as relations, collec-
tions of tuples with the same arity (number of elements).

It is possible to define a hierarchy among signatures (extends). Moreover,
fields and signatures may have multiplicity constraints limiting their population,
e.g., one or lone (zero or one). In addition to user-defined signatures, Alloy pro-
vides some built-in signatures to describe common data types such as booleans,
integers, strings or sequences.

Regarding constraints, there are different types of constraint: facts (fact)
describe invariants that should always hold; assertions (assert) state desired
properties that should be checked; and predicates (pred) are reusable constraints
where some elements are passed as parameters. Each constraint can be defined
using a mixture of logical operators (e.g., and, not or implies), relational oper-
ators (e.g., dot join or transpose) and quantifiers (e.g., all or some).

Finally, commands instruct the solver which constraint should be analyzed
and the scope (number of atoms) that should considered for each signature.

32 R. Clarisé and J. Cabot

Command check searches for a counterexample of an assertion, while command
run searches for an example of a predicate.

Alloy Snapshots. Executing a command with the Alloy Analyzer may yield

two outcomes: either no instance within the scope satisfies the constraints or an

instance has been found. Instances are called snapshots in the Alloy terminology.
An Alloy snapshot is defined by the following elements:

— A list of signatures, including both built-in and user-defined signatures.

— A list of relations, each one with a fixed arity n.

A list of free variables in the model, e.g., parameters of predicates and exis-
tentially quantified variables.

— For each signature, a set of atoms.

For each relation with arity n, a set of tuples of n atoms.

— For each free variable with arity n, a witness, i.e., a set of tuples of n atoms.

That is, when checking for a property with existential quantifiers, Alloy not
only answers whether it is satisfied or not: if it holds, it also computes for which
specific value of the quantified variable (the witness) the property holds.

From Snapshots to Graphs. We need to define how to translate: (1) built-
in signatures, (2) user-defined signatures and (3) relations. As witnesses are a
special type of relation, we do not need to treat them separately.

Regarding built-in signatures, we need to make sure that each value will be
given the same label in different snapshots: an integer like 7 and a string like
“John” should be considered equal among different snapshots. Thus, the first
step is traversing the set of snapshots being abstracted to construct a vocabulary
of values. In this way, we compute a unique label for each value of a basic type.

1. Built-in signatures: We create a vertex for each atom in these signatures,
plus a vertex for each built-in value (string, integer or sequence) used in the
model. We label each vertex with the unique label for that built-in value.

2. User-defined signatures: We create a vertex for each atom. It is labeled
with its signature, i.e., the innermost signature in the signature hierarchy
where it belongs.

3. Relations: We create a vertex v for each tuple, labeled with the name of the
relation. Then, for each i-th element in the tuple, we create a vertex! labeled
with ¢ connected to both v and the vertex of the corresponding value.

Figure 3 shows an example of this abstraction process. The Alloy model in
Fig. 3(a) describes a DNS server lookup process. We want to validate the poten-
tial scenarios in this process, for instance, whether two names may resolve to
the same IP address. To do that, Alloy finds example instances, highlighting
the offending names (n1 and n2) and DNS (d). Figure 3(b) and (c) show one
sample Alloy instance in textual and graphical format. The corresponding graph

! The intermediate vertex is omitted when the position ¢ can be inferred: no other
position in the relation has a compatible signature, i.e., with a common supertype.

Diverse Scenario Exploration in Model Finders 33

abstraction is depicted in Fig. 3(d). For clarity, vertices are depicted in a different
shape according to their origin: circles for atoms; rectangles for relations (white)
and positions within relations (grayed); and hexagons for witnesses.

Abstraction and Diversity. Some approaches aimed at achieving diversity
use uniform sampling [5,14,15,18] as their goal: achieving a uniform distribu-
tion among solutions. Nevertheless, the desired notion of diversity may be more
complex (a target probability distribution, a partition into meaningful classes),
and specific to a domain or even a particular problem [6,24]. In the following, we
discuss how this information about the desired type of diversity can be integrated
in the graph abstraction process with very few changes.

For example, let us consider the specification of a banking system. From our
domain knowledge, it seems reasonable to think that the name of the owner
an account is not very relevant: if there are 10 clients in our system, the fact

sig Name, IP {} Atoms

sig DNS { Name = {NameO, Namel}
parent: lone DNS, IP = {IPO}
lookup: Name -> lone IP DNS = {DNSO, DNS1}

¥ Relations

parent = {DNSO->DNS1}
lookup = {DNS1->Name0O->IPO,
DNS1->Name1->IPO}

pred Dup[nl, n2: Name] {
some d: DNS | (nl != n2) and
(d.lookup[ni] = d.lookup[n2])

} Witnesses
Dup.nl = {Namel}
// Find names with same IP Dupn2 = {NameO}
run Dup for 2 Dup.d = {DNS1}
(a) (b)
DNSO
parent
DNS1
($Dup_d)

Il

resolve [Name1]
|

solve [Name0]
|/

I
Name0 Mame1
($Dup_n2) ($Dup_n1)

(©) @

Fig. 3. Example of graph abstraction: (a) Alloy model; (b) Alloy snapshot in textual
format; (c) Alloy snapshot depicted graphically; (d) Abstracted graph.

34 R. Clarisé and J. Cabot

that all of them are called “John Smith” might not be problematic. Thus, the
name of the owner could be abstracted away in our graph representation, i.e.
remove from the graph the vertices related to this particular attribute. On the
other hand, focusing on the balance of an account, we might be interested in
considering accounts with a positive, negative and zero balance. In this case, we
are not interested in specific values for the balance, only if they fit in these three
categories. In our graph abstraction, this situation can be modeled by using
these categories (instead of the integer value) as the label for the vertex.

4 Graph Kernels

There are different ways to compare a pair of graphs and establish the degree
of similarity between them. For instance, the edit distance measures the number
of atomic changes required to transform one graph into the other. An alterna-
tive is checking for isomorphism? between the whole graphs or their subgraphs.
However, these approaches have a high computational complexity and may be
unsuitable for comparing large graphs or sizable collections of graphs.

An alternative approach is taken by graph kernels [7,27], a family of methods
for measuring the (dis)similarity among pairs of graphs. Rather than computing
an exact measure for similarity, kernels aim to provide an efficient approximation
that can be computed efficiently but still captures relevant topological informa-
tion about the graphs. A typical approach is counting the number of matching
substructures within the graphs, like paths, subtrees or subgraphs. In this work,
we have used the Weisfeiler-Lehman kernel [22], as it has been shown to provide
good precision with an efficient computation in a variety of domains [13,22].

Algorithm 1 describes the Weisfeiler-Lehman (WL) kernel. The procedure
computes the distance between a pair of graphs G; and Gs by counting the
number of common subtrees up to height h. To avoid enumerating subtrees
explicitly, a characteristic label is computed for each subtree. This label is con-
structed iteratively: each iteration ¢ computes the label for the tree of height @
rooted in each node v (1abel(s,v)). Iteration O (line 11) uses the original labels
in the graph. Then, each iteration 7 (lines 14—21) assigns a label to each vertex v
by combining the labels of v and its adjacent vertices in iteration ¢ — 1. Finally,
the distance between the pair of graphs is computed by counting the original
labels (line 12) and the labels for subtrees up to height A (line 22) and comparing
their frequencies (lines 4-6). The complexity of this procedure is O(hm), with
m being the number of edges in the graphs [22]. The parameter h allows us to
control the trade-off between performance and precision.

Notice that thanks to how our graph abstraction process is defined (types
and attribute values as labels), the similarity value computed by the kernel is
implicitly taking advantage of topological, type and attribute value information
from the instance.

2 Graphs G1 = (Vi, E1) and G2 = (Va, E»2) are called isomorphic if there is a mapping
f: Vi — Va5 such that Vx,y € Vi : (z,y) € E1 iff (f(z), f(y)) € E-.

Diverse Scenario Exploration in Model Finders 35

1 Function WLKernel(G1, G2, h) // Weisfeiler-Lehman graph kernel
input : G1,G2: a pair of labeled graphs; h : an integer (the tree height)
output: A distance measure between G; and Ga

2 freql < WLTest(G1, h); // frequency of each label in G

3 freq2 <« WLTest (G2, h); // frequency of each label in Gg

a distance «— 0; // distance = difference among frequencies

5 foreach label lab do

6 distance < distance + |freql[lab] — freq2[lab]|;

7 return distance;

8 Function WLTest(G, h) // Weisfeiler-Lehman isomorphism test
input : G: a labeled graph G = (V, E); h : an integer (the tree height)
output: A map counting the frequency of labels in G

9 // Initially all labels x have frequency[z] = 0

10 foreach wvertex v € V(G) do

11 label(0,v) « label of v in G}

12 frequency[label(0,v)] « frequency[label(0,v)] + 1

13 for i +— 1 to h do

14 foreach wvertex v € V(G) do

15 adjacentLabels <« labels(i-1, neighbours(v, G));

16 // signature = my label + sorted labels of adjacent vertices

17 signature «— append(label(i-1,v), sort(adjacentlLabels));

18 // Assign an integer label that summarizes signature

19 // Two equal signature should always receive the same label

20 // Compressed labels not reused in the next iterations

21 label(4, v) «— compressLabels(signature) ;

22 frequency[label(i,v)] < frequency[label (i,v)] + 1

23 return frequency;

Algorithm 1: Pseudocode for the Weisfeiler-Lehman graph kernel [22].

5 Clustering

Clustering is one of the fundamental tasks in the field of Machine Learning (ML).
Intuitively, it consists in the analysis of a collection of elements to identify groups
of similar individuals, for a given definition of “similarity”.

Algorithm Selection. Several algorithms have been proposed for this task [29].
There is no single “best” clustering algorithm: the most suitable one depends on
the collection being analyzed. This is because the strategies for finding clusters
can be very different. For example, means and medoids are different definitions
of the “center” of a cluster, and algorithms like K-means and K -medoids aim to
find the best location for those centers. On the other hand, methods like hierar-
chical clustering initially consider each element as a cluster and then iteratively
merge the two nearest clusters.

In order to select which clustering algorithm should be used, the required
input information should be considered:

— Feature versus Kernel methods: Some algorithms like K-means require
each element to be described by a vector of features (relevant characteristics)
of a fixed length. Meanwhile, other algorithms like hierarchical clustering only
require a distance (or similarity) measure among pairs of elements.

— Target number of clusters: Algorithms like K-means or K-medoids require
knowing the target number of clusters a priori. Conversely, algorithms like
hierarchical clustering do not require this information beforehand.

36 R. Clarisé and J. Cabot

In our context, the elements we are trying to cluster are labeled graphs
abstracting the outputs of a model finder. The number of target clusters is
unknown a priori and, as discussed in the previous section, we will be using a
similarity metric. Given this setting, we have chosen hierarchical clustering.

Choice of Number of Clusters. Hierarchical clustering computes a hierarchi-
cal structure called dendogram, a tree that describes the order in which clusters
should be merged according to their similarity. A clustering is obtained when we
decide where (in which level of the tree) the merging should stop. In order to
decide that, we can use cluster validity indices, metrics that measure the quality
of a clustering. In a good clustering, elements within a cluster should be very
similar and very dissimilar to elements in other clusters. The metric is evaluated
in each level of the tree and the clustering providing the optimal value is selected.

In this work, we have used the silhouette coefficient [19], a classical metric
that measures the average distance to elements in the same cluster compared to
the minimum of the average distances to elements in other clusters. It provides
a value in the [—1,1] range (higher is better), where values below 0.5 signal a
bad fit in the clustering. As mentioned previously, the clustering achieving the
highest average silhouette width is selected as our output.

6 Experimental Results

In order to assess the computational effort of the proposed method and the use-
fulness of its output, we have performed several experiments. These experiments
aim to answer the following research questions:

RQ1. How does the execution time of the method compare to model finding?
RQ2. Do the resulting clusters provide a concise yet diverse summary of the
model finder output?

Experiment Design. We have analyzed a collection of Alloy models provided
in the Alloy GitHub model repository®. Among them, we have chosen examples
dealing with the generation of examples or counterexamples, rather than proving
their absence. These type of models could be used for validation and testing,
and thus they are the target of the proposed method. For these models, we have
used the Alloy Analyzer to generate up to 100 instances (less if there are not
enough valid instances available). Table 1 provides information about the size
and complexity of these models: the number of signatures (Sig), fields (Fields),
facts (Fact) and predicates (Pred) in each Alloy model.

Implementation. We have implemented our method as two separate compo-
nents. First, we have developed a Java program that calls the latest version of
the Alloy API (5.0.0) to compute a collection of instances and generate their
graph abstraction. The output of this tool is stored as a set of files in GML
format. Then, a R script reads the GML files, computes the graph kernel and

3 https://github.com/AlloyTools/models.

https://github.com/AlloyTools/models

Diverse Scenario Exploration in Model Finders 37

Table 1. Summary of the models analyzed with the Alloy Analyzer.

Model Domain Sig | Field | Fact | Pred
chord-bug-model | Chord distributed hastable lookup protocol | 4 | 8 3 15
file-system Generic file system 7| 4 0 3
firewire Leader election in the Firewire protocol 15 | 16 2 15
flip-flop Flip-flop state machine 6 8 1 2
genealogy Genealogical relationships 5 2 4 1
grandpa “I am my own grandfather” puzzle 3 3 3 2
philosophers Dining philosophers problem 3 5 1 2
railway Train safety in a railway system 41 5 3 6
reset-flip-flop Evolution of a flip-flop 78 1 2

performs the clustering. This script takes advantage of existing libraries for rep-
resenting graphs (the igraph package?), similarity analysis among graphs (the
graphkernels package®) and clustering (the cluster package®).

The experiments have been performed on a quad-core Intel i5-760 2.8 GHz
with 4 GB of RAM. On the software side, we have used Java 9.0.4 64 bits and
R 3.50 64 bits. With respect to the settings, Alloy has used MiniSat as the SAT
solver back-end with the highest amount of symmetry breaking (symmetry=20).
Regarding the graph kernel, the Weisfeiler-Lehman graph kernel has been used
with the default number of iterations (h = 5).

Execution times have been measured in each step of the computation: the
Alloy analysis, the graph abstraction phase and the kernel and clustering phases.

Table 2. Experimental results.

Model Execution time Output
Model Scope | Inst || finding || Abst Kern Clust | Total # Cl| Sil
chord-bug-model | 2 52 498 ms || 169 ms| 90 ms | 30 ms | 289 ms || 5 0.31
file-system 5 100 825 ms || 165 ms | 180 ms | 30 ms | 375 ms || 3 0.99
firewire 2-7 100 || 1474 ms || 209 ms | 180 ms |40 ms 429 ms || 3 0.76
flip-flop 10 100 652 ms || 203 ms | 180 ms | 50 ms | 433 ms || 2 0.04
genealogy 6 100 830 ms || 129 ms | 140 ms | 50 ms | 319 ms || 33 0.45
grandpa 4 48 554 ms || 8 ms| 70ms| 40 ms| 198 ms|| 2 0.96
life 36 100 || 1681 ms || 283 ms | 180 ms | 40 ms | 503 ms || 14 0.30
philosophers 4 100 || 1539 ms || 157 ms | 160 ms | 40 ms | 357 ms || 2 0.30
railway 14 100 735 ms || 179 ms | 170 ms | 30 ms | 379 ms || 50 0.46
reset-flip-flop 10 100 672 ms || 250 ms | 160 ms | 40 ms | 450 ms || 14 0.48

* https://igraph.org.
5 https://cran.r-project.org/package=graphkernels.
5 https://cran.r-project.org/package=cluster.

https://igraph.org
https://cran.r-project.org/package=graphkernels
https://cran.r-project.org/package=cluster

38 R. Clarisé and J. Cabot

Results and Discussion. Table 2 shows, for each experiment, the scope used in
the analysis (Scope) and the number of computed instances (Inst). Notice that
for two models there were less than 100 satisfying instances. Then, we describe
the time (in milliseconds) required by Alloy to compute the instances (Model
finding), compared to the time taken by the different steps of our method: graph
abstraction (Abst), graph kernel (Kern) and clustering (Clust). The total time
for the three steps is reported as well. Finally, we list the optimal number of
clusters (# Cl) identified by our method and the silhouette coefficient (Sil). As
mentioned in Sect. 5, the silhouette is a value in the [—1,41] range that estimates
the quality of the clustering (higher is better).

Considering these results, regarding RQ1 (efficiency) the execution time of
the method is always below 0.5 seconds and less than the time required by Alloy
to compute the instances. This was somewhat expected, as the computational
effort of our approach depends on the number of instances and their size, but it
is unaffected by the hardness of finding instances, the decisive factor in Alloy’s
execution time. Therefore, we can conclude that using our approach does not
incur in a significant overhead with respect to using the model finder.

With respect to the scalability of our approach, let us consider the computa-
tional complexity of our method. We consider two parameters in this analysis:
n, the number of instances that will be computed by the model finder; and m,
the size (number of atoms, tuples in the relation and witnesses) of an instance.
Graph abstraction performs a traversal of the instance, requiring O(m) time.
The graph kernel takes O(m) time for each comparison and performs O(n?)
comparisons, so in total it requires O(m - n?). Finally, clustering requires O(n?)
time, so the overall complexity is O(m - n? +n?). In terms of space complexity,
we require O(m - n) to store the n graphs, O(n?) to store the similarity matrix
and perform clustering, that is, O(m - n 4+ n?) in total.

Regarding RQ2 (quality of the output) we can see that the proposed num-
ber of clusters varies significantly from one model to another, and so does the
silhouette coefficient:

— Models with a high silhouette (e.g., file-system and grandpa) exhibit some sort
of symmetry that is not being detected by the Alloy Analyzer. For instance,
in file-system there is a symmetry between directory names, so in practice, it
is as if Alloy was only returning the same 3 effective instances all the time.
Models like this one are the scenarios where our approach is most effective.

— Models with a low number of clusters and a low silhouette (e.g., flip-flop)
highlight scenarios where all instances are very similar. For instance, in flip-
flop the instance models 10 steps of a trace in the evolution of a flip-flop. All
these traces are very similar, so no salient features can be used to classify
them. Diversity can only be slightly improved for these scenarios.

— Models with a high number of clusters (e.g., genealogy or railway) describe
scenarios where the instances produced by the solver are already very dissim-
ilar among them. In this case, the output of the solver was already diverse
before applying our method.

Diverse Scenario Exploration in Model Finders 39

— The rest of models, with an average silhouette between (0.4-0.7) illustrate a
middle ground: some instances share similarities but the boundaries between
each group may overlap or be hard to establish. Choosing a representative
from each cluster ensures diversity, but there is the risk (higher for lower
silhouette values) of discarding relevant instances. To reduce this risk, it would
be possible to select a higher number of representatives per cluster.

To sum up, our method can reduce the number of instances to consider
while preserving diversity. Furthermore, this method provides an estimate of the
quality of its result that helps designers deciding when and how to employ it.

7 Related Work

Several works have considered how to improve the diversity in the output of
model finders, e.g., [6,9,11,20,23,26]. We will classify them according to two
criteria: (i) how diversity is specified by the designer and (ii) how it is achieved.

We exclude from this discussion all methods designed for general-purpose
solvers [5,15,25], as they have not been used within model finders and they con-
sider diversity at a lower level of abstraction (e.g., assignments to a boolean for-
mula) where some model-level similarities may be lost (e.g., isomorphic instances
with different bit-vector representations are still equivalent). For instance, a
related software engineering problem that relies on low-level constraint solvers
is finding valid configurations in a software product line. In this context, it has
been shown [18] that SAT solvers designed for uniform sampling (i.e., comput-
ing satisfying assignments that are distributed as close as possible to a uniform
distribution) do not achieve a uniform distribution in the set of computed con-
figurations.

Definition of Diversity. The designer has different ways to specify the desired
notion of diversity. Some methods [6,23] need to be given a probability distribu-
tion that the output instances should follow. Otherwise, the designer can parti-
tion the universe of instances by defining predicates called classifying terms [9].
For instance, for an attribute the designer may only be interested in its sign
(positive, negative or zero), defining 3 partitions. Diversity is then achieved by
finding instances that cover each partition.

Meanwhile, other methods such as [11,26] or the one proposed in this paper
do not require any input from the designer: diversity is defined implicitly by
ensuring non-equivalence or enforcing some distance metric between the output
instances. Nevertheless, in our case, the designer has some degree of control
over the desired type of diversity by adapting the graph abstraction process, as
explained in Sect. 3.

Implementation of Diversity. Most methods operate inside the model finder,
reducing the number of instances being computed in different ways.

Some techniques aim to automatically detect equivalent solutions during the
analysis in order to avoid exploring them. In the context of boolean satisfiability

40 R. Clarisé and J. Cabot

(SAT), SAT-Modulo Theories (SMT) and Constraint Programming (CP) this
notion is called symmetry breaking [3,10] and it is achieved by including addi-
tional constraints a priori. These constraints can also be added dynamically each
time a new instance is found [9,23], to forbid exploring equivalent instances in
the future. Another way to avoid exploring equivalent instances is requiring the
solution to be minimal [2,4,16].

In search-based methods like genetic algorithms [2] or simulated annealing [4],
similarity among solutions can be detected through a distance measure: neigh-
bors that are too close to previously explored solutions can be ignored. Similarly,
in graph solvers graph shape analysis [20,21] can detect equivalent or similar
graphs. Nevertheless, this approach does not support features like attributes,
relations or witnesses like the approach presented in this paper.

Moreover, model finders can introduce randomness [6], such as random selec-
tion of the next value to be explored or random restarts that can help explore
different areas of the search space. Another take on randomness, randomized
partitioning [11], shares the goal of classifying terms (partitioning the solution
space) but generates the partitions by randomly splitting the domains of model
elements. While this approach may be successful in problems with simple and
local constraints, it is ineffective when dealing with complex constraints.

Finally, the COMODI tool [6] provides several techniques for clustering the
object diagrams produced by a UML/OCL model finder. First, it defines a fea-
ture vector encoding for object diagrams that captures, for each object, infor-
mation about attribute values and adjacent objects. And second, it defines a
centrality metric (similar to the pagerank algorithm of search engines) that
measures the importance of each object within the object diagram. Compared
to our method, this approach is specific for object diagrams: it cannot deal with
features from other modeling notations, such as Alloy’s relations or witnesses.
Furthermore, the proposed similarity metrics do not consider information about
types, structure and attribute values simultaneously: the centrality metric omits
attribute values entirely; and the feature vector approach does not consider topo-
logical information about the structure of the object diagram.

8 Conclusions

We have presented a method for addressing the lack of diversity among the
instances computed by a model finder. Our approach uses clustering to group
instances according to their similarity, using information both about topology,
types and attribute. The method is solver- and notation-agnostic: it can be
applied to model finders using different types of solvers (e.g., SAT, SMT or CP)
and even targeting different modeling notations (e.g., UML/OCL or Alloy).
This approach is capable of computing meaningful clusters and has an execu-
tion time that is negligible with respect to that of the model finder itself. Still, as
our diversity computation is an a posteriori procedure, it is intended for valida-
tion and testing scenarios where model finders are able to find instance solutions
with relative ease. In this sense, our approach does not increase the diversity of

Diverse Scenario Exploration in Model Finders 41

the model finder output. However, it maximizes diversity by selecting, on behalf
of the user, the widest possible variation among the output set.

As future work, we plan to define custom kernels for comparing instances that
take into account specific characteristics of the input model. For instance, the
invariants and multiplicities in the model can be used to identify which model
elements are more constrained: this is where diversity is most relevant, rather
than elements where we are free to choose almost any value. Also, we plan to look
into combining graph kernels with topological and label features [13] that can
improve the quality of the similarity analysis. Finally, we will consider strategies
for tailoring the graph abstraction to particular problems and domains.

References

1. Ali, S., Zohaib Igbal, M., Arcuri, A., Briand, L.C.: Generating test data from OCL
constraints with search techniques. IEEE Trans. Softw. Eng. 39(10), 1376-1402
(2013). https://doi.org/10.1109/TSE.2013.17

2. Batot, E., Sahraoui, H.: A generic framework for model-set selection for the unifica-
tion of testing and learning MDE tasks. In: ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems (MODELS 2016), pp. 374—
384. ACM Press, New York (2016). https://doi.org/10.1145/2976767.2976785

3. Cabot, J., Clarisé, R., Riera, D.: On the verification of UML/OCL class diagrams
using constraint programming. J. Syst. Softw. 93, 1-23 (2014). https://doi.org/
10.1016/.js5.2014.03.023

4. Cadavid, J.J., Baudry, B., Sahraoui, H.: Searching the boundaries of a modeling
space to test metamodels. In: IEEE International Conference on Software Testing,
Verification and Validation (ICST 2012), pp. 131-140. IEEE (2012). https://doi.
org/10.1109/ICST.2012.93

5. Dutra, R., Laeufer, K., Bachrach, J., Sen, K.: Efficient sampling of SAT solutions
for testing. In: International Conference on Software Engineering (ICSE 2018), pp.
549-559. ACM (2018). https://doi.org/10.1145/3180155.3180248

6. Ferdjoukh, A., Galinier, F., Bourreau, E., Chateau, A., Nebut, C.: Measurement
and generation of diversity and meaningfulness in model driven engineering. Int.
J. Adv. Softw. 11(1/2), 131-146 (2018). https://hal-lirmm.ccsd.cors.fr/lirmm-
02067506

7. Ghosh, S., Das, N., Gongalves, T., Quaresma, P., Kundu, M.: The journey of graph
kernels through two decades. Comput. Sci. Rev. 27, 88-111 (2018). https://doi.
org/10.1016/J.COSREV.2017.11.002

8. Gonzdlez, C.A., Cabot, J.: Formal verification of static software models in MDE:
a systematic review. Inf. Softw. Technol. 56(8), 821-838 (2014). https://doi.org/
10.1016/j.infsof.2014.03.003

9. Hilken, F., Gogolla, M., Burgueno, L., Vallecillo, A.: Testing models and model
transformations using classifying terms. Softw. Syst. Modeling 17(3), 885-912
(2016). https://doi.org/10.1007/s10270-016-0568-3

10. Jackson, D.: Software Abstractions: Logic, Language and Analysis. MIT Press,
Cambridge (2006). https://mitpress.mit.edu/books/software-abstractions

11. Jackson, E.K., Simko, G., Sztipanovits, J.: Diversely enumerating system-level
architectures. In: International Conference on Embedded Software (EMSOFT
2013), pp. 1-10. IEEE, September 2013. https://doi.org/10.1109/EMSOFT.2013.
6658589

https://doi.org/10.1109/TSE.2013.17
https://doi.org/10.1145/2976767.2976785
https://doi.org/10.1016/j.jss.2014.03.023
https://doi.org/10.1016/j.jss.2014.03.023
https://doi.org/10.1109/ICST.2012.93
https://doi.org/10.1109/ICST.2012.93
https://doi.org/10.1145/3180155.3180248
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02067506
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02067506
https://doi.org/10.1016/J.COSREV.2017.11.002
https://doi.org/10.1016/J.COSREV.2017.11.002
https://doi.org/10.1016/j.infsof.2014.03.003
https://doi.org/10.1016/j.infsof.2014.03.003
https://doi.org/10.1007/s10270-016-0568-3
https://mitpress.mit.edu/books/software-abstractions
https://doi.org/10.1109/EMSOFT.2013.6658589
https://doi.org/10.1109/EMSOFT.2013.6658589

42

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

R. Clarisé and J. Cabot

Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive validation of OCL models
by integrating SAT solving into USE. In: Bishop, J., Vallecillo, A. (eds.) TOOLS
2011. LNCS, vol. 6705, pp. 290-306. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21952-8_21

Li, G., Semerci, M., Yener, B., Zaki, M.J.: Effective graph classification based on
topological and label attributes. Stat. Anal. Data Mining 5(4), 265-283 (2012).
https://doi.org/10.1002/sam.11153

Mougenot, A., Darrasse, A., Blanc, X., Soria, M.: Uniform random generation
of huge metamodel instances. In: Paige, R.F., Hartman, A., Rensink, A. (eds.)
ECMDA-FA 2009. LNCS, vol. 5562, pp. 130-145. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02674-4_10

Nadel, A.: Generating diverse solutions in SAT. In: Sakallah, K.A., Simon, L. (eds.)
SAT 2011. LNCS, vol. 6695, pp. 287-301. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-21581-0-23

Nelson, T., Saghafi, S., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Aluminum:
principled scenario exploration through minimality. In: International Conference
on Software Engineering (ICSE 2013), pp. 232-241. IEEE, May 2013. https://doi.
org/10.1109/ICSE.2013.6606569

Petre, M.: UML in practice. In: International Conference on Software Engineering
(ICSE 2013), pp. 722-731. IEEE Press (2013). https://doi.org/10.1109/ICSE.2013.
6606618

Plazar, Q., Acher, M., Perrouin, G., Devroey, X., Cordy, M.: Uniform sampling
of SAT solutions for configurable systems: are we there yet? In: IEEE Conference
on Software Testing, Validation and Verification (ICST 2019), pp. 240-251. IEEE
(2019). https://doi.org/10.1109/ICST.2019.00032

Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. J. Comput. Appl. Math. 20(1), 53—-65 (1987). https://doi.org/
10.1016/0377-0427(87)90125-7

Semerath, O., Nagy, A.S., Varrd, D.: A graph solver for the automated generation of
consistent domain-specific models. In: International Conference on Software Engi-
neering (ICSE 2018), pp. 969-980. ACM Press (2018). https://doi.org/10.1145/
3180155.3180186

Semerdath, O., Varrd, D.: Iterative generation of diverse models for testing spec-
ifications of DSL tools. In: Russo, A., Schiirr, A. (eds.) FASE 2018. LNCS, vol.
10802, pp. 227-245. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
89363-1_13

Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12, 2539-2561 (2001).
https://dl.acm.org/citation.cfm?id=2078187

Soltana, G., Sabetzadeh, M., Briand, L.C.: Synthetic data generation for statis-
tical testing. In: IEEE/ACM International Conference on Automated Software
Engineering (ASE 2017), pp. 872-882. IEEE (2017). https://doi.org/10.1109/ASE.
2017.8115698

Soltana, G., Sabetzadeh, M., Briand, L.C.: Practical model-driven data generation
for system testing. ACM Transactions on Software Engineering and Methodology
(2020, to appear). http://arxiv.org/abs/1902.00397

Vadlamudi, S.G., Kambhampati, S.: A combinatorial search perspective on diverse
solution generation. In: AAAI Conference on Artificial Intelligence, pp. 776-783.
AAAT Press (2016). https://dl.acm.org/citation.cfm?id=3015927

https://doi.org/10.1007/978-3-642-21952-8_21
https://doi.org/10.1007/978-3-642-21952-8_21
https://doi.org/10.1002/sam.11153
https://doi.org/10.1007/978-3-642-02674-4_10
https://doi.org/10.1007/978-3-642-21581-0_23
https://doi.org/10.1007/978-3-642-21581-0_23
https://doi.org/10.1109/ICSE.2013.6606569
https://doi.org/10.1109/ICSE.2013.6606569
https://doi.org/10.1109/ICSE.2013.6606618
https://doi.org/10.1109/ICSE.2013.6606618
https://doi.org/10.1109/ICST.2019.00032
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1145/3180155.3180186
https://doi.org/10.1145/3180155.3180186
https://doi.org/10.1007/978-3-319-89363-1_13
https://doi.org/10.1007/978-3-319-89363-1_13
https://dl.acm.org/citation.cfm?id=2078187
https://doi.org/10.1109/ASE.2017.8115698
https://doi.org/10.1109/ASE.2017.8115698
http://arxiv.org/abs/1902.00397
https://dl.acm.org/citation.cfm?id=3015927

26.

27.

28.

29.

Diverse Scenario Exploration in Model Finders 43

Varrd, D., Semerath, O., Szarnyas, G., Horvéth, A.: Towards the automated gen-
eration of consistent, diverse, scalable and realistic graph models. In: Heckel, R.,
Taentzer, G. (eds.) Graph Transformation, Specifications, and Nets. LNCS, vol.
10800, pp. 285-312. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
75396-6-16

Vishwanathan, S., Schraudolph, N.N., Kondor, R., Borgwardt, K.M.: Graph ker-
nels. J. Mach. Learn. Res. 11(Apr), 1201-1242 (2010). http://www.jmlr.org/
papers/v11/vishwanathanl0a.html

Wu, H.: MaxUSE: a tool for finding achievable constraints and conflicts for incon-
sistent UML class diagrams. In: Polikarpova, N., Schneider, S. (eds.) IFM 2017.
LNCS, vol. 10510, pp. 348-356. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66845-1_23

Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw.
16(3), 645-678 (2005). https://doi.org/10.1109/TNN.2005.845141

https://doi.org/10.1007/978-3-319-75396-6_16
https://doi.org/10.1007/978-3-319-75396-6_16
http://www.jmlr.org/papers/v11/vishwanathan10a.html
http://www.jmlr.org/papers/v11/vishwanathan10a.html
https://doi.org/10.1007/978-3-319-66845-1_23
https://doi.org/10.1007/978-3-319-66845-1_23
https://doi.org/10.1109/TNN.2005.845141

l‘)

Check for
updates

Formal Verification of Interoperability
Between Future Network Architectures
Using Alloy

Mohammad Jahanian'®9) | Jiachen Chen?, and K. K. Ramakrishnan’

L University of California, Riverside, CA, USA
mjaha001@ucr.edu, kk@cs.ucr.edu
2 WINLAB, Rutgers University, North Brunswick, NJ, USA
jiachen@winlab.rutgers.edu

Abstract. The Internet is composed of many interconnected, interop-
erating networks. With the recent advances in Future Internet design,
multiple new network architectures, especially Information-Centric Net-
works (ICN) have emerged. Given the ubiquity of networks based on the
Internet Protocol (IP), it is likely that we will have a number of different
interconnecting network domains with different architectures, including
ICNs. Their interoperability is important, but at the same time difficult
to prove. A formal tool can be helpful for such analysis. ICNs have a num-
ber of unique characteristics, warranting formal analysis, establishing
properties that go beyond, and are different from, what have been used
in the state-of-the-art because ICN operates at the level of content names
rather than node addresses. We need to focus on node-to-content reach-
ability, rather than node-to-node reachability. In this paper, we present
a formal approach to model and analyze information-centric interoper-
ability (ICI). We use Alloy Analyzer’s model finding approach to verify
properties expressed as invariants for information-centric services (both
pull and push-based models) including content reachability and return-
ability. We extend our use of Alloy to model counting, to quantitatively
analyze failure and mobility properties. We present a formally-verified
ICI framework that allows for seamless interoperation among a multi-
tude of network architectures. We also report on the impact of domain
types, routing policies, and binding techniques on the probability of con-
tent reachability and returnability, under failures and mobility.

1 Introduction

Today’s computer networks, the Internet being a dominant example, are heavily
used to fulfill users’ information-centric needs: users primarily seek informa-
tion over the network without necessarily wanting to focus on its location or
the underlying mechanisms used to retrieve it [9]. However, the current way of
using “location-based” access in IP networks results in a less convenient and less
efficient means for information retrieval and dissemination. Information-Centric
Networks (ICNs) address this content-oriented networking paradigm by separat-
ing content identity from its location [9]. ICN enables access to content based on

© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 44-60, 2020.
https://doi.org/10.1007/978-3-030-48077-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-48077-6_4

Formal Verification of Future Networks Interoperability 45

its name, from wherever it resides, supporting mobility as well as accessing the
named content from the best, any, or all source(s). It also allows for network-wide
caching to reduce access latency. There are a variety of ICN architectures which
have been proposed in the past decade. Two of the most notable ones, which
we primarily focus on in this paper, are Named Data Networks (NDN) [20], and
MobilityFirst [16], which have been considered for Future Internet designs [3].

Currently, there are two main factors that make the discussion of network
interoperability important: 1) Today, IP is ubiquitous and used on a majority
of network devices, despite the legacy of end-point address-oriented communica-
tion, especially considering new services and demands on today’s networks [15].
2) Research on designing new network architectures radically different from IP,
is ongoing, and in many cases has already led to implemented systems; our focus
in this paper is on an important class of such architectures, namely ICN. It is
anticipated that we may have a number of interconnected networks (domains)
using different architectures [15]. To go beyond the interconnection (i.e., physi-
cal connections between different domains) towards interoperation between them
(i.e., being able to use a service, or content, provided by one domain in another
domain), we need network interoperability. In the past decade, several designs
have been proposed for interoperation between an ICN architecture (either NDN
or MF) with IP [3]. However, such designs and their requirements were presented
informally, describing the primitives and operations. It has been observed that
network interoperability is complex [19]; thus, a formal structure for analysis
of information-centric interoperability (ICI) can be very helpful, as it can pro-
vide proofs or expose errors early on, before the universal deployment of ICI
frameworks for Future Internet.

Formal methods have been extensively used for designing and analyzing com-
puter networks and protocols (surveyed in [14]). As for interoperability, work in
[19] proposed a formal model to analyze interoperation of legacy networks. How-
ever, it only deals with host-centric interoperability (HCI), and only uses classic
model finding [17] reasoning techniques. We extend that to support ICI as well
as modeling failure and mobility with model counting [7] techniques. Network
verification tools have also been proposed to analyze network data and control
planes. Recently, work in [10] proposed a tool to verify ICN data planes, analyz-
ing properties such as reachability. However, it only deals with a single domain,
while our goal here is to cover multiple domains with different architectures
coexisting with each other. Also, the symbolic execution nature of works such as
[10] is computationally too expensive when expanded across multiple domains,
each having its own data plane.

We present an Alloy [8]-based formalization of ICI, to analyze interoperability
correctness. We cover both pull-based (request/response) and push-based (pub-
lish/subscribe) [6] content retrieval services, and their most essential properties
such as content reachability and returnability. To analyze content-oriented ser-
vices, we distinguish between static and dynamic content, justifying their dif-
ferences, and specifying no-conflict properties, especially for dynamic content
retrieval. For verification of these properties, we use Alloy Analyzer’s built-in SAT
solver-based model finding engine [2]. We also consider failure and mobility; to

46 M. Jahanian et al.

analyze them, mere model finding is not sufficient, as failure and mobility, when
severe, can cause any network protocol to become “incorrect” (and raise coun-
terexamples). Thus, for such analysis, we resort to model counting (to count and
compare the number of satisfying instances and counterexamples) to assess “how
well” a particular domain or architecture is doing under failure and mobility.

The major contributions of this paper are: 1) a model finding method to
analyze basic properties (mainly reachability and returnability) of information-
centric interoperability (ICI); 2) a formally-verified ICI framework; and 3) a
model counting method to analyze gateway failure and mobility.

2 Background and Related Work

2.1 Information-Centric Networking (ICN) and Interoperability

ICN enables access to content independent of its location, focusing on the fact
that what matters to users is what the content is rather than where that content
is located [9]. An ICN network layer recognizes and makes its forwarding deci-
sions based on content names (or IDs) instead of addresses (unlike host-centric
networks, as in today’s IP networks), achieving efficiency and scalability.

Among many different ICN architectures proposed recently, we focus on the
two most popular ones, namely Named Data Networks (NDN) [20] and Mobil-
ityFirst (MF) [16]. Both allow users to retrieve content using content names,
through pull-based request/response or push-based publish/subscribe methods
[6]. In-network content caching in routers is an important feature of ICN, allow-
ing for requests to be satisfied from an intermediate cache on the path to the
server /repository [9]. An in-network namespace is generally a graphical structure
that captures the content names and their relationships in an ICN’s content space
[12]. Despite both being ICNs, NDN and MF have important differences [16,20]:
NDN uses human-readable hierarchically-structured names, with Longest Pre-
fix Matching-based forwarding. NDN content requests (called Interests) leave
“breadcrumb” state in the routers on their path, which the associated response
(called Data packets) then follow back, via Reverse Path Forwarding (RPF). MF,
on the other hand, uses flat IDs (called GUIDs) to identify content. Response
packets contain the consumer’s ID and do not need to follow the same path
as the request. Also, MF inherently supports mobility by late binding, which
re-directs in-flight packets towards a mobile content repository. Early binding
assigns names to locations strictly at the original client, while late binding allows
such assignment to be updated on its way in the network [16].

There have been several proposals for interoperability frameworks for ICNs
(surveyed in [3]). These frameworks typically consist of interoperation gateways
between domains of different network architectures, performing translations
between them. All of these proposals allow interoperation of just two domains,
IP and one ICN (either NDN or MF), and often require addition of new proto-
cols or modification of existing ones. We generalize these solutions in our model
to an interoperability framework of multiple (>2) domain types (we allow IP,
NDN and MF to coexist simultaneously), and do not change any domain-specific
protocols.

Formal Verification of Future Networks Interoperability 47

2.2 Alloy

Alloy is a declarative language based on relations and first order logic [8]. Alloy
models a system, M, through the declaration of signatures (objects and their
relations) and facts (constraints and axioms). A predicate is defined as a logical
formula. An Assertion is a logical formula (which can be a combination of pred-
icates) that are required to be always true (i.e., as invariants) in the system.
Alloy Analyzer [2] allows the automatic analysis of models and their properties
through utilizing off-the-shelf SAT solvers. The tool translates Alloy descrip-
tions into Congjunctive Normal Form (CNF) expressions. It uses an enumeration
of instances, also called model finding, within a bound (scope), to prove whether
or not a predicate P ever holds (by SAT-solving M A P), or an assertion A always
holds as an invariant (by SAT-solving M A —A, to look for counterexamples).

Alloy has been used in modeling and analysis of many systems, including
network protocols and architectures [8]. In the particular case of network inter-
operability, Zave [19] used Alloy to formally analyze host-centric interoperabil-
ity for legacy networks, with domains of the Public Switched Telephone Net-
work (PSTN), BoxOS and the Session Initiation Protocol (SIP). We extend the
approach to model and analyze interoperability of information-centric services
and architectures, since we are dealing with radically different network designs
(name-based networking vs. address-based [9]) and required properties (node-to-
content reachability vs. node-to-node reachability [10]). Additionally, we extend
the classic Alloy-based model finding approach, such as in [19], to a model count-
ing one, to quantitatively analyze the impacts of failure and mobility. An impor-
tant feature of Alloy is its strength in efficiently handling graph structures and
properties [18], a feature that we benefit from, in two ways: 1) the composite
network topology, and 2) a graph-based information namespace. Further, Alloy
helps provide proofs for properties with a reasonably large scope [18].

3 Modeling Information-Centric Interoperability

We now describe the basics of our formal model'. First and foremost, let us
define information-centric interoperability (ICI):

Definition 1. A sequence of interconnected domains in a mnetwork are
information-centrically interoperable if and only if any client in any of the
domains can access information-centric services provided in any other domain.

Throughout this paper, we use the term “network” to mean “a composition
of multiple network domains”, each domain being a different type of standalone
architecture (e.g., IP, NDN, or MF). An interoperability framework (such as [3])
is a set of protocols and architectural components that allow interconnected net-
works of different types to interoperate. Information-centric services are broadly
sub-categorized as: 1) requesting for and retrieving content (pull-based), and 2)

! Full source files are available in [1].

48 M. Jahanian et al.

NDN 13 MF

175 in MF

HTTP GET /MF/175
source IP= GW1.IP
destination IP= GW2.IP

destination
GUID=175

Interest
name=/MF/175

&

router cache that
has ‘175

Wants to retrieve
content with
Any repository or

GUID:

Fig. 1. Information-centric interoperability (ICI): request for content

s~ Routed ~ ; _ .= Routel ~<-
PEae ~. PR g D >, ContentID0O
= = i Server0 —K’ .
2 Clle'm(J | GW0 ST ReposO or 3?},’:,2' (\‘«‘“ ord0]
g '~ o __Publisher0 * "Hrouml
. -7 ~. A g
N RevRouted - ° =~ RevRoutel =~ Content0
Keyword0, H
ContentIDO === domains
or Prefix0 Group0 ! Gl — - acceptor
Domain0 | Domainl = * = initiator

Fig. 2. Example (partial) instance for ICI Alloy model (objects and relations)

subscribing to and receiving content (push-based). Both of these may be based
on namespaces defined by content producers. An example 3-domain ICI scenario
is depicted in Fig.1. As shown, ICI accesses content by name, rather than an
address. Also, requests can be satisfied at any cache node, not just the original
server. As for formal analysis, in ICI, the main property we care about is node-to-
content reachability [10], while in traditional host-centric interoperability (HCI)
analysis [19], the focus is on node-to-node reachability.

We model our networked environment using Alloy’s relational and logical
atoms. We have Domains (as abstract signatures), each of which can be an IP,
NDN, or MF type (extended signatures) (Listing 3.1). A Node is at least in one
Domain and has at least one NodelID. A Node can be either a Client, Repos
(repository/server), or GW (gateway). A gateway is associated with exactly two
Domains (constrained using facts), that it is stitching together (Listing 3.2.)

Listing 3.1. Domains Listing 3.2. Nodes

abstract sig Node{domains: some Domain, id:

abstract sig Domain{} some NodeID}

sig IPdomain extends Domain{} . .
sig NDNdomain extends Domain{} 212 gi;ilslteiﬁZiggsNggg%? }%{ 3

. S - .
sig MFdomain extends Domain{} sig GW extends Node{...}{#domains=2 && ...}

Our declarations specify a network meta-model [8], which maps to a number
of instances (models) each being a network configuration (i.e., with their own
topology, content, namespace, etc.). An example 2-domain instance is depicted
in Fig. 2, as a high-level schematic, showing objects and their inter-relations. The
Client here wishes to retrieve some Content using its ContentID or a (set of)
Keyword(s). Objects of type Route and RevRoute (reverse route) couple the
notion of “a series of links” and “packets carried over them”, the packet carry-
ing content request and response, respectively. A Route has attributes such as
initiator, acceptor, and a request for ContentID. We also extend signatures to

Formal Verification of Future Networks Interoperability 49

add more fine-grained, domain-specific characteristics. One of Route’s extended
object types, namely IPRoute, inherits its attributes and constraints, and also
has additional attributes such as srcIPaddress and destIPaddress, and constraints
saying that source and destination IP addresses must correctly correspond to ini-
tiator and acceptor nodes. Gateways perform translation for forwarding requests
(over a composition of Routes), and retain state information which they use to
forward the content back to the client (over composition of RevRoutes). We also
add a number of additional facts, such as uniqueness of node ID, absence of self-
looping routes, and the existence of one-to-one mapping between NDN’s forward
and reverse routes (to reflect NDN’s RPF policy [20]).

We define a global-state relation C' that captures routes to/from gateways. To
model connectivity, we use the transitive closure of the route-connections relation
C where (r1,72) € C if and only if there exists a gateway between two domains
that connects routes r1 and r2. E.g., if we have C = {(r1,r2), (r2,r3)}, then its
transitive closure C* = {(r1,72), (r2,73), (r1,r3)} will represent existing paths
of any length (i.e., number of routes). We define object type Connections (as a
singleton) to capture these connections (i.e., relation C'); it has attributes being
relations themselves, primarily connected and revconnected, to capture connec-
tion relations of Routes and RevRoutes respectively. Relation revconnected has
an additional constraint, which says that for two reverse routes rrl and rr2
connected at gateway gw, corresponding state information (associated with the
ContentID or other multiplexing/demultiplexing values in 7r1 and r72) must be
stored on gw, so that the content can be carried over this cascade of reverse routes
towards the consumer (Listing 3.3). Additionally, we define a fact (path_exists,
Listing 3.4) that ensures any two nodes are connected (through one or multi-
ple Routes or RevRoutes), to reduce our instance space to only the ones with
strongly connected topology.

Listing 3.3. Connections: capture the connectivity of routes and groups

one sig Connections{connected: Route->Route, revconnected: RevRoute->RevRoute,
chain: Group->Group, revchain: Group->Group}
fact connectivity{ -- conditions for two (reverse) routes being
all r1,r2:sRoute, c:Connections |
(r1->r2) in c.connected <=>
rl.acceptor = r2.initiator && rl.contentID = r2.contentID &&
rl.reposdomain = r2.reposdomain -- requests for same content
-- similar condition for RevRoute paths (with extra criteria: gateway state
information should match for the two connecting reverse routes)

) |

¢ ‘connected’’

Listing 3.4. Constraints to ensure that a path exists between any two nodes

fact path_exists{
all co:Connections, disj nl1,n2:Node, cid:ContentID, rd: Domain |
(some r:Repos | rd in r.domains =>
(some ri1,r2:Route | (r1->r2) in ~(co.connected) && ril.initiator = nil
&& r2.acceptor = n2 && rl.contentID = cid && r2.contentID = cid
&& rl.reposdomain = rd && r2.reposdomain = rd))
-- similar condition for RevRoute paths ...

}

While Routes represent unicast exchange paths, we define Groups to denote
multicast groups (one-to-many communication), enabling push-based notifica-
tion models. Following the principles of ICN, each group is associated with a

50 M. Jahanian et al.

content name Prefiz [6] and can be used for publish/subscribe exchanges regard-
ing that prefix. Each group belongs to one domain. To model a connection of
groups across multiple domains, we add relation attributes chain and revchain
to Connections (Listing 3.3), to capture connectivity of groups (as a chain) for
subscription and publication respectively. To ensure strong connectivity, we add
a fact that says any two groups serving the same prefix are chained (Listing 3.5).

Listing 3.5. Constraints to ensure that a chain of connectivity exists between groups

fact GroupRules{
all disj gl,g2:Group, co:Connections | -- group chain conditions
(g1->g2) in co.chain <=>
(gl.prefix = g2.prefix &&
(some gw:GW| gl.domain in gw.domains && g2.domain in gw.domains))
all disj d1,d2:Domain, co:Connections, p:Prefix | -- chains for each prefix
some disj gl,g2:Group |
gl.domain = dl && g2.domain = d2 && (gl->g2) in ~(co.chain) &&
gl.prefix = p && g2.prefix = p
-- similjar conditions for revchain ...

}

Content naming is integral in ICI. We define names, i.e., ContentID objects
for each Content. Based on domain type, ContentID can be either URL (in IP),
NDNName (in NDN) or ContentGUID (in MF) (Listing 3.6). Each ContentID
is a leaf node under a Prefiz in the prefix tree (PTree). An example prefix tree
is shown in Fig. 3, which represents the network’s content namespace. PTree
may contain a number of fragmented sub-trees (i.e., as a forest), each sub-tree
representing the namespace of a different (set of) content provider(s) in differ-
ent domains. To represent the structure of hierarchical prefixes, we use binary
relations to model the immediate parent-child relationship between prefixes in
PTree. In Fig. 3, the relation P = {(P1, P2), (P1, P3), (P2, P4), (P2, P5)} rep-
resents such relationships, and is captured in the prefix-to-prefix relation map
in PTree (Listing 3.6). We also use its transitive closure to model the ancestor-
descendant relationships. We add additional facts to ensure basic constraints on
the tree, such as the non-existence of loops.

Listing 3.6. Content IDs and Prefix Tree

abstract sig ContentID{prefix: Prefix} P1
sig URL extends ContentID{} -- if in IP

sig NDNName extends ContentID{} -- if in NDN P2 [“Usports” P3
sig ContentGUID extends ContentID{} --if in MF L
sig Prele{Parent: lone Prefix, domains: some P4| “/sports/football” || “/sports/basketball” |P5

Domain} -- each Prefix has exactly one
parent and is at least in one domain
one sig PTree {map: Prefix set -> set Prefix}

Fig. 3. Prefix tree example

4 Satisfying Information-Centric Service Properties

There are a number of important properties that are required from the frame-
work, to ensure interoperability as defined in Definition 1. We consider prop-
erties of two classes of information-centric services here: pull-based (for uni-
cast request/response), and push-based (for multicast publish/subscribe) con-
tent retrieval. We further divide the pull-based services into two categories: static

Formal Verification of Future Networks Interoperability 51

content retrieval (SCR) and dynamic content retrieval (DCR). This distinction is
important as the nature, protocol for retrieval, and thus formal properties of the
two are different: static content is one that does not change in a long time (e.g.,
a movie) and can be retrieved from its original producer as well as a cache, while
dynamic content is created once on demand (e.g., result of a Google search), and
must be retrieved from its original server (not from a cache). Additionally, we
assume content requests are assumed to be genuine and correct, i.e., false and
bogus content requests are not our focus here.

We study essential invariant properties, guaranteed to hold at all times.
These properties are primarily associated with content-oriented reachability and
returnability. We formally specify these properties, using Alloy predicates and
assertions. For verification, Alloy’s built-in model finding engine is used to find
satisfying instances and counterexamples. Any counterexample found indicates
interoperability violations: e.g., a client cannot generate a request native to its
domain, or the gateway does not know what to do with a returned response.

4.1 Pull-Based Retrieval: Request/Response

Static Content Retrieval. In the static content retrieval (SCR) service, the
request packets carry content IDs which the client requests, and the response
packets produced by repositories (can be content producers or router caches)
carry the data associated with that content ID. We describe two of SCR’s essen-
tial content-oriented properties using Alloy (Listings 4.1 and 4.2).

Property 1.1. SCR Reachability: For every client that wants to retrieve content
associated with a content ID and has a direct route to a gateway, there is a
repository with content having that ID reachable from that gateway.

Property 1.2. SCR Returnability: For every client that reaches a repository with
a request, there is a path back to the client for the response with the content.

Listing 4.1. SCR reachability property

pred reach[c:Client, cid:ContentID, re:Repos, gw:GW]{ -- reachability predicate
all co: Connections | cid in c.want => -- if requested
(some r:Route, con:Content | r.initiator = c && r.acceptor = gw &&
r.contentID = cid &% (cid->con) in re.map =>
some rl,r2:Route | (r1->r2) in ~(co.connected) && rl.initiator = gw &&
r2.acceptor = re && ril.contentID = cid && r2.contentID = cid &&
rl.reposdomain in re.domains && r2.reposdomain in re.domains)}
assert reach{ -- reachability assertion
all c:Client, cid:ContentID| some re:Repos, gw:GW | reach[c,cid,re,gwl}

Listing 4.2. SCR returnability property

pred return[c:Client, cid:ContentID, re:Repos, gw:GW]{ -- returnability
predicate
all co:Connections | some gwl:GW | reach[c,cid,re,gwl] => -- if reachable

(some r,r1,r2:RevRoute | (r1->r2) in ~(co.revconnected) &&
rl.initiator = re && r2.acceptor = gw &&
ri.content = re.map[cid] && r2.content = re.map[cid] &&
r.initiator = gw && r.acceptor = c && r.content = re.map[cid])}
assert return{ -- returnability assertion
all c:Client, cid:ContentID, re:Repos | some gw:GW | return[c,cid,re,gw]}

52 M. Jahanian et al.

Dynamic Content Retrieval. In DCR, every request has to be mapped to a
unique response, as opposed to SCR. To facilitate this, having a demux value (for
multiplexing/demultiplexing) is essential for DCR, to provide the correct map-
ping of responses to requests; since every generated response is specific to not just
the request’s name, but also its input parameters. To access dynamic content from
a server, a client generates a query for which the gateway keeps state as <nodelD,
demux> of the requesting side and <demux> for the serving side. Reachabil-
ity and returnability are still important in DCR (Properties 2.1-2.2). However,
if the same SCR protocol is used for DCR, there can be conflicts between multi-
ple requests, e.g., a cached content may get sent back to multiple distinct clients.
Therefore, we define no-conflict properties for DCR (Property 2.3).

Property 2.1-2.2. DCR Reachability and Returnability: These two properties
are similar to those of SCR; with the difference being additional constraints
regarding elements of DCR requests, i.e., including generation and verification
of the correct demux values at gateways (i.e., in addition to contentID, etc.).

Property 2.3. No-conflict between distinct requests/clients: For every client that
searches for two distinct content items (no-conflict-A, Listing 4.3), or a dynamic
content requested by two different clients (no-conflict-B, Listing 4.4), two dis-
tinct, appropriately associated responses, should be received back. In no-conflict-
A, the focus is on the distinction between two return-ed contents, associated
with two distinct requests made by a given Client for distinct Keywords k1 and
k2. On the other hand, no-conflict-B focuses on the distinction between two
return-ed contents, associated with requests for a particular Keyword initiated
by two distinct Clients ¢l and 2.

This property shows the importance of having two separate demuz values in
packets, namely both the request ID (required for Property 2.3.a) and client ID
(required for Property 2.3.b), to make each dynamic request globally unique, for
correct multiplexing/demultiplexing. If we remove either of those two elements,
this property will be violated and counterexamples will arise; i.e., the gateway
would not know how to demultiplex incoming response data to serve the correct,
corresponding requesting client.

Listing 4.3. DCR - No conflict between 2 distinct requests from the same client

assert no-conflict-A{ -- Property 2.3.a
all c:Client, disj k1,k2:Keyword | some s1,s2:Server, gwl,gw2:GW |
return[c,k1,s1,gwl] && return[c,k2,s2,gw2] => some ni,n2: NodeID,
d1,d2,d3,d4:Demux |
(n1->d1->d2) in gwl.state && (n2->d3->d4) in gw2.state &&
nl in c.id && dl in c.demux && d2 in gwl.demux &&
n2 in c.id && d3 in c.demux && d4 in gw2.demux &&
'(nl = n2 && d1 = d3 && d2 = d4) && (some disj rl,r2:RevRoute |
ril.initiator = %wl && rl.acceptor = c && ril.contentID = sl.map[kil]
&& rl.demux = dI &% r2.initiator = gw2 && r2.acceptor = ¢
&& r2.contentID = s2.map[k2] && r2.demux = d3)}

Formal Verification of Future Networks Interoperability 53

Listing 4.4. DCR - No conflict between 2 identical requests from two distinct clients

assert no-conflict-B{ -- Property 2.3.b
all c1,c2:Client, k:Keyword | some s1,s2:Server, gwl,gw2:GW |
return[cl,k,s1,gwl] && return[c2,k,s2,gw2] => some ni,n2: NodeID,
d1,d2,d3,d4:Demux |
(n1->d1->d2) in %wl.state && (n2->d3->d4) in gw2.state &&
nl in cl.id && diI in cl.demux && d2 in gwl.demux &&
n2 in c2.id && d3 in c2.demux && d4 in gw2.demux &&
'(nl = n2 & d1 = d3 && d2 = d4) && (some disj rl,r2:RevRoute |
rl.initiator = %wl && rl.acceptor = cl && rl.contentID = sl.map[k]
&& rl.demux = dI && r2.initiator = gw2 && r2.acceptor = c2
&& r2.contentID = s2.mapl[k] && r2.demux = d3)}

4.2 Push-Based Retrieval: Publish/Subscribe

In pub/sub, we have domain-specific multicast groups that are associated with
prefixes [6]. We want a client to be able to subscribe to and receive all relevant
publications in accordance with the prefix tree of the namespace over “chain”
of groups across domains. Groups G1 and G2 form a chain if and only if the
publisher of G1 can be a subscriber of G2, and is then able to relay data received
from G2 to his subscribers in G1.

Property 3.1. Ability to subscribe to any prefiz. For every client that wants to
retrieve future publications under/associated with an existing prefix and has a
direct route to a gateway, if there is some publisher that will publish content
under that prefix, then that publisher is accessible through a chain of groups.

Property 3.2. Ability to receive any content published directly associated with the
subscribed prefix. For every client who is subscribed to a prefix and can reach
the associated publisher, there is a path back to the client to carry any content
with a content ID belonging to that prefix. For example, a subscriber of P2 in
Fig. 3 should receive publications pertaining to P2 across domains.

Property 3.3. Ability to receive all content published that is associated with pre-
fixes under the subscribed prefix. This property says that for every client that has
subscribed to a prefix and has reached the associated publisher, there is a path
back to the client to carry any content with content ID either directly belong-
ing to that prefix or under it in the hierarchy on the prefix tree. For example,
a subscriber of P2 in Fig.3 should receive publications pertaining to P2 and
also P4 across domains. The assertion rcwvall in Listing 4.5 depends on how
relationships among groups and also between content IDs and prefixes are rep-
resented by Connections and PTree. For a domain with a namespace that does
not capture relationships between prefixes, i.e., does not map a prefix to a set of
multiple relevant prefixes according to a graph, then rcvall would be equivalent
to receiving a single content element (Property 3.2). Properties 3.1-3 collectively
model and verify properties of a service offering hierarchical pub/sub.

54 M. Jahanian et al.

Listing 4.5. Pub/Sub - receiving all relevant publications

assert rcvall{ -- all relevant publications in accordance with the prefix tree
all pub:Publisher, con:Content, cid:ContentID |
all co:Connections, pt:PTree | (cid->con) in pub.map =>
((some c:Client, p:Prefix | (p in c.want || (all pl:Prefix |
(p1->p) in ~(pt.map) && pl in c.want)) && cid.prefix = p =>
(some ri1,r2:Route | ril.initiator = pub && r2.acceptor = c &&
(r1>r2) in ~(co.connected) && some gl,g2:Group |
gl.domain = pub.domain && g2.domain = c.domain &&
gl.prefix = p && g2.prefix = p && (gl->g2) in
~(co.revchain)))}

5 Reasoning About Failure and Mobility

In addition to the basic invariants (Sect.4), there are other important aspects
of formal analysis of networks that warrant a more quantitative analysis; among
them are failure and mobility analysis. Failures and mobility of nodes can occur
in a network, causing disruption and lack of content availability. To better com-
pare how different network architectural components, e.g., routing, impact the
number of success and violation scenarios, we perform model counting [7]. While
we can consider the probability for all instances as being equal, we can also calcu-
late each instance’s probability by additionally factoring in the real-world prob-
ability of individual elements causing failures and mobility, provided as external
information (e.g., the probability of a gateway failing when processing a content
request, a route disconnecting while carrying a packet, etc.). Thus, we can pro-
vide a more realistic probabilistic analysis for the effect of failures and mobility
using weighted model counting methods [5].

While the Alloy Analyzer (v4.20) [2] allows for a limited, graphical iteration
over instances, it does not enable an explicit counting of instances in an efficient
manner. To perform model counting, we wrote an application [1] that counts
all SAT solutions, using the SAT4J solver [13] (SAT4J can be replaced by any
off-the-shelf SAT solver). We feed the Alloy model and properties, in Kodkod
format [17], to our application. Predicates and assertions are used for count-
ing instances that satisfy or violate (counterexamples) respectively. Through
this counting, we can also look into the details (relations and values) within
each instance, and gain insight such as possible cause of violations (in case of
counterexamples) and calculate the probability of occurrence of each instance
in real-world scenarios. While we do not focus on the performance aspects of
model counting in this paper, optimizations of this procedure can be leveraged
for enhancing the scalability of our approach in case of very large problem sizes.
At a minimum, our approach can provide a rough estimate of failure probabili-
ties. Even if the model counting provided by the SAT solver is through “approx-
imate” model counting (e.g., using repetitive halving procedures) [4] rather than
an “exact” one, it still gives us a good enough assessment of the degree of success
and violation of properties.

Formal Verification of Future Networks Interoperability 55

Domain, — Domain,, Domain, Table 1. Model finding Table 2. Model counting

Domain [Returnability Domainy|Returnability

n con- con-

straints straints

Const. 1 |X I |[C|R

Const. 2 |X Const. 1 |z |y1|z1/(x1 + y1)
Gharedstale Const. 2 [z2|y2|z2/(z2 + y2)

Fig. 4. Gateway failure scenario
5.1 Failure

Our interoperability framework depends on gateways that retain state informa-
tion. What would happen to a response packet if that state is lost at the gateway
for any reason? For reliability, we consider state sharing between redundant gate-
ways that have the same domains on either side. Figure4 depicts an example
for this. Consider the gateway that received the request and created the state
as the primary gateway for the request (GW1 in the Fig.), and the replicas that
have the shared state as the secondary gateways (GW2 and GW3). Formally,
we add an extra condition to our reachability and returnability properties such
that, for two routes to connect, the gateway attaching them must be up and
running at the time the packet is received. Additionally, for returnability, the
state information must be present at the gateway. If any gateway goes down,
the corresponding potential path going through it (p1-3) back for the content
cannot be leveraged. If the gateway is neighboring an NDN domain (e.g., in
Domain, or Domain,_1), then the gateway has to be the primary only, for
correct operation with the NDN reverse-path-forwarding (RPF) policy [20]. For
other domain types, a secondary gateway that is active and has the shared state
information is adequate to forward the response data back. We model the con-
ditions representing this in Alloy as shown in Listing 5.1.

Listing 5.1. Failure scenario constraints: impact of gateway status on route connec-
tivity

all r1,r2: Route, c:Connections | -- forward routes (request) condition
(r1->r2) in c.connected <=> rl.acceptor = r2.initiator &&
rl.initiator.statusl in Up && r2.initiator.statusl in Up

all r1,r2: RevRoute, c:Connections | -- reverse routes (response) condition
(r1->r2) in c.connectedR <=> rl.acceptor = r2.initiator &&
rl.initiator.statusl in Up && r2.initiator.statusl in Up &&
((r1l.domain in NDNdomain || r2.domain in NDNdomain) =>

rl.acceptor.type in Primary) -- NDNdomain enforces RPF policy

Gateways can go down due to various reasons such as completely failing
or just losing state information due to a software failure. Our method can be
used to reason about various scenarios and measure failure probability given an
input configuration space, i.e., a set of Alloy facts that set constraints on some
objects or variables while relaxing others. As Table1 shows, a simple model
finding analysis does not provide a helpful comparison between different such
constraints:it will say that both cases lead to counterexamples raised (e.g., for the

56 M. Jahanian et al.

case that all gateways go down). To gain a better assessment of which constraint
does better, we resort to model counting (Table 2). Using model counting, we can
count (satisfying) instances (I) and counterexamples (C), and calculate (even if
approximately [7]) the probability of reliability (R = I /(I 4+ C)). This reliability
indicates to what degree interoperability is impacted in presence of failure, given
certain conditions (i.e., choice of domain policies, etc.).

5.2 Mobility

To model and analyze mobility (Fig.5), we add the notion of “time” to our
model. In particular, we associate timeout values to state entries at gateways
and birthTime and deathTime to routes (and similarly for reverse routes). We
assume gateways are stationary, but other nodes can move, causing the “death”
of their route (routel) to/from their closest gateway. A new route to the gateway
is “born” (route2) after some time, assuming the existence of a domain-specific
method to handle mobility. Temporal conditions must be incorporated into
reachability /returnability properties. The most critical case is when a mobility
event occurs while the packet is in-flight [21]. At high-level, the sum total latency
formulated as firstDeliveryAttempt—+recovery+secondDelivery Attempt, must
be below a certain expiration threshold (at every gateway and consumer).
firstDeliveryAttempt is the incomplete partial delivery latency via routel and
secondDeliveryAttempt is the delivery via route2 (continuation in MF, and
complete retransmission in IP and NDN). The recovery delay is the time it
takes for the packet to be transmitted back on the new path again; it includes
re-registration (MF and IP), FIB re-population (IP and NDN in case of provider
mobility) and/or PIT re-population (for NDN in the case of consumer mobil-
ity) delays [16,20,21]. Using this formal method, we check properties in the
presence of mobility, find appropriate values for a timeout threshold on gate-
ways and investigate the effect of domain-specific mobility handling methods
on interoperability. Listing 5.2 generally specifies how the reachability property
(to deliver a named request) depends on the condition of mobility (stationary
or mobile) and the domain policy on handling mobility (early binding or late
binding). Returnability is similarly specified (for content). Predicates stationary,
mobile EarlyBinding, and mobile Late Binding specify timing conditions for suc-
cessful delivery assuming their corresponding conditions (details of the three
properties are omitted here due to space but are in [1]). As shown in Fig.5,
we only consider intra-domain mobility here, i.e., the mobile node changes its
location and point of attachment, but stays within its domain.

Formal Verification of Future Networks Interoperability 57

Server Table 3. Verif. scopes for properties of ICI services

(Producer)
=~
Routel q:; ﬁ:
0
=y o -~ =} n
= > Q. a o o a Q
1= + n = —
S B e EEEIMAEE N = REE N A
Requester vE o = 8:;33@88:8&?“22%%5‘:
(Clientor GW) p\1te2 2 2252|552 2l5|5|5(5 |5 3|52 |= (2] 2|8
A |O|U|mA|A|OX |A|aAO0|x | |Z]E|Z |2 [0 O]
1.1 112|1 3|1 1(1(12|12(6 v
1.2 112|1 3|1 1(1(12]12(6 v
Fig. 5. Mobility scenario example: |2.1 |1|2]|1 |3]1 1]1]12)12]616|3 |3 v
. .2 1|12|1 3|1 1(1({12{12(6(6(3 |3 v
Route 2 estabpshed .after B moves Sali Tk 5Tt 18 Tatalila =
and changes its point of attach- [23p[2[T[T 21 TI118 (8 15144 |4 7
ment 3.1 121 33 3(1|3(1(12]12 919 |(|v
3.2 121 33 3(1|3(1(12]12 919 ||v
3.3 121 33 3(1|3(1[12]12 919 ||v
Listing 5.2. Reachability in presence of mobility
pred reach[c:Client, p:Producer, cid:ContentID]{ -- a client and content producer
(stationary[c,p,cid] && p.mobility in Stationary) -- producer p stationary
|| (mobileLateBindinglc,p,cid] && p.mobility in Mobility
&& Domain.binding in LateBinding) -- p mobile, domain does late binding
|| (mobileEarlyBindinglc,p,cid] && p.mobility in Mobility
&& Domain.binding in EarlyBinding)} -- p mobile, domain does early binding

6 Implementation and Results

We implemented the ICI framework discussed in our model in Sect. 3, with gate-
ways for interoperation among IP, NDN, and MF (Fig.1 as an example) in
a software testbed (implementation details in [11]). This section provides the
description and results of our analysis of the ICI framework (our Alloy source
code is approximately 800 lines of code in total [1]).

To check for correctness, we performed verification (supported by Alloy
Analyzer’s model finding engine) of our ICI framework model, against the
information-centric services properties (as specified in Sect. 4). In order to reach
convincing proofs (as advised in [18]), we pick the scopes for verification in
Alloy that are large enough to contain all necessary cases (i.e., minimum num-
ber of actors and objects for each service), and small enough so that we do not
encounter model explosion. The scopes, i.e., upper bounds on the number of key
objects, are provided in Table3. For most properties, we consider 1 Client, 1
Server, 1 Content, and 1 ContentID. That is, different <client, request> pairs
are considered independent of each other. However, for Properties 2.3.a/b, such
a dependency matters, and we want to show lack of conflicts. For Property 2.3.a,
we set 1 Client and 2 Contents (to generate scenarios where one client makes
two separate request for two different contents), and for Property 2.3.b, we set
2 Clients and 1 Content (to look for conflicts between request for one content
but by two clients). We use 3 Domains for most properties, as it contains all
cases with 1, 2, or 3 domains of any type, i.e., IP, NDN, or MF. Also, with upper

58 M. Jahanian et al.

Table 4. Failure analysis results Table 5. Mobility analysis results
Cases Reachability | Returnability | | Cases Stationary |Mobile
I C|R I |[C |[R Late binding | Early binding

No domain [290(0 [1.00 |56(210|0.21 DL range |l C|R I |C|R I |C|R

constraints [0, 20] 1008 |0.92|72|24(0.75 |92|64|0.58

One NDN 1760 |1.00 | 8|168|0.04 [0, 18] 96|0 [1.00|72|8 |0.90 [92[48|0.65

domain 0, 15 84|10 (1.00{64|0 |1.00 |[92]24|0.79
0, 10 64|0 {1.00{44|0 |1.00 (84| 0|1.00

bound n on the total number of Nodes, i.e., sum of Clients, Servers, and GWs,
we specify the upper bound on the number of Routes (as well as RevRoutes)
to be n(n — 1), enabling the existence of any possible (uni-directional) route.
For pub/sub services (i.e., Properties 3.1-3), we set 3 Prefizes, ContentIDs, and
Contents, to capture inter-relationship of content IDs in a large enough names-
pace. Additionally, with the upper bound on Domains and ContentIDs both set
at 3, we set the upper bound on total number of Groups (and GroupIDs) to be
3 x3 =29, so as to contain cases with one group per content ID per domain.
The blank cells in Table 3 indicate either “N/A” or “no particular upper bound
set”, in which case Alloy picks a default value. Within this scope, our verifica-
tion passes successfully for each property, showing that the stated properties are
invariants of our ICI framework. In other words, the framework design ensures
that any sequence of interconnected IP, NDN, and MF domains are information-
centrically interoperable.

We use our proposed model counting approach to analyze scenarios with
the failure of one or multiple gateways. The most important factor affecting
returnability in scenarios with the possibility of failure, is domain-specific routing
policies, in particular, whether or not it allows for a secondary (backup) gateway
to relay the returning response content. Different domains have different policies;
MF and IP decouple the forward (request) and return (response) paths, and they
can be delivered through different gateways, while NDN strictly requires the
two paths to be the same, due to RPF policy. To investigate the impact of that
policy, we considered a scenario of two domains, with two gateways between
them (one primary and one secondary), sharing state. Both gateways are Up
(working) when the request is forwarded, and either may go Down (failing)
when the response is one its way back. Table4 shows different scenarios for
reachability and returnability, with different domain constraints (with different
routing policies). In particular, the two domain constraints we consider are the
following: 1) no constraint on what any of the domains are; and 2) one domain is
definitely NDN. The table shows the values of I (instances), C' (counterexample),
and R (reliability) for each scenario, as defined in Sect.5. Our results for R in
Table 4 prove that having an NDN domain on one side dramatically reduces the
returnability reliability ratio, since basic NDN forwarding strictly forbids data
coming back on a different path than the original path taken by the request.

Formal Verification of Future Networks Interoperability 59

When a content producer (server) moves while a content request is in-flight
(Fig.5), the domain’s handling of mobility recovery determines the reachability
probability. NDN and IP use early binding with retransmissions, while MF sup-
ports late binding with rerouting. We compare the impact of these mechanisms
and techniques using our model counting method, with results shown in Table 5.
Our modeled scenario consists of two nodes in a domain, one requester (client
or gateway) and one server (producer) with a route established among them.
The ‘Stationary’ columns in the table show reachability results in the stationary
server case. With ‘Mobile’, the route dies due to a server mobility event (at time
t = 10), leading to the birth of the second route. We set the re-registration and
re-population delays to 1 each. Also, a retransmission is initiated 1 time unit
after the mobility event. Different binding techniques for mobility, i.e., late and
early binding, are also shown in Table 5. We compare cases with different ranges
for Delivery Latency (DL), which is time approximately needed for a packet to
travel from requester to server. For a delivery latency range of [0,20], we see a
higher R for stationary ws. mobility cases. The reason is that when the server
does not move, the original route stays active, thus providing a higher chance for
requests to reach the server. Comparing the two binding techniques, late bind-
ing leads to higher chance of reachability compared to early binding, as it allows
for packets to be re-routed on the newly-born route, rather than retransmitting
from the original requester. These results serve as proof that under similar sce-
narios, late binding outperforms early binding in ICI. Also, changing the delivery
latency ranges, we can find out at what points, reachability is an invariant (if
ever) under mobility conditions. As the table shows, with ranges within [0, 18],
[0, 15], and [0, 10] (rows in Table 5 labeled in first column accordingly), reachabil-
ity becomes an invariant in cases of Stationary, Late Binding, and Early Binding,
respectively; as zero counterexamples are raised. With a small enough delivery
latency ranges, namely [0, 10], reachability becomes an invariant, no matter the
mobility conditions or binding techniques. Our approach can be used to find
such points of invariance, comparing different techniques, and prove them.

7 Conclusion

This paper presented an Alloy-based formal analysis model for information-
centric interoperability (ICI) for Future Internet environments. We showed how
model finding can be used to analyze basic (reachability and returnability) prop-
erties of ICI. Additionally, our proposed model counting approach analyzes fail-
ure and mobility scenarios, which we used to prove the negative impact of cer-
tain routing policies (particularly, reverse path forwarding), and the helpfulness
of certain mobility-handling mechanisms (particularly, late binding), providing
necessary confidence and guidelines for Future Internet interoperability.

Acknowledgements. This work was supported by the US Department of Commerce,
National Institute of Standards and Technology (award TONANB17H188) and US
National Science Foundation grants CNS-1455815 and CNS-1818971.

60

M. Jahanian et al.

References

https://www.cs.ucr.edu/~mjaha001/ICI.zip

2. Alloy: A Language and Tool for Relational Models. http://alloy.mit.edu/alloy/

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Carofiglio, G., et al.: Enabling ICN in the internet protocol: analysis and evaluation
of the hybrid-ICN architecture. In: ACM ICN (2019). https://doi.org/10.1145/
3357150.3357394

Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable approximate model counter.
In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 200-216. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40627-0-18

Chavira, M., Darwiche, A.: On probabilistic inference by weighted model counting.
AT 172(6-7), 772-799 (2008). https://doi.org/10.1016/j.artint.2007.11.002

Chen, J., et al.: COPSS: an efficient content oriented publish/subscribe system.
In: ACM/IEEE ANCS (2011). https://doi.org/10.1109/ANCS.2011.27

Gomes, C.P., Sabharwal, A., Selman, B.: Model counting: a new strategy for obtain-
ing good bounds. In: AAAT (2006)

Jackson, D.: Alloy: a lightweight object modelling notation. TOSEM 11(2), 256—
290 (2002)

Jacobson, V., et al.: Networking named content. In: CONEXT (2009)

. Jahanian, M., Ramakrishnan, K.K.: Name space analysis: verification of named

data network data planes. In: ACM ICN (2019). https://doi.org/10.1145/3357150.
3357406

Jahanian, M., et al.: Managing the evolution to future internet architectures and
seamless interoperation. In: Proceedings of the 29th International Conference on
Computer Communication and Networks (ICCCN) (2020)

Jahanian, M., et al.: Graph-based namespaces and load sharing for efficient infor-
mation dissemination in disasters. In: ICNP (2019). https://doi.org/10.1109/ICNP.
2019.8888047

Le Berre, D., Parrain, A.: The SAT4J library, release 2.2, system description. J.
Satisf. Boolean Model. Comput. 7, 59-64 (2010)

Li, Y., et al.: A survey on network verification and testing with formal methods:
approaches and challenges. IEEE Commun. Surv. Tutor. 21(1), 940-969 (2019)
McCauley, J., et al.: Enabling a permanent revolution in internet architecture. In:
ACM SIGCOMM (2019). https://doi.org/10.1145/3341302.3342075
Raychaudhuri, D., et al.: MobilityFirst: a robust and trustworthy mobility-centric
architecture for the future internet. ACM SIGMOBILE MCCR 16(3), 2-13 (2012)
Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632-647. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71209-1_49

Zave, P.: A practical comparison of alloy and spin. Formal Aspects Comput. 27(2),
239-253 (2015). https://doi.org/10.1007/s00165-014-0302-2

Zave, P.: A formal model of addressing for interoperating networks. In: Fitzgerald,
J., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 318-333. Springer,
Heidelberg (2005). https://doi.org/10.1007/11526841_22

Zhang, L., et al.: Named data networking. ACM SIGCOMM CCR 44(3), 66-73
(2014)

Zhang, Y., et al.: KITE: producer mobility support in named data networking. In:
ACM ICN (2018). https://doi.org/10.1145/3267955.3267959

https://www.cs.ucr.edu/~mjaha001/ICI.zip
http://alloy.mit.edu/alloy/
https://doi.org/10.1145/3357150.3357394
https://doi.org/10.1145/3357150.3357394
https://doi.org/10.1007/978-3-642-40627-0_18
https://doi.org/10.1016/j.artint.2007.11.002
https://doi.org/10.1109/ANCS.2011.27
https://doi.org/10.1145/3357150.3357406
https://doi.org/10.1145/3357150.3357406
https://doi.org/10.1109/ICNP.2019.8888047
https://doi.org/10.1109/ICNP.2019.8888047
https://doi.org/10.1145/3341302.3342075
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1007/s00165-014-0302-2
https://doi.org/10.1007/11526841_22
https://doi.org/10.1145/3267955.3267959

®

Check for
updates

Experiences on Teaching Alloy
with an Automated Assessment Platform

Nuno Macedo2, Alcino Cunha'2(®)_ José Pereira?, Renato Carvalho2,
Ricardo Silva?, Ana C. R. Paiva!*3, Miguel Sozinho Ramalho'3,
and Daniel Silva?

L INESC TEC, Porto, Portugal
2 University of Minho, Braga, Portugal
alcino@di.uminho.pt
3 University of Porto, Porto, Portugal

Abstract. This paper presents Alloy4Fun, a web application that
enables online editing and sharing of Alloy models and instances (includ-
ing dynamic ones developed with the Electrum extension), to be used
mainly in an educational context. By introducing secret paragraphs and
commands in the models, Alloy4Fun allows the distribution and auto-
mated assessment of simple specification challenges, a mechanism that
enables students to learn the language at their own pace. Alloy4Fun
stores all versions of shared and analyzed models, as well as derivation
trees that depict how they evolved over time: this wealth of information
can be mined by researchers or tutors to identify, for example, learn-
ing breakdowns in the class or typical mistakes made by Alloy users.
Alloy4Fun has been used in formal methods graduate courses for two
years and for the latest edition we present results regarding its adop-
tion by the students, as well as preliminary insights regarding the most
common bottlenecks when learning Alloy (and Electrum).

Keywords: Teaching formal methods - Alloy - Automated assessment

1 Introduction

Alloy [6] is a popular formal specification language, accompanied by a toolkit, to
describe and reason about software design. It is taught in several undergraduate
and graduate courses in formal methods, including graduate courses taught by
some of the authors at University of Minho (UM) and University of Porto (UP),
in Portugal. One of the reasons for this popularity is the support for automated
analysis provided by the Alloy Analyzer, an easy to download and install self-
contained executable written in Java. The Analyzer also allows instances (either
witness scenarios or counter-examples) to be graphically depicted using user-
customized themes, a popular feature both for experienced users and students.
Alloy is very effective in the specification and analysis of the static structures
that pervade software design, but requires the employment of well-established
© Springer Nature Switzerland AG 2020

A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 61-77, 2020.
https://doi.org/10.1007/978-3-030-48077-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-48077-6_5

62 N. Macedo et al.

idioms, that introduce an explicit notion of state or time, if mutability is to
be considered and temporal properties analyzed. To avoid this cumbersome and
error-prone process, several extensions to Alloy have been proposed, including
one by authors of this paper — Electrum [7] — which extends the Alloy language
with variable structures and linear temporal logic (including past operators),
also adding bounded and unbounded model checking engines to the Analyzer.

Despite such streamlined toolkit, over the many years we taught and
researched with Alloy we identified some missing features and functionalities
that could further ease its adoption and its usage in an educational context. The
first is the lack of a straightforward mechanism to share simple Alloy models,
instances! and associated themes. This would be particularly useful for students
trying to get feedback from the tutors about specific counter-examples, or to
submit exercise resolutions for evaluation. The second is the absence of some
automated assessment functionality or online judge system for students to inde-
pendently check the correctness of their exercise resolutions. Due to some limi-
tations of the visualizer packaged with the Analyzer, we also felt the need for a
more decoupled infrastructure to test alternative instance visualization features.

To address these limitations we developed Alloy4Fun, a web application that
enables online editing and sharing of Alloy and Electrum models? and instances,
including simple specification challenges in the form of duels where students
attempt to discover a secret specified by the tutors. Such online platform also
provided us the opportunity to collect information regarding Alloy usage pat-
terns from an extended user base: one of the features of Alloy4Fun is thus the
ability to record every interaction with the (anonymous) user, information that
is made available to the creator of the challenges for subsequent analysis. Over
the last two years, Alloy4Fun has been used in 3 editions of graduate courses
on formal methods and a tutorial at an international venue, which has allowed
us to quickly obtain insight on how students use the language, namely identify
typical mistakes or learning breakdowns in the class.

This paper presents Alloy4Fun and reports on its application in teaching
Alloy, starting with an overview of (and rationale for) its current features in
Sect. 2. Section 3 reports on its deployment in a formal methods graduate course
(Sect. 3.1), including our experience on defining exercises, results regarding usage
and adoption of the platform (Sect.3.2), and some preliminary insights on Alloy
usage patterns and learning pitfalls (Sect.3.3). Finally, Sect.4 concludes the
paper and presents some ideas for future work. Knowledge of Alloy is not required
to understand the paper, but can help better appreciate some of the features of
Alloy4Fun.

1 In Alloy literature, specifications are usually referred to as models, and the results
of animation/verification commands as model instances.

2 Electrum is retro-compatible with Alloy: models without temporal features are valid
Alloy, apart from protected keywords. For readability we will simply refer to Alloy
throughout the paper, unless some Electrum-specific feature is being discussed.

Experiences on Teaching Alloy with an Automated Assessment Platform 63

Command : ([check Tnv20K$

7

Execute

profile : set Work,
visible : set Work

S

Share model

source : one Source

fe

Download derivations

all u:User, w:u.profile | some i:Institution u in w.source or i in w.source

36|pred Inv3 {

Counter-example found. check Inv20K is invalid.

4

Previous instance

WorkO Work2 Work1
|ds Id1 IdS 1d0 ids: 1d0 N

N

Fig. 1. A failed attempt to solve a challenge in the CV exercise.

Next instance

&

Share instance

2 Alloy4Fun Overview

The core of Alloy4Fun mimics in a web application the main features of the
standalone Alloy Analyzer. After accessing alloy4fun.inesctec.pt (the URL where
Alloy4Fun is currently deployed) the user gets an empty online editor (with syn-
tax highlighting) where Alloy models can be written. An Alloy model consists of
a sequence of paragraphs: each paragraph is either a signature (and the respec-
tive fields) declaration, a fact with a constraint that is assumed to hold, an
assertion with a constraint to be checked, or an auxiliary predicate or function
definition. Signatures introduce sets of elements (known in Alloy as atoms) and
fields establish relations of arbitrary arity between those sets. Disjoint subset sig-
natures can be declared by extension, and the parent signature can be marked
as abstract, if it should only contain atoms present in its extensions. For exam-
ple, the Alloy4Fun screen capture shown in Fig.1 shows a model of an online
Curriculum Vitae (CV) platform, an example that was used as an exercise in
classes. This model declares a signature Source that is partitioned in two sub-
sets, User and Institution. Two more signatures are declared in this example:

http://alloy4fun.inesctec.pt/

64 N. Macedo et al.

Id and Work. We also have several fields that relate atoms of these signatures.
For example, ids is a binary relation that associates each atom of Work with its
set of Ids. Signature and field declarations can have multiplicities attached to
impose cardinality constraints. For example, the some in the declaration of field
ids imposes that each Work should have at least one Id.

Formulas in facts, assertions, and predicates, are written in Relational Logic
(RL), an extension of First-Order Logic (FOL) with operators that can be used
to combine relations (aka predicates in FOL). The most frequently used one is
the relational composition (written as .), an operator that allows us to “nav-
igate” through a relation: for example, in predicate Inv2 of Fig. 1, expression
u.profile denotes the set of atoms of signature Work associated with User u.
In Alloy every signature and field is immutable. With the Electrum extension
they can be declared as mutable, and formulas can also be specified with Linear
Temporal Logic (LTL) operators.

A distinctive feature of Alloy is that analysis commands can also be declared
as paragraphs in a model. There are two kinds of commands: run commands,
that verify the satisfiability of the declared facts and can be used to get witness
scenarios; and check commands, that verify the validity of an assertion (assum-
ing the facts to hold) and, if that is not the case, return a counter-example. All
the analysis commands operate in a bounded domain: there is a user-defined
scope imposed on every signature that limits the maximum number of elements
that will be considered by the automatic verification procedures. In Alloy4Fun
the topmost right button allows analysis commands to be executed: the com-
mand to be executed can be selected in the drop-down immediately above. If
witnesses (in the case of run) or counter-examples (in the case of a check) are
found, they are depicted below the editor as graphs that, likewise in Analyzer,
can be customised with user-defined themes.

Besides these core functionalities, Alloy4Fun has some new features (and
some improvements to existing ones) when compared to the Analyzer, as
described in the sequel. Currently, it also has some limitations, most notably
the inability to choose the underlying SAT solver used to perform a given anal-
ysis, not being able to display an unsatisfiable core, and lack of support for
Alloy’s module system (except for the standard modules distributed with Alloy,
which can be used). In the specific case of Electrum, Alloy4Fun lacks the more
sophisticated trace exploration options available in the Electrum Analyzer [3],
as described next.

Instance Visualization and Navigation. When compared to the Analyzer,
Alloy4Fun follows a more lightweight approach to the user interface, allowing the
most common theme customizations (like changing the color of the atoms of a
given signature) to be performed quickly through a right-click menu on atoms or
edges. We also stripped down a bit theme features to a subset that we identified
as those more commonly used. Alloy4Fun themes allow color, shape, stroke, and
visibility parametrization for signatures and fields, signature projection, and the
display of fields as attributes inside atoms. Among the unsupported features we
have, for example, the customization of the atom labels for each signature or the

Experiences on Teaching Alloy with an Automated Assessment Platform 65

ability to hide only unconnected atoms of a particular signature. A new feature is
the ability to select different layout algorithms to automatically organize nodes,
which the user can then manually move. Unlike in the Analyzer, atom positions
are preserved between the frames of projected instances, and when navigating
the different states of a trace in the case of an Electrum (mutable) instance. In
Fig. 1 a counter-example of a check command named Inv20K is being depicted
with a user-defined theme. Unlike in the Analyzer, besides navigating to the next
instance the user can also re-visit previously presented instances. In the case of
Electrum, Alloy4Fun only allows one state of an instance trace to be visualised
at a time (the Electrum Analyzer depicts two states side by side), and it is only
possible to ask for a different next trace (the Electrum Analyzer has more sophis-
ticated trace exploration options, for example it is possible to ask for trace with
the same prefix up to the displayed state, but a different next state).

Sharing Models and Instances. The standard Alloy Analyzer provides limited
support for model and instance sharing: they can be saved in separate files, which
can then be shared using external tools (email, online repositories, etc), to be
again opened at the destination for inspection or editing. When a visualization
theme has been developed to ease the interpretation of instances, it must also
be shared in an additional file. This sharing by saving/opening files rapidly
becomes tedious and time consuming in some contexts, in particular for tutors of
large classes that interact frequently with students (typically by email) to clarify
doubts. Alloy4Fun provides the ability to easily share models and instances. After
pressing the “share model” button a permalink is generated, that can later be
used to access the model. Any theme defined by the user is also preserved when
sharing, thus allowing instances of shared models to be depicted as intended
by their creators. Concrete instances can also be shared via permalinks. The
theme and positions of the depicted atoms and relations at the time of sharing
are also preserved. This is a very handy feature since, likewise in the Analyzer,
the positioning of atoms by the automatic layout mechanism is often not ideal,
requiring manually rearrangement for better comprehension. For instance, the
instance presented in Fig. 1 can be shared as depicted®.

Anonymous Interaction. In Alloy4Fun there are no user accounts nor means to
recover the permalinks of previously shared models and instances. The user is
responsible for keeping track of relevant permalinks using some external mecha-
nism (Alloy4Fun provides a “copy to clipboard” button to ease this task). The
anonymity, namely the absence of user accounts, was a design choice made in
order to keep the interaction with the web application as simple as possible,
to maximize user exposure, and also to avoid dealing with privacy and secu-
rity issues, namely the hassle of storing and managing user credentials and of
implementing mandatory regulations concerning data protection.

Automatic Assessment. Although the Alloy specification language has very neat
and simple syntax and semantics, many students struggle with its declarative

3 http://alloy4fun.inesctec.pt /8Q4Sbjqj4KzHuvuNC.

http://alloy4fun.inesctec.pt/8Q4Sbjqj4KzHuvuNC

66 N. Macedo et al.

nature, in particular those used to procedural programming [2]. One way to over-
come this difficulty is by independently solving exercises proposed by tutors, but,
even with automated analysis and visual feedback, it is often difficult for stu-
dents to assess whether they reached the correct answer, and tutors are required
to inspect and interpret the solutions (something not scalable for large classes).
These problems could be mitigated with automatic assessment functionalities,
allowing students to solve exercises at their own pace and without the constant
need for face-to-face time with tutors. In recent years, auto-graders and online
judges have become widely popular for learning how to program [10], and we
believe this success could be replicated in the learning of formal methods in
general, and Alloy in particular.

With this in mind, the user in Alloy4Fun has the ability to mark any para-
graph of a model as secret, by adding the special comment //SECRET immedi-
ately before. When sharing a model with secret paragraphs two permalinks are
generated: a private one that, when accessed, reveals the full model, including
secrets; and a public one that, when accessed, only shows public paragraphs, but
internally still considers the secret in analyses and still allows the execution of
secret commands (whose names are public). Using a comment instead of a new
keyword to mark secret paragraphs ensures compatibility with Alloy’s default
syntax, allowing users to copy and paste models from Alloy4Fun to the stan-
dalone Analyzer, and vice versa. Section 3.1 will describe how this feature can
be used to create simple specification exercises in the form of duels, where the
user/student tries to reach a secret specification. The instance shown in Fig. 1
was obtained precisely by accessing the public permalink of an exercise, and
failing to solve a challenge, for which a counter-example was returned.

Mining Derivation Trees. A possible way to gain insight about the students’
learning process is to have access to their attempts at solving the proposed
exercises, and tool support to mine this corpus for useful data [8]. Again, such
feature would also be useful for research, and was one of the reasons that led
Microsoft to develop the www.risedfun.com web service, that allows researchers
to easily deploy their tools on the web and collect human-tool interactions for
posterior mining [1] (besides other advantages of web tools, like increased expo-
sure, since the need for downloading and installing is eliminated, and promoting
reliability given the large amount of test cases that can be collected). One of the
most popular examples available via Rise4Fun, and the inspiration for developing
Alloy4Fun, is www.pex4fun.com, a web-based educational gaming environment
for learning programming, where students can engage in coding duels where they
attempt to write code equivalent to a tutor’s secret implementation [12]. Pex [11],
an advanced white box test-generation tool, is used on the background to find
inputs that show discrepancies between the student’s code and the secret imple-
mentation. However, the interaction with the outcome of the tools has limitations
in Rise4Fun, which would prevent the implementation of key Alloy features such
as instance iteration and customization. This has led us to implement our own
solution rather than integrate Alloy in this service.

www.rise4fun.com
www.pex4fun.com

Experiences on Teaching Alloy with an Automated Assessment Platform 67

Every shared model and instance is stored by Alloy4Fun in its database.
However, to enable the proponents of challenges to mine the submissions for
useful information, every model for which a command was executed is also stored,
along with the respective result (e.g., whether satisfiable or not, or whether errors
were thrown). Moreover, for each model, the identifier of the model from which it
derives and a time-stamp are also stored. This means that all the models that are
developed after accessing a shared permalink end up forming a derivation tree.
In the case of a permalink with secrets/challenges, a branch in this tree typically
corresponds to an interactive session where one user/student is trying to solve
the different challenges defined inside, and can be analyzed to determine, for
example, how many challenges were solved or how many attempts were needed
to solve each one. Every fork in branch represents a point where a user generated
a new permalink for a model which was subsequently accessed multiple times.
Alloy4Fun allows anyone in possession of the secret permalink of a model to
download the respective derivation tree in an easy to process JSON format.

Implementation. AlloydFun was developed [9] with Meteor, a full-stack isomor-
phic JavaScript framework for developing web applications based on Node.js.
The client uses CodeMirror as text editor and the Cytoscape.js graph visual-
ization library to depict instances. Models and instances are stored in a Mon-
goDB document-oriented database at the server. To execute commands, we
encapsulated the Alloy Analyzer in a RESTful web service implemented in Java.
Seamless deployment of both the application and the service in a server is per-
formed using Docker. All the Alloy4Fun code is open-source and available at
github.com /haslab/Alloy4Fun.

3 Experiences on Teaching with Alloy4Fun

In the first semester of the 2018/19 academic year we did a preliminary evalua-
tion of Alloy4Fun in two graduate formal methods courses at UM and UP. The
former taught Alloy for 6 weeks and had 22 students enrolled, and the latter for
4 weeks and had 156 students enrolled. Both courses had one weekly lecture and
one weekly lab session. This experiment — which recorded almost 5000 interac-
tions — allowed us to test a beta version of the application in a medium-sized
audience to detect and fix bugs and identify possible design improvements. One
major identified design improvement regarded a special “lock” comment avail-
able in the beta version to prevent the accidental editing of certain paragraphs
that could render the challenges unsolvable (or trivially solvable). However, we
noticed students rarely tried to change the model outside of the challenge pred-
icates, and opted to remove this feature for simplicity and efficiency*. These
first experiences also allowed us to identify which classes of exercises are better
suited to be explored in Alloy4Fun, as well as how the visualization features can
be explored to provide more intuitive feedback to the students.

4 Note that Alloy4Fun was only used for self-study and not for student grading.

http://github.com/haslab/Alloy4Fun

68 N. Macedo et al.

From this process resulted the first official release of Alloy4Fun, which has
been used in the 2019/20 academic year in the UM graduate course and on
an Alloy/Electrum tutorial at the World Congress on Formal Methods®, with
a refined set of specification exercises with challenges. The remainder of this
section reports on the usage of the platform by the students during this latest
instance of the UM graduate course, including preliminary results regarding the
most common mistakes and difficulties when learning Alloy.

3.1 Alloy4Fun Exercises

The model secrets supported by Alloy4Fun can be used to create simple specifica-
tion challenges in the form of duels, where the user/student tries to reach a secret
specification. Such models — which we refer to as ezercises — can have a public
predicate that the student must fill-in, together with a secret check command
that asserts (for a given scope) that such predicate is equivalent to the desired
specification (typically in a separate secret predicate). Although useful for prac-
ticing the usage of logic (either relational or temporal) in the specification of
properties, there are certain classes of problems for which the approach based
on secret specifications is not well-suited, namely modeling exercises where the
student is expected to freely declare signatures and fields.

The model shown in Fig.1 was obtained precisely by accessing the public
permalink of the CV exercise, which contains 4 challenges (in this case, simple
problems where a natural language description of a desired property of the model
is given for each of them). After filling the empty predicate (e.g., Inv2), the
student can check whether it is a valid solution (e.g., by running secret command
Inv20K, for the case of Inv2), which will either return a “no counter-example
found” message, meaning the challenge is solved, or a counter-example otherwise
(as is the case in Fig. 1, showing that the specification of Inv2 is still not correct).

Figure 2 shows the secret implementation of challenge Inv2: predicate Inv20
specifies a correct solution for the challenge and command Inv20K checks the
equivalence between both. In exercises such as CV where several desired (and nat-
ural) properties of the model are solved in different challenges, we opted to check
this equivalence assuming that the remaining properties hold: if that was not the
case the student would get many counter-examples where it would not be clear
why their specification failed, since they would be “polluted” with distracting
problems corresponding to failures of other properties. This conditional check is
the reason to include Invlo, Inv3o, and Inv4o0 as assumptions in the equiva-
lence check Inv20K. Notice that in the preamble to the exercise the students are
warned that they can assume the properties in the remaining challenges to be
true when solving a particular challenge.

During the course we also noticed that the students found it hard to distin-
guish whether the provided counter-example represents a scenario where their
solution was over-specified or under-specified. For this reason, in the challenges

5 http://haslab.github.io/TRUST /tutorial.html.

http://haslab.github.io/TRUST/tutorial.html

Experiences on Teaching Alloy with an Automated Assessment Platform 69

//SECRET

abstract one sig RejectedBy {}

//SECRET

sig ShouldBeRejected, ShouldBeAccepted extends RejectedBy {}

pred Inv2 { // A user profile can only have works added by himself or some external institution

}
//SECRET
pred Inv2o { all u : User | u.profile.source in Institution+u }
//SECRET
check Inv20K {
(Invlo and Inv3o and Inv4o and (some ShouldBeRejected iff (Inv2 and not Inv2o0))) implies

(Inv2 iff Inv20) }

Fig. 2. The secret for the challenge Inv2 of CV from Fig. 1.

used later in the course we opted to include two special atoms in the counter-
example instance that signal whether an instance that should have been rejected
or accepted by a correct specification, meaning their solution is under- or over-
specified, respectively. As seen in Fig.2 this can be achieved by introducing
a singleton signature whose possible values are either ShouldBeRejected or
ShouldBeAccepted and through a simple trick in the equivalence check, namely
making the verification conditional to the existence of the ShouldBeRejected
atom when the student solution incorrectly holds (or vice-versa).
The challenges used in this course were based on 6 different problems:

— Trash, a model of a file system trash bin.

— Classroom, a model a classroom management system.

— Graph, a specification of several standard properties of unlabeled graphs.

— LTL, a specification of several standard properties of labeled transition sys-
tems.

— Production, a model of an automated production line in a factory.

— CV, the Curriculum Vitae model used as running example in this paper.

For some of these problems we developed more than one variant (or ezercise)
focusing on different features of the language. Each variant was provided as a
shared model to students and contained multiple challenges, as summarized in
Table 1. The table lists the permalink and total number of challenges of each
exercise (the columns F1 to F9 will be discussed in Sect. 3.3).

Challenges in these exercises range from trivial (e.g., asking to enforce simple
inclusion dependencies or multiplicities), to more complex ones requiring the use
of nested quantifiers or closures. As expected, the introduction of the Alloy (and
Electrum) language and underlying logics in classes was gradual: FOL constructs
were first presented, followed by the full set of RL operators, and finally the
LTL operators specific to Electrum. To try to understand the impact of using
relational operators, we introduced two variants of the first two problems: one
where challenges were to be solved using only the FOL subset of Alloy, and
another, introduced when students already had knowledge of RL, where they

70 N. Macedo et al.

Table 1. Alloy4Fun exercises shared for the 2019/20 year.

Id | Exercise Permalink Chall. | F1 |F2 F3 F4 | F5 | F6 | F7|F8 | F9
1 | Trash FOL zA2MMSGy6iW8Mihep 10 0 1 2 0 0 0 0 0 0
2 | Classroom FOL | Pdvipvrpr5hg7JKbs 15 6 6 9 4 0 0 0 0 0
3 | Trash RL WJIdLnDL78m7mM7W4J 10 0 1 2 0 0 0 0 0 0
4 | Classroom RL | i5u2pjKJt6Bz227QT 15 5 6 9 4 1 0 0 0 0
5 | Graphs 28fwdmjL79X4SQ9EP 8 1 0 0 0 2 1 0 0 0
6 | LTS gqS3qTTn4B62NYmJX 4 2 6 6 0 2 0 0 0
7 | Production PKy7chamCieZyCix5 4 1 1 3 0 1 0 1 0 0
8| v X72J6js9fA3BCKYQWX 4 3 0 3 0 0 1 0 0 0
9 | Trash LTL irRLIJn7gbQq3xMFGp 20 0 0 1 0 0 0 0 5| 14

could use all the standard Alloy operators to solve the challenges. For the Trash
problem we also created a mutable variant, where challenges required the usage
of the LTL operators of Electrum to be solved. Hence the total of 9 exercises
described in Table 1. As an example, exercise CV (containing 4 challenges) is the
one shown in Fig. 1.

3.2 Student Usage and Adoption

In the 2019/20 edition 17 students attended the UM course. Alloy was taught
for 5 weeks and, for the first time in this course, Electrum was also taught
for 4 additional weeks. In each week, a 1h lecture was followed by a 2h lab
session. Alloy4Fun was used in the lab sessions that followed the lectures that
introduced FOL, RL, and LTL, mainly as a way to practice the usage of these
logics to specify natural language requirements.

In the lab sessions that addressed other aspects of the Alloy language and
analysis not amenable for automated assessment, such as solving problems that
required the development of a full model from scratch, students were expected
to still use the Alloy Analyzer and locally manage their models. In principle,
they could also have used Alloy4Fun to develop most of the problems addressed
in those sessions, but we also wanted students to gain some experience in using
the standard Analyzer, particularly since the current limitations of Alloy4Fun
(presented in the beginning of Sect. 2, such as the lack of module support or the
lack of sophisticated trace exploration options in the case of Electrum) might
prove problematic for some more realistic problems. Thus, Alloy4dFun was only
used in 4 lab sessions, each introducing a particular set of exercises — 1 session
with Trash FOL and Classroom FOL after the FOL lecture, 2 sessions with
Trash RL, Classroom RL and Graphs after the RL lecture, and 1 session with
Trash LTL after the LTL lecture. Extra exercises (namely LTS, Production,
and CV) were made available in the course website for the students to freely
explore. Moreover, all exercises were kept available throughout the semester so
that students could independently practice outside of the classes. During the
course there were 3 evaluation points involving Alloy: a medium-size modeling

http://alloy4fun.inesctec.pt/zA2MMSGy6iW8Mihep
http://alloy4fun.inesctec.pt/Pdvipvrpr5hg7JKbs
http://alloy4fun.inesctec.pt/WJdLnDL78m7mM7W4J
http://alloy4fun.inesctec.pt/i5u2pjKJt6Bz227QT
http://alloy4fun.inesctec.pt/28fwdmjL79X4SQ9EP
http://alloy4fun.inesctec.pt/gqS3qTTn4B62NYmJX
http://alloy4fun.inesctec.pt/PKy7chamCieZyCix5
http://alloy4fun.inesctec.pt/X72J6js9fA3CKYQWX
http://alloy4fun.inesctec.pt/irRLJn7qbQq3xMFGp

Experiences on Teaching Alloy with an Automated Assessment Platform 71

project (developed with the standard Analyzer outside of the classes in groups
of two students), an individual written exam, and finally a supplementary exam
for students failing the first attempt.

After concluding the course, the main question we tried to answer was
whether students found Alloy4Fun useful as an automated assessment platform
while learning Alloy. More specifically: 1) have the students used Alloy4Fun
regularly outside classes? 2) in particular, have they used it when studying for
the exams? 3) have they found the sharing feature useful? 4) were the counter-
examples useful to reach the correct solution? To answer these question we used
two methods: an anonymous questionnaire and analysis of the data collected
by Alloy4Fun. The questionnaire was answered by 13 of the 17 students, and,
over the duration of the course, we collected almost 11000 interactions with the
exercises, most of them resulting from the execution of commands (checking the
correctness of challenges) and a small portion from sharing of models®.

Concerning the first question, of the 13 students that answered the ques-
tionnaire, 9 said they used Alloy4Fun frequently outside classes, 3 only used it
rarely, and 1 never used it. To the second question all of the 12 students that
used it outside classes answered that they used it to study for the exam. Of these,
9 mentioned that when studying for the exam they actually repeated some of
the exercises they had already solved before. The data collected throughout the
semester, shown in Fig. 3, seems to corroborate these answers. Figure 3a depicts
the usage of the platform over time, highlighting the classes where Alloy4Fun
was mandatory and the evaluation points (first the project deadline, and later
in the semester the two exams). Each entry in the dataset is either a correct
(unsatisfiable) check, a wrong (satisfiable) check, an analysis that threw an error
(e.g., parsing) or a model stored for sharing. Despite the peak of usage during the
Alloy4Fun classes, we can see that the students have indeed relied on Alloy4Fun
outside the classes, and in particular when studying for the written exam.

Figures 3b and 3c present statistics per exercise (below each exercise number
we recall the number of challenges inside). Figure 3b presents the same execu-
tion information as Fig. 3a (except shares), with the addition of the number of
successful analyses (i.e., without error) that threw a warning. This information
is normalised taking into account the number of challenges in each exercise (i.e.,
the graph shows the average number of executions per challenge). This chart pro-
vides some evidence that most of the students attempted to solve all exercises,
including some of those not used in class. For example, averaging the executions
per challenge and per student, we have a maximum of around 10 for exercise
1 and a minimum of around 3 for exercise 7, and an overall average of around
6 attempts per challenge per student. Even taking into account failed attempts
and repeated attempts to solve exercises already previously solved, it is relatively
safe to infer that such numbers can only have resulted from having most of the
class attempting to solve all exercises.

Figure 3c presents information regarding solving “sessions”. Recall that a ses-
sion is a branch in the derivation tree, typically recording the interaction of a

5 This dataset is freely available in the Alloy4dFun GitHub repository.

72 N. Macedo et al.

Evaluation A4F Classes [Share [l Error [Wrong W Correct

1500

1000

0-03
0-06
0-09
012

0-15
0-18
0-21

09-24
09-27
09-30

(a) Executions over time.

B warning [Error [Wrong [Correct B Shared @ None Some B All
200 100

1 2 3 4 5 6 7 8 9
(10) (15) (100 (15 (® ()) @ (20 (10) (15) (10) (15 (® () & @ (0

(b) Average challenge execution per exercise. (c) Sessions per exercise.

Fig. 3. Alloy4Fun usage statistics by 17 students over a semester for 9 exercises.

student with Alloy4Fun while solving the challenges inside an exercise. For each
exercise we depict how many session solved all its challenges, some of its chal-
lenges, or none. Of course, some students might have multiple sessions recorded
for each attempt to solve an exercise, since they might not solve all the chal-
lenges in a single continuous session and access the original shared permalink
several times, instead of generating a new permalink of a partial resolution for
later resuming the work. Overall we identified 430 sessions, with an average of 48
sessions per exercise. Even with all the uncertainty, it is safe to say that indeed
most students should have used Alloy4Fun frequently outside the classes (from
our observation, during classes students mainly used a single session per exer-
cise), including repeated attempts to solve exercises already previously solved (as
reported in the questionnaire): for example, for Trash FOL around 50 sessions
were recorded where all the challenges were solved, a strong indicator that each
student should have solved it at least twice.

Concerning permalinks, 7 students mentioned that they generated them fre-
quently to store their own solutions for later access, 3 did it rarely, and, somehow
surprising, 3 never did it. Generating permalinks for the purpose of sharing with
colleagues and tutors was even less common: only 5 students did it frequently,
4 rarely and 4 never. Figure 3¢ also depicts how many session had at least one
permalink generated, and indeed we can see that, for most of the exercises,

Experiences on Teaching Alloy with an Automated Assessment Platform 73

the number of permalinked sessions is clearly less than the number of students.
Surprisingly, the share instance feature has not been used: there were only 2
generated permalinks for instances. These results seem to suggest that one of
our main goals for Alloy4dFun — to simplify the sharing of models and instances
— may actually not be that popular in an educational setting, but of course a
more comprehensive study must be conducted to clarify that.

Concerning the last question, 10 students mentioned that counter-examples
were frequently useful to help find the correct answer, but of these 4 only found
them useful if they had the atoms that signal whether the shown counter-example
should have been rejected or accepted by a correct specification. Unfortunately
we have no data to corroborate this, but in principle Alloy4Fun could be used to
check whether those atoms are indeed helpful or not, for example by giving two
different versions of an exercise to different sets of students and then analyzing
the results. This is one of the studies we intend to conduct in the near future.

Finally we also asked the students the overall question of whether they found
Alloy4Fun useful for learning Alloy and Electrum: all of them agreed that was
the case, with 8 of the 13 strongly agreeing.

3.3 Insights on Learning Alloy

Taking advantage of the collected data, we also tried to get some insights about
how students learn Alloy, and in particular determine which features of the
language pose more difficulties and should thus be addressed more carefully in
lectures. To this end, we started by classifying a normalized version” of each
challenge according to a set of required concepts, namely whether it requires:

F'1 using more than 10 logic or relational operators

F2 a simple restriction of the multiplicity of a relation

F3 nested quantifications (ignoring multi-variable quantifications)

F4 manipulating ternary relations

F5 transitive closure over fields

F6 transitive closure over expressions (either relational expressions or relations
by comprehension)

F7 reasoning about total orders (i.e, using the ordering module)

F'8 a single temporal operator

F'9 nested temporal operators

For each exercise, Table 1 presents the number of challenges that fall into each of
these (non-exclusive) categories. Figure4 compares the results of challenge exe-
cution classified under each category (also listing the total number of challenges
for each). For each of the 9 categories, the number of correct (green) and wrong
(red) executions are presented. Additionally, entry FO collects the results of chal-
lenges that require none of the above concepts, and category All the results for
all challenges. Of all the 7689 executions without errors, 3682 were correct (48%),
meaning that in average each challenge required two attempts to be solved (after
solving possible errors).

" Normalized specifications were expanded into almost pure FOL (or FO-LTL when
temporal logic was required), using no relational operators except for closures.

74 N. Macedo et al.

All (148)
FO (34)
F1(20)
F2(17)
F3 (35) 2093
F4 (14)
F5 (4)
F6 (4)
F7 (1)
F8 (5)
F9 (14)
0% 25% 50% 75%

Fig. 4. Executions per class of challenge. (Color figure online)

As expected, challenges requiring none of the listed concepts (F0) were sim-
pler (71% success rate), and those requiring more than 10 operators (F1) were
notoriously more difficult (18% success rate). Contrary to our expectations, given
that Alloy has special syntax for that purpose, challenges that required restrict-
ing the multiplicity of relations (F2) were only slightly easier than average (52%).
As expected, the need to use nested quantifiers (F3) increases the difficulty of
challenges (33% success rate). Concerning closures, usage of a closure operator
over a relation (F5) was not very problematic (41% success rate), but challenges
that required applying a closure operator to a relational expression (F6) were
the most difficult to solve (8% success rate). We had some anecdotal evidence
that closures were difficult for students, but this discrepancy between the two
cases was rather surprising, meaning that special attention should be given to
the later case in lectures. Other problematic concepts were the manipulation of
ternary relations (F4) (19% success rate), and usage of the standard ordering
module (F7) (16% success rate), both frequently used in Alloy specifications. The
first result is aligned with our anecdotal evidence, and we already had special
care with higher arity relations in lectures. The second is a bit more surpris-
ing, meaning that, likewise to closures of relational expressions, we should invest
more lecture time in explaining how to use this module. Concerning Electrum,
students seem to understand well the usage of a single temporal operator (F8)
(58% success rate), but, as expected and likewise quantifiers, specifications requir-
ing nesting of several temporal operators (F9) were more difficult (32% success
rate).

We also collected statistics about typical errors and warnings, with Tables 2
and 3 presenting the 10 most commonly found error and warning messages,
respectively. Concerning errors, as expected, the most frequent are basic pars-
ing errors (corresponding to messages 1, 2, and 8, and including, for example,
parenthesis problems or misspelled identifiers), totaling around 44% of the errors.
Of the remaining, the most frequent are incorrectly applying logic operators to
relational expressions and vice-versa (messages 3, 5, and 7), in total 28% of

Experiences on Teaching Alloy with an Automated Assessment Platform 75

Table 2. Most common error messages.

Message +#

1 |[There are ... possible tokens that can appear here. 747

2 |The name ... cannot be found. 444

3 |This must be a formula expression. 432

4 |in can be used only between 2 expressions of the same arity.|277

5 |This must be a set or relation. 277

6 |This cannot be a legal relational join. 220

7 |This expression failed to be typechecked. 117

8 |The "all x" construct is no longer supported. 85

9 |~ can be used only with a binary relation. 58

10| This must be a unary set. 50

Table 3. Most common warning messages.

Message +#
1 |The join operation here always yields an empty set. 213
2 |Subset operator is redundant, because the left & right subexpressions are always disjoint.|[123
3 |This variable is unused. 121
4 |” is redundant since its domain and range are disjoint. 25
5 |=is redundant, because the left & right expressions always have the same value. 11
6 |<: is irrelevant because the result is always empty. 10
7 |& is irrelevant because the two subexpressions are always disjoint. 8
8 |=is redundant, because the left & right expressions are always disjoint. 8
9 |The value of this expression does not contribute to the value of the parent. 6
10|Subset operator is redundant, because the right subexpression is always empty. 3

the errors, and simple typing errors related to arity (messages 4, 6, 9, and 10),
in total 26% of the errors. The reader unacquainted with Alloy could find the fre-
quency of the former rather surprising, but this is a rather frequent error due to
the syntactic similarity between some logical and relational operators (for exam-
ple, not for negation vs. no for emptiness check or && for conjunction vs. & for
intersection). Fortunately, Alloy has alternative syntax for many logic operators
(for example, and for conjunction) and maybe instructors should recommend
using that alternative instead. Concerning warnings, all but the third most com-
mon message (unused variables, 23% of the total warnings) are warnings about
potentially irrelevant expressions — formulas that are trivially true or false or
expressions that always denote an empty set — a testimony to the usefulness of
Alloy’s sophisticated type system [5].

4 Concluding Remarks and Future Work

We briefly presented Alloy4Fun, a web application for online editing and sharing
of Alloy models and instances, that also allows the automated assessment of sim-
ple specification challenges. Its main intended use is in an educational context,
and our preliminary evaluation in a graduate formal methods course provided
evidence that students found the automated assessment feature useful for learn-
ing Alloy and Electrum (and the sharing feature less so). We also collected
evidence that some features of the Alloy language are particularly problematic
for students, and should be addressed with particular care by tutors.

76 N. Macedo et al.

We intend to continue using Alloy4Fun in our formal methods courses in the
upcoming years, collecting more data to support more detailed and informed
analyses about the language usage. Concerning the application itself, we intend
to develop tools to simplify the mining of useful data from the derivation trees,
possibly to be run server-side at the click of a button (with results visualized
in the browser), to enable the timely identification of learning breakdowns. We
also intend to incorporate in Alloy4Fun an alternative instance visualizer more
amenable for dynamic systems [4].

Acknowledgements. We would like to thank Daniel Jackson for the helpful com-
ments and suggestions about the design of Alloy4Fun. This work is financed by National
Funds through the Portuguese funding agency, FCT - Fundagao para a Ciéncia e a Tec-
nologia, within project UIDB/50014/2020. The third and forth authors were financed
by the ERDF — European Regional Development Fund through the Operational Pro-
gramme for Competitiveness and Internationalisation - COMPETE 2020 Programme
and by National Funds through the Portuguese funding agency, FCT - Fundagéo para
a Ciéncia e a Tecnologia, within project POCI-01-0145-FEDER-016826. The second
author was also supported by the FCT sabbatical grant with reference SFRH/B-
SAB/143106/2018.

References

1. Ball, T., de Halleux, P., Swamy, N., Leijen, D.: Increasing human-tool interaction
via the web. In: Proceedings of the 11th ACM SIGPLAN/SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering, pp. 49-52. ACM (2013)

2. Boyatt, R., Sinclair, J.: Experiences of teaching a lightweight formal method. In:
Proceedings of the 1st Workshop on Formal Methods in Computer Science Educa-
tion, pp. 71-80 (2008)

3. Brunel, J., Chemouil, D., Cunha, A., Macedo, N.: Simulation under arbitrary tem-
poral logic constraints. In: Proceedings of the 5th Workshop on Formal Integrated
Development Environment, EPTCS, vol. 310, pp. 63-69 (2019)

4. Couto, R., Campos, J.C., Macedo, N., Cunha, A.: Improving the visualization of
Alloy instances. In: Proceedings 4th Workshop on Formal Integrated Development
Environment, EPTCS, vol. 284, pp. 37-52 (2018)

5. Edwards, J., Jackson, D., Torlak, E.: A type system for object models. In: Pro-
ceedings of the 12th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pp. 189-199. ACM (2004)

6. Jackson, D.: Software Abstractions: Logic, Language, and Analysis, 2nd edn. The
MIT Press, Cambridge (2012)

7. Macedo, N., Brunel, J., Chemouil, D., Cunha, A., Kuperberg, D.: Lightweight spec-
ification and analysis of dynamic systems with rich configurations. In: Proceedings
of the 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pp. 373-383. ACM (2016)

8. Mangaroska, K., Giannakos, M.N.: Learning analytics for learning design: a system-
atic literature review of analytics-driven design to enhance learning. IEEE Trans.
Learn. Technol. 12(4), 516-534 (2019)

9. Pereira, J.: A web-based social environment for Alloy. Master’s thesis, Universidade
do Minho, Escola de Engenharia (2016)

10.

11.

12.

Experiences on Teaching Alloy with an Automated Assessment Platform 77

Sioson, A.A.: Experiences on the use of an automatic C++ solution grader system.
In: Proceedings of the 4th International Conference on Information, Intelligence,
Systems and Applications, pp. 1-6. IEEE (2013)

Tillmann, N., de Halleux, J.: Pex—white box test generation for.NET. In: Beckert,
B., Hahnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134-153. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79124-9 10

Tillmann, N., de Halleux, J., Xie, T., Bishop, J.: Pex4Fun: a web-based environ-
ment for educational gaming via automated test generation. In: Proceedings of the
28th IEEE/ACM International Conference on Automated Software Engineering,
pp. 730-733. IEEE (2013)

https://doi.org/10.1007/978-3-540-79124-9_10

l‘)

Check for
updates

A Characterization of Distributed ASMs
with Partial-Order Runs

Egon Borger! and Klaus-Dieter Schewe?(™)
! Dipartimento di Informatica, Universita di Pisa, Pisa, Italy
boerger@di.unipi.it
2 UIUC Institute, Zhejiang University, Haining, China
kdschewe@Qacm.org

Abstract. To overcome the practical limitations of partial-order runs of
‘distributed ASMs’ (Abstract State Machines) proposed by Gurevich, we
have defined a concept of concurrent runs of multi-agent ASMs and could
show that concurrent ASMs capture a natural language-independent
axiomatic definition of concurrent algorithms, thus generalising Gure-
vich’s seminal ‘Sequential ASM Thesis’ from sequential to concurrent
algorithms. However, we remained intrigued by the fact that Blass and
Gurevich used partial-order runs of distributed ASMs to explain runs of
sequential recursive algorithms. We discovered that also the inverse sim-
ulation holds: for every distributed ASM with partial order runs, these
runs can be described by runs of a sequential recursive algorithm. This
surprising result clarifies the difference in expressivity between partial-
order and concurrent runs.

1 Introduction

In [8, Sect.2-3] the concept of sequential Abstract State Machines (seq-ASMs)
has been defined for which the ‘Sequential ASM Thesis’ [7]—to capture the intu-
itive notion of sequential algorithm—could be proved from three natural postu-
lates, see [9]. In [8, Sect. 6] the concept of sequential ASM runs is extended by
partial-order runs of a specific class of multi-agent ASMs called distributed ASMs.
However, contrary to the great variety of successful applications of sequential
ASMs, the use of distributed ASMs with partial-order runs turned out to be
impractical to adequately model concurrent systems. It has been replaced in [4]
by a language-independent axiomatic characterization of concurrent runs, adding
a fourth postulate (on the intuitive meaning of concurrency), together with a
definition of concurrent ASMs, based upon which the Sequential ASM Thesis
and its proof could be generalized to a Concurrent ASM Thesis—to capture the
proposed intuitive notion of concurrent algorithms.

In reaction to some scepticism expressed in [13], whether recursive algorithms
can be adequately defined by ASMs, partial-order runs of distributed ASMs have
been used in [1] to simulate the computations of recursive algorithms.! For a long

! Already the definition of recursive ASMs in [10] uses a special case of this translation
of recursive into distributed computations.
© Springer Nature Switzerland AG 2020

A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 78-92, 2020.
https://doi.org/10.1007/978-3-030-48077-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-48077-6_6

A Characterization of Distributed ASMs with Partial-Order Runs 79

time we have been intrigued by this proposal, since on the one side, a simple
sequential extension of ASMs suffices for the specification of recursive algorithms
(see for example [2]), on the other side partial-order runs of distributed ASMs
turned out to be impractical for modeling truly concurrent systems (see [4]).

In Sect. 3 we review Gurevich’s description of distributed ASMs with partial-
order runs and analyse the proof that the runs of recursive algorithms can be
defined as partial-order runs of distributed ASMs. The analysis reveals that the
distributed ASMs used to define recursive runs by partial-order runs are finitely
composed concurrent ASMs with non-deterministic sequential (nd-seq) compo-
nents (see the definition in Sect.3). In Sect. 4 we show the surprising discovery
that also the inverse relation holds, namely: for every finitely composed concur-
rent algorithm with nd-seq components, if its concurrent runs are definable by
partial-order runs, then the algorithm can be simulated by a recursive algorithm.
This establishes the main result of this paper.

Theorem 1.1 (Main Theorem). Recursive algorithms are behaviourally
equivalent to finitely composed concurrent algorithms C with nd-seq components
such that all concurrent C-runs are definable by partial-order runs.”

The equivalence of runs of recursive ASMs and of partial-order runs of dis-
tributed ASMs makes it explicit in which sense concurrent ASM runs as char-
acterized in [4] are more expressive than the ‘partial-order runs of distributed
ASMS’ proposed in [8, Sect. 6].

We will also show that if the concurrent runs are restricted further to partial-
order runs of a concurrent algorithm with a fixed finite number of agents and
fixed non-deterministic sequential (nd-seq) programs, one can simulate them
even by a non-deterministic sequential algorithm. An interesting example of this
special case are partial-order runs of Petri nets and more generally of Mayr’s
Process Rewrite Systems [12].

For the proofs we use an axiomatic characterization of recursive algorithms as
sequential algorithms enriched by call steps,? such that the parent-child relation-
ship between caller and callee defines well-defined shared locations representing
input and return parameters. This characterization is reviewed in Sect.2 and is
taken from [5] where it appears as Recursion Postulate and is added to Gure-
vich’s three postulates for sequential ASMs [9] as basis for the proof of an ASM
thesis for recursive ASMs.

We assume the knowledge of [8,9] and [4] and use without further expla-
nations standard textbook notations for ASMs, including ambient ASMs [3,
Ch. 4.1].

2 We call R behaviourally equivalent to C if each » € R can be simulated by a ¢ € C
and vice versa.

3 To emphasize the sequential nature of recursive algorithms we sometimes use the
term ‘sequential recursive algorithm’. See [5] for the technical reason for this naming
policy.

80 E. Borger and K.-D. Schewe

2 The Recursion Postulate

We start with a characteristic example to illustrate the intuitive idea of recur-
sion which guided the formulation of the recursion postulate below.? Take the
mergesort algorithm, which consists of a main algorithm sort and an auxiliary
algorithm merge. Every call to (a copy, we also say an instance of) sort and
every call to (an instance of) the merge algorithm could give rise to a new agent.
However, these agents only interact by passing input parameters and return val-
ues, but otherwise operate on disjoint sets of locations. In addition, a calling
agent always waits to receive return values, which implies that only one or (in
case of parallel calls) a finite number of agents are active in any state.

If one considers mutual recursion, then this becomes slightly more general,
as there is a finite family of algorithms calling (instances of) each other. Further-
more, there may be several simultaneous calls. E.g. in mergesort, sort calls two
copies of itself, each sorting one half of the list of given elements. Such simulta-
neously called copies may run sequentially in one order or the other, in parallel
or even asynchronously. This give rise to non-deterministic execution of multiple
sequential algorithms.

Therefore, for a characterization of recursive algorithms and their compu-
tations we can rely on the capture of non-deterministic sequential algorithms
by non-deterministic sequential ASMs.®> Thus, to axiomatically define recursive
algorithms and their runs it suffices to add to the three postulates for nd-seq
algorithms a Call Step Postulate and a Recursive Run Postulate defined below,
which together form the Recursion Postulate.

To characterize the input/output relation between the input provided by the
caller in a call step and the output computed by the callee for this input we
use the ASM function classification from [6] to distinguish between input, output
and local (also called controlled) function symbols in the signature, the union
of pairwise disjoint sets X;,, X, and X, respectively. We call any nd-seq
algorithm which comes with such a signature and also satisfies the Call Step
Postulate below an algorithm with input and output (for short: i/o-algorithm).
We can then define (sequential) recursive algorithms syntactically as collections
of i/o-algorithms.

Definition 2.1. A recursive algorithm R is a finite set of i/o-algorithms with
one distinguished main algorithm. The elements of R are called components
of R.

The independency condition for (possibly parallel) computations of different
instances of the given algorithms requires that for different calls, in particular for
different calls of the same algorithm, the state spaces of the triggered subcom-
putations are separated from each other. This encapsulation of subcomputations
can be made precise by the concept of ambient algorithms where each instance of

* For a detailed analysis see [5].
5 The proof for the Sequential ASM Thesis is easily extended from deterministic to
non-deterministic algorithms, see [9, Sect.9.2].

A Characterization of Distributed ASMs with Partial-Order Runs 81

an algorithm has a unique context parameter for its functions, e.g. its executing
agent (see [3, Ch. 4.1]), and is started in an initial state that only depends on
its input locations.%

Now we are ready to formulate the postulate for call steps. In Sect. 3.4 we
formalize this postulate by an ASM CALL(#y < N(#1,...,t,)) (see Definition 3.4
and its refinement in Sect. 4).

Postulate 1 (Call Step Postulate). When an i/o-algorithm p—the caller,
viewed as parent algorithm—calls a finite number of i/o-algorithms ¢y, ..., ¢,—
the callees, viewed as child algorithms CalledBy(p)—a call relationship (denoted
as CalledBy(p)) holds between the caller and each callee. The caller activates a
fresh instance of each callee ¢; so that they can start their computations. These
computations are independent of each other and the caller remains waiting—
i.e. performs no step—until every callee has terminated its computation (read:
has reached a final state). For each callee, the initial state of its computation is
determined only by the input passed by the caller; the only other interaction of
the callee with the caller is to return in its final state an output to p.

Definition 2.2. A call relationship holds for (instances of) two i/o-algorithms
AP (parent) and A€ (child) if and only if they satisfy the following conditions
on their function classification:

| Zﬁ: C A" 5o that the parent algorithm is able to update input locations of
the child algorithm. Furthermore, AP never reads the input locations of 4.
| EOAJt C YA 50 that the parent algorithm can read the output locations of
the child algorithm. Furthermore, AP never updates output locations of A°.

B 22 N XA = (no other common locations).

loc

Differently from runs of a nd-seq algorithm, where in each state at most one
step of the nd-seq algorithm is performed, in a recursive run a sequential recursive
algorithm R can perform in one step simultaneously one step of each of finitely
many not terminated and not waiting called instances of its i/o-algorithms. This
is expressed by the Recursive Run Postulate. In this postulate we refer to Active
and not Waiting instances of components, which are defined as follows:

Definition 2.3. To be Active resp. Waiting in a state S is defined as follows:

Active(q) iff q € Called and not Terminated(q)
Waiting(p) iff forsome ¢ € CalledBy(p) Active(c)
Called = {main} UJ, CalledBy(p)

5 More precisely, one can define an instance of an algorithm A by adding a parameter
a, say for an agent executing the instance A, = (a,.A) of A. a can be used as
environment parameter for the evaluation vals(t, a) of a term ¢ in state S with the
given environment. This yields for different agents a, a’ different functions f,, f,» as
interpretation of the same function symbol f, so that the run-time interpretations
of a common signature element f can be made to differ for different agents, due to
different inputs which determine their initial states.

82 E. Borger and K.-D. Schewe

Called collects the instances of algorithms that are called during the run. The
subset of Called which contains all the children called by p is denoted by
CalledBy(p). Called = {main} and CalledBy(p) = 0 are true in the initial state
So, for each i/o-algorithm p € R. In particular, in Sy the original component
main is considered to not be CalledBy(p), for any p.

Postulate 2 (Recursive Run Postulate). For a sequential recursive algo-
rithm R with main component main a recursive run is a sequence Sy, S1, Sa, . . .
of states” together with a sequence Cy, C;, Cs, ... of sets of instances of compo-
nents of R which satisfy the following constraints:

Recursive run constraint

B () is the singleton set Cy = {main}, i.e. every run starts with main,
B every C; is a finite set of instances of components of R which are Active
and not Waiting in state S,
B every 5,41 is obtained in one R-step by performing in S; simultaneously
one step of each i/o-algorithm in C;. Such an R-step is also called a
recursive step of R.
Bounded call tree branching. There is a fixed natural number m > 0, depend-
ing only on R, which in every R-run bounds the number of callees which can
be called by a call step.

Remark (on Call Trees). If in a recursive R-run the main algorithm calls
some i/o-algorithms, this call creates a finitely branched call tree whose nodes
are labeled by the instances of the i/o-algorithms involved, with active and not
waiting algorithms labeling the leaves and with the main (the parent) algorithm
labeling the root of the tree and becoming waiting. When the algorithm at a
leaf makes a call, this extends the tree correspondingly. When the algorithm at
a child of a node has terminated its computation, we delete the child from the
tree. The leaves of this (dynamic) call tree are labeled by the active not waiting
algorithms in the run. When the main algorithm terminates, the call tree is
reduced again to the root labeled by the initially called main algorithm.

Usually, it is expected that for recursive R-runs each called i/o-algorithm
reaches a final state, but in general it is not excluded that this is not the case.

In [5] the reader can find a definition of recursive ASMs together with a proof
that they capture (are equivalent to) recursive algorithms as characterized by
the Recursion Postulate. Here we use the postulate as a basis for the proof that
recursive algorithms are captured by ‘distributed ASMs with partial-order runs’,
as defined in [8].

" For the sake of simplicity we take a state as union of the states of the component
instances in the run, in other words as state over the union of the individual signa-
tures.

A Characterization of Distributed ASMs with Partial-Order Runs 83

3 Recursive ASMs Are Distributed ASMs
with Partial-Order Runs

Syntactically, a multi-agent (also called concurrent) algorithm C is defined as a
family of algorithms alg(a), each associated with (‘indexed by’) an agent a €
Agent that executes the algorithm in a run. Each (a, alg(a)) resp. alg(a) is
called a component resp. (component) program of C. This applies to distributed
ASMs [8] as well as to recursive or concurrent algorithms and ASMs [4,5].

To investigate the simulation of recursive runs by partial-order runs of dis-
tributed ASMs (Sect. 3.4) we must explain what are finitely composed concurrent
(Gurevich’s ‘distributed’) algorithms (Sect.3.1) and partial-order resp. concur-
rent runs (Sect. 3.2 resp. 3.3).

3.1 Finitely Composed Concurrent Algorithms

For recursive algorithms various restrictions on the syntactical definition of
multi-agent algorithms have to be made most of which appear also for distributed
ASMs in [8, Sect. 6].

First of all, although the components alg(a) of concurrent algorithms are
not necessarily sequential algorithms, to simulate specific concurrent algorithms
by recursive ones, which are defined as families of nd-seq algorithms, we must
restrict our attention to concurrent algorithms with sequential (though possibly
non-deterministic) components.®

Second, for distributed ASMs it is stipulated in [8, p. 31] that the agents are
equipped with instances of programs which are taken from ‘a finite indexed set of
single-agent programs’. This leads to what we call finitely composed concurrent
algorithms or ASMs C where the components can only be copies (read: instances)
of finitely many different nd-seq algorithms or ASMs, which we will call the
program base of C.

Third, for distributed ASMs it is stipulated in [8, 6.2, p. 31] that in ini-
tial states there are only finitely many agents, each equipped with a program.
We reflect this by the (simplifying but equivalent) condition that the runs of a
finitely composed concurrent algorithm or ASM must be started by executing a
distinguished main component.

Fourth, for distributed ASMs it is stipulated in [8, p. 32] that ‘An agent a
can make a move at S by firing Prog(a) ... and change S accordingly. As part of
the move, a may create new agents’, which then may contribute by their moves
to the run in which they were created. For this purpose we use the new function.

We summarize these constraints for distributed ASMs by the notion of finitely
composed concurrent algorithms (read: concurrent ASMs).

Definition 3.1. A concurrent algorithm C is finitely composed iff (i)—(iii) hold:

8 In fact it is shown in [5] that permitting the unbounded forall and choose constructs
results in algorithms far more powerful than the recursive ones.

84 E. Borger and K.-D. Schewe

(i) There exists a finite set B of nd-seq algorithms such that each C-program
is of form amb « in r for some program r € B—call B the program base
of C.

(ii) There exists a distinguished agent ag which is the only one Active in any
initial state. Formally this means that in every initial state of a C-run,
Agent = {ag} holds. We denote by main the component in B of which
ap executes an instance. For partial-order runs of C defined below this
implies that they start with a minimal move which consists in executing
the program asm(ag) = amb ag in main.

(iii) Each program in B may contain rules of form let ¢ = new (Agent) in r.
Together with (ii) this implies that every agent, except the distinguished
ag, before making a move in a run must have been created in the run.

C is called finite iff Agent is finite.

3.2 Partial-Order Runs

In [8] Gurevich defined (for distributed algorithms) the notion of partial-order
run by a partial order on the set of single moves of the agents which execute the
component algorithms. For a nd-seq algorithm A, to make one move means to
perform one step in a state S.

Definition 3.2. Let ¢ = {(a,alg(a))}acagent be a concurrent algorithm, in
which each alg(a) is an nd-seq algorithm. A partial-order run for C is defined by
a set M of moves of instances of the algorithms alg(a) (a € Agent), a function
ag : M — Agent assigning to each move the agent performing the move, a
partial order < on M, and an initial segment function o such that the following
conditions are satisfied:

finite history. For each move m € M its history {m’ | m’ < m} is finite.

sequentiality of agents. The moves of each agent are ordered, i.e. for any two
moves m and m’ of one agent ag(m) = ag(m') we either have m < m’ or
m' < m.

coherence. For each finite initial segment M’ C M (i.e. such that for m € M’
and m’ < m we also have m’ € M’) there exists a state o(M’) over the
combined signatures of the algorithms (a, alg(a)) such that for each maximum
element m € M’ the state o(M’) is the result of applying m to o(M’' —{m}).

3.3 Concurrent Runs

In a concurrent run as defined in [4], multiple agents with different clocks may
contribute by their single moves to define the successor state of a state. Therefore,
when a successor state S;41 of a state S; is obtained by applying to S; multiple
update sets U, with agents a in a finite set Agent; C Agent, each U, is required
to have been computed by a € Agent; in a preceding state S, i.e. with j < 4. It
is possible that j < ¢ holds so that for different agents different alg(a)-execution
speeds (and purely local subruns to compute U,) can be taken into account.

A Characterization of Distributed ASMs with Partial-Order Runs 85

This can be considered as resulting from a separation of a step of an nd-seq
algorithm alg(a) into a read step—which reads location values in a state S;—
followed by a write step which applies the update set U, computed on the basis
of the values read in §; to a later state S; (i > j). We say that a contributes to
updating the state S; to its successor state S; 41, and that a move starts in S; and
contributes to updating S; (i.e. it finishes in S;;1). This is formally expressed
by the following definition of concurrent ASMs and their runs.

Definition 3.3. Let C be a concurrent algorithm of component algorithms
pgm(a) (read: ASM rules) with associated agents a € Agent. A concurrent run of
C is defined as a sequence Sy, S, . .. of states together with a sequence Ag, Ay, ...
of finite subsets of Agent, such that Sy is an initial state and each S; 1 is obtained
from S; by applying to it the updates computed by the agents in A;, where each
a € A; computes its update set U, on the basis of the location values (including
the input and shared locations) read in some preceding state S; (i.e. with j < 7)
depending on a.

Remark. In this definition we deliberately permit the set of Agents to be infi-
nite or dynamic and potentially infinite, growing or shrinking in a run. In Defi-
nition 3.2 above, the set of Agents is fixed by the set M of moves.

3.4 Simulation of Recursive by Partial-Order Runs

We are now ready to specify recursive algorithms by distributed ASMs, following
the thought proposed in [1]. For the sake of precision and simplicity we formulate
the construction in terms of ASMs; due to the characterization theorems in [5]
and [4] this implies no loss of generality.

Theorem 3.1. Every recursive ASM R can be simulated by a finitely composed
concurrent ASM Cr with nd-seq ASM components for which every concurrent
run of Cr is definable by a partial-order run.

Proof. Let R be a recursive ASM given with distinguished program main. We
define a finitely composed concurrent ASM Cr with program base {r* | r € R},
where r* is defined as

r* = if Active(r) and not Waiting(r) then r.

In doing so, for each call rule r =ty < N(t,...,t,) in R we use for its transla-
tion the following ASM CALL(#y < N(t1,...,t,)), which rigorously defines the
behavioral interpretation of the call rule r (for details see [5]):

Definition 3.4. CALL(fg « N(t1,...,t,)) =
let N(z1,...,2,) = q // declaration of N

let vy = t1,...,v, = ¢, // input evaluation valg(;, self) by caller
let ty = f(],...,)
let v =t{,..., v, =t

let ¢ = new (Agent)

86 E. Borger and K.-D. Schewe

pgm(c) :=amb c in ¢ // equip callee with its program instance
INSERT (¢, Called By(self))

INITIALIZE(qe, U1 /%15« -, U /2, f (01, .., 0L) /[T0)

CalledBy(c) :== 0

Note that the call is a call-by-value and that (f,(v{,...,v;)) denotes the
output location whose value the caller expects to be updated by the callee with
the return value.

By definition, 7* can only contribute a non-empty update set to form a state
Si+1 in a concurrent run, if r is Active and not Waiting; this reflects that by the
recursive run postulate, in every step of a recursive run of R only Active and
not Waiting rules are executed.

The definition of r* obviously guarantees that Cx simulates R step by step:
in each run step the same Active and not Waiting rules r respectively r* and
their agents are selected for their simultaneous execution and their rules perform
the same state change.

Note that by Definition 3.4 of CALL(4/0-rule), each agent operates in its own
state space so that the view of an agent’s step as read-step followed by a write-
step is equivalent to the atomic view of this step. Note also that in a concurrent
run of Cr the Agent set is dynamic, in fact it grows with each execution of a call
rule, together with the number of instances of R-components executed during a
recursive run of R.

It remains to define every concurrent run (Sp, 4g), (S1, A1),... of Cr by a
partial-order run. For this we define an order on the set M of moves made during
a concurrent run, showing that it satisfies the constraints on finite history and
the sequentiality of agents, and then relate each state S; of the run to the state
computed by the set M; of moves performed to compute S; (from Sp), showing
that M; is a finite initial segment of M and that the associated state o(M;)
equals S; and satisfies the coherence condition.

Each successor state S;41 in a concurrent run of Cr is the result of applying to
S; the write steps of finitely many moves of agents in A;. This defines the function
ag, which associates agents with moves, and the finite set M; of all moves finished
in a state belonging to the initial run segment [Sp, ..., S;]. Let M = U;M;. The
partial order < on M is defined by m < m’ iff move m contributes to update
some state S; (read: finishes in §;) and move m’ starts reading in a later state
S; with 4 + 1 < j. Thus, by definition, M; is an initial segment of M.

To prove the finite history condition, consider any m’ € M and let S; be
the state in which it is started. There are only finitely many earlier states
S0, ..,8j-1, and in each of them only finitely many moves m can be finished,
contributing to update S;_; or an earlier state.

The condition on the sequentiality of the agents follows directly from the
definition of the order relation < and from the fact that in a concurrent run,
for every move m = (read,,, write,,) executed by an agent, this agent performs
no other move between the read,,-step and the corresponding write,,-step in
the run.

A Characterization of Distributed ASMs with Partial-Order Runs 87

This leaves us to define the function o for finite initial segments M’ C M and
to show the coherence property. We define o(M’) as result of the application of
the moves in M’ in any total order extending the partial order <. For the initial
state Sy we have o()) = Sp. This implies the definability claim S; = o(M;).

The definition of ¢ is consistent for the following reason. Whenever two moves
m # m’ are incomparable, then either they both start in the same state or say
m starts earlier than m’. But m’ also starts earlier than m finishes. This is only
possible for agents ag(m) = a and ag(m’) = a’ whose programs pgm(a), pgm(a’)
are not in an ancestor relationship in the call tree. Therefore these programs have
disjoint signatures, so that the moves m and m’ could be applied in any order
with the same resulting state change.

To prove the coherence property let M’ be a finite initial segment, and let
M" = M'\M],,, where M .. is the set of all maximal elements of M'. Then
o(M') is the result of applying simultaneously all moves m € M/ .. to o(M"),
and the order in which the maximum moves are applied is irrelevant. This implies
in particular the desired coherence property. a

The key argument in the proof exploits the Recursion Postulate whereby
for recursive runs of R, the runs of different agents are initiated by calls and
concern different state spaces with pairwise disjoint signatures, due to the func-
tion parameterization by agents, unless pgm(a’) is a child (or a descendant) of
pgm(a), in which case the relationship between the signatures is defined by the
call relationship. Independent moves can be guaranteed in full generality only
for algorithms with disjoint signatures.

4 Distributed ASMs with Partial-Order Runs Are
Recursive ASMs

While Theorem 3.1 is not surprising, we will now show its less obvious inverse.

Theorem 4.1. For each finitely composed concurrent ASM C with program base
{r; | i € I} of nd-seq ASMs such that all its concurrent runs are definable
by partial-order runs, one can construct a recursive ASM Re¢ such that each
concurrent run of C can be simulated by a recursive run of Re.”

Proof. Let a concurrent C-run (Sp, Ag), (S1, A1), ... be given. If it is definable by
a partial-order run (M, <, ag, pgm, o), the transition from S; = o(M;) to S; 41 is
performed in one concurrent step by parallel independent moves m € M; 1\ M;,
where M; is the set of moves which contributed to transform Sy into S;. Let
m € M; 1\ M; be a move performed by an agent a = ag(m) with rule pgm(a) =
amb ¢ in r, an instance of a rule r in the program base of C. To execute the
concurrent step by means of steps of a recursive ASM R¢, we simulate each

 One obtains even the behavioral equivalence via an inverse simulation of every recur-
sive Re¢-run by a concurrent C-run if the delegates of C-agents, called in the recursive
run to perform the step of their caller in the concurrent run, act in an ‘eager’ way.
See the remark at the end of the proof.

88 E. Borger and K.-D. Schewe

of its moves m by letting agent a act in the Re-run as caller of a named rule
out, — ONESTEP,.(in,). The callee agent ¢ acts as delegate for one step of a: it
executes amb a € r and makes its program immediately Terminated.

To achieve this, we refine the CALL machine defined in Definition 3.4 such
that upon calling out, «— ONESTEP,(in,), the delegate ¢ created by the call
becomes Active so that it can make a step to execute amb ¢ in ONESTEP,..
It suffices to add to the component INITIALIZE the update Terminated(amb
¢ in q) := false, which makes ¢ Active. ONESTEP,. is defined to perform amb
caller(c) in r and to terminate immediately (by setting Terminated to true). For
ease of exposition we add to Definition 3.4 also the update caller(c) :=self, to
distinguish agents in the concurrent run—the callers of ONESTEP,-machines—
from the delegates each of which simulates one step of its caller and immediately
terminates its life cycle.

It remains to determine the input and output for calling ONESTEP,.. For
the input we exploit the existence of a bounded exploration witness W, for r.
All updates produced in a single step are determined by the values of W, in
the state, in which the call is launched. So W,. defines the input terms of the
called rule ONESTEP,., combined in in,.. Analogously, a single step of r provides
updates to finitely many locations that are determined by terms appearing in
the rule, which defines out,.

We summarize the explanations by the following definition:

Re = {out, «— ONESTEP,(in.) | r € program base of C}

ONESTEP, =
amb caller(self) in r // the delegate executes the step of its caller
Terminated (pgm(self)) := true // ... and immediates stops

Note that by the refined Definition 3.4, out, « ONESTEP,(in,) triggers the
execution of the delegate program amb ¢ in ONESTEP,. Let a = caller(c). By
definition, amb ¢ in ONESTEP,. triggers amb ¢ in amb a in r. Furthermore,
since the innermost ambient binding counts, this machine is equivalent to the
simulated machine amb a in r, as was to be shown.

Thus the recursive Re-run which simulates (Sp, Ao), (51, 41), ... starts by
Definition 3.1 in Sy with program amb ag in in,4in < ONESTEP 4in (0Utmain)-
For the sake of notational simplicity we disregard the auxiliary locations of Re¢.
Let

A, ={ay,...,a,} C Agent for some i; and k depending on %
where forall 1 <j <k
ai;, = ag(my;) € M; 1\ M; and pgm(a;;) = amb a;; in 7y,

We use the same agents a;; for A; in the Re-run, but with program out,, «
ONESTEPTI (iny,). Their step in the recursive run leads to a state .S where all
callers a;; are Waztmg and the newly created delegates c;; are Actwe and not
Waiting. So we can choose them for the set A’ of agents which perform the next
R¢ step, whereby

A Characterization of Distributed ASMs with Partial-Order Runs 89

B all rules 7y, are performed simultaneously (as in the given concurrent run
step), in the ambient of caller(c;;) = a; thus leading as desired to the state
Si-‘rla

B the delegates make their program Terminated, whereby their callers a;
become again not Waiting and thereby ready to take part in the next step
of the concurrent run. We assume for this that whenever in the C-run (not in
the R¢ run) a new agent a is created, it is made not Waiting (by initializing
CalledBy(a) := ().

O

Remark. Consider an Re-run where each recursive step of the concurrent caller
agents in A;, which call each some ONESTEP program, alternates with a recursive
step of all—the just called—delegates whose program is not yet Terminated.
Then this run is equivalent to a corresponding concurrent C-run.

Note that Theorem 4.1 heavily depends on the prerequisite that C only has
partial-order runs.'® With general concurrent runs as defined in [4] the construc-
tion would not be possible.

4.1 Partial Order Runs of Petri Nets

The semantics of Petri nets actually defines a rather special case of partial-order
runs, namely runs one can describe even by a nd-seq ASM, as we show in this
section.

A Petri net comes with a finite number of transition rules, each of which
can be described by a nd-seq ASM (see [6, p. 297]). The special character of
the computational Petri net model is due to the fact that during the runs, only
exactly these rules are used. In other words there is a fixed association of each
rule with an executing agent; there is no rule instantiation with new agents which
could be created during a run. Therefore the states are the global markings of
the net. The functions o(I) associated with the po-runs of the net yield for every
finite initial segment I as value the global marking obtained by firing the rules
in 1.

For this particular kind of concurrent ASMs with partial-order runs one can
define the concurrent runs by nd-seq ASMs, as we are going to show in this
section.

Theorem 4.2. For each finite concurrent ASM C = {(a;, ;) | 1 < i < n} with
nd-seq ASMs r; such that all its concurrent runs are definable by partial-order
runs one can construct a nd-seq ASM Mec such that the concurrent runs of C
and the runs of Mc are equivalent.

10 The other prerequisites in Theorem 4.1 appear to be rather natural. Unbounded runs
can only result, if in a single step arbitrarily many new agents are created. Also,
infinitely many different rules associated with the agents are only possible, if new
agents are created and added during a concurrent run. Though this is captured in
the general theory of concurrency in [4], it was not intended in Gurevich’s definition
of partial-order runs.

90 E. Borger and K.-D. Schewe

Corollary 4.1. Partial-order Petri net runs can be simulated by runs of a non-
deterministic sequential ASM.*!

Proof. We relate the states S; of a given concurrent run of C to the states o(M;)
associated with initial segments M; of a given corresponding partial order run
(M, <, ag, pgm, o), where each step leading from S; to S;11 consists of pairwise
incomparable moves in M;11\M;. We call such a sequence Sp, S1, ... of states a
linearised run of C. For ¢ > 0 the initial segments M; are non empty.

The linearized runs of C can be characterized as runs of a nd-seq ASM Mg:
in each step this machine chooses one of finitely many non-empty subsets of rules
in C to execute them in parallel. Formally:

M = choose ALLRULESOF(I;) | - -+ | ALLRULESOF(Z,,)
where
ALLRULESOF({i1,...,0}) =
’I“Z‘1
T,
{h,....,I,} ={I"#0 | I' C I} // the non-empty subsets of T
n =21 -1
To complete the proof it suffices to show the following lemma. O

Lemma 4.1. The linearised runs of C are exactly the runs of M.

Proof. To show that each run Sy, S,... of Me is a linearised run of C we pro-
ceed by induction to construct the partial-order run (M, <) with its finite initial
segments M;. For the initial state Sy = o () there is nothing to show, so let S;11
result from S; by applying an update set produced by ALLRULESOF(J) for some
non-empty J C I. By induction we have S; = o(M;) for some initial segment of
a partial-order run (M, <). As ALLRULESOF(/J) is a parallel composition, S;41
results from applying the union of update sets 4A; € Anj forj =1,...,|J] to
S;. Each A; defines a move m;, of some ag(m;) = a;;, move which finishes in
state S;. We now have two cases:

(i) The moves m;, with j € J are pairwise independent, i.e. their application
in any order produces the same new state. Then (M, <) can be extended
with these moves such that M; 1 = M; U{m, | j € J} becomes an initial
segment and S;11 = o(M;) holds.

(ii) If the moves m; with j € J are not pairwise independent, the union of
the corresponding update sets is inconsistent, hence the run terminates in
state S;.

' We thank Wolf Zimmermann for pointing out that the argument applies more gen-
erally to Mayr’s Process Rewrite Systems [12]. They have been used in [11] to verify
protocols for services which may rise exceptions.

A Characterization of Distributed ASMs with Partial-Order Runs 91

To show the converse we proceed analogously. If we have S; = o(M;) for all
i > 1, then S;41 results from S; by applying in parallel all moves in M; 11 — M;.
Applying a move m means to apply an update set produced by some rule r; € C
(namely the rule pgm(ag(m))) in state S;, and applying several update sets in
parallel means to apply their union A, which then must be consistent. So we
have S;11 = S; + A with A = UjeJ A;, for some J, where each A, is an update
set produced by r;, i.e. A is an update set produced by ALLRULESOF(J), which
implies that the linearised run Sy, S1,... is a run of Mc. O

For the corollary it suffices to note that each Petri net transition can be
described by a nd-seq ASM (see [6, p. 297]). The functions o(I) associated with
the po-runs yield the global marking obtained by firing the rules in I.

5 Conclusions

While Gurevich’s Sequential ASM Thesis [9] provides an elegant and satisfactory
mathematical definition of the notion of sequential algorithm plus a proof that
sequential algorithms are captured by sequential ASMs, this theory does not
capture recursive algorithms. It lacks an appropriate call concept. In fact, in an
attempt to solve this problem Blass and Gurevich in [1] invoked the notion of
partial-order runs of ‘distributed ASMs’, which has been proposed in [8] as a
concurrency concept for ASMs. We showed in this paper that these ‘distributed
ASMs’ are finitely composed ASMs whose partial-order runs characterize (are
equivalent to) recursive runs. Thus, partial-order runs of distributed ASMs do
not capture the concept of concurrent algorithms (but see [4]).

References

1. Blass, A., Gurevich, Y.: Algorithms vs. machines. Bull. EATCS 77, 96-119 (2002)

2. Borger, E., Bolognesi, T.: Remarks on turbo ASMs for functional equations and
recursion schemes. In: Borger, E., Gargantini, A., Riccobene, E. (eds.) ASM 2003.
LNCS, vol. 2589, pp. 218-228. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36498-6-12

3. Borger, E., Raschke, A.: Modeling Companion for Software Practitioners. Springer,
Heidelberg (2018). https://doi.org/10.1007/978-3-662-56641-1

4. Borger, E., Schewe, K.-D.: Concurrent abstract state machines. Acta Inform. 53(5),
469-492 (2016). https://doi.org/10.1007/s00236-015-0249-7

5. Borger, E., Schewe, K.-D.: A behavioural theory of recursive algorithms (2020).
http://arxiv.org/abs/2001.01862

6. Borger, E., Stark, R.F.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
642-18216-7

7. Gurevich, Y.: A new thesis. In: Abstracts, vol. 6, no. 4, p. 317. American Mathe-
matical Society (1985)

8. Gurevich, Y.: Evolving algebras 1993: lipari guide. In: Borger, E. (ed.) Specification
and Validation Methods, pp. 9-36. Oxford University Press (1995)

https://doi.org/10.1007/3-540-36498-6_12
https://doi.org/10.1007/3-540-36498-6_12
https://doi.org/10.1007/978-3-662-56641-1
https://doi.org/10.1007/s00236-015-0249-7
http://arxiv.org/abs/2001.01862
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-642-18216-7

92

10.

11.

12.
13.

E. Borger and K.-D. Schewe

Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms.
ACM Trans. Comput. Logic 1(1), 77-111 (2000)

Gurevich, Y., Spielmann, M.: Recursive abstract state machines. J. UCS 3(4),
233-246 (1997)

Heike, C., Zimmermann, W., Both, A.: On expanding protocol conformance check-
ing to exception handling. SOCA 8(4), 299-322 (2013). https://doi.org/10.1007/
s11761-013-0146-2

Mayr, R.: Process rewrite systems. Inf. Comput. 156, 264-286 (1999)
Moschovakis, Y.N.: What is an algorithm? In: Engquist, B., Schmid, W. (eds.)
Mathematics Unlimited - 2001 and Beyond, pp. 919-936. Springer, Heidelberg
(2001). https://doi.org/10.1007/978-3-642-56478-9_46

https://doi.org/10.1007/s11761-013-0146-2
https://doi.org/10.1007/s11761-013-0146-2
https://doi.org/10.1007/978-3-642-56478-9_46

®

Check for
updates

A Logic for Reflective ASMs

Klaus-Dieter Schewe! and Flavio Ferrarotti2(®)
! Zhejiang University, UTUC Institute, Haining, China
kd.schewe@intl.zju.edu.cn, kdschewe@acm.org
2 Software Competence Center Hagenberg, Hagenberg, Austria
flavio.ferrarotti@scch.at

Abstract. Reflective algorithms are algorithms that can modify their
own behaviour. Recently a behavioural theory of reflective algorithms has
been developed, which shows that they are captured by reflective abstract
state machines (rASMs). Reflective ASMs exploit extended states that
include an updatable representation of the ASM signature and rules to
be executed by the machine in that state. Updates to the representation
of ASM signatures and rules are realised by means of a sophisticated tree
algebra defined in the background of the rASM. In this paper the theory
is taken further by an extension of the logic of ASMs to capture inferences
on rASMs. The key is the introduction of terms that are interpreted
by ASM rules stored in some location. We show that fragments of the
logic with a fixed bound on the number of steps preserve completeness,
whereas the full run-logic for rASMs becomes incomplete.

Keywords: Abstract state machine * Reflection - Logic + Tree algebra

1 Introduction

Reflection refers to the ability of an algorithm or program to modify its own
behaviour. The concept is as old as computer science; it already appears in
LISP [16], where programs and data are both represented uniformly as lists.
General run-time and compile-time linguistic reflection in programming and
database research have been investigated in general by Stemple, Van den Bussche
and others in [18,19]. Recently, adaptivity and thus reflection has become a key
aspect of (cyber-physical) systems [7]. Nonetheless, it is still not well understood
and contains great challenges and risks. As it is hard to oversee how a system
behaves after many adaptations, any uncontrolled application of reflection bears
the risk of unpredictable and undesired outcomes. Thus, the challenge for rigor-
ous methods is to enable static reasoning and verification of desired properties
of reflective algorithms and systems, which requires to control an unbounded
family of specifications.

The research reported in this paper has been partly funded by BMVIT, BMDW, and
the Province of Upper Austria in the frame of the COMET Programme managed by
FFG.

© Springer Nature Switzerland AG 2020

A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 93-106, 2020.
https://doi.org/10.1007 /978-3-030-48077-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-48077-6_7

94 K.-D. Schewe and F. Ferrarotti

Concerning the foundations of reflection we developed a behavioural the-
ory of reflective sequential algorithms (RSAs) in [12] (see arXiv version in [9]),
which extends and cleanses our previous sketch in [2]. The theory provides
an axiomatic, language-independent definition of RSAs, defines an extension
of sequential ASMs to reflective sequential ASMs (rsASMs), by means of which
RSAs can be specified, and provides a proof that RSAs are captured by rsASMs.
That is, rsASMs satisfy the postulates of the axiomatisation, and any RSA as
stipulated by the axiomatisation can be defined by a behaviourally equivalent
rsASM. The notion of behavioural equivalence is slightly weaker than the cor-
responding notion for sequential or parallel algorithms, as there is no need to
require that changes to the represented algorithm are exactly the same, as long
as the application of the algorithm to the core part of the structure yields the
same results.

In [13] we sketched how to generalise the theory to reflective parallel algo-
rithms [11], which requires an integration of the behavioural theory of syn-
chronous parallel algorithms [3]. Leaving this general aspect aside the gener-
alisation of just the reflective sequential ASMs to reflective ASMs is rather
straightforward. For deterministic ASMs this was done in [10]. In a nutshell,
in each step of a reflective ASM (rASM) the rule is taken from a dedicated loca-
tion self, which uses a tree structure to represent the signature and rule, and a
sophisticated tree algebra to manipulate tree values [14]. We also exploit partial
updates in the form of [15] to minimise clashes that may otherwise result from
simultaneously updating self by several parallel branches.

In this paper we address the fundamental question how desired properties of
a reflective algorithm can be verified. As rASMs capture reflective algorithms,
this requires extending the logic of ASMs [4,5,17]. We observe that in these
logics the rules defining an ASM only enter as extra-logical constants r that are
expanded in atomic formulae [r]e (the application of r to the current state leads
to a state satisfying the formula ¢), upd(r, X) (the rule r yields an update set
X in the current state), and upm(r, X) (the rule r yields an update multiset X
in the current state). In an rASM, however, the rule to be applied in the current
state is stored itself in the state in a sublocation of a location self. We therefore
explore the idea to treat r in formulae as variables that are interpreted by a rule
stored in the current state. Furthermore, as reasoning about reflective algorithms
only makes sense for multiple steps, we also extend the one-step ASM logic to a
multiple-step logic. The precise definition of such a logic and the completeness
proof for a fragment of the logic are the key contributions of this paper.

In Sect. 2 we present rASMs as extensions of ASMs. Section 3 is dedicated to
the introduction of the logic of ASMs, which follows our previous work in [4].
The core of the paper is Sect. 4, where we formally develop the extension of the
logic dealing with reflection and investigate completeness. We conclude with a
brief summary and outlook in Sect. 5.

A Logic for Reflective ASMs 95

2 Reflective Abstract State Machines

We assume general familiarity with ASMs as defined in [1]. The extension to
reflective ASMs requires to define a background structure that covers trees and
operations on them, a dedicated variable self that takes as its value a tree
representation of an ASM signature and rule, and the extension of rules by partial
updates. Due to space limitations our presentation must be terse—nevertheless
the details are given in [9,10,12]. Note that the omitted details include the
sophisticated tree algebra defined for the representation of rules and the access
to them. We use some of its operators, but they can be correctly understood
from the context.

Let X be an ASM signature, i.e. a set of function symbols. Partial assign-
ments are defined as follows: Whenever f € X' has arity n and op is an operator
of arity m+ 1, ¢ (i = 1,...,n) and ¢, (i = 1,...,m) are terms over X, then
fltr, ... tn) &=°P t),...,t, is a rule. The informal meaning is that we evalu-
ate the terms as well as f(¢1,...,t,) in the current state S, then apply op to
valg(f(t1,...,tn)), valg(t)),...,valg(t,,) and assign the resulting value v to the
location (f, (valg(t1),...,valg(t,))). Conditions for compatibility and the col-
lapse of an update multiset into an update set have been elaborated in detail in
[15].

For the dedicated location storing the self-representation of an ASM it is
sufficient to use a single function symbol self of arity 0. Then in every state S the
value valg(self) is a complex tree comprising two subtrees for the representation
of the signature and the rule, respectively. That is, in the tree structure we have
a root node o labelled by self with exactly two successor nodes, say oy and o1,
labelled by signature and rule, respectively. So we have o <. 09, 09 <5 01 and
0 <. 01, where <. and < denote, respectively, the child and sibling relationships.
The subtree rooted at oy has as many children og, . .., 0gr as there are function
symbols in the signature, each labelled by func. Each of the subtrees rooted at
00; takes the form func(name(f)arity(n)) with a function name f and a natural
number n. The subtree rooted at o7 represents the rule of a sequential ASM as
a tree.

The inductive definition of trees representing rules is rather straightfor-
ward. For instance, an assignment rule f(t1,...,t,) := to is represented by a
tree of the form update(func(f)term(t; ...¢,)term(ty)), and a partial assign-
ment rule f(t1,...,t,) &° t},...,t,, is represented by a tree of the form
partial(func(f)func(op)term(t; ...t,)term(t] ...t)).

The background of an rASM is defined by a background class K over a back-
ground signature Vi . It must contain an infinite set reserve of reserve values
and an infinite set X, of reserve function symbols, the equality predicate, the
undefinedness value undef, and a set L of labels self, signature, rule, func,
name, arity, update, term, if, bool, par, let, partial. The background class
must further define truth values and their connectives, tuples and projection
operations on them, natural numbers and operations on them, trees in 77, and
tree operations, and the function I, where Iz.¢ denotes the unique z satisfying
condition ¢.

96 K.-D. Schewe and F. Ferrarotti

If B is a base set, then an extended base set is the smallest set B, containing
B that is closed under adding function symbols in the reserve X..,, natural
numbers, the terms T with respect to B and X, and terms of the tree algebra
defined over X,.s with labels in L as defined above. Furthermore, we use ’ﬁ‘em
to denote the union of the set T.,; of terms with X.,; and the set of rules.

The background must further provide functions: drop : ’ﬁ“ewt — Begt and
raise : Bege — Temt for each base set B and extended base set B.y:, and a
derived eatraction function B : Tezy — U,y T", which assigns to each term
defined over the extended signature X.,; and the extended base set Be,; a tuple
of terms in T defined over X and B.

A reflective ASM (rASM) M comprises an (initial) signature X' containing a
0-ary function symbol self, a background as defined above, and a set Z of initial
states over X' closed under isomorphisms such that any two states I, I € Z coin-
cide on self. Furthermore, M comprises a state transition function 7 on states
over extended signature X'g with 7(5) = S+ A, (5), where the rule rg is defined
as raise(rule(valg(self))) over the signature Xg = raise(signature(valg(self))).

In this definition we use extraction functions rule and signature defined on
the tree representation of a sequential ASM in self. These are simply defined
as signature(t) = subtree(Io.root(t) <. o A label(o) = signature) and rule(t) =
subtree(Io.root(t) <. o A label(o) = rule).

3 The Logic of Abstract State Machines

We now look briefly into a simplified version of the logic of non-deterministic
ASMs as defined in [4]. The simplification concerns the distinction between db-
terms and algorithmic terms that is necessary, if explicit meta-finite states are
considered. Here we just consider a single uniform signature X, so terms are
defined in the usual way. However, we have to keep in mind that rASMs have
a rich set of operators in their background that are used to build terms. Fur-
thermore, as we are dealing with non-determinism there is a need to consider
also p-terms of the form p,(t | ¢), where p is a multiset operator defined in
the background, ¢ is a formula, ¢ is a term, and v is a variable. A pure term is
defined as a term that does not contain any sub-term which is a p-term.

In order to define formulae inductively we extend the set of first-order vari-
ables with a countable set of second-order (relation) variables of arity r for each
r>1.

1. If s and t are terms, then s =t is a formula.

2. If t1,...,t,. are terms and X is a second-order variable of arity r, then
X(t1,...,t,) is a formula.

3. If r is a rule and X is a second-order variable of arity 3, then upd(r, X) is a
formula.))

4. If r is a rule and X is a second-order variable of arity 4, then upm(r, X) is a
formula.

5. If ¢ and v are formulae and z is a first-order variable, then —p, ¢ V ¢ and
Va(p) are formulae.

A Logic for Reflective ASMs 97

6. If ¢ is a formula and X is a second-order variable, then VX () is a formula.
7. If p is a formula and X is a second-order variable of arity 3, then [X]¢ is a
formula.

Note that we use second-order variables of arity 3 and 4 to capture update
sets and update multisets, respectively.

The semantics of the logic is defined by Henkin structures. A Henkin pre-
structure S is a state of signature X with base set B extended with a new universe
D,, of n-ary relations for each n > 1, where D,, C P(B").

Variable assignments ¢ into a Henkin prestructure S are defined as usual:
¢(x) € B for each first-order variable x, and {(X) € D,, for each second-order
variable X of arity n.

Then the interpretation of a term in a Henkin prestructure S with a variable
assignment ¢ is defined as usual; for p-terms ¢t = p,(t’' | ¢) we have valg (t) =
p({{valS,C[vHai](t/) ‘ a; € B and [[@]]S,C['m—»ai] = true}).

We extend this interpretation to formulae. For a second-order variable X of
arity 3 we abuse the notation by writing valg ¢(X) € A(r, S, () meaning that
there is a set U € A(r, S, {) such that (f,ag,a1) € U iff (C?,(Lo,al) € valg ¢ (X).

Analogously, for a second-order variable X of arity 4 we write valg ¢ (X) €
A(r, S, ¢) meaning that there is a multiset Ue A(r, S, ¢) such that (f,ag,a1) € U
with multiplicity n iff there are exactly by, ..., b, pairwise different values such
that (c}q,ao,al,bi) € valg,¢(X) for every 1 < i < n. If ¢ is a formula, then its
truth value on S under ¢ (denoted as [¢]s,¢) is defined by the following rules:

t if = wval
— If ¢ is of the form s = ¢, then [¢]s,c = el WZSF(S) ve S’C(t).
’ false otherwise
— If ¢ is of the form X (¢4,...,t,), then

true if (valgc(t1),...,valsc(ty)) € vals ¢ (X)
[els.c =) .
false otherwise

— If ¢ is of the form upd(r, X), then

true if valg (X) € A(r, S, ()
[els.c =)
false otherwise

— If ¢ is of the form upm(r, X), then

true if valsyg()'(") € A(T, S,¢)
[els.c =)
false otherwise

t if — fal
— If ¢ is of the form —), then [[SOHS,C _ { rue 1 [[1/1}]5@ fa se.

false otherwise

98 K.-D. Schewe and F. Ferrarotti

If ¢ is of the form a Vv, then

true if [a]sc = trueor [¢]s,c = true
[elsc = . :
false otherwise

If o is of the form Vz(1)), then

true if [Y]s c[zsa) = true for alla € B
[els.c =) .
false otherwise

— If v is of the form VX (¢)), where X is a second-order variable of arity n, then

true if [¢]s ¢ x—r) = truefor allR € D,
[els.c =) .
false otherwise

— If ¢ is of the form ([X]t), then

false if {(X)represents an update set U
lelsc = such that U is consistent and [¢]stv,¢c = false .

true otherwise

For a sentence ¢ to be valid in the given Henkin semantics, it must be true
in all Henkin prestructures. This is a stronger requirement than saying that ¢
is valid in the standard Tarski semantics. A sentence that is valid in Tarski
semantics is true in those Henkin prestructures, for which each universe D,, is
the set of all relations of arity n.

The universes D,, of the Henkin prestructures should not be arbitrary collec-
tions of n-ary relations. Thus, it is reasonable to restrict our attention to some
collections of n-ary relations that we can define, i.e. we restrict our attention to
Henkin structures.

A Henkin structure is a Henkin prestructure S that is closed under definabil-
ity, i.e. for every formula ¢, variable assignment ¢ and arity n > 1, we have that
{ae A | [[‘P]]S,{[alel,...,an,Hxn] = true} € Dy,

The main result in [4] states that the logic for ASMs defined here is complete
with respect to Henkin semantics.

4 Reasoning About Reflection

Let us now investigate the extension of the logic above to handle reflection. The
main difference of rASMs to ordinary ASMs is that in each step a different rule
r is applied, and this rule is part of the current state. In the one-step logic of
ASMs described in the previous section a rule is treated as a fixed extra-logical
constant appearing only in formulae of the form upd(r, X) and upm(r, X), and
the meaning of these formulae depends on the actual rule r.

A Logic for Reflective ASMs 99

4.1 Extension of the Logic of ASMs

In an rASM walg(self) is a tree value t and rule(t) (defined at the end of
Sect. 2) is the subtree representing the actual rule of the rASM in state S. Then
raise(rule(valg(self))) is the rule rg of the rASM in state S, or phrased differ-
ently, we obtain this rule by interpretation of the term

therule = raise(subtree(Io.root(self) <. o A label(o) = rule).

That is, the only extension to the logic required to capture reflection is the
treatment of the first argument of upd(r, X) and upm(r, X) as a term that is
then evaluated in the state S. If the result is not a rule, these formulae remain
undefined.

However, for a single machine step this extension is rather irrelevant, as in an
rASM the main rule does not change within a single step. Thus, we have to take
multiple steps into account. For these we introduce two additional predicates
r-upd and r-upm with the following informal meaning:

— r-upd(n, X') means that n steps of the reflective ASM yield the update set X,
where in each step the actual value of self is used.

— r-upm(n, X') means that n steps of the reflective ASM yield the update mul-
tiset X.

To be more precise, X and X in predicates r-upd(n, X) and r-upd(n, X) are the
union of the n update sets and n updates multisets, respectively, yielded by the
reflective ASM in n steps.

Clearly, we have r-upd(l,X) <« upd(therule, X), and analogously,
r-upm(1, X) < upm(therule, X). For the generalisation to arbitrary values of
n we exploit the definition of upd(r, X) and upm(r,X) for sequence rules to
inductively define axioms for r-upd and r-upm. We further need the definition
of consistent update sets in the logic:

conUSet(X) = /\ nyz((X(cf, z,y) AN X (cp,2,2)) =y = z)

Cfefdyn

for the set Fgy, of constants representing the dynamic function symbols in .
Then we can use con(r, X) to expresses that X represents one of the possible
update sets generated by a rule r and that X is consistent:

con(r, X) = upd(r, X) A conUSet(X).
We further define

r-upd(n+1,X) < (r-upd(1, X) A ~conUSet(X))V
(3Y1Ya(r-upd(1, Y1) A conUSet(Y7) A [Yi]r-upd(n, Y2)A

/\ Va:y(X(cf,x,y) - ((H(Cﬁxvy) A vz(_'YQ(Cfvx’ Z))) \ YQ(Cf7I7y)))))

cr€Fdayn

100 K.-D. Schewe and F. Ferrarotti

as well as

upm(n + 1, X) < (r—upm(l,X)/\
VX(/\ Va:lxg(X(cf,xl,xg)<—>E|X3(X(cf,x1,x2,x;),)))/\

cr€Fayn

—m;onUSet(X))) vV (EIYlYQ (r—upm(l, Yl)/\

VY1< N\ Varwa(Yi(ep, w1, w2) < Fxa(Vi(cr, a1, w2, %3)))A

cr€EFayn

conUSet(Y7) A [Y1]r-upm(n, Yg)) A
/\ Vayxoxs (X (cf, 1,22, x3) < (Va(cp, 1,22, %3)V
cr€EFayn

(Yi(cp, w1, 29,%3) A Vy2Y3(ﬁY2(Cf,$17y27}’3))))))-

4.2 Completeness

Let E((fs)m denote the logic of rASMs resulting from these extensions using
therule and predicates r-upd(n, X) and r-upm(n, X) for arbitrary n. Let L],
denote the further extended logic of rASMs, in which in addition quantification
”
asm

over n is permitted. Let us call E((;;)m the multi-step logic of rASMs, and L
the run logic of rASMs.

Even without updating the rule in every step it is obvious that the run logic
L., subsumes a full dynamic logic over runs of ASMs. As such it is impossible
to achieve completeness.

T
asm

Theorem 1. The run logic L of TASMs is incomplete.

Concerning the multi-step logic L:((fs)m of rASMs the situation is not so obvi-
ous. We may continue a sublogic L&Zl}) using a fixed value of n and formulae of
the form r-upd(m, X) and r-upm(m, X) with fixed m < n. For such a sublogic we
can extend the completeness result of the logic of ASMs using similar arguments.

Theorem 2. For each n € N the bounded fraction E((IZ}T,LL) of the multi-step logic
E((;,;)m of rASMs is complete.

The remaining part of this section is dedicated to prove this key result.

First note that every subformulae of the form r-upd(m, X) and of the form
r-upm(m, X) that occurs in a L5 -formulae can be replaced by their corre-
sponding definitions above. This is possible, because we have only bounded finite
values for m = 1...n to consider.

Thus, the axioms and rules of the derivation system remain the same as for
the logic of ASMs [4,5]. Starting point is the natural formalism Lo as defined
in [6] for the relational variant of second-order logic on which the logic is based.

A Logic for Reflective ASMs 101

L5 uses the usual axioms and rules for first-order logic, with quantifier rules
applying to second-order variables as well as first-order variables, and with the
stipulation that the range of the second-order variables includes at least all the
relations definable by the formulae of the language. A deductive calculus for Lo
is obtained by augmenting the axioms and inference rules of first-order logic as
follows:

AXVuy, ..., (X (v1,...,05) < @), where k > 1, vy,..., v are first-order
variables, and X is a k-ary second-order variable that does not occur freely
in the formula .

VX (p) — ¢[Y/X], provided the arity of X and Y coincides.

Y — oY/ X]
Y — VX (p)

In addition to these axioms and rules and standard axioms and rules for

, provided Y is not free in 9.

first-order logic with equality, the logic £§2’;’2 comprises the following:

The axioms for upd(r,X) and upm(r, X). Since here we do not need to
consider explicit meta-finite states, these axioms are a simplified version of
Axioms U1-U7 and Axioms U1-U7 in Section 7.2 and 7.3 in [4], respectively.
For instance, Axiom Ul which states that X represents an update set yielded
by the assignment rule f(¢) := s iff it contains exactly one update and this
update is ((f,t), s), can be written as:

Ul: upd(f(t) :=s,X) < X(cy,t, 5)A
Vzaey(X(z,z,y) = z2=cs Az =t ANy =25)

The distribution axiom and the necessitation rule from the axiom system K of
modal logic, and modus ponens, which allow us to derive all modal properties
that are valid in Kripke frames.

The axiom —conUSet(X) — [X]p asserting that if an update set X is not
consistent, then there is no successor state obtained from applying X to the
current state—thus [X]ep is interpreted as true for any formula .

The axiom —[X]¢ — [X]-¢ describing the deterministic accessibility relation
in terms of [X].

The Barcan axiom Yv([X]¢) — [X]Vv(yp), where v is a first-order or second-
order variable.

Axioms ¢ A upd(r, X) — [X]¢ and con(r, X) A [X]p — ¢ for static and pure
o asserting that the interpretation of static and pure formulae is the same in
all states.

The frame axiom conUSet(X) AVz(—X(cr,z,2)) A f(z) =y — [X]f(z) =y
and the update axiom conUSet(X) A X (cy, x,y) — [X]f(x) = y asserting the
effect of applying an update set.

The axiom upm(r, X) — JY (upd(r,Y)) stating that if a rule r yields an
update multiset, then it also yields an update set.

The restricted axiom of universal instantiation Yo (¢(v)) — @[t/v], if ¢ is pure
or t is static, t is a term free for v in ¢(v).

102 K.-D. Schewe and F. Ferrarotti

Y — @[/0]
Y — Yu(p)

— The rule of universal generalisation if v’ is not free in 1.

— The axiom

31X (upd(seq r1 72 endseq, X) A [X]p) <
3X1 (upd(ry, X1) A [X1]3 X2 (upd(re, X2) A [X2]p)).

from dynamic logic asserting that executing a sequence rule is equivalent to
executing its sub-rules sequentially.
— The extensionality axiom

r1 =ro — (IX1.upd(r1, X1) A [X1]e) < IX2.upd(ra, Xo) A [Xa]e.

For the proof of completeness we proceed in the same way as for the cor-
responding completeness proof for the logic of ASMs in [4]. First for operators
defined in the background, in particular the multiset functions used in p-terms,
are treated as standard non-axiomatised functions. This allows us to assume
without loss of generality that formulae do not contain p-terms.

Then we turn formulae into variants of formulae of first-order logic with
types. For this we create a modified signature X7, which contains the function
symbols from X, a unary relation symbol T;, for each n > 1, an (n + 1)-ary
relation symbol F,, for each n > 1, and unary relation symbols Ty and T,.. With
these we proceed as follows:

1. Turn formulae upd(r, X) and upm(r, X) into formulae of the form T;.(z) —
upd(z, X) and T).(z) — upm(x, X), where T,.(x) asserts that z is a tree term
representing a rule.

2. Bring all remaining atomic formulae into the form v; = vy, f(v2) = vy or
X(v1,...,0p).

3. Eliminate all modal operators expressing them by means of the formula
conUSet(X).

4. Replace each atomic (second-order) formula of the form X(¢y,...,t,) by
E,(t1,...,t,,X), and relativise quantifiers over individuals using 7', and
quantifiers over n-ary relations in D,, for some n > 1 to T,,.

The main difference to the similar reduction applied in [4] is that subformulae
upd(r, X) and upm(r, X) cannot be completely eliminated. However, by using 7.
and tree terms we turn these formulae into first-order formulae with types. Then
the axioms for upd(r, X) and upm(r, X) have to be adapted to this modification
as well. In the case of upd, we define a new axiom that replaces Axioms U1-U7
and has the form

upd(z, X) < opy1(x, X) V-V oyr(z, X),

where @y, ..., pur are modified versions of the formulae in the right-hand side
of Axioms U1-U7, respectively. In particular, ;1 can be defined as follows:

Elxoxlemgxfxtxs((xo = To.root(x) <. o A label(o) = update)A

A Logic for Reflective ASMs 103

label(x1) = func A label(z2) = term A label(z3) = termA
To <ec X1 NTo < T2 NTg < T3 AN Tg <5 T3NAT1 <c Tf AT2 <¢e Ty AN T3 <¢ Ts
Jyryeys(yr = valg(raise(xy)) A ye = valg(raise(x:)) A ys = vals(raise(zs))A
ANX(Yp, Yt Ys) NV2p2e2s(X (25,28, 25) = 2 =Y N2t =Y N 2s = ys)))

Note that for simplicity we have assumed, w.l.o.g. (see [4] among others), that
the arity of the functions in the update rules is 1.

Due to space limitations, we leave the definition of the remaining formulae
wue,--.,pur as a simple exercise to the reader. Likewise the definition of a new
axiom that replaces Axioms U1-UT7 is also left as an easy exercise to the reader.

Lemma 1. A formula ¢ of L:EQI,? is true in a Henkin prestructure S iff the
transformed formula p* is true in a first-order structure S* over X7 that is
uniquely determined by S.

The first direction of Lemma 1, i.e., if an Eg;’;ﬁ)—formula pistruein S, then ¢*
is true in S*, can be proven by structural induction. We only need to apply the
transformation described above to each of the cases in the definition of the set of
L’g’;’;ﬂ)—formulae and then check that the resulting first-order formulae is satisfied
by the corresponding state S*. Likewise, the second direction of Lemma 1 can
be proven by structural induction on the definition of first-order formulae, in
this case using the inverse of the transformation described above. We omit these
proofs since both are quite long, but technically straightforward.

Thus, if ¢* is valid, then ¢ is true in all Henkin structures. Note that the
converse does not always hold. For instance 3x(z = z) is true in all Henkin
structures (since by definition the domain of S is not empty), but Iz (To(z)A(z =
x)) is not valid. In general, not every X7 -structure is an S* structure for some
Henkin X-structure S. However, if a X7-structure S* satisfies the following
properties, then it corresponds to a Henkin structure S (cf. [6]):

1. X-correctness:
— T, (c) for nullary function symbols self € X,
— Tp(c) for all nullary function symbols ¢ € X other than self, and
= Ni<cicn To(zi) = T(f(x1,...,2y,)) for every f € X.
2. Non—eH;pEiness: Ax(To(x) V T (x)).
3. Disjointness:
- T;(z) — —Tj(x) for i,j > 0 with 7 # 7,
- T.(z) = —T;(x) and T;(z) — —T;-(x) for i > 0.

4. Elementhood: E,(z1,...,%n,y) — Tn(y) A(To(x1) V(1)) A A(To(zn) V
T (xy,)) for n > 1.

5. Extensionality: T,,(x) A T, (y) AVZ(En(Z,z) < En(Z,y)) = v =y forn > 1.
6. Comprehension: IYyVz(E, (Z,y) <> 1) for n > 1 and y non-free in 1.

104 K.-D. Schewe and F. Ferrarotti

Lemma 2. If A is a first-order structure of signature X7 which satisfies prop-
erties 1-6 above and sub(A) is the sub-structure of A induced by the elements of
U,0(Tn)? U (T})A, then for some Henkin structure S of signature X, sub(A)
is the structure S* determined by S.

Proof. Given A with domain dom(A), we define S as follows:

— dom(S) = (Tp)* U (T;.)4 is the base set (of individuals) of S.

— For each n > 1, the universe D,, of n-ary relations consists of the sets {a €
(dom(S))™ | (E,)*(a,s)} for all s € (T),)*.

— The interpretation of function symbols f € X is the same as in A but
restricted to arguments from dom(S).

By the XY-correctness, non-emptiness and comprehension properties of A, we get
that S is a Henkin structure.

We claim that sub(A) is isomorphic to S* via function g : dom(S*) —
dom(sub(A)) where

(@)= 17 if € (Tp)% U (T;)%"
T =V e (@)% U@) | (B)S (@)} ifze (TS forn>1

First, we note that g is well defined by the disjointness property and by the fact
that, by definition of S and S*, every element = in dom(S*) is in ,,~q(T0)° U
(T,)%". That g is surjective follows from the definition of S* from A and the fact
that dom(sub(A)) is the restriction of dom(A) to dom(S*). By the extensionality
property, we get that g is injective. By definition we get that g preserves the
function symbols in X as well as the relation symbols T}, for every n > 0. Finally,
for every n > 1, we get that g preserves E,, by the elementhood property. a

Let ¥ be the set of formulae listed under properties 1-6 above, we obtain the
following Henkin style completeness theorem:

Theorem 3. An Eg’;’g@) -formula ¢ is true in all Henkin structures iff ¢* is deriv-
able in first-order logic from ¥ (i.e., iff U F ©*).

Proof. Assume that ¥ F ¢*, and let S be a Henkin structure. Then S* = ¥
and therefore S* = ¢*. By Lemma 1, we get that S = .

Conversely, assume that ¢ is true in all Henkin structures. Towards showing
U E ¢*, let us assume that A = ¥, and let sub(A) be its substructure gener-
ated by the elements of |J,~,(7,,)* U (T;)4. Then by Lemma 2, sub(4) = S*
for some first-order structure S* determined by a Henkin structure S. Since
by assumption we have that S |= ¢, it follows from Lemma 1 that S* | ¢*
and therefore sub(A) = ¢*. But each quantifier in * is relativised to (7},)"
for some n > 1, and then we also have that A | ¢*. We have shown that
¥ E ¢*, and then, by the completeness theorem of first-order logic, we get that
Uk ot O

A Logic for Reflective ASMs 105

It is easy to see that the proof system that we have described earlier in this
section is sound. Thus, if ¢ is a formula derivable in C,(IZ’Z), then ¢ is true in all
Henkin structures. It is then immediate from Theorem 3 that ¢* is derivable in
first-order logic from ¥. On the other hand, via an easy but lengthy induction
on the length of the derivations, we get the following.

Lemma 3. ¢* is derivable in first-order from W iff ¢ is derivable in £$fs’:f¢).

Theorem 3 and Lemma 3 immediately imply that £i%r is complete.

5 Conclusion

We have shown before that reflective algorithms are captured by reflective
abstract state machines (rASMs), which exploit extended states that include an
updatable representation of the main ASM rule to be executed by the machine
in that state. Updates to the representation of ASM signatures and rules are
realised by means of a sophisticated tree algebra. This enables the rigorous spec-
ification of reflective algorithms and thus adaptive systems and is one step in the
direction of controlling the risk associated with systems that can change their
own behaviour.

In this paper we made another step in this direction by providing an extension
of the logic of ASMs to rASMs. For this we replaced extra-logical constants
representing rules by terms that are subject to interpretation in the current
state. As reasoning about reflective algorithms only makes sense for multiple
steps, we also extend the one-step ASM logic to a multiple-step logic, and prove
that for a sublogic with the number of steps bound to a fixed constant we preserve
the completeness of the logic, whereas the logic in general will be incomplete.

By providing such a logic we show that it is possible to reason statically over
specifications that are highly dynamic and even unbounded in the sense that
the behaviour of the system after a sequence of adaptations is not known at
all at the time the system is specified. This is of tremendous importance for
the application of rigorous methods to truly adaptive systems. Even more, by
showing that fragments of the logic that deal with bounded sequences of steps
are still complete we even enable tool support for such reasoning.

The use of the logic in an extension of proof obligations for the refinement
of rASMs in the line of [8] will be the next step in our research.

References

1. Borger, E., Stark, R.: Abstract State Machines. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-36498-6

2. Ferrarotti, F., Schewe, K.-D., Tec, L.: A behavioural theory for reflective sequential
algorithms. In: Petrenko, A.K., Voronkov, A. (eds.) PSI2017. LNCS, vol. 10742, pp.
117-131. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74313-4_10

https://doi.org/10.1007/3-540-36498-6
https://doi.org/10.1007/978-3-319-74313-4_10

106

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

K.-D. Schewe and F. Ferrarotti

Ferrarotti, F., Schewe, K.-D., Tec, L., Wang, Q.: A new thesis concerning syn-
chronised parallel computing - simplified parallel ASM thesis. Theor. Comput. Sci.
649, 25-53 (2016)

Ferrarotti, F., Schewe, K.-D., Tec, L., Wang, Q.: A complete logic for Database
Abstract State Machines. Logic J. IGPL 25(5), 700-740 (2017)

. Ferrarotti, F., Schewe, K.-D., Tec, L., Wang, Q.: A unifying logic for non-

deterministic, parallel and concurrent Abstract State Machines. Ann. Math. Artif.
Intell. 83(3-4), 321-349 (2018)

Leivant, D.: Higher order logic. In: Handbook of Logic in Artificial Intelligence
and Logic Programming, Deduction Methodologies, vol. 2, pp. 229-322. Oxford
University Press (1994)

Riccobene, E., Scandurra, P.: Towards ASM-based formal specification of self-
adaptive systems. ABZ 2014. LNCS, vol. 8477, pp. 204-209. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-43652-3_17

Schellhorn, G.: Verification of ASM refinements using generalized forward simula-
tion. J. UCS 7(11), 952-979 (2001)

Schewe, K., Ferrarotti, F.: Behavioural theory of reflective algorithms I: reflective
sequential algorithms. CoRR, abs/2001.01873 (2020)

Schewe, K.-D.: Concurrent reflective Abstract State Machines. In: 19th Interna-
tional Symposium on Symbolic and Numeric Algorithms for Scientific Computing,
(SYNASC 2017), pp. 30-35. IEEE Computer Society (2017)

Schewe, K.-D.: Behavioural theory of reflective algorithms II: reflective parallel
algorithms (2019, under review)

Schewe, K.-D., Ferrarotti, F.: Behavioural theory of reflective algorithms I: reflec-
tive sequential algorithms (2019, under review)

Schewe, K.-D., Ferrarotti, F., Tec, L., Wang, Q., An, W.: Evolving concurrent sys-
tems: behavioural theory and logic. In: Proceedings of the Australasian Computer
Science Week Multiconference, (ACSW 2017), pp. 77:1-77:10. ACM (2017)
Schewe, K.-D., Wang, Q.: XML database transformations. J. UCS 16(20), 3043—
3072 (2010)

Schewe, K.-D., Wang, Q.: Partial updates in complex-value databases. In: Infor-
mation and Knowledge Bases XXII, Frontiers in Artificial Intelligence and Appli-
cations, vol. 225, pp. 37-56. I0S Press (2011)

Smith, B.C.: Reflection and semantics in LISP. In: Proceedings of the 11th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL
1984, pp. 23-35. ACM (1984)

Stark, R., Nanchen, S.: A logic for abstract state machines. J. Univ. Comput. Sci.
7(11), 952-979 (2001)

Stemple, D.; et al.: Type-safe linguistic reflection: a generator technology. In:
Fully Integrated Data Environments, Esprit Basic Research Series, pp. 158-188.
Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-642-59623-0-8

Van den Bussche, J., Van Gucht, D., Vossen, G.: Reflective programming in the
relational algebra. J. Comput. Syst. Sci. 52(3), 537-549 (1996)

https://doi.org/10.1007/978-3-662-43652-3_17
https://doi.org/10.1007/978-3-642-59623-0_8

®

Check for
updates

Analysing PROB’s Constraint Solving

Backends
What Do They Know? Do They Know Things?
Let’s Find Out!

Jannik Dunkelau®™) @, Joshua Schmidt@®, and Michael Leuschel

Institut flir Informatik, Heinrich-Heine-Universitat Diisseldorf, Universitatsstrafse 1,
40225 Diisseldorf, Germany
{jannik.dunkelau, joshua.schmidt,michael.leuschel}@hhu.de

Abstract. We evaluate the strengths and weaknesses of different back-
ends of the PROB constraint solver. For this, we train a random forest
over a database of constraints to classify whether a backend is able to find
a solution within a given amount of time or answers unknown. The forest
is then analysed in regards of feature importances to determine subsets
of the B language in which the respective backends excel or lack for per-
formance. The results are compared to our initial assumptions over each
backend’s performance in these subsets based on personal experiences.
While we do employ classifiers, we do not aim for a good predictor, but
are rather interested in analysis of the classifier’s learned knowledge over
the utilised B constraints. The aim is to strengthen our knowledge of the
different tools at hand by finding subsets of the B language in which a
backend performs better than others.

Keywords: Constraint solving - Machine learning - Decision trees -
Feature importances *+ Association rules - Automated tool selection

1 Introduction

Besides its native CLP(FD)-based backend, the validation tool PROB [30] offers
various backends for solving constraints, e.g. encountered during symbolic ver-
ification. In previous work [18,19], we trained neural networks to decide for a
given constraint which backend should be used. We compared two approaches:
one based on feature vectors derived from domain knowledge, and one based on
encoding constraints as images. While we achieved promising results with the
image-based approach, it was not possible to extract a comprehensible explana-
tion about how the predictions were made. In follow-up work [34] the experiment
was replicated with decision trees [5] using the same feature sets as before. This
was motivated by the fact that decision trees are a transparent machine learning
algorithm allowing to extract and interpret the learned decision rules and thus
the acquired knowledge.

© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 107-123, 2020.
https://doi.org/10.1007/978-3-030-48077-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_8&domain=pdf
http://orcid.org/0000-0003-0819-5554
http://orcid.org/0000-0001-8842-2993
http://orcid.org/0000-0002-4595-1518
https://doi.org/10.1007/978-3-030-48077-6_8

108 J. Dunkelau et al.

In this paper we will expand on the decision tree approach and further anal-
yse the relative importances of the features used for deciding whether the dif-
ferent backends of PROB will be successful or not. Moreover, we will compare
these results with our a priori assumptions about the subdomains in which each
backend should work well. While we will display achievable classification perfor-
mances for our predictors, we do not aim for a good performance, but instead
for an analysis over the whole dataset. In particular, we are not interested in
replacing the decision function in PROB with a predictor presented in this paper.
The goal is to find subsets of the B language in which a backend performs better
than others to strengthen our knowledge of the different tools at hand. With the
gathered information we may be able to improve the PROB constraint solver
and to obtain more suitable features sets for related machine learning tasks for
B in the future.

2 Primer on PROB and its Backends

PROB [29,30] is an animator, model checker, and constraint solver for the formal
specification language B [1]. The B language allows to specify, design, and code
software systems as well as to perform formal proof of their properties. When
using PrROB, properties can be checked exhaustively on a state space using
various model checking techniques. B is rooted in predicate logic with arithmetic
and set theory. At the heart of PROB is a constraint solver for the B language.
PROB’s constraint solver is used for many tasks. During animation it has to find
suitable parameters for the B operations and compute the effect of executing
an operation, during disproving [26] it is used to find counter examples to proof
obligations. The constraint solver is also used for test case generation, symbolic
model checking or program synthesis.

PrOB has actually not one but three constraint solving backends and each
backend has a variety of options. In Sects. 2.1, 2.2 and 2.3 we will introduce each
backend, outline their differences, and summarise our a priori assumptions about
their performances on subdomains of the B language.

2.1 The Native CLP(FD) Backend

PROB’s kernel [29] is implemented in SICStus Prolog [11] using features such as
co-routines for delayed constraint propagation, or mutable variables for its con-
straint store. The CLP(FD) finite domain library [10] is used for integers and enu-
merated set elements. The library has a limited precision of 59 bits. PROB han-
dles overflows by custom implementations and also supports unbounded domains
as well as symbolic representations for infinite or large sets. Some specific features
of the PROB constraint solver are that it computes all solutions to a constraint
using backtracking. This is important as constraints are often used within set
comprehensions. It is also important for model checking to ensure that the entire
state space is constructed. PROB can deal with higher-order sets, relations and
functions.

Analysing ProB’s Constraint Solving Backends 109

Subdomains in Which CLP(FD) Presumably Performs Better. First and fore-
most, the CLP(FD) backend of PROB is the only backend supporting all con-
structs available in B. It is thus the default backend. It performs best for con-
straints arising in animation, where usually a small number of variables (oper-
ation parameters) have to be enumerated. In this context, it can deal well with
large data values.

Generally speaking, PROB performs well on constraints using enumerated
sets, booleans and/or bounded integers as base types. It performs reasonably
well on unbounded intervals if interval reasoning can be applied. While PROB
is very good at model finding, it can only detect unsatisfiability by exhaus-
tively enumerating all values remaining after deterministic propagation. In case
of unbounded data structures, PROB cannot exhaustively enumerate all cases
and is much less powerful. While CLP(FD) cannot natively handle unbounded
domains or quantifiers, PROB’s backend contains several custom extensions to
do so. A key limitation of the CLP(FD) backend is that it has no features such
as backjumping, conflict-driven clause learning, or random restarts. In conse-
quence, the backend can get stuck in the search space repeatedly enumerating
invalid values which SAT or SMT solvers would rule out by learning.

2.2 The Kodkod Backend

An alternative backend [35] for PROB makes use of Alloy’s Kodkod library [38]
to translate constraints to propositional logic, which are then solved by a SAT
solver. For instance, sets are translated as bit vectors. In particular, a subset x
of the interval 0..2 would be translated into three propositional logic variables
Zo,Z1,x2 where x; is true if ¢ € x holds. The constraint {1,2} C = can then
be translated to the propositional logic formula z1 A z3. As Kodkod does not
allow higher-order values, any such constraint is not passed to Kodkod and is
instead dealt with by PROB’s default CLP(FD) backend after Kodkod has found
a solution for the other constraints.

When using this backend, PROB will first perform an interval analysis and
determine which variables have a finite scope and a first-order type. The con-
straint is then partitioned into a part sent to Kodkod and a part solved by
PrOB. During solving, the SAT solver is called first. For every solution obtained
by the SAT solver, PROB’s CLP(FD) backend solves the remaining constraints.
By default, Kodkod’s Sat4j [28] SAT solver is selected.

Subdomains in Which Kodkod Presumably Performs Better. The strengths and
weaknesses of the backend based on Kodkod stem from its internal reliance on
SAT solving. While modern SAT solvers are very fast when it comes to solving
very large boolean formulae, encoding B into propositional logic underlies cer-
tain restrictions. SAT encodings can only be used for data types known to be
finite. In particular, one has to assign an upper and lower bound for integers and
set sizes. Thus, integer overflows might occur and it is hard to ensure soundness
and completeness. Furthermore, arithmetic operations have to be encoded in

110 J. Dunkelau et al.

propositional logic as well such as binary adders. This leads to additional over-
head when generating a conjunctive normal form, especially for large bit widths.
The designers of Alloy argue [25] that lack of integers is not disadvantageous
in general, as integer constraints are often of secondary nature. In B models,
this is not the case. In summary, this backend is not good for arithmetic, large
relations, infinite domains, higher-order constraints, or data structures.

In contrast, SAT solving is ideal for problems involving relations as those
can be expressed in a way suitable for Kodkod’s backends [35]. Furthermore,
given that Kodkod is originally used as a backend for analysing Alloy it has
been tuned towards constraints involving operations on relations. For instance,
the relational image or transitive closure operations of B are handled efficiently
by the translation to SAT using Kodkod.

2.3 The Z3 Backend

The third backend of PROB translates B constraints to SMT-LIB formulae and
targets the SMT solvers Z3 [13] and CVC4 [3]. Here we focus on the Z3 bind-
ing [27] only. The translation works by rewriting the B constraints into a normal
form using a core subset of the B operators which can be mapped to SMT-LIB.
Additional variables, set comprehensions, and quantifiers are introduced for those
operators which have no counterpart in SMT-LIB or Z3, e.g. cardinality, or mini-
mum and maximum of an integer set. Functions and relations are translated to the
Array theory of SMT-LIB. The DPLL(T) [21] algorithm underlying SMT solvers
is fundamentally different from CLP(FD). Just like for the SAT translation, SMT
solvers can perform backjumping and conflict-driven clause learning.

Subdomains in Which Z3 Presumably Performs Better. SMT solvers such as
Z3 are very good at proof for B and Event-B (cf. [14,15]). Our experience in
the context of model finding is that Z3 is good at detecting inconsistencies,
in particular on infinite domains. For example, Z3 is able to detect that the
constraint * < y Ay < x is unsatisfiable. The other two backends are unable
to detect this using their default settings. Note that PROB is able to detect
this inconsistency if one enables an additional set of propagation rules based on
CHR.

On the downside, Z3 often has difficulties to deal with quantifiers. Moreover,
the translation from B to SMT-LIB does not yet support various operators
such as general union or general sum nor does it support iteration and closure
operators. Constraints using one of these operators are not translated to SMT-
LIB at all and the backend returns unknown. In summary, the Z3 backend is
good at detecting inconsistencies and reasoning over infinite domains, but for
constraints involving quantifiers, larger data values or cardinality computations
it often answers unknown.

3 Primer on Decision Trees and Random Forests

We utilise techniques of supervised machine learning to train a classifier for B
constraints, which we will then further analyse in Sect. 6.

Analysing ProB’s Constraint Solving Backends 111

The notion of machine learning covers a family of algorithms which are able to
improve their predictions using a dataset processed at a so called training time.
For supervised machine learning, this dataset consists of tuples (z,y) € D C
X XY, where x € X represents the input data and y € Y is the corresponding
ground truth, which is the correct class label to be predicted by the employed
algorithm. For instance, for a binary classification task, the ground truth can
be either 0 or 1. Usually, X = R? corresponds to a d-dimensional feature space,
where each problem instance to be classified is represented as a feature vector
x = (x1,...,2q). Each x; hereby refers to a specific characterisation, i.e. feature,
of the problem instance. During training time, the algorithm is supposed to learn
the mapping x — y for each (x,y) € D by generalising over recurring patterns
in the input data X. It is important that this learned mapping is accurate yet
as general as possible, so as to cover yet unseen problem instances. A classifier
is said to owverfit on the training data if its performance in classifying unseen
data is significantly worse. To detect possible overfitting, the resulting classifier’s
performance is evaluated on a separate test set, i.e. a data set which was not
experienced during training time.

In this article, we employed decision trees as the machine learning algorithm
of choice. They correspond to a supervised learning method where the training
data at the root of the decision tree is progressively split into smaller subsets
using a feature-based splitting criterion. At the leaves of the decision tree only
subsets with the same ground truth remain. Such subsets are referred to as pure
subsets.

A variety of splitting criteria exist. For example, the CART algorithm [5] is
based on the Gini impurity i(t) [31] of a node ¢ defined as

i(t)=1- pe(t)?

ceC

with C being the set of possible classes, and p.(t) is the relative frequency of the
elements in ¢ belonging to the class ¢. For a pure subset ¢’ of a class ¢, p.(t') will
be 0 for ¢ # ¢ and 1 for ¢ = ¢’. Hence i(t') = 0. For an evenly distributed node
t" we have i(t") =1 — ﬁ, where |C] is the cardinality of C'.

The goal of the decision tree learning algorithm is to reach an impurity of 0
with as few splits as possible. For any split of ¢ into two sub-nodes t;, and tg,
we thus measure the impurity decrease by

dlt,m) = i(0) — it — e B
The split which maximises the impurity decrease is finally chosen and the algo-
rithm is called recursively on ¢; and tr respectively. A decision tree is shown
in Fig. 1, where leaves represent actual classes.

3.1 Random Forests

Random forests [7] are a bagging approach [6] to decision trees, i.e. instead of
only training a single decision tree, a set of k decision trees (T;)1<;< is trained.

112 J. Dunkelau et al.

petal length < 2.45 cm
setosa petal width < 1.75 cm
w/ N

versicolor virginica

Fig. 1. Decision tree classifier over a set of iris flowers [20]. The species iris setosa, iris
versicolor, or iris virginica is classified based on petal length and width.

Each tree is trained on a random subset of the training samples as well as a
random subset of features. This randomisation ensures most trees in the set to be
distinct from each other. For example, the impurity decrease of common features
will vary between the training samples, leading to different choices of splitting.
Due to bagging, the relatively unstable nature of decision trees is countered and
the technique is less prone to overfitting.

A measure for the relative importances of each feature in a random forest is
the mean decrease importance |7]. The mean decrease importance of a feature
averages the impurity decrease per feature over each decision tree in the forest.
Hence, it is a measure of the average impurity decrease the feature offers [2,37].

3.2 Rationale for Using Random Forests

While we had multiple classification algorithms to choose from, we finally settled
on random forests. This choice was motivated by our need for a strong and
interpretable classifier.

In previous work [19] we used convolutional neural networks, but we were
unable to extract the knowledge accumulated by the classifciation due to the
black box nature of the neural networks. Hence, we started to use decision trees,
as one can easily extract classification rules after the training phase. These rules
are comprehensible and can be interpreted by non-experts as well. Decision trees
also offer insights about the relevancy of features: the closer to the root a split
over a specific feature is done, the more impact it has for the decision process.

Alternate machine learning approaches are linear regression and clustering
approaches. For linear regression the relevance of features could be extracted by
examining the relative differences in their coefficients. However, this would not
yield direct rules describing why a particular prediction was made. As we are
particularly interested in extractable knowledge from trained classifiers and rea-
soning for the given predictions, we favoured decision trees over linear regression.
On a similar note, we decided against clustering. However, a clustering approach
for grouping similar constraints together presents an interesting alternative app-
roach to be studied in future work.

In the end, we decided to utilise random forests for the present article.
Although they are again blackbox algorithms, they consist of interpretable
pieces, which can be analysed for more general rules [16,23].

Analysing ProB’s Constraint Solving Backends 113

4 Related Work

The related work in the field is split into two categories: machine learning pow-
ered algorithm portfolios for SMT solving, and knowledge extraction from tree
ensemble learners such as random forests. To the best of our knowledge, no
intersection of both categories exists yet in literature, as we do in this article.

Healy et al. [24] conducted a solver portfolio for the Why3 platform [4]. The
solver selection was done via decision trees which predicted the anticipated run-
time of a proof obligation for each solver, and choosing the fastest one. James
P. Bridge [8] used support vector machines for automating the heuristic selec-
tion for the E theorem solver [36]. While he was able to improve the already
implemented auto-mode in E, he also investigated picking a minimal feature set
which ultimately consisted of only two to three features.

Yang et al. [39] analysed decision trees to extract minimal feature subsets
which need to be flipped to achieve a more favourable outcome. Their applica-
tion area was customer relationship management with focus on increasing the
amount of loyal customers, i.e. detect what needs to be done to turn a regular
customer into a loyal customer. Similarly, Cui et al. [12] proposed an integer
linear program on random forests for finding the minimal subset of features to
change for obtaining a different classification. Deng [16] proposed interpretable
trees (inTrees) for interpreting tree ensembles. In their paper, they propose a set
of metrics to extract learned knowledge from a tree ensemble such as a random
forest. This includes the actual rules learned in an ensemble as well as frequent
variable interactions. Narayanan et al. [32] extracted the most common patterns
for failing solid state drives in datacenters using inTrees. In their work, they
found that these extracted patterns match with previously made observations.

5 Experimental Setup

In this section, we briefly outline the training data and the feature set in use.

5.1 The Training Data

For acquiring the constraints for the training data, we extracted B predicates
from the public PROB examples repository! and constructed more complex con-
straints inspired by PROB’s enabling analysis [17] or discharging proof obli-
gations [26]. Each backend was given a timeout of 25s to decide whether the
constraint has a solution or is a contradiction. Constraints for which a definite
answer was found build up the positive class for a solver. The negative class
is made up of the other outcomes: timeouts, errors, or the answer unknown.
Overall, the class distribution was imbalanced, as for instance only about 35%
of samples belonged to the negative class for the CLP(FD) backend. Yet, we do
not deem this as a problem because the decision trees are trained with respect
to a weighted training set.

! https://www3.hhu.de/stups/downloads/prob/source/ProB_public_examples.tgz.

https://www3.hhu.de/stups/downloads/prob/source/ProB_public_examples.tgz

114 J. Dunkelau et al.

The choice of the 25s timeout was arbitrary. However, we evaluated how
much more constraints are assigned to the positive class compared to using
PRrROB’s default timeout of 2.5s. The CLP(FD) backend is able to solve 65.47%
of the constraints using a timeout of 2.5s, while the Kodkod and Z3 backends
solve 64.65% and 21.52% respectively. When increasing the timeout by factor 10
to 25 s, these percentages increase to 65.48% for CLP(FD) (+0.01%), 64.67% for
Kodkod (+0.02%), and 21.53% for Z3 (+0.01%). As the percentage of solvable
constraints for each backend only increased by a rather insignificant amount, we
deemed the unsolvable constraints as complex enough for our analysis approach.
We did not test with higher timeouts.

For each backend’s analysis we had around 170,000 unique samples.

5.2 The Feature Set

For training the decision trees, we created a manually selected set of 109 fea-
tures (further referred to as F109) which mainly consists of characteristics such
as the amount of arithmetic operations per top level conjunct, or the ratio of
intersections of all used set operators. Further features consist of maximum and
mean nesting depths for certain language constructs such as negations and pow-
ersets, or the amount of unique identifiers per top level conjunct and number of
interactions between them. Additionally, identifiers are grouped into unbounded,
semi-bounded (only upper or lower bound), and fully bounded (both, upper and
lower bound) identifiers. This grouping is sensitive to whether the boundaries
are explicitly set (e.g. a<5) or only bounded by another identifier (a<Db).

As we are interested in the knowledge gathered by the random forests over
the whole corpus of B constraints at our disposal, we will not split the dataset
into sets for training and testing for our final analysis as is common for classi-
fication tasks aiming for a good predictor. However, as a sanity check that the
selected features are indeed discriminatory enough to actually learn weaknesses
and strengths of each backend, we still analysed the predictive performances of a
random forest for each backend on a classical split into datasets for training and
testing. For measuring performance, we utilised the metrics accuracy, balanced
accuracy [9], and the Fy-score [22].

Each prediction of a classifier can either be a true positive (tp), true negative
(tn), false positive (fp) or false negative (fn), i.e. the prediction can be either
correct or false corresponding to either the positive or negative classes 1 and 0.
The utilised performance metrics are defined as follows:

tp + tn
accuracy = ,
tp+tn+fp+in
1 tp tn

bal d == .
atanced acc 2 tp+fn+ t + fp

Accuracy describes the percentage of the test data which were classified cor-
rectly. Balanced accuracy is most suitable for an unbalanced dataset in which
the distribution of classes is not equal. It averages the percentage of correctly

Analysing ProB’s Constraint Solving Backends 115

Table 1. Random Forest classification performances over the set of 109 features.

Backend | Dataset | Accuracy | Balanced acc. | F-score
CLP(FD) | F109 0.947 0.926 0.966
Kodkod | F109 0.926 0.906 0.950
73 F109 0.919 0.873 0.797

predicted samples per class. The Fi-score is defined as the harmonic mean over
the notions precision and recall [22]:

- tp tp
precision = . recall =
tp+1p tp+ fn
recision x recall
F1 = 2% P

precision + recall

Precision describes the probability of a positive prediction to be correct. Recall
describes the probability for samples of the positive class to be classified as such.

Table 1 shows the results of this sanity check. We used 80% of the data for
training, whereas the performance measures were taken on the remaining 20%.
Each classification task was concerned with whether a backend would return
a definitive answer for a given constraint (satisfiable or unsatisfiable) or would
yield unknown. As the performance scores are all higher than 0.9, we deem the
feature set F109 to be suitable for our purposes.

6 Analysis and Results

For each backend, we trained a random forest with 50 trees using the Gini
impurity decrease splitting criterion to predict whether the respective backend
can find an answer or leads to unknown. As machine learning framework, we
employed the Scikit-learn Python library [33].

For the following analysis, we utilised the whole dataset of 109 features (F109)
as the training set and did not make use of a test set, as we are more interested
in an analysis of random forests containing information of all the data.

Please note that this work only considered the default settings of each back-
end. It is relevant to mention that multiple settings exist which could influence
the respective outcomes of the analysis. For instance, although the CLP(FD)
backend has problems with detecting inconsistencies over unbounded domains
such as ¢ < y Ay < z, one can activate an additional CHR propagation which
improves detection of inconsistencies in general as mentioned in Sect. 2.3.

6.1 Feature Importances

In order to gain a deeper insight in the feature set we compute the Gini impor-
tance which is the mean decrease importance of a feature within a random forest
using the Gini impurity as the splitting criterion.

116 J. Dunkelau et al.

Table 2. Top ten features for each backend ranked by the Gini importance.

Backend | Most important features (descending)

CLP(FD) | Function application, maz conjunct depth, forward
compositions, relational overrides, nested logic with conj.,
nested logic with implications, equalities, function variables,
subset ratio, identifier count

Kodkod | Function application, function vars, forward compositions, set
op., nested logic with conj., nested logic with disj., nested logic
with impl., avg. powerset nesting, identifier count, relational
overrides

73 Relational operators, domain ops, functions, function vars,
avg. powerset nesting, domain restrictions, unbounded
domains, identifier count, max. conjunct depth, function
application

Table 2 shows the top ten features that are necessary to classify the data at
hand for each backend. The common features of the three subsets are highlighted.
These indicate a particularly high importance as they are used for each of the
three backends’ decisions.

The CLP(FD) backend and the Kodkod backend have the most features
in common. The most important feature for both backends is the presence of
function applications. Indeed, a function application is a complex operation for
a constraint solver since it entails for example the well-definedness condition
that the applied value is an element of the function’s domain. Both backends’
classifiers favour the presence of nested logic formulae with further possibly
nested conjunctions, disjunctions, and implications, indicating more involved
constraint as well. The initial assumption that the Kodkod backend is better
suited to solve constraints over relations is strengthened by the high ranking
of the ratio of relational compositions and overrides in the top 10 features. Of
course, the overall higher similarity of the top ranked features for the CLP(FD)
and Kodkod backend is influenced by the fact that constraints that cannot be
translated to SAT are solved by PROB.

The gathered feature set for the classifier of the Z3 backend favours the pres-
ence of relational operations, in particular, the presence of domain operations. As
initially expected, the feature representing the presence of unbounded domains
has a high importance as well.

While this analysis allows for selection of features for the sole purpose of clas-
sification, it does not yet give us info as of why a feature ranks high. For instance,
it remains uncertain whether the presence of relational operators correlates to
73’s positive or negative class. This will be analysed in Sect. 6.2.

Classifying on Reduced Feature Sets. While we are mostly interested in
analysing which language subsets are hard for a backend to solve, we can evaluate
the significance of the most relevant features (determined via Gini relevance

Analysing ProB’s Constraint Solving Backends 117

as done above) by conducting a regular classification over only these relevant
features. When using the ranked feature sets to find a minimal set of features,
we have to consider that at least one feature exists for each B data type or group
of operations, e.g. relational operators, as the dataset might be biased to specific
operations. For instance, the fact that the presence of arithmetic operations is
not ranked high does not mean there should be no such feature at all in general.

Table 3. Random forest classification performances for minimised feature sets.

Backend | Dataset | Accuracy | Balanced acc. | F}-score
CLP(FD) | F10 0.914 0.875 0.944
F50 0.947 0.929 0.966
Kodkod |F10 0.887 0.853 0.923
F50 0.924 0.907 0.949
73 F10 0.875 0.804 0.747
F50 0.916 0.870 0.795

We created two features sets containing the top 10 and 50 ranked features
for each backend, referred to as F10 and F50 respectively. The results presented
in Table 3 show that the minimised subsets of 50 features capture the problem
domain as well as the larger set containing 109 features presented in Table 1. The
smaller subset containing 10 features already shows good performance but does
not perform as well as the one using 50 features, indicating that the problem at
hand is complicated at least.

6.2 Association Rule Analysis

Our main goal is to determine how the backends perform on different subsets
of the B language. For this we performed an association rule analysis using the
inTrees framework [16], thereby identifying frequent feature interactions as well
as determining those syntax elements which increase the chance of unsolvability
for each backend. For the analysis, we interpret paths from the root to the
leaves of each decision tree in the forest as a single rule. Each node in these trees
corresponds to a feature along with a threshold value for deciding which path to
follow. An example based on the decision tree from Fig. 1 is given in Fig. 2.

petal length (<) = setosa
petal length (>) A petal width (<) = versicolor
petal length (>) A petal width (>) = virginica

Fig. 2. Association rules extracted from the decision tree in Fig. 1.

118 J. Dunkelau et al.

Different paths might be identical up to the respective threshold values. In
our analysis, we discard the threshold values and only consider the tendency
(below or above threshold) for each rule. This way we can compare rules without
having to worry about mismatching threshold values while still accounting for
the feature’s tendency. Table 4 displays several rules that were collected from the
random forest trained for each backend.

Deng [16] uses two metrics for the association rules, support and confidence.
Given two rules a = {C, = Y,} and b = {C}, = Y} where C,,C) are the
respective conditions and Y,, Y} the respective outcomes. Rule b is said to be in
the support of rule a iff C, C Cy. That is, each feature used in C, is also used
in Cy (with equal threshold tendency). Let o(a) = {r | r is in the support of a}
denote the support set of a. The confidence of an association rule a is then
defined as ¢(a) = {{C, = Y,} € 0(a) | Y, = Y,}|/|o(a)|, i.e. the ratio of rules
in the support of @ with the same outcome as a.

For a deeper analysis of the subproblems’ performances for each backend, we
calculated the support and confidence of the respectively 250,000 shortest rules
of the corresponding random forests.

Table 4. Exemplary association rules with their corresponding support and confidence
values (Supp. and Conf. respectively). The operators < and > indicate whether the
feature value is above or below the learned threshold.

Backend | Rule Supp. | Conf.

CLP(FD) | Function applications (<) A conjunctions (<) A 853 | 0.69
quantifiers (>) A logic operators (>) A functions (>)
= negative

Kodkod | Function applications (<) A conjunctions (<) A 2413 | 0.79
disjunctions (>) A implications (<) A powersets (<) A
inequality (>) A quantifiers (<) A lambda-expression
ratio (<) A relational inversions (<) A sequences (<) A
= negative

73 Relational operations (<) A functions (<) A 24,479 | 0.69
unbounded variables (>) A set inclusions (member,
subset) (<) A sequences (<) A set operations (<) =
positive

Analysis for CLP(FD). For PROB’s native backend, most rules with high
support only had a confidence of 50%, rendering them insignificant for our anal-
ysis. While higher confidence rules had less support such as the one presented
in Table 4, they allowed for a look on certain subareas in the problem domain in
which the backend struggles to find an answer for.

Main concern for the backend appears to be function applications because
they are the most relevant feature for deciding whether the CLP(FD) backend
is able to satisfy or reject a constraint according to the analysis in Sect. 6.1.

Analysing ProB’s Constraint Solving Backends 119

The implementation of function applications in PROB consists of many spe-
cial cases such as different treatment for partial or total functions. Moreover,
function applications entail a well-definedness condition leading to more involved
constraints and possibly weaker propagation. In particular, the constraint solver
has to deduce that the values applied to a function are part of its domain which
increases complexity drastically if domains are (semi-)unbounded. The multi-
tude of such cases might emphasise the overall complexity for constraint solving
and be the reason for function applications leading to negative predictions. This
finding suggests the need for a more involved statical analysis of constraints
with function types by means of discarding well-definedness constraints early to
allow for a more aggressive propagation of function applications. Thus the solver
would not need to wait for verification of whether an element actually resides in
a function’s domain or not.

Further findings show that the use of implications, equivalences, nested pow-
ersets as well as operations on powersets contribute to the probability for the
backend to answer unknown for a given constraint, as do operations concerning
multiple variables representing functions and unbounded domains.

Comparing this to our initial presumptions made in Sect. 2.1, the particular
difficulty associated with function application was mostly unexpected. Further-
more, while we did not anticipate implications or equivalences to have such
significance, their role for unsolvability might be caused by a lot of backtracking
inside the constraint solver for satisfying these constraints. The analysis did not
bring up further results mismatching our assumptions from Sect. 2.1.

Analysis for Kodkod. The Kodkod backend struggles with arithmetic and
powersets, which was to be expected. As already observed with the native back-
end, we also found an increase in logical operators to increase the constraint
complexity significantly. An increase in logical operators naturally increases the
nesting depth of the top-level conjuncts, leading to much more involved con-
straints. The use of functions only appears to be a problem for Kodkod if these
are not manipulated by relational operators, rendering Kodkod as a more suit-
able choice over CLP(FD) in these cases. We generally found our expectations
from Sect. 2.2 met regarding Kodkod’s handling of relations.

Most positive rules favouring relational operators only showed a small sup-
port but had high confidence values and mostly differed in a single feature
describing a different relational operator. If one was to generalise these rules
into a singular one which is independent of the particular relational operator,
these rules should be able to support each other while maintaining their high
confidence. This suggests the use of relational operators for the Kodkod backend.

Note again that the Kodkod backend has a fallback to the CLP(FD) backend
for non-translated structures, hence both backends perform similar overall.

Analysis for Z3. Contrary to the two backends presented above, the Z3
backend’s association rule analysis delivered many high-support /high-confidence
rules for the positive class. Table4 shows one such rule with high support and

120 J. Dunkelau et al.

confidence. Since the analysis did not provide rules with high support and con-
fidence for the negative class, we compared absence of syntax elements in the
positive rules to their existence in low-support negative rules for analysis of areas
where Z3 does not perform well.

The results suggest that Z3 handles unbounded domains well and favours
integer variables and inequality constraints. This is in line with our expectations
from Sect. 2.3. However, we observed good performance for relational operators
as well which goes against initial presumptions, although this is correlated to
the amount of domain restrictions in use. Otherwise, Z3 lacks performance with
quantifiers, set comprehensions, powersets, or set operations (as was expected).

The main issues for the Z3 backend are the non-translated operators as well
as highly involved translations as outlined in Sect. 2.3. Revisiting these transla-
tions and comparing their implementations to those of well-performing syntax
elements might allow to increase the backend’s performance on further language
subsets significantly. For instance, the translation of relational operators might
inspire the translation of certain set operators.

7 Conclusion

In this article, we identified subproblems of the B language for which the individ-
ual PROB constraint solving backends performed better or worse respectively.

While our findings generally matched our expections stated in Sects. 2.1,
2.2 and 2.3, we found certain results which we did not explicitly expect. For
instance, our evidence suggests a difficulty for dealing with function applications
as well as implications and equivalences. Involved constraints containing many
nested conjunctions and disjunctions also increased the chance for the backends
to return wnknown. Surprisingly, the Z3 backend performed much better on
relational operators as expected. As a consequence, our analysis identified the
need for a more sophisticated handling of function application and nested logic
operators.

As by-product of this work, we were also able to train well-performing clas-
sifiers for each backend, which can be used for automated backend selection.

The experimental data as well as corresponding Jupyter notebooks are avail-
able on GitHub:

https://github.com/jdnklau/prob-backend-analysis.

Acknowledgements. Computational support and infrastructure was provided by the
“Centre for Information and Media Technology” (ZIM) at the University of Diisseldorf
(Germany).

https://github.com/jdnklau/prob-backend-analysis

Analysing ProB’s Constraint Solving Backends 121

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, New York (1996)

Archer, K.J., Kimes, R.V.: Empirical characterization of random forest variable
importance measures. Comput. Stat. Data Anal. 52(4), 2249-2260 (2008). https://
doi.org/10.1016 /j.csda.2007.08.015

Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171-177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

Bobot, F., Filliatre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd your herd of
provers. In: Boogie 2011: First International Workshop on Intermediate Verification
Languages, Wroctaw, Poland, pp. 53-64, August 2011

Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression
Trees. Wadsworth and Brooks, Monterey (1984)

Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123-140 (1996). https://doi.
org/10.1007/BF00058655

Breiman, L.: Random forests. Mach. Learn. 45(1), 5-32 (2001)

Bridge, J.P.: Machine learning and automated theorem proving. Technical report,
University of Cambridge, Computer Laboratory (2010)

Brodersen, K.H., Ong, C.S., Stephan, K.E., Buhmann, J.M.: The balanced accu-
racy and its posterior distribution. In: 2010 International Conference on Pattern
Recognition, pp. 3121-3124. IEEE, August 2010. https://doi.org/10.1109/ICPR.
2010.764

Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint
solver. In: Glaser, H., Hartel, P., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292,
pp- 191-206. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0033845
Carlsson, M., et al.: SICStus Prolog User’s Manual, vol. 3. Swedish Institute of
Computer Science Kista, Sweden (1988)

Cui, Z., Chen, W., He, Y., Chen, Y.: Optimal action extraction for random forests
and boosted trees. In: International Conference on Knowledge Discovery and Data
Mining KDD 2015, pp. 179-188. Association for Computing Machinery, New York
(2015). https://doi.org/10.1145/2783258.2783281

de Moura, L., Bjgrner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

Déharbe, D., Fontaine, P., Guyot, Y., Voisin, L..: SMT solvers for Rodin. In: Derrick,
J., et al. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 194-207. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30885-7 14

Déharbe, D., Fontaine, P., Guyot, Y., Voisin, L.: Integrating SMT solvers in Rodin.
Sci. Comput. Program. 94, 130-143 (2014). https://doi.org/10.1016/j.scico.2014.
04.012

Deng, H.: Interpreting tree ensembles with intrees. Int. J. Data Sci. Anal. 7(4),
277-287 (2019). https://doi.org/10.1007/s41060-018-0144-8

Dobrikov, 1., Leuschel, M.: Enabling analysis for Event-B. Sci. Comput. Program.
158, 81-99 (2018). https://doi.org/10.1016/j.scico.2017.08.004

Dunkelau, J.: Machine learning and Al techniques for automated tool selection
for formal methods. In: Proceedings of the PhD Symposium at iFM’18 on Formal
Methods: Algorithms, Tools and Applications, University of Oslo, September 2018.
https://doi.org/10.18154/RWTH-CONV-236485

https://doi.org/10.1016/j.csda.2007.08.015
https://doi.org/10.1016/j.csda.2007.08.015
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/BF00058655
https://doi.org/10.1109/ICPR.2010.764
https://doi.org/10.1109/ICPR.2010.764
https://doi.org/10.1007/BFb0033845
https://doi.org/10.1145/2783258.2783281
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-30885-7_14
https://doi.org/10.1016/j.scico.2014.04.012
https://doi.org/10.1016/j.scico.2014.04.012
https://doi.org/10.1007/s41060-018-0144-8
https://doi.org/10.1016/j.scico.2017.08.004
https://doi.org/10.18154/RWTH-CONV-236485

122

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

J. Dunkelau et al.

Dunkelau, J., Krings, S., Schmidt, J.: Automated backend selection for ProB
using deep learning. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2019. LNCS, vol.
11460, pp. 130-147. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
20652-9 9

Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann.
Eugen. 7(2), 179-188 (1936)

Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T):
fast decision procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol.
3114, pp. 175-188. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-27813-9 14

Goutte, C., Gaussier, E.: A probabilistic interpretation of precision, recall and
F-score, with implication for evaluation. In: Losada, D.E., Fernandez-Luna, J.M.
(eds.) ECIR 2005. LNCS, vol. 3408, pp. 345-359. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31865-1 25

Hara, S., Hayashi, K.: Making tree ensembles interpretable. In: I[CML Workshop
on Human Interpretability in Machine Learning (WHI 2016) (2016)

Healy, A., Monahan, R., Power, J.F.: Evaluating the use of a general-purpose
benchmark suite for domain-specific SMT-solving. In: Symposium on Applied
Computing SAC 2016, pp. 1558-1561. ACM (2016). https://doi.org/10.1145/
2851613.2851975

Jackson, D.: Alloy: a lightweight object modelling notation. Trans. Softw. Eng.
Methodol. 11(2), 256-290 (2002)

Krings, S., Bendisposto, J., Leuschel, M.: From failure to proof: the ProB dis-
prover for B and Event-B. In: Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS,
vol. 9276, pp. 199-214. Springer, Cham (2015). https://doi.org,/10.1007/978-3-319-
22969-0 15

Krings, S., Leuschel, M.: SMT solvers for validation of B and Event-B models.
In: Abraham, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 361-375.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33693-0 23

Le Berre, D., Parrain, A.: The Sat4J library, release 2.2. J. Satisf. Boolean Model.
Comput. 7, 59-64 (2010). System description

Leuschel, M., Bendisposto, J., Dobrikov, I., Krings, S., Plagge, D.: From animation
to data validation: the ProB constraint solver 10 years on. In: Boulanger, J.-L. (ed.)
Formal Methods Applied to Complex Systems: Implementation of the B Method,
pp. 427-446. Wiley, Hoboken (2014)

Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855-874. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45236-2_ 46

Loh, W.: Classification and regression tree methods. In: Wiley StatsRef: Statistics
Reference Online. American Cancer Society, September 2014. https://doi.org/10.
1002/9781118445112.stat03886

Narayanan, 1., et al.: SSD failures in datacenters: what? when? and why? In: Sys-
tems and Storage Conference, p. 7. ACM (2016)

Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825-2830 (2011)

Petrasch, J.: The decision does not fall far from the tree: automatic configura-
tion of predicate solving. Master’s thesis, Heinrich Heine Universitat Diisseldorf,
Universitatsstrake 1, 40225 Diisseldorf, April 2018

Plagge, D., Leuschel, M.: Validating B,Z and TLA" Using ProB and Kodkod.
In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 372—-386.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9 31

https://doi.org/10.1007/978-3-030-20652-9_9
https://doi.org/10.1007/978-3-030-20652-9_9
https://doi.org/10.1007/978-3-540-27813-9_14
https://doi.org/10.1007/978-3-540-27813-9_14
https://doi.org/10.1007/978-3-540-31865-1_25
https://doi.org/10.1145/2851613.2851975
https://doi.org/10.1145/2851613.2851975
https://doi.org/10.1007/978-3-319-22969-0_15
https://doi.org/10.1007/978-3-319-22969-0_15
https://doi.org/10.1007/978-3-319-33693-0_23
https://doi.org/10.1007/978-3-540-45236-2_46
https://doi.org/10.1002/9781118445112.stat03886
https://doi.org/10.1002/9781118445112.stat03886
https://doi.org/10.1007/978-3-642-32759-9_31

36.
37.

38.

39.

Analysing ProB’s Constraint Solving Backends 123

Schulz, S.: E-a brainiac theorem prover. Ai Commun. 15(2,3), 111-126 (2002)
Strobl, C., Boulesteix, A.L., Zeileis, A., Hothorn, T.: Bias in random forest variable
importance measures: Illustrations, sources and a solution. BMC Bioinf. 8(1), 25
(2007). https://doi.org/10.1186,/1471-2105-8-25

Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Grumberg, O., Huth,
M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632-647. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-71209-1 49

Yang, Q., Yin, J., Ling, C.X., Chen, T.: Postprocessing decision trees to extract
actionable knowledge. In: International Conference on Data Mining, pp. 685—688.
IEEE, November 2003. https://doi.org/10.1109/ICDM.2003.1251008

https://doi.org/10.1186/1471-2105-8-25
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1109/ICDM.2003.1251008

l‘)

Check for
updates

Programming the CLEARSY Safety
Platform with B

Thierry Lecomte®™)

ClearSy, 320 Avenue Archimede, Aix en Provence, France
thierry.lecomte@clearsy.com

Abstract. The CLEARSY Safety Platform (CSSP) is aimed at easing
the development and the deployment of safety critical applications, up to
the safety integrity level 4 (SIL4). It relies on the smart integration of
the B formal method, redundant code generation and compilation, and
a hardware platform that ensures a safe execution of the software. This
paper exposes the programming model of the CSSP used to develop
control & command applications based on digital I/Os.

Keywords: B method - Safety critical + Programming model

1 Introduction

In many industrial standards, formal methods are highly recommended when
developing safety critical software for the highest safety levels. However formal
methods are highly recommended just like many other non-formal (combina-
tion of) techniques, as these recommendations are setup collectively and rep-
resent the industrial best practices. Convinced that formal methods could help
to obtain better products [4,5,7,8], more easily certifiable, a generic, safe exe-
cution platform has been researched for years, combining safety electronics and
defect-free proven software. The software model is proved to be defect-free -
complying with its formal specification and without programming errors. The
code generators and the compilers are not defect-free. They are not required to
be defect-free as the defects are detected with divergent behaviour during exe-
cution. The CLEARSY Safety Platform was initially an in-house development
project before being funded by the R&D collaborative project LCHIP (Low
Cost High Integrity Platform) to obtain a generic version of the platform (i.e.
not only aimed at railway systems). LCHIP [6] is aimed at allowing any engineer
to develop a function by using its usual Domain Specific Language (DSL) and to
obtain this function running safely on a hardware platform. With an automatic
development process, the B formal method will remain “behind the curtain”
in order to avoid expert transactions over several languages (domain specific
language, B language, interactive proof). Indeed the programs developed with
the CLEARSY Safety Platform are considerably simpler than metro automatic
pilot, with few properties, simpler algorithms and hence with an expected excel-
lent automatic proof ratio. The integration of third party provers/solvers is also

© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 124-138, 2020.
https://doi.org/10.1007/978-3-030-48077-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-48077-6_9

Programming the CLEARSY Safety Platform with B 125

expected to improve automatic proof. Based on our previous certification expe-
rience, the safety demonstration of a safety case does not require any specific
feature for the input B model; it could be handwritten or the by-product of a
translation process. Several DSLs are being connected (or planned to be) based
on an Open API (Bxml).

This paper introduces the CLEARSY Safety Platform, presents and explains
the evolution of the supported B0 modelling language. The shape of the programs
developed for this platform are tightly linked with the specific mission of the
platform: ensuring a safety (see Sect.3.3) out of reach of the developer who
cannot alter it.

This paper is structured in five parts. The Terminology is first introduced as
some terms and concepts are quite specific. Then a description of the CLEARSY
Safety Platform is provided with a focus on its safety features. Third the pro-
gramming model is introduced; the simplification of the proof is also discussed.
Exploitation and dissemination are then exposed. Finally conclusion and per-
spectives are discussed.

2 Terminology

This chapter clarifies a number of unusual terms and concepts used in this paper.

Atelier CSSP is Atelier B extended with diverse code generator toolchain,
bootloader, and a new project type (CSSP project).

BO is a subset of the B language [1] that must be used at implementation level.
It contains deterministic substitutions and concrete types. BO definition depends
on the target hardware associated to a code generator [2]. Most railways product
lines use their own own specific code generator.

Bxml is an XML interface to B models, supported by Atelier B.

CRC stands for cyclic redundancy check, is an error-detecting code commonly
used in digital networks and storage devices to detect accidental changes to raw
data.

CSSP abbreviation of CLEARSY Safety Platform. The CLEARSY Safety Plat-
form is made up of a hardware execution platform, an IDE enabling the genera-
tion of diverse binaries from a single B model, and a certification kit describing its
safety features as well as the safety constraints exported to the hosting system.

Diversity intentional differences between redundant components, to reduce the
likelihood of common failures due to systematic causes that would reduce the
benefit of redundancy [3].

Fault tolerance is the property that enables a system to continue operating
properly in the event of the failure of some of its components. In our case, any
electronic part including the processors.

126 T. Lecomte

HEX is a file format that conveys binary information in ASCII text form. It is
commonly used for programming microcontrollers, EPROMs, and other types of
programmable logic devices.

PLC stands for programmable logic controller, is an industrial digital com-
puter which has been ruggedized and adapted for the control of any activity
that requires high reliability control and ease of programming and process fault
diagnosis.

Safety refers to the control of recognized hazards in order to achieve an accept-
able level of risk.

SIL put for Safety Integrity Level, is a relative level of risk-reduction provided
by a safety function. Its range is usually between 0 and 4, SIL4 being the most
dependable and used for situations where people could die.

Reliability is the ability of a system to perform its required functions under
stated conditions for a specified time.

3 The CLEARSY Safety Platform

3.1 Rationale

Developing a safety computer from scratch is not something you easily decide
because of the effort required to obtain such a device. Two kinds of device
are currently available on the market for safety critical applications: PLCs and
SIL3/SIL4-ready boards. Large companies building trains have their own in-
house devices but they are not publicly available. PLCs provide a strict, certi-
fied environment from which it is impossible to escape, requiring systems to be
designed and programmed in specific ways. On the contrary, SIL3/SIL4-ready
boards offer more freedom, come with hardware features not incompatible with
the standards but where the safety principles have to be fully programmed by
the developer in C or similar language.

To overcome this inconvenience, CLEARSY decided to develop its own solu-
tion based on the combination of redundant hardware and proven software devel-
oped with B. Producing its own hardware would reduce by an order of magnitude
its cost compared to PLCs and SILx-ready boards while using Atelier B would
allow more freedom and more control on the software development. The decision
to go for B was easily taken as it is highly recommended by the industry stan-
dard for SIL4 software development. B is also the central formal technology we
have been using during more than 20 years for most of safety critical software
development. Finally the CLEARSY Safety Platform is aimed at easing the cer-
tification process, as the safety principles, embedded in the electronics design
and the B software, are out of reach of the developer who cannot alter them.

Programming the CLEARSY Safety Platform with B 127

3.2 Description

The CLEARSY Safety Platform (abbreviated as CSSP in the rest of the docu-
ment) is a new technology, both hardware and software, combining a software
development environment based on the B language and a secured execution
hardware platform, to ease the development of safety critical applications.

It relies on a software factory that automatically transforms function into
binary code that runs on redundant hardware. The starting point is a text-
based, B formal model that specifies the function to implement. This model may
contain static and dynamic properties that define the functional boundaries of
the target software. The B project is automatically generated (Fig.5), based on
the inputs/outputs configuration (numbers, names). The project contains all the
machines and implementation components required to program the CLEARSY
Safety Platform. From the developer’s point of view, only one function (name
user_logic) has to be specified (machine logic) and implemented properly (imple-
mentation logic_i).

uct

Program

Crt Binary 1]

Sequencer

{

Program

verificatiol
Binary 1

Sequencer

+ e .
Safety library verification]

+
Safety library

1 Compier]

[Function [

s

Binary 2

Sequencer

+
Safety library

Coherency, no
programming error

development EXECUTION sl

Fig. 1. The safe generation and execution of a function on the double processor.

The implementable model is then translated using two different chains:

— Translation into C ANSI code, with the C4B Atelier B code generator
(instance I;). This C code is then compiled into HEX! binary code with
an off-the-shelf compiler (gec).

— Translation into MIPS Assembly then to HEX binary code, with a specific
compiler developed for this purpose (instance Is). The translation in two steps

L A file format that conveys binary information in ASCII text form. It is commonly
used for programming micro-controllers.

128 T. Lecomte

allows to better debug the translation process as a MIPS assembly instruction
corresponds to a HEX line.

The software obtained is the uploaded on the execution platform to be exe-
cuted by two micro-controllers (Fig. 2).

outputs EEN
AN
o BUN NLN ¢
POWER - Rl Lo L] O R
5 Power supply 0 g ey Programming & monitoring link)

PLATFORM

2 Reset button —&'e | - Serial channel selector)
' Board id fE8

uct mn

fEMicrocontroller 2 Microcontroller 188

{3 serial bus Serial bus (i)

50 inputs

Fig. 2. The CLEARSY Safety Platform Starter Kit 0 (SKo) — documentation available
at https://github.com/CLEARSY /CSSP-Programming- Handbook

3.3 Safety

These two different instances I; and Is of the same function are then executed
in sequence, one after the other, on two PIC32 micro-controllers. Each micro-
controller hosts both I; and Iy, so at any time 4 instances of the function are
being executed on the micro-controllers. The results obtained by I; and Iy are
first compared locally on each micro-controller then they are compared between
micro-controllers by using messages. In case of a divergent behaviour (at least one
of the four instances exhibits a different behaviour), the faulty micro-controller
reboots. The sequencer and the safety functions are developed once for all in

initialisation

while(true) {
execute 11
execute 12
perform safety verifications

Fig. 3. The pseudo-code of the sequencer.

https://github.com/CLEARSY/CSSP-Programming-Handbook

Programming the CLEARSY Safety Platform with B 129

B by the IDE design team and come along as a library. This way, the safety
functions are out of reach of the developers and cannot be altered. The safety is
based on several features such as:

— the detection of a divergent behaviour,

— micro-controller liveness regularly checked by messages,

— the detection of the inability for a processor to execute an instruction prop-
erly?,

— the ability to command outputs?®,

— memory areas (code, data for the two instances) are also checked (no overlap,
no address outside memory range),

— each output needs the two micro-controllers to be alive and providing respec-
tively power and command, to be active (permissive mode). In case of mis-
behaviour, the detecting micro-controller deactivate its outputs and enter an
infinite loop doing nothing.

The code generators are different (code generation paths, specification, pro-
gramming languages, development teams) and as such common failure modes
are neglected. Some of the tools part of the tool-chain have been “certified by
usage” since 1998 (B parser, B compiler, C code generator), but the newest tools
of this tool-chain have no history to rely on for certification. It is not a problem
for railway standards as the whole product is certified (with its environment, its
development and verification processes, etc.), hence it is not required to have
every tool certified. Instead the main feature used for the safety demonstration
is the detection of a misbehaviour among the 4 instances of the function and
the 2 microcontrollers. This way, similar bugs that could affect at the same
time and with the same effects two independent tools are simply neglected. In
its current shape, the CLEARSY Safety Platform provides an automatic way
of transforming a proven B model into a program that safely executes on a
redundant platform while the developer does not have to worry about the safety
aspects.

3.4 Target Applications

The execution platform is based on two PIC32 micro-controllers?. The process-
ing power available is sufficient to update 50k interlocking Boolean equations
per second, compatible with light-rail signalling requirements. The execution
platform can be redesigned seamlessly for any kind of mono-core processor if a
higher level of performance is required.

2 All instructions are tested regularly against an oracle.

3 Outputs are read to check if commands are effective, a system not able to change
the state of its outputs has to shutdown.

4 PIC32MX795F512L providing 105 DMIPS at 80 MHz.

130 T. Lecomte

The IDE provides a restricted modelling framework for software where:

— No operating system is used.

— Software behaviour is cyclic (no parallelism).

— No interruption modifies the software state variables.

— Supported types are Boolean and integer types (and arrays of).

— Only bounded-complexity algorithms are supported (the price to pay to keep
the proof process automatic).

4 Programming Model

Target CSSP applications are controllers. They execute the following infinite
loop: read inputs, perform computation, then set outputs. If a failure happens,
the board deactivates the outputs (they are all OFF — not powered) and enters
an infinite loop doing nothing (Fig.4). The only way to exit this loop is to reset
the board. The program in Flash memory is copied into RAM and then its
execution starts. If the failure is permanent, the board keeps restarting with the
outputs deactivated — the board remains in a safe, restrictive state.

Y X

inputs — F — outputs inputs — Do nothing — deactivated

== (read inputs, compute, set outputs)*

Fig.4. A CSSP is either able to execute its software properly (transfer function F)
(left) or is not able (right) and hence does nothing while its outputs are deactivated.

4.1 Development Process

A CSSP project (Fig.5) is a B project generated from a CSSP board configu-
ration where I/O are selected (some inputs/outputs pins may not be used) and
named. This generated B project is made of:

— the interface with the safety library, containing the definition of all the types
(and related constants) that may be used in a CSSP project, as well as specific
operators (arithmetic, logic) and operations (access to current time, message
to print on serial channel),

— the model of the function to program, that has:

e a read-only access to the safety library, the digital inputs status (OFF,
ON), the current time since the last rest/power-on, and
e the ability to modify the digital outputs (OFF, ON).

Programming the CSSP consists in modifying the components user_ctz and
logic, and to possibly add other components to be imported by logic_i.

Programming the CLEARSY Safety Platform with B 131

[types | [acoperators] [io_constants] (idip_configuration] [user_configuration | [ichip_interface] [safety_variables|
la_types i

i—““’—‘“ }—{"‘“’ i—""’: |—|"‘“““’
wser_cb i inputs | logc i outputs §

L J\ J

I |

Safety library interface Model of the function to program

Fig. 5. A CSSP project.

4.2 Pragmas

A component cannot contain both constants (SETS, CONSTANTS) and vari-
ables. Constants are hosted by context machines (machines without variables,
with possibly read-only operations). The compiler is made aware of this situation
by the use of one and only one pragma in each implementation:

— CONSTANTS, to indicate a constants-only module
— SAFETY_VARS, to indicate a variables-only module

IMPLEMENTATION IMPLEMENTATION
logic_i user_ctx i
REFINES REFINES
logic user_ctx
SEES
g_types, // pragma CONSTANTS
g_operators, SEES
io_constants, g_types
lchip interface, VALUES
user_ctx, DELTA T = 1000 // 1000 ms == 1s
inputs END
// pragma SAFETY VARS

Fig. 6. Two examples of pragmas.

4.3 Types and Operators
The types available in implementation are:

— wint8-t, uint16_t, uint32_t. These types (unsigned integers coded on 8, 16 and
32 bits) are preferred to the generic type INT, to get a better control over
variable memory size and overflow. Automatic casting is performed when for
example a uintl6_t variable is combined with a wint§-t value. The reverse
situation generates a warning from the B32 compiler.

- BOOL

132 T. Lecomte

The values of the digital inputs and outputs (/O-OFF, IO_ON) are stored as
wint8-t and not as Boolean. It is because a memory glitch could easily transform
a0in 1 (or a 1 in 0) without being easily detected. Having these values coded
with 8 bits (with a sufficient Hamming distance) make this undetected mod-
ification unlikely to occur. Moreover setting one output with a value different
from IO_OFF and IO_ON is detected during execution by the CLEARSY Safety
Platform which enters panic mode.

In order to automate as much as possible the proof process, the arithmetic
operators able to overflow — 4+, —, x — are replaced by non-overflowing opera-
tors. These operators are modelled as modulo operators (Fig. 7), preventing an
overflow to happen. These operators are defined for the 3 supported arithmetic
types as lambda functions and implemented with native functions in the safety
library. These operators avoid to generate overflow proof obligations and enable
a better automation of the proof process. However well-definedness proof obli-
gations remain and when using the integer division/, the denominator has to be
proved different from 0.

add_uint32 = %(x1,x2).(x1 : uint32 t & x2 : uint32 t | (x1 + x2) mod (MAX UINT32 + 1)) &

sub_uint32 = $(x1,%2).(x1 : uint32 t & x2 : uint32_t | (x1 - x2 + MAX UINT32 + 1) mod (MAX UINT32 + 1)) &
mul_uint32 = %$(x1,x2).(x1 : uint32_t & x2 : uint32_t | (x1 * x2) mod (MAX_UINT32 + 1)) &

add uintlé = $(yl,y2).(yl : uintlé_t & y2 : uintlé_t | (yl + y2) mod (MAX UINT16 + 1)) &

sub_uintlé = %(yl,y2).(yl : uintlé_t & y2 : uintlé_t | (yl - y2 + MAX UINT16 + 1) mod (MAX UINT1é + 1)) &
mul_uintlé = %(yl,y2).(yl : uintlé_ t & y2 : uintlé t | (yl * y2) mod (MAX UINT1€ + 1)) &

add_uint8 = %(yl,y2).(yl : uint8_t & y2 : uint8_t | (yl + y2) mod (MAX UINT8 + 1)) &

sub_uint8 = %(yl,y2).(yl : uint8_t & y2 : uint8_t | (yl - y2 + MAX UINT8 + 1) mod (MAX UINT8 + 1)) &
mul_uint8 = %$(yl,y2).(yl : uint8_t & y2 : uint8_t I (yl1 * y2) mod (MAX UINTS + 1)) &

Fig. 7. Arithmetic operators redefined.

Bitwise operators (and, or, xor, not, shift left logical, shift right logical) have
been added similarly (Fig. 8). They allow programs to operate more easily at bit
level. They are defined for 8, 16, and 32 bit sizes.

bitwise s11 uint32 : uint32 t*uint8 t --> uint32 t &
bitwise srl uint32 : uint32 t*uint8 t --> uint32 t &
bitwise not uint32 : uint32_t --> uint32 t &
bitwise and uint32 : uint32 t*uint32 t --> uint32 t &
bitwise xor uint32 : uint32 t*uint32 t --> uint32 t &
bitwise or uint32 : uint32 t*ulnt32 t --> uint32 t &

Fig. 8. Bitwise operators added.

4.4 Time

Time is defined as a uint32_-t and represent a number of milliseconds. The oper-
ation get_ms_tick returns the number of milliseconds elapsed since the last reset
or power on. Storing the current time and then checking its difference with a
future current time allows one to program timers.

Programming the CLEARSY Saf