
Chapter 5
On the Dynamics of the Electron

Introduction

On first consideration it seemed that the aberration of light and the optical and
electrical phenomena associated with it were going to provide us a means for
determining the absolute motion of the Earth or more accurately its motion, not
with respect to the other stars, but with respect to the ether. Fresnel1 had already tried
it, but he soon recognized that the motion of the Earth did not change the laws of
refraction and reflection. Analogous experiments, like that of the water-filled tele-
scope and all those where only first-order terms in the aberration were considered
were to give only negative results; the explanation for this was soon found. But,
Michelson, who had imagined an experiment sensitive to the terms depending on the
square of the aberration, failed in turn.

It seems that this impossibility of showing the absolute motion of the Earth
experimentally could be a general law of Nature; we are naturally led to accept
this law, that we will call the Relativity Postulate and to allow it without restriction.
Should this postulate, until now in agreement with experiment, later be confirmed or
rejected by more precise experiments, it is in any case interesting to look at what its
consequences might be.

An explanation was proposed by Lorentz and Fitz Gerald, who introduced the
hypothesis of a contraction experienced by all bodies in the direction of motion of
the Earth and proportional to the square of the aberration; this contraction, which we
will call the Lorentz contraction, took into account the Michelson experiment and all
those which had been done until now. The hypothesis would become insufficient,
however, if the relativity postulate were to be accepted in its full generality.
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Lorentz sought to supplement it and amend it so as to bring it into full agreement
with this postulate. This is what he succeeded in doing in his article entitled
Electromagnetic Phenomena in a System Moving with Any Velocity Smaller than
that of Light (Proceedings of the Amsterdam Academy, May 27, 1904)2.

The importance of the question led me to take it up again; the results that I
obtained are in agreement with those of Lorentz on all important points; I was only
led to amend and supplement them in some points of detail. The differences, which
are of secondary importance, will be seen later.

Lorentz’s idea can be summarized as follows: if one can, without any visible
phenomenon being modified, give any system a shared translation, it is because the
equations of the electromagnetic environment are not altered by certain transforma-
tions, which we will call Lorentz transformations; two systems, the one stationary
and the other in translation, thus become the exact image of each other.

Langevin1 had sought to modify Lorentz’s idea; for both authors, the moving
electron takes the form of a flattened ellipsoid, but for Lorentz two of the axes of the
ellipsoid remain constant and in contrast for Langevin it is the volume of the
ellipsoid which remains constant. Both authors additionally showed that these two
hypotheses agree with Kaufmann’s experiments and also with Abraham’s primitive
hypothesis (undeformable spherical electron)3.

The advantage of Langevin’s theory is that it does not call on electromagnetic
forces and binding forces; but it is incompatible with the relativity postulate. That is
what Lorentz had shown; it is what I found in turn by another route by calling on the
principles of group theory.

That means it’s necessary to go back to Lorentz’s theory; but to keep it and avoid
intolerable contradictions, a special force has to be assumed which explains both the
contraction and the two constant axes. I sought to determine this force, and I found
that it could be compared to a constant external pressure acting on the deformable
and compressible electron and its work is proportional to the variations in the
volume of this electron.

If the inertia of matter were then exclusively of electromagnetic origin, as is
generally accepted since Kaufmann’s experiment, and if all the forces are of
electromagnetic origin other than this constant pressure that I just spoke of, then
the relativity postulate can be established with full rigor. That is what I show by a
very simple calculation based on the principle of least action.

But that isn’t all. Lorentz, in the work cited, thought it necessary to supplement
his hypothesis such that the postulate is still true when there are forces other than
electromagnetic forces. According to him, all forces, whatever their origin, are
affected by the Lorentz transformation (and consequently by a translation) in the
same way as the electromagnetic forces.

1Langevin had been anticipated by Bucherer from Bonn, who came out with the same idea before
him. (See: Bucherer, Mathematische Einführung in die Elektronentheorie; August 1904. Teubner,
Leipzig).
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It is important to examine this hypothesis more closely and in particular to seek
what modifications it would force us to make to the laws of gravitation.

First it is found that it would force us to assume that the propagation of gravitation
is not instantaneous but occurs at the speed of light. One could think that this is a
sufficient reason to reject the hypothesis, since Laplace had proven that it could not
be so. But in reality, the effect of this propagation is in large part compensated by a
different cause, such that there is no contradiction between the proposed law and
astronomical observations.

Would it be possible to find a law, which satisfies the condition imposed by
Lorentz and at the same time reduced to Newton’s law any time that the speeds of the
stars are small enough that their squares can be neglected (as well as the product of
the accelerations by the distances) compared to the square of the speed of light?

The answer to this question must be affirmative as will be seen later.
Is the law thus modified compatible with astronomical observations?
At first glance, it seems so, but the question will only be settled by an in-depth

discussion.
But even if we accept that this discussion is settled in favor of the new hypothesis,

what will we have to conclude from it? If the attraction propagates with the speed of
light, that cannot be because of a fortuitous occurrence, that must be because it is a
function of the ether; and then it will be necessary to look into the nature of this
function and associate other functions of the fluid with it.

We cannot be satisfied with formulas that are simply juxtaposed and which only
happen to agree by lucky chance; said another way, it has to happen because these
formulas are mutually involved. The mind would only be satisfied when it believes
that it sees the reason for this agreement to such an extent that it has the illusion that
it could have anticipated it.

But the question can also be presented from another point of view so that a
comparison will be better understood. Let us imagine an astronomer before Coper-
nicus who was thinking about the Ptolemaic system; he would notice that for all the
planets one of the two circles, epicycle or deferent, is traversed in the same time.
That cannot be by chance; there is therefore some unknown mysterious link between
all the planets.

Copernicus, by simply changing the coordinate system regarded as fixed, made
this appearance disappear; each planet now describes only one circle and the periods
of revolution become independent (until Kepler reestablished the link between them
that was thought to have been destroyed).

It is possible that there is something analogous here; if we were to accept the
relativity postulate, we would find in the law of gravitation and in the electromag-
netic laws a common number which would be the speed of light. We would find it
again in other forces of arbitrary origin which can only be explained in two ways:

Either there is nothing in the world that is not of electromagnetic origin.
Or else, this part which would be, to state it that way, shared by all physical

phenomena would only be an appearance, something which would arise from our
measurement methods. How do we make our measurements? We would start to say,
by transporting one or another of the objects regarded as invariable solids; but that is
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no longer true in the current theory, if the Lorentz contraction is accepted. In this
theory, two equal lengths are, by definition, two lengths that light takes the same
time to traverse.

Perhaps it would suffice to renounce this definition so that Lorentz’s theory was
as completely overthrown as was the Ptolemaic system by the intervention of
Copernicus. If that were to happen one day, that would not prove that the effort
made by Lorentz was pointless, because Ptolemy, whatever we might think of it, was
not useless to Copernicus.

I too have not hesitated to publish these few partial results even though at this
moment the whole theory itself might seem to be in danger from the discovery of
magnetocathode rays.

§1 – Lorentz Transformation

Lorentz adopted a specific system of units so as to make the factors of 4π disappear
from the formulas. I will do the same and additionally I will choose the units of
length and time such that the speed of light is equal to one. Under these conditions,
by calling: f, g, h the electric displacement; α, β, γ the magnetic force; F, G, H the
vector potential; ψ the scalar potential; ρ the electric charge density; ξ, η, ζ the
electron velocity; and u, v, w the current, the fundamental formulas become:4

u ¼ df
dt

þ ρξ ¼ dγ
dy

� dβ
dz

, α ¼ dH
dy

� dG
dz

, f ¼ � dF
dt

� dψ
dx

,

dα
dt

¼ dg
dz

� dh
dy

,
dρ
dt

þ
X dρξ

dx
¼ 0,

X df
dx

¼ ρ,
dψ
dt

þ
X dF

dx
¼ 0,

□ ¼ Δ� d2

dt2
¼
X d2

dx2
� d2

dt2
, □ψ ¼ �ρ, □F ¼ �ρξ:

ð1Þ

An element of matter of volume dxdydz experiences a mechanical force whose
components Xdxdydz, Zdxdydz, Ydxdydz are determined from the formula:

X ¼ ρf þ ρ ηγ � ζβð Þ: ð2Þ

These equations are subject to a remarkable transformation discovered by Lorentz
and which is of interest because it explains why no experiment is able to let us know
the absolute motion of the universe. Let us set:

x0 ¼ kl xþ εtð Þ, t0 ¼ kl t þ εxð Þ, y0 ¼ ly, z0 ¼ lz, ð3Þ

where l and ε are arbitrary constants, and where
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k ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ε2

p :

If we then set:

□0 ¼
X d2

dx02
� d2

dt02
,

it will follow:

□0 ¼ □l�2

Now consider a sphere driven in a motion of uniform translation with the electron
and let:

x� ξtð Þ2 þ y� ηtð Þ2 þ z� ζtð Þ2 ¼ r2

be the equation of this mobile sphere whose volume will be 4
3 πr

3.
The transformation will change it into an ellipsoid whose equation is easy to find.

It is in fact easily deduced from equations (3):

x ¼ k
l
x0 � εt0ð Þ, t ¼ k

l
t0 � εx0ð Þ, y ¼ y0

l
, z ¼ z0

l
: ð30Þ

The equation for the ellipsoid then becomes:

k2 x0 � εt0 þ εξx0ð Þ2 þ y0 � ηkt0 þ ηkεx0ð Þ2 þ z0 � ζkt0 þ ζkεx0ð Þ2 ¼ l2r2:

This ellipsoid moves with a uniform motion; for t0 ¼ 0, it reduces to

k2x02 1þ εξð Þ2 þ y0 þ ηkεx0ð Þ2 þ z0 þ ζkεx0ð Þ2 ¼ l2r2

and its volume is:

4
3
πr3

l3

k 1þ ξεð Þ :

If we want the charge of an electron to be unchanged by the transformation and if
we call ρ0 the new electric charge density, it will follow:

ρ0 ¼ k

l3
ρþ ερξð Þ: ð4Þ

What will the new speeds ξ0, η0, ζ0 be? It will have to be:
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ξ0 ¼ dx0

dt0 ¼
d xþ εtð Þ
d t þ εxð Þ ¼

ξþ ε
1þ εξ

,

η0 ¼ dy0

dt0 ¼
dy

kd t þ εxð Þ ¼
η

k 1þ εξð Þ , ζ0 ¼ ζ
k 1þ εξð Þ

hence

ρ0ξ0 ¼ k

l3
ρξþ ερð Þ, ρ0η0 ¼ 1

l3
ρη, ρ0ζ0 ¼ 1

l3
ρζ: ð40Þ

Here is where I need to indicate for the first time a divergence from Lorentz.
Lorentz set (up to differences in notation; loc. cit., page 813, formulas 7 and 85):

ρ0 ¼ 1
kl3

ρ, ξ0 ¼ k2 ξþ εð Þ, η0 ¼ kη, ζ0 ¼ kζ :

That way the formulas:

ρ0ξ0 ¼ k

l3
ρξþ ερð Þ, ρ0η0 ¼ 1

l3
ρη, ρ0ζ0 ¼ 1

l3
ρζ;

are found, but the value of ρ0 is different.
It needs to be noted that the formulas (4) and (40) satisfy the continuity condition

dρ0

dt0 þ
X dρ0ξ0

dx0 ¼ 0:

In fact, let λ be an undetermined quantity and D the functional determinant of

t þ λρ, xþ λρξ, yþ λρη, zþ λρζ ð5Þ

with respect to t, x, y and z. It will follow:

D ¼ D0 þ D1λþ D2λ
2 þ D3λ

3 þ D4λ
4:

with D0 ¼ 1 and D1 ¼ dρ/dt + ∑ dρξ/dx ¼ 0.
Let λ0 ¼ l2λ, we see that the four functions

t0 þ λ0ρ0, x0 þ λ0ρ0ξ0, y0 þ λ0ρ0η0, z0 þ λ0ρ0ζ0 ð50Þ

are related to the functions (5) by the same linear relations as the former variables to
the new variables. If the functional determinant of the functions (50) with respect to
the new variables is therefore designated D0, it will follow:

50 H. Poincaré



D0 ¼ D, D0 ¼ D0
0 þ D0

1λ
0 þ D0

2λ
02 þ D0

3λ
03 þ D0

4λ
04,

hence:

D0
0 ¼ D0 ¼ 1,D0

1 ¼ l�2D1 ¼ 0 ¼ dρ0

dt0 þ
X dρ0ξ0

dx0 :

which was to be proven.
With the hypothesis from Lorentz, this condition would not be fulfilled, because

ρ0 does not have the same value.
We will now define new vector and scalar potentials so as to satisfy the

conditions:

□0ψ 0 ¼ �ρ0, □0F0 ¼ �ρ0ξ0 : ð6Þ

From that we next draw:

ψ 0 ¼ k
l
ψ þ εFð Þ, F0 ¼ k

l
F þ εψð Þ, G0 ¼ 1

l
G, H0 ¼ H: ð7Þ

These formulas do differ from those of Lorentz, but in the final analysis the
divergence only bears on the definitions.

We will choose new electric and magnetic fields so as to satisfy the equations:

f 0 ¼ � dF0

dt0 �
dψ 0

dx0 , α0 ¼ dH0

dy0 �
dG0

dz0
: ð8Þ

It is easy to see that:

d
dt0 ¼

k
l

d
dt

� ε
d
dx

� �
,

d
dx0 ¼

k
l

d
dx

� ε
d
dt

� �
,

d
dy0 ¼

1
l
d
dy

,
d
dz0 ¼

1
l
d
dz

and from that to conclude:

f 0 ¼ 1
l2
f , g0 ¼ k

l2
gþ εγð Þ, h0 ¼ k

l2
h� εβð Þ,

α0 ¼ 1
l2
α, β0 ¼ k

l2
β � εhð Þ, γ0 ¼ k

l2
γ þ εgð Þ:

ð9Þ

These formulas are identical to Lorentz’s.
Our transformation does not alter equations (1). In fact, the continuity condition,

and also equations (6) and (8), already provided us some of equations (1) (except for
accenting of the letters).

Equations (6) connected with the continuity condition give us:
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dψ 0

dt0 þ
X dF0

dx0 ¼ 0: ð10Þ

It remains to establish that:

d f 0

dt0 þ ρ0ξ0 ¼ dγ0

dy0 �
dβ0

dz0 ,
dα0

dt0 ¼
dg0

dz0 �
dh0

dy0 ,
X d f 0

dx0 ¼ ρ0

and it can be easily seen that these are necessary consequences of equations (6), (8)
and (10).

We must now compare the forces before and after the transformation.
Let X, Y, Z be the force before and X0, Y0, Z0 be the force after the transformation;

with all of them referred to a unit volume. In order for X0 to satisfy the same
equations as before the transformation, it must hold that:

X0 ¼ ρ0 f 0 þ ρ0 η0γ0 � ζ0β0ð Þ,
Y 0 ¼ ρ0g0 þ ρ0 ζ0α0 � ξ0γ0ð Þ,
Z 0 ¼ ρ0h0 þ ρ0 ξ0β0 � η0α0ð Þ,

or, by replacing the quantities by their values (4), (40) and (9) while making use of
equations (2):

X0 ¼ k

l5
X þ ε

X
Xξ

� �
,

Y 0 ¼ 1
l5
Y ,

Z 0 ¼ 1

l5
Z:

ð11Þ

If we represent the force referred, no longer to the unit volume, but now to the unit
electrical charge of the electron, by X1, Y1, Z1 and the same qualities after the
transformation by X0

1, Y
0
1, Z

0
1 we will have:

X1 ¼ f þ ηγ � ζβ, X0
1 ¼ f 0 þ η0γ0 � ζ0β0, X ¼ ρX1, X0 ¼ ρ0X0

1

and we will have the equations:
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X0
1 ¼

k

l5
ρ
ρ0 X1 þ ε

X
X1ξ

� �
,

Y 0
1 ¼

1
l5
ρ
ρ0 Y1,

Z 0
1 ¼

1
l5
ρ
ρ0 Z1:

ð110Þ

Lorentz had found (within the difference of notation, page 813, formula (10)):

X1 ¼ l2X0
1 � l2ε η0g0 þ ζ0h0ð Þ,

Y1 ¼ l2

k
Y 0
1 þ

l2ε
k
ξ0g0,

Z1 ¼ l2

k
Z 0
1 þ

l2ε
k
ξ0h0,

ð1100Þ

Before going farther, the cause of this significant divergence must be found. It
obviously means that the formulas for ξ0, η0, ζ0 are not the same, even though the
formulas for the electric and magnetic fields are the same.

If the inertia of the electrons is exclusively of electromagnetic origin and if
additionally they are only subject to forces of electromagnetic origin, then the
equilibrium condition requires that inside the electrons it hold:

X ¼ Y ¼ Z ¼ 0:

Hence, in light of equations (11), these relations are equivalent to

X0 ¼ Y 0 ¼ Z 0 ¼ 0:

The equilibrium conditions of the electrons are therefore unchanged by the
transformation.

Unfortunately, such a simple assumption is not allowable. If, in fact, one sup-
poses that ξ¼ η¼ ζ ¼ 0, the conditions X¼ Y¼ Z¼ 0 would lead to f¼ g¼ h¼ 0,
and consequently

P df
dx ¼ 0, meaning ρ¼ 0. One would arrive at analogous results in

the most general case. One therefore has to accept that in addition to electromagnetic
forces, there are either other forces or binding. One must then look at what condi-
tions these forces or binding must satisfy for the equilibrium of the electrons to be
undisturbed by the transformation. This will be taken up in a subsequent section.
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§2 – Principle of Least Action

The way Lorentz deduced his equations from the principle of least action is known6.
Although I have nothing essential to add to it, I will however go back over the
question because I prefer to present it in a slightly different form which will be useful
for my purpose. I will set:

J ¼
Z P

f 2

2
þ
P

α2

2
�
X

Fu

� �
dtdτ, ð1Þ

by assuming that f, α, F, u, etc. are subject to the following conditions and to those
which could be deduced from them by symmetry:

X df
dx

¼ ρ, α ¼ dH
dy

� dG
dz

, u ¼ df
dt

þ ρξ : ð2Þ

As for the integral J, it must be extended to:

1) the entire space with respect to the element of volume, dτ ¼ dxdydz;
2) the limits included between t ¼ t0, t ¼ t1 with respect to time, t.

According to the principle of least action, the integral J must be a minimum if the
various quantities which appear in it are subject to:

1) conditions (2);
2) the condition that the state of the system is fixed at the two limit epochs t ¼ t0,

t ¼ t1.

This last condition allows us to transform our integrals by integration by parts
over time. If we in fact have an integral of the form

Z
A
dBδC
dt

dtdτ,

where C is one of the quantities which define the state of the system and δC is its
variation, it will be equal (by integrating by parts with respect to time) to:

Z
ABδCj jt¼t1

t¼t0
dτ �

Z
dA
dt

dBδC:

Since the state of the system is determined at the two limit epochs, δC ¼ 0 for
t¼ t0, t¼ t1; therefore the first integral which relates to these two epochs is zero; and
only the second remains.

We can similarly integrate by parts relative to x, y or z; we have in fact
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Z
A
dB
dx

dxdydzdt ¼
Z

ABdydzdt �
Z

B
dA
dx

dxdydzdt:

Since our integrals extend to infinity, in the first integral on the right-hand side
x must be made equal to �1; therefore, since we always assume that all our
functions become zero at infinity, this integral must be zero and it will follow

Z
A
dB
dx

dτdt ¼ �
Z

B
dA
dx

dτdt:

If the system were assumed subject to binding, it would be necessary to add a
binding condition to the conditions imposed on the various quantities appearing in
the integral J.

First give F, G, H increments δF, δG, δH; hence:

δα ¼ dδH
dy

� dδG
dz

:

One should have:

δJ ¼
Z X

α
dδH
dy

� dδG
dz

� �
�
X

uδF

� �
dtdτ ¼ 0,

or, by integrating by parts,

δJ ¼
Z X

δG
dα
dz

� δH
dα
dy

� �
�
X

uδF

� �
dtdτ

¼ �
Z X

δF u� dγ
dy

þ dβ
dz

� �
dtdτ ¼ 0,

hence, by equating the coefficient of the arbitrary δF to zero,

u ¼ dγ
dy

� dβ
dz

: ð3Þ

This relation gives us (with an integration by parts):

Z X
Fudτ ¼

Z X
F

dγ
dy

� dβ
dz

� �
dτ ¼

Z X
β
dF
dz

� γ
dF
dy

� �
dτ

¼
Z X

α
dH
dy

� dG
dz

� �
dτ,

or

5 On the Dynamics of the Electron 55



Z X
Fudτ ¼

Z X
α2dτ

hence finally:

J ¼
Z P

f 2

2
�
P

α2

2

� �
dtdτ: ð4Þ

Now, and because of the relation (3), δJ is independent of δF and consequently of
δα; let us now vary the other variables.

It follows, by returning to the expression (1) for J,

δJ ¼
Z X

f δf �
X

Fδu
� �

dtdτ:

But f, g, h are subject to the first of the conditions (2), such that

X dδf
dx

¼ δρ, ð5Þ

and which it is appropriate to write:

δJ ¼
Z X

f δf �
X

Fδu� ψ
X dδf

dx
� δρ

� �� �
dtdτ: ð6Þ

From the principles of calculus of variations, we learn that the calculation must be
done as if, ψ being an arbitrary function, δJ were represented by the expression (6)
and as if the variations were no longer subject to the condition (5).

We will have additionally

δu ¼ dδf
dt

þ δρξ,

hence, after integration by parts,

δJ ¼
Z X

δf f þ dF
dt

þ dψ
dx

� �
dtdτ þ

Z
ψδρ�

X
Fδρξ

� �
dtdτ: ð7Þ

If we first assume that the electrons experience no variation, δρ¼ δρξ¼ 0 and the
second integral is zero. Since δJ must become zero, it must follow that:

f þ dF
dt

þ dψ
dx

¼ 0: ð8Þ

In the general case, there rests, therefore:
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δJ ¼
Z

ψδρ�
X

Fδρξ
� �

dtdτ: ð9Þ

The forces which act on the electrons remain to be determined. To do that we will
have to assume that a complementary force �Xdτ, �Ydτ, �Zdτ is applied to each
element of the electron and write that this force is in equilibrium with the forces of
electromagnetic origin. Let U, V, W be the components of the displacements of the
element dτ of the electron; this displacement is considered from an arbitrary initial
position. Let δU, δV, δW be the variations of this displacement; the virtual work
corresponding to the complementary force will be:

�
Z X

XδUdτ,

such that the equilibrium condition that we just talked about will be written:

δJ ¼ �
Z X

XδUdτdt: ð10Þ

This is a matter of transforming δJ. To do that, we start by looking for the
continuity equation expressing that the charge of an electron is conserved by the
variation.

Let x0, y0, z0 be the initial position of an electron. Its current position will be

x ¼ x0 þ U, y ¼ y0 þ V , z ¼ z0 þW :

We will additionally introduce an auxiliary variable ε, which will produce the
variations of our various functions, such that for an arbitrary function A, we will
have:

δA ¼ δε
dA
dε

:

It will in fact be useful to be able to switch from the notation of calculus of
variations to that of ordinary differential calculus, or vice versa.

It will be possible to regard our functions: first as depending on five variables x, y,
z, t, ε, such that the position does not change when only t and ε change—we will
designate their derivatives by the ordinary d; second as depending on five variables
x0, y0, z0, t, ε, such that a single electron is always followed when only t and ε vary—
we will then designate their derivatives by round ∂. We will then have:

ξ ¼ ∂U
∂t

¼ dU
dt

þ ξ
dU
dx

þ η
dU
dy

þ ζ
dU
dz

¼ ∂x
∂t

: ð11Þ

We now designate by Δ the functional determinant of x, y, z, relative to x0, y0, z0:
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Δ ¼ ∂ x, y, zð Þ
∂ x0, y0, z0ð Þ :

If, with ε, x0, y0, z0 remaining constant, we give an increase ∂t to t, there will
result for x, y, z increases ∂x, ∂y, ∂z and forΔ an increase of ∂Δ and it will hold that:

∂x ¼ ξ∂t, ∂y ¼ η∂t, ∂z ¼ ζ∂t,

Δþ ∂Δ ¼ ∂ xþ ∂x, yþ ∂y, zþ ∂zð Þ
∂ x0, y0, z0ð Þ ;

hence

1þ ∂Δ
Δ ¼ ∂ xþ ∂x, yþ ∂y, zþ ∂zð Þ

∂ x, y, zð Þ ¼ ∂ xþ ξ∂t, yþ η∂t, zþ ζ∂tð Þ
∂ x, y, zð Þ :

From which one can deduce:

1
Δ

∂Δ
∂t

¼ dξ
dx

þ dη
dy

þ dζ
dz

: ð12Þ

Since the mass7of each electron is invariant, we will have:

∂ρΔ
∂t

¼ 0, ð13Þ

hence:

∂ρ
∂t

þ
X

ρ
dξ
dx

¼ 0,
∂ρ
∂t

¼ dρ
dt

þ
X

ξ
dρ
dx

,
dρ
dt

þ
X dρξ

dx
¼ 0:

Such are the various forms of the equation of continuity as it relates to the variable
t. We find the analogous forms as it relates to the variable ε. Let:

δU ¼ ∂U
∂ε

δε, δV ¼ ∂V
∂ε

δε, δW ¼ ∂W
∂ε

δε;

it will follow:

δU ¼ dU
dε

δεþ δU
dU
dx

þ δV
dU
dy

þ δW
dU
dz

, ð110Þ

1
Δ
∂Δ
∂ε

¼
X∂U

∂ε
,

∂ρΔ
∂ε

¼ 0, ð120Þ
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δε
∂ρ
∂ε

þ
X

ρ
dδU
dx

¼ 0,
∂ρ
∂ε

¼ dρ
dε

þ
X δU

δε
dρ
dx

, δρþ dρδU
dx

¼ 0: ð130Þ

The difference between the definition of δU ¼ ∂U
∂ε δε and that of δρ ¼ dρ

dε δεwill be
noted; it will be noted that it is in fact this definition of δU which is appropriate for
the formula (10).

That last equation is going to allow us to transform the first term of (9); in fact we
find:

Z
ψδρdtdτ ¼ �

Z
ψ
X dρδU

dx
dtdτ

or, by integrating by parts,

Z
ψδρdtdτ ¼

Z X
ρ
dψ
dx

δUdtdτ: ð14Þ

We now propose to determine:

δ ρξð Þ ¼ d ρξð Þ
dε

δε:

We observe the ρΔ can only depend on x0, y0, z0; in fact, if an element of electron
is considered whose initial position is a rectangular parallelepiped whose edges are
dx0, dy0, dz0, then the charge of this element is

ρΔdx0dy0dz0

and, since this charge needs to remain constant, it follows that:

∂ρΔ
∂t

¼ ∂ρΔ
∂ε

¼ 0: ð15Þ

From that it is deduced:

∂2ρΔ
∂t∂ε

¼ ∂
∂ε

ρΔ∂U
∂t

� �
¼ ∂

∂t
ρΔ∂U

∂ε

� �
: ð16Þ

For an arbitrary function A it is known from the equation of continuity that,

1
Δ

∂AΔ
∂t

¼ dA
dt

þ
X dAξ

dx

and similarly
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1
Δ

∂AΔ
∂ε

¼ dA
dε

þ
X dA ∂U

∂ε

dx

Therefore it follows:

1
Δ

∂
∂ε

ρΔ∂U
∂t

� �
¼ dρ ∂U

∂t

dε
þ d ρ ∂U

∂t
∂U
∂ε

	 

dx

þ d ρ ∂U
∂t

∂V
∂ε

	 

dy

þ d ρ ∂U
∂t

∂W
∂ε

	 

dz

ð17Þ

1
Δ

∂
∂t

ρΔ∂U
∂ε

� �
¼ dρ ∂U

∂ε

dt
þ d ρ ∂U

∂t
∂U
∂ε

	 

dx

þ d ρ ∂V
∂t

∂U
∂ε

	 

dy

þ d ρ ∂W
∂t

∂U
∂ε

	 

dz

ð170Þ

The right-hand sides of (17) and (170) must be equal and, recalling that

∂U
∂t

¼ ξ,
∂U
∂ε

δε ¼ δU,
dρξ
dε

δε ¼ δρξ,

it follows that:

δρξþ d ρξδUð Þ
dx

þ d ρξδVð Þ
dy

þ d ρξδWð Þ
dz

¼ d ρδUð Þ
dt

þ d ρξδUð Þ
dx

þ d ρηδUð Þ
dy

þ d ρζδUð Þ
dz

ð18Þ

We now transform the second term from (9) and get:

R P
Fδρξdtdτ ¼ R PF

d ρδUð Þ
dt

þ
X

F
d ρηδUð Þ

dy
þ
X

F
d ρζδUð Þ

dz

�

�PF
d ρξδVð Þ

dy
�
X

F
d ρξδWð Þ

dz

�
dtdτ:

By integrating by parts, the right-hand side becomes:

Z
�
X

ρδU
dF
dt

�
X

ρηδU
dF
dy

�
X

ρζδU
dF
dz

þ
X

ρξδV
dF
dy

þ
X

ρξδW
dF
dz

� �
dtdτ:

Now remark that:

X
ρξδV

dF
dy

¼
X

ρζδU
dH
dx

,
X

ρξδW
dF
dz

¼
X

ρηδU
dG
dx

:

If, in fact, in both sides of these relations, the sums are expanded, they become
identities; and let us recall that
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dH
dx

� dF
dz

¼ �β,
dG
dx

� dF
dy

¼ γ,

the right-hand side in question will become:

Z
�
X

ρδU
dF
dt

þ
X

ργηδU �
X

ρβζδU

� �
dtdτ,

such that finally:

δJ ¼
Z X

ρδU
dψ
dx

þ dF
dt

þ βζ � γη

� �
dtdτ ¼

Z X
ρδU �f þ βζ � γηð Þdtdτ:

By equating the coefficients of δU in both sides of (10), it follows:

X ¼ f � βζ þ γη

This is equation (2) from the previous section.

§3 – Lorentz Transformation and the Principle of Least
Action

We are going to see if the principle of least action gives us the reason for the success
of the Lorentz transformation. First it needs to be seen what this transformation does
to the integral:

J ¼
Z P

f 2

2
�
P

α2

2

� �
dtdτ

(formula 4 from §2).
We first find

dt0dτ0 ¼ l4dtdτ

because x0, y0, z0, t0 are related to x, y, z, t by linear relations whose determinant is
equal to l4; it next follows:

l4
X

f 02 ¼ f 2 þ k2 g2 þ h2
	 
þ k2ε2 β2 þ γ2

	 
þ 2k2ε gγ � hβð Þ
l4
X

α02 ¼ α2 þ k2 β2 þ γ2
	 
þ k2ε2 g2 þ h2

	 
þ 2k2ε gγ � hβð Þ
ð1Þ

(formulas 9 from §1), hence:
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l4
X

f 02 �
X

α02
� �

¼
X

f 2 �
X

α2;

such that if one sets:

J 0 ¼
Z P

f 02

2
�
P

α02

2

� �
dt0dτ0

it follows:

J 0 ¼ J:

For this equality to be justified, it is however necessary that the limits of
integration be the same; until now we have allowed t to vary from t0 to t1; and
x, y, z to vary from �1 to +1. As such, the integration limits would be changed by
the Lorentz transformation; but nothing prevents us from assuming t0 ¼ � 1,
t ¼ + 1; with these conditions, the limits of the same for J and for J 0.

We now need to compare the following two equations analogous to equation (10)
from §2:

δJ ¼ �
Z X

XδUdτdt

δJ 0 ¼ �
Z X

X0δU0dτ0dt0:
ð2Þ

To do that, we first need to compare δU0 to δU.
Consider an electron whose initial coordinates are x0, y0, z0; at the moment t, these

coordinates will be:

x ¼ x0 þ U, y ¼ y0 þ V , z ¼ z0 þW :

If the corresponding electron is considered after the Lorentz transformation, its
coordinates will be

x0 ¼ kl xþ εtð Þ, y0 ¼ ly, z0 ¼ lz,

where

x0 ¼ x0 þ U0, y0 ¼ y0 þ V 0, z0 ¼ z0 þW 0 ;

but it will only reach these coordinates at the moment
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t0 ¼ kl t þ εxð Þ

If we were to make our variables undergo variations δU, δV, δW and at the same
time we were to give t an increase δt, the coordinates x, y, z will undergo a total
increase

δx ¼ δU þ ξδt, δy ¼ δV þ ηδt, δz ¼ δW þ ζδt :

We will also have:

δx0 ¼ δU0 þ ξ0δt0, δy0 ¼ δV 0 þ η0δt0, δz0 ¼ δW 0 þ ζ0δt0 ,

and because of the Lorentz transformation:

δx0 ¼ kl δxþ εδtð Þ, δy0 ¼ lδy, δz0 ¼ lδz, δt0 ¼ kt δt þ εδxð Þ,

hence, by assuming δt ¼ 0, the relations:

δx0 ¼ δU0 þ ξ0δt0 ¼ klδU,

δy0 ¼ δV 0 þ η0δt0 ¼ lδV ,

δt0 ¼ klεδU:

We observe that

ξ0 ¼ ξþ ε
1þ ξε

, η0 ¼ η
k 1þ ξεð Þ ;

it will follow, by replacing δt0 with its value,

kl 1þ ξεð ÞδU ¼ δU0 1þ ξεð Þ þ ξþ εð ÞklεδU,

l 1þ ξεð ÞδV ¼ δV 0 1þ ξεð Þ þ ηlεδU:

If we recall the definition of k, we can draw from it that:

δU ¼ k
l
δU0 þ kε

l
ξδU0,

δV ¼ 1
l
δV 0 þ kε

l
ηδU0,

and similarly that
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δW ¼ 1
l
δW 0 þ kε

l
ζδU0;

hence

X
XδU ¼ 1

l
kXδU0 þ YδV 0 þ ZδW 0ð Þ þ kε

l
δU0XXξ ð3Þ

Hence, because of equations (2) it must be that:

Z X
X0δU0dt0dτ0 ¼

Z X
XδUdtdτ ¼ 1

l4

Z X
XδUdt0dτ0

By replacing ∑XδUby its value (3) and identifying, it follows:

X0 ¼ k

l5
X þ kε

l5
X

Xξ Y 0 ¼ 1
l5
Y , Z 0 ¼ 1

l5
Z:

These are equations (11) from §1. The principle of least action therefore leads us
to the same result as the analysis from §1.

If we refer back to formulas (1), we see that ∑f 2 � ∑ α2 is unchanged by the
Lorentz transformation, up to a constant factor; it is not the same for the expression
∑f 2 + ∑ α2 which appears in the energy. If we limit ourselves to the case where ε is
sufficiently small that its square can be neglected such that k ¼ 1 and if we also
assume l ¼ 1, we find:

X
f 02 ¼

X
f 2 þ 2ε gγ � hβð Þ,X

α02 ¼
X

α2 þ 2ε gγ � hβð Þ,

or, by addition,

X
f 02 þ

X
α02 ¼

X
f 2 þ

X
α2 þ 4ε gγ � hβð Þ:

§4 – The Lorentz Group

It is important to note that the Lorentz transformation do form a group.
In fact, if one sets:

x0 ¼ kl xþ εtð Þ, y0 ¼ ly, z0 ¼ lz, t0 ¼ kl t þ εxð Þ,

and additionally
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x00 ¼ k0l0 x0 þ ε0t0ð Þ, y00 ¼ l0y0 z00 ¼ l0z0, t00 ¼ k0l0 t0 þ ε0x0ð Þ,

with

k�2 ¼ 1� ε2, k0�2 ¼ 1� ε02

it will follow:

x00 ¼ k00l00 xþ ε00tð Þ, y00 ¼ l00y z00 ¼ l00z, t00 ¼ k00l00 t þ ε00xð Þ,

with

ε00 ¼ εþ ε0

1þ εε0 , l00 ¼ ll0, k00 ¼ kk0 1þ εε0ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ε002

p :

If we give l the value 1 and we assume that ε is infinitesimal,

x0 ¼ xþ δx, y0 ¼ yþ δy, z0 ¼ zþ δz, t0 ¼ t þ δt,

it will follow:

δx ¼ εt, δy ¼ δz ¼ 0, δt ¼ εx:

That is the infinitesimal generating transformation of the group, which I will call
the T1 transformation and which can be written using the Lie notation:

t
dφ
dx

þ x
dφ
dt

¼ T1:

If we assume ε ¼ 0 and l ¼ 1 + δl, we would in contrast find

δx ¼ xδl, δy ¼ yδl, δz ¼ zδl, δt ¼ tδl

and we will have another infinitesimal transformation T0 of the group (supposing
that l and ε are regarded as independent variables) and with the Lie notation it would
be:

T0 ¼ x
dφ
dx

þ y
dφ
dy

þ z
dφ
dz

þ t
dφ
dt

:

But we could give the particular role that we had given to the x-axis to the y-axis
or the z-axis; in that way one would have two other infinitesimal transformations:
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T2 ¼ t
dφ
dy

þ y
dφ
dt

T3 ¼ t
dφ
dz

þ z
dφ
dt

which would not alter the Lorentz equations either.
One can form the combinations imagined by Lie, such as

T1,T2½ � ¼ x
dφ
dy

� y
dφ
dx

;

but it is easy to see that this transformation is equivalent to a change of coordinate
axes, the axes turning a very small angle around the z-axis. We shouldn’t therefore
be surprised if a similar change leaves the form of the Lorentz equations unchanged,
since the equations are obviously independent of the choice of axes.

We are therefore led to consider a continuous group that we will call the Lorentz
group in which will allow as infinitesimal transformations:

1) the transformation T0 which will be permutable with all the others;
2) the three transformations T1, T2, T3; and
3) the three rotations [T1,T2], [T2, T3], [T3,T1].

An arbitrary transformation of this group could always be broken down into a
transformation of the form:

x0 ¼ lx, y0 ¼ ly, z0 ¼ lz, t0 ¼ lt

and a linear transformation which does not change the quadratic form:

x2 þ y2 þ z2 � t2:

We can also generate our group in another way. Any transformation of the group
could be regarded as a transformation of the form:

x0 ¼ kl xþ εtð Þ, y0 ¼ ly, z0 ¼ lz, t0 ¼ kl t þ εxð Þ ð1Þ

preceded and followed by a suitable rotation.
But for our purposes, we should only consider a part of the transformations from

this group; we should assume that l is a function of ε, and it will be a matter of
choosing this function such that this part of the group, which I will call P, again
forms a group.

Turning the system 180� around the y-axis, we should find a transformation
which will have to again belong to P. Now this amounts to changing the sign of
x, x0, z and z0; in that way it is found that:
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x0 ¼ kl x� εtð Þ, y0 ¼ ly, z0 ¼ lz, t0 ¼ kl t � εxð Þ ð2Þ

Thus l is not changed when ε is changed to �ε.
On the other hand, if P is a group, the inverse substitution of (1), which is written:

x0 ¼ k
l
x� εtð Þ, y0 ¼ y

l
, z0 ¼ z

l
, t0 ¼ k

l
t � εxð Þ, ð3Þ

should also belong to P; it will therefore have to be identical to (2), meaning that

l ¼ 1
l
:

It will therefore have to be that l ¼ 1.

§5 – Langevin Waves

Langevin8 put the formulas which define the electromagnetic field produced by the
motion of a single electron in a particularly elegant form.

Return to the equations

□ψ ¼ �ρ, □F ¼ �ρξ: ð1Þ

It is known that they can be integrated by delayed potentials and that one finds:

ψ ¼ 1
4π

Z
ρ1dτ1
r

, F ¼ 1
4π

Z
ρ1ξ1dτ1

r
: ð2Þ

In these formulas one has:

dτ1 ¼ dx1dy1dz1, r2 ¼ x� x1ð Þ2þ y� y1ð Þ2 þ z� z1ð Þ2

while ρ1 and ξ1 are values of ρ and ξ at the point x1, y1, z1 and at the moment

t1 ¼ t � r:

Let x0, y0, z0 be the coordinates of a differential element of an electron at the
moment t; and

x1 ¼ x0 þ U, y1 ¼ y0 þ V , z1 ¼ z0 þW

be its coordinates at the moment t1.
U, V, W are functions of x0, y0, z0 such that we will be able to write:
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dx1 ¼ dx0 þ dU
dx0

dx0 þ dU
dy0

dy0 þ dU
dz0

dz0 þ ξ1dt1;

and if one assumes t to be constant, and also x, y and z:

dt1 ¼ þ
X x� x1

r
dx1:

We can then write:

dx1 1þ ξ1
x1 � x

r

� �
þ dy1ξ1

y1 � y
r

þ dz1ξ1
z1 � z
r

¼ dx0 1þ dU
dx0

� �
þ dy0

dU
dy0

þ dz0
dU
dz0

with the two other equations that can be deduced by circular permutation.
We therefore have:

dτ1 1þ ξ1
x1 � x

r
, ξ1

y1 � y
r

, ξ1
z1 � z
r

��� ��� ¼ dτ0 1þ dU
dx0

,
dU
dy0

,
dU
dz0

����
���� ð3Þ

by setting

dτ0 ¼ dx0dy0dz0:

We will study the determinants which appear on both sides of (3) and start with
the left-hand side; on trying to expand it, one sees that the terms of second and third
degree in ξ1, η1, ζ1 disappear and that the determinant is equal to

1þ ξ1
x1 � x

r
þ η1

y1 � y
r

þ ζ1
z1 � z
r

¼ 1þ ω,

where ω designates the radial component of the speed ξ1, η1, ζ1, meaning the
component directed along the radius vector going from the point x, y, z to the
point x1, y1, z1.

In order to get the second determinant, I consider the coordinates of various
molecules of the electron at a moment t01 which is the same for all the differential
elements, but in such a way that for the differential element that I consider one can
have t1 ¼ t01. The coordinates of a differential element will then be:

x01 ¼ x0 þ U0, y01 ¼ y0 þ V 0, z01 ¼ z0 þW 0,

where U0, V 0,W 0 are what U, V,W become when t1 is replaced in them by t01; as t
0
1 is

the same for all the differential elements, it will hold:
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dx01 ¼ dx0 1þ dU0

dx0

� �
þ dy0

dU0

dy0
þ dz0

dU0

dz0

and consequently

dτ01 ¼ dτ0 1þ dU0

dx0
,

dU0

dy0
,

dU0

dz0

����
����,

by setting

dτ01 ¼ dx01dy
0
1dz

0
1

But the element of electric charge is

dμ1 ¼ ρ1dτ
0
1

and additionally for the differential element considered, one has t1 ¼ t01 and conse-
quently dU0

dx0
¼ dU

dx0
, etc.; we can therefore write:

dμ1 ¼ ρ1dτ0 1þ dU0

dx0
,

dU0

dy0
,

dU0

dz0

����
����,

such that equation (3) will become:

ρ1dτ1 1þ ωð Þ ¼ dμ1

and equations (2):

ψ ¼ 1
4π

Z
dμ1

r 1þ ωð Þ , F ¼
Z

ξ1dμ1
r 1þ ωð Þ :

If we are dealing with a single electron, our integrals will reduce to a single
element, provided that only points x, y, z are considered that ae sufficiently far away
so that r and ω have substantially the same value for all points of the electron. The
potentials ψ , F, G, H will depend on the position of this electron and also its speed,
because not only do the ξ1, η1, ζ1 appear in the numerator in F, G, H, but the radial
component ω appears in the denominator. It is of course its position and its velocity
at the moment t1 that are involved.

The partial derivatives of ψ , F,G,Hwith respect to t, x, y, z (and consequently the
electric and magnetic fields) will furthermore depend on its acceleration. Addition-
ally, they will depend on it linearly, because in these derivatives this acceleration
comes in following a single differentiation.
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In that way, Langevin was led to distinguish the terms in the electric and magnetic
fields that do not depend on the acceleration (which he calls the speed wave) and
those that are proportional to the acceleration (which he calls the acceleration wave).

The Lorentz transformation makes the calculation of these two waves easier. We
can in fact apply this transformation to the system such that the speed of the single
electron under consideration become zero. We will take the direction of this velocity
for the x-axis before the transformation, such that, at the moment t,

η1 ¼ ζ1 ¼ 0,

and we will take ε ¼ � ξ1, such that

ξ01 ¼ η01 ¼ ζ01 ¼ 0:

We can therefore reduce the calculation of the two waves to the case where the
electron velocity is zero. We start with the velocity wave; we can first remark that
this wave is the same as if the motion of the electron were uniform.

If the velocity of electron is zero, it follows:

ω ¼ 0, F ¼ G ¼ H ¼ 0, ψ ¼ μ1
4πr

,

where μ1 is the electric charge of the electron. The velocity having been brought to
zero by the Lorentz transformation, we therefore have:

F0 ¼ G0 ¼ H0 ¼ 0, ψ ¼ μ1
4πr0 ,

where r0 is the distance from the point x0, y0, z0 to the point x01 , y
0
1 , z

0
1 , and

consequently:

α0 ¼ β0 ¼ γ0 ¼ 0,

f 0 ¼ μ1 x0 � x01
	 

4πr03

, g0 ¼ μ1 y0 � y01
	 

4πr03

, h0 ¼
μ1 z0 � z01
	 

4πr03

:

We now do the inverse Lorentz transformation to find the actual field
corresponding to a velocity �ε, 0, 0. By referring to equations (9) and (3) from §1:

α ¼ 0, β ¼ εh, γ ¼ �εg,

f ¼ μ1kl
3

4πr03
xþ εt � x1 � εt1ð Þ, g ¼ μ1kl

3

4πr03
y� y1ð Þ, h ¼ μ1kl

3

4πr03
z� z1ð Þ,

ð4Þ

It can be seen that the magnetic field is perpendicular to the x-axis (direction of
the velocity) and to the electric field and that the electric field is directed towards the
point:
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x1 þ ε t1 � tð Þ, y1, z1, ð5Þ

If the electron were to continue to move with a straight and uniform motion with
the speed that it had at the moment t1, meaning with the velocity �ε, 0, 0, this point
(5) would be the one that it would occupy at the moment t.

Now switch to the acceleration wave; by using the Lorentz transformation, we
can refer its determination to the case where the velocity is zero. This is the case
which occurs if an electron is imagined to execute very small amplitude oscillations,
but very fast, such that the displacements and the velocities are infinitesimal but the
accelerations are finite. This brings us back to the field which was studied in the
celebrated paper by Hertz, Die Kräfte elektrischer Schwingungen nach der
Maxwell’schen Theorie, that considered a very distant point. Under these conditions:

1) The electric and magnetic fields are equal to each other.
2) They are perpendicular to each other.
3) They are perpendicular to the normal to the spherical wavefront, meaning to the

sphere whose center is at the point x1, y1, z1.

I state that these three properties will still be present when the velocity is not zero,
and for that, it is sufficient for me to prove that they are unchanged by the Lorentz
transformation.

In fact, let A be the shared strength of the two fields; let:

x� x1ð Þ ¼ rλ, y� y1ð Þ ¼ rμ, z� z1ð Þ ¼ rν, λ2 þ μ2þ ν2 ¼ 1:

These properties will be expressed by the equalities:

A2 ¼P f 2 ¼P α2,
P

fα ¼ 0,
P

f x� x1ð Þ ¼ 0,
P

α x� x1ð Þ ¼ 0,P
f λ ¼ 0,

P
αλ ¼ 0;

which means again that:

b
A
,

g
A
,

h
A

α
A
,

β
A
,

γ
A

λ, μ, ν

are the directional cosines of the three rectangular directions and from that the
relations are deduced:

f ¼ βν� γμ, α ¼ hμ� gν,

or
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fr ¼ β z� z1ð Þ � γ y� y1ð Þ, αr ¼ h y� y1ð Þ � g z� z1ð Þ, ð6Þ

along with the equations that can be deduced from them by symmetry.
If we take up equations (3) from §1, we find:

x0 � x01 ¼ kl x� x1ð Þ þ ε t � t1ð Þ½ � ¼ kl x� x1ð Þ þ εr½ �,
y0 � y01 ¼ l y� y1ð Þ,
z0 � z01 ¼ l z� z1ð Þ:

ð7Þ

Above, in §3, we found:

l4
X

f 02 �
X

α02
� �

¼
X

f 2 �
X

α2:

Therefore ∑ f 2 ¼ ∑ α2 leads to ∑ f 02 ¼ ∑ α02.
On the other hand, by starting from equations (9) from §1, it is found:

l4
X

f 0α0 ¼
X

fα,

which shows that ∑ fα ¼ 0 leads to ∑ f 0α0 ¼ 0.
I now state that

X
f 0 x0 � x01
	 
 ¼ 0,

X
α0 x0 � x01
	 
 ¼ 0 : ð8Þ

In fact, because of equations (7) (and also equations 9 from §1) the left-hand sides
of the two equations (8) are written respectively:

k
l

X
f x� x1ð Þ þ kε

l
fr þ γ y� y1ð Þ � β z� z1ð Þ½ �,

k
l

X
α x� x1ð Þ þ kε

l
αr � h y� y1ð Þ þ g z� z1ð Þ½ �,

They therefore become zero because of the equations∑ f(x� x1)¼ ∑ α(x� x1)¼ 0
and because equations (6). This is precisely what it was a matter of proving.

It is also possible to arrive at the same result by simple considerations of
homogeneity.

In fact, ψ , F, G, H are homogeneous functions of (x � x1), (y � y1), (z � z1),
ξ1¼ dx1/dt1, η1¼ dy1/dt1, ζ1¼ dz1/dt1, of degree�1 in x, y, z, t, x1, y1, z1, t1 and their
derivatives.

The derivatives of, ψ , F, G, H with respect to x, y, z, t (and consequently also to
the two fields f, g, h; α, β, γ) will be homogeneous of degree �2 in the same
quantities if we additionally recall that the relation
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t � t1 ¼ r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

x� x1ð Þ2
q

is homogeneous in these quantities.
Now these derivatives or these fields depend on x � x1, speeds dx1/dt1 and

accelerations d2x1/dt1
2; they are made up of a term independent of the accelerations

(velocity wave) and a linear term in the accelerations (acceleration wave). Hence
dx1/dt1 is homogeneous of degree 0 and d2x1/dt1

2 is homogeneous of degree �1;
from this it follows that the velocity wave is homogeneous of degree �2 in (x � x1),
(y � y1), (z � z1), and the acceleration wave is homogeneous of degree �1.
Therefore, at a very distant point, the acceleration wave dominates and can conse-
quently be regarded as being the same as the total wave. Additionally, the law of
homogeneity shows us that the acceleration wave is self-similar at a distant point and
at an arbitrary point. It is therefore, at an arbitrary point, similar to the total wave at a
distant point. Hence at a distant point the perturbation can only propagate by plane
waves such that the two fields must be equal, perpendicular to each other and
perpendicular to the direction of propagation.

I will limit myself to referring to the article by Langevin in the Journal de
Physique (1905)9 for more details.

§6 – Contraction of Electrons

We assume a single electron driven in a motion of straight and uniform translation.
Based on what we just saw, the study of the field created by this electron in the case
where the electron is immobile can be determined using the Lorentz transformation;
the Lorentz transformation therefore replaces the real moving electron by an ideal
immobile electron.

Let α, β, γ, f, g, h; be the real field; let α0, β0, γ0, f 0, g0, h0 be what the field becomes
after the Lorentz transformation, such that the ideal field α0, f 0 corresponds to the
case of an immobile electron; it follows:

α0 ¼ β0 ¼ γ0 ¼ 0, f 0 ¼ � dψ 0

dx0 , g0 ¼ � dψ 0

dy0 , h0 ¼ � dψ 0

dz0 ;

and for the real field (because of formulas 9 from §1):

α ¼ 0, β ¼ εh, γ ¼ �εg,

f ¼ l2 f 0, g ¼ kl2g0, h ¼ kl2h0:
ð1Þ

It is now a matter of determining the total energy due to the motion of the
electron, the corresponding action and the electromagnetic moment in order to be
able to calculate the electromagnetic masses of the electron. For a distant point, it is
sufficient to consider the electron as reduced to a single point; one is then back at the
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formulas (4) from the previous section which are generally suitable. But here they
would not be sufficient, because the energy is principally located in the parts of the
ether closest to the electron.

Several hypotheses can be made on this subject.
According to Abraham’s hypothesis, the electrons would be spherical and

undeformable.
Then, when the Lorentz transformation would be applied, since the real electron

would be spherical, the ideal electron would become an ellipsoid. Following §1, the
equation of this ellipsoid would be:

k2 x0 � εt � ξt0 þ εξx0ð Þ2 þ y0 � ηkt0 þ ηkεx0ð Þ2 þ z0 � ζkt0 þ ζkεx0ð Þ2 ¼ l2r2:

But here we have:

ξþ ε ¼ η ¼ ζ ¼ 0, 1þ εξ ¼ 1� ε2 ¼ 1
k2

,

such that the equation of the ellipsoid becomes:

x02

k2
þ y02 þ z02 ¼ l2r2:

If the radius of the real electron is r, the axes of the ideal electron would therefore
be:

klr, lr, lr:

In contrast, in Lorentz’s hypothesis, the moving electrons would be deformed
such that it would be the real electron which would be an ellipsoid whereas the
immobile ideal electron would always be a sphere of radius r; the axes of the real
electron will then be:

r
lk
,

r
l
,

r
l
:

Call

A ¼ 1
2

Z
f 2dτ

the longitudinal electrical energy;
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B ¼ 1
2

Z
g2 þ h2
	 


dτ

the transverse electric energy; and

C ¼ 1
2

Z
β2 þ γ2
	 


dτ

the transverse magnetic energy. There is no longitudinal magnetic energy because
α¼ α0 ¼ 0. Designate the corresponding quantities in the ideal system by A0, B0, C0. It
is first found that:

C0 ¼ 0, C ¼ ε2B:

Additionally, we can observe that the real field depends only on x + εt, y and z,
and write:

dτ ¼ d xþ εtð Þdydz,
dτ0 ¼ dx0dy0dz0 ¼ kl3dτ;

hence

A0 ¼ kl�1A, B0 ¼ k�1l�1B, A ¼ lA0

k
, B ¼ klB0 :

In Lorentz’s hypothesis, B0 ¼ 2A0, and A0, which is inversely proportional to the
radius of the electron, is a constant independent of the speed of the real electron; in
this way, it is possible to find the total energy:

Aþ Bþ C ¼ A0lk 3þ ε2
	 


and the action (per unit time):

Aþ B� C ¼ 3A0l
k

:

We now calculate the electromagnetic momentum; we will find:

D ¼
Z

gγ � hβð Þdτ ¼ �ε

Z
g2 þ h2
	 


dτ ¼ �2εB ¼ �4εklA0:

But there must be some relations between the energy E ¼ A + B + C, the action
per unit time H ¼ A + B � C and the momentum D. The first of these relations is:
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E ¼ H � ε
dH
dε

,

the second is:

dD
dε

¼ � 1
ε
dE
dε

;

hence:

D ¼ dH
dε

, E ¼ H � εD: ð2Þ

The second of equations (2) is always satisfied; but the first is satisfied only if

l ¼ 1� ε2
	 
1

6 ¼ k�
1
3,

meaning if the volume of the ideal electron is equal to that of the real electron, or also
if the volume of the electron is constant; that is Langevin’s hypothesis.

This stands in contradiction with the result from §4 and with the results obtained
by Lorentz in another way. This contradiction is what needs to be explained.

Before bringing up this explanation, I observe that, whatever the hypothesis
adopted we will have:

H ¼ Aþ B� C ¼ l
k

A0 þ B0ð Þ,

or, because C0 ¼ 0,

H ¼ l
k
H0: ð3Þ

We can compare this result for the equation J ¼ J 0 obtained in §3.
We have in fact:

J ¼
Z

Hdt, J 0 ¼
Z

H0dt0:

We will observe the state of the system depends only on x + εt, y and z, meaning
x0, y0, z0, and that we have:

t0 ¼ l
k
t þ εx0, dt0 ¼ l

k
dt: ð4Þ

By combining equations (3) and (4), it is found that J ¼ J0.
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We place ourselves in an arbitrary hypothesis which could be either that of
Lorentz, Abraham, or Langevin, or an intermediate hypothesis.

Let

r, θr, θr

be the three axes of the real electron; those of the ideal electron will be:

klr, θlr, θlr:

Then A0 + B0 will be the electrostatic energy due to an ellipsoid having axes klr,
θlr, θlr.

Let us assume that the electricity spreads over the surface of the electron like that
of a conductor or spreads uniformly inside this electron. This energy will be of the
form:

A0 þ B0 ¼ φ θ
k

	 

klr

,

where φ is a known function.
Abraham’s hypothesis consists of assuming:

r ¼ const: θ ¼ 1 :

Lorentz’s hypothesis:

l ¼ 1, kr ¼ const: θ ¼ k:

Langevin’s hypothesis:

l ¼ k�1=3, k ¼ θ, klr ¼ const:

Next find:

H ¼ φ θ
k

	 

k2r

:

Abraham found, up to differences of notation (Göttinger Nachrichten, 1902,
p. 37):

H ¼ a
r
1� ε2

ε
log

1þ ε
1� ε

,

where a is a constant. Now, in Abraham’s hypothesis, θ ¼ 1; therefore:
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φ
1
k

� �
¼ ak2

1� ε2

ε
log

1þ ε
1� ε

¼ a
ε
log

1þ ε
1� ε

ð5Þ

which defines the function φ.
Having laid that out, imagine that the electron is subject to a binding force, such

that there is a relation between r and θ; under Lorentz’s hypothesis, this relation
would be θr ¼ const., in Langevin’s θ2r3 ¼ const.. We will assume more generally:

r ¼ bθm,

where b is a constant; hence:

H ¼ 1
bk2

θ�mφ
θ
k

� �
:

What shape will the electron take when the velocity becomes �εt,10 if it is
assumed that the only forces involved are binding forces? That shape will be defined
by the equality:

∂H
∂θ

¼ 0, ð6Þ

or

�mθ�m�1φþ θ�mk�1φ0 ¼ 0,

or

φ0

φ
¼ mk

θ
:

If we want there to be a balance such that θ ¼ k, it must be that for θ/k ¼ 1, the
logarithmic derivative of φ is equal to m.

If we expand 1/k and the right-hand side of (5) in powers of ε, equation (5)
becomes:

φ 1� ε2

2

� �
¼ a 1þ ε2

3

� �
,

by neglecting higher powers of ε.
By differentiating, it follows that:
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�εφ0 1� ε2

2

� �
¼ 2

3
εa:

For ε¼ 0, meaning when the argument of φ is equal to 1, these equations become:

φ ¼ a, φ0 ¼ � 2
3
a,

φ0

φ
¼ � 2

3
: ð7Þ

Therefore it must be that m ¼ � 2/3 as in Langevin’s hypothesis.
This result must be compared with the result concerning the first equation (2) and

from which, in reality, it is not different. In fact, let us assume that any element dτ of
the electron is subject to a force Xdτ parallel to the x-axis, where X is the same for all
elements; we will then have, conforming to the definition of the momentum:

dD
dt

¼
Z

Xdτ:

Additionally, the principle of least action gives us:

δJ ¼
Z

XδUdτdt, J ¼
Z

Hdt, δJ ¼
Z

DδUdt ,

where δU is the displacement of the center of gravity of the electron; H depends on θ
and ε, if it is accepted that r is related to θ by the binding equation; it then follows:

δJ ¼
Z

∂H
∂ε

δεþ ∂H
∂θ

δθ

� �
dt:

Additionally, δε ¼ � dδU
dt ; hence, by integrating by parts:

Z
Dδεdt ¼

Z
Dδudt,

or

Z
∂H
∂ε

δεþ ∂H
∂θ

δθ

� �
dt ¼

Z
Dδεdt;

hence

D ¼ ∂H
∂ε

,
∂H
∂θ

¼ 0:

5 On the Dynamics of the Electron 79



But the derivative dH/dε, which appears in the right-hand side of the first equation
(2) is the derivative taken by assuming θ is expressed as a function of ε, such that

dH
dε

¼ ∂H
∂ε

þ ∂H
∂θ

dθ
dε

:

Equation (2) is therefore equivalent to equation (6).
The conclusion is that if the electron is subject to a binding between its three axes,

and if no other force is involved apart from the binding forces, the shape that this
electron will take, when driven at a uniform speed, can only be that of the ideal
electron corresponding to a sphere, or that in the case where the binding will be such
that the volume is constant, as assumed in Langevin’s hypothesis.

In that way we are led to state the following problem: what additional forces,
other than the binding forces, would need to be involved to incorporate Lorentz’s
law or, more generally, any law other than that of Langevin?

The simplest hypothesis, and the first that we needed to examine, is that these
additional forces derive from a special potential deriving from the three axes of the
ellipsoid and consequently from θ and r; let F(θ, r) be that potential; in that case the
expression for the action will be:

J ¼
Z

H þ F θ, rð Þ½ �dt

and the equilibrium conditions will be written:

dH
dθ

þ dF
dθ

¼ 0,
dH
dr

þ dF
dr

¼ 0: ð8Þ

If we assume that r and θ are linked by the relationship r¼ bθm, we will be able to
regard r as a function of θ, consider F as only depending on θ and retain only the first
equation (8) with:

H ¼ φ

bk2θm
,

dH
dθ

¼ �mφ

bk2θmþ1 þ
φ0

bk3θm
:

It must be, for k ¼ θ, that equation (8) is satisfied, which gives, in light of
equations (7):

dF
dθ

¼ ma

bθmþ3 þ
2
3

a

bθmþ3 ,

hence:
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F ¼ �a

bθmþ2

mþ 2
3

mþ 2

and in the Lorentz hypothesis, where m ¼ � 1:

F ¼ a
3bθ

:

Now let us assume that there is no binding and, regarding r and θ as two
independent variables, we retain the two equations (8); it will follow:

H ¼ φ

k2r
,

dH
dθ

¼ φ0

k3r
,

dH
dr

¼ �φ

k3r2
:

Equations (8) will have to be satisfied for k ¼ θ, r ¼ bθm; which gives:

dF
dr

¼ a

b2θ2mþ2 ,
dF
dθ

¼ 2
3

a

bθmþ3 : ð9Þ

One of the ways to satisfy these conditions is to set:

F ¼ Arαθβ, ð10Þ

where A, α and β are constants; equations (9) must be satisfied for k¼ θ and r¼ bθm,
which gives:

Aαbα�1θmα�mþβ ¼ a

b2θ2mþ2 , Aβbαθmαþβ�1 ¼ 2
3

a

bθmþ3 :

By identification, it follows:

α ¼ 3γ, β ¼ 2γ, γ ¼ � mþ 2
3mþ 2

, A ¼ a

αbαþ1 : ð11Þ

But the volume of the ellipsoid is proportional to r3θ2, such that the additional
potential is proportional of the volume of the electron to the power γ.

In the Lorentz hypothesis, m ¼ � 1 and γ ¼ 1.
This is therefore the Lorentz hypothesis on the condition of adding an additional

potential proportional to the volume of the electron.
Langevin’s hypothesis corresponds to γ ¼ 1.
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§7 – Quasi-Stationary Motion

It remains to be seen whether this hypothesis about the contraction of electrons
reflects the impossibility of showing absolute motion; I will start by studying quasi-
stationary motion of an electron which is isolated or only subject to the action of
other distant electrons.

It is known that motion is called quasi-stationary motion when the changes in
velocity are sufficiently slow that the magnetic and electrical energies due to the
motion of the electron differ slightly from what they would be in uniform motion; it
is also known that it is by starting from this concept of quasi-stationary motion that
Abraham arrived at the concept of transverse and longitudinal electromagnetic
masses.

I believe I have to be more specific. Let H be our action per unit time:

H ¼ 1
2

Z X
f 2 �

X
α2

� �
dτ

where for the moment we only consider the electric and magnetic fields due to the
motion of an isolated electron. In the previous section, considering the motion to be
uniform, we regarded H as dependent on the speed ξ, η, ζ of the center of gravity of
the electron (in the previous section, these three components had values�ε, 0, 0) and
the parameters r and θ which define the shape of the electron.

But, if the motion is no longer uniform, H will depend not only on the values ξ, η,
ζ, r, θ at the moment being considered, but on the values of the same quantities at
other moments which will be different from them by quantities of the same order as
the time taken by light to go from one point of the electron to another; in other words,
H will depend not only on ξ, η, ζ, r, θ but also on their derivatives with respect to
time of all orders.

Hence, the motion will be called quasi-stationary when the partial derivatives of
H with respect to the successive derivatives of ξ, η, ζ, r, θ will be negligible
compared to the partial derivatives of H with respect to the quantities ξ, η, ζ, r, θ
themselves.

The equations of a similar motion could be written:

dH
dθ

þ dF
dθ

¼ dH
dr

þ dF
dr

¼ 0,

d
dt
dH
dξ

¼ �
Z

Xdτ,
d
dt
dH
dη

¼ �
Z

Ydτ,
d
dt
dH
dζ

¼ �
Z

Zdτ:
ð1Þ

In these equations, F has the same meaning as in the previous section; X, Y, Z are
the components of the force which acts on the electron: this force is solely due to the
electric and magnetic fields produced by other electrons.

We observed that H depends on ξ, η, ζ only through the combination

82 H. Poincaré



V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ η2 þ ζ2

q
,

meaning the magnitude of the velocity; by again calling D the momentum, it follows:

dH
dξ

¼ dH
dV

ξ
V
¼ �D

ξ
V

hence:

� d
dt

dH
dξ

¼ D
V

dξ
dt

� D
ξ

V2
dV
dt

þ dD
dV

ξ
V

dV
dt

, ð2Þ

� d
dt

dH
dη

¼ D
V

dη
dt

� D
η

V2
dV
dt

þ dD
dV

η
V

dV
dt

, ð20Þ

with

V
dV
dt

¼
X

ξ
dξ
dt

: ð3Þ

If we take the x-axis as the current direction of the velocity, it follows:

ξ ¼ V , η ¼ ζ ¼ 0,
dξ
dt

¼ dV
dt

;

equations (2) and (20) become:

� d
dt
dH
dξ

¼ dD
dV

dξ
dt

, � d
dt
dH
dη

¼ D
V
dη
dt

and the three equations (1) become:

dD
dV

dξ
dt

¼
Z

Xdτ,
D
V
dη
dt

¼
Z

Ydτ,
D
V
dζ
dt

¼
Z

Zdτ: ð4Þ

This is why Abraham gave dD/dV the name longitudinal mass and D/V the name
transverse mass; recall that D ¼ dH/dV.

In Lorentz’s hypothesis, we have:

D ¼ � dH
dV

¼ �∂H
∂V

,

where ∂H/∂V represents the derivative with respect V, after r and θ have been
replaced by their values as a function of V drawn from the first two equations (1); and
additionally it follows after this substitution,
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H ¼ þA
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2

p
:

Wewill now choose the units such that the constant factor A is equal to 1, and I setffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2

p
¼ h, hence:

H ¼ þh, D ¼ V
h
,

dD
dV

¼ h�3,
dD
dV

1
V2 �

D
V3 ¼ h�3:

We will also set:

M ¼ V
dV
dt

¼
X

ξ
dξ
dt

, X1 ¼
Z

Xdτ

and we will find for the equation of quasi-stationary motion:

h�1 dξ
dt

þ h�3ξM ¼ X1: ð5Þ

Let’s look at what becomes of these equations under the Lorentz transformation.
We will set 1 + ξε ¼ μ, and we will first have:

μξ0 ¼ ξþ ε, μη0 ¼ η
k
, μζ0 ¼ ζ

k
,

from which it is easy to find

μh0 ¼ h
k
:

We also have

dt0 ¼ kμdt,

hence:

dξ0

dt0 ¼
dξ
dt

1
k3μ3

,
dη0

dt0 ¼
dη
dt

1
k2μ2

� dξ
dt

ηε

k2μ3
,

dζ0

dt0 ¼
dζ
dt

1
k2μ2

� dξ
dt

ζε

k2μ3
,

and again:

M0 ¼ dξ
dt

εh2

k3μ4
þ M

k3μ3

and

84 H. Poincaré



h0�1 dξ
0

dt0 þ h0�3ξ0M0 ¼ h�1 dξ
dt

þ h�3 ξþ εð ÞM
� �

μ�1, ð6Þ

h0�1 dη
0

dt0 þ h0�3η0M0 ¼ h�1 dη
dt

þ h�3ηM

� �
μ�1h�1: ð7Þ

Let us now refer to equations (110) from §1; there X1, Y1, Z1 can be regarded as
having the same meaning as in equations (5). Also, we have l ¼ 1 and ρ0/ρ ¼ kμ;
these equations therefore become:

X0
1 ¼ μ�1 X1 þ ε

X
X1ξ

� �
,

Y 0
1 ¼ k�1μ�1Y1:

ð8Þ

When we calculate ∑X1ξ using equations (5), we will find:

X
X1ξ ¼ h�3M,

hence:

X0
1 ¼ μ�1 X1 þ εh�3M

	 

,

Y 0
1 ¼ k�1μ�1Y1:

ð9Þ

By comparing equations (5), (6), (7) and (9), we finally find:

h0�1 dξ
0

dt0 þ h0�3ξ0M0 ¼ X0
1,

h0�1 dη
0

dt0 þ h0�3η0M0 ¼ Y 0
1,

ð10Þ

which shows that the equations of quasi-stationary motion are unaltered by the
Lorentz transformation, but that does not yet prove that Lorentz’s hypothesis is the
only one which leads to this result.

To establish that point, we are going to restrict ourselves, as Lorentz did, to some
specific cases which will obviously be sufficient for us to prove a negative
proposition.

How are we first going to extend the hypothesis on which the previous calculation
rests:

1) Instead of assuming l ¼ 1 in the Lorentz transformation, we will assume that l is
arbitrary.

2) Instead of assuming that F is proportional to the volume, and consequently that
H is proportional to h, we are going to assume that F is an arbitrary function of θ
and r, such that (after having replaced θ and r by their values as functions of V,
drawn from the first two equations (1)) H is an arbitrary function of V.
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I first note that, if it is assumed that H ¼ h, one should in fact have l ¼ 1; and in
fact equations (6) and (7) will remain, except that the left-hand side will be
multiplied by 1/l; equations (9) also, except that the right-hand sides will be
multiplied by 1/l2; and finally equations (10) except that the right-hand side will
be multiplied by 1/l. If one wants the equations of motion to be unaltered by the
Lorentz transformation meaning that equations (10) are not different from equations
(5) except for the accenting of the letters, it must be assumed that:

l ¼ 1:

Now assume that η ¼ ζ ¼ 0, hence ξ ¼ V and dξ
dt ¼ dV

dt ; equations (5) will take the
form:

� d
dt
dH
dξ

¼ dD
dV

dξ
dt

¼ X1, � d
dt
dH
dη

¼ D
V
dη
dt

¼ Y1 : ð50Þ

We can additionally set:

dD
dV

¼ f Vð Þ ¼ f ξð Þ, D
V
¼ φ Vð Þ ¼ φ ξð Þ :

If the equations of motion are unaltered by the Lorentz transformation, it should
be that:

f ξð Þ dξ
dt

¼ X1,

φ ξð Þ dη
dt

¼ Y1,

f ξ0ð Þ dξ
0

dt0 ¼ X0
1 ¼ l�2μ�1 X1 þ ε

X
X1ξ

� �
¼ l�2μ�1X1 1þ εξð Þ ¼ l�2X1,

φ ξ0ð Þ dη
0

dt0 ¼ Y 0
1 ¼ l�2k�1μ�1Y1:

and consequently:

f ξð Þ dξ
dt

¼ l2f ξ0ð Þ dξ
0

dt0

φ ξð Þ dη
dt

¼ l2kμφ ξ0ð Þ dη
0

dt0

ð11Þ

But we have:
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dξ0

dt0 ¼
dξ
dt

1
k3μ3

,
dη0

dt0 ¼
dη
dt

1
k2μ2

,

hence:

f ξ0ð Þ ¼ f
ξþ ε
1þ ξε

� �
¼ f ξð Þ k

3μ3

l2
,

φ ξ0ð Þ ¼ φ
ξþ ε
1þ ξε

� �
¼ φ ξð Þ kμ

l2
;

hence, by eliminating l2, we find the functional equation:

k2μ2
φ ξþε

1þξε

� �
φ ξð Þ ¼

f ξþε
1þξε

� �
f ξð Þ ,

or, by setting

φ ξð Þ
f ξð Þ ¼ Ω ξð Þ ¼ D

V dD
dV

,

this:

Ω ξþ ε
1þ ξε

� �
¼ Ω ξð Þ 1þ ε2

1þ ξεð Þ2

equation which must be satisfied for all values of ξ and ε. For ζ ¼ 0 one finds:

Ω εð Þ ¼ Ω 0ð Þ 1� ε2
	 


,

hence:

D ¼ A
Vffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� V2
p
� �m

,

where A is a constant, and where I made Ω(0) ¼ 1/m.
One then finds:

φ ξð Þ ¼ A
ξ

ξffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ2

p
 !m

, φ ξ0ð Þ ¼ A
ξ

ξþ εffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ε2

p
 !m

:

However φ(ξ0) ¼ φ(ξ)kμ/l2, so it follows:11
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ξþ εð Þm�1 1� ε2
	 
�m

2 ¼ �ξm�1 1� ε2
	 
�1

2l�2:

As l must only depend on ε (because, if there are several electrons, l must be the
same for all electrons whose velocities ξ can be different), this identity can only hold
if one has:

m ¼ 1, l ¼ 1 :

Thus Lorentz’s hypothesis is the only one which is compatible with the impos-
sibility of showing absolute motion; if this impossibility is accepted, it must be
accepted that moving electrons contract so as to become ellipsoids of revolution two
axes of which remain constant; the existence of an additional potential proportional
to the volume of the electron also has to be accepted, as we showed in the previous
section.

Lorentz’s analysis is therefore found to be fully confirmed, but we can do better
by observing the true reason for the fact we are dealing with; this reason must be
sought in the considerations from §4. The transformations which do not change the
equations of motion must form a group and that can occur only if l ¼ 1. Since we
must not be able to recognize whether an electron is at rest or in absolute motion, it
must be that when it is in motion it experiences a deformation which must be
precisely that which the corresponding transformation of the group demands of it.

§8 – Arbitrary Motion

The previous results only apply to quasi-stationary motion, but it is easy to extend
them to the general case; it is sufficient to apply the principles from §3, meaning to
start with the principle of least action.

It is appropriate to add to the expression for the action:

J ¼
Z P

f 2

2
�
P

α2

2

� �
dtdτ,

a term representing the additional potential F from §6; this term will obviously
take the form:

J1 ¼
Z X

Fð Þdt,

where ∑(F) represents the sum of the additional potentials due to the various
electrons, where each of them is proportional to the volume of the corresponding
electron.
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I’m writing (F) between parentheses so as not to confuse it with the vector
F, G, H.

The total action is then J + J1. We saw in §3 that J is unchanged by the Lorentz
transformation; it now needs to be shown that the same is true of J1.

For one of the electrons, it holds that:

Fð Þ ¼ ω0τ,

where ω0 is a coefficient specific to the electron and τ is its volume; I can then write:

X
Fð Þ ¼

Z
ω0dτ,

where the integral has to extend to all space, but does so in a way that the coefficient
ω0 is zero outside of the electrons and that inside of each electron it is equal to the
special coefficient for that electron. It then follows:

J1 ¼
Z

ω0dτdt,

and after the Lorentz transformation:

J 01 ¼
Z

ω0
0dτ

0dt0,

Hence ω0 ¼ ω0
0 ; because if the point belongs to an electron, the corresponding

point after the Lorentz transformation still belongs to the same electron. Further, we
found in §3:

dτ0dt0 ¼ l4dτdt

and, because we now assume l ¼ 1,

dτ0dt0 ¼ dτdt:

We then have:

J1 ¼ J 01:

Which was to be proven
The theorem is therefore general; at the same time, it gives us a solution to the

question that we asked at the end of §1: to find additional forces unchanged by the
Lorentz transformation. The additional potential (F) satisfies that condition.

We can therefore generalize the results stated at the end of §1 and write:
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If the inertia of the electrons is exclusively of electromagnetic origin, if they are
only subject to forces of electromagnetic origin, or to forces which give rise to the
additional potential (F), no experiment will be able to show absolute motion.

What then are these forces which give rise to the potential (F)? They can
obviously be compared to a pressure which governs inside the electron; everything
happens as if each electron had a hollow capacitor subject to a constant internal
pressure (independent of the volume); the work due to such a pressure would
obviously be proportional to changes in the volume.

I must again observe that this pressure is negative. Let’s go back to equation (10)
from §6, which in Lorentz’s hypothesis is written:

F ¼ Ar3θ2;

equations (11) from §6 will give us:

A ¼ a

3b4
:

Our pressure is equal to A, up to a constant coefficient, which furthermore is
negative.

We now evaluate the electron mass; I want to speak of the “experimental mass”,
meaning the mass for small velocities; we have (see §6):

H ¼
φ

θ
k

� �
k2r

, θ ¼ k, φ ¼ a, θr ¼ b;

hence

H ¼ a
bk

¼ a
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2

p
:

For very small V, I may write:

H ¼ a
b

1� 1
2
V2

� �
,

such that the mass, both longitudinal and transverse, will be a/b.
However, a is a numeric constant; this shows that: the pressure to which our

additional potential gives rise is proportional to the fourth power of the experimen-
tal mass of the electron.

Since Newtonian attraction is proportional to this experimental mass, one is
tempted to conclude that there is some relation between the cause which gives rise
to gravitation and that which gives rise to this additional potential.
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§9 – Hypotheses on Gravitation

Thus Lorentz’s theory would fully explain the impossibility of showing absolute
motion, if all the forces were of electromagnetic origin.

But there are other forces to which an electromagnetic origin cannot be attributed,
such as gravitation for example. It can in fact happen that two systems of bodies
produce equivalent electromagnetic fields, meaning exerting the same action on
charged bodies and on currents and that however these two systems do not exert
the same gravitational action on Newtonian masses. The gravitational field is
therefore distinct from the electromagnetic field. Lorentz was therefore compelled
to extend his hypothesis by assuming that forces of any origin, and in particular
gravitation, are affected by a translation (or, if you prefer, by the Lorentz transfor-
mation) in the same way as the electromagnetic forces.

It is now appropriate to go into the details and examine more closely this
hypothesis. If we want the Newtonian force to be affected in the same way by the
Lorentz transformation, we can no longer allow that this force depends solely on the
relative position of the attracting body and the attracted body at the moment under
consideration. It will have to additionally depend on the velocity of both bodies. And
that is not all: it will be natural to assume that the force which acts on the attracted
body at the moment t depends on the position and velocity of this body at this
moment t; but it will additionally depend on the position and velocity of the
attracting body, not at the moment t, but at an earlier moment, as if the gravitation
had taken some time to propagate.

We therefore consider the position of the attracted body at the moment t0 and let,
at this moment, x0, y0, z0 be its coordinates, and ξ, η, ζ be the components of its
velocity; we will additionally consider the attracting body at the corresponding
moment t0 + t and let, at that moment, x0 + x, y0 + y, z0 + z be its coordinates;
and ξ1, η1, ζ1 be the components of its velocity.

We will first have to have a relation

φ t, x, y, z, ξ, η, ζ, ξ1, η1, ζ1ð Þ ¼ 0 ð1Þ

in order to define the time t. This relation will define the laws of propagation of the
gravitational action (I am in no way imposing the condition that the propagation
occurs with the same speed in all directions).

Now let X1, Y1, Z1 be the three components of the action exerted at the moment
t on the attracted body; it is a matter of expressing X1, Y1, Z1 as functions of

t, x, y, z, ξ, η, ζ, ξ1, η1, ζ1: ð2Þ

What are the conditions to be satisfied?

1) The condition (1) must not be changed by transformations from the Lorentz
group.
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2) The components X1, Y1, Z1 will have to be affected by the Lorentz transforma-
tions in the same way as the electromagnetic forces designated by the same
letters, meaning according to equations (110) from §1.

3) When the two bodies are at rest, the ordinary law of attraction must be restored.

It needs to be remarked that in this last case, the relation (1) would disappear,
because time t doesn’t play any role if the two bodies are at rest.

The problem thus stated is obviously indeterminate. We will therefore seek to
satisfy other additional conditions as much as possible:

4) Since astronomical observations do not seem to show any meaningful deviation
from Newton’s law, we will choose the solution which deviates the least from this
law, for small velocities of the two bodies.

5) We will make every effort to situate ourselves such that t is always negative; if in
fact it is thought that the effect of gravitation requires some time to propagate, it
would be more difficult to understand how this effect could depend on the
position not yet reached by the attracting body.

There is a case where the indeterminacy of this problem disappears; it is the one
where both bodies are it relative rest with each other, meaning where:

ξ ¼ ξ1, η ¼ η1, ζ ¼ ζ1 ;

this is therefore the case that we are going to examine first, by assuming that these
velocities are constant, such that both bodies are driven in a shared, straight and
uniform translational motion.

We can assume that the x-axis was taken parallel to this translation such that
η ¼ ζ ¼ 0; and we will take ε ¼ � ξ.

If we apply the Lorentz transformation under these conditions, then after the
transformation both bodies will be at rest and it will be that:

ξ0 ¼ η0 ¼ ζ0 ¼ 0:

Then the components will X0
1, Y

0
1, Z

0
1 will have to be determined by Newton’s law

and it will hold, up to a constant factor, that:

X0
1 ¼ � x0

r03
, Y 0

1 ¼ � y0

r03
, Z 0

1 ¼ � z0

r03
,

r02 ¼ x02 þ y02 þ z02:
ð3Þ

But, according to §1, we have:
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x0 ¼ k xþ εtð Þ, y0 ¼ y, z0 ¼ z t0 ¼ k t þ εxð Þ,
ρ0

ρ
¼ k 1þ ξεð Þ ¼ k 1� ε2

	 
 ¼ 1
k
,
P

X1ξ ¼ �X1ε ,

X0
1 ¼ k

ρ
ρ0 X1 þ ε

X
X1ξ

� �
¼ k2X1 1� ε2

	 
 ¼ X1,

Y 0
1 ¼

ρ
ρ0 Y1 ¼ kY1,

Z 0
1 ¼ kZ1:

Additionally

xþ εt ¼ x� ξt, r02 ¼ k2 x� ξtð Þ2 þ y2 þ z2

and

X1 ¼ �k x� ξtð Þ
r03

, Y1 ¼ �y

kr03
, Z1 ¼ �z

kr03
; ð4Þ

which can be written:

X1 ¼ dV
dx

, Y1 ¼ dV
dy

, Z1 ¼ dV
dz

, V ¼ 1
kr0

: ð40Þ

At first it seems that the indeterminacy remains, because we have made no
assumption about the value of t, meaning the speed of transmission and additionally
that x is a function of t, but it is easy to see that x� ξt, y, z, which alone appear in our
formulas, do not depend on t.

It can be seen that if the two bodies are simply driven in a shared translation, the
force which acts are the attracted body is normal to an ellipsoid that has the attracting
body at its center.

To go farther, we need to seek the invariants of the Lorentz group.
We know that the substitutions from this group (with the assumption l ¼ 1) are

linear substitutions which do not change the quadratic form:

x2 þ y2 þ z2 � t2:

Let us also set:

ξ ¼ δx
δt
, η ¼ δy

δt
, ζ ¼ δz

δt
,

ξ1 ¼ δ1x
δ1t

, η1 ¼ δ1y
δ1t

ζ1 ¼ δ1z
δ1t

5 On the Dynamics of the Electron 93



we see that the Lorentz transformation will have the effect of making δx, δy, δz, δt
and δ1x, δ1y, δ1z, δ1t undergo the same linear substitutions as x, y, z, t.

Let us regard

x, y, z, t
ffiffiffiffiffiffiffi
�1

p
,

δx, δy, δz, δt
ffiffiffiffiffiffiffi
�1

p
,

δ1x, δ1y, δ1z, t
ffiffiffiffiffiffiffi
�1

p
,

as the coordinates of three points P, P 0, P 00 in four-dimensional space. We have seen
that the Lorentz transformation is solely a rotation of this space around the origin,
which is regarded as fixed. We will have no other distinct invariants besides the six
distances of the three points P, P 0, P 00 between each other and the origin, or, if one
prefers besides the two expressions:

x2 þ y2 þ z2 � t2, xδxþ yδyþ zδz� tδt ,

or the four expressions of the same form that are deduced by arbitrarily permuting
the three points P, P 0, P 00.

But what we are looking for are functions of 10 variables (2) which are invariants;
we therefore need to look among the combinations of our six invariants for those
which only depend on these 10 variables, meaning those which are homogeneous of
zeroth degree both in δx, δy, δz, δt and in δ1x, δ1y, δ1z, δ1t. Thus we will be left with
four distinct invariants which are:

X
x2 � t2,

t �P xξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�P ξ2

q ,
t �P xξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�P ξ21

q ,
1�P ξξ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�P ξ2
	 


1�P ξ21
	 
q : ð5Þ

Let us now work on the transformations undergone by the components of the
force; let us take up equations (11) from §1 which refer not to the force X1, Y1, Z1,
that we are considering here, but to the force X, Y, Z referred to the unit volume. Let
us additionally set:

T ¼
X

Xξ;

we will see that these equations (11) can be written (with l ¼ 1) as:

X0 ¼ k X þ εTð Þ, T 0 ¼ k T þ εXð Þ,
Y 0 ¼ Y , Z 0 ¼ Z;

ð6Þ

such that X, Y, Z, T undergo the same transformation as x, y, z, t. The invariants of the
group will therefore be:
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X
X2 � T2,

X
Xx� Tt,

X
Xδx� Tδt,

X
Xδ1x� Tδ1t

But these are not the X, Y, Z that we need those are X1, Y1, Z1 with

T1 ¼
X

X1ξ:

We see that

X1

X
¼ Y1

Y
¼ Z1

Z
¼ 1

ρ
:

Therefore the Lorentz transformation will act on X1, Y1, Z1, T1, in the same way as
on X, Y, Z, Twith the difference that these expressions will be additionally multiplied
by

ρ
ρ0 ¼

1
k 1þ ξεð Þ ¼

δt
δt0

:

Similarly, the transformation will act on ξ, η, ζ, 1, in the same way as on δx, δy, δz,
δt with the difference that these expressions will be additionally multiplied by the
same factor:

δt
δt0

¼ 1
k 1þ ξεð Þ :

Let us then consider X, Y, Z, T
ffiffiffiffiffiffiffi�1

p
as coordinates of a fourth point Q;

then the invariants will be functions of the mutual distances between five points

0,P,P 0,P 00,Q

and among these functions we will have to keep only those which are homogeneous
of zeroth degree both in

X,Y ,Z,T , δx, δy, δz, δt

(variables that can next be replaced with X1, Y1, Z1, T1, ξ, η, ζ, 1), and also in

δ1x, δ1y, δ1z, 1

(variables that can next be replaced by ξ1, η1, ζ1, 1).
We will thus find, beyond the four invariants (5), for new distinct invariants,

which are:
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P
X2
1 � T2

1

1�P ξ2
,

P
X1x� T1tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�P ξ2

q ,

P
X1ξ1 � T1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�P ξ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�P ξ21

q ,

P
X1ξ� T1

1�P ξ2 : ð7Þ

The last invariant is always zero according to the definition of T1.
Having set that, what are the conditions to be satisfied?

1) The left-hand side of the relation (1), which defines the propagation velocity,
must be a function of the four invariants (5).

One can obviously make a load of hypothesis; we will consider only two of them:

A) One could have:

X
x2 � t2 ¼ r2 � t2 ¼ 0,

where t ¼ � r, and, because t must be negative, t ¼ � r. This is the same as saying
the speed of propagation is equal to that of light. At first it seems this hypothesis
must be rejected without examination. Laplace in fact showed that the propagation is
either instantaneous or much faster than that of light. But Laplace had examined the
hypothesis of the finite propagation speed, everything else remaining the same; here,
in contrast, this hypothesis is complicated by many others and it could happen that
there might be a more or less perfect compensation between them, like those for
which the applications of the Lorentz transformation have already given us many
examples.

B) One could have:

t �P xξ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�P ξ21

q ¼ 0 t ¼
X

xξ1 :

The speed of propagation is then much faster than that of light; but in some cases
t could be negative, which, as we already stated, hardly seems admissible. We will
therefore keep hypothesis A.

2) The four invariants (7) must be a function of the invariants (5).
3) When both bodies are at absolute rest, X, Y, Z must have the value deduced from

Newton’s law and when they are at relative rest, the value deduced from
equations (4).

In the scenario of absolute rest, the first two invariants (7) must reduce to

X
X2
1,

X
X1x,

or, by Newton’s law, to
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1
r4
, � 1

r
;

on the other hand, in scenario (A), the second and third invariants (5) become:

�r �P xξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�P ξ2

q ,
�r �P xξ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�P ξ21

q ,

meaning, for absolute rest:

�r, �r :

We can therefore allow, for example, that the first two invariants (4) reduce to

1�Pξ21
	 
2
r þPxξ1ð Þ4 , �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�P ξ2

q
r þP xξ1

;

but other combinations are possible.
The choice must be made between these combinations, and, additionally, in order

to define X1, Y1, Z1 a third equation is needed. For such a choice, we need to make an
effort to come as close as possible to Newton’s law. Let us therefore look at what
happens when (still keeping t ¼ � r) the squares of the velocities ξ, η, etc. are
neglected. The four invariants (5) then become:

0, �r �
X

xξ, �r �
X

xξ1, 1

and the four invariants (7):

X
X2
1,

X
X1 xþ ξrð Þ,

X
X1 ξ1 � ξð Þ, 0 :

But to be able to make a comparison with Newton’s law, another transformation
is necessary; here x0 + x, y0 + y, z0 + z represent the coordinates of the attracting body
at the moment t0 + t, and r ¼ ffiffiffiffiffiffiffiffiffiffiP

x2
p

; in Newton’s law, x0 + x1, y0 + y1, z0 + z1 of the
attracting body at the moment t0, and the distance r ¼

ffiffiffiffiffiffiffiffiffiffiP
x21

p
need to be

considered.
We can neglect the square of the time t needed for propagation and consequently

proceed as if the motion were uniform; we then have:

x ¼ x1 þ ξ1t, y ¼ y1 þ η1t, z ¼ z1 þ ζ1t,

r r � r1ð Þ ¼
X

xξ1t;

or, because t ¼ � r,
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x ¼ x1 � ξ1r, y ¼ y1 � η1r, z ¼ z1 � ζ1r, r ¼ r1 �
X

xξ1 ;

such that our four invariants (5) become:

0, �r1 þ
X

x ξ1 � ξð Þ, �r1, 1

and our four invariants (7) become:

X
X2
1,

X
X1 x1 þ ξ� ξ1ð Þr1½ �,

X
X1 ξ1 � ξð Þ 0:

In the second of these expressions, I wrote r1 instead of r, because r is multiplied
by ξ � ξ1 and because I neglected the square of ξ.

On the other hand, Newton’s law would give us, for these four invariants (7),

1
r41
, � 1

r1
�
P

x1 ξ� ξ1ð Þ
r21

,

P
x1 ξ� ξ1ð Þ

r31
, 0 :

If therefore we call A and B the second and third of the invariants (5) and M, N,
P the first three invariants (7), we will satisfy Newton’s law, up to terms of order of
the square of the velocities, by making:

M ¼ 1
B4 , N ¼ þA

B2 , P ¼ A� B
B3 : ð8Þ

This solution is not unique. In fact, let C be the fourth invariant (5), C � 1 is of
order of the square of ξ, and it is the same for (A � B)2.

We could therefore add a term formed from C � 1 multiplied by an arbitrary
function of A, B, C and a term formed from (A� B)2 also multiplied by a function of
A, B, C to the right hand side of each of equations (8).

At first sight, the solution (8) seems the simplest; it cannot however be adopted. In
fact, since M, N, P are functions of X1, Y1, Z1 and of T1 ¼ ∑ X1ξ, the values for X1,
Y1, Z1 can be drawn from these three equations (8), but in some cases these values
could become imaginary.

To avoid this disadvantage, we will work in another way. Let us set:

k0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�P ξ2

q , k1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�P ξ21

q ,

which is justified by analogy with the notation

98 H. Poincaré



k ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ε2

p

which appears in Lorentz’s substitution.
In this case and because of the condition �r ¼ t, the invariants (5) become:

0, A ¼ �k0 r þ
X

xξ
� �

, B ¼ �k1 r þ
X

xξ1
� �

, C ¼ k0k1 1�
X

ξξ1
� �

:

On the other hand, we see that the following system of quantities:

x, y, z, �r ¼ t

k0X1, k0Y1, k0Z1, k0T1

k0ξ, k0η, k0ζ, k0
k1ξ1, k1η1, k1ζ1, k1

undergo the same linear substitutions when the transformations of the Lorentz group
are applied to them. This leads us to set:

X1 ¼ x
α
k0

þ ξβ þ ξ1
k1
k0

γ,

Y1 ¼ y
α
k0

þ ηβ þ η1
k1
k0

γ,

Z1 ¼ z
α
k0

þ ζβ þ ζ1
k1
k0

γ,

T1 ¼ �r
α
k0

þ β þ k1
k0

γ:

ð9Þ

It is clear that if α, β, γ are invariants, X1, Y1, Z1, T1 will satisfy the fundamental
condition, meaning will undergo an appropriate linear substitution under the effect
of the Lorentz transformation.

But in order for these equations (9) to be compatible, it needs to be that we have:

X
X1ξ� T1 ¼ 0,

which, by replacing X1, Y1, Z1, T1 by their values (9) and by multiplying by k20 ,
becomes:

�Aα� β � Cγ ¼ 0: ð10Þ

What we want is that if the squares of the velocities ξ, etc. and also the products of
the accelerations by distances are neglected compared to the square the speed of light
as we have done above, then the values X1, Y1, Z1 continue to satisfy Newton’s laws.

We can take:
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β ¼ 0, γ ¼ �Aα
C

:

With the adopted order of approximation, it follows:

k0 ¼ k1 ¼ 1, C ¼ 1, A ¼ �r1 þ
P

x ξ1 � ξð Þ, B ¼ �r1:

x ¼ x1 þ ξ1t ¼ x1 � ξ1r:

The first equation (9) then becomes:

X1 ¼ α x� Aξ1ð Þ

But if the square of ξ is neglected, Aξ1 can be replaced by �r1ξ1 or even.by – r,
which gives:

X1 ¼ α xþ ξ1rð Þ ¼ αx1:

Newton’s law would give:

X1 ¼ � x1
r31
:

For the invariant α, we need to choose the value which reduces to �1=r31 for the
chosen order of approximation, meaning 1/B3. Equations (9) will become:

X1 ¼ x
k0B3 � ξ1

k1
k0

A
B3C

,

Y1 ¼ y
k0B3 � η1

k1
k0

A
B3C

,

Z1 ¼ z
k0B3 � ζ1

k1
k0

A
B3C

,

T1 ¼ � r
k0B3 �

k1
k0

A
B3C

:

ð11Þ

We can first see that the corrected attraction is made up of two components: one
parallel to the vector which joins the positions of the two bodies and the other
parallel to the velocity of the attracting body.

We recall that when we speak of the position or the velocity of the attracting
body, it is about its position or its velocity at the moment when the gravitational
wave leaves it; for the attracted body it is instead about its position or its velocity at
the moment when the gravitational wave reaches it, with the assumption that this
wave propagates at the speed of light.

I think that it would be premature to try to move the discussion of these formulas
farther; I will therefore limit myself to a few remarks.
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1) The solutions (11) are not unique; 1/B3, which enters as a factor throughout, can
in fact be replaced by

1
B3 þ C � 1ð Þ f 1 A,B,Cð Þ þ A� Bð Þ2 f 2 A,B,Cð Þ,

where f1 and f2 are arbitrary functions of A, B, C or even β can now be taken as
non-zero but some arbitrary terms can be added to α, β, γ provided that they satisfy
the condition (10) and that they be of second-order in ξ, as it relates to α, and first-
order as it relates to β and γ.

2) The first equation (11) can be written:

X1 ¼ k1
B3C

x 1�
X

ξξ1
� �

þ ξ1 r þ
X

xξ
� �h i

ð110Þ

and the quantity between square brackets can itself be written:

xþ rξ1ð Þ þ η ξ1y� xη1ð Þ þ ζ ξ1z� xζ1ð Þ, ð12Þ

such that the total force can be broken down into three components corresponding to
the three parentheses from the expression (12); the first component has a vague
analogy with mechanical force due to the electric field and the two others with the
mechanical force due to the magnetic field. To complete the analogy, I can, because
of the first remark, replace 1/B3 in equations (11) with C/B3, such that X1, Y1, Z1 now
only depend linearly on the velocity ξ, η, ζof the attracted body because C has
disappeared from the denominator of (110).

Then set:

k1 xþ rξ1ð Þ ¼ λ, k1 yþ rη1ð Þ ¼ μ, k1 zþ rζ1ð Þ ¼ ν,

k1 η1z� ζ1yð Þ ¼ λ0, k1 ζ1x� ξ1zð Þ ¼ μ0, k1 ξ1y� η1xð Þ ¼ ν0,
ð13Þ

it follows, since C has disappeared from the denominators of (110), that:

X1 ¼ λ

B3 þ
ην0 � ζμ0

B3 ,

Y1 ¼ μ

B3 þ
ζλ0 � ξν0

B3 ,

Z1 ¼ ν

B3 þ
ξμ0 � ηλ0

B3 ,

ð14Þ

and we will additionally have:
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B2 ¼
X

λ2 �
X

λ02 ð15Þ

Then λ, μ, ν or λ/B3, μ/B3, ν/B3, is a kind of electric field while λ0, μ0, ν0 or instead
λ0/B3, μ0/B3, ν0/B3 is kind of magnetic field.

3) The relativity postulate would compel us to adopt solution (11) or solution (14) or
any one of the solutions which could be deduced from them using the first
remark. But, the first question which comes up is that of knowing whether they
are compatible with astronomical observations. The divergence from Newton’s
law is of order ξ2, meaning 10,000 times smaller than if it were of order ξ,
meaning if the propagation occurs with the speed of light, everything else being
equal; one could therefore hope that it will not be too large. But we will only be
able to learn that from an in-depth discussion.

Paris, July 1905.
H. POINCARÉ

Translator’s Notes
1. See Part II, Chapter 13, p. 251–252 for discussion of the pronunciation of

this name.
2. For convenience, the content of this article is reformatted and provided in Part

III, Chapter 14.
3. The first reference appears to be to Kaufmann, W. (1901). Die magnetische und

electrische Ablenkbarkeit der Becquerelstrahlen und die scheinbare Masse der
Elektronen. Nachrichten von der Königl. Gesellschaft der Wissenschaften zu
Göttingen, 2, 143–155; the second reference could be to Abraham, M. (1902).
Dynamik des Electrons. Nachrichten von der Gesellschaft der Wissenschaften
zu Göttingen, 20–41; or to Abraham, M. (1903). Prinzipien der Dynamik des
Eleckrons. Annalen der Physik, Ser. 4 vol. 10 supplement, 105–179.

4. Part II, Chapter 12 discusses this choice of notation and on page 228 shows how
this half-page would look with our vector formalism.

5. These equations are in Part III, page 263.
6. See for example, Lorentz, H. A. (1902) Contributions to the theory of

electrons. I, Proceedings of the KNAW, vol. 5 (1902), 608–628.
7. Presumably Poincaré meant “charge” not “mass.”
8. Presumably this is a reference to Langevin, P. (1905). Sur l’origine des radia-

tions et l'inertie électromagnétique. J. Phys. Theor. Appl., 4(1), 156–183.
Poincaré provides a more complete citation on p. 46.

9. Langevin, P. (1905). Sur l’origine des radiations et l’inertie électromagnétique.
J. Phys. Theor. Appl., 4(1), 156–183.

10. Presumably Poincaré meant “�ε”, not “�εt”.
11. In this equation, note that there should not be a minus sign immediately after the

equal sign.

102 H. Poincaré

https://doi.org/10.1007/978-3-030-48039-4_13
https://doi.org/10.1007/978-3-030-48039-4_14
https://doi.org/10.1007/978-3-030-48039-4_12

	Chapter 5: On the Dynamics of the Electron
	Introduction
	§1 - Lorentz Transformation
	§2 - Principle of Least Action
	§3 - Lorentz Transformation and the Principle of Least Action
	§4 - The Lorentz Group
	§5 - Langevin Waves
	§6 - Contraction of Electrons
	§7 - Quasi-Stationary Motion
	§8 - Arbitrary Motion
	§9 - Hypotheses on Gravitation


