
Chapter 14
Electromagnetic Phenomena in a System
Moving with Any Velocity Smaller than
That of Light

Physics. — “Electromagnetic phenomena in a system moving with any velocity
smaller than that of light.” By Prof. H. A. LORENTZ.

§ 1. The problem of determining the influence exerted on electric and optical
phenomena by a translation, such as all systems have in virtue of the Earth’s annual
motion, admits of a comparatively simple solution, so long as only those terms need
be taken into account, which are proportional to the first power of the ratio between
the velocity of translation w and the velocity of light c. Cases in which quantities of
the second order, i.e. of the order w2/c2, may be perceptible, present more difficul-
ties. The first example of this kind. is Michelson’s well-known interference exper-
iment, the negative result of which has led Fitz Gerald and myself to the conclusion
that the dimensions of solid bodies are slightly altered by their motion through the
ether.

Some new experiments in which a second order effect was sought for have
recently been published. Rayleigh1 and Brace2 have examined the question whether
the Earth’s motion may cause a body to become doubly refracting; at first sight this
might be expected, if the just mentioned change of dimensions is admitted. Both
physicists have however come to a negative result.

Author: This article by Hendrik Antoon Lorentz originally appeared in Dutch as “Electromagntishe
verschijnselen in een stelsel dat zich met willekeurige snelheid, Kleiner dan die van het licht,
beweegt” in Verslagen van de gewone vergaderingen der Wis- en Natuurkundige Afdeeling of
the Koninklijke Akademie van Wetenschappen (Netherlands), vol. 12, 1904 p. 986–1009 and in
English as “Electromagnetic phenomena in a system moving with any velocity smaller than that
of light.” in KNAW, Proceedings, 6, 1903–1904, Amsterdam, 1904, p. 809–831.
It is provided here, reformatted for the convenience of the reader. It is discussed in Part II,
Chapter 9; errors in equations 5, 7 and 9 are discussed there.

1Rayleigh, Phil. Mag. (6) 4 (1902), p. 678
2Brace, Phil. Mag. (6) 7 (1904), p. 317.
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In the second place Trouton and Noble3 have endeavored to detect a turning
torque acting on a charged condenser, whose plates make a certain angle with the
direction of translation. The theory of electrons, unless it be modified by some new
hypothesis, would undoubtedly require the existence of such a torque. In order to see
this, it will suffice to consider a condenser with ether as dielectricum. It may he
shown that in every electrostatic system, moving with a velocity w4, there is a certain
amount of “electromagnetic momentum”. If we represent this, in direction and
magnitude, by a vector G, the torque in question will be determined by the vector
product5

G� w: ð1Þ

Now, if the axis of z is chosen perpendicular to the condenser plates, the velocity
w having any direction we like, and if U is the energy of the condenser, calculated in
the ordinary way, the components of G are given6 by the following formulae, which
are exact up to the first order

Gx ¼ 2U
c2

wx, Gy ¼ 2U
c2

wy, Gz ¼ 0:

Substituting these values in (1), we get for the components of the torque, up to
terms of the second order,

2U
c2

wywz, � 2U
c2

wxwz, 0:

These expressions show that the axis of the torque lies in the plane of the plates,
perpendicular to the translation. If α is the angle between the velocity and the normal
to the plates, the moment of the torque will be U

c2 w
2 sin 2α ; it tends to turn the

condenser into such a position that the plates are parallel to the Earth’s motion.
In the apparatus of Trouton and Noble the condenser was fixed to the beam of a

torsion-balance, sufficiently delicate to be deflected by a torque of the above order of
magnitude. No effect could however be observed.

3Trouton and Noble, London Roy. Soc. Trans. A 202 (1903), p. 165.
4A vector will be denoted by a bold letter, its magnitude by the corresponding non-bold letter.
5See my article: Weiterbiklung der Maxwell'schen Theorie. Electronentheorie in the Mathem.
Encyclopadie V 14, § 21, a. (This article will be referenced as M. E.)
6M. E. § 56, c.
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§ 2. The experiments of which I have spoken are not the only reason for which a
new examination of the problems connected with the motion of the Earth is desir-
able. Poincaré7 has objected to the existing theory of electric and optical phenomena
in moving bodies that, in order to explain Michelson’s negative result, the introduc-
tion of a new hypothesis has been required, and that the same necessity may occur
each time new facts will he brought to light. Surely, this course of inventing special
hypotheses for each new experimental result is somewhat artificial. It would be more
satisfactory, if it were possible to show, by means of certain fundamental assump-
tions, and without neglecting terms of one order of magnitude or another, that many
electromagnetic actions are entirely independent of the motion of the system. Some
years ago, I have already sought to frame a theory of this kind8. I believe now to be
able to treat the subject with a better result. The only restriction as regards the
velocity will be that it be smaller than that of light.

§ 3. I shall start from the fundamental equations of the theory of electrons9. Let D
be the dielectric displacement in the ether, H the magnetic force, ρ the volume-
density of the charge of an electron, v the velocity of a point of such a particle, and F
the electric force, i.e. the force, reckoned per unit charge, which is exerted by the
ether on a volume-element of an electron. Then, if we use a fixed system of
coordinates,

∇ � D ¼ ρ, ∇ �H ¼ 0,

∇�H ¼ 1
c

∂D
∂t

þ ρv

� �
,

∇� D ¼ 1
c
∂H
∂t

,

F ¼ Dþ 1
c
v�H:

ð2Þ

I shall now suppose that the system as a whole moves in the direction of x with a
constant velocity w, and I shall denote by u any velocity a point of an electron may
have in addition to this, so that

vx ¼ wþ ux, vy ¼ uy, vz ¼ uz:

7Poincaré, Rapports du Congrès de physique de 1900, Paris, 1, p. 22, 23.
8Lorentz, Ziltingsverslag Akad, v. Wet., 7 (1899), p. 507, Amsterdam Proc., 1898–99, p. 427.
9M.E., §2.
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If the equations (2) are at the same time referred to axes moving with the system,
they become

divD ¼ ρ, divH ¼ 0,

∂Hz

∂y
� ∂Hy

∂z
¼ 1

c
∂
∂t

� w
∂
∂x

� �
Dx þ 1

c
ρ wþ uxð Þ,

∂Hx

∂z
� ∂Hz

∂x
¼ 1

c
∂
∂t

� w
∂
∂x

� �
Dy þ 1

c
ρuy,

∂Hy

∂x
� ∂Hx

∂y
¼ 1

c
∂
∂t

� w
∂
∂x

� �
Dz þ 1

c
ρuy,

∂Dz

∂y
� ∂Dy

∂z
¼ � 1

c
∂
∂t

� w
∂
∂x

� �
Hx,

∂Dx

∂z
� ∂Dz

∂x
¼ � 1

c
∂
∂t

� w
∂
∂x

� �
Hy,

∂Dy

∂x
� ∂Dx

∂y
¼ � 1

c
∂
∂t

� w
∂
∂x

� �
Hz,

f x ¼ Dx þ 1
c

uyHz � uzHy

� �
f y ¼ Dy � wHz þ 1

c
uzHx � uxHzð Þ

f z ¼ Dz � wHy þ 1
c

uzHy � uyHx

� �
§ 4. We shall further transform these formulae by a change of variables. Putting

c2

c2 � w2 ¼ k2, ð3Þ

and understanding by l another numerical quantity, to be determined further on, I
take as new independent variables

x0 ¼ klx, y0 ¼ ly, z0 ¼ lz ð4Þ

t0 ¼ l
k
t � kl

w
c2

x, ð5Þ

and I define two new vectors D0 and H0 by the formulae

D0
x ¼

1
l2
Dx, D0

y ¼
k

l2
Dy � w

c
Hz

� �
, D0

z ¼
k

l2
Dz þ w

c
Hy

� �
,

H0
x ¼

1
l2
Hx, H0

y ¼
k

l2
Hy þ w

c
Dz

� �
, H0

z ¼
k

l2
Hz � w

c
Dy

� �
,

for which, on account of (3), we may also write
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Dx ¼ l2D0
x, Dy ¼ kl2 D0

y þ
w
c
H0

z

� �
, Dz ¼ kl2 D0

z �
w
c
H0

y

� �
,

Hx ¼ l2H0
x, Hy ¼ kl2 H0

y þ
w
c
D0

z

� �
, Hz ¼ kl2 H0

z þ
w
c
D0

y

� �
,

ð6Þ

As to the coefficient l, it is to be considered as a function of w, whose value is
1 for w ¼ 0, and which, for small values of w, differs from unity no more than by an
amount of the second order.

The variable t0 may be called the “local time”; indeed, for k ¼ 1, l ¼ 1 it becomes
identical with what I have formerly understood by this name.

If, finally, we put

1
kl3

ρ ¼ ρ0, ð7Þ

k2ux ¼ u0x, kuy ¼ u0y, kuz ¼ u0z, ð8Þ

these latter quantities being considered as the components of a new vector u0, the
equations take the following form:

div0D0 ¼ 1� wu0x
c2

� �
ρ0, div0H0 ¼ 0,

rot0H0 ¼ 1
c

∂D0

∂t0
þ ρ0u0

� �
,

rot0D0 ¼ � 1
c
∂H0

∂t0

ð9Þ

f x ¼ l2D0
x þ l2 � 1

c
u0yH

0
z � u0zH

0
y

� �
þ l2 � w

c2
u0yD

0
y þ u0zD

0
z

� �
f y ¼ l2

k
D0

y þ
l2

k
� 1
c

u0zH
0
x � u0xH

0
z

� �� l2

k
� w
c2

u0xD
0
y

f z ¼ l2

k
D0

z þ
l2

k
� 1
c

u0xH
0
y � u0yH

0
x

� �
� l2

k
� w
c2

u0xD
0
z

ð10Þ

The meaning of the symbols div0 and rot0 in (9) is similar to that of div and rot in
(2); only, the differentiations with respect to x, y, z are to be replaced by the
corresponding ones with respect to x0, y0, z0.§ 5. The equations (9) lead to the
conclusion that the vectors D0 and H0 may be represented by means of a scalar
potential φ0 and a vector potential A0. These potentials satisfy the equations10

10M. E., §§ 4 and 10.
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Δ0φ0 � 1
c2

∂2φ0

∂t02
¼ �ρ0, ð11Þ

Δ0A0 � 1
c2

∂2A0

∂t02
¼ � 1

c
ρ0u0, ð12Þ

and in terms of them D0 and H0 are given by

D0 ¼ � 1
c
∂A0

∂t0
� grad0φ0 þ w

c
grad0A0

x, ð13Þ

H0 ¼ rot0A0: ð14Þ

The symbol Δ0 is an abbreviation for ∂2

∂x02 þ ∂2

∂y02 þ ∂2

∂z02, and grad
0φ0 denotes a vector

whose components are ∂φ0
∂x0 ,

∂φ0
∂y0 ,

∂φ0
∂z0 . The expression grad0A0

x has a similar meaning.

In order to obtain the solution of (11) and (12) in a simple form, we may take x0, y0,
z0 as the coordinates of a point P0 in a space S0, and ascribe to this point, for each
value of t0, the values of ρ0, u0, φ0, A0, belonging to the corresponding point P (x, y, z, )
of the electromagnetic system. For a definite value t0 of the fourth independent
variable, the potentials φ0 and A0 in the point P of the system or in the corresponding
point P0 of the space S0, are given by11

φ0 ¼ 1
4π

Z
ρ0½ �
r0 dS0 ð15Þ

A0 ¼ 1
4πc

Z
ρ0u0½ �
r0 dS0: ð16Þ

Here dS0 is an element of the space S0, r0 its distance from P0 and the brackets serve
to denote the quantity ρ0 and the vector ρ0u0, such as they are in the element dS0, for
the value t0 � r0=c of the fourth independent variable.

Instead of (15) and (16) we may also write, taking into account (4) and (7),

φ0 ¼ 1
4π

Z
ρ½ �
r0 dS

0 ð17Þ

A0 ¼ 1
4πc

Z
ρu½ �
r

dS, ð18Þ

the integrations now extending over the electromagnetic system itself. It should be
kept in mind that in these formulae r0 does not denote the distance between the
element dS and the point (x, y, z) for which the calculation is to be performed. If the
element lies at the point (x1, y1, z1), we must take

11M. E., §§ 5 and 10.
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r0 ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 x� x1ð Þ2 þ y� y1ð Þ2 þ z� z1ð Þ2

q
:

It is also to be remembered that, if we wish to determine φ0 and A0 for the instant,
at which the local time in P is t0, we must take ρ and ρu0, such as they are in the
element dS at the instant at which the local time of that element is t0 � r0=c.§ 6. It will
suffice for our purpose to consider two special cases. The first is that of an
electrostatic system, i.e. a system having no other motion but the translation with
the velocity w. In this case u0 ¼ 0, and therefore, by (12), A0 ¼ 0. Also, φ0 is
independent of t0, so that the equations (11), (13) and (14) reduce to

Δ0φ0 ¼ �ρ0,

D0 ¼ �grad0φ0, H0 ¼ 0 :
ð19Þ

After having determined the vector D0 by means of these equations, we know also
the electric force acting on electrons that belong to the system. For these the
formulae (10) become, since u0 ¼ 0,

f x ¼ l2D0
x, f y ¼ l2

k
D0

y, f z ¼ l2

k
D0

z, ð20Þ

The result may be put in a simple form if we compare the moving system Σ with
which we are concerned, to another electrostatic system Σ0 which remains at rest and
into which Σ is changed, if the dimensions parallel to the axis of x are multiplied by
kl, and the dimensions which have the direction of y or that of z, by l a deformation
for which (kl, l, l ) is an appropriate symbol. In this new system, which we may
suppose to be placed in the above-mentioned space S0, we shall give to the density
the value ρ0, determined by (7), so that the charges of corresponding elements of
volume and of corresponding electrons are the same in Σ and Σ0. Then we shall
obtain the forces acting on the electrons of the moving system Σ, if we first determine
the corresponding forces in Σ0, and next multiply their components in the direction of
the axis of x by l2, and their components perpendicular to that axis by l2=k. This is
conveniently expressed by the formula

F Σð Þ ¼ l2,
l2

k
,
l2

k

� �
F Σ0ð Þ: ð21Þ

It is further to be remarked that, after having found D0 by (19), we can easily
calculate the electromagnetic momentum in the moving system, or rather its com-
ponent in the direction of the motion. Indeed, the formula
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G ¼ 1
1

Z
D�HdS

shows that

Gx ¼ 1
c

Z
DyHz � DzHy

� �
dS

Therefore, by (6), since H0 ¼ 0

Gx ¼ k2l4w
c2

Z
D02

y þ D02
z

� �
dS ¼ klw

c2

Z
D02

y þ D02
z

� �
dS0: ð22Þ

§ 7. Our second special case is that of a particle having an electric moment, i.e. a
small space S, with a total charge

R
ρdS ¼ 0, but with such a distribution of density,

that the integrals
R
ρxdS,

R
ρydS and

R
ρzdS have values differing from 0.

Let x, y, z be the coordinates, taken relatively to a fixed point A of the particle,
which may be called its center, and let the electric moment be defined as a vector p
whose components are Z

ρxdS,
Z

ρydS,
Z

ρzdS: ð23Þ

Then

dpx
dt

¼
Z

ρuxdS,
dpy
dt

¼
Z

ρuydS,
dpz
dt

¼
Z

ρuzdS : ð24Þ

Of course, if x, y, z are treated as infinitely small, ux, uy, uz must be so likewise.
We shall neglect squares and products of these six quantities.

We shall now apply the equation (17) to the determination of the scalar potential
φ0 for an exterior point P(x, y, z), at finite distance from the polarized particle, and for
the instant at which the local time of this point has some definite value t0. In doing so,
we shall give the symbol [ρ], which, in (17), relates to the instant at which the local
time in dS is t0 � r0=c, a slightly different meaning. Distinguishing by r00 the value of r

0

for the center A, we shall understand by [ρ] the value of the density existing in the
element dS at the point (x, y, z), at the instant t0 at which the local time of A is t0 � r00=c .

It may be seen from (5) that this instant precedes that for which we have to take
the numerator in (17) by

k2
w
c2
bxþ k

l
r00 � r0

c
¼ k2

w
c2
bxþ k

l
1
c

bx∂r0
∂x

þ by∂r0
∂y

þbz∂r0
∂z

� �
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units of time. In this last expression we may put for the differential coefficients their
values at the point A.

In (17) we have now to replace [ρ] by

ρ½ � þ k2
w
c2
bx ∂ρ

∂t

	 

þ k

l
1
c

bx∂r0
∂x

þ by∂r0
∂y

þbz∂r0
∂z

� �
∂ρ
∂t

	 

, ð25Þ

where ∂ρ
∂t

h i
relates again to the time t0. Now, the value of t

0 for which the calculations

are to be performed having been chosen, this time t0 will be a function of the
coordinates x, y, z of the exterior point P. The value of [ρ] will therefore depend
on these coordinates in such a way that

∂ ρ½ �
∂x

¼ � k
l
1
c
∂r0

∂x
∂ρ
∂t

	 

, etc:

by which (25) becomes

ρ½ � þ k2
w
c2
bx ∂ρ

∂t

	 

� bx∂ ρ½ �

∂x
þ by∂ ρ½ �

∂y
þbz∂ ρ½ �

∂z

� �
:

Again, if henceforth we understand by r0 what has above been called r00 the factor
1=r0 must be replaced by

1
r0 � bx ∂

∂x
1
r0

� �
� by ∂

∂y
1
r0

� �
�bz ∂

∂z
1
r0

� �
,

so that after all, in the integral (17), the element dS is multiplied by

ρ½ �
r0 þ k2

w
c2

bx
r0

∂ρ
∂t

	 

� ∂
∂x

bx ρ½ �
r0 � ∂

∂y
by ρ½ �
r0 � ∂

∂z
bz ρ½ �
r0 :

This is simpler than the primitive form, because neither r0, nor the time for which
the quantities enclosed in brackets are to be taken, depend on x, y, z. Using (23) and
remembering that

R
ρdS ¼ 0, we get

φ0 ¼ k2
w

4πc2r0
∂px
∂t

	 

� 1
4π

∂
∂x

px½ �
r0 þ ∂

∂y

py
� �
r0 þ ∂

∂z

pz
� �
r0

( )
,

a formula in which all the enclosed quantities are to be taken for the instant at which
the local time of the center of the particle is t0 � r0=c.
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We shall conclude these calculations by introducing a new vector p0 whose
components are

p0x ¼ klpx, p0y ¼ lpy, p0z ¼ lpz, ð26Þ

passing at the same time to x0, y0, z0, t0 as independent variables. The final result is

φ0 ¼ w
4πc2r0

∂ p0x
� �
∂t0

� 1
4π

∂
∂x0

p0x
� �
r0 þ ∂

∂y0
p0y
h i
r0 þ ∂

∂z0
p0z
� �
r0

8<:
9=;,

As to the formula (18) for the vector potential, its transformation is less compli-
cated, because it contains the infinitely small vector u0. Having regard to (8), (24),
(26) and (5), I find

A0 ¼ w
4πc2r0

∂ p0½ �
∂t0

The field produced by the polarized particle is now wholly determined. The
formula (13) leads to

D0 ¼ � 1
4πc2

∂2 p0½ �
∂t02

þ 1
4π

grad0 ∂
∂x0

p0x
� �
r0 þ ∂

∂y0
p0y
h i
r0 þ ∂

∂z0
p0z
� �
r0

8<:
9=; ð27Þ

and the vector H0 is given by (14). We may further use the equations (20), instead of
the original formulae (10), if we wish to consider the forces exerted by the polarized
particle on a similar one placed at some distance. Indeed, in the second particle, as
well as in the first, the velocities u may he held to be infinitely small.

It is to be remarked that the formulae for a system without translation are implied
in what precedes. For such a system the quantities with accents become identical to
the corresponding ones without accents; also k ¼ 1 and l ¼ 1. The components of
(27) are at the same time those of the electric force which is exerted by one polarized
particle on another.

§ 8. Thus far we have only used the fundamental equations without any new
assumptions. I shall now suppose that the electrons, which I take to be spheres of
radius R in the state of rest, have their dimensions changed by the effect of a
translation, the dimensions in the direction of motion becoming kl times and those
in perpendicular directions l times smaller.

In this deformation, which may be represented by 1
kl ,

1
l ,

1
l

� �
each element of

volume is understood to preserve its charge.
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Our assumption amounts to saying that in an electrostatic system Σ, moving with
a velocity w, all electrons are flattened ellipsoids with their smaller axes in the
direction of motion. If now, in order to apply the theorem of § 6, we subject the
system to the deformation (kl, l, l ), we shall have again spherical electrons of
radius R.

Hence, if we alter the relative position of the centers of the electrons in Σ by
applying the deformation (kl, l, l ), and if, in the points thus obtained, we place the
centers of electrons that remain at rest, we shall get a system, identical to the
imaginary system Σ0, of which we have spoken in § 6. The forces in this system
and those in Σ0 will bear to each other the relation expressed by (21).

In the second place I shall suppose that the forces between uncharged particles,
as well as those between such particles and electrons, are influenced by a translation
in quite the same way as the electric forces in an electrostatic system. In other terms,
whatever be the nature of the particles composing a ponderable body, so long as they
do not move relatively to each other, we shall have between the forces acting in a
system (Σ0) without, and the same system (Σ) with a translation, the relation specified
in (21), if, as regards the relative position of the particles, Σ0 is got from Σ by the
deformation (kl, l, l ), or Σ from Σ0 by the deformation 1

kl ,
1
l ,

1
l

� �
.

We see by this that, as soon as the resulting force is 0 for a particle in Σ0, the same
must be true for the corresponding particle in Σ. Consequently, if, neglecting the
effects of molecular motion, we suppose each particle of a solid body to be in
equilibrium under the action of the attractions and repulsions exerted by its neigh-
bors, and if we take for granted that there is but one configuration of equilibrium, we
may draw the conclusion that the system Σ0, if the velocity w is imparted to it, will of
itself change into the system Σ. In other terms, the translation will produce the
deformation 1

kl ,
1
l ,

1
l

� �
The case of molecular motion will be considered in § 12.
It will easily be seen that the hypothesis that has formerly been made in connec-

tion with Michelson’s experiment, is implied in what has now been said. However,
the present hypothesis is more general because the only limitation imposed on the
motion is that its velocity.be smaller than that of light.

§ 9. We are now in a position to calculate the electromagnetic momentum of a
single electron. For simplicity’s sake I shall suppose the charge e to be uniformly
distributed over the surface, so long as the electron remains at rest. Then, a distri-
bution of the same kind will exist in the system Σ0 with which we are concerned in
the last integral of (22). HenceZ

D0
y
2 þ D0

z
2

� �
dS0 ¼ 2

3

Z
D02dS0 ¼ e2

6π

Z 1

R

dr
r2

¼ e2

6πR3

and
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Gx ¼ e2

6πc2R
klw:

It must be observed that the product kl is a function of w and that, for reasons of
symmetry, the vector G has the direction of the translation. In general, representing
by w the velocity of this motion, we have the vector equation

G ¼ e2

6πc2R
klw: ð28Þ

Now, every change in the motion of a system will entail a corresponding change
in the electromagnetic momentum and will therefore require a certain force, which is
given in direction and magnitude by

F ¼ dG
dt

: ð29Þ

Strictly speaking, the formula (28) may only be applied in the case of a uniform
rectilinear translation. On account of this circumstance—though (29) is always
true—the theory of rapidly varying motions of an electron becomes very compli-
cated, the more so, because the hypothesis of § 8 would imply that the direction and
amount of the deformation are continually changing. It is even hardly probable that
the form of the electron will be determined solely by the velocity existing at the
moment considered.

Nevertheless, provided the changes in the state of motion be sufficiently slow, we
shall get a satisfactory approximation by using (28) at every instant. The application
of (29) to such a quasi-stationary translation, as it has been called by Abraham12, is a
very simple matter. Let, at a certain instant, j1 be the acceleration in the direction of
the path, and j2 the acceleration perpendicular to it. Then the force F will consist of
two components, having the directions of these accelerations and which are given by

F1 ¼ m1 j1 and F2 ¼ m2 j2,

if

m1 ¼ e2

6πc2R
d klwð Þ
dw

and m2 ¼ e2

6πc2R
kl: ð30Þ

Hence, in phenomena in which there is an acceleration in the direction of motion,
the electron behaves as if it had a mass m1, in those in which the acceleration is
normal to the path, as if the mass werem2. These quantitiesm1 andm2, may therefore

12Abraham, Wied. Ann, 10 (1903), p. 105.
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properly be called the “longitudinal” and “transverse” electromagnetic masses of the
electron. I shall suppose that there is no other, no “true” or “material” mass.

Since k and l differ from unity by quantities of the order w2/c2, we find for very
small velocities

m1 ¼ m2 ¼ e2

6πc2R
:

This is the mass with which we are concerned, if there are small vibratory motions
of the electrons in a system without translation. If, on the contrary, motions of this
kind are going on in a body moving with the velocity w in the direction of the axis of
x, we shall have to reckon with the mass m1, as given by (30), if we consider the
vibrations parallel to that axis, and with the mass m2, if we treat of those that are
parallel to OY or OZ. Therefore, in short terms, referring by the index Σ to a moving
system and by Σ0 to one that remains at rest,

m Σð Þ ¼ d klwð Þ
dw

, kl, kl

� �
m Σ0ð Þ: ð31Þ

§ 10. We can now proceed to examine the influence of the Earth’s motion on optical
phenomena in a system of transparent bodies. In discussing this problem, we shall fix
our attention on the variable electric moments in the particles or “atoms” of the
system. To these moments we may apply what has been said in § 7 For the sake of
simplicity we shall suppose that, in each particle, the charge is concentrated in a
certain number of separate electrons, and that the “elastic” forces that act on one of
these and, conjointly with the electric forces, determine its motion, have their origin
within the bounds of the same atom.

I shall show that, if we start from any given state of motion in a system without
translation, we may deduce from it a corresponding state that can exist in the same
system after a translation has been imparted to it, the kind of correspondence being
as specified in what follows.

a. Let A0
1 , A

0
2 , A

0
3 etc. be the centers of the particles in the system without

translation (Σ0); neglecting molecular motions we shall take these points to remain
at rest. The system of points A1, A2, A3 etc., formed by the centers of the particles in
the moving system Σ, is obtained from A0

1, A
0
2, A

0
3 etc. by means of a deformation

1
kl ,

1
l ,

1
l

� �
. According to what has been said in § 8, the centers will of themselves take

these positions A0
1 , A

0
2 , A

0
3 etc. if originally, before there was a translation, they

occupied the positions A1, A2, A3 etc.
We may conceive any point P0 in the space of the system Σ0 to be displaced by the

above deformation, so that a definite point P of Σ corresponds to it. For two
corresponding points P0 and P we shall define corresponding instants, the one
belonging to P0, the other to P, by stating that the true time at the first instant is
equal to the local time, as determined by (5) for the point P, at the second instant. By
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corresponding times for two corresponding particles we shall understand times that
may be said to correspond, if we fix our attention on the centers A0 and A of these
particles.

b. As regards the interior state of the atoms, we shall assume that the configuration
of a particle A in Σ at a certain time may be derived by means of the deformation
1
kl ,

1
l ,

1
l

� �
from the configuration of the corresponding particle in Σ0, such as it is at

the corresponding instant. In so far as this assumption relates to the form of the
electrons themselves, it is implied in the first hypothesis of § 8.

Obviously, if we start from a state really existing in the system Σ0, we have now
completely defined a state of the moving system Σ. The question remains however,
whether this state will likewise be a possible one.

In order to judge this, we may remark in the first place that the electric moments
which we have supposed to exist in the moving system and which we shall denote by
p, will be certain definite functions of the coordinates x, y, z of the centers Λ of the
particles, or, as we shall say, of the coordinates of the particles themselves, and of the
time t. The equations which express the relations between p on one hand and x, y,
z, t on the other, may be replaced by other equations, containing the vectors p0

defined by (26) and the quantities x0, y0, z0, t0 defined by (4) and (5). Now, by the
above assumptions a and b, if in a particle A of the moving system, whose coordi-
nates are x, y, z, we find an electric moment p at the time t, or at the local time t0, the
vector p0 given by (26) will be the moment which exists in the other system at the
true time t0 in a particle whose coordinates are x0, y0, z0. It appears in this way that the
equations between p0, x0, y0, z0, t0 are the same for both systems, the difference being
only this, that for the system Σ0 without translation these symbols indicate the
moment, the coordinates and the true time, whereas their meaning is different for
the moving system, p0, x0, y0, z0, t0 being here related to the moment p, the coordinates
x, y, z and the general time t in the manner expressed by (26), (4) and (5).

It has already been stated that the equation (27) applies to both systems. The
vector D0 will therefore be the same in Σ0 and Σ, provided we always compare
corresponding places and times. However, this vector has not the same meaning in
the two cases. In Σ0 it represents the electric force, in Σ it is related to this force in the
way expressed by (20). We may therefore conclude that the electric forces acting, in
Σ and in Σ0, on corresponding particles at corresponding instants, bear to each other
the relation determined by (21). In virtue of our assumption b, taken in connection
with the second hypothesis of § 8, the same relation will exist between the “elastic”
forces; consequently, the formula (21) may also be regarded as indicating the
relation between the total forces, acting on corresponding electrons, at corresponding
instants.

It is clear that the state we have supposed to exist in the moving system will really
be possible if, in Σ and Σ0, the products of the mass m and the acceleration of an
electron are to each other in the same relation as the forces, i.e. if
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mj Σð Þ ¼ l2,
l2

k
,
l2

k

� �
mj Σ0ð Þ: ð32Þ

Now, we have for the accelerations

j Σð Þ ¼ l

k3
,
l

k2
,
l

k2

� �
j Σ0ð Þ, ð33Þ

as may be deduced from (4) and (5), and combining this with (32), we find for the
masses

m Σð Þ ¼ k3l, kl, kl
� �

m Σ0ð Þ

If this is compared to (31), it appears that, whatever be the value of l the condition
is always satisfied, as regards the masses with which we have to reckon when we
consider vibrations perpendicular to the translation. The only condition we have to
impose on l is therefore

d klwð Þ
dw

¼ k3l:

But, on account of (3),

d kwð Þ
dw

¼ k3,

so that we must put

dl
dw

¼ 0, l ¼ const:

The value of the constant must be unity, because we know already that, for w¼ 0,
l ¼ 1.

We are therefore led to suppose that the influence of a translation on the
dimensions (of the separate electrons and of a ponderable body as a whole) is
confined to those that have the direction of the motion, these becoming k times
smaller than they are in the state of rest. If this hypothesis is added to those we have
already made, we may be sure that two states, the one in the moving system, the
other in the same system while at rest, corresponding as stated above, may both be
possible. Moreover, this correspondence is not limited to the electric momenta of the
particles. In corresponding points that are situated either in the ether between the
particles, or in that surrounding the ponderable bodies, we shall find at
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corresponding times the same vector D0 and, as is easily shown, the same vector H0.
We may sum up by saying: If, in the system without translation, there is a state of
motion in which, at a definite place, the components of p, D and H are certain
functions of the time, then the same system after it has been put in motion (and
thereby deformed) can be the seat of a state of motion in which, at the corresponding
place, the components of p0, D0 and H0 are the same functions of the local time.

There is one point which requires further consideration. The values of the masses
m1 and m2 having been deduced from the theory of quasi-stationary motion, the
question arises, whether we are justified in reckoning with them in the case of the
rapid vibrations of light. Now it is found on closer examination that the motion of an
electron may be treated as quasi-stationary if it changes very little during the time a
light-wave takes to travel over a distance equal to the diameter. This condition is
fulfilled in optical phenomena, because the diameter of an electron is extremely
small in comparison with the wavelength.

§ 11. It is easily seen that the proposed theory can account for a large number of
facts.

Let us take in the first place the case of a system without translation, in some parts
of which we have continually p¼ 0, D ¼ 0, H ¼ 0. Then, in the corresponding state
for the moving system, we shall have in corresponding parts (or, as we may say, in
the same parts of the deformed system) p0 ¼ 0, D0 ¼ 0, H0 ¼ 0. These equations
implying p ¼ 0, D ¼ 0, H ¼ 0, as is seen by (26) and (6), it appears that those parts
which are dark while the system is at rest, will remain so after it has been put in
motion. It will therefore be impossible to detect an influence of the Earth’s motion on
any optical experiment, made with a terrestrial source of light, in which the geomet-
rical distribution of light and darkness is observed. Many experiments on interfer-
ence and diffraction belong to this class.

In the second place, if in two points of a system, rays of light of the same state of
polarization are propagated in the same direction, the ratio between the amplitudes in
these points may be shown not to be altered by a translation. The latter remark
applies to those experiments in which the intensities in adjacent parts of the field of
view are compared.

The above conclusions confirm the results I have formerly obtained by a similar
train of reasoning, in which however the terms of the second order were neglected.
They also contain an explanation of Michelson’s negative result, more general and of
somewhat different form than the one previously given, and they show why Ray-
leigh and Brace could find no signs of double refraction produced by the motion of
the Earth.

As to the experiments of Trouton and Noble, their negative result becomes at
once clear, if we admit the hypotheses of § 8. It may be inferred from these and from
our last assumption (§ 10) that the only effect of the translation must have been a
contraction of the whole system of electrons and other particles constituting the
charged condenser and the beam and thread of the torsion-balance. Such a contrac-
tion does not give rise to a sensible change of direction.
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It need hardly be said that the present theory is put forward with all due reserve.
Though it seems to me that it can account for all well-established facts, it leads to
some consequences that cannot as yet be put to the test of experiment. One of these is
that the result of Michelson’s experiment must remain negative, if the interfering
rays of light are made to travel through some ponderable transparent body.

Our assumption about the contraction of the electrons cannot in itself be pro-
nounced to be either plausible or inadmissible. What we know about the nature of
electrons is very little and the only means of pushing our way farther will be to test
such hypotheses as I have here made. Of course, there will be difficulties, e.g. as
soon as we come to consider the rotation of electrons. Perhaps we shall have to
suppose that in those phenomena in which, if there is no translation, spherical
electrons rotate about a diameter, the points of the electrons in the moving system
will describe elliptic paths, corresponding, in the manner specified in § 10, to the
circular paths described in the other case.

§ 12 It remains to say some words about molecular motion. We may conceive that
bodies in which this has a sensible influence or even predominates, undergo the same
deformation as the systems of particles of constant relative position of which alone
we have spoken till now. Indeed, in two systems of molecules Σ0 and Σ, the first
without and the second with a translation, we may imagine molecular motions
corresponding to each other in such a way that, if a particle in Σ0 has a certain
position at a definite instant, a particle in Σ occupies at the corresponding instant the
corresponding position. This being assumed, we may use the relation (33) between
the accelerations in all those cases in which the velocity of molecular motion is very
small as compared to w. In these cases the molecular forces may be taken to be
determined by the relative positions, independently of the velocities of molecular
motion. If, finally, we suppose these forces to be limited to such small distances that,
for particles acting on each other, the difference of local times may be neglected, one
of the particles, together with those which lie in its sphere of attraction or repulsion,
will form a system which undergoes the often mentioned deformation. In virtue of
the second hypothesis of § 8 we may therefore apply to the resulting molecular force
acting on a particle, the equation (21). Consequently, the proper relation between the
forces and the accelerations will exist in the two cases, if we suppose that the masses
of all particles are influenced by a translation to the same degree as the electro-
magnetic masses of the electrons.

§ 13 The values (30) which I have found for the longitudinal and transverse
masses of an electron, expressed in terms of its velocity, are not the same as those
that have been formerly obtained by Abraham. The ground for this difference is
solely to be sought in the circumstance that, in his theory, the electrons are treated as
spheres of invariable dimensions. Now, as regards the transverse mass, the results of
Abraham have been confirmed in a most remarkable way by Kaufmann’s measure-
ments of the deflection of radium-rays in electric and magnetic fields. Therefore, if
there is not to be a most serious objection to the theory I have now proposed, it must
be possible to show that those measurements agree with my values nearly as well as
with those of Abraham.
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I shall begin by discussing two of the series of measurements published by
Kaufmann13 in 1902. From each series he has deduced two quantities η and ζ, the
“reduced” electric and magnetic deflections, which are related as follows to the ratio
β ¼ w/c:

β ¼ k1
ζ
η
, ψ βð Þ ¼ η

k2ζ
2 : ð34Þ

Here ψ(β) is such a function, that the transverse mass is given by

m2 ¼ 3
4
∙ e2

6πc2R
ψ βð Þ, ð35Þ

whereas k1 and k2 are constant in each series.
It appears from the second of the formulae (30) that my theory leads likewise to

an equation of the form (35); only Abraham’s function ψ(β) must be replaced by

4
3
k ¼ 4

3
1� β2
� ��1=2

Hence, my theory requires that, if we substitute this value for ψ(β) in (34), these
equations shall, still hold. Of course, in seeking to obtain a good agreement, we shall
be justified in giving to k1 and k2 other values than those of Kaufmann, and in taking
for every measurement a proper value of the velocity w, or of the ratio β. Writing sk1,
3
4 k

0
2 and β0 for the new values, we may put (34) in the form

β0 ¼ sk1
ζ
η

ð36Þ

and

1� β2
� ��1=2 ¼ η

k02ζ
2 : ð37Þ

Kaufmann has tested his equations by choosing for k1 such a value that, calcu-
lating β and k2 by means of (34), he got values for this latter number that remained
constant in each series as well as might be. This constancy was the proof of a
sufficient agreement.

I have followed a similar method, using however some of the numbers calculated
by Kaufmann. I have computed for each measurement the value of the expression

13Kaufmann, Physik. Zeitschr. 4 (1902), p. 55.
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k02 ¼ 1� β 02� �1=2 ψ βð Þk2, ð38Þ

that may be got from (37) combined with the second of the equations (34). The
values of ψ(β) and k2 have been taken from Kaufmann’s tables and for β0 I have
substituted the value he has found for β, multiplied by s, the latter coefficient being
chosen with a view to obtaining a good constancy of (38). The results are contained
in the following tables, corresponding to the tables III and IV in Kaufmann’s paper.

III. s ¼ 0.933

β ψ(β) k2 β0 k02
0.851 2.147 1.721 0.794 2.246
0.766 1.86 1.736 0.715 2.258
0.727 1.78 1.725 0.678 2.256
0.6615 1.66 1.727 0.617 2.256
0.6075 1.595 1.655 0.567 2.175

IV. s ¼ 0.954

β ψ(β) k2 β0 k02
0.963 3.23 8.12 0.919 10.36
0.949 2.86 7.99 0.905 9.70
0.933 2.73 7.46 0.890 9.28
0.883 2.31 8.32 0.842 10.36
0.860 2.193 8.09 0.820 10.15
0.830 2.06 8.13 0.702 10.23
0.801 1.96 8.13 0.764 10.28
0.777 1.89 8.04 0.741 10.20
0.752 1.83 8.02 0.717 10.22
0.732 1.785 7.97 0.698 10.18

The constancy of k02 is seen to come out no less satisfactory than that of k2, the
more so as in each case the value of s has been determined by means of only two
measurements. The coefficient has been so chosen that for these two observations,
which were in Table III the first and the last but one, and in Table IV the first and last,
the values of k02 should be proportional to those of k2.

I shall next consider two series from a later publication by Kaufmann14, which
have been calculated by Runge15 by means of the method of least squares, the
coefficients k1 and k2 having been determined in such a way, that the values of η,
calculated, for each observed ζ, from Kaufmann’s equations (34), agree as closely as
may be with the observed values of η.

14Kaufmann, Gött. Nachr. Math. phys. Kl., 1903, p. 90.
15Runge, ibidem, p. 326.
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I have determined by the same condition, likewise using the method of least
squares, the constants a and b in the formula

η2 ¼ aζ2 þ bζ4,

which may be deduced from my equations (36) and (37). Knowing a and b, I find β
for each measurement by means of the relation

β ¼ ffiffiffi
a

p ζ
η

For two plates on which Kaufmann had measured the electric and magnetic
deflections, the results are as follows, the deflections being given in centimeters.

I have not found time for calculating the other tables in Kaufmann’s paper. As
they begin, like the table for Plate 15, with a rather large negative difference between
the values of η which have been deduced from the observations and calculated by
Runge, we may expect a satisfactory agreement with my formulae.

Plate 15. a ¼ 0.06489, b ¼ 0.3039.

ζ

η β

Observed. Calculated by R. Diff. Calculated by L Diff.

Calculated by

R. L.

0.1495 0.0388 0.0404 �16 0.0400 �12 0.987 0.951
0.199 0.0548 0.0550 �2 0.0552 �4 0.964 0.018
0.2475 0.0716 0.0710 +6 0.0715 +1 0.030 0.881
0.296 0.0806 0.0887 +9 0.0895 +1 0.889 0.842
0.3435 0.1080 0.1081 �1 0.1090 �10 0.847 0.803
0.391 0.1290 0.1297 �7 0.1305 �15 0.804 0.763
0.437 0.1524 0.1527 �3 0.1532 �8 0.763 0.727
0.4825 0.1788 0.1777 +11 0.1777 +11 0.724 0.692
0.5265 0.2033 0.2039 �6 0.2033 0 0.688 0.660

Plate N�. 19. a ¼ 0.05867, b ¼ 0.2591.

ζ

η β

Observed. Calculated by R. Diff. Calculated by L. Diff.

Calculated by

R. L

0.1495 0.0404 0 0388 +16 0.0379 +25 0.990 0.954
0.199 0.0529 0 0527 +2 0 0522 +7 0.969 0.923
0.247 0.0678 0 0675 +3 0.0674 +4 0.939 0.888
0.296 0.0834 0.0842 �8 0.0844 �10 0.902 0.849
0.3435 0.1010 0.1022 �3 0.1026 �7 0.862 0.841
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Plate N�. 19. a ¼ 0.05867, b ¼ 0.2591.

ζ

η β

Observed. Calculated by R. Diff. Calculated by L. Diff.

Calculated by

R. L

0.391 0.1219 0.1222 �3 0.1226 �7 0.822 0.773
0.437 0.1420 0.1434 �5 0.1437 �8 0.782 0.736
0.4825 0.1660 0.4665 �5 0.1664 �4 0.744 0.702
0.5265 0.1916 0.1906 +10 0.1902 +14 0.709 0.671

§ 14. I take this opportunity for mentioning an experiment that has been made by
Trouton16 at the suggestion of Fitz Gerald, and in which it was tried to observe the
existence of a sudden impulse acting on a condenser at the moment of charging or
discharging; for this purpose the condenser was suspended by a torsion-balance,
with its plates parallel to the Earth’s motion. For forming an estimate of the effect
that may be expected, it will suffice to consider a condenser with ether as
dielectricum. Now, if the apparatus is charged, there will be (§ 1) an electromagnetic
momentum

G ¼ 2U
c2

w:

(Terms of the third and higher orders are here neglected). This momentum being
produced at the moment of charging, and disappearing at that of discharging, the
condenser must experience in the first case an impulse �G and in the second an
impulse +G.

However Trouton has not been able to observe these jerks.
I believe it may be shown (though his calculations have led him to a different

conclusion) that the sensibility of the apparatus was far from sufficient for the object
Trouton had in view.

Representing, as before, by U the energy of the charged condenser in the state of
rest, and by U + U0 the energy in the stale of motion, we have by the formulae of this
paper, up to the terms of the second order,

U0 ¼ 2w2

c2
U,

an expression, agreeing in order of magnitude with the value used by Trouton for
estimating the effect.

The intensity of the sudden jerk or impulse will therefore be U0=w.
Now, supposing the apparatus to be initially at rest, we may compare the

deflection α, produced by this impulse, to the deflection α0 which may be given to

16Trouton, Dublin Roy. Soc. Trans. (2) 7 (1902), p. 379 (This paper may also be found in The
scientific writings of Fitz Gerald, edited by Larmor, Dublin and London 1902, p. 557).
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the torsion-balance by means of a constant torque K, acting during half the vibration
time. We may also consider the case in which a swinging motion has already been set
up; then the impulse, applied at the moment in which the apparatus passes through
the position of equilibrium, will alter the amplitude by a certain amount β and a
similar effect β0 may be caused by letting the torque K act during the swing from one
extreme position to the other. Let T be the period of swinging and l the distance from
the condenser to the thread of the torsion-balance. Then it is easily found that

α
α0 ¼

β
β0

¼ πU0l
KTw

: ð39Þ

According to Trouton’s statements U0 amounted to one or two ergs, and the
smallest torque by which a sensible deflection could be produced was estimated at
7.5 CGS-units. If we substitute this value for K and take into account that the
velocity of the Earth’s motion is 3�106 cm/sec., we immediately see that (39)
must have been a very small fraction.

Editor’s Notes
1. [Editor: Perhaps this should be Σ0, not S0.]
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