
Bruce D. Popp

Henri Poincaré: 
Electrons 
to Special 
Relativity
Translation of Selected Papers and 
Discussion



Henri Poincaré: Electrons to Special Relativity



Bruce D. Popp

Henri Poincaré: Electrons
to Special Relativity
Translation of Selected Papers and Discussion



Bruce D. Popp
Norwood, MA, USA

ISBN 978-3-030-48038-7 ISBN 978-3-030-48039-4 (eBook)
https://doi.org/10.1007/978-3-030-48039-4

© Springer Nature Switzerland AG 2020
This work includes English-language translations of the following original French-language papers by
Henri Poincaré, which belong to the public domain:

Poincaré, H. (1898). La mesure du temps. Revue de métaphysique et de morale, 6, 1–13.
Poincaré, H. (1900). La théorie de Lorentz et le principe de réaction. Archives néerlandaises des
sciences exactes et naturelles, 5, 252–78.
Poincaré, H. (1905). Sur la dynamique de l’électron. Comptes rendus hebdomadaires de l’Académie
des sciences de Paris, 140, 1504–1508.
Poincaré, H. (1906). Sur la dynamique de l’électron. Rendiconti del circolo matematico di Palermo,
21, 129–176.
Poincaré, H. (1908). La dynamique de l’électron. Revue générale des sciences pures et appliquées,
19, 386–402.

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-48039-4


Preface

The initial idea for this book goes back to a suggestion that, after completing
translation of Henri Poincaré’s monograph Sur le problème des trois corps et les
équations de la dynamique, I translate what is often called the Palermo paper, Sur la
dynamique de l’électron by Henri Poincaré. This seemed like a reasonable sugges-
tion and my first thought was that preparing the translation would be an interesting,
but minor, digression before starting a larger project that I had been anticipating for
some time. The Palermo paper has frequently been compared to Einstein’s 1905
paper on electrodynamics of moving bodies in discussions of the origin of special
relativity.

My first impression was that the discussions of precedence for the theory of
special relativity were sterile and uninteresting. (“Relativity postulate? Checkmark
in the Poincaré column; checkmark in the Einstein column.”) Further, as a physicist,
it seemed clear to me that Poincaré and Einstein were looking to understand and
solve rather different problems and while Poincaré’s work could have led to a theory
of special relativity by a different route, Einstein had gone directly to that target.
Still, a new translation of Poincaré’s article by a competent professional translator
might have some value. Perhaps, I thought, I could post the translation on the
internet and then move on to the project I had previously been thinking about.

After submitting the manuscript for my first book, I started translating the
Palermo paper. I soon came to see that to understand the article I was translating
(and thus produce an accurate and satisfying translation), I would need to look at a
number of related articles by Poincaré from the same period and also an article from
1904 by Hendrik Lorentz. After further translating, reading, and researching, seven
items in total were on my list of related articles by Poincaré; the list was later pruned
to five. These are the articles translated in Part I of this book.

Of these five articles by Poincaré, three were published in 1905, 1906, and 1908
and were about the dynamics of the electron. The first of these appeared in the
minutes of meetings of the Académie des Sciences de France and describes the work
that Poincaré had in progress. The second article was the article referred to above as
the Palermo paper because it was published in the proceedings of the Circolo
matematico di Palermo. The third article is another look at these results published
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in the Revue générale des sciences pures et appliquées and has more of a popular
science slant. The other two articles were earlier articles which discussed time and
conservation of momentum by radiation, respectively.

This body of work reflects Poincaré’s effort to understand and respond to two
experimental results.

The first is the discovery of subatomic charged particles both in Cambridge with
the measurement of the charge-to-mass ratio of electrons in cathode rays by J. J.
Thomson and in Paris with the discovery of radiation from radioactive decay by
Henri Becquerel, isolation of polonium and radium by the Curies, and characteriza-
tion of the radiation by Becquerel, Ernest Rutherford, and Paul Villard. Cathode rays
and beta rays were recognized as being the same particle but coming from different
sources.

The second is the negative result of the Michelson-Morley experiment. Lorentz
sought an explanation for why motion through the ether could not be detected and
proposed the transformations named after him as an explanation. In contrast,
Poincaré accepted the experimental result and thought that it indicated that a
principle of relativity was a general law of nature, meaning that it is impossible to
demonstrate absolute motion (for example motion relative to the ether). Poincaré
understood the transformations not as a cause calling for an ad hoc assumption to
explain an experimental result, but as a consequence of a principle of nature applying
to electricity and magnetism and also to gravitation.

That is how I came to select the articles translated in Part I of this book. The
articles respond to a need for a theory of electrons, the newly discovered particle, and
present a classical theory of subatomic charged particles and a particle-based theory
of electrodynamics. It later became clear that three letters from Poincaré to Lorentz
were important for comparing their work and I added the translation of the letters.

While translating, certain subjects attracted my attention and interest. The first to
come up was Poincaré’s choice of notation (or it might be more accurate to say lack
of notation) for vectors, vector products, and differential vector operators. Physics
students from the last 50 years and longer taking an upper-level course in electro-
dynamics are familiar with the use of vector dot products, vector cross products, and
nabla (also called dell, ∇); it even makes its way to the inside of the covers of
Jackson, Classical Electrodynamics. Poincaré does not use these notational tools; he
instead writes out the Cartesian components of three-dimensional vectors individu-
ally. I became curious about the notation used by his contemporaries, the timing of
when the notation I was familiar with had become available for use and related
questions. After discussion with a friend, I decided to retain in my translation the
notation that Poincaré had used in his writing and to provide, in a separate place,
examples of certain key equations rewritten in notation familiar to me. At first, this
“separate place” was an appendix.
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Over the months, as I proceeded with the translation, I came across several more
subjects that caught my interest and led me to do further research and reading on
subjects where it seemed useful to improve my understanding or satisfy my curios-
ity. This is a case of letting my thoughts wander and then assessing where they
had gone.

As the number of subjects increased, I came to decide that these subjects needed
to be organized and treated in chapters in a second part of the book. My approach to
these subjects is that of a physicist looking at the work of an earlier generation of
physicists to understand through the published literature the content of their work,
their attitude, and their approach to what they were doing and how their agreement
and differences advanced their understanding of nature and their science.

The chapters in Part II therefore represent my discussion of subjects that captured
my interest and curiosity. I organized them in three main groups. They are the
following.

Experiments on Electrons

In 1897 J. J. Thomson at Cavendish Laboratories, University of Cambridge, mea-
sured the charge-to-mass ratio of cathode rays; this showed that they were particles.
His value for the ratio was about 1/1000 the value for the hydrogen ion in electrolysis
experiments. This suggests that these particles were very light. He called them
corpuscles. In 1898 he measured their charge using water drops formed in a cloud
chamber by nucleation on ions produced by irradiation with X-rays; this charge was
seen to be comparable to the charge carried by the hydrogen atom in electrolysis. In
1906 he was awarded the Nobel Prize in Physics for this work.

In 1896 A. Henri Becquerel in France discovered radiation from uranium. He
shared the 1903 Nobel Prize in Physics with Pierre and Marie Curie; he was
recognized for his discovery of spontaneous radioactivity. A component of this
radiation is beta rays. Becquerel measured the charge-to-mass ratio of beta rays
and identified them as the same particles as cathode rays.

Further work by Walter Kaufmann in 1901 and in the following years produced
confirmation of the charge-to-mass ratio measurement and more accurate results.

Kaufmann was also able to measure the charge-to-mass ratio and the velocity of
the electrons simultaneously. This exposed an important difference between the
electrons in cathode rays and beta rays; the beta rays have much higher velocities.
Some have velocities over 90% of the speed of light. Kaufmann was able to show for
the high-speed electrons that the mass of the electrons observed in his apparatus was
larger for higher speed electrons. Max Abraham in 1902 suggested an explanation
for the dependence of mass on velocity.

This is the experimental start of subatomic physics and relativity.
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Theory of Electrons

Before this discovery, the predominant understanding of electric charge and its role
in electrodynamics (including Maxwell’s equations) was based on analogy with the
flow of a continuous fluid. There was also thought to be a continuous medium for
electromagnetic radiation that was called the luminiferous ether. Just as water waves
need water and sound waves need air as continuous media, it was thought that
electromagnetic waves needed a continuous medium and this medium was called the
ether. Repeated, increasingly sophisticated, attempts to detect effects of the ether
resulting from the Earth’s motion had produced negative results.

The discovery of the electron—a discrete, charge bearing, subatomic particle—
required a new understanding of electrodynamics and Maxwell’s equations in terms
of discrete charged particles. Hendrik Lorentz had been working on this formulation
of electrodynamics since about 1890 and published an important paper on it in 1904.
The paper is reformatted and presented in Part III for the convenience of my readers.
That paper notably explained why sensitive experiments had not been able to detect
an effect due to the Earth moving through the ether; Lorentz proposed that the shape
of moving particles changed in such a way that any effect due to their movement
through the ether would be undetectable. This change of shape, a transformation,
also provided an explanation for the dependence of electron mass on velocity.
Lorentz showed his explanation fit Kaufmann’s data better that Abraham’s expla-
nation. I extended Lorentz’s reanalysis of Kaufmann’s data and showed that
Lorentz’s explanation fit the data much better than he had thought. Further, I showed
that Kaufmann’s data gives a value for the rest-frame electron charge-to-mass ratio
that is within 10% of the current accepted value.

In papers from 1905 and 1906, Henri Poincaré corrected and expanded on
Lorentz’s work. Whereas Lorentz argued that the transformations were necessary
to explain why the ether could not be detected; Poincaré in contrast adopted a
postulate stating that it is impossible to detect absolute motion. He showed that the
transformations proposed by Lorentz were a consequence of this assumption, and
named them “Lorentz transformations.” Poincaré notably showed that the equations
of electrodynamics are unchanged by the Lorentz transformations. He also showed
that the Lorentz transformations are a group and that x2 + y2 + z2 � c2t2 is an
invariant of the group.

Poincaré took another step to look at the stability conditions for an electron.
Lorentz and Abraham shared the electromagnetic world view that tried to explain
mass and all of mechanics in terms of electromagnetic forces. Poincaré recognized
that an electron with only electromagnetic forces could not be stable. The charge
forming an electron would repel electrostatically. Poincaré calculated what force
would be necessary to hold an electron together. The required force, whatever its
origin, is now called the Poincaré stress. A wholly electromagnetic electron is not
possible since a force of some other origin is needed to hold it together.

While Lorentz had conceived of the transformations as applying to electromag-
netic forces and serving to explain the non-detection of the ether, Poincaré
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understood that the Lorentz transformations had to apply to all forces and bodies
including gravitational forces and looked at the consequences for gravitation. He
developed a theory of gravitation unchanged under Lorentz transformation.

And More

The subsequent chapters in Part II step back and take progressively broader views of
Poincaré’s work in different contexts. Poincaré was an exceptional mathematician.
What can we learn about Poincaré as a physicist from the work translated in Part I? In
that work, Poincaré had both good predictions and missed opportunities.

Next, I review the polemic about priority for special relativity and provide my
perspective.

Poincaré’s choice of notation for the equation of electrodynamics is conservative.
For over 15 years of work in electricity and magnetism Poincaré continued to write
out equations in Cartesian coordinates even though he certainly saw and understood
the vector formalism developed and adopted by others.

The last chapter takes an even larger step back and looks at some subjects in
translation, language, and culture suggested by other chapters.

Advice for Readers

The content of Part I is my translation of articles written by Poincaré over
100 years ago.

Poincaré often does not provide clear signposts about where he is going or why he
is presenting a particular line of reasoning. Reading Poincaré therefore requires
paying attention to the path that he is taking and stopping to appreciate the vistas
when they come into view. For example, Poincaré derives the formula for relativistic
composition of velocities in two different ways and does it with little fanfare. As they
say, blink and you’ll miss it.

In preparing the translation, I have tried to use, consistent with good judgment,
terminology or a gloss familiar to a contemporary reader. When I have been
successful, this is unobtrusive. There is one important exception: it became clear
on reading these articles that when Poincaré writes “electron” he may mean a
positively or negatively charged subatomic particle of unspecified charge-to-mass
ratio (see, e.g., his discussion of channel rays in Part I, Chapter 6 on page 107), and
he does not always mean the negatively charged lepton that we designate with
this name.

Some of the hypotheses, reasoning, and explanations given by Poincaré have not
stood the test of time. Since I have not provided any running commentary or
summarization, readers of Part I will need to identify for themselves content which
needs replacement or correction.
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Care is warranted when looking at the secondary literature for information about
the articles translated in Part I. As is noted in Part II, Chapter 11, there has been
substantial polemic, spanning multiple decades, about priority for the theory of
special relativity. This has left accumulations of toxic ink in different parts of the
secondary literature about Poincaré’s papers translated in Chapters 2 and 5. Con-
sulting translations of Poincaré’s original writing in Part I of this book instead of, or
in combination with, the secondary literature may help you avoid toxic ink.

Let me point out two examples.
In Edmund Whitaker, A History of the Theories of Aether and Electricity: the

Modern Theories, Thomas Nelson and Sons Limited, 1953, on page 51 with refer-
ence to the article by Poincaré translated in Chapter 2, Whittaker writes, “In 1900
Poincaré, referring to the fact that in free aether the electromagnetic momentum is
(1/c2) times the Poynting flux of energy, suggested that electromagnetic energy
might possess mass density equal to 1/c2 times the energy density—that is to say,
E ¼ mc2 where E is energy and m is mass.” Some elements of this statement are
false—Poincaré was not discussing “free aether”1—and others are seriously mis-
leading—“suggested. . . might possess.” We can reasonably assume that this state-
ment was meant to write that part of Einstein’s work out of Whitaker’s book.
Reading the primary literature, translated here in Chapter 2, will help you understand
what Poincaré’s idea was and how far he did take it.

In Arthur I. Miller, A Study of Henri Poincaré’s “Sur la Dynamique de
l’Électron”, Arch. Hist. Exact Sci. 10, 207–328 (1973), Miller purports to provide
a study of the article translated in Part I Chapter 5 of this book. I suggest that you
consider whether you agree with the statement on page 210, “Poincaré was not a
highly innovative physicist.” And on page 234 Miller wrote, “Abraham, Lorentz and
Poincaré were committed proponents of the electromagnetic world-picture, they
could neither discover nor accept the universal theory of relativity.” This is only
true of Abraham and Lorentz. Electron stability (and the need for Poincaré stresses)
is one of the nails that Poincaré knowingly put in the coffin of the electromagnetic
world view. (This is one of the points I discuss in Part II, Chapter 10.) What is the
motive for the mischaracterization?

Other Translations

Other translations into English of Henri Poincaré Sur la dynamique de l’électron are
available. I am aware of the following published translations.

Scott Walter, in J. Renn and M. Schemmel (eds.), The Genesis of General
Relativity Vol. 3: Theories of Gravitation in the Twilight of Classical Physics;
Part I (Boston Studies in the Philosophy of Science 250), Springer, (2007),

1Whitaker might not have given such prominence to Poincaré’s writing if he had more accurately
understood Poincaré’s attitude to the ether. See Part II, Chapter 10.
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p. 253–271. On December 26, 2016, this was also available at http://scottwalter.free.
fr/papers/7pubsfr.html.

C. W. Kilmister, Special Theory of Relativity, Oxford: Pergamon, (1970), p. 145–
185.

H. M. Schwartz, American Journal of Physics, 39, 1287–1294; 40, 862–872,
1282–1287. In the first of the three parts, Schwartz writes, “However, direct trans-
lations are given only of selected portions of the text. Nor is the mathematical part
reproduced verbatim whenever changes in arrangement of the argument facilitate its
understanding. To the same end the notation is modernized throughout, including the
employment of the vector formalism.” It should be noted that in my present
translation, the entire article is translated, the mathematical part is reproduced in
full, and the mathematical notation used by Henri Poincaré is retained.

I am not aware of published translations into English of the other articles by
Poincaré included in this book.

Norwood, MA, USA Bruce D. Popp
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Chapter 1
The Measurement of Time

I. As long as we don’t leave the domain of consciousness, the concept of time is
relatively clear. Not only do we easily distinguish the present sensation from the
memory of past sensations or the anticipation of future sensations, but we know
perfectly well what we mean to say when we affirm that, of two conscious phenom-
ena of which we have kept a memory, one came before the other or else that, of two
expected conscious phenomena, one will come before the other.

When we state the two conscious facts are simultaneous, we mean to say that they
enter so deeply into each other that analysis cannot separate them without
damaging them.

The order in which we line up conscious phenomena has no arbitrariness. It is
imposed on us and there is nothing about it that we can change.

I have only one observation to add. For a set of sensations to become a memory
which could be ranked in time, it must have stopped being actual, that we might have
lost the sense of its infinite complexity, without which it would remain real. It must
have, to say it that way, crystallized around a center of associations of ideas which
will be like a kind of label. It is only when they will have thus lost all life that we will
be able to order our memories in time, like a botanist ordering dried flowers in their
herbarium.

But, there can only be a finite number of these labels. On account of this,
psychological time would be discontinuous. What is the origin of this idea that
between two arbitrary moments there are other moments? How would we know that
there were empty slots, if these slots were only revealed to us by their content?

II. But that isn’t all; in this form we want not only to bring back the phenomena
from our consciousness, but those for which other consciousnesses are the theater.
Even more, we want to bring back to it physical facts, these little things with which
we populate space and which no consciousness sees directly. It has to be done,
because without that science could not exist. In a word, psychological time is given
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to us and we want to create scientific and physical time. That is where the difficulty
starts, or rather difficulties, because there are two of them.

Here are two consciousnesses which are like two mutually impenetrable worlds.
By what right do we want to bring them into a single mold, to measure them with the
same gauge? Isn’t it as if one wanted to measure length with a gram or to weigh with
a meter?

And furthermore, why do we speak of measurement? We may know that one fact
is before another, but not how much earlier it is.

Therefore the two difficulties are:

1) Can we transform psychological time, which is qualitative into a quantitative
time?

2) Can we reduce facts which happen in different worlds to a single measurement?

III. The first difficulty was commented on long ago; it was the subject of long
discussions and we may say that the question is resolved.

We do not have the direct intuition of the equality of two time intervals. People
who believe they have this intuition are tricked by an illusion.

When I say that from 12:00 to 1:00 the same time has passed as from 2:00 to 3:00,
what does that statement mean?

The least thought shows that on its own it has none at all. It will only have what I
want to give it via a definition which will have to comprise some degree of
arbitrariness.

Psychologists could have gotten by with this definition; physicists and astrono-
mers cannot; let’s see how they got out of it.

To measure time, they make use of a pendulum and accept by definition that all
beats of this pendulum are of equal length. But, this is only a first approximation; the
running of the pendulum is changed by temperature, air resistance and barometric
pressure. If we escape from these sources of error, a much better approximation will
result. New sources, neglected until now, whether electric, magnetic or other, could
manage to contribute small disturbances.

In fact, the best clocks must be corrected from time to time, and the corrections
are done using astronomical observations; it is set up so that the sidereal clock marks
the same time when the same star passes the meridian. In other words, it is the
sidereal day; meaning the time for rotation of the Earth which is the constant unit of
time. We accept, via a new definition substituted for the one which was drawn from
the swinging of the pendulum, that two complete rotations of the Earth around its
axis have the same length.

However, astronomers are still not content with this definition. Many think the
tides act as a brake on our globe and that the rotation of the Earth becomes slower
and slower. In this way the apparent acceleration of motion of the moon would be
explained (it would seem to go faster than theory allows it to) because our clock,
which is the Earth, would be slowing down.
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IV. One could say that none of that matters much; most likely, our measuring
instruments are imperfect, but it is sufficient that we could conceive of a perfect
instrument. This ideal could never be reached, but it would be enough to have
conceived it and have in that way given rigor to the definition of the unit of time.

Unfortunately that rigor has not yet been found. When we use a pendulum for
measuring time, what is the postulate that we implicitly accept?

It is that the length of two identical phenomena is the same; or, if one prefers, that
the same causes take the same time to produce the same effects.

And it is, at first glance, a good definition of the equality of two intervals.
However, let’s be careful about it. Is it possible that one day experience will

falsify our postulate?
Let me explain; I assume that at some point in the world the phenomenon α

happens leading as a consequence at the end of some time to the effect α0. At another
point in the world very far away from the first, the phenomenon β happens, which
leads as a consequence to the effect β0. The phenomenon α and β are simultaneous as
are the effects α0 and β0.

At some later time, the phenomenon α occurs again under almost identical
circumstances and simultaneously the phenomenon β occurs again also at a very
far away point of the world and under nearly the same circumstances.

The effects α0 and β0 are also going to occur again. I assume that the effect α0 takes
place substantially before the effect β0.

If the experiment made us witnesses of such an event, our postulate would be
falsified.

The experiment taught us that the first length αα0 is equal to the first length ββ0 and
that the second length αα0 is smaller than the second length ββ0. In contrast, our
postulate would require that the two lengths αα0 be equal to each other and also the
two lengths ββ0. The equality and inequality deduced from the experiment would be
incompatible with the two equalities drawn from the postulate.

Now, can we affirm that the hypotheses that I just made are absurd? They hold
nothing contrary to the principle of contradiction. Most likely they would not be able
to occur without the principle of sufficient reason seeming to be violated. But, to
justify such a fundamental definition, I would prefer another guarantee.

V. But that isn’t all.
In physical reality, one cause does not produce one effect, but a multitude of

distinct causes contribute to producing it, without us being able to discern the
contribution of each of them.

Physicists seek to make this distinction; but they only do it approximately and
whatever progress they may make, they will only ever do it approximately. It is
approximately true that the motion of the pendulum is due solely to the attraction of
the Earth; but in all rigor, even the attraction of Sirius could act on the pendulum.

Under these conditions, it is clear that the causes which one day produced a
certain effect will only ever be approximately reproduced.
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And then we will have to change our postulate and our definition. Instead of
saying:

“The same causes take the same time to produce the same effects.”We have to
say:

“Nearly identical causes take about the same time to produce about the same
effects.”But our definition is therefore no more than close.

Further, as Calinon very rightly remarked in his recent monograph (Études sur les
diverses grandeurs; Paris, Gauthier-Villars, 1897), “One of the circumstances of an
arbitrary phenomenon is the rotational speed of the Earth; if this rotational speed
varies, it constitutes, in the reproduction of these phenomena, a circumstance which
no longer remains identical to itself. But assuming this rotational speed is constant is
assuming that one knows how to measure time.”

Our definition is therefore still not satisfactory; it is certainly not the definition
that the astronomers, whom I talked about above, implicitly adopt when they state
that the Earth’s rotation is slowing down.

Coming from their mouth, what is the meaning of this statement? We can only
understand it by analyzing the evidence that they give for their proposition.

They first sate that friction from the tides produces heat which reduces the energy.
They therefore invoke the principle of conservation of energy.

They next state that the secular acceleration of the moon, calculated from
Newton’s law, would be smaller than the acceleration which is deduced from
observations if the correction relating to the slowing of the Earth’s rotation is
not made.

They therefore invoke Newton’s law.
In other words, they define duration in the following way: time must be defined

such that Newton’s law and the equations of motion are respected.
Newton’s law is an experimental truth; as such, it is only approximate, which

shows that we still only have a definition by approximation.
If we now suppose that another way to measure time is adopted, the experiments

on which Newton’s law is based would still retain their same meaning. Just the
statement of the law would be different, because it would be translated into another
language; it would obviously be much less simple.

In that way, the definition implicitly adopted by astronomers could be summa-
rized as:

Time must be defined such that the equations of mechanics are as simple as
possible.

In other words, there is no way to measure time which is truer than another; the
one which is generally used is only more convenient.

We are not allowed to say about two clocks that one works well and the other
does not; we can only say that it is better to refer to the indications of the first clock.

The difficulty with which we just concerned ourselves was, as already stated,
frequently reported; among the most recent works where it was dealt with, I will cite,
beyond the short work of Calinon, the treatise on mechanics from Andrade.
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VI. The second difficulty has until now attracted much less attention; it is
however entirely analogous to the preceding and so logically I should have talked
about it earlier.

Two different psychological phenomena occur in two different consciousnesses;
when I say that they are simultaneous, what do I mean?

When I say that a physical phenomenon, which occurs outside of any conscious-
ness, is before or after a psychological phenomenon, what do I mean?

In 1572 Tycho Brahe noticed a new star in the heavens. An immense conflagra-
tion had occurred in some very distant star; but it had occurred much earlier—it took
at least.

200 years before the light leaving that star had reached our Earth. This confla-
gration was therefore prior to the discovery of America.

So, when I say this, when I consider this gigantic phenomenon which perhaps had
no witness, because the satellites of this star perhaps did not have inhabitants, when I
state that this phenomenon is prior to the formation of the visual image of Hispaniola
in the conscience of Christopher Columbus, what do I mean?

A little thought is sufficient for understanding that all these affirmations have no
meaning on their own.

They can only be meaningful after an agreement.

VII. We must first ask ourselves how one can have the idea of bringing into a
single framework all the mutually impenetrable worlds.

We wish to represent the external universe for ourselves and it is only at this price
that we could believe we know it.

We will never have this representation, we know it: our infirmity is too great.
We want to know at least that it is possible to conceive of an infinite intelligence

for which this representation would be possible, a sort of large consciousness which
would see all and which would classify all in its time, as we classify, in our time, the
little that we see.

This hypothesis is coarse and incomplete; because this supreme intelligence
would only be a demigod; infinite in one sense, this intelligence would be limited
in another because it would only have an imperfect memory of the past; and it
couldn’t have any other, because without that all memories would be equally present
to it and there would be no time for it.

And however when we talk of time, for everything which happens outside of us,
don’t we unconsciously adopt this hypothesis; don’t we place ourselves in the place
of this imperfect god; and the atheists themselves, don’t they put themselves in the
place where God would be, if he existed?

What I just said perhaps shows us why we have sought to bring all physical
phenomena back to a single framework. But that cannot substitute for a definition of
simultaneity, because this hypothetical intelligence, if it even existed, would be
incomprehensible for us.

1 The Measurement of Time 7



We have to look for something else.

VIII. Ordinary definitions which are sufficient for psychological time, can no
longer suffice for us. Two simultaneous psychological facts are linked so closely that
analysis cannot separate them without damaging them. Is it the same for two
physical facts? Isn’t my present closer to my past from yesterday than the present
of Sirius?

We also said that two facts must be regarded as simultaneous when the order of
their succession can be freely inverted. It is obvious that this definition could not be
suitable for two physical facts that occur very far apart, and that, as it involves them,
we no longer even understand what this reversibility could be; further, it is first the
succession itself that needs to be defined.

IX. Let us therefore seek to consider what is understood by simultaneity or
anteriority and to do that let us analyze some examples.

I write a letter; it is next read by the friend to whom I sent it. Here are two facts
which played out in two different consciousnesses. While writing this letter I had the
visual image of it, and my friend in their turn had this same image while reading the
letter.

Although these two facts happen in impenetrable worlds, I do not hesitate to
regard the first as earlier than the second, because I believe that one is the cause of
the other.

I hear thunder and I conclude that there had been an electric discharge; I do not
hesitate to consider the physical phenomenon as earlier than the audible impression
experienced by my consciousness, because I believe that one is the cause of the
other.

Here is the rule that we follow, and the only one that we could follow; when one
phenomenon appears to us as the cause of another, we regard it as earlier.

We therefore define time by the cause; but most often, when two facts appear
connected to us by a constant relation, how do we recognize which is the cause and
which is the effect? We accept that the earlier fact, the antecedent, is the cause of the
other, the consequent. It is then by time that we define the cause. How do we
extricate ourselves from this circular reasoning?

Sometimes we say post hoc, ergo propter hoc; sometimes propter hoc, ergo post
hoc; will we ever get out of this vicious circle?

X. Let us therefore look, not at how one manages to get out of it, because one
can’t completely do that, but how one tries to get out of it.

I perform a voluntary act A and I next experience a sensation D, which I regard as
a consequence of act A; additionally, for an arbitrary reason, I infer that this
consequence is not immediate, but that outside my consciousness two facts B
and C, of which I was not a witness, occur and in such a way that B is the effect
of A, that C is that of B and D is that of C.

But why that? If I think that I’m right to regard the four facts A, B, C and D as
related to each other by a causality chain, why arrange them in causal order A, B, C
and D and also in chronological order A, B, C and D instead of in some other order?
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I see clearly that in the action A I have the feeling of having been active, whereas in
experiencing the sensation D, I have that of having been passive. That is why I regard
A as the initial cause and D as the ultimate effect; it is why I order A at the beginning
of the chain and D at the end; but why put B before C instead of C before B?

If one is asked this question, one ordinarily responds: it is well known that it is B
which is the cause of C because one always sees B occur before C. These two
phenomena, when they are witnessed, occur in a certain order; when the analogous
phenomena occur without a witness, there is no reason for this order to be inverted.

That seems likely, but be careful about it; we never directly know the physical
phenomena B and C; what we know are sensations B0 and C0 produced respectively
by B and C. Our consciousness immediately teaches us that B0 proceeds C0 and we
allow that B and C are in succession in the same order.

This rule in fact seems wholly natural and just the same one is often led to
exceptions from it. We hear the sound of thunder only a few seconds after the electric
discharge from the cloud. With two lightning strikes, one far away, the other nearby,
couldn’t the first be earlier than the second, even though the noise from the second
reaches us before that from the first?

XI. Another difficulty: do we have the right to speak of the cause of a phenom-
enon? If all the parts of the universe are connected to some extent, one arbitrary
phenomenon will not be the effect arising from a single cause, but the result of
infinitely many causes; it is, we often say, the consequence of the state of the
universe at an earlier moment.

How can the rules applicable to such complex circumstances be stated? And
however it is only at this price that the rules can be generalized and made rigorous.

In order to not lose ourselves in this infinite complexity, let us make a simpler
hypothesis; consider three bodies, for example the Sun, Jupiter and Saturn; but for
more simplicity look at them as reduced to material points and isolated from the rest
of the world.

The positions and speeds of the three bodies at a given moment suffice for
determining their positions and their speeds at the following moment and conse-
quently at an arbitrary moment. Their positions at the moment t determine their
positions at the moment t + h, as well as their positions at the moment t � h.

There’s even more; the position of Jupiter at a moment t, combined with Saturn at
a moment t + a, determines the position of Jupiter at an arbitrary moment and that of
Saturn at an arbitrary moment.

The set of positions the Jupiter occupies at the moment t + ε and Saturn occupies
at the moment t + a + ε is related to the set of positions which Jupiter occupies at the
moment t and Saturn occupies that the moment t + a by laws fully as precise as those
of Newton, however much more complicated.

Henceforth why not regard one of these sets as the cause of the other, which
would lead to considering as simultaneous the moment t for Jupiter and the moment
t + a for Saturn?

For that, there can only be reasons of convenience and simplicity; which are very
powerful, it is true.
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XII. Let us move to less artificial examples; so we can understand the definition
implicitly accepted by scholars, let us look at their work and try to find according to
what rules they seek simultaneity.

I will take two simple examples; the measurement of the speed of light and the
determination of longitudes.

When an astronomer tells me that a stellar phenomenon, which his telescope
revealed to him at that moment, had however occurred 50 years ago, I try to
understand what he means and for that, I will first ask him how he knows it, meaning
how he had measured the speed of light.

He started by allowing that light has a constant speed, and in particular that its
speed is the same in all directions. It is a postulate without which no measurement of
this speed could be tried. This postulate can never however be directly verified by
experiment; it could be contradicted by it, if the results of various measurements
were not consistent. We will have to think that we are fortunate that this contradic-
tion has not happened and that the small discrepancies which can happen can be
easily explained.

The postulate, in any case satisfying the principle of sufficient reason, was
accepted by everyone; what I want to hold on to is that it provides us a new rule
in the search for simultaneity, completely different from what we had stated earlier.

Having accepted this postulate, let’s see how the speed of light is measured. It is
known that Roemer made use of the eclipses of the satellites of Jupiter and sought
how much the event was delayed from prediction.

But, how is this predicted? It is predicted by using astronomical laws, for example
Newton’s law of gravitation.

Couldn’t the observed facts be explained just as well if a value slightly different
from the adopted value were given to the speed of light, and if it were accepted that
Newton’s law is an approximation? Only, one would be led to replace Newton’s law
by another more complicated.

Thus, a value for the speed of light is adopted such that astronomical laws
compatible with this value are as simple as possible.

When sailors or geographers determine a longitude, they have to solve exactly the
same problem that concerns us: without being in Paris, they must calculate the time
in Paris.

How do they go about it?
Either, they carry a chronometer with them set to Paris. The qualitative problem

of simultaneity is referred back to the quantitative problem of the measurement of
time. I’m not going back to the relative difficulties of this latter problem because I
described them at length above.

Or else, they observe an astronomical phenomenon such as a lunar eclipse and
accept that this phenomenon is observed simultaneously at all places on the Earth.

This is not entirely true, because the propagation of light is not instantaneous; if
absolute accuracy is desired, it would be necessary to make a correction according to
a complicated rule.

10 H. Poincaré



Or else, finally, they can make use of the telegraph. To start with, it is clear that
receiving the signal at Berlin, for example, comes after the transmission of this same
signal from Paris. It is the rule of cause-and-effect analyzed above.

But later, how much later? In general, one neglects the length of the transmission
and considers both events as simultaneous. But, to be rigorous, one would have
again to make a small correction by a complicated calculation; it isn’t done in
practice, because it would be much smaller than the observational errors; its theo-
retical need remains undiminished from our point of view, which is that of a rigorous
definition.

I want to take away two things from this discussion:

1) The rules applied vary widely.
2) It is difficult to separate the qualitative problem of simultaneity from the quan-

titative problem of the measurement of time; either one makes use of a chronom-
eter, or one has to include the transmission speed, like that of light, because one
could not measure such a speed without measuring a time.

XIII. It is appropriate to conclude.
We do not have direct intuition of simultaneity any more than that of the equality

of two durations.
If we believe that we have this intuition, it is an illusion.
We compensate for this by using some rules that we apply nearly always without

our being aware of it.
But what is the nature of these rules?
No general rule, no rigorous rule, but a multitude of small rules applicable to each

specific case.
These rules are not imposed on us and one could take pleasure in inventing others;

however, one would not be able to set them aside without greatly complicating the
statement of the laws of physics, mechanics and astronomy.

We therefore choose these rules, not because they are true, but because they are
the most convenient and we could summarize them by stating:

“The simultaneity of two events, or the order of their succession, the equality of
two durations, must be defined such that the statement of the natural laws is as simple
as possible. In other words, all these rules, all these definitions are solely the fruit of
an unconscious opportunism.”

H. POINCARÉ
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Chapter 2
Lorentz’s Theory and the Conservation
of Momentum

Most likely it will seem strange that at a moment raised to the glory of Lorentz I
return to the considerations that I previously presented as an objection to his theory. I
could state that the following pages instead are of a nature to reduce this objection
and not deepen it.

But I’m not going to make use of that excuse because I have one that is 100 times
better. Good theories are flexible. Those which have a rigid form and which cannot
be adapted without collapsing truly have too little vitality. But if the theory shows us
some true relations, it can be dressed in a thousand various forms and it will resist all
the assaults and what makes up its essence will not change. This is what I explained
in the seminar that I gave recently at the Congrès international de physique in Paris.

Good theories overcome all objections; objections that are only specious do not
get a hold on them and they triumph even over serious objections but they triumph
over them by changing.

The objections help them, which is far from harming them, because the objections
allow them to develop all the hidden virtues which were in them. Just so, Lorentz’s
theory is of that kind, and that is the only excuse that I wish to make.

I’m not asking the reader to forgive me for that, but to forgive me for having
presented at such length ideas with so little novelty.

Part 1

Let us first quickly review the calculation by which it was established that in
Lorentz’s theory, the principal that for every action there is an equal and opposite
reaction is no longer true, at least when one wants to apply it only to matter.

Poincaré, H. (1900). La théorie de Lorentz et le principe de réaction. Archives néerlandaises des
sciences exactes et naturelles, 5, 252–278.
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Let us seek the resultant of all the ponderomotive forces applied to all the
electrons located inside a certain volume. This resultant, or instead its projection
on the x-axis, is represented by the integral:

X ¼
Z

ηγ � ξβ þ 4πf
K0

� �
ρdτ

where the integration extends over all elements dτ of the volume considered, and
where the ξ, η and ζ represent the components of the electron velocity.

Because of the equations:

ρη ¼ � dg
dt

þ 1
4π

dα
dz

� dγ
dx

� �
; ρζ ¼ � dh

dt
þ 1
4π

dβ
dx

� dα
dy

� �
; ρ ¼

X df
dx

and by adding and subtracting the term:

α
4π

dα
dx

,

I can write:

X ¼ X1 þ X2 þ X3 þ X4,

where:

X1 ¼
Z

β
dh
dt

� γ
dg
dt

� �
dτ

X2 ¼ 1
4π

Z
α
dα
dx

þ β
dα
dy

þ γ
dα
dz

� �
dτ

X3 ¼ �1
4π

Z
α
dα
dx

þ β
dβ
dx

þ γ
dγ
dx

� �
dτ

X4 ¼ 4π
K0

Z
f
X df

dx
dτ

Integration by parts gives

X2 ¼ 1
4π

Z
α lαþ mβ þ uγð Þdω� 1

4π

Z
α

dα
dx

þ dβ
dy

þ dγ
dz

� �
dτ

X3 ¼ �1
8π

Z
l α2 þ β2 þ γ2
� �

dω
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where the double integrals extend over all the elements dω of the surface which
limits the volume under consideration, and where l, m and n designate the directional
cosines of the normal to this element.

Observing that

dα
dx

þ dβ
dy

þ dγ
dz

¼ 0,

it can be seen that one can write:

X2 þ X3 ¼ 1
8π

Z
l α2 � β � γ2
� �þ 2mαβ þ 2nαγ

� 	
dω: ð1Þ

Let us now transform X4.
Integration by parts gives:

X4 ¼ 4π
K0

Z
l f 2 þ mfgþ nfh
� �

dω� 4π
K0

Z
f
df
dx

þ g
df
dy

þ h
df
dz

� �
dτ:

I call X0
4 and X00

4 the two integrals of the right-hand side, such that

X4 ¼ X0
4 � X00

4 :

If one uses the equations:

df
dy

¼ dg
dx

þ K0

4π
dγ
dt

df
dz

¼ dh
dx

� K0

4π
dβ
dt

we can write:

X00
4 ¼ Yþ Z

where

Y ¼ 4π
K0

Z
f
df
dx

þ g
dg
dx

þ h
dh
dx

� �
dτ

Z ¼
Z

g
dγ
dt

� h
dβ
dt

� �
dτ:
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Next one finds:

Y ¼ 2π
K0

Z
l f 2 þ g2 þ h2
� �

dω

X1 � Z ¼ d
dt

Z
βh� γgð Þdτ:

Finally one has:

X ¼ d
dt

Z
βh� γð Þdτ þ X2 þ X3ð Þ þ X0

4 � Y
� �

, ð2Þ

where X2 + X3 is given by formula (1), whereas:

X0
4 � Y ¼ 2π

K0

Z
l f 2 � g2 � h2
� �þ 2mfgþ 2nfh

� 	
dω:

This term, (X2 + X3), represents the projection on the x-axis of a pressure acting on
the differential elements dω of the surface delimiting the volume under consider-
ation. It is immediately recognized that this pressure is nothing other thanMaxwell’s
magnetic pressure, introduced by this scientist in a well-known theory.

Similarly the term, X0
4 � Y

� �
, represents the effect of Maxwell’s electrostatic

pressure.
In the absence of the first term:

d
dt

Z
βh� γð Þdτ

the ponderomotive force would therefore be nothing other than the result of the
Maxwell pressures.

If our integrals are extended to all space, the double integrals disappear and there
only remains:

X ¼ d
dt

Z
βh� γð Þdτ

If therefore we callM one of the material masses considered and call Vx, Vy and Vz

the components of its velocity, it should hold, if conservation of momentum were
applicable, that:

X
MVx ¼ const:;

X
MVy ¼ const:;

X
MVz ¼ const:
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In contrast, we have:

X
MVx þ

Z
γg� βhð Þdτ ¼ const:

X
MVy þ

Z
αh� γfð Þdτ ¼ const:

X
MVz þ

Z
βf � αgð Þdτ ¼ const:

Observe that

γg� βh, αh� γf , βf � αg

are the three components of the Poynting vector.
If one sets:

J ¼ 1
8π

X
α2 þ 2π

K0

X
f 2,

Poynting’s equation in fact gives us:

Z
dJ
dt

dτ ¼ 1
K0

Z l m n

α β γ

f g h


















dωþ 4π

K0

Z
ρ
X

f ξdτ: ð3Þ

The first integral of the left-hand side represents, as is known, the quantity of
electromagnetic energy which enters the volume in consideration through its surface
as radiation and the second term represents the quantity of electromagnetic energy
which is created inside the volume by transformation of energy of other kinds.
Electromagnetic energy can be regarded as a fictitious fluid whose density is K0J
and which moves in space according to Poynting’s laws. Except, it has to be allowed
that this fluid is not indestructible and that in the element of volume dτ during a unit
time a quantity of it equal to 4π

K0
ρdτ

P
f ξ is destroyed (or that an equal quantity of

opposite sign is created if this expression is negative); this is what prevents us, in our
reasoning, from completely comparing our fictitious fluid to a real fluid.

The quantity of this fluid which passes during unit time through a unit surface
oriented perpendicularly to the x, y or z axis is equal to:

K0JUx, K0JUy, K0JUz,
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HereUx,Uy andUz are the components of the velocity of the fluid. By comparison
with Poynting’s formula, it is found that:

K0JUx ¼ γg� βh

K0JUy ¼ αh� γf

K0JUz ¼ βf � αg

such that our formulas become:

X
MVx þ

Z
K0JUxdτ ¼ const:

X
MVy þ

Z
K0JUydτ ¼ const:

X
MVz þ

Z
K0JUzdτ ¼ const:

ð4Þ

They state that the momentum of the matter itself plus that of our fictitious fluid is
given by a constant factor.

In Ordinary Mechanics, if the momentum is constant, it is concluded that the
motion of the center of gravity is straight and uniform.

But here we do not have the possibility of concluding that the center of gravity of
the system formed by the matter and our fictitious fluid has a straight and uniform
motion; this is because this fluid is not indestructible.

The position of the center of gravity of the fictitious fluid depends on the integral
over all space

Z
xJdτ:

The derivative of this integral is:

Z
x
dJ
dt

dτ ¼ �
Z

x
dJUx

dx
þ dJUy

dy
þ dJUz

dz

� �
dτ � 4π

K0

Z
ρx

X
f ξdτ

Now, the first integral on the right-hand side becomes, by integration by parts:

Z
JUxdτ

or
1
K0

C �
X

MVx

� �

where C designates the constant from the right-hand side of the first equation (4).
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Let us then represent the total mass of the matter by M0, the coordinates of its
center of gravity by X0, Y0 and Z0, the total mass of the fictitious fluid by M1, its
center of gravity by X1, Y1 and Z1, the total mass of the system (matter plus fictitious
fluid) by M2, and its center of gravity by X2, Y2 and Z2, such that one has:

M2 ¼ M0 þM1, M2X2 ¼ M0X0 þM1X1,

d
dt

M0X0ð Þ ¼
X

MVx, K0

Z
xJdτ ¼M1X1:

It then follows:

d
dt

M2X2ð Þ ¼ C � 4x
Z

ρx
X

f ξdτ ð3Þ

Here is how equation (3) could be stated in ordinary language.
If there is in no way any creation or destruction of electromagnetic energy, the last

term disappears; hence the center of gravity of the system formed by matter and
electromagnetic energy (regarded as a fictitious fluid) has a straight and uniform
motion.

Let us now assume that at certain points there has been destruction of electro-
magnetic energy which was transformed into nonelectric energy. It would be
necessary to consider the system formed not only by matter and electromagnetic
energy, but by the nonelectric energy coming from the transformation of the
electromagnetic energy.

But it must be agreed that this nonelectric energy remains at the point where the
transformation occurred and that it is not subsequently carried along by the matter
where it is ordinarily located. There is nothing in this convention which should
surprise us because it is only a matter of a mathematical fiction. If this convention is
adopted, the motion of the center of gravity of the system is still straight and uniform.

To extend the statement to the case where there is not only destruction, but also
creation of energy, it is sufficient to assume that at each point there is some amount
of nonelectric energy, at the expense of which electromagnetic energy is formed. We
will then retain the preceding agreement, meaning that instead of localizing the
nonelectric energy as is ordinarily done, we regard it as immobile. Under this
condition, the center of gravity will again move in a straight line.

Let us now return to equation (2) by assuming the integrals extend over an
infinitesimal volume. It will then mean that the resultant of the Maxwell pressures
which are exerted on the surface of the volume is in equilibrium with:

1) The forces of nonelectric origin applied to the matter which is located in this
volume;

2) The inertial forces of this matter;
3) The inertial forces of the fictitious fluid enclosed in this volume.
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To define this inertia of the fictitious fluid, it is appropriate that the fluid that was
created at an arbitrary point by transformation of the energy, first arises without
velocity and that it takes on its velocity from the already existing fluid; if therefore,
the quantity of fluid increases, but its velocity remains constant, there will nonethe-
less be some inertia to overcome because the new fluid takes on the velocity of the
former fluid; the velocity of the assembly would decrease if an arbitrary cause didn’t
become involved to keep it constant. Similarly when there is destruction of electro-
magnetic energy, the fluid must lose its velocity before being destroyed by ceding it
to the remaining fluid.

Because the equilibrium holds for an infinitesimal volume, it will hold for a finite
volume. If in fact we decompose it into infinitesimal volumes, the equilibrium will
hold for each of them. To move to a finite volume, the collection of forces applied to
the various infinitesimal volumes has to be considered; solely among the Maxwell
pressures only the forces exerted on the surface of the total finite volume will be
retained, and those exerted on the surface elements which separate two infinitesimal
contiguous volumes will be eliminated. This elimination will in no way change the
equilibrium, because the pressures eliminated in that way are pairwise equal and
oppositely directed.

The equilibrium will therefore again occur for the finite volume.
It will therefore occur for all space. But in this case, it is not necessary to consider

either the Maxwell pressures which are zero at infinity, or the forces of nonelectric
origin which are in balance because of the Newton’s third law applicable to the force
is considered in Ordinary Mechanics.

The two kinds of inertial forces are therefore in equilibrium; hence there is a
double consequence:

1) The principle of the conservation of the projections of the momentum applies to
the system of matter and fictitious fluid; we also find equation (4) again.

2) The principle of the conservation of the moments of the momentum or in other
words, the conservation of angular momentum applies to the system of matter
and fictitious fluid. This is a new consequence which supplements the data
provided by equation (4).

Since, from the perspective which interests us, electromagnetic energy therefore
behaves like a fluid that has inertia, it has to be concluded that if an arbitrary device
after having produced electromagnetic energy transmits it by radiation in some
direction, then this device will have to recoil like an artillery piece which fires a
projectile.

Of course, this recoil will not occur if the producing device transmits energy
equally in all directions; in contrast it will occur if this symmetry does not exist and if
the electromagnetic energy produced is sent in a single direction, as happens for
example if the device is a Hertz exciter placed at the focus of a parabolic mirror.

It is easy to evaluate numerically the magnitude of this recoil. If the device has a
mass of 1 kg and if it sends 3 million J in a single direction with the speed of light, the
velocity due to the recoil is 1 cm/s. In other words if the energy produced by a
3000 W machine is sent in a single direction a force of 1 dyne would be needed to
keep the machine in place despite the recoil.
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It is obvious that such a weak force could not be detected by experiment. But one
could imagine that if, however impossible, sufficiently sensitive measurement
devices to show it were available, it would in that way be possible to prove that
the conservation of momentum is not applicable to matter alone, and that it would
confirm Lorentz’s theory and condemn other theories.

Things aren’t like that; Hertz’s theory and in general all the other theories lead to
the same calculation as that for Lorentz.

Just now, I used the example of a Hertz exciter whose radiation would be made
parallel by a parabolic mirror, I could have taken a simpler example borrowed from
optics; a beam of parallel light rays strikes a mirror perpendicularly and after
reflection returns in the opposite direction. Energy first propagates from left to
right, for example, and is then returned from right to left by the mirror.

The mirror thus must recoil, and the recoil is easily calculated by the preceding
considerations.

It is easy to recognize the problem which was already handled by Maxwell in
sections 792 and 793 of his work. It also calls for the recoil of the mirror just like
what we have deduced from Lorentz’s theory.

If we go deeper into the study of the mechanism for this recoil, this is what we
find. Let us consider an arbitrary volume and apply equation (2); this equation
teaches us that the force of electromagnetic origin which acts on electrons—meaning
on the matter contained in the volume—is equal to the resultant of the Maxwell
pressures increased by a correction factor which is the derivative of the integral:

Z
βh� γgð Þdτ:

If the regime is established, this integral as constant and the correction term
is zero.

The recoil called for by Lorentz’s theory is that which is due to the Maxwell
pressure. Now, all theories call for Maxwell pressure; all theories therefore call for
the same recoil.

Part 2

But then a new question comes up. We called for the recoil in Lorentz’s theory
because this theory is contrary to the conservation of momentum. Among the other
theories, there are some, like Hertz’s theory, which do conserve momentum. How is
it that they lead to the same recoil?

Let me give the explanation for this paradox right away and leave the justification
of this explanation until later. In Lorentz’s theory and in Hertz’s theory the device
which produces the energy and sends it in one direction recoils, but this energy, thus
radiated, propagates by passing through some medium, such as air, for example.
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In Lorentz’s theory, when the air receives the energy thus radiated, it does not
undergo any mechanical action; nor does it receive any either when this energy
leaves it after having passed through it. In contrast, in Hertz’s theory, when the air
receives the energy, it is pushed forward and then it recoils when this energy leaves
it. The motion of the air that the energy passes through thus balances, from the
perspective of conservation of momentum, the motion of the devices which produce
this energy. In Lorentz’s theory, this compensation does not happen.

In fact, let’s go back to Lorentz’s theory and our equation (2) and apply it to a
homogeneous dielectric. It is known how Lorentz represents a dielectric medium;
this medium would contain electrons capable of small motions, and these motions
would produce the dielectric polarization to which the effect would be added, from
some perspectives, to that of the electric displacement itself.

Let X, Y and Z be the components of this polarization. It then holds:

dX
dt

dτ ¼
X

ρξ,
dY
dt

dτ ¼
X

ρη,
dZ
dt

dτ ¼
X

ρζ : ð5Þ

The summations on the right-hand sides are extended to all electrons contained
inside the element dτ and these equations can be regarded as the definition of the
dielectric polarization itself.

For the expression for the resultant of the ponderomotive forces (which I no
longer designate with X in order to avoid any confusion with polarization), we found
the integral:

Z
ρ ηγ � ζβ þ 4πf

K0

� �
dτ

or

Z
ρηγdτ �

Z
ρζβdτ þ 4π

K0

Z
ρf dτ:

The first two integrals can be replaced by

Z
γ
dY
dt

dτ,
Z

β
dZ
dt

dτ

because of equation (5). As for the third integral, it is zero because the total charge of
an element of dielectric containing some number of electrons is zero. Our
ponderomotive force therefore reduces to:

Z
γ
dY
dt

� β
dZ
dt

� �
dτ:
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If I designate the force due to the various Maxwell pressures by Π, such that

Π ¼ X2 þ X3ð Þ þ X0
4 � Y

� �

then our equation (2) becomes:

Π ¼
Z

γ
dY
dt

� β
dZ
dt

� �
dτ þ d

dt

Z
γg� βhð Þdτ: ð20Þ

Additionally there is a relation like this

a
d2X
dt2

þ bX ¼ f ðAÞ

where a and b are two constants characteristic of the medium; from this it is easily
deduced that:

X ¼ n2 � 1
� �

f ðBÞ

and even

Y ¼ n2 � 1
� �

g, Z ¼ n2 � 1
� �

h

where n is the index of refraction for the color considered.
One could be led to replace the relation (A) by others more complicated, for

example if one needed to assume more complex ions. It doesn’t matter, because one
would always be led to equation (B).

To go farther, we are going to assume a plane wave propagating in the direction of
the x axis towards positive x, for example. If the wave is polarized in the x-z plane,
one will have

X ¼ f ¼ α ¼ Z ¼ h ¼ β ¼ 0

and

γ ¼ ng
4πffiffiffiffiffiffi
K0

p :

Incorporating all of these relations, (20) first becomes

Π ¼
Z

γ
dY
dt

dτ þ
Z

γ
dg
dt

dτ þ
Z

g
dγ
dt

dτ,
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where the first integral represents the ponderomotive force. But if the proportions,

g
1
¼ Y

n2 � 1
¼ γ

n 4πffiffiffiffi
K0

p
� �

are considered, our equation becomes

ffiffiffiffiffiffi
K0

p
4π

Π ¼ n n2 � 1
� � Z

g
dg
dt

dτ þ n

Z
g
dg
dt

dτ þ n

Z
g
dg
dt

dτ: ð6Þ

But to draw something from this formula, it has to be seen how the energy is
distributed and propagates in the dielectric medium. The energy is divided into three
parts: 1) electric energy, 2) magnetic energy, 3) mechanical energy due to the motion
of the ions. The expressions for these three parts are respectively:

2π
K0

X
f 2,

1
8π

X
α2,

2π
K0

X
fX

and in the case of a plane waves, they are proportional to each other as:

1, n2, n2 � 1 :

In the preceding analysis, we had what we called the momentum of the electro-
magnetic energy play a role. It is clear that the density of our fictitious fluid will be
proportional to the sum of the two parts (electric and magnetic) of the total energy
and that the third part, which is purely mechanical, will have to be set aside. But what
velocity is it appropriate to give to this fluid? At first, one might think that it is the
wave propagation velocity, meaning 1= n

ffiffiffiffiffiffi
K0

pð Þ . But it is not so simple. At each
point the electromagnetic energy and the mechanical energy are proportional; if
therefore at one point the electromagnetic energy comes to decrease, the mechanical
energy will also decrease, meaning that it will partially transform into electromag-
netic energy; there will therefore be creation of the fictitious fluid.

For a moment, designate the density of the fictitious fluid by ρ and its velocity,
which I assume to be parallel to the x-axis, by ξ; I assume that all our functions
depend only on x and t, since the plane of the wave is perpendicular to the x-axis.
The continuity equation is then written

dρ
dt

þ dρξ
dx

¼ δρ
dt
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where δρ is the quantity of fictitious fluid created during time dt. Now, this quantity
is equal to the quantity of mechanical energy destroyed, which is to the quantity of
electromagnetic energy destroyed, meaning �dρ, as n2 � 1 is to n2 + 1; hence

δρ
n2 � 1

¼ � dρ
n2 þ 1

;

such that our equation becomes

dρ
dt

2n2

n2 þ 1
þ dρξ

dx
¼ 0:

If ξ is a constant, this equation shows us that the propagation velocity is equal to

ξ
n2 þ 1
2n2

:

If the propagation velocity is 1= n
ffiffiffiffiffiffi
K0

pð Þ, it will then hold that

ξ ¼ 2n2

n2 þ 1ð Þ ffiffiffiffiffiffi
K0

p

If the total energy is J 0, the electromagnetic energy will be J ¼ n2þ1
2n2 J 0 and the

momentum of the fictitious fluid will be:

K0Jξ ¼ K0
n2 þ 1
2n2

J 0ξ ¼ J 0
ffiffiffiffiffiffi
K0

p
n

ð7Þ

because the density of the fictitious fluid is equal to the energy multiplied by K0.
Hence in equation (6) the first term of the right-hand side represents the

ponderomotive force, meaning the derivative of the momentum of the matter of
the dielectric, while the last two terms represent the derivative of the momentum of
the fictitious fluid. These two momentums are therefore related to each other as
n2 � 1 and 2.

So let Δ be the density of the dielectric material, and Wx, Wy and Wz be the
components of its velocity. Let’s go back to equation (4). The first term ∑MVx

represents the momentum of all the real matter; we will break it down in two parts.
The first part, which we will continue to designate by ∑MVx, will represent the
momentum of the energy-producing devices; the second part will represent the
momentum of the dielectrics; it will be equal to

Z
Δ:Wxdτ
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such that equation (4) will become

X
MVx þ

Z
Δ:Wx þ K0JUxð Þdτ ¼ const: ð40Þ

According to what we just saw, it will follow that:

Δ:Wx

n2 � 1
¼ K0JUx

2
:

Further, let us designate, as above, the total energy by J0; let us also distinguish
the real velocity of the fictitious fluid, meaning that which results from Poynting’s
law and which we have designated byUx,Uy andUz, and the apparent velocity of the
energy, meaning what would be deduced from the propagation speed of the waves
and that we will designate by U0

x, U
0
y and U0

z. It results from equation (7) that:

JUx ¼ J 0U0
x

Equation (40) can be written in the form:

X
MVx þ

Z
Δ:Wx þ K0J

0U0
x

� �
dτ ¼ const:

Equation (40) shows the following: if the device radiates energy in a single
direction in the vacuum, it experiences a recoil which is composed solely, from the
perspective of the conservation of momentum, by the motion of the fictitious fluid.

But, if the radiating, instead of occurring in the vacuum, is done in a dielectric,
this recoil will be compensated in part by the motion of the fictitious fluid and in part
by the motion of the dielectric matter, and the fraction of the recoil of the producing
device which will thus be compensated by the motion of the dielectric, meaning by
the motion of real matter, will be, I state, this fraction n2�1=n2�1.

That is what follows from Lorentz’s theory; how do we now switch to Hertz’s
theory?

The content of Mossotti’s ideas on the makeup of dielectrics is known.
Dielectrics, other than the vacuum, are formed of small conducting spheres

(or more generally small conducting bodies) separated from each other by an
un-polarizable insulating medium analogous to the vacuum. How does one go
from that to Maxwell’s ideas? One imagines that the vacuum itself had the same
makeup: it was not un-polarizable, but formed of conducting cells, separated by
partitions formed of an ideal, insulating and un-polarizable matter. The specific
inductive power of the vacuum was therefore greater than that of un-polarizable
ideal matter (likewise in the primitive understanding of Mossotti, the inductive
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power of the dielectrics was greater than that of the vacuum, and for the same
reason). And the ratio of the first of these powers to the second was even larger as the
space occupied by the conducting cells was larger compared to the space occupied
by the insulating partitions.

Finally, move to the limit; by regarding the inductive power of the insulating
matter as infinitesimal, and at the same time the insulating partitions as infinitesi-
mally thin, such that the space occupied by these partitions is infinitesimal, the
inductive power of the vacuum remains finite. This transition to the limit leads us to
Maxwell’s theory.

All this is well known and I will limit myself to quickly reviewing it. So, between
Lorentz’s theory and Hertz’s theory there is the same relation as between Mossotti’s
theory and Maxwell’s theory.

In fact let us assume that we could attribute the same makeup to the vacuum as
Lorentz attributes to ordinary dielectrics; meaning that we consider it as an
un-polarizable medium in which electrons can undergo small motions.

Lorentz’s formulas will still be applicable, only K0 will no longer represent the
inductive power of the vacuum, but that of ideal un-polarizable medium. Now move
to the limit by assuming K0 is infinitesimal; it will of course be necessary to
compensate for this hypothesis by multiplying the number of electrons such that
the inductive powers of the vacuum and the other dielectrics remain finite.

The theory to which this transition to the limit leads is none other than Hertz’s
theory.

Let V be the speed of light in the vacuum. In Lorentz’s basic theory, it is equal to
1=

ffiffiffiffiffiffi
K0

p
; but that is no longer so in the modified theory, where it is equal to

1
n0

ffiffiffiffiffiffi
K0

p ,

where n0 is the index of refraction of the vacuum relative to the un-polarizable ideal
medium. If n designates the index of refraction of a dielectric relative to the ordinary
vacuum, its index relative to this ideal medium will be nn0 and the speed of light in
this dielectric will be

V
n
¼ 1

nn0
ffiffiffiffiffiffi
K0

p :

In Lorentz’s formulas, n must therefore be replaced by nn0.
For example, the dragging of waves in Lorentz’s theory is represented by the

Fresnel formula,

v 1� 1
n2

� �
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In the modified theory it would be

v 1� 1
n2n02

� �

If we move to the limit, then we must make K0 ¼ 0, hence n0 ¼ 1; therefore in
Hertz’s theory, the drag will be v, meaning that it will be total. This consequence,
contrary to Fizeau’s experiment, is sufficient to condemn Hertz’s theory, such that
the only interest of these considerations is as a curiosity.

Let us however go back to our equation (40). It teaches us that the fraction of the
recoil which is compensated by the motion of the dielectric matter is equal to

n2 � 1
n2 þ 1

:

In the modification of Lorentz’s theory, this fraction will be:

n2n02 � 1
n2n02 þ 1

:

If we move to the limit by making n0¼1, this fraction is equal to 1, such that the
recoil is entirely compensated by the motion of the dielectric matter. In other words,
in Hertz’s theory the principle of reaction is not violated and applies only to matter.

This is what would be seen again using equation (40); if in the limit K0 is zero, the
term

R
K0J 0U0

xdτ , which represents the momentum of the fictitious fluid, also
becomes zero, such that considering the momentum of the real matter is sufficient.

This consequence follows: to experimentally demonstrate that conservation of
momentum is violated in reality as it is in Lorentz’s theory, it would not be sufficient
to show that the energy-producing devices experience a recoil, which would be
difficult enough, it would additionally be necessary to show that the recoil is not
compensated by the motion of the dielectrics and in particular by the air through
which the electromagnetic waves pass. This would obviously be much more difficult
still.

A final remark on this subject. Let us assume that the medium through which the
waves pass is magnetic. A portion of the wave energy will be found in mechanical
form. If μ is the magnetic permeability of the medium, the totalmagnetic energy will
be:

μ
8π

Z X
α2dτ
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but only a fraction, specifically:

1
8π

Z X
α2dτ

will strictly speaking be magnetic energy; the other part:

μ� 1
8π

Z X
α2dτ

will be mechanical energy used to bring the particle currents to a shared orientation
perpendicular to the field, against the elastic force which tends to bring these currents
into the equilibrium orientation that they take in the absence of a magnetic field.

An analysis can be applied to these media just like the preceding analysis and
where the mechanical energy would play the same role as the mechanical energy
played in the case of dielectrics. It would in that way be recognized that if
non-dielectric (I mean whose dielectric power would be the same as the vacuum)
magnetic media existed, the matter of these media would undergo a mechanical
action subsequent to the passage of the waves such that the recoil of the producing
devices would in part be compensated by the motions of these media, as it is by the
media of the dielectrics.

To get out of this case that does not occur in nature, we assume a medium that is
both dielectric and magnetic where the fraction of the recoil compensated by the
motion of the medium would be stronger than for a nonmagnetic medium of the
same dielectric power.

Part 3

Why is the conservation of momentum obvious to our thinking? It is important to
consider this in order to see whether the preceding paradoxes can actually be
considered as an objection to Lorentz’s theory.

If this principle, in most cases, is obvious to us, it is because its negation would
lead to perpetual motion; is that the case here?

Let A and B be two arbitrary bodies, acting on each other, but take away any
external action; if the action of one were not equal to the reaction of the other, they
could be attached to each other by a rod of invariable length such that they behave
like a single solid body. Since the forces applied to this solid do not produce
equilibrium, the system would start in motion and this motion would go on endlessly
by accelerating, on one condition however, that the mutual action of the two bodies
depend only on their relative position and relative velocity, but is independent of
their absolute position and absolute velocity.
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More generally, for an arbitrary conservative system, letU be its potential energy,
m be the mass of one of the points of the system, x0, y0 and z0 be the components of its
velocity; the equation for the total energy will be:

Xm
2

x02 þ y02 þ z02
� �þ U ¼ const:

Now refer the system to moving axes driven with translational velocity v parallel
to the x-axis: let x0, y0 and z0 be the components of the relative velocity relative to
these axes, it will follow:

x0 ¼ x01 þ r, y0 ¼ y01, z0 ¼ z01:

and consequently:

Xm
2

x01 þ r
� �2 þ y01

2 þ z01
2

� �
þ U ¼ const:

Because the principle of relative motion, U only depends on the relative position
of the points of the system, the laws of relative motion do not differ from those of
absolute motion and the equation for the total energy and the relative motion is
written

Xm
2

x01
2 þ y01

2 þ z01
2

� �
þ U ¼ const:

By subtracting the two equations one from the other, it is found that

r
X

mx01 þ
r2

2

X
m ¼ const: ð8Þ

or

X
mx01 ¼ const: ð9Þ

which is the analytical expression of conservation of momentum.
The conservation of momentum therefore appears to us to be a consequence of the

conservation of energy and the principle of relative motion. This last principle is
necessarily obvious to our thinking when applied to an isolated system.

But in the case that concerns us, it does not involve an isolated system, because
we only consider the matter itself, aside from which there is still the ether. If all
material objects are driven in a shared translation, as for example in the translation of
the Earth, the phenomena can differ from what they would be if this translation did
not exist because the ether might not be dragged in this translation. The principle of
relative motion thus understood and applied to matter alone is so lacking in

30 H. Poincaré



obviousness to our thinking that experiments were done to show the translation of
the Earth. These experiments, it is true, gave negative results but one is somewhat
surprised by it.

However one question still comes up. These experiments, as I said, have given a
negative result and Lorentz’s theory explains this negative result. It seems that the
principle of relative motion, which was not required a priori, is verified a posteriori
and that the conservation of momentum should follow from it; and however that is
not how it is, how did that happen?

It is because in reality, what we have called the principle of relative motion was
only imperfectly confirmed as Lorentz’s theory shows. It is due to a composition of
effects, but:

1) This compensation only occurred by neglecting v2 unless some additional
hypothesis is made that I will not discuss for the moment.

It is however not significant for our purpose, because if v2 is neglected, equation
(8) will directly yield equation (9), meaning conservation of momentum.

2) For this compensation to happen, the phenomena have to be referred not to real
time t, but to some local time t0 defined in the following manner.

I assume that observers placed at different points, set their watches using a light
signal; that they seek to correct these signals for the transmission time but neglecting
the translational motion driving them and consequently believing that the signals are
transmitted equally quickly in both directions, they limit themselves to crossing the
observations by sending a signal from A to B and then another signal from B to A.
The local time t0 is the time marked by the watches set in that way.

If then V ¼ 1=
ffiffiffiffiffiffi
K0

p
is the speed of light, and v the translation of the Earth that I

assume parallel to the positive x-axis, then:

t0 ¼ t � vx
V2

3) The apparent energy propagates in relative motion according to the same laws as
real energy in absolute motion, but the apparent energy is not exactly equal to the
corresponding real energy.

4) In relative motion, the bodies producing electromagnetic energy are subject to an
additional apparent force which does not exist in absolute motion.

We are going to look at how these various circumstances resolve the contradic-
tion that I just reported.

Let us imagine an electric energy producing device arranged such that the energy
produced is sent in a single direction. This will, for example, be a Hertz exciter
provided with a parabolic mirror.

First at rest, the exciter sends energy in the direction of the x-axis and this energy
is precisely equal to what is expended in the exciter. As we have seen, the device
recoils and acquires some velocity.
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If we refer everything to mobile axes linked to the exciter, the apparent phenom-
enon will have to be, except for the exceptions made above, the same as if the exciter
were at rest; it is therefore going to radiate an apparent quantity of energy which will
be equal to the energy expended in the exciter.

Next it will again experience an impulse due to the recoil, and as it is no longer at
rest, but already has some velocity, this impulse will produce some work and the
total energy of the exciter will increase.

If therefore the real radiated electromagnetic energy were equal to the apparent
electromagnetic energy—meaning, as I just stated, the energy expended in the
exciter—then the total energy increase of the device would have been obtained
without any expenditure. This is contrary to the principle of conservation of energy.
If therefore a recoil is produced, it is because the apparent energy is not equal to the
real energy and the phenomena in relative motion are not exactly the same as in
absolute motion.

Let us now look at things a little more closely. Let v0 be the velocity of the exciter,
v that of the mobile axes, which I no longer assume to be linked to the exciter, and
V that of the radiation; all these velocities are parallel to the positive x-axis. For
simplification, we will assume that the radiation has the form of a polarized plane
waves, which gives us the equations:

f ¼ h ¼ α ¼ β ¼ 0,

4π
dg
dt

¼ � dγ
dx

, � 1
4πV2

dγ
dt

¼ dg
dx

, V
dγ
dx

þ dγ
dt

¼ 0

hence:

γ ¼ 4πVg:

The real energy contained in the unit volume will be:

γ2

8π
þ 2πV2g2 ¼ 4πV2g2:

Now let us look at what happens with the apparent motion relative to the mobile
axes. The apparent electric and magnetic fields are:

g0 ¼ g� v
4πV2 γ, γ0 ¼ γ � 4πvg :

We therefore have for the apparent energy in a unit volume (neglecting v2 but not
vv0):

γ02

8π
þ 2πV2g02 ¼ γ2

8π
� vgγ

� �
þ 2πV2 g2 � vgγ

2πV2

� �
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or else

4πV2g2 � 2vgγ ¼ 4πV2g2 1� 2v
V

� �
:

The equations of apparent motion are additionally written

4π
dg0

dt0 ¼ � dγ0

dx0 , � 1
4πV2

dγ0

dt0 ¼
dg0

dx0

which shows that the apparent speed of propagation is still V.
Let T be the length of the emission; what will be the length actually occupied by

the disturbance in space?
The leading edge of the disturbance left at time 0 from point 0 and at time t it is

located at point Vt; the trailing edge left at time T, not at point 0, but from point v0T,
because the exciter from which it emanated has moved during the time T with a
velocity v0. This trailing edge is therefore at the moment t at point v0T + V(t� T ). The
actual length of the disturbance is therefore

L ¼ Vt � v0T þ V t � Tð Þ½ � ¼ V � v0ð ÞT :

What is now the apparent length? The leading edge left at local time 0 from point
0; at local time t0 its abscissa relative to the mobile axes will be Vt0. The trailing edge
left at time T from point v0T whose abscissa relative to the mobile axes is (v0 � v)T;
the corresponding local time is

T 1� vv0

V2

� �
:

At local time t0, it is at point x, where x is given by the equations:

t0 ¼ t � vx
V2 , x ¼ v0T þ V t � Tð Þ

hence, by neglecting v2:

x ¼ v0T þ V t0 � Tð Þ½ � 1þ v
V

� �
:

The abscissa of this point relative to the mobile axes will be

x� vt0 ¼ v0T � VTð Þ 1þ v
V

� �
þ Vt0:
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The apparent length of the perturbation will therefore be

L0 ¼ Vt0 � x� vt0ð Þ ¼ V � v0ð ÞT 1þ v
V

� �
¼ L 1þ v

V

� �
:

The total real energy (per unit section) is therefore

γ2

8π
þ 2πV2g2

� �
L ¼ 4πV2g2L,

and the apparent energy is

γ02

8π
þ 2πV2g02

� �
L0 ¼4πV2g2L 1� 2v

V

� �
1þ v

V

� �
¼

¼4πV2g2L 1� v
V

� �
:

If therefore Jdt represents the real energy radiated during the time dt, then
Jdt 1� v

V

� �
will represent the apparent energy.

Let Ddt be the energy expended in the exciter, it is the same in real motion and in
apparent motion.

It is still necessary to account for the recoil. The force of the recoil multiplied by
dt is equal to the increase of the momentum of the fictional fluid, meaning equal to

dtK0JV ¼ J
V
dt

because the quantity of fluid created is dtK0J and its velocity is V. The work done by
the recoil is therefore:

� v0Jdt
V

:

In the apparent motion, v0 needs to be replaced by v0 � v and J by J 1� v
V

� �
:

The apparent work due to the recoil is therefore:

� v0 � vð ÞJdt
V

1� v
V

� �
¼ Jdt � v0

V
þ v
V
þ vv0

V2

� �
:

Finally in the apparent motion, the apparent additional force that I talked about
above (4) must be accounted for. This additional force is equal to

� vJ
V2
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and its work, by neglecting v2 is � vv0
V2 Jdτ.

Having laid that out, the equation for the total energy in the real motion is written:

J � D� v0J
V

¼ 0: ð10Þ

The first term represents the radiated energy, the second the energy expenditure
and the third the work from the recoil.

The equation for the total energy in apparent motion will be written:

J 1� v
V

� �
� Dþ J � v0

V
þ v
V
þ vv0

V2

� �
� vv0

V2 J ¼ 0 ð11Þ

The first term represents the apparent radiated energy, the second the energy
expenditure, the third the apparent work from the recoil and the fourth the work from
the apparent additional force.

The agreement of equations (10) and (11) removes the appearance of contradic-
tion reported above.

If therefore, in Lorentz’s theory, the recoil can take place without violating the
principle of conservation of energy, it is because the apparent energy for an observer
carried along with the mobile axes is not equal to the actual energy. Let us therefore
assume that our exciter undergoes a motion of recoil and that the observer is carried
along in this motion (v0 ¼ v < 0), the exciter would appear immobile to this observer
and it would seem to the observer that the exciter radiates as much energy as at rest.
But in reality it will radiate less of it and this is what compensates the work of the
recoil.

I could have assumed that the mobile axes are invariably linked to the exciter,
meaning v ¼ v0, but my analysis would not then have been able to show the role of
the apparent additional force. To do that, I had to assume v0 much larger than v such
that I could neglect v2 without neglecting vv0.

I could have also shown the need for the apparent additional forces in the
following way:

The actual recoil is J/V; in the apparent motion, J has to be replaced by J 1� v=Vð Þ
such that the apparent recoil is

J
V
� Jv
V2

To supplement the real recoil, an apparent additional force

� Jv
V2
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has to be added to the apparent recoil (I put the � because the recoil, as its name
indicates, occurs in the negative direction).

The existence of the apparent additional force is therefore a necessary conse-
quence of the phenomenon of recoil.

Thus, according to Lorentz’s theory, the principle of conservation of momentum
must not apply to matter alone; the principle of relative motion must not apply to
matter alone either. What needs to be noted is that there is an intimate and necessary
connection between these two facts.

It would therefore be sufficient to experimentally establish one of these two for the
other to be established ipso facto. It would undoubtedly be less difficult to prove the
second; but it is already nearly impossible because, for example, Mr. Liénard
calculated that with a machine generating 100 kW, the apparent additional force
would only be 1/600 dyne.

An important consequence follows from this correlation between these two facts;
it is that Fizeau’s experiment is itself already contrary to conservation of momentum.
If in fact, as this experiment indicates the dragging of waves is only partial, it is
because the relative propagation of the waves in a moving medium does not follow
the same law as the propagation in a medium at rest; meaning that the principle of
relative motion does not apply to matter alone and it must have to undergo at least
one correction specifically that which I spoke of above (observation 2) and which
consists of referring everything to our “local time”. If this correction is not compen-
sated by others, one would have to conclude the conservation of momentum is not
true either for matter alone.

In that way, all theories which do not respect this principle would be condemned
as a group, unless we agree to profoundly modify all our ideas on electrodynamics.
That is an idea that I have developed at greater length in a previous article (Éclairage
Électrique, volume V, number 40).
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Chapter 3
Three Letters to H. A. Lorentz

First Letter

My dear colleague,
I greatly regret the circumstances that prevented me first from hearing your

presentation and then from talking with you during your stay in Paris.
For some time, I have studied your paper electromagnetic phenomena in a

system, moving with any velocity smaller than that of light,1 in greater detail; the
importance of this paper is very great and I had already indicated the main results in
my presentation in St. Louis.

I agree with you on all the essential points; however, there are some differences in
detail.

Thus, on page 813,2 instead of setting:

1
kl3

ρ ¼ ρ0; k2ux ¼ u0x, k2uy ¼ u0y,

It seems to me that it needs to be:

1
kl3

ρ 1þ εvxð Þ ¼ ρ0 1
kl3

ρ vx þ εð Þ ¼ ρ0u0x

where ε ¼ � w/c, or ε ¼ � w if we choose units such that c ¼ 1.

These handwritten letters from Henri Poincaré to Hendrik Lorentz, in French, are transcribed in
Kox, A. J. (2008). The Scientific Correspondence of H. A. Lorentz (Vol. 1). New York: Springer
Science+Business Media, pp. 176–9, letters 126–8 and are held by the Noord-Hollands Archief
(http://noord-hollandsarchief.nl/bronnen/archieven?mivast¼236&mizig¼210&miadt¼236&
miaet¼1&micode¼364&minr¼721571&miview¼inv2). The letters are undated, but from the
content they must have been written between late April and early June 1905.
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It seems to me that this modification has to be made if the apparent charge on the
electron is to be conserved.

The formulas (10) on page 813 are then modified and for the last term instead of

l2 ∙ w
c2

u0yD
0
y þ u0zD

0
z

� �
, � l2

k
∙ w
c2

u0xD
0
y, � l2

k
∙ w
c2

u0xD
0
z

I find

l2 ∙ w
c2

u0xD
0
x þ u0yD

0
y þ u0zD

0
z

� �
, 0, 0

This is the Liénard force, that you also find but with difficulties. And then the
question comes up of knowing whether this force is compensated or uncompensated.

This shows that there are the following relations between the actual forces X, Y,
Z and the apparent forces X0, Y 0 and Z 0:

X0 ¼ A X þ ε
X

Xvx
� �

, Y 0 ¼ BY , Z 0 ¼ BZ

where A and B are coefficients and Aε ∑ Xvx represents the Liénard force.
If all the forces are of electrical origin, the equilibrium conditions (or from the

modified d’Alembert principle) give:

X ¼ Y ¼ Z ¼ 0

hence

X0 ¼ Y 0 ¼ Z 0 ¼ 0

If not all the forces are of electrical origin, there will again have to be compen-
sating forces provided that they behave just as if they were of electrical origin.

But there is another thing.
You assume l ¼ 1.
Langevin assumes kl3 ¼ 1.
I had assumed kl ¼ 1 to retain the unit of time, but that led me to unallowable

consequences.
On the other hand, I come up with contradictions (between the formulas for action

and energy) with all hypotheses other than those of Langevin.
The reasoning by which you establish that l ¼ 1 does not seem conclusive to me,

or rather it doesn’t any longer and leaves l undetermined when I do the calculation by
changing the formulas on page 813 as I told you.
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What do you think of all this, do you want me to provide you more details or is
what I’ve given you sufficient. In any case, please excuse me for taking up your time.

Your devoted colleague,
Poincaré.

Second Letter

My dear colleague,
Thank you for your friendly letter. Since I wrote to you my ideas have changed on

a few points. I find like you that l ¼ 1, by a different route.
Let �ε be the speed of translation with that of light taken as unity.

k ¼ 1� ε2
� ��1=2

one then has the transformation

x0 ¼ kl xþ εtð Þ, t0 ¼ kl t þ εxð Þ, y0 ¼ ly, z0; ¼ lz:

This transformation forms a group. Let two composed transformations correspond to

k, l, ε

and

k0, l0, ε0

their resultant will correspond to

k00, l00, ε00

hence:

k00 ¼ 1� ε002
� ��1=2

, l00 ¼ ll0, ε00 ¼ εþ ε0

1þ εε0

If we now take

l ¼ 1� ε2
� �m

, l0 ¼ 1� ε02
� �m
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we will only have:

l00 ¼ 1� ε002
� �m

when m ¼ 0.
On the other hand, I can find agreement between the calculation of the masses by

means of the electromagnetic inertia and by means of least action and by means of
the energy only under Langevin’s hypothesis.

I hope to clarify this contradiction very soon; I will keep you up-to-date with my
efforts.

Your devoted colleague,
Poincaré.

Third Letter

My dear colleague,
I have continued the research that I told you about. My results fully confirmed

yours in the sense that perfect compensation (which prevents the experimental
determination of absolute movement only happens completely in the hypothesis
where l ¼ 1. However, for this hypothesis to be allowable, it has to be accepted that
each electron is subject to additional forces for which the work is proportional to the
changes in its volume.

Hence if you prefer, each electron behaves as if it was a hollow capacitor subject
to a constant internal pressure (additionally negative) and independent of the vol-
ume. Under these conditions, the compensation is complete.

I am happy to find myself in full agreement with you and to thus have arrived at
the perfect intelligence of your beautiful work.

You’re very devoted colleague,
Poincaré.

Translator’s Notes
1. Lorentz, H. A. (1904). Electromagnetic phenomena in a system moving with any

velocity smaller than that of light. Proceedings KNAW [Royal Netherlands
Academy of Arts and Sciences], 6 (1903–4), 809–831. This paper is also available
in the Part III of this book.

2. In Part III, these are equations 7 and 8 on page 263.
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Chapter 4
Electricity – On the Dynamics
of the Electron

Note from Henri Poincaré
On first consideration it seemed that the aberration of light and the optical

phenomena associated with it were going to provide us a means for determining
the absolute motion of the Earth or more accurately its motion, not with respect to the
other stars, but with respect to the ether. It isn’t anything like that; experiments
taking into account only the first power of the operation first failed and the expla-
nation was easily found; but Michelson, having conceived an experiment where
terms in the square of the aberration could be shown, was no more successful. It
appears that this impossibility of showing absolute motion is a general law of nature.

An explanation was proposed by Lorentz, who introduced the hypothesis of a
contraction of all bodies in the direction of Earth’s motion; this contraction would
account for Michelson’s experiment and all those done until now, but it would leave
room for other experiments yet more delicate, and easier to conceive than to execute,
which could be able to show absolute motion of the Earth. But, if the impossibility of
such an observation were considered to be highly probable, one could then anticipate
that these experiments, if one could manage to conduct them, would again give a
negative result. Lorentz sought to supplement and amend his hypothesis so as to
bring it into agreement with the postulate that it is completely impossible to deter-
mine absolute motion. He did manage to do this in his article entitled Electromag-
netic Phenomena in a System Moving with Any Velocity Smaller than that of Light
(Proceedings of the Amsterdam Academy, May 27, 1904).

The importance of the question led me to take it up again; the results that I
obtained are in agreement with those of Lorentz on all important points; I was only
led to amend and supplement them in some points of detail.

Poincaré, H. (1905). Sur la dynamique de l’électron. Comptes rendus de l’Académie des Sciences,
140, 1504–1508.

© Springer Nature Switzerland AG 2020
B. D. Popp, Henri Poincaré: Electrons to Special Relativity,
https://doi.org/10.1007/978-3-030-48039-4_4

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48039-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-48039-4_4#DOI


The essential point, established by Lorentz, is that the electromagnetic field
equations are not altered by a specific transformation (that I will give the name
Lorentz) and which has the following form:

x0 ¼ kl xþ εtð Þ, y0 ¼ ly, z0 ¼ lz, t0 ¼ kl t þ εxð Þ, ð1Þ

where x, y and z are the coordinates and t the time before the transformation, and after
the transformation they are x0, y0 z0, and t0. Additionally, ε is a constant which defines
the transformation

k ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ε2
p

and l is an arbitrary function of ε. It can be seen that in this transformation the x axis
plays a specific role, but a transformation can obviously be constructed where this
role would be played by an arbitrary straight line passing through the origin. The set
of all these transformations, joined with the set of all spatial rotations, must form a
group; but, for that to be true, it must be that l¼ 1. One is therefore led to assume that
l ¼ 1 and that is a consequence that Lorentz had reached by another route.

Let ρ be the charge density of the electron and ξ, η and ζ the speed of the electron
before the transformation; for the same quantities ρ0, ξ0, η0 and ζ0 after the transfor-
mation, it will hold that

ρ0 ¼ k

l3
ρ 1þ εξð Þ, ρ0ξ0 ¼ k

l3
ρ ξþ εð Þ, ρ0η0 ¼ ρη

l3
, ρ0ζ0 ¼ ρζ

l3
: ð2Þ

These formulas differ a little from those which Lorentz had found.
Now let X, Y, Z, and X 0, Y 0, Z 0 be the three components of the force before and

after the transformation; the force is referred to a unit volume; I find:

X0 ¼ k

l5
X þ ε

X

Xξ
� �

, Y 0 ¼ Y

l5
, Z 0 ¼ Z

l5
: ð3Þ

These formulas also differ a little from those of Lorentz; the additional term in ∑Xξ
recalls a result previously obtained by Liénard.

If we now designate the components of the force referred no longer to the unit
volume, but to the unit mass of the electron, by X1, Y1, Z1, and X0

1, Y 0
1, Z01, we will

have:

X0
1 ¼ k

l5
X1 þ ε

X

X1ξ
� �

, Y 0
1 ¼

ρ
ρ0
Y1

l5
, Z 0

1 ¼
ρ
ρ0
Z1

l5
: ð4Þ

Lorentz was also led to assume that the moving electron takes the shape of a
flattened ellipsoid; it is also the hypothesis made by Langevin, only, whereas Lorentz
assumed the two of the axes of the ellipsoid remain constant, which agrees with his
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hypothesis that l ¼ 1. Langevin assumed that it is the volume which remains
constant. Both authors have shown that these two hypotheses agree with the
experiments of Kaufmann1 and also the fundamental Abraham’s hypothesis2 (spher-
ical electron). Langevin’s hypothesis would have the advantage of being sufficient in
itself, because it is sufficient to regard the electron as deformable and incompressible
in order to explain why it takes an ellipsoidal shape when in motion. But I show, in
agreement on that matter with Lorentz, that it is incapable of agreeing with the
impossibility of an experiment showing absolute motion. That requires, as I stated,
that l¼ 1 is the only hypothesis for which the set of Lorentz transformations forms a
group.

But with Lorentz’s hypothesis, the agreement of the formulas is not the only
thing; at the same time a possible explanation of the contraction of the electron is
obtained by assuming that the deformable and compressible electron is subject to a
kind of constant external pressure whose work is proportional to the variations of
volume.

I show, by an application of the principle of least action, that under these
conditions, the compensation is complete, if it is assumed that inertia is an exclu-
sively electromagnetic phenomenon, as is generally accepted since Kaufmann’s
experiment, and that apart from the constant pressure which I just mentioned and
which acts on the electron, all forces are of electromagnetic origin. In that way there
is an explanation for the impossibility of showing absolute motion and for the
contraction of all bodies in the direction of the Earth’s motion.

But that is not all: Lorentz, in the work cited, thought it necessary to supplement
his hypothesis by assuming that all forces, whatever their origin might be, were
affected by a translation in the same way as the electromagnetic forces and conse-
quently the effect produced on their components by the Lorentz transformation is
still defined by equations (4).

A closer examination of this hypothesis and in particular a look at what modifi-
cations it means we would have to make to the laws of gravitation is important. That
is what I’m looking to determine; I was first led to assume that the propagation of
gravity is not instantaneous but occurs at the speed of light. This seems to contradict
a result obtained by Laplace who stated that this propagation is, if not instantaneous,
at least much faster than that of light. But, in reality, the question posed by Laplace is
considerably different from the one that we are looking at here. For Laplace, the
introduction of a finite propagation speed was the only modification that he made to
Newton’s law. Here, in contrast, this modification is accompanied by several others;
it is therefore possible, and in fact it happens, that a partial compensation arises
among them.

When we will therefore talk about the position or speed of the attracting body, it
will involve that position or that speed at the moment when the gravitational wave
leaves this body; when we will talk about the position or speed of the attracted body,
it will involve that position or that speed at the moment when the gravitational wave
coming from the other body reaches this attracted body; it is clear that the first
moment is prior to the second.
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If therefore x, y and z are projections onto the three axes of the vector which joins
the two positions and if the speed of the attracted body is ξ, η and ζ, and that of the
attracting body ξ1, η1 and ζ1, then the three components of the attraction (which I will
again be able to call X1, Y1 and Z1) will be functions of x, y, z, ξ, η, ζ, ξ1, η1 and ζ1. I
now ask whether it is possible to determine these functions in a way that they are
affected by the Lorentz transformation according to equations (4) and that they agree
with the ordinary law of gravitation whenever the speeds ξ, η, ζ, ξ1, η1 and ζ1 are
small enough that their squares can be neglected compared to the square the speed of
light.

The response must be affirmative. It is found that the corrected attraction is made
up of two forces, one parallel to the vector x, y and z, and the other parallel to the
speed ξ1, η1 and ζ1.

The divergence from the ordinary law of gravitation is, as I just stated, of order ξ2;
if, as Laplace did, it is only assumed that the speed of propagation is that of light, this
divergence would be of order ξ, meaning 10,000 times larger. It is not therefore
absurd to assume, at first glance, that astronomical observations are not sufficiently
precise for detecting such a small divergence as we were imagining. But only an
in-depth discussion will be able to decide that.

Translator’s Notes
1. This appears to be a reference to Kaufmann, W. (1901). Die magnetische und

electrische Ablenkbarkeit der Becquerelstrahlen und die scheinbare Masse der
Elektronen. Nachrichten von der Königl. Gesellschaft der Wissenschaften zu
Göttingen, 2, 143–155.

2. This could be a reference to Abraham, M. (1902). Dynamik des Electrons.
Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, 20–41 that
Poincaré (1906) cites in §6 above eq. 5 (page 77 in this book) or to Abraham,
M. (1903). Prinzipien der Dynamik des Eleckrons. Annalen der Physik, Ser.
4 vol. 10 supplement, 105–179.
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Chapter 5
On the Dynamics of the Electron

Introduction

On first consideration it seemed that the aberration of light and the optical and
electrical phenomena associated with it were going to provide us a means for
determining the absolute motion of the Earth or more accurately its motion, not
with respect to the other stars, but with respect to the ether. Fresnel1 had already tried
it, but he soon recognized that the motion of the Earth did not change the laws of
refraction and reflection. Analogous experiments, like that of the water-filled tele-
scope and all those where only first-order terms in the aberration were considered
were to give only negative results; the explanation for this was soon found. But,
Michelson, who had imagined an experiment sensitive to the terms depending on the
square of the aberration, failed in turn.

It seems that this impossibility of showing the absolute motion of the Earth
experimentally could be a general law of Nature; we are naturally led to accept
this law, that we will call the Relativity Postulate and to allow it without restriction.
Should this postulate, until now in agreement with experiment, later be confirmed or
rejected by more precise experiments, it is in any case interesting to look at what its
consequences might be.

An explanation was proposed by Lorentz and Fitz Gerald, who introduced the
hypothesis of a contraction experienced by all bodies in the direction of motion of
the Earth and proportional to the square of the aberration; this contraction, which we
will call the Lorentz contraction, took into account the Michelson experiment and all
those which had been done until now. The hypothesis would become insufficient,
however, if the relativity postulate were to be accepted in its full generality.

H. Poincaré (Paris)
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Poincaré, H. (1906). Sur la dynamique de l’électron. Rendiconti del circolo matematico di
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Lorentz sought to supplement it and amend it so as to bring it into full agreement
with this postulate. This is what he succeeded in doing in his article entitled
Electromagnetic Phenomena in a System Moving with Any Velocity Smaller than
that of Light (Proceedings of the Amsterdam Academy, May 27, 1904)2.

The importance of the question led me to take it up again; the results that I
obtained are in agreement with those of Lorentz on all important points; I was only
led to amend and supplement them in some points of detail. The differences, which
are of secondary importance, will be seen later.

Lorentz’s idea can be summarized as follows: if one can, without any visible
phenomenon being modified, give any system a shared translation, it is because the
equations of the electromagnetic environment are not altered by certain transforma-
tions, which we will call Lorentz transformations; two systems, the one stationary
and the other in translation, thus become the exact image of each other.

Langevin1 had sought to modify Lorentz’s idea; for both authors, the moving
electron takes the form of a flattened ellipsoid, but for Lorentz two of the axes of the
ellipsoid remain constant and in contrast for Langevin it is the volume of the
ellipsoid which remains constant. Both authors additionally showed that these two
hypotheses agree with Kaufmann’s experiments and also with Abraham’s primitive
hypothesis (undeformable spherical electron)3.

The advantage of Langevin’s theory is that it does not call on electromagnetic
forces and binding forces; but it is incompatible with the relativity postulate. That is
what Lorentz had shown; it is what I found in turn by another route by calling on the
principles of group theory.

That means it’s necessary to go back to Lorentz’s theory; but to keep it and avoid
intolerable contradictions, a special force has to be assumed which explains both the
contraction and the two constant axes. I sought to determine this force, and I found
that it could be compared to a constant external pressure acting on the deformable
and compressible electron and its work is proportional to the variations in the
volume of this electron.

If the inertia of matter were then exclusively of electromagnetic origin, as is
generally accepted since Kaufmann’s experiment, and if all the forces are of
electromagnetic origin other than this constant pressure that I just spoke of, then
the relativity postulate can be established with full rigor. That is what I show by a
very simple calculation based on the principle of least action.

But that isn’t all. Lorentz, in the work cited, thought it necessary to supplement
his hypothesis such that the postulate is still true when there are forces other than
electromagnetic forces. According to him, all forces, whatever their origin, are
affected by the Lorentz transformation (and consequently by a translation) in the
same way as the electromagnetic forces.

1Langevin had been anticipated by Bucherer from Bonn, who came out with the same idea before
him. (See: Bucherer, Mathematische Einführung in die Elektronentheorie; August 1904. Teubner,
Leipzig).
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It is important to examine this hypothesis more closely and in particular to seek
what modifications it would force us to make to the laws of gravitation.

First it is found that it would force us to assume that the propagation of gravitation
is not instantaneous but occurs at the speed of light. One could think that this is a
sufficient reason to reject the hypothesis, since Laplace had proven that it could not
be so. But in reality, the effect of this propagation is in large part compensated by a
different cause, such that there is no contradiction between the proposed law and
astronomical observations.

Would it be possible to find a law, which satisfies the condition imposed by
Lorentz and at the same time reduced to Newton’s law any time that the speeds of the
stars are small enough that their squares can be neglected (as well as the product of
the accelerations by the distances) compared to the square of the speed of light?

The answer to this question must be affirmative as will be seen later.
Is the law thus modified compatible with astronomical observations?
At first glance, it seems so, but the question will only be settled by an in-depth

discussion.
But even if we accept that this discussion is settled in favor of the new hypothesis,

what will we have to conclude from it? If the attraction propagates with the speed of
light, that cannot be because of a fortuitous occurrence, that must be because it is a
function of the ether; and then it will be necessary to look into the nature of this
function and associate other functions of the fluid with it.

We cannot be satisfied with formulas that are simply juxtaposed and which only
happen to agree by lucky chance; said another way, it has to happen because these
formulas are mutually involved. The mind would only be satisfied when it believes
that it sees the reason for this agreement to such an extent that it has the illusion that
it could have anticipated it.

But the question can also be presented from another point of view so that a
comparison will be better understood. Let us imagine an astronomer before Coper-
nicus who was thinking about the Ptolemaic system; he would notice that for all the
planets one of the two circles, epicycle or deferent, is traversed in the same time.
That cannot be by chance; there is therefore some unknown mysterious link between
all the planets.

Copernicus, by simply changing the coordinate system regarded as fixed, made
this appearance disappear; each planet now describes only one circle and the periods
of revolution become independent (until Kepler reestablished the link between them
that was thought to have been destroyed).

It is possible that there is something analogous here; if we were to accept the
relativity postulate, we would find in the law of gravitation and in the electromag-
netic laws a common number which would be the speed of light. We would find it
again in other forces of arbitrary origin which can only be explained in two ways:

Either there is nothing in the world that is not of electromagnetic origin.
Or else, this part which would be, to state it that way, shared by all physical

phenomena would only be an appearance, something which would arise from our
measurement methods. How do we make our measurements? We would start to say,
by transporting one or another of the objects regarded as invariable solids; but that is
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no longer true in the current theory, if the Lorentz contraction is accepted. In this
theory, two equal lengths are, by definition, two lengths that light takes the same
time to traverse.

Perhaps it would suffice to renounce this definition so that Lorentz’s theory was
as completely overthrown as was the Ptolemaic system by the intervention of
Copernicus. If that were to happen one day, that would not prove that the effort
made by Lorentz was pointless, because Ptolemy, whatever we might think of it, was
not useless to Copernicus.

I too have not hesitated to publish these few partial results even though at this
moment the whole theory itself might seem to be in danger from the discovery of
magnetocathode rays.

§1 – Lorentz Transformation

Lorentz adopted a specific system of units so as to make the factors of 4π disappear
from the formulas. I will do the same and additionally I will choose the units of
length and time such that the speed of light is equal to one. Under these conditions,
by calling: f, g, h the electric displacement; α, β, γ the magnetic force; F, G, H the
vector potential; ψ the scalar potential; ρ the electric charge density; ξ, η, ζ the
electron velocity; and u, v, w the current, the fundamental formulas become:4

u ¼ df
dt

þ ρξ ¼ dγ
dy

� dβ
dz

, α ¼ dH
dy

� dG
dz

, f ¼ � dF
dt

� dψ
dx

,

dα
dt

¼ dg
dz

� dh
dy

,
dρ
dt

þ
X dρξ

dx
¼ 0,

X df
dx

¼ ρ,
dψ
dt

þ
X dF

dx
¼ 0,

□ ¼ Δ� d2

dt2
¼
X d2

dx2
� d2

dt2
, □ψ ¼ �ρ, □F ¼ �ρξ:

ð1Þ

An element of matter of volume dxdydz experiences a mechanical force whose
components Xdxdydz, Zdxdydz, Ydxdydz are determined from the formula:

X ¼ ρf þ ρ ηγ � ζβð Þ: ð2Þ

These equations are subject to a remarkable transformation discovered by Lorentz
and which is of interest because it explains why no experiment is able to let us know
the absolute motion of the universe. Let us set:

x0 ¼ kl xþ εtð Þ, t0 ¼ kl t þ εxð Þ, y0 ¼ ly, z0 ¼ lz, ð3Þ

where l and ε are arbitrary constants, and where
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k ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ε2

p :

If we then set:

□0 ¼
X d2

dx02
� d2

dt02
,

it will follow:

□0 ¼ □l�2

Now consider a sphere driven in a motion of uniform translation with the electron
and let:

x� ξtð Þ2 þ y� ηtð Þ2 þ z� ζtð Þ2 ¼ r2

be the equation of this mobile sphere whose volume will be 4
3 πr

3.
The transformation will change it into an ellipsoid whose equation is easy to find.

It is in fact easily deduced from equations (3):

x ¼ k
l
x0 � εt0ð Þ, t ¼ k

l
t0 � εx0ð Þ, y ¼ y0

l
, z ¼ z0

l
: ð30Þ

The equation for the ellipsoid then becomes:

k2 x0 � εt0 þ εξx0ð Þ2 þ y0 � ηkt0 þ ηkεx0ð Þ2 þ z0 � ζkt0 þ ζkεx0ð Þ2 ¼ l2r2:

This ellipsoid moves with a uniform motion; for t0 ¼ 0, it reduces to

k2x02 1þ εξð Þ2 þ y0 þ ηkεx0ð Þ2 þ z0 þ ζkεx0ð Þ2 ¼ l2r2

and its volume is:

4
3
πr3

l3

k 1þ ξεð Þ :

If we want the charge of an electron to be unchanged by the transformation and if
we call ρ0 the new electric charge density, it will follow:

ρ0 ¼ k

l3
ρþ ερξð Þ: ð4Þ

What will the new speeds ξ0, η0, ζ0 be? It will have to be:
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ξ0 ¼ dx0

dt0 ¼
d xþ εtð Þ
d t þ εxð Þ ¼

ξþ ε
1þ εξ

,

η0 ¼ dy0

dt0 ¼
dy

kd t þ εxð Þ ¼
η

k 1þ εξð Þ , ζ0 ¼ ζ
k 1þ εξð Þ

hence

ρ0ξ0 ¼ k

l3
ρξþ ερð Þ, ρ0η0 ¼ 1

l3
ρη, ρ0ζ0 ¼ 1

l3
ρζ: ð40Þ

Here is where I need to indicate for the first time a divergence from Lorentz.
Lorentz set (up to differences in notation; loc. cit., page 813, formulas 7 and 85):

ρ0 ¼ 1
kl3

ρ, ξ0 ¼ k2 ξþ εð Þ, η0 ¼ kη, ζ0 ¼ kζ :

That way the formulas:

ρ0ξ0 ¼ k

l3
ρξþ ερð Þ, ρ0η0 ¼ 1

l3
ρη, ρ0ζ0 ¼ 1

l3
ρζ;

are found, but the value of ρ0 is different.
It needs to be noted that the formulas (4) and (40) satisfy the continuity condition

dρ0

dt0 þ
X dρ0ξ0

dx0 ¼ 0:

In fact, let λ be an undetermined quantity and D the functional determinant of

t þ λρ, xþ λρξ, yþ λρη, zþ λρζ ð5Þ

with respect to t, x, y and z. It will follow:

D ¼ D0 þ D1λþ D2λ
2 þ D3λ

3 þ D4λ
4:

with D0 ¼ 1 and D1 ¼ dρ/dt + ∑ dρξ/dx ¼ 0.
Let λ0 ¼ l2λ, we see that the four functions

t0 þ λ0ρ0, x0 þ λ0ρ0ξ0, y0 þ λ0ρ0η0, z0 þ λ0ρ0ζ0 ð50Þ

are related to the functions (5) by the same linear relations as the former variables to
the new variables. If the functional determinant of the functions (50) with respect to
the new variables is therefore designated D0, it will follow:
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D0 ¼ D, D0 ¼ D0
0 þ D0

1λ
0 þ D0

2λ
02 þ D0

3λ
03 þ D0

4λ
04,

hence:

D0
0 ¼ D0 ¼ 1,D0

1 ¼ l�2D1 ¼ 0 ¼ dρ0

dt0 þ
X dρ0ξ0

dx0 :

which was to be proven.
With the hypothesis from Lorentz, this condition would not be fulfilled, because

ρ0 does not have the same value.
We will now define new vector and scalar potentials so as to satisfy the

conditions:

□0ψ 0 ¼ �ρ0, □0F0 ¼ �ρ0ξ0 : ð6Þ

From that we next draw:

ψ 0 ¼ k
l
ψ þ εFð Þ, F0 ¼ k

l
F þ εψð Þ, G0 ¼ 1

l
G, H0 ¼ H: ð7Þ

These formulas do differ from those of Lorentz, but in the final analysis the
divergence only bears on the definitions.

We will choose new electric and magnetic fields so as to satisfy the equations:

f 0 ¼ � dF0

dt0 �
dψ 0

dx0 , α0 ¼ dH0

dy0 �
dG0

dz0
: ð8Þ

It is easy to see that:

d
dt0 ¼

k
l

d
dt

� ε
d
dx

� �
,

d
dx0 ¼

k
l

d
dx

� ε
d
dt

� �
,

d
dy0 ¼

1
l
d
dy

,
d
dz0 ¼

1
l
d
dz

and from that to conclude:

f 0 ¼ 1
l2
f , g0 ¼ k

l2
gþ εγð Þ, h0 ¼ k

l2
h� εβð Þ,

α0 ¼ 1
l2
α, β0 ¼ k

l2
β � εhð Þ, γ0 ¼ k

l2
γ þ εgð Þ:

ð9Þ

These formulas are identical to Lorentz’s.
Our transformation does not alter equations (1). In fact, the continuity condition,

and also equations (6) and (8), already provided us some of equations (1) (except for
accenting of the letters).

Equations (6) connected with the continuity condition give us:
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dψ 0

dt0 þ
X dF0

dx0 ¼ 0: ð10Þ

It remains to establish that:

d f 0

dt0 þ ρ0ξ0 ¼ dγ0

dy0 �
dβ0

dz0 ,
dα0

dt0 ¼
dg0

dz0 �
dh0

dy0 ,
X d f 0

dx0 ¼ ρ0

and it can be easily seen that these are necessary consequences of equations (6), (8)
and (10).

We must now compare the forces before and after the transformation.
Let X, Y, Z be the force before and X0, Y0, Z0 be the force after the transformation;

with all of them referred to a unit volume. In order for X0 to satisfy the same
equations as before the transformation, it must hold that:

X0 ¼ ρ0 f 0 þ ρ0 η0γ0 � ζ0β0ð Þ,
Y 0 ¼ ρ0g0 þ ρ0 ζ0α0 � ξ0γ0ð Þ,
Z 0 ¼ ρ0h0 þ ρ0 ξ0β0 � η0α0ð Þ,

or, by replacing the quantities by their values (4), (40) and (9) while making use of
equations (2):

X0 ¼ k

l5
X þ ε

X
Xξ

� �
,

Y 0 ¼ 1
l5
Y ,

Z 0 ¼ 1

l5
Z:

ð11Þ

If we represent the force referred, no longer to the unit volume, but now to the unit
electrical charge of the electron, by X1, Y1, Z1 and the same qualities after the
transformation by X0

1, Y
0
1, Z

0
1 we will have:

X1 ¼ f þ ηγ � ζβ, X0
1 ¼ f 0 þ η0γ0 � ζ0β0, X ¼ ρX1, X0 ¼ ρ0X0

1

and we will have the equations:
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X0
1 ¼

k

l5
ρ
ρ0 X1 þ ε

X
X1ξ

� �
,

Y 0
1 ¼

1
l5
ρ
ρ0 Y1,

Z 0
1 ¼

1
l5
ρ
ρ0 Z1:

ð110Þ

Lorentz had found (within the difference of notation, page 813, formula (10)):

X1 ¼ l2X0
1 � l2ε η0g0 þ ζ0h0ð Þ,

Y1 ¼ l2

k
Y 0
1 þ

l2ε
k
ξ0g0,

Z1 ¼ l2

k
Z 0
1 þ

l2ε
k
ξ0h0,

ð1100Þ

Before going farther, the cause of this significant divergence must be found. It
obviously means that the formulas for ξ0, η0, ζ0 are not the same, even though the
formulas for the electric and magnetic fields are the same.

If the inertia of the electrons is exclusively of electromagnetic origin and if
additionally they are only subject to forces of electromagnetic origin, then the
equilibrium condition requires that inside the electrons it hold:

X ¼ Y ¼ Z ¼ 0:

Hence, in light of equations (11), these relations are equivalent to

X0 ¼ Y 0 ¼ Z 0 ¼ 0:

The equilibrium conditions of the electrons are therefore unchanged by the
transformation.

Unfortunately, such a simple assumption is not allowable. If, in fact, one sup-
poses that ξ¼ η¼ ζ ¼ 0, the conditions X¼ Y¼ Z¼ 0 would lead to f¼ g¼ h¼ 0,
and consequently

P df
dx ¼ 0, meaning ρ¼ 0. One would arrive at analogous results in

the most general case. One therefore has to accept that in addition to electromagnetic
forces, there are either other forces or binding. One must then look at what condi-
tions these forces or binding must satisfy for the equilibrium of the electrons to be
undisturbed by the transformation. This will be taken up in a subsequent section.
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§2 – Principle of Least Action

The way Lorentz deduced his equations from the principle of least action is known6.
Although I have nothing essential to add to it, I will however go back over the
question because I prefer to present it in a slightly different form which will be useful
for my purpose. I will set:

J ¼
Z P

f 2

2
þ
P

α2

2
�
X

Fu

� �
dtdτ, ð1Þ

by assuming that f, α, F, u, etc. are subject to the following conditions and to those
which could be deduced from them by symmetry:

X df
dx

¼ ρ, α ¼ dH
dy

� dG
dz

, u ¼ df
dt

þ ρξ : ð2Þ

As for the integral J, it must be extended to:

1) the entire space with respect to the element of volume, dτ ¼ dxdydz;
2) the limits included between t ¼ t0, t ¼ t1 with respect to time, t.

According to the principle of least action, the integral J must be a minimum if the
various quantities which appear in it are subject to:

1) conditions (2);
2) the condition that the state of the system is fixed at the two limit epochs t ¼ t0,

t ¼ t1.

This last condition allows us to transform our integrals by integration by parts
over time. If we in fact have an integral of the form

Z
A
dBδC
dt

dtdτ,

where C is one of the quantities which define the state of the system and δC is its
variation, it will be equal (by integrating by parts with respect to time) to:

Z
ABδCj jt¼t1

t¼t0
dτ �

Z
dA
dt

dBδC:

Since the state of the system is determined at the two limit epochs, δC ¼ 0 for
t¼ t0, t¼ t1; therefore the first integral which relates to these two epochs is zero; and
only the second remains.

We can similarly integrate by parts relative to x, y or z; we have in fact
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Z
A
dB
dx

dxdydzdt ¼
Z

ABdydzdt �
Z

B
dA
dx

dxdydzdt:

Since our integrals extend to infinity, in the first integral on the right-hand side
x must be made equal to �1; therefore, since we always assume that all our
functions become zero at infinity, this integral must be zero and it will follow

Z
A
dB
dx

dτdt ¼ �
Z

B
dA
dx

dτdt:

If the system were assumed subject to binding, it would be necessary to add a
binding condition to the conditions imposed on the various quantities appearing in
the integral J.

First give F, G, H increments δF, δG, δH; hence:

δα ¼ dδH
dy

� dδG
dz

:

One should have:

δJ ¼
Z X

α
dδH
dy

� dδG
dz

� �
�
X

uδF

� �
dtdτ ¼ 0,

or, by integrating by parts,

δJ ¼
Z X

δG
dα
dz

� δH
dα
dy

� �
�
X

uδF

� �
dtdτ

¼ �
Z X

δF u� dγ
dy

þ dβ
dz

� �
dtdτ ¼ 0,

hence, by equating the coefficient of the arbitrary δF to zero,

u ¼ dγ
dy

� dβ
dz

: ð3Þ

This relation gives us (with an integration by parts):

Z X
Fudτ ¼

Z X
F

dγ
dy

� dβ
dz

� �
dτ ¼

Z X
β
dF
dz

� γ
dF
dy

� �
dτ

¼
Z X

α
dH
dy

� dG
dz

� �
dτ,

or
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Z X
Fudτ ¼

Z X
α2dτ

hence finally:

J ¼
Z P

f 2

2
�
P

α2

2

� �
dtdτ: ð4Þ

Now, and because of the relation (3), δJ is independent of δF and consequently of
δα; let us now vary the other variables.

It follows, by returning to the expression (1) for J,

δJ ¼
Z X

f δf �
X

Fδu
� �

dtdτ:

But f, g, h are subject to the first of the conditions (2), such that

X dδf
dx

¼ δρ, ð5Þ

and which it is appropriate to write:

δJ ¼
Z X

f δf �
X

Fδu� ψ
X dδf

dx
� δρ

� �� �
dtdτ: ð6Þ

From the principles of calculus of variations, we learn that the calculation must be
done as if, ψ being an arbitrary function, δJ were represented by the expression (6)
and as if the variations were no longer subject to the condition (5).

We will have additionally

δu ¼ dδf
dt

þ δρξ,

hence, after integration by parts,

δJ ¼
Z X

δf f þ dF
dt

þ dψ
dx

� �
dtdτ þ

Z
ψδρ�

X
Fδρξ

� �
dtdτ: ð7Þ

If we first assume that the electrons experience no variation, δρ¼ δρξ¼ 0 and the
second integral is zero. Since δJ must become zero, it must follow that:

f þ dF
dt

þ dψ
dx

¼ 0: ð8Þ

In the general case, there rests, therefore:
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δJ ¼
Z

ψδρ�
X

Fδρξ
� �

dtdτ: ð9Þ

The forces which act on the electrons remain to be determined. To do that we will
have to assume that a complementary force �Xdτ, �Ydτ, �Zdτ is applied to each
element of the electron and write that this force is in equilibrium with the forces of
electromagnetic origin. Let U, V, W be the components of the displacements of the
element dτ of the electron; this displacement is considered from an arbitrary initial
position. Let δU, δV, δW be the variations of this displacement; the virtual work
corresponding to the complementary force will be:

�
Z X

XδUdτ,

such that the equilibrium condition that we just talked about will be written:

δJ ¼ �
Z X

XδUdτdt: ð10Þ

This is a matter of transforming δJ. To do that, we start by looking for the
continuity equation expressing that the charge of an electron is conserved by the
variation.

Let x0, y0, z0 be the initial position of an electron. Its current position will be

x ¼ x0 þ U, y ¼ y0 þ V , z ¼ z0 þW :

We will additionally introduce an auxiliary variable ε, which will produce the
variations of our various functions, such that for an arbitrary function A, we will
have:

δA ¼ δε
dA
dε

:

It will in fact be useful to be able to switch from the notation of calculus of
variations to that of ordinary differential calculus, or vice versa.

It will be possible to regard our functions: first as depending on five variables x, y,
z, t, ε, such that the position does not change when only t and ε change—we will
designate their derivatives by the ordinary d; second as depending on five variables
x0, y0, z0, t, ε, such that a single electron is always followed when only t and ε vary—
we will then designate their derivatives by round ∂. We will then have:

ξ ¼ ∂U
∂t

¼ dU
dt

þ ξ
dU
dx

þ η
dU
dy

þ ζ
dU
dz

¼ ∂x
∂t

: ð11Þ

We now designate by Δ the functional determinant of x, y, z, relative to x0, y0, z0:
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Δ ¼ ∂ x, y, zð Þ
∂ x0, y0, z0ð Þ :

If, with ε, x0, y0, z0 remaining constant, we give an increase ∂t to t, there will
result for x, y, z increases ∂x, ∂y, ∂z and forΔ an increase of ∂Δ and it will hold that:

∂x ¼ ξ∂t, ∂y ¼ η∂t, ∂z ¼ ζ∂t,

Δþ ∂Δ ¼ ∂ xþ ∂x, yþ ∂y, zþ ∂zð Þ
∂ x0, y0, z0ð Þ ;

hence

1þ ∂Δ
Δ ¼ ∂ xþ ∂x, yþ ∂y, zþ ∂zð Þ

∂ x, y, zð Þ ¼ ∂ xþ ξ∂t, yþ η∂t, zþ ζ∂tð Þ
∂ x, y, zð Þ :

From which one can deduce:

1
Δ

∂Δ
∂t

¼ dξ
dx

þ dη
dy

þ dζ
dz

: ð12Þ

Since the mass7of each electron is invariant, we will have:

∂ρΔ
∂t

¼ 0, ð13Þ

hence:

∂ρ
∂t

þ
X

ρ
dξ
dx

¼ 0,
∂ρ
∂t

¼ dρ
dt

þ
X

ξ
dρ
dx

,
dρ
dt

þ
X dρξ

dx
¼ 0:

Such are the various forms of the equation of continuity as it relates to the variable
t. We find the analogous forms as it relates to the variable ε. Let:

δU ¼ ∂U
∂ε

δε, δV ¼ ∂V
∂ε

δε, δW ¼ ∂W
∂ε

δε;

it will follow:

δU ¼ dU
dε

δεþ δU
dU
dx

þ δV
dU
dy

þ δW
dU
dz

, ð110Þ

1
Δ
∂Δ
∂ε

¼
X∂U

∂ε
,

∂ρΔ
∂ε

¼ 0, ð120Þ
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δε
∂ρ
∂ε

þ
X

ρ
dδU
dx

¼ 0,
∂ρ
∂ε

¼ dρ
dε

þ
X δU

δε
dρ
dx

, δρþ dρδU
dx

¼ 0: ð130Þ

The difference between the definition of δU ¼ ∂U
∂ε δε and that of δρ ¼ dρ

dε δεwill be
noted; it will be noted that it is in fact this definition of δU which is appropriate for
the formula (10).

That last equation is going to allow us to transform the first term of (9); in fact we
find:

Z
ψδρdtdτ ¼ �

Z
ψ
X dρδU

dx
dtdτ

or, by integrating by parts,

Z
ψδρdtdτ ¼

Z X
ρ
dψ
dx

δUdtdτ: ð14Þ

We now propose to determine:

δ ρξð Þ ¼ d ρξð Þ
dε

δε:

We observe the ρΔ can only depend on x0, y0, z0; in fact, if an element of electron
is considered whose initial position is a rectangular parallelepiped whose edges are
dx0, dy0, dz0, then the charge of this element is

ρΔdx0dy0dz0

and, since this charge needs to remain constant, it follows that:

∂ρΔ
∂t

¼ ∂ρΔ
∂ε

¼ 0: ð15Þ

From that it is deduced:

∂2ρΔ
∂t∂ε

¼ ∂
∂ε

ρΔ∂U
∂t

� �
¼ ∂

∂t
ρΔ∂U

∂ε

� �
: ð16Þ

For an arbitrary function A it is known from the equation of continuity that,

1
Δ

∂AΔ
∂t

¼ dA
dt

þ
X dAξ

dx

and similarly
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1
Δ

∂AΔ
∂ε

¼ dA
dε

þ
X dA ∂U

∂ε

dx

Therefore it follows:

1
Δ

∂
∂ε

ρΔ∂U
∂t

� �
¼ dρ ∂U

∂t

dε
þ d ρ ∂U

∂t
∂U
∂ε

	 

dx

þ d ρ ∂U
∂t

∂V
∂ε

	 

dy

þ d ρ ∂U
∂t

∂W
∂ε

	 

dz

ð17Þ

1
Δ

∂
∂t

ρΔ∂U
∂ε

� �
¼ dρ ∂U

∂ε

dt
þ d ρ ∂U

∂t
∂U
∂ε

	 

dx

þ d ρ ∂V
∂t

∂U
∂ε

	 

dy

þ d ρ ∂W
∂t

∂U
∂ε

	 

dz

ð170Þ

The right-hand sides of (17) and (170) must be equal and, recalling that

∂U
∂t

¼ ξ,
∂U
∂ε

δε ¼ δU,
dρξ
dε

δε ¼ δρξ,

it follows that:

δρξþ d ρξδUð Þ
dx

þ d ρξδVð Þ
dy

þ d ρξδWð Þ
dz

¼ d ρδUð Þ
dt

þ d ρξδUð Þ
dx

þ d ρηδUð Þ
dy

þ d ρζδUð Þ
dz

ð18Þ

We now transform the second term from (9) and get:

R P
Fδρξdtdτ ¼ R PF

d ρδUð Þ
dt

þ
X

F
d ρηδUð Þ

dy
þ
X

F
d ρζδUð Þ

dz

�

�PF
d ρξδVð Þ

dy
�
X

F
d ρξδWð Þ

dz

�
dtdτ:

By integrating by parts, the right-hand side becomes:

Z
�
X

ρδU
dF
dt

�
X

ρηδU
dF
dy

�
X

ρζδU
dF
dz

þ
X

ρξδV
dF
dy

þ
X

ρξδW
dF
dz

� �
dtdτ:

Now remark that:

X
ρξδV

dF
dy

¼
X

ρζδU
dH
dx

,
X

ρξδW
dF
dz

¼
X

ρηδU
dG
dx

:

If, in fact, in both sides of these relations, the sums are expanded, they become
identities; and let us recall that
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dH
dx

� dF
dz

¼ �β,
dG
dx

� dF
dy

¼ γ,

the right-hand side in question will become:

Z
�
X

ρδU
dF
dt

þ
X

ργηδU �
X

ρβζδU

� �
dtdτ,

such that finally:

δJ ¼
Z X

ρδU
dψ
dx

þ dF
dt

þ βζ � γη

� �
dtdτ ¼

Z X
ρδU �f þ βζ � γηð Þdtdτ:

By equating the coefficients of δU in both sides of (10), it follows:

X ¼ f � βζ þ γη

This is equation (2) from the previous section.

§3 – Lorentz Transformation and the Principle of Least
Action

We are going to see if the principle of least action gives us the reason for the success
of the Lorentz transformation. First it needs to be seen what this transformation does
to the integral:

J ¼
Z P

f 2

2
�
P

α2

2

� �
dtdτ

(formula 4 from §2).
We first find

dt0dτ0 ¼ l4dtdτ

because x0, y0, z0, t0 are related to x, y, z, t by linear relations whose determinant is
equal to l4; it next follows:

l4
X

f 02 ¼ f 2 þ k2 g2 þ h2
	 
þ k2ε2 β2 þ γ2

	 
þ 2k2ε gγ � hβð Þ
l4
X

α02 ¼ α2 þ k2 β2 þ γ2
	 
þ k2ε2 g2 þ h2

	 
þ 2k2ε gγ � hβð Þ
ð1Þ

(formulas 9 from §1), hence:
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l4
X

f 02 �
X

α02
� �

¼
X

f 2 �
X

α2;

such that if one sets:

J 0 ¼
Z P

f 02

2
�
P

α02

2

� �
dt0dτ0

it follows:

J 0 ¼ J:

For this equality to be justified, it is however necessary that the limits of
integration be the same; until now we have allowed t to vary from t0 to t1; and
x, y, z to vary from �1 to +1. As such, the integration limits would be changed by
the Lorentz transformation; but nothing prevents us from assuming t0 ¼ � 1,
t ¼ + 1; with these conditions, the limits of the same for J and for J 0.

We now need to compare the following two equations analogous to equation (10)
from §2:

δJ ¼ �
Z X

XδUdτdt

δJ 0 ¼ �
Z X

X0δU0dτ0dt0:
ð2Þ

To do that, we first need to compare δU0 to δU.
Consider an electron whose initial coordinates are x0, y0, z0; at the moment t, these

coordinates will be:

x ¼ x0 þ U, y ¼ y0 þ V , z ¼ z0 þW :

If the corresponding electron is considered after the Lorentz transformation, its
coordinates will be

x0 ¼ kl xþ εtð Þ, y0 ¼ ly, z0 ¼ lz,

where

x0 ¼ x0 þ U0, y0 ¼ y0 þ V 0, z0 ¼ z0 þW 0 ;

but it will only reach these coordinates at the moment
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t0 ¼ kl t þ εxð Þ

If we were to make our variables undergo variations δU, δV, δW and at the same
time we were to give t an increase δt, the coordinates x, y, z will undergo a total
increase

δx ¼ δU þ ξδt, δy ¼ δV þ ηδt, δz ¼ δW þ ζδt :

We will also have:

δx0 ¼ δU0 þ ξ0δt0, δy0 ¼ δV 0 þ η0δt0, δz0 ¼ δW 0 þ ζ0δt0 ,

and because of the Lorentz transformation:

δx0 ¼ kl δxþ εδtð Þ, δy0 ¼ lδy, δz0 ¼ lδz, δt0 ¼ kt δt þ εδxð Þ,

hence, by assuming δt ¼ 0, the relations:

δx0 ¼ δU0 þ ξ0δt0 ¼ klδU,

δy0 ¼ δV 0 þ η0δt0 ¼ lδV ,

δt0 ¼ klεδU:

We observe that

ξ0 ¼ ξþ ε
1þ ξε

, η0 ¼ η
k 1þ ξεð Þ ;

it will follow, by replacing δt0 with its value,

kl 1þ ξεð ÞδU ¼ δU0 1þ ξεð Þ þ ξþ εð ÞklεδU,

l 1þ ξεð ÞδV ¼ δV 0 1þ ξεð Þ þ ηlεδU:

If we recall the definition of k, we can draw from it that:

δU ¼ k
l
δU0 þ kε

l
ξδU0,

δV ¼ 1
l
δV 0 þ kε

l
ηδU0,

and similarly that
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δW ¼ 1
l
δW 0 þ kε

l
ζδU0;

hence

X
XδU ¼ 1

l
kXδU0 þ YδV 0 þ ZδW 0ð Þ þ kε

l
δU0XXξ ð3Þ

Hence, because of equations (2) it must be that:

Z X
X0δU0dt0dτ0 ¼

Z X
XδUdtdτ ¼ 1

l4

Z X
XδUdt0dτ0

By replacing ∑XδUby its value (3) and identifying, it follows:

X0 ¼ k

l5
X þ kε

l5
X

Xξ Y 0 ¼ 1
l5
Y , Z 0 ¼ 1

l5
Z:

These are equations (11) from §1. The principle of least action therefore leads us
to the same result as the analysis from §1.

If we refer back to formulas (1), we see that ∑f 2 � ∑ α2 is unchanged by the
Lorentz transformation, up to a constant factor; it is not the same for the expression
∑f 2 + ∑ α2 which appears in the energy. If we limit ourselves to the case where ε is
sufficiently small that its square can be neglected such that k ¼ 1 and if we also
assume l ¼ 1, we find:

X
f 02 ¼

X
f 2 þ 2ε gγ � hβð Þ,X

α02 ¼
X

α2 þ 2ε gγ � hβð Þ,

or, by addition,

X
f 02 þ

X
α02 ¼

X
f 2 þ

X
α2 þ 4ε gγ � hβð Þ:

§4 – The Lorentz Group

It is important to note that the Lorentz transformation do form a group.
In fact, if one sets:

x0 ¼ kl xþ εtð Þ, y0 ¼ ly, z0 ¼ lz, t0 ¼ kl t þ εxð Þ,

and additionally
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x00 ¼ k0l0 x0 þ ε0t0ð Þ, y00 ¼ l0y0 z00 ¼ l0z0, t00 ¼ k0l0 t0 þ ε0x0ð Þ,

with

k�2 ¼ 1� ε2, k0�2 ¼ 1� ε02

it will follow:

x00 ¼ k00l00 xþ ε00tð Þ, y00 ¼ l00y z00 ¼ l00z, t00 ¼ k00l00 t þ ε00xð Þ,

with

ε00 ¼ εþ ε0

1þ εε0 , l00 ¼ ll0, k00 ¼ kk0 1þ εε0ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ε002

p :

If we give l the value 1 and we assume that ε is infinitesimal,

x0 ¼ xþ δx, y0 ¼ yþ δy, z0 ¼ zþ δz, t0 ¼ t þ δt,

it will follow:

δx ¼ εt, δy ¼ δz ¼ 0, δt ¼ εx:

That is the infinitesimal generating transformation of the group, which I will call
the T1 transformation and which can be written using the Lie notation:

t
dφ
dx

þ x
dφ
dt

¼ T1:

If we assume ε ¼ 0 and l ¼ 1 + δl, we would in contrast find

δx ¼ xδl, δy ¼ yδl, δz ¼ zδl, δt ¼ tδl

and we will have another infinitesimal transformation T0 of the group (supposing
that l and ε are regarded as independent variables) and with the Lie notation it would
be:

T0 ¼ x
dφ
dx

þ y
dφ
dy

þ z
dφ
dz

þ t
dφ
dt

:

But we could give the particular role that we had given to the x-axis to the y-axis
or the z-axis; in that way one would have two other infinitesimal transformations:
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T2 ¼ t
dφ
dy

þ y
dφ
dt

T3 ¼ t
dφ
dz

þ z
dφ
dt

which would not alter the Lorentz equations either.
One can form the combinations imagined by Lie, such as

T1,T2½ � ¼ x
dφ
dy

� y
dφ
dx

;

but it is easy to see that this transformation is equivalent to a change of coordinate
axes, the axes turning a very small angle around the z-axis. We shouldn’t therefore
be surprised if a similar change leaves the form of the Lorentz equations unchanged,
since the equations are obviously independent of the choice of axes.

We are therefore led to consider a continuous group that we will call the Lorentz
group in which will allow as infinitesimal transformations:

1) the transformation T0 which will be permutable with all the others;
2) the three transformations T1, T2, T3; and
3) the three rotations [T1,T2], [T2, T3], [T3,T1].

An arbitrary transformation of this group could always be broken down into a
transformation of the form:

x0 ¼ lx, y0 ¼ ly, z0 ¼ lz, t0 ¼ lt

and a linear transformation which does not change the quadratic form:

x2 þ y2 þ z2 � t2:

We can also generate our group in another way. Any transformation of the group
could be regarded as a transformation of the form:

x0 ¼ kl xþ εtð Þ, y0 ¼ ly, z0 ¼ lz, t0 ¼ kl t þ εxð Þ ð1Þ

preceded and followed by a suitable rotation.
But for our purposes, we should only consider a part of the transformations from

this group; we should assume that l is a function of ε, and it will be a matter of
choosing this function such that this part of the group, which I will call P, again
forms a group.

Turning the system 180� around the y-axis, we should find a transformation
which will have to again belong to P. Now this amounts to changing the sign of
x, x0, z and z0; in that way it is found that:
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x0 ¼ kl x� εtð Þ, y0 ¼ ly, z0 ¼ lz, t0 ¼ kl t � εxð Þ ð2Þ

Thus l is not changed when ε is changed to �ε.
On the other hand, if P is a group, the inverse substitution of (1), which is written:

x0 ¼ k
l
x� εtð Þ, y0 ¼ y

l
, z0 ¼ z

l
, t0 ¼ k

l
t � εxð Þ, ð3Þ

should also belong to P; it will therefore have to be identical to (2), meaning that

l ¼ 1
l
:

It will therefore have to be that l ¼ 1.

§5 – Langevin Waves

Langevin8 put the formulas which define the electromagnetic field produced by the
motion of a single electron in a particularly elegant form.

Return to the equations

□ψ ¼ �ρ, □F ¼ �ρξ: ð1Þ

It is known that they can be integrated by delayed potentials and that one finds:

ψ ¼ 1
4π

Z
ρ1dτ1
r

, F ¼ 1
4π

Z
ρ1ξ1dτ1

r
: ð2Þ

In these formulas one has:

dτ1 ¼ dx1dy1dz1, r2 ¼ x� x1ð Þ2þ y� y1ð Þ2 þ z� z1ð Þ2

while ρ1 and ξ1 are values of ρ and ξ at the point x1, y1, z1 and at the moment

t1 ¼ t � r:

Let x0, y0, z0 be the coordinates of a differential element of an electron at the
moment t; and

x1 ¼ x0 þ U, y1 ¼ y0 þ V , z1 ¼ z0 þW

be its coordinates at the moment t1.
U, V, W are functions of x0, y0, z0 such that we will be able to write:
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dx1 ¼ dx0 þ dU
dx0

dx0 þ dU
dy0

dy0 þ dU
dz0

dz0 þ ξ1dt1;

and if one assumes t to be constant, and also x, y and z:

dt1 ¼ þ
X x� x1

r
dx1:

We can then write:

dx1 1þ ξ1
x1 � x

r

� �
þ dy1ξ1

y1 � y
r

þ dz1ξ1
z1 � z
r

¼ dx0 1þ dU
dx0

� �
þ dy0

dU
dy0

þ dz0
dU
dz0

with the two other equations that can be deduced by circular permutation.
We therefore have:

dτ1 1þ ξ1
x1 � x

r
, ξ1

y1 � y
r

, ξ1
z1 � z
r

��� ��� ¼ dτ0 1þ dU
dx0

,
dU
dy0

,
dU
dz0

����
���� ð3Þ

by setting

dτ0 ¼ dx0dy0dz0:

We will study the determinants which appear on both sides of (3) and start with
the left-hand side; on trying to expand it, one sees that the terms of second and third
degree in ξ1, η1, ζ1 disappear and that the determinant is equal to

1þ ξ1
x1 � x

r
þ η1

y1 � y
r

þ ζ1
z1 � z
r

¼ 1þ ω,

where ω designates the radial component of the speed ξ1, η1, ζ1, meaning the
component directed along the radius vector going from the point x, y, z to the
point x1, y1, z1.

In order to get the second determinant, I consider the coordinates of various
molecules of the electron at a moment t01 which is the same for all the differential
elements, but in such a way that for the differential element that I consider one can
have t1 ¼ t01. The coordinates of a differential element will then be:

x01 ¼ x0 þ U0, y01 ¼ y0 þ V 0, z01 ¼ z0 þW 0,

where U0, V 0,W 0 are what U, V,W become when t1 is replaced in them by t01; as t
0
1 is

the same for all the differential elements, it will hold:
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dx01 ¼ dx0 1þ dU0

dx0

� �
þ dy0

dU0

dy0
þ dz0

dU0

dz0

and consequently

dτ01 ¼ dτ0 1þ dU0

dx0
,

dU0

dy0
,

dU0

dz0

����
����,

by setting

dτ01 ¼ dx01dy
0
1dz

0
1

But the element of electric charge is

dμ1 ¼ ρ1dτ
0
1

and additionally for the differential element considered, one has t1 ¼ t01 and conse-
quently dU0

dx0
¼ dU

dx0
, etc.; we can therefore write:

dμ1 ¼ ρ1dτ0 1þ dU0

dx0
,

dU0

dy0
,

dU0

dz0

����
����,

such that equation (3) will become:

ρ1dτ1 1þ ωð Þ ¼ dμ1

and equations (2):

ψ ¼ 1
4π

Z
dμ1

r 1þ ωð Þ , F ¼
Z

ξ1dμ1
r 1þ ωð Þ :

If we are dealing with a single electron, our integrals will reduce to a single
element, provided that only points x, y, z are considered that ae sufficiently far away
so that r and ω have substantially the same value for all points of the electron. The
potentials ψ , F, G, H will depend on the position of this electron and also its speed,
because not only do the ξ1, η1, ζ1 appear in the numerator in F, G, H, but the radial
component ω appears in the denominator. It is of course its position and its velocity
at the moment t1 that are involved.

The partial derivatives of ψ , F,G,Hwith respect to t, x, y, z (and consequently the
electric and magnetic fields) will furthermore depend on its acceleration. Addition-
ally, they will depend on it linearly, because in these derivatives this acceleration
comes in following a single differentiation.
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In that way, Langevin was led to distinguish the terms in the electric and magnetic
fields that do not depend on the acceleration (which he calls the speed wave) and
those that are proportional to the acceleration (which he calls the acceleration wave).

The Lorentz transformation makes the calculation of these two waves easier. We
can in fact apply this transformation to the system such that the speed of the single
electron under consideration become zero. We will take the direction of this velocity
for the x-axis before the transformation, such that, at the moment t,

η1 ¼ ζ1 ¼ 0,

and we will take ε ¼ � ξ1, such that

ξ01 ¼ η01 ¼ ζ01 ¼ 0:

We can therefore reduce the calculation of the two waves to the case where the
electron velocity is zero. We start with the velocity wave; we can first remark that
this wave is the same as if the motion of the electron were uniform.

If the velocity of electron is zero, it follows:

ω ¼ 0, F ¼ G ¼ H ¼ 0, ψ ¼ μ1
4πr

,

where μ1 is the electric charge of the electron. The velocity having been brought to
zero by the Lorentz transformation, we therefore have:

F0 ¼ G0 ¼ H0 ¼ 0, ψ ¼ μ1
4πr0 ,

where r0 is the distance from the point x0, y0, z0 to the point x01 , y
0
1 , z

0
1 , and

consequently:

α0 ¼ β0 ¼ γ0 ¼ 0,

f 0 ¼ μ1 x0 � x01
	 

4πr03

, g0 ¼ μ1 y0 � y01
	 

4πr03

, h0 ¼
μ1 z0 � z01
	 

4πr03

:

We now do the inverse Lorentz transformation to find the actual field
corresponding to a velocity �ε, 0, 0. By referring to equations (9) and (3) from §1:

α ¼ 0, β ¼ εh, γ ¼ �εg,

f ¼ μ1kl
3

4πr03
xþ εt � x1 � εt1ð Þ, g ¼ μ1kl

3

4πr03
y� y1ð Þ, h ¼ μ1kl

3

4πr03
z� z1ð Þ,

ð4Þ

It can be seen that the magnetic field is perpendicular to the x-axis (direction of
the velocity) and to the electric field and that the electric field is directed towards the
point:
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x1 þ ε t1 � tð Þ, y1, z1, ð5Þ

If the electron were to continue to move with a straight and uniform motion with
the speed that it had at the moment t1, meaning with the velocity �ε, 0, 0, this point
(5) would be the one that it would occupy at the moment t.

Now switch to the acceleration wave; by using the Lorentz transformation, we
can refer its determination to the case where the velocity is zero. This is the case
which occurs if an electron is imagined to execute very small amplitude oscillations,
but very fast, such that the displacements and the velocities are infinitesimal but the
accelerations are finite. This brings us back to the field which was studied in the
celebrated paper by Hertz, Die Kräfte elektrischer Schwingungen nach der
Maxwell’schen Theorie, that considered a very distant point. Under these conditions:

1) The electric and magnetic fields are equal to each other.
2) They are perpendicular to each other.
3) They are perpendicular to the normal to the spherical wavefront, meaning to the

sphere whose center is at the point x1, y1, z1.

I state that these three properties will still be present when the velocity is not zero,
and for that, it is sufficient for me to prove that they are unchanged by the Lorentz
transformation.

In fact, let A be the shared strength of the two fields; let:

x� x1ð Þ ¼ rλ, y� y1ð Þ ¼ rμ, z� z1ð Þ ¼ rν, λ2 þ μ2þ ν2 ¼ 1:

These properties will be expressed by the equalities:

A2 ¼P f 2 ¼P α2,
P

fα ¼ 0,
P

f x� x1ð Þ ¼ 0,
P

α x� x1ð Þ ¼ 0,P
f λ ¼ 0,

P
αλ ¼ 0;

which means again that:

b
A
,

g
A
,

h
A

α
A
,

β
A
,

γ
A

λ, μ, ν

are the directional cosines of the three rectangular directions and from that the
relations are deduced:

f ¼ βν� γμ, α ¼ hμ� gν,

or
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fr ¼ β z� z1ð Þ � γ y� y1ð Þ, αr ¼ h y� y1ð Þ � g z� z1ð Þ, ð6Þ

along with the equations that can be deduced from them by symmetry.
If we take up equations (3) from §1, we find:

x0 � x01 ¼ kl x� x1ð Þ þ ε t � t1ð Þ½ � ¼ kl x� x1ð Þ þ εr½ �,
y0 � y01 ¼ l y� y1ð Þ,
z0 � z01 ¼ l z� z1ð Þ:

ð7Þ

Above, in §3, we found:

l4
X

f 02 �
X

α02
� �

¼
X

f 2 �
X

α2:

Therefore ∑ f 2 ¼ ∑ α2 leads to ∑ f 02 ¼ ∑ α02.
On the other hand, by starting from equations (9) from §1, it is found:

l4
X

f 0α0 ¼
X

fα,

which shows that ∑ fα ¼ 0 leads to ∑ f 0α0 ¼ 0.
I now state that

X
f 0 x0 � x01
	 
 ¼ 0,

X
α0 x0 � x01
	 
 ¼ 0 : ð8Þ

In fact, because of equations (7) (and also equations 9 from §1) the left-hand sides
of the two equations (8) are written respectively:

k
l

X
f x� x1ð Þ þ kε

l
fr þ γ y� y1ð Þ � β z� z1ð Þ½ �,

k
l

X
α x� x1ð Þ þ kε

l
αr � h y� y1ð Þ þ g z� z1ð Þ½ �,

They therefore become zero because of the equations∑ f(x� x1)¼ ∑ α(x� x1)¼ 0
and because equations (6). This is precisely what it was a matter of proving.

It is also possible to arrive at the same result by simple considerations of
homogeneity.

In fact, ψ , F, G, H are homogeneous functions of (x � x1), (y � y1), (z � z1),
ξ1¼ dx1/dt1, η1¼ dy1/dt1, ζ1¼ dz1/dt1, of degree�1 in x, y, z, t, x1, y1, z1, t1 and their
derivatives.

The derivatives of, ψ , F, G, H with respect to x, y, z, t (and consequently also to
the two fields f, g, h; α, β, γ) will be homogeneous of degree �2 in the same
quantities if we additionally recall that the relation
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t � t1 ¼ r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

x� x1ð Þ2
q

is homogeneous in these quantities.
Now these derivatives or these fields depend on x � x1, speeds dx1/dt1 and

accelerations d2x1/dt1
2; they are made up of a term independent of the accelerations

(velocity wave) and a linear term in the accelerations (acceleration wave). Hence
dx1/dt1 is homogeneous of degree 0 and d2x1/dt1

2 is homogeneous of degree �1;
from this it follows that the velocity wave is homogeneous of degree �2 in (x � x1),
(y � y1), (z � z1), and the acceleration wave is homogeneous of degree �1.
Therefore, at a very distant point, the acceleration wave dominates and can conse-
quently be regarded as being the same as the total wave. Additionally, the law of
homogeneity shows us that the acceleration wave is self-similar at a distant point and
at an arbitrary point. It is therefore, at an arbitrary point, similar to the total wave at a
distant point. Hence at a distant point the perturbation can only propagate by plane
waves such that the two fields must be equal, perpendicular to each other and
perpendicular to the direction of propagation.

I will limit myself to referring to the article by Langevin in the Journal de
Physique (1905)9 for more details.

§6 – Contraction of Electrons

We assume a single electron driven in a motion of straight and uniform translation.
Based on what we just saw, the study of the field created by this electron in the case
where the electron is immobile can be determined using the Lorentz transformation;
the Lorentz transformation therefore replaces the real moving electron by an ideal
immobile electron.

Let α, β, γ, f, g, h; be the real field; let α0, β0, γ0, f 0, g0, h0 be what the field becomes
after the Lorentz transformation, such that the ideal field α0, f 0 corresponds to the
case of an immobile electron; it follows:

α0 ¼ β0 ¼ γ0 ¼ 0, f 0 ¼ � dψ 0

dx0 , g0 ¼ � dψ 0

dy0 , h0 ¼ � dψ 0

dz0 ;

and for the real field (because of formulas 9 from §1):

α ¼ 0, β ¼ εh, γ ¼ �εg,

f ¼ l2 f 0, g ¼ kl2g0, h ¼ kl2h0:
ð1Þ

It is now a matter of determining the total energy due to the motion of the
electron, the corresponding action and the electromagnetic moment in order to be
able to calculate the electromagnetic masses of the electron. For a distant point, it is
sufficient to consider the electron as reduced to a single point; one is then back at the
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formulas (4) from the previous section which are generally suitable. But here they
would not be sufficient, because the energy is principally located in the parts of the
ether closest to the electron.

Several hypotheses can be made on this subject.
According to Abraham’s hypothesis, the electrons would be spherical and

undeformable.
Then, when the Lorentz transformation would be applied, since the real electron

would be spherical, the ideal electron would become an ellipsoid. Following §1, the
equation of this ellipsoid would be:

k2 x0 � εt � ξt0 þ εξx0ð Þ2 þ y0 � ηkt0 þ ηkεx0ð Þ2 þ z0 � ζkt0 þ ζkεx0ð Þ2 ¼ l2r2:

But here we have:

ξþ ε ¼ η ¼ ζ ¼ 0, 1þ εξ ¼ 1� ε2 ¼ 1
k2

,

such that the equation of the ellipsoid becomes:

x02

k2
þ y02 þ z02 ¼ l2r2:

If the radius of the real electron is r, the axes of the ideal electron would therefore
be:

klr, lr, lr:

In contrast, in Lorentz’s hypothesis, the moving electrons would be deformed
such that it would be the real electron which would be an ellipsoid whereas the
immobile ideal electron would always be a sphere of radius r; the axes of the real
electron will then be:

r
lk
,

r
l
,

r
l
:

Call

A ¼ 1
2

Z
f 2dτ

the longitudinal electrical energy;
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B ¼ 1
2

Z
g2 þ h2
	 


dτ

the transverse electric energy; and

C ¼ 1
2

Z
β2 þ γ2
	 


dτ

the transverse magnetic energy. There is no longitudinal magnetic energy because
α¼ α0 ¼ 0. Designate the corresponding quantities in the ideal system by A0, B0, C0. It
is first found that:

C0 ¼ 0, C ¼ ε2B:

Additionally, we can observe that the real field depends only on x + εt, y and z,
and write:

dτ ¼ d xþ εtð Þdydz,
dτ0 ¼ dx0dy0dz0 ¼ kl3dτ;

hence

A0 ¼ kl�1A, B0 ¼ k�1l�1B, A ¼ lA0

k
, B ¼ klB0 :

In Lorentz’s hypothesis, B0 ¼ 2A0, and A0, which is inversely proportional to the
radius of the electron, is a constant independent of the speed of the real electron; in
this way, it is possible to find the total energy:

Aþ Bþ C ¼ A0lk 3þ ε2
	 


and the action (per unit time):

Aþ B� C ¼ 3A0l
k

:

We now calculate the electromagnetic momentum; we will find:

D ¼
Z

gγ � hβð Þdτ ¼ �ε

Z
g2 þ h2
	 


dτ ¼ �2εB ¼ �4εklA0:

But there must be some relations between the energy E ¼ A + B + C, the action
per unit time H ¼ A + B � C and the momentum D. The first of these relations is:
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E ¼ H � ε
dH
dε

,

the second is:

dD
dε

¼ � 1
ε
dE
dε

;

hence:

D ¼ dH
dε

, E ¼ H � εD: ð2Þ

The second of equations (2) is always satisfied; but the first is satisfied only if

l ¼ 1� ε2
	 
1

6 ¼ k�
1
3,

meaning if the volume of the ideal electron is equal to that of the real electron, or also
if the volume of the electron is constant; that is Langevin’s hypothesis.

This stands in contradiction with the result from §4 and with the results obtained
by Lorentz in another way. This contradiction is what needs to be explained.

Before bringing up this explanation, I observe that, whatever the hypothesis
adopted we will have:

H ¼ Aþ B� C ¼ l
k

A0 þ B0ð Þ,

or, because C0 ¼ 0,

H ¼ l
k
H0: ð3Þ

We can compare this result for the equation J ¼ J 0 obtained in §3.
We have in fact:

J ¼
Z

Hdt, J 0 ¼
Z

H0dt0:

We will observe the state of the system depends only on x + εt, y and z, meaning
x0, y0, z0, and that we have:

t0 ¼ l
k
t þ εx0, dt0 ¼ l

k
dt: ð4Þ

By combining equations (3) and (4), it is found that J ¼ J0.
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We place ourselves in an arbitrary hypothesis which could be either that of
Lorentz, Abraham, or Langevin, or an intermediate hypothesis.

Let

r, θr, θr

be the three axes of the real electron; those of the ideal electron will be:

klr, θlr, θlr:

Then A0 + B0 will be the electrostatic energy due to an ellipsoid having axes klr,
θlr, θlr.

Let us assume that the electricity spreads over the surface of the electron like that
of a conductor or spreads uniformly inside this electron. This energy will be of the
form:

A0 þ B0 ¼ φ θ
k

	 

klr

,

where φ is a known function.
Abraham’s hypothesis consists of assuming:

r ¼ const: θ ¼ 1 :

Lorentz’s hypothesis:

l ¼ 1, kr ¼ const: θ ¼ k:

Langevin’s hypothesis:

l ¼ k�1=3, k ¼ θ, klr ¼ const:

Next find:

H ¼ φ θ
k

	 

k2r

:

Abraham found, up to differences of notation (Göttinger Nachrichten, 1902,
p. 37):

H ¼ a
r
1� ε2

ε
log

1þ ε
1� ε

,

where a is a constant. Now, in Abraham’s hypothesis, θ ¼ 1; therefore:
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φ
1
k

� �
¼ ak2

1� ε2

ε
log

1þ ε
1� ε

¼ a
ε
log

1þ ε
1� ε

ð5Þ

which defines the function φ.
Having laid that out, imagine that the electron is subject to a binding force, such

that there is a relation between r and θ; under Lorentz’s hypothesis, this relation
would be θr ¼ const., in Langevin’s θ2r3 ¼ const.. We will assume more generally:

r ¼ bθm,

where b is a constant; hence:

H ¼ 1
bk2

θ�mφ
θ
k

� �
:

What shape will the electron take when the velocity becomes �εt,10 if it is
assumed that the only forces involved are binding forces? That shape will be defined
by the equality:

∂H
∂θ

¼ 0, ð6Þ

or

�mθ�m�1φþ θ�mk�1φ0 ¼ 0,

or

φ0

φ
¼ mk

θ
:

If we want there to be a balance such that θ ¼ k, it must be that for θ/k ¼ 1, the
logarithmic derivative of φ is equal to m.

If we expand 1/k and the right-hand side of (5) in powers of ε, equation (5)
becomes:

φ 1� ε2

2

� �
¼ a 1þ ε2

3

� �
,

by neglecting higher powers of ε.
By differentiating, it follows that:
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�εφ0 1� ε2

2

� �
¼ 2

3
εa:

For ε¼ 0, meaning when the argument of φ is equal to 1, these equations become:

φ ¼ a, φ0 ¼ � 2
3
a,

φ0

φ
¼ � 2

3
: ð7Þ

Therefore it must be that m ¼ � 2/3 as in Langevin’s hypothesis.
This result must be compared with the result concerning the first equation (2) and

from which, in reality, it is not different. In fact, let us assume that any element dτ of
the electron is subject to a force Xdτ parallel to the x-axis, where X is the same for all
elements; we will then have, conforming to the definition of the momentum:

dD
dt

¼
Z

Xdτ:

Additionally, the principle of least action gives us:

δJ ¼
Z

XδUdτdt, J ¼
Z

Hdt, δJ ¼
Z

DδUdt ,

where δU is the displacement of the center of gravity of the electron; H depends on θ
and ε, if it is accepted that r is related to θ by the binding equation; it then follows:

δJ ¼
Z

∂H
∂ε

δεþ ∂H
∂θ

δθ

� �
dt:

Additionally, δε ¼ � dδU
dt ; hence, by integrating by parts:

Z
Dδεdt ¼

Z
Dδudt,

or

Z
∂H
∂ε

δεþ ∂H
∂θ

δθ

� �
dt ¼

Z
Dδεdt;

hence

D ¼ ∂H
∂ε

,
∂H
∂θ

¼ 0:
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But the derivative dH/dε, which appears in the right-hand side of the first equation
(2) is the derivative taken by assuming θ is expressed as a function of ε, such that

dH
dε

¼ ∂H
∂ε

þ ∂H
∂θ

dθ
dε

:

Equation (2) is therefore equivalent to equation (6).
The conclusion is that if the electron is subject to a binding between its three axes,

and if no other force is involved apart from the binding forces, the shape that this
electron will take, when driven at a uniform speed, can only be that of the ideal
electron corresponding to a sphere, or that in the case where the binding will be such
that the volume is constant, as assumed in Langevin’s hypothesis.

In that way we are led to state the following problem: what additional forces,
other than the binding forces, would need to be involved to incorporate Lorentz’s
law or, more generally, any law other than that of Langevin?

The simplest hypothesis, and the first that we needed to examine, is that these
additional forces derive from a special potential deriving from the three axes of the
ellipsoid and consequently from θ and r; let F(θ, r) be that potential; in that case the
expression for the action will be:

J ¼
Z

H þ F θ, rð Þ½ �dt

and the equilibrium conditions will be written:

dH
dθ

þ dF
dθ

¼ 0,
dH
dr

þ dF
dr

¼ 0: ð8Þ

If we assume that r and θ are linked by the relationship r¼ bθm, we will be able to
regard r as a function of θ, consider F as only depending on θ and retain only the first
equation (8) with:

H ¼ φ

bk2θm
,

dH
dθ

¼ �mφ

bk2θmþ1 þ
φ0

bk3θm
:

It must be, for k ¼ θ, that equation (8) is satisfied, which gives, in light of
equations (7):

dF
dθ

¼ ma

bθmþ3 þ
2
3

a

bθmþ3 ,

hence:
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F ¼ �a

bθmþ2

mþ 2
3

mþ 2

and in the Lorentz hypothesis, where m ¼ � 1:

F ¼ a
3bθ

:

Now let us assume that there is no binding and, regarding r and θ as two
independent variables, we retain the two equations (8); it will follow:

H ¼ φ

k2r
,

dH
dθ

¼ φ0

k3r
,

dH
dr

¼ �φ

k3r2
:

Equations (8) will have to be satisfied for k ¼ θ, r ¼ bθm; which gives:

dF
dr

¼ a

b2θ2mþ2 ,
dF
dθ

¼ 2
3

a

bθmþ3 : ð9Þ

One of the ways to satisfy these conditions is to set:

F ¼ Arαθβ, ð10Þ

where A, α and β are constants; equations (9) must be satisfied for k¼ θ and r¼ bθm,
which gives:

Aαbα�1θmα�mþβ ¼ a

b2θ2mþ2 , Aβbαθmαþβ�1 ¼ 2
3

a

bθmþ3 :

By identification, it follows:

α ¼ 3γ, β ¼ 2γ, γ ¼ � mþ 2
3mþ 2

, A ¼ a

αbαþ1 : ð11Þ

But the volume of the ellipsoid is proportional to r3θ2, such that the additional
potential is proportional of the volume of the electron to the power γ.

In the Lorentz hypothesis, m ¼ � 1 and γ ¼ 1.
This is therefore the Lorentz hypothesis on the condition of adding an additional

potential proportional to the volume of the electron.
Langevin’s hypothesis corresponds to γ ¼ 1.

5 On the Dynamics of the Electron 81



§7 – Quasi-Stationary Motion

It remains to be seen whether this hypothesis about the contraction of electrons
reflects the impossibility of showing absolute motion; I will start by studying quasi-
stationary motion of an electron which is isolated or only subject to the action of
other distant electrons.

It is known that motion is called quasi-stationary motion when the changes in
velocity are sufficiently slow that the magnetic and electrical energies due to the
motion of the electron differ slightly from what they would be in uniform motion; it
is also known that it is by starting from this concept of quasi-stationary motion that
Abraham arrived at the concept of transverse and longitudinal electromagnetic
masses.

I believe I have to be more specific. Let H be our action per unit time:

H ¼ 1
2

Z X
f 2 �

X
α2

� �
dτ

where for the moment we only consider the electric and magnetic fields due to the
motion of an isolated electron. In the previous section, considering the motion to be
uniform, we regarded H as dependent on the speed ξ, η, ζ of the center of gravity of
the electron (in the previous section, these three components had values�ε, 0, 0) and
the parameters r and θ which define the shape of the electron.

But, if the motion is no longer uniform, H will depend not only on the values ξ, η,
ζ, r, θ at the moment being considered, but on the values of the same quantities at
other moments which will be different from them by quantities of the same order as
the time taken by light to go from one point of the electron to another; in other words,
H will depend not only on ξ, η, ζ, r, θ but also on their derivatives with respect to
time of all orders.

Hence, the motion will be called quasi-stationary when the partial derivatives of
H with respect to the successive derivatives of ξ, η, ζ, r, θ will be negligible
compared to the partial derivatives of H with respect to the quantities ξ, η, ζ, r, θ
themselves.

The equations of a similar motion could be written:

dH
dθ

þ dF
dθ

¼ dH
dr

þ dF
dr

¼ 0,

d
dt
dH
dξ

¼ �
Z

Xdτ,
d
dt
dH
dη

¼ �
Z

Ydτ,
d
dt
dH
dζ

¼ �
Z

Zdτ:
ð1Þ

In these equations, F has the same meaning as in the previous section; X, Y, Z are
the components of the force which acts on the electron: this force is solely due to the
electric and magnetic fields produced by other electrons.

We observed that H depends on ξ, η, ζ only through the combination
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V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ η2 þ ζ2

q
,

meaning the magnitude of the velocity; by again calling D the momentum, it follows:

dH
dξ

¼ dH
dV

ξ
V
¼ �D

ξ
V

hence:

� d
dt

dH
dξ

¼ D
V

dξ
dt

� D
ξ

V2
dV
dt

þ dD
dV

ξ
V

dV
dt

, ð2Þ

� d
dt

dH
dη

¼ D
V

dη
dt

� D
η

V2
dV
dt

þ dD
dV

η
V

dV
dt

, ð20Þ

with

V
dV
dt

¼
X

ξ
dξ
dt

: ð3Þ

If we take the x-axis as the current direction of the velocity, it follows:

ξ ¼ V , η ¼ ζ ¼ 0,
dξ
dt

¼ dV
dt

;

equations (2) and (20) become:

� d
dt
dH
dξ

¼ dD
dV

dξ
dt

, � d
dt
dH
dη

¼ D
V
dη
dt

and the three equations (1) become:

dD
dV

dξ
dt

¼
Z

Xdτ,
D
V
dη
dt

¼
Z

Ydτ,
D
V
dζ
dt

¼
Z

Zdτ: ð4Þ

This is why Abraham gave dD/dV the name longitudinal mass and D/V the name
transverse mass; recall that D ¼ dH/dV.

In Lorentz’s hypothesis, we have:

D ¼ � dH
dV

¼ �∂H
∂V

,

where ∂H/∂V represents the derivative with respect V, after r and θ have been
replaced by their values as a function of V drawn from the first two equations (1); and
additionally it follows after this substitution,
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H ¼ þA
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2

p
:

Wewill now choose the units such that the constant factor A is equal to 1, and I setffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2

p
¼ h, hence:

H ¼ þh, D ¼ V
h
,

dD
dV

¼ h�3,
dD
dV

1
V2 �

D
V3 ¼ h�3:

We will also set:

M ¼ V
dV
dt

¼
X

ξ
dξ
dt

, X1 ¼
Z

Xdτ

and we will find for the equation of quasi-stationary motion:

h�1 dξ
dt

þ h�3ξM ¼ X1: ð5Þ

Let’s look at what becomes of these equations under the Lorentz transformation.
We will set 1 + ξε ¼ μ, and we will first have:

μξ0 ¼ ξþ ε, μη0 ¼ η
k
, μζ0 ¼ ζ

k
,

from which it is easy to find

μh0 ¼ h
k
:

We also have

dt0 ¼ kμdt,

hence:

dξ0

dt0 ¼
dξ
dt

1
k3μ3

,
dη0

dt0 ¼
dη
dt

1
k2μ2

� dξ
dt

ηε

k2μ3
,

dζ0

dt0 ¼
dζ
dt

1
k2μ2

� dξ
dt

ζε

k2μ3
,

and again:

M0 ¼ dξ
dt

εh2

k3μ4
þ M

k3μ3

and
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h0�1 dξ
0

dt0 þ h0�3ξ0M0 ¼ h�1 dξ
dt

þ h�3 ξþ εð ÞM
� �

μ�1, ð6Þ

h0�1 dη
0

dt0 þ h0�3η0M0 ¼ h�1 dη
dt

þ h�3ηM

� �
μ�1h�1: ð7Þ

Let us now refer to equations (110) from §1; there X1, Y1, Z1 can be regarded as
having the same meaning as in equations (5). Also, we have l ¼ 1 and ρ0/ρ ¼ kμ;
these equations therefore become:

X0
1 ¼ μ�1 X1 þ ε

X
X1ξ

� �
,

Y 0
1 ¼ k�1μ�1Y1:

ð8Þ

When we calculate ∑X1ξ using equations (5), we will find:

X
X1ξ ¼ h�3M,

hence:

X0
1 ¼ μ�1 X1 þ εh�3M

	 

,

Y 0
1 ¼ k�1μ�1Y1:

ð9Þ

By comparing equations (5), (6), (7) and (9), we finally find:

h0�1 dξ
0

dt0 þ h0�3ξ0M0 ¼ X0
1,

h0�1 dη
0

dt0 þ h0�3η0M0 ¼ Y 0
1,

ð10Þ

which shows that the equations of quasi-stationary motion are unaltered by the
Lorentz transformation, but that does not yet prove that Lorentz’s hypothesis is the
only one which leads to this result.

To establish that point, we are going to restrict ourselves, as Lorentz did, to some
specific cases which will obviously be sufficient for us to prove a negative
proposition.

How are we first going to extend the hypothesis on which the previous calculation
rests:

1) Instead of assuming l ¼ 1 in the Lorentz transformation, we will assume that l is
arbitrary.

2) Instead of assuming that F is proportional to the volume, and consequently that
H is proportional to h, we are going to assume that F is an arbitrary function of θ
and r, such that (after having replaced θ and r by their values as functions of V,
drawn from the first two equations (1)) H is an arbitrary function of V.

5 On the Dynamics of the Electron 85



I first note that, if it is assumed that H ¼ h, one should in fact have l ¼ 1; and in
fact equations (6) and (7) will remain, except that the left-hand side will be
multiplied by 1/l; equations (9) also, except that the right-hand sides will be
multiplied by 1/l2; and finally equations (10) except that the right-hand side will
be multiplied by 1/l. If one wants the equations of motion to be unaltered by the
Lorentz transformation meaning that equations (10) are not different from equations
(5) except for the accenting of the letters, it must be assumed that:

l ¼ 1:

Now assume that η ¼ ζ ¼ 0, hence ξ ¼ V and dξ
dt ¼ dV

dt ; equations (5) will take the
form:

� d
dt
dH
dξ

¼ dD
dV

dξ
dt

¼ X1, � d
dt
dH
dη

¼ D
V
dη
dt

¼ Y1 : ð50Þ

We can additionally set:

dD
dV

¼ f Vð Þ ¼ f ξð Þ, D
V
¼ φ Vð Þ ¼ φ ξð Þ :

If the equations of motion are unaltered by the Lorentz transformation, it should
be that:

f ξð Þ dξ
dt

¼ X1,

φ ξð Þ dη
dt

¼ Y1,

f ξ0ð Þ dξ
0

dt0 ¼ X0
1 ¼ l�2μ�1 X1 þ ε

X
X1ξ

� �
¼ l�2μ�1X1 1þ εξð Þ ¼ l�2X1,

φ ξ0ð Þ dη
0

dt0 ¼ Y 0
1 ¼ l�2k�1μ�1Y1:

and consequently:

f ξð Þ dξ
dt

¼ l2f ξ0ð Þ dξ
0

dt0

φ ξð Þ dη
dt

¼ l2kμφ ξ0ð Þ dη
0

dt0

ð11Þ

But we have:
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dξ0

dt0 ¼
dξ
dt

1
k3μ3

,
dη0

dt0 ¼
dη
dt

1
k2μ2

,

hence:

f ξ0ð Þ ¼ f
ξþ ε
1þ ξε

� �
¼ f ξð Þ k

3μ3

l2
,

φ ξ0ð Þ ¼ φ
ξþ ε
1þ ξε

� �
¼ φ ξð Þ kμ

l2
;

hence, by eliminating l2, we find the functional equation:

k2μ2
φ ξþε

1þξε

� �
φ ξð Þ ¼

f ξþε
1þξε

� �
f ξð Þ ,

or, by setting

φ ξð Þ
f ξð Þ ¼ Ω ξð Þ ¼ D

V dD
dV

,

this:

Ω ξþ ε
1þ ξε

� �
¼ Ω ξð Þ 1þ ε2

1þ ξεð Þ2

equation which must be satisfied for all values of ξ and ε. For ζ ¼ 0 one finds:

Ω εð Þ ¼ Ω 0ð Þ 1� ε2
	 


,

hence:

D ¼ A
Vffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� V2
p
� �m

,

where A is a constant, and where I made Ω(0) ¼ 1/m.
One then finds:

φ ξð Þ ¼ A
ξ

ξffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ2

p
 !m

, φ ξ0ð Þ ¼ A
ξ

ξþ εffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ε2

p
 !m

:

However φ(ξ0) ¼ φ(ξ)kμ/l2, so it follows:11
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ξþ εð Þm�1 1� ε2
	 
�m

2 ¼ �ξm�1 1� ε2
	 
�1

2l�2:

As l must only depend on ε (because, if there are several electrons, l must be the
same for all electrons whose velocities ξ can be different), this identity can only hold
if one has:

m ¼ 1, l ¼ 1 :

Thus Lorentz’s hypothesis is the only one which is compatible with the impos-
sibility of showing absolute motion; if this impossibility is accepted, it must be
accepted that moving electrons contract so as to become ellipsoids of revolution two
axes of which remain constant; the existence of an additional potential proportional
to the volume of the electron also has to be accepted, as we showed in the previous
section.

Lorentz’s analysis is therefore found to be fully confirmed, but we can do better
by observing the true reason for the fact we are dealing with; this reason must be
sought in the considerations from §4. The transformations which do not change the
equations of motion must form a group and that can occur only if l ¼ 1. Since we
must not be able to recognize whether an electron is at rest or in absolute motion, it
must be that when it is in motion it experiences a deformation which must be
precisely that which the corresponding transformation of the group demands of it.

§8 – Arbitrary Motion

The previous results only apply to quasi-stationary motion, but it is easy to extend
them to the general case; it is sufficient to apply the principles from §3, meaning to
start with the principle of least action.

It is appropriate to add to the expression for the action:

J ¼
Z P

f 2

2
�
P

α2

2

� �
dtdτ,

a term representing the additional potential F from §6; this term will obviously
take the form:

J1 ¼
Z X

Fð Þdt,

where ∑(F) represents the sum of the additional potentials due to the various
electrons, where each of them is proportional to the volume of the corresponding
electron.

88 H. Poincaré



I’m writing (F) between parentheses so as not to confuse it with the vector
F, G, H.

The total action is then J + J1. We saw in §3 that J is unchanged by the Lorentz
transformation; it now needs to be shown that the same is true of J1.

For one of the electrons, it holds that:

Fð Þ ¼ ω0τ,

where ω0 is a coefficient specific to the electron and τ is its volume; I can then write:

X
Fð Þ ¼

Z
ω0dτ,

where the integral has to extend to all space, but does so in a way that the coefficient
ω0 is zero outside of the electrons and that inside of each electron it is equal to the
special coefficient for that electron. It then follows:

J1 ¼
Z

ω0dτdt,

and after the Lorentz transformation:

J 01 ¼
Z

ω0
0dτ

0dt0,

Hence ω0 ¼ ω0
0 ; because if the point belongs to an electron, the corresponding

point after the Lorentz transformation still belongs to the same electron. Further, we
found in §3:

dτ0dt0 ¼ l4dτdt

and, because we now assume l ¼ 1,

dτ0dt0 ¼ dτdt:

We then have:

J1 ¼ J 01:

Which was to be proven
The theorem is therefore general; at the same time, it gives us a solution to the

question that we asked at the end of §1: to find additional forces unchanged by the
Lorentz transformation. The additional potential (F) satisfies that condition.

We can therefore generalize the results stated at the end of §1 and write:
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If the inertia of the electrons is exclusively of electromagnetic origin, if they are
only subject to forces of electromagnetic origin, or to forces which give rise to the
additional potential (F), no experiment will be able to show absolute motion.

What then are these forces which give rise to the potential (F)? They can
obviously be compared to a pressure which governs inside the electron; everything
happens as if each electron had a hollow capacitor subject to a constant internal
pressure (independent of the volume); the work due to such a pressure would
obviously be proportional to changes in the volume.

I must again observe that this pressure is negative. Let’s go back to equation (10)
from §6, which in Lorentz’s hypothesis is written:

F ¼ Ar3θ2;

equations (11) from §6 will give us:

A ¼ a

3b4
:

Our pressure is equal to A, up to a constant coefficient, which furthermore is
negative.

We now evaluate the electron mass; I want to speak of the “experimental mass”,
meaning the mass for small velocities; we have (see §6):

H ¼
φ

θ
k

� �
k2r

, θ ¼ k, φ ¼ a, θr ¼ b;

hence

H ¼ a
bk

¼ a
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2

p
:

For very small V, I may write:

H ¼ a
b

1� 1
2
V2

� �
,

such that the mass, both longitudinal and transverse, will be a/b.
However, a is a numeric constant; this shows that: the pressure to which our

additional potential gives rise is proportional to the fourth power of the experimen-
tal mass of the electron.

Since Newtonian attraction is proportional to this experimental mass, one is
tempted to conclude that there is some relation between the cause which gives rise
to gravitation and that which gives rise to this additional potential.
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§9 – Hypotheses on Gravitation

Thus Lorentz’s theory would fully explain the impossibility of showing absolute
motion, if all the forces were of electromagnetic origin.

But there are other forces to which an electromagnetic origin cannot be attributed,
such as gravitation for example. It can in fact happen that two systems of bodies
produce equivalent electromagnetic fields, meaning exerting the same action on
charged bodies and on currents and that however these two systems do not exert
the same gravitational action on Newtonian masses. The gravitational field is
therefore distinct from the electromagnetic field. Lorentz was therefore compelled
to extend his hypothesis by assuming that forces of any origin, and in particular
gravitation, are affected by a translation (or, if you prefer, by the Lorentz transfor-
mation) in the same way as the electromagnetic forces.

It is now appropriate to go into the details and examine more closely this
hypothesis. If we want the Newtonian force to be affected in the same way by the
Lorentz transformation, we can no longer allow that this force depends solely on the
relative position of the attracting body and the attracted body at the moment under
consideration. It will have to additionally depend on the velocity of both bodies. And
that is not all: it will be natural to assume that the force which acts on the attracted
body at the moment t depends on the position and velocity of this body at this
moment t; but it will additionally depend on the position and velocity of the
attracting body, not at the moment t, but at an earlier moment, as if the gravitation
had taken some time to propagate.

We therefore consider the position of the attracted body at the moment t0 and let,
at this moment, x0, y0, z0 be its coordinates, and ξ, η, ζ be the components of its
velocity; we will additionally consider the attracting body at the corresponding
moment t0 + t and let, at that moment, x0 + x, y0 + y, z0 + z be its coordinates;
and ξ1, η1, ζ1 be the components of its velocity.

We will first have to have a relation

φ t, x, y, z, ξ, η, ζ, ξ1, η1, ζ1ð Þ ¼ 0 ð1Þ

in order to define the time t. This relation will define the laws of propagation of the
gravitational action (I am in no way imposing the condition that the propagation
occurs with the same speed in all directions).

Now let X1, Y1, Z1 be the three components of the action exerted at the moment
t on the attracted body; it is a matter of expressing X1, Y1, Z1 as functions of

t, x, y, z, ξ, η, ζ, ξ1, η1, ζ1: ð2Þ

What are the conditions to be satisfied?

1) The condition (1) must not be changed by transformations from the Lorentz
group.
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2) The components X1, Y1, Z1 will have to be affected by the Lorentz transforma-
tions in the same way as the electromagnetic forces designated by the same
letters, meaning according to equations (110) from §1.

3) When the two bodies are at rest, the ordinary law of attraction must be restored.

It needs to be remarked that in this last case, the relation (1) would disappear,
because time t doesn’t play any role if the two bodies are at rest.

The problem thus stated is obviously indeterminate. We will therefore seek to
satisfy other additional conditions as much as possible:

4) Since astronomical observations do not seem to show any meaningful deviation
from Newton’s law, we will choose the solution which deviates the least from this
law, for small velocities of the two bodies.

5) We will make every effort to situate ourselves such that t is always negative; if in
fact it is thought that the effect of gravitation requires some time to propagate, it
would be more difficult to understand how this effect could depend on the
position not yet reached by the attracting body.

There is a case where the indeterminacy of this problem disappears; it is the one
where both bodies are it relative rest with each other, meaning where:

ξ ¼ ξ1, η ¼ η1, ζ ¼ ζ1 ;

this is therefore the case that we are going to examine first, by assuming that these
velocities are constant, such that both bodies are driven in a shared, straight and
uniform translational motion.

We can assume that the x-axis was taken parallel to this translation such that
η ¼ ζ ¼ 0; and we will take ε ¼ � ξ.

If we apply the Lorentz transformation under these conditions, then after the
transformation both bodies will be at rest and it will be that:

ξ0 ¼ η0 ¼ ζ0 ¼ 0:

Then the components will X0
1, Y

0
1, Z

0
1 will have to be determined by Newton’s law

and it will hold, up to a constant factor, that:

X0
1 ¼ � x0

r03
, Y 0

1 ¼ � y0

r03
, Z 0

1 ¼ � z0

r03
,

r02 ¼ x02 þ y02 þ z02:
ð3Þ

But, according to §1, we have:
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x0 ¼ k xþ εtð Þ, y0 ¼ y, z0 ¼ z t0 ¼ k t þ εxð Þ,
ρ0

ρ
¼ k 1þ ξεð Þ ¼ k 1� ε2

	 
 ¼ 1
k
,
P

X1ξ ¼ �X1ε ,

X0
1 ¼ k

ρ
ρ0 X1 þ ε

X
X1ξ

� �
¼ k2X1 1� ε2

	 
 ¼ X1,

Y 0
1 ¼

ρ
ρ0 Y1 ¼ kY1,

Z 0
1 ¼ kZ1:

Additionally

xþ εt ¼ x� ξt, r02 ¼ k2 x� ξtð Þ2 þ y2 þ z2

and

X1 ¼ �k x� ξtð Þ
r03

, Y1 ¼ �y

kr03
, Z1 ¼ �z

kr03
; ð4Þ

which can be written:

X1 ¼ dV
dx

, Y1 ¼ dV
dy

, Z1 ¼ dV
dz

, V ¼ 1
kr0

: ð40Þ

At first it seems that the indeterminacy remains, because we have made no
assumption about the value of t, meaning the speed of transmission and additionally
that x is a function of t, but it is easy to see that x� ξt, y, z, which alone appear in our
formulas, do not depend on t.

It can be seen that if the two bodies are simply driven in a shared translation, the
force which acts are the attracted body is normal to an ellipsoid that has the attracting
body at its center.

To go farther, we need to seek the invariants of the Lorentz group.
We know that the substitutions from this group (with the assumption l ¼ 1) are

linear substitutions which do not change the quadratic form:

x2 þ y2 þ z2 � t2:

Let us also set:

ξ ¼ δx
δt
, η ¼ δy

δt
, ζ ¼ δz

δt
,

ξ1 ¼ δ1x
δ1t

, η1 ¼ δ1y
δ1t

ζ1 ¼ δ1z
δ1t
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we see that the Lorentz transformation will have the effect of making δx, δy, δz, δt
and δ1x, δ1y, δ1z, δ1t undergo the same linear substitutions as x, y, z, t.

Let us regard

x, y, z, t
ffiffiffiffiffiffiffi
�1

p
,

δx, δy, δz, δt
ffiffiffiffiffiffiffi
�1

p
,

δ1x, δ1y, δ1z, t
ffiffiffiffiffiffiffi
�1

p
,

as the coordinates of three points P, P 0, P 00 in four-dimensional space. We have seen
that the Lorentz transformation is solely a rotation of this space around the origin,
which is regarded as fixed. We will have no other distinct invariants besides the six
distances of the three points P, P 0, P 00 between each other and the origin, or, if one
prefers besides the two expressions:

x2 þ y2 þ z2 � t2, xδxþ yδyþ zδz� tδt ,

or the four expressions of the same form that are deduced by arbitrarily permuting
the three points P, P 0, P 00.

But what we are looking for are functions of 10 variables (2) which are invariants;
we therefore need to look among the combinations of our six invariants for those
which only depend on these 10 variables, meaning those which are homogeneous of
zeroth degree both in δx, δy, δz, δt and in δ1x, δ1y, δ1z, δ1t. Thus we will be left with
four distinct invariants which are:

X
x2 � t2,

t �P xξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�P ξ2

q ,
t �P xξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�P ξ21

q ,
1�P ξξ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�P ξ2
	 


1�P ξ21
	 
q : ð5Þ

Let us now work on the transformations undergone by the components of the
force; let us take up equations (11) from §1 which refer not to the force X1, Y1, Z1,
that we are considering here, but to the force X, Y, Z referred to the unit volume. Let
us additionally set:

T ¼
X

Xξ;

we will see that these equations (11) can be written (with l ¼ 1) as:

X0 ¼ k X þ εTð Þ, T 0 ¼ k T þ εXð Þ,
Y 0 ¼ Y , Z 0 ¼ Z;

ð6Þ

such that X, Y, Z, T undergo the same transformation as x, y, z, t. The invariants of the
group will therefore be:
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X
X2 � T2,

X
Xx� Tt,

X
Xδx� Tδt,

X
Xδ1x� Tδ1t

But these are not the X, Y, Z that we need those are X1, Y1, Z1 with

T1 ¼
X

X1ξ:

We see that

X1

X
¼ Y1

Y
¼ Z1

Z
¼ 1

ρ
:

Therefore the Lorentz transformation will act on X1, Y1, Z1, T1, in the same way as
on X, Y, Z, Twith the difference that these expressions will be additionally multiplied
by

ρ
ρ0 ¼

1
k 1þ ξεð Þ ¼

δt
δt0

:

Similarly, the transformation will act on ξ, η, ζ, 1, in the same way as on δx, δy, δz,
δt with the difference that these expressions will be additionally multiplied by the
same factor:

δt
δt0

¼ 1
k 1þ ξεð Þ :

Let us then consider X, Y, Z, T
ffiffiffiffiffiffiffi�1

p
as coordinates of a fourth point Q;

then the invariants will be functions of the mutual distances between five points

0,P,P 0,P 00,Q

and among these functions we will have to keep only those which are homogeneous
of zeroth degree both in

X,Y ,Z,T , δx, δy, δz, δt

(variables that can next be replaced with X1, Y1, Z1, T1, ξ, η, ζ, 1), and also in

δ1x, δ1y, δ1z, 1

(variables that can next be replaced by ξ1, η1, ζ1, 1).
We will thus find, beyond the four invariants (5), for new distinct invariants,

which are:
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P
X2
1 � T2

1

1�P ξ2
,

P
X1x� T1tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�P ξ2

q ,

P
X1ξ1 � T1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�P ξ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�P ξ21

q ,

P
X1ξ� T1

1�P ξ2 : ð7Þ

The last invariant is always zero according to the definition of T1.
Having set that, what are the conditions to be satisfied?

1) The left-hand side of the relation (1), which defines the propagation velocity,
must be a function of the four invariants (5).

One can obviously make a load of hypothesis; we will consider only two of them:

A) One could have:

X
x2 � t2 ¼ r2 � t2 ¼ 0,

where t ¼ � r, and, because t must be negative, t ¼ � r. This is the same as saying
the speed of propagation is equal to that of light. At first it seems this hypothesis
must be rejected without examination. Laplace in fact showed that the propagation is
either instantaneous or much faster than that of light. But Laplace had examined the
hypothesis of the finite propagation speed, everything else remaining the same; here,
in contrast, this hypothesis is complicated by many others and it could happen that
there might be a more or less perfect compensation between them, like those for
which the applications of the Lorentz transformation have already given us many
examples.

B) One could have:

t �P xξ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�P ξ21

q ¼ 0 t ¼
X

xξ1 :

The speed of propagation is then much faster than that of light; but in some cases
t could be negative, which, as we already stated, hardly seems admissible. We will
therefore keep hypothesis A.

2) The four invariants (7) must be a function of the invariants (5).
3) When both bodies are at absolute rest, X, Y, Z must have the value deduced from

Newton’s law and when they are at relative rest, the value deduced from
equations (4).

In the scenario of absolute rest, the first two invariants (7) must reduce to

X
X2
1,

X
X1x,

or, by Newton’s law, to
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1
r4
, � 1

r
;

on the other hand, in scenario (A), the second and third invariants (5) become:

�r �P xξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�P ξ2

q ,
�r �P xξ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�P ξ21

q ,

meaning, for absolute rest:

�r, �r :

We can therefore allow, for example, that the first two invariants (4) reduce to

1�Pξ21
	 
2
r þPxξ1ð Þ4 , �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�P ξ2

q
r þP xξ1

;

but other combinations are possible.
The choice must be made between these combinations, and, additionally, in order

to define X1, Y1, Z1 a third equation is needed. For such a choice, we need to make an
effort to come as close as possible to Newton’s law. Let us therefore look at what
happens when (still keeping t ¼ � r) the squares of the velocities ξ, η, etc. are
neglected. The four invariants (5) then become:

0, �r �
X

xξ, �r �
X

xξ1, 1

and the four invariants (7):

X
X2
1,

X
X1 xþ ξrð Þ,

X
X1 ξ1 � ξð Þ, 0 :

But to be able to make a comparison with Newton’s law, another transformation
is necessary; here x0 + x, y0 + y, z0 + z represent the coordinates of the attracting body
at the moment t0 + t, and r ¼ ffiffiffiffiffiffiffiffiffiffiP

x2
p

; in Newton’s law, x0 + x1, y0 + y1, z0 + z1 of the
attracting body at the moment t0, and the distance r ¼

ffiffiffiffiffiffiffiffiffiffiP
x21

p
need to be

considered.
We can neglect the square of the time t needed for propagation and consequently

proceed as if the motion were uniform; we then have:

x ¼ x1 þ ξ1t, y ¼ y1 þ η1t, z ¼ z1 þ ζ1t,

r r � r1ð Þ ¼
X

xξ1t;

or, because t ¼ � r,
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x ¼ x1 � ξ1r, y ¼ y1 � η1r, z ¼ z1 � ζ1r, r ¼ r1 �
X

xξ1 ;

such that our four invariants (5) become:

0, �r1 þ
X

x ξ1 � ξð Þ, �r1, 1

and our four invariants (7) become:

X
X2
1,

X
X1 x1 þ ξ� ξ1ð Þr1½ �,

X
X1 ξ1 � ξð Þ 0:

In the second of these expressions, I wrote r1 instead of r, because r is multiplied
by ξ � ξ1 and because I neglected the square of ξ.

On the other hand, Newton’s law would give us, for these four invariants (7),

1
r41
, � 1

r1
�
P

x1 ξ� ξ1ð Þ
r21

,

P
x1 ξ� ξ1ð Þ

r31
, 0 :

If therefore we call A and B the second and third of the invariants (5) and M, N,
P the first three invariants (7), we will satisfy Newton’s law, up to terms of order of
the square of the velocities, by making:

M ¼ 1
B4 , N ¼ þA

B2 , P ¼ A� B
B3 : ð8Þ

This solution is not unique. In fact, let C be the fourth invariant (5), C � 1 is of
order of the square of ξ, and it is the same for (A � B)2.

We could therefore add a term formed from C � 1 multiplied by an arbitrary
function of A, B, C and a term formed from (A� B)2 also multiplied by a function of
A, B, C to the right hand side of each of equations (8).

At first sight, the solution (8) seems the simplest; it cannot however be adopted. In
fact, since M, N, P are functions of X1, Y1, Z1 and of T1 ¼ ∑ X1ξ, the values for X1,
Y1, Z1 can be drawn from these three equations (8), but in some cases these values
could become imaginary.

To avoid this disadvantage, we will work in another way. Let us set:

k0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�P ξ2

q , k1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�P ξ21

q ,

which is justified by analogy with the notation
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k ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ε2

p

which appears in Lorentz’s substitution.
In this case and because of the condition �r ¼ t, the invariants (5) become:

0, A ¼ �k0 r þ
X

xξ
� �

, B ¼ �k1 r þ
X

xξ1
� �

, C ¼ k0k1 1�
X

ξξ1
� �

:

On the other hand, we see that the following system of quantities:

x, y, z, �r ¼ t

k0X1, k0Y1, k0Z1, k0T1

k0ξ, k0η, k0ζ, k0
k1ξ1, k1η1, k1ζ1, k1

undergo the same linear substitutions when the transformations of the Lorentz group
are applied to them. This leads us to set:

X1 ¼ x
α
k0

þ ξβ þ ξ1
k1
k0

γ,

Y1 ¼ y
α
k0

þ ηβ þ η1
k1
k0

γ,

Z1 ¼ z
α
k0

þ ζβ þ ζ1
k1
k0

γ,

T1 ¼ �r
α
k0

þ β þ k1
k0

γ:

ð9Þ

It is clear that if α, β, γ are invariants, X1, Y1, Z1, T1 will satisfy the fundamental
condition, meaning will undergo an appropriate linear substitution under the effect
of the Lorentz transformation.

But in order for these equations (9) to be compatible, it needs to be that we have:

X
X1ξ� T1 ¼ 0,

which, by replacing X1, Y1, Z1, T1 by their values (9) and by multiplying by k20 ,
becomes:

�Aα� β � Cγ ¼ 0: ð10Þ

What we want is that if the squares of the velocities ξ, etc. and also the products of
the accelerations by distances are neglected compared to the square the speed of light
as we have done above, then the values X1, Y1, Z1 continue to satisfy Newton’s laws.

We can take:
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β ¼ 0, γ ¼ �Aα
C

:

With the adopted order of approximation, it follows:

k0 ¼ k1 ¼ 1, C ¼ 1, A ¼ �r1 þ
P

x ξ1 � ξð Þ, B ¼ �r1:

x ¼ x1 þ ξ1t ¼ x1 � ξ1r:

The first equation (9) then becomes:

X1 ¼ α x� Aξ1ð Þ

But if the square of ξ is neglected, Aξ1 can be replaced by �r1ξ1 or even.by – r,
which gives:

X1 ¼ α xþ ξ1rð Þ ¼ αx1:

Newton’s law would give:

X1 ¼ � x1
r31
:

For the invariant α, we need to choose the value which reduces to �1=r31 for the
chosen order of approximation, meaning 1/B3. Equations (9) will become:

X1 ¼ x
k0B3 � ξ1

k1
k0

A
B3C

,

Y1 ¼ y
k0B3 � η1

k1
k0

A
B3C

,

Z1 ¼ z
k0B3 � ζ1

k1
k0

A
B3C

,

T1 ¼ � r
k0B3 �

k1
k0

A
B3C

:

ð11Þ

We can first see that the corrected attraction is made up of two components: one
parallel to the vector which joins the positions of the two bodies and the other
parallel to the velocity of the attracting body.

We recall that when we speak of the position or the velocity of the attracting
body, it is about its position or its velocity at the moment when the gravitational
wave leaves it; for the attracted body it is instead about its position or its velocity at
the moment when the gravitational wave reaches it, with the assumption that this
wave propagates at the speed of light.

I think that it would be premature to try to move the discussion of these formulas
farther; I will therefore limit myself to a few remarks.
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1) The solutions (11) are not unique; 1/B3, which enters as a factor throughout, can
in fact be replaced by

1
B3 þ C � 1ð Þ f 1 A,B,Cð Þ þ A� Bð Þ2 f 2 A,B,Cð Þ,

where f1 and f2 are arbitrary functions of A, B, C or even β can now be taken as
non-zero but some arbitrary terms can be added to α, β, γ provided that they satisfy
the condition (10) and that they be of second-order in ξ, as it relates to α, and first-
order as it relates to β and γ.

2) The first equation (11) can be written:

X1 ¼ k1
B3C

x 1�
X

ξξ1
� �

þ ξ1 r þ
X

xξ
� �h i

ð110Þ

and the quantity between square brackets can itself be written:

xþ rξ1ð Þ þ η ξ1y� xη1ð Þ þ ζ ξ1z� xζ1ð Þ, ð12Þ

such that the total force can be broken down into three components corresponding to
the three parentheses from the expression (12); the first component has a vague
analogy with mechanical force due to the electric field and the two others with the
mechanical force due to the magnetic field. To complete the analogy, I can, because
of the first remark, replace 1/B3 in equations (11) with C/B3, such that X1, Y1, Z1 now
only depend linearly on the velocity ξ, η, ζof the attracted body because C has
disappeared from the denominator of (110).

Then set:

k1 xþ rξ1ð Þ ¼ λ, k1 yþ rη1ð Þ ¼ μ, k1 zþ rζ1ð Þ ¼ ν,

k1 η1z� ζ1yð Þ ¼ λ0, k1 ζ1x� ξ1zð Þ ¼ μ0, k1 ξ1y� η1xð Þ ¼ ν0,
ð13Þ

it follows, since C has disappeared from the denominators of (110), that:

X1 ¼ λ

B3 þ
ην0 � ζμ0

B3 ,

Y1 ¼ μ

B3 þ
ζλ0 � ξν0

B3 ,

Z1 ¼ ν

B3 þ
ξμ0 � ηλ0

B3 ,

ð14Þ

and we will additionally have:
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B2 ¼
X

λ2 �
X

λ02 ð15Þ

Then λ, μ, ν or λ/B3, μ/B3, ν/B3, is a kind of electric field while λ0, μ0, ν0 or instead
λ0/B3, μ0/B3, ν0/B3 is kind of magnetic field.

3) The relativity postulate would compel us to adopt solution (11) or solution (14) or
any one of the solutions which could be deduced from them using the first
remark. But, the first question which comes up is that of knowing whether they
are compatible with astronomical observations. The divergence from Newton’s
law is of order ξ2, meaning 10,000 times smaller than if it were of order ξ,
meaning if the propagation occurs with the speed of light, everything else being
equal; one could therefore hope that it will not be too large. But we will only be
able to learn that from an in-depth discussion.

Paris, July 1905.
H. POINCARÉ

Translator’s Notes
1. See Part II, Chapter 13, p. 251–252 for discussion of the pronunciation of

this name.
2. For convenience, the content of this article is reformatted and provided in Part

III, Chapter 14.
3. The first reference appears to be to Kaufmann, W. (1901). Die magnetische und

electrische Ablenkbarkeit der Becquerelstrahlen und die scheinbare Masse der
Elektronen. Nachrichten von der Königl. Gesellschaft der Wissenschaften zu
Göttingen, 2, 143–155; the second reference could be to Abraham, M. (1902).
Dynamik des Electrons. Nachrichten von der Gesellschaft der Wissenschaften
zu Göttingen, 20–41; or to Abraham, M. (1903). Prinzipien der Dynamik des
Eleckrons. Annalen der Physik, Ser. 4 vol. 10 supplement, 105–179.

4. Part II, Chapter 12 discusses this choice of notation and on page 228 shows how
this half-page would look with our vector formalism.

5. These equations are in Part III, page 263.
6. See for example, Lorentz, H. A. (1902) Contributions to the theory of

electrons. I, Proceedings of the KNAW, vol. 5 (1902), 608–628.
7. Presumably Poincaré meant “charge” not “mass.”
8. Presumably this is a reference to Langevin, P. (1905). Sur l’origine des radia-

tions et l'inertie électromagnétique. J. Phys. Theor. Appl., 4(1), 156–183.
Poincaré provides a more complete citation on p. 46.

9. Langevin, P. (1905). Sur l’origine des radiations et l’inertie électromagnétique.
J. Phys. Theor. Appl., 4(1), 156–183.

10. Presumably Poincaré meant “�ε”, not “�εt”.
11. In this equation, note that there should not be a minus sign immediately after the

equal sign.
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Chapter 6
Dynamics of the Electron

I. Introduction

Are the general principles of dynamics—which since Newton have served as the
foundation of physical science and which seem unshakable—on the point of being
abandoned or at least profoundly changed? Many people have been wondering that
for a few years now. According to them, the discovery of radium could lead to
overturning scientific dogmas that were thought to be the most solid: both the
impossibility of transmutation of metals and also the fundamental postulates of
mechanics. Maybe it’s too hasty to consider these discoveries as firmly established
and to break our idols from the past; maybe it would be better, before taking sides, to
wait for more numerous and more probative experiments. It is no less necessary
today to understand the new doctrines and the already very serious arguments on
which they rest.

Let us first review in a few words what these principles consist of:

A) The motion of an isolated material point without any external force is straight
and uniform; this is the principle of inertia: no acceleration without force.

B) The acceleration of a moving point has the same direction as the resultant of all
the forces to which this point is subject; it is equal to the quotient of this resultant
and the coefficient of the mobile point called mass.
The mass of a mobile point, defined in that way, is a constant; it does not depend
on the velocity acquired by this point; it is the same whether the force, being
parallel to this velocity, only tends to accelerate or slow the motion of the point
or, in contrast, being perpendicular to this velocity, it deflects this motion
towards the right or the left, meaning to curve the trajectory.

Poincaré, H. (1908). La dynamique de l’électron. Revue générale des sciences pures et appliquées,
19, 386–402.
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C) All forces experienced by a material point arise from the action of other material
points; they depend only on the relative positions and velocities of these various
material points.
By combining the two principles B and C, one arrives at the principle of relative
motion, according to which the laws of motion of the system are the same
whether this system is referred to fixed axes or referred to axes moving with a
straight and uniform motion, such that it is impossible to distinguish absolute
motion from relative motion with respect to similar mobile axes.

D) If a material point A acts on another material point B, the body B reacts on A and
these two actions are two equal and oppositely directed forces. This is the
principle of the equality of action and reaction, or more briefly, the conservation
of momentum.

Astronomical observations, the most familiar physical phenomenon, seem to
have provided these principles a complete, unchanging and very precise confirma-
tion. We now say, that’s true, but it’s because we only ever dealt with small
velocities; for example, Mercury, which is the fastest planet, scarcely goes
100 km/s. Would this body behave in the same way if it went 1000 times faster?
Here we can see that there’s still no reason to be concerned: however fast the
progress with cars, it will still be a very long time before we need to give up applying
the classical principles of dynamics to our machines.

With that in mind, how would it be possible to achieve speeds a thousand times
larger than that of Mercury, equal for example to one-tenth or one-third of the speed
of light or getting even closer to the speed? It would be possible using cathode rays
or radium rays.

It is known that radium emits three kinds of rays that are designated by the three
Greek letters α, β and γ. In the following, unless expressly indicated otherwise, it
always involves β rays which are analogous to cathode rays.

After the discovery of cathode rays, two theories took hold: Crookes attributed
the phenomena to a genuine molecular bombardment and Hertz to specific waves of
the ether. It was a renewal of the debate concerning light that had divided physicists a
century earlier. Crookes represented the particle theory, that had been abandoned for
light and Hertz held for the wave theory. The facts seem to favor Crookes.

It was recognized first the cathode rays transported a negative electric charge with
them. They are deflected by a magnetic field and by an electric field, and these
deflections are precisely what would be produced by these same fields on projectiles
that are driven at a very high speed and are highly electrically charged. These two
deflections depend on two quantities: first, the velocity and, second, the ratio of the
electric charge of the particle to its mass; it is not possible to know the absolute value
of this mass, nor that of the charge, but only the ratio. It is in fact clear that if both the
charge and the mass are doubled, without changing the speed, the force which tends
to deflect the projectile will double, but since its mass is also doubled, the acceler-
ation and the observed deflection will be unchanged. The observation of the two
deflections will therefore provide two equations for determining these two
unknowns. A speed of 10,000 to 30,000 km/s is found and the charge-to-mass
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ratio is very large. It can be compared to the corresponding ratio for the hydrogen ion
in electrolysis. It is then found that the cathode projectile transports about 1000 times
more electricity than an equal mass of hydrogen would transport in an electrolyte.

To confirm these views, a direct measurement of this velocity would be needed so
that it could be compared with the velocity calculated that way. Old experiments by
J. J. Thomson had given results more than 100 times too weak; but they were subject
to certain sources of error. The question was taken up again by Wiechert in a device
where Hertzian oscillations were used and results agreeing with theory, at least
within an order of magnitude, were found; it would be very interesting to repeat these
experiments. However it may be, wave theory seems powerless to account for this
set of facts.

The same calculations, done on beta rays from radium, have given even larger
speeds: 100,000 or 200,000 km/s or even more. These speeds greatly exceed all
others that we know of. It is true, and it has been known for a long time, that light
travels 300,000 km/s, but it does not transport matter; whereas, according to the
theory of the emission of cathode rays, they would have material molecules actually
driven at the speeds in question and it is appropriate to see whether the ordinary laws
of mechanics are still applicable to them.

II. Longitudinal and Transverse Mass

It is known that electric currents give rise to induction phenomena and in particular
to self-induction. When a current increases, it develops an electromotive force of
self-induction which tends to oppose the current; in contrast, when the current
decreases, the electromotive force of self-induction tends to maintain the current.
The self-induction therefore opposes any variation in the current intensity just as the
inertia of a body in mechanics opposes any variation of the body’s velocity. Self-
induction is a true inertia. Everything happens as if the current could not become
established without moving the surrounding ether and as if the inertia of this ether
tended, as a consequence, to maintain the constant intensity of this current. To
establish the current it would be necessary to overcome this inertia; to stop the
current it would also be necessary to overcome it.

A cathode ray, which is a rain of charged projectiles with negative electricity, can
be compared to a current; undoubtedly, this current differs, on first consideration at
least, from ordinary conduction currents where the matter is immobile and where the
electricity moves through the matter. It is a convection current, where electricity,
attached to a material vehicle, is carried along by the motion of this vehicle. But
Rowland showed that the convection currents produce the same magnetic effects as
the conduction currents; they must also produce the same induction effects. First, if it
weren’t that way, then the principle of energy conservation would be violated;
additionally, Crémieu and Pender had used a method where these induction effects
were shown directly.
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If the velocity of a cathodic corpuscle varies, the intensity of the corresponding
current will also vary, and it will develop self-induction effects which will tend to
oppose this variation. These corpuscles must therefore have a double inertia: first
their own inertia and the apparent inertia due to self-induction which produces the
same effects. They will therefore have a total apparent mass composed of their real
mass and a fictional mass of electromagnetic origin. Calculation shows that this
fictional mass varies with the velocity and that the inertial force of self-induction is
not the same when the velocity of the projectile accelerates or slows, or even when it
is deflected; it is therefore the same way as for the total apparent inertial force.

The total apparent mass is therefore not the same when the real force applied to
the corpuscle is parallel to its velocity and tends to vary its magnitude, and when this
force is perpendicular to the velocity and tends to vary the direction. It is therefore
necessary to distinguish between the total longitudinal mass and the total transverse
mass. These two total masses additionally depend on the velocity. This is what
results from the theoretical work of Abraham.

In the measurements that we were talking about it in the previous section, what is
determined by measuring the two deflections? It is both the velocity and also the
ratio of the charge to the total transverse mass. How, under these conditions, to tell
the portion of the actual mass and that of the fictive electromagnetic mass in this total
mass? If there were only cathode rays themselves, it would not be necessary to think
about it; but, fortunately, there are radium rays, which, as we have seen, are distinctly
faster. These rays are not all identical and do not behave in the same way under the
action of an electric and magnetic field. It is found that the electric deflection is a
function of the magnetic deflection, and one can photograph the curve which
represents the relation between these two deflections by receiving them on a plate
sensitive to the radium rays which have undergone the action of the two fields. This
is what Kaufmann did; he deduced the relationship between the velocity and the
charge to apparent total mass ratio from it. We will call this ratio ε.

One could assume that there are several types of rays, each characterized by a set
velocity, a set charge and a set mass. But this hypothesis is unlikely; for what reason,
in fact, would all corpuscles with the same mass always have the same velocity. It is
more natural to assume that the charge and also the actual mass are the same for all
projectiles and that only their velocity is different. If the ratio ε is a function of the
velocity, it is not because the actual mass varies with this velocity; but, as the
fictional electromagnetic mass depends on this velocity, the total apparent mass,
which alone is observable, must depend on it even though the actual mass would not
depend on it and would be constant.

Abraham’s calculations let us know the law under which the fictionalmass varies
depending on the velocity; Kaufmann’s experiment let us know the law of variation
of the total mass. Comparison of these two laws therefore allows us to determine the
ratio of the real mass to the total mass.

This is the method which Kaufmann used to determine this ratio. The result is
very surprising: the real mass is zero.

In this way we are led to concepts which are entirely unexpected. What had only
been shown for cathode corpuscles was extended to all bodies. What we call mass
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would only be an appearance; all inertia would be of electromagnetic origin. But
then the mass would no longer be constant, it would increase with velocity; sub-
stantially constant for velocities which could range up to 1000 km/s, it would next
increase and become infinite for the speed of light. The transverse mass would no
longer be equal to the longitudinal mass: the masses would only be approximately
equal if the velocity is not too large. Principal B of mechanics would no longer
be true.

III. Channel Rays

At the point where we are, this conclusion may seem premature. Is it possible to
apply to all matter what has only been established for these corpuscles, which are so
light that they are only an emanation of matter and not true matter itself? But, before
taking up this question, it is necessary to say a word about another type of ray. I want
to first talk about channel rays, Goldstein’s kanalstrahlen. At the same time as
negatively electrically charged cathode rays, the cathode emits positively electrically
charged channel rays. In general, since these channel rays are repelled by the
cathode, they remain confined to the immediate neighborhood of this cathode,
where they constitute the “chamois layer,” which is not very easy to see; but, if
the cathode is pierced with holes, and if it nearly completely blocks the tube, the
channel rays are going to propagate behind the cathode in the opposite direction
from that of the cathode rays and it will become possible to study them. This is the
way that it can be demonstrated that their charge is positive and shown that magnetic
and electrical deflections still exist, as for cathode rays, but are much weaker.

Radium also emits rays that are analogous to channel rays, and relatively very
absorbable, which are called α rays.

As for the cathode rays, it is possible to measure both deflections and from that
deduce the speed and the ratio ε. The results are less constant than for the cathode
rays, but the speed is smaller and also the ratio ε; the positive corpuscles are less
charged than the negative corpuscles; or if, which is more natural, it is assumed that
the charges are equal and of opposite sign, the positive corpuscles are much heavier.
These corpuscles—ones charged positively and the others negatively—have
received the name of electrons.

IV. Lorentz’s Theory

But the electrons do not manifest their existence solely in these rays, where they
seem to us driven at enormous speeds. We are going to see them in very different
roles, and they are the ones which are going to make us aware of the principal
phenomena of Optics and Electricity. We are going to say a word about the brilliant
synthesis that comes from Lorentz.
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Matter is entirely formed from electrons bearing enormous charges and, if they
appear neutral to us, it is because the charges of opposite sign of these electrons
balance out. For example, one could represent a sort of solar system formed from a
large positive electron around which would gravitate a number of small planets
which would be negative electrons attracted by the electricity of the opposite name
which charges the central electron. The negative charges of these planets would
compensate the positive charge of this Sun such that the algebraic sum of all these
charges would be zero.

All these electrons would be bathed in the ether. The ether would be identical to
itself everywhere, and disturbances would propagate in it according to the same laws
as light or the Hertzian oscillations in vacuum. Apart from electrons and ether, there
would be nothing. When a light wave entered into a part of the ether where electrons
were numerous, these electrons would enter into motion under the influence of the
disturbance of the ether and they would next react on the ether. That is the way in
which refraction, dispersion, double refraction and absorption would be explained.
Similarly if an electron entered into motion for an arbitrary cause, it would disturb
the ether around it and give birth to light waves which would explain the emission of
light by incandescent bodies.

In some bodies, metals for example, we would have immobile electrons between
which mobile electrons would move enjoying a complete freedom, except that of
leaving the metal body and crossing the surface which separates it from the outside
vacuum, or air, or any other nonmetallic body. These mobile electrons then behave
inside the metallic body as do gas molecules, according to the kinetic theory of
gases, inside the container in which this gas is enclosed. But, under the influence of a
potential difference, the negative mobile electrons would tend to all go to one side,
and the mobile positive electrons to the other. This is what would produce electric
currents and it is why these bodies would be conductors. Additionally, the speeds of
our electrons would be that much larger as the temperature is higher, if the compar-
ison with the kinetic theory of gases is accepted. When one of these mobile electrons
would encounter the metal body’s surface, a surface that it cannot cross, it would be
reflected, like a billiard ball touching the bumper, and its velocity would undergo an
abrupt change of direction. But, when an electron changes direction, as we will see
later, it becomes the source of a light wave, and that is why hot metals are
incandescent.

In other bodies, dielectrics and transparent bodies, mobile electrons enjoy a much
smaller freedom. They remain as attached to the fixed electrons which attract them.
The more separated they become; the larger this attraction becomes and it tends to
bring them back. They can therefore only undergo small separations; they cannot
travel but only oscillate around their average position. This is why these bodies
would not be conductors; they would additionally most often be transparent and they
would be refracting because the light vibrations would communicate to the mobile
electrons, subject oscillation, and a disturbance would result from that.

I cannot give the details of the calculations here; I limit myself to stating that this
theory considers all known facts and that it has predicted new ones, such as the
Zeeman Effect.
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V. Mechanical Consequences

We can now consider two hypotheses: 1) The positive electrons have a real mass,
much larger than their fictive electromagnetic mass; the negative electrons alone are
without real mass. It could even be assumed that apart from electrons of these two
signs, there are neutral atoms which have no other mass than their real mass. In this
case, mechanics is not threatened; we do not need to touch its laws: real mass is
constant. Only motions are disturbed by the effects of self-induction, which was
always known. These disruptions are additionally roughly negligible, except for the
negative electrons, which, since they don’t have real mass, are not true matter.

2) But, there is another perspective: it can be assumed that there are no neutral
atoms, and that the positive electrons are without real mass in the same way as the
negative electrons. But then, the real mass goes away, or else the word mass no
longer has any meaning, or else it will have to be that it designates the fictive
electromagnetic mass. In this case, the mass will no longer be constant, the trans-
verse mass will no longer be equal to the longitudinal mass, and the principles of
mechanics will be overturned.

First, a word of explanation is necessary. We stated that, for an equal charge, the
total mass of a positive electron is much larger than that of a negative electron. And
then, it is natural to think that this difference is explained because the positive
electron has, beyond its fictive mass, a considerable real mass—this would bring
us back to the first hypothesis. But, it can also be allowed that the real mass is zero
for both of them, but that the fictive mass of the positive electron is much larger
because this electron is much smaller. I definitely mean much smaller. And, in fact,
in this hypothesis, the inertia is almost exclusively of electromagnetic origin, it
reduces to the inertia of the ether. Electrons are no longer anything on their own;
they are only holes in the ether, and around which the ether moves. The smaller these
holes the more ether there will be and consequently the inertia of the ether will be
large.

How to decide between these two hypotheses? By working with the channel rays
as Kaufmann did with β rays? It is impossible; the speed of these rays is much too
small. Will everyone have to decide according to their own temperament: the
conservatives going to one side and the friends of the new going to the other?
Maybe. But, to make the arguments of the innovators better understood, other
considerations need to be brought into play.

VI. Aberration

The phenomenon of aberration, discovered by Bradley, is understood. Light ema-
nating from a star takes some time to pass through a telescope; during this time, the
telescope, carried along by the motion of the Earth, is displaced. If the telescope is
therefore turned in the true direction of the star, the image would be formed at the
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point occupied by the crossed wires of the reticle when the light reached the
objective. And this cross would no longer be in this same point when the light
reached the plane of the reticle. One would therefore be led to de-point the telescope
to return the image onto the crossed wires. The result of this is that the astronomer
will not point the telescope in the direction of the absolute velocity of the light,
meaning at the true position of the star, but in the direction of the relative velocity of
the light with respect to the Earth, that is what is called the apparent position of the
star. In Figure 1, we have shown the absolute velocity of the light with AB (changed
in direction, because the observer is at A and the star at a very large distance in the
direction AB), the velocity of the Earth with BD and the relative velocity of the light
with AD (changed in direction). The astronomer should point their instrument to the
direction AB; the astronomer does point it in the direction AD.

The magnitude of AB, meaning the speed of light, is known. One might think that
we have the means to calculate BD, meaning the absolute velocity of the Earth.
(I will soon explain this word absolute.) That is not how it is. We do know the
apparent position of the star—meaning the direction AD that we observe—but we do
not know its true position. We only know the magnitude of AB and not its direction.

If therefore the absolute velocity of the Earth were straight and uniform, we
would have never suspected the phenomena of aberration, but it is variable; and
made up of two parts: the velocity of the solar system which is straight and uniform
and what I represent by BC, and the velocity of the Earth with respect to the sun,
which is variable and which I represent by CD such that the resultant is represented
by BD.

Since BC is constant, the direction AC does not vary: it defines the mean apparent
position of the star. In contrast the direction AD, which is variable, defines the actual
apparent position, which describes a small ellipse around the average apparent
position and it is this ellipse that is observed.

Fig. 1
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We know CD in magnitude and direction from Kepler’s laws and our knowledge
of the distance to the sun. We know AC and AD in direction and we can conse-
quently construct the triangle ACD; knowing AC, we will have the speed of light
(shown by AB), because, since BC is assumed very small with respect to AB AC
differs very little from AB. Only the relative velocity of the Earth compared to the
sun is involved.

Stop right there. We have considered AC as equal to AB; that is not rigorous—it
is only approximate. Let us push the approximation a little farther. The dimensions
of the ellipse described during one year by the apparent position of a star depend on
the ratio of CD (which is known) to the length AC. This length is known to us from
observation. We compared the major axis of the ellipse for different stars: for each of
them, we will have the means of determining the magnitude and direction of
AC. The length AB is constant (it is the speed of light), such that the points B
corresponding to various stars will all be on a sphere with center A. Since BC is
constant in magnitude and direction, the points B corresponding to various stars will
all be on a sphere of radius AB and centered on A0, with the vector AA0 equal to and
parallel to BC. If it were then possible to determine, as we just stated, the various
points C, then this sphere, its center A0 and consequently the magnitude and direction
of the absolute velocity BC would be known.

There would then be a means for determining the absolute velocity of the Earth.
That might be less shocking than it might seem at first. It would not in fact be about
the velocity relative to an absolutely empty space, but the velocity relative to the
ether, that is considered by definition as being an absolute rest.

Furthermore, this means is purely theoretical. In fact, aberration is very small; the
possible variations of the aberration ellipse are even much smaller, and, if the
aberration is regarded of as being of first-order, the variations must therefore be
regarded as second-order: about 1000th of a second—that absolutely cannot be
assessed with our instruments. We will see later why the preceding theory must be
rejected and why we would be unable to determine BC even when our instruments
would be 10,000 times more precise!

One could hope for another means and one has in fact hoped for it. The speed of
light is not the same in water and air; could one compare the two apparent positions
of the stars seen through both a telescope full of air and a telescope full of water? The
results were negative; the apparent laws of reflection and refraction are unaltered by
the Earth’s motion. There are two explanations for this phenomenon:

1) It could be assumed that the ether is not at rest, but that it is dragged along by
moving bodies. It would then not be surprising that the phenomena of refraction
might have been unchanged by the motion of the Earth, because everything—
prisms, lenses and ether—are dragged along at the same time by the same motion.
As for the operation itself, it could be explained by a sort of refraction which
could be produced at the surface of separation between the ether at rest in
interstellar space and the ether dragged along by the motion of the Earth. Hertz’s
theory on the electrodynamics of moving bodies is based on this hypothesis
(complete dragging of the ether).
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2) In contrast, Fresnel assumed that the ether is at absolute rest in the vacuum and at
nearly absolute rest in air, whatever the velocity of this air, and that it is partially
dragged along by refracting media. Lorentz gave this theory a more satisfactory
form. For him, the ether is at rest, only the electrons are moving. In the vacuum,
where only the ether is in play, or in the air where nearly it alone is in play, the
drag is zero or nearly zero. In refracting media, where the disturbance is produced
both by vibrations of the ether and by vibrations of electron shaken by the motion
of the ether, the waves are partially dragged.

To decide between these two hypotheses, we have Fizeau’s experiment. He
compared, by measurements of interference fringes, the speed of light in air at rest
or in motion, and also in water at rest or in motion. These experiments confirmed
Fresnel’s hypothesis of partial dragging. They were repeated with the same result by
Michelson. Hertz’s theory must therefore be rejected.

VII. The Principle of Relativity

But, if the ether is not dragged by the motion of the Earth, is it possible to show, with
optical phenomena, the absolute motion of the Earth, or stated another way its
velocity relative to the fixed ether? The experimental response is negative even
though the experimental procedures were varied in all possible ways. Whatever the
means used, only relative velocities—by which I mean the velocities of some
material bodies relative to other material bodies—could ever be detected. In fact,
if the light source and the observation equipment are on the Earth and participate in
the Earth’s motion, the experimental results are always the same whatever the
orientation of the equipment relative to the direction of the orbital motion of the
Earth. If astronomical aberration occurs, it is because the source, which is a star, is
moving relative to the observer.

The hypotheses made right here fully reflect this general result, if very small
quantities of order the square of the aberration are neglected. The explanation rests
on the concept of local time, which we are going to try to understand, and which was
introduced by Lorentz. We are going to assume that two observers positioned at A
and B want to set their watches by means of optical signals. They agree that B will
send a signal to A when his watch shows a set time and that A will set his watch to
the time at the instant that he sees the signal. If they were only to operate in this way,
there would be a systematic error, because, since light takes some time t to go from B
to A, the watch of A is going to be slow by the time t compared to the watch of
B. This error is easily corrected. It is sufficient to cross the signals. A in turn has to
send signals to B, and, after this new adjustment, the watch B will be the one slow by
the time t compared A. It will then be sufficient to take the arithmetic average
between the two settings.

This operating procedure assumes that light takes the same time to go from A to B
and to return from B to A. That is true if the observers are stationary; it is no longer
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true if they are carried with a shared motion, because then A, for example, will go
ahead of the light coming from B, and B will instead fall behind the light coming
from A. If the observers are therefore driven in shared motion, and if they are
unaware of it, their adjustment will be defective; their watches will not indicate
the same time, each of them will indicate the local time, appropriate to the point
where they are located.

The two observers will not have any means of becoming aware of it, if the
motionless ether can only send them light signals travelling with the same speed,
and if the other signals that they could send are sent by media dragged with them in
their motion. The phenomenon that each of them will observe will either be early or
late; it will only occur at the same time if there were no motion; but, since the
observations are done with an incorrectly set watch, it will go unnoticed and the
appearances will be unchanged.

The result of this is that the compensation is easy to explain so long as the square
of the aberration is neglected, and for a long time experiments were too imprecise for
there to be away to include them. Then, one day Michelson imagined a much more
delicate method: he produced interference from light rays which it traveled different
trajectories after being reflected on mirrors; each of the trajectories was about one
meter long and with the interference fringes it was possible to assess differences of a
fraction of a thousandth of a millimeter; the square of the aberration could no longer
be neglected and all the same the results were still negative. Something had to be
added to the theory and it was provided by the hypothesis of Lorentz and Fitz Gerald.

These two physicists assumed that all bodies in motion underwent a contraction
in the direction of this motion, whereas the dimensions perpendicular to this motion
remained invariant. This contraction is the same for all bodies; it is additionally very
small, about 200 millionths for a velocity like that of the Earth. Our instruments
would additionally be unable to detect it, even if they were much more precise; the
meter sticks with which we measure undergo the same contraction in fact as the
objects to be measured. If a body lines up exactly with the meter stick when the body
and also the meter stick are oriented in the direction of the Earth’s motion, it will still
line up exactly on the meter stick in another orientation and does so because the body
and the meter stick have changed length at the same time as the orientation, and
precisely because the change is the same for each of them. But it is not the same if
instead of measuring a length with a meter stick, it is measured with the time the light
takes to travel the distance, and this is precisely what Michelson did.

A body that is spherical when it is at rest will thus take on the form of a flattened
ellipsoid of revolution when it is in motion; but the observer will still believe it to be
spherical, because the observer has also undergone an analogous deformation along
with all the objects used as reference points. On the other hand, the wave surfaces of
light, which have remained rigorously spherical, will seem to the observer to be
elongated ellipsoids.

Then what is going to happen? Let us assume an observer and a source carried
along together in motion, the wave surfaces emanating from the source will be
spheres centered on the successive positions of the source; the distance from the
center to the current position of the source will be proportional to the time passed
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since the emission, meaning proportional to the radius of the sphere. All these
spheres will therefore each be shifted and scaled relative to the current position S
of the source. But, for our observer, because of the contraction, all the spheres will
appear to be elongated ellipsoids; and all these ellipsoids will again be shifted and
scaled relative to the point S; the eccentricity of all these ellipsoids is the same and
depends only on the velocity of the Earth.We will choose the law of contraction such
that the point S is at the focus of the meridional section of the ellipsoid.

What are we then going to do to evaluate the time it takes light to go from B to A?
At A and B (Figure 2) I show the apparent positions of these two points. I construct
an ellipsoid similar to the ellipsoids from the waves that we just defined and having
its major axis in the direction of the Earth’s motion. I construct this ellipsoid such
that it passes through B and has its focus at A.

According to a well-known property of ellipsoids, there is a relation between the
apparent distance AB between two points and its projection AB0; this relationship is:

ABþ e ∙AB0 ¼ OQ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e2
p

:

But the semi-minor axis of the ellipsoid, which is unchanged in shape, is equal to
Vt, where V is the speed of light and t the length of the transmission; hence:

ABþ e ∙AB0 ¼ Vt
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e2
p

:

The eccentricity e is a constant that only depends on the speed of the Earth; we
therefore have a linear relationship between AB, AB0 and t. But AB0 is the difference
between the abscissas of the points A and B. Assume that the difference between the
real time and the local time at an arbitrary point is equal to the abscissa of this point
multiplied by the constant:

Fig. 2
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e

V
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e2
p ;

the apparent transmission time will be:

τ ¼ t � AB0 e

V
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e2
p

hence:

AB ¼ Vt
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e2
p

That means that the apparent length of the transmission is proportional to the
apparent distance. This time, the compensation is rigorous and is what explains the
Michelson experiment.

Above I stated that, according to ordinary theories, observations of astronomical
aberration could let us know the absolute velocity of the Earth, if our instruments
were 1000 times more precise. I have to change that conclusion. Yes, the observed
angles would be changed by the effect of this absolute velocity, but the divided
circles which we used for measuring the angles would be deformed by the transla-
tion; they would become ellipses. The result would be an error in the angle
measured, and this second error would exactly compensate the first.

On first appearance, this hypothesis by Lorentz and Fitz Gerald would seem to be
very extraordinary; for now all that we can say in its favor is that it is the immediate
manifestation of Michelson’s experimental result, if lengths are defined by the time
that light takes to traverse them.

However it may be, it is impossible to escape this impression that the principle of
relativity is a general law of nature and that one cannot by any imaginable means
show anything other than relative speeds and by that I understand not only the speeds
of bodies relative to the ether, but also the speeds of bodies relative to each other. It is
in any case appropriate to look at the consequences this perspective would lead us to
and then put these consequences to experimental verification.

VIII. The Conservation of Momentum

Now let us look at what happens in Lorentz’s theory to the principal that action and
reaction are equal and opposite. Look at an electron A which undergoes motion
because of an arbitrary cause. It produces a disturbance in the ether; at the end of
some time, this perturbation reaches another electron B which will be disturbed from
its equilibrium position. Under these conditions, the action and reaction cannot be
equal, unless the ether is not considered but only the electrons which alone are
observable, because our matter is made of electrons.
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In fact, it is the electron A which disturbs the electron B. Even though the electron
B could react on A, this reaction could be equal to the action but it could not in any
case be simultaneous because the electron B could only enter into motion after some
time, necessary for the propagation. If we subject the problem to a very precise
calculation, we arrive at the following result: Let us assume a Hertz emitter placed at
the focus of a parabolic mirror to which it is mechanically connected; this emitter
emits electromagnetic waves and the mirror returns all these waves in the same
direction. The emitter is therefore going to radiate energy in a set direction. Now, the
calculation shows that the emitter is going to recoil like a cannon which shoots a
projectile. In the case of the canon, the recoil is the natural result of the quality of
action and reaction. The canon recoils, because the projectile on which it acted reacts
on it.

But now it is no longer the same. What we have sent far away is no longer a
material projectile: it is energy and energy does not have mass, there is no exchange.
And, instead of an emitter, we could have simply considered a lamp with a reflector
concentrating its rays in a single direction.

It is true that, if the energy emanating from the emitter or the lamp comes to reach
a material object, that object is going to experience a mechanical thrust as if it’d been
reached by a real projectile and this thrust will be equal to the recoil of the emitter
and the lamp, if it has not lost energy along the way and if the object completely
absorbs this energy. One would therefore be tempted to state that there is still balance
between action and reaction. But this balance, even though it is complete is still
delayed. It can never happen if the light, after having left the source, wanders in
interstellar space without ever encountering a material body; it is incomplete, if the
body that it strikes is not completely absorbing.

Are these mechanical actions too small to be measured, or else are they accessible
to experiment? These actions are none other than those which are due to the
Maxwell-Bartoli pressures; Maxwell had called for these pressures by calculations
relating to electrostatics and magnetism; Bartoli had arrived at the same result by
thermodynamic considerations.

This is the way in which comet tails are explained. Small particles detach from the
core of the comet and they are struck by sunlight which drives them back as would a
rain of projectiles coming from the Sun. The mass of these particles is so small that
this repulsion is stronger than gravitational attraction. They are therefore going to
form the tail by moving away from the Sun.

Direct experimental verification was not easy to get. The first attempt led to the
construction of the radiometer. But this device turns backwards—in the direction
opposite to the theoretical direction—and the explanation for its rotation, since
discovered, is completely different. It was finally successful, both by making a better
vacuum and by blackening one of the surfaces of the blades and directing a light
beam on one of the surfaces. The radiometric effects and the other causes of
disturbance are eliminated by series of meticulous precautions and a deviation
results which is very small, but which is, it seems, in keeping with theory.

The same effects of the Maxwell-Bartoli pressure are also provided by Hertz’s
theory, which we spoke about above, and by Lorentz’s theory. But there is a
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difference. Assume that the energy, in light form for example, goes from a light
source to an arbitrary body through a transparent medium. The Maxwell-Bartoli
pressure will act, not only on the originating source, and on the body illuminated at
arrival, but on the matter of the transparent medium that it traverses. At the moment
when the light wave reaches a new region of this material, this pressure will push the
matter forward which becomes spread and will gather it behind when the wave
leaves this region. Such that the recoil of the source is compensated by the forward
motion of the transparent matter which is in contact with this source; a little later, the
recoil of this same matter is compensated by the forward motion of the transparent
matter which is located a little farther on, and so on.

Only, is the compensation perfect? Is the action of the Maxwell-Bartoli pressure
on the matter of the transparent medium equal to its reaction on the source, and is it
so whatever this matter is? Or does this action become that much smaller as the
medium is less refracting and more rarefied, for finally becoming zero in vacuum? If
Hertz’s theory is accepted, which regards matter as mechanically linked to the ether,
such that the ether is completely dragged by the matter, then the answer to the first
question would have to be yes and to the second question no.

There would then be perfect compensation, as the principle of the equality of
action and reaction requires, even in less refracting media, even in air, even in
interplanetary vacuum, where it would suffice to assume residual matter, however
slight it might be. If, instead, Lorentz’s theory is accepted, the compensation, always
imperfect, is undetectable in air and become zero in vacuum.

But we saw above that Fizeau’s experiment does not allow retaining Hertz’s
theory; Lorentz’s theory has to be adopted and, consequently, the conservation of
momentum renounced.

IX. Consequences the Principle of Relativity

We have seen above the reasons which support regarding the Principle of Relativity
as a general law of nature. Let’s look at what consequences this principle would lead
us to if we were to regard it as definitively proven.

First, it would force us to generalize the Lorentz and Fitz Gerald hypothesis on the
contraction of all bodies in the direction of translation. In particular, we will have to
extend this hypothesis to electrons themselves. Abraham considered these electrons
as spherical and undeformable; we will have to accept that these electrons, while
spherical when they are at rest, undergo the Lorentz contraction when they are
moving and therefore take the shape of flattened ellipsoids.

This deformation of the electrons is going to have an influence on their mechan-
ical properties. In fact, I state that the motion of these charged electrons is a true
convection current and that their apparent inertia is due to the self-induction of this
current, exclusively as it pertains to negative electrons, exclusively or not, we don’t
know anything about it yet, for positive electrons. Such that, the deformation of
electrons, a deformation which depends on their velocity, is going to change the
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charge distribution on their surface and consequently the intensity of the convection
current that they produce and as a further consequence the laws according to which
the self-induction of this current will vary as a function of velocity.

For this price, the compensation will be perfect and conform to the requirements
of the Principle of Relativity, but under two conditions:

1) That the positive electrons not have real mass, but only a fictive electromagnetic
mass; or at least that their real mass, if it exists, is not constant and varies with
velocity according to the same laws as their fictive mass;

2) That all forces are of electromagnetic origin, or at least that they vary with
velocity according to the same laws as the forces of electromagnetic origin.

Lorentz is again the one who made this remarkable synthesis; let us stop here for a
moment and look at what results from it. First, there is no longer matter, because
positive electrons no longer have real mass, or at least no longer have constant real
mass. The actual principles of our mechanics, based on the constancy of mass, must
therefore be modified.

Next, an electromagnetic explanation has to be sought for all known forces, in
particular gravitation, or at least the law of gravitation must be modified such that
this force is altered by the velocity in the same way as the electromagnetic forces. We
will return to this point.

At first glance, all this seems a little artificial. In particular, this deformation of the
electrons seems thoroughly hypothetical. But it can be presented differently, so as to
avoid putting this hypothesis of deformation at the base of our reasoning. We will
consider electrons as material points and we will ask how their mass must vary as a
function of the velocity so as to not contradict the principle of relativity. Or, rather
again we will ask what their acceleration must be under the influence of an electric or
magnetic field so that this principle is not violated and we return to the ordinary laws
by assuming very small velocity. We will find that the variations of this mass, or
these accelerations, must occur as if the electron underwent the Lorentz deformation.

X. Kaufmann’s Experiment

And so we’re faced with two theories: one where electrons are undeformable
(Abraham’s theory); the other where they undergo the Lorentz deformation. In
both cases, their mass increases with velocity, for finally becoming infinite when
this velocity is equal to that of light, but the law of variation is not the same. The
method used by Kaufmann for showing the law of variation of the mass seems to
therefore provide us an experimental means for deciding between the two theories.

Unfortunately, his first experiments were not sufficiently precise to do that. He
thought that he had to resume with greater precautions and by measuring the field
intensities with greater care. In their new form, the experiments supported Abra-
ham’s theory. The Principle of Relativity would therefore not have the rigorous
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value that one was tempted to give to it; there were no longer be any reason to
believe the positive electrons are without real mass like negative electrons.

However, before permanently adopting this conclusion, some thought is neces-
sary. The question is of such importance that it would be desirable for Kaufmann’s
experiment to be repeated by another experimenter. Unfortunately, this experiment
is very delicate and it will only be possible to profitably perform it by a physicist of
the same caliber as Kaufmann. All precautions were suitably taken and it’s not clear
what objection could be made.

There is however one point to which I would like to draw attention: it is the
measurement of the electrostatic field; everything depends on this measurement.
This field was produced between the two plates of a capacitor, and, between these
plates, a very high vacuum had to be made in order to obtain complete insulation.
The potential difference was then measured between the two plates and the field
resulted from dividing this difference by the separation of the plates. That assumes
that the field is uniform; are we sure of that? Couldn’t there have been a sudden drop
of potential in the neighborhood of one of the plates, the negative plate, for example?
There could have been a potential difference at the contact between the metal and the
vacuum, and it could be that this difference is not the same on the positive and
negative side; it is the electric valve effects between mercury and vacuum which
leads me to believe it. However small the probability for it to be that way, it seems
that there is reason to consider it.

XI. The Principle of Inertia

In the new Dynamics, the Principle of Inertia is still true, meaning that an isolated
electron will have a straight and uniform motion. At least, it is generally agreed to
allow it; however, Lindemann raised objections to this outlook; I don’t want to take
part in that discussion, which I’m not able to present here because of its overly
arduous nature. Small modifications to the theory would in any case be sufficient to
shelter it from Lindemann’s objections.

We know that a body immersed in water experiences, when it is moving, a
significant resistance, but this is because our fluids are viscous. In an ideal fluid,
completely free of viscosity, the body would leave a liquid stern behind it, a kind of
wake; at the start, it would take a large force to get it to move, because it would need
to stir up not only the body itself, but the liquid in its wake. But, once the motion
started, it would perpetuate itself without resistance, because the body, as it
advanced, would simply transport the disturbance of the liquid with it without the
total energy of this liquid increasing. Everything would therefore happen as if its
inertia had increased. An electron moving forward in the ether would behave in the
same way: around it, the ether would be stirred, but this disturbance would accom-
pany the body in its motion; in that way, for an observer carried along with the
electron, the electric and magnetic fields accompanying this electron would appear
unchanging; and could only change if the speed of the electron should vary. A force
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would therefore be needed to start the electron moving, because it would create the
energy of these fields; in contrast, once moving, no force would be necessary to
maintain it, because the energy created would have nothing more than to follow
along behind the electron like a wake. This energy can therefore only increase the
inertia of the electron, like the agitation of the liquid increases that of the body
immersed in a perfect fluid. And even negative electrons, at least, have no other
inertia than that.

In Lorentz’s hypothesis, the total energy, which is nothing other than the energy
of the ether, is not proportional to the v2, but to:

V �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2 � v2
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2 � v2
p ,

where V represents the speed of light; the momentum is no longer proportional to v,
but to:

v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2 � v2
p ;

the transverse mass is in inverse proportion to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2 � v2
p

, and the longitudinal mass
is in inverse proportion to the cube of this quantity.

It can be seen that, if v is very small, the energy is substantially proportional to v2,
the momentum substantially proportional to v and the two masses substantially
constant and equal to each other. But, when the velocity approaches the speed of
light, the energy, momentum and both masses increase without limit.

In Abraham’s hypothesis, the expressions are a little more complicated, but what
we just stated continues in its main features.

Thus the mass, the momentum and the energy become infinite when the velocity
is equal to that of light. The result of this is that no body can reach a velocity greater
than that of light by any means. And, in fact, as its velocity increases, its mass
increases, such that its inertia opposes any new increase of velocity, becoming a
larger and larger obstacle.

Authors who have written on the Dynamics of the Electron speak, it’s true, of
bodies which go faster than light. But, it is to ask how a body would behave whose
initial velocity is greater than that of light and which consequently would have
already gone past the limit before being considered.

The question then comes up: let us accept the Principle of Relativity; an observer
in motion must not have any means of perceiving its own motion. If therefore no
body in its own absolute motion can exceed the speed of light, but can approach it
arbitrarily closely, it must be the same as it relates to its motion relative to our
observer. And then one could attempt to reason as follows: the observer can reach a
velocity of 200,000 km/s; the body, in its relative motion compared to the observer
can reach the same velocity; its absolute velocity will then be 400,000 km/s which is
impossible, because it is a figure greater than speed of light.
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The way in which relative velocity should be evaluated must be considered; they
must be counted not with real time, but with the local time. Let A and B be two
points unchangeably linked to the observer; let t and t + h be the moments when the
body passes by A and B, moments evaluated in real time; let αt and α(t + h) be the
same moments evaluated in local time for A, let α(t + ε) and α(t + h + ε) be the same
moments evaluated in local time for B. If the length of the trip was evaluated in real
time, this length would be h and the relative velocity AB/h; but we will have to
evaluate it in local time, meaning noting the moment of the passage at A in local time
for A, and that of the passage at B in local time at B, such that the length of the trip
will be α(ε + h) and the relative velocity:

AB
α εþ hð Þ

And that is how the compensation happens.

XII. Acceleration Wave

When an electron is moving, it produces a disturbance in the ether surrounding it; if
its motion is straight and uniform, this disturbance reduces to the wake which we
talked about in the previous section. But it is no longer the same if the motion is
curved or varied. The disturbance can then be regarded as the superposition of two
others, to which Langevin gave the names velocity wave and acceleration wave.

The velocity wave is nothing other than the wake which is produced during
uniform motion. Let me clarify: let M be an arbitrary point of the ether, considered at
an instant t; let P be the position which the electron occupied at an earlier moment
t � h, such that h is precisely the time that the light would take to travel from P to
M. Let v be the velocity that the electron had at that moment t � h. Such that, if we
consider only the velocity wave, the disturbance at the point M will be the same as if
the electron had continued its trajectory since the moment t � h, by keeping the
velocity v and with a straight and uniform motion.

As for the acceleration wave, it is a disturbance, entirely analogous to light waves,
which leaves the electron at the moment when it is accelerated, and which then
propagates at the speed of light with successive spherical waves.

This consequence follows: in straight and uniform motion, energy is entirely
conserved; but, once there is acceleration, there is a loss of energy, which dissipates
in the form of light waves and goes out to infinity through the ether.

However, the effects of this acceleration wave, in particular the corresponding
energy loss, are negligible in most cases, meaning not only in ordinary mechanics
and in the motions of celestial bodies, but even in radium waves, where the velocity
is very large without the acceleration being large. We can then limit ourselves to
applying the laws of mechanics, by writing that the force is equal to the mass times
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acceleration, where this mass, however, varies with the speed according to the laws
presented above. We then say that the motion is quasi-stationary.

It would no longer be the same in all the cases where the acceleration is large, and
for which the principles are the following: 1) In incandescent gases, some electrons
take on a very high frequency oscillatory motion; the motions are very small, the
velocities are finite, and the accelerations very large. The energy is then communi-
cated to the ether and that is why these gases radiate light with the same period as the
oscillations of the electron. 2) Inversely, when a gas receives light, these same
electrons are shaken with large accelerations and they absorb the light. 3) In the
Hertz emitter, the electrons which move in the metal mass experience, at the moment
of the discharge, a sudden acceleration and then take on a high frequency oscillatory
motion. The result of this is that a part of the energy is radiated in the form of Hertz
waves. 4) In incandescent metal, the electrons enclosed in this metal are driven at
large velocities, when they arrive at the surface of the metal, which they cannot
cross, they are reflected and thus experience a considerable acceleration. This is why
the metal emits light. It is what I already explained in section IV. The details of the
laws of emission of light by blackbodies are perfectly explained by this hypothesis.
5) Finally, when cathode rays strike the anode, the negative electrons which form
these rays and which are driven at very large speeds are abruptly stopped. As a result
of the accelerations that they thus experience, they produce waves in the ether.
According to some physicists, this would be the origin of Röntgen waves, which
would be nothing other than very short wavelength light waves.

XIII. Gravitation

Mass can be defined in two ways: First, by the ratio of force to acceleration; this is
the real definition of mass which measures the inertia of the body; and second, by the
attraction that the body exerts on an external body according to Newton’s law of
gravitation. We therefore have to distinguish the mass coefficient of inertia and the
mass coefficient of attraction. According to Newton’s law there is rigorous propor-
tionality between these two coefficients. But that is only proven for the velocities at
which the general principles of dynamics are applicable. Now, we’ve seen that the
mass coefficient of inertia increases with velocity; do we have to conclude that the
mass coefficient of attraction also increases with velocity and remains proportional
to the inertial coefficient, or, in contrast, that this coefficient of attraction remains
constant? That is a question where we have no means of deciding.

On the other hand, if the coefficient of attraction depends on the velocity, as the
velocities of the two mutually attracting bodies are generally not the same, how does
this coefficient depend on these two velocities?

We can only form a hypothesis on this subject, but we are naturally led to seek
which of these hypotheses would be compatible with the Principle of Relativity.
They are many; the only one which I will talk about here is that of Lorentz; I will
present it briefly.
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First consider some electrons at rest. Two electrons of the same sign repel and two
electrons of opposite sign attract; in the ordinary theory, their mutual actions are
proportional to their electric charges; if therefore we have four electrons, two
positive A and A0, and two negative B and B0 and if the charges of these four electrons
are the same in absolute value, the repulsion of A and A0will be, at the same distance,
equal to the repulsion of B and B0 and also equal to the attraction of A on B0 or A0 on
B. Therefore if A and B are very close to each other and likewise A0 and B0, and if we
examine the action of the system A + B on the system A0 + B0, we will have two
repulsions and two attractions which will exactly balance and the resulting action
will be zero.

Hence, molecules of matter must be precisely regarded as kinds of solar systems
where electrons, some positive, others negative, and such that the algebraic sum of
all the charges is zero. A molecule of matter is therefore in all aspects comparable to
the system A + B which we just spoke of, such that the total mutual electric action of
two molecules on each other should be zero.

But experience shows us that these molecules later attract by Newtonian gravi-
tation; and we can then make two hypotheses: we can assume the gravitation has no
connection with electrostatic attraction, which is due to a completely different cause
and that it simply superimposes with it; or else we can allow that there is no
proportionality of the attractions of the charges and that the attraction exerted by a
charge +1 on a charge �1 is larger than the mutual repulsion of two charges +1, or
that of two charges �1.

In other words, the electric field produced by positive electrons and that which
negative electrons produce could be superposable while remaining distinct. The
positive electrons would be more sensitive to the field produced by negative
electrons than to the field produced by positive electrons; it would be the opposite
for the negative electrons. It is clear that this hypothesis complicates electrostatics a
bit, but the hypothesis brings back gravitation into it. It is, on the whole, Franklin’s
hypothesis.

What would happen now if the electrons are moving? The positive electrons are
going to lead to a disturbance in the ether and will make it give rise to an electric field
and a magnetic field. It will be the same for the negative electrons. Electrons, both
positive and negative, will next experience a mechanical impulse from the action of
these various fields. In ordinary theory, the electromagnetic field due to the motion of
the positive electrons, exerts, on two electrons of opposite sign and same absolute
charge, actions that are equal and of opposite sign. Without disadvantage, one can
then not distinguish the field due to the motion of positive electrons and the field due
to negative electrons and only consider the algebraic sum of these two fields,
meaning the resultant.

In the new theory, in contrast, the action on positive electrons of the electromag-
netic field due to the positive electrons is done according to ordinary laws; it is the
same for the action on negative electrons of the field due to negative electrons. Now
consider the action of the field due to the positive electrons on the negative electrons
(or vice versa); it will again follow the same laws, but with a different coefficient.
Each electron is more sensitive to the field created by electrons of opposite name
than to the field created by electrons the same name.
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Such is Lorentz’s hypothesis, which reduces the Franklin’s hypothesis for small
velocities; it will therefore cover, for these small velocities, Newton’s law. Addi-
tionally, as gravitation arises from forces of electrodynamic origin, the general
theory of Lorentz will apply to it and consequently the Principal Relativity will
not be violated.

It is seen that Newton’s law is no longer applicable at large velocities and that it
must be modified, for moving bodies, precisely in the same way as the laws of
electrostatics for moving electricity.

It is known that electromagnetic disturbances propagate with the speed of light.
One will therefore be tempted to reject the preceding theory, recalling the gravitation
propagates, according to Laplace’s calculations, at least 10 million times faster than
light, and that, consequently, it cannot be of electrodynamic origin. Laplace’s result
is well known, but we are generally unaware of the meaning. Laplace assumed that,
if the propagation of gravitation is not instantaneous, its propagation velocity
combines with that of the attracted body (as it happens for light in the phenomenon
of astronomical aberration) in such a way that the effective force is not directed along
the line which joins the two bodies, but makes a small angle with that line. That is a
very specific hypothesis, rather poorly justified, and in a case entirely different from
that of Lorentz. Laplace’s result does not prove anything against Lorentz’s theory.

XIV.Comparison with Astronomical Observations

Can the preceding theories be reconciled with astronomical observations? First, if
they are adopted, the energy of the planetary motions will be continuously dissipated
by the effect of the acceleration wave. From this, it would result that the mean
motions of the bodies would continuously be accelerating, as if these bodies were
moving in a resistant medium. But this effect is extremely small, much too small for
being detected by the most precise observations. The acceleration of celestial bodies
is relatively weak, such that the effects of the acceleration wave are negligible and
the motion can be regarded as quasi-stationary. It is true that the effects of the
acceleration wave are going to constantly accumulate, but this accumulation itself is
so slow that it would take many thousands of years of observation for it to become
noticeable.

Let us therefore do the calculation by considering the motion as quasi-stationary
and do so under the following three hypotheses:

A. Allow Abraham’s hypothesis (electrons are undeformable) and keep Newton’s
law in its usual form;

B. Allow Lorentz’s hypothesis on the deformation of electrons and keep Newton’s
law as usual;

C. Allow Lorentz’s hypothesis on electrons and modify Newton’s law, as we did in
Chapter XIII, so as to make it compatible with the Principle of Relativity.
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The motion of Mercury is where the effect will be the most sensitive, because this
planet has the largest velocity. Tisserand had done an analogous calculation earlier,
by accepting Weber’s law; recall that Weber had sought to explain both electrostatic
and electrodynamic phenomena by assuming that electrons (whose name had not yet
been invented) exerted attractions and repulsions among them directed along the
straight line which joins them and depending not only on their separation, but the
first and second derivatives of these distances, consequently meaning their speeds
and their accelerations. This law by Weber, fairly different from those which seem to
prevail today, nonetheless has some analogy with them.

Tisserand found that, if Newtonian attraction occurred in keeping with Weber’s
law, the result would be a secular variation of the perihelion of Mercury of 1400, in the
same direction as that which was observed and could not be explained, but smaller,
because the variation is 3800.

Let us go back to hypotheses A, B and C, and first study the motion of a planet
attracted by a fixed center. The hypotheses B and C are no longer distinguishable
because, if the attracting point is fixed, the field that it produces is a purely
electrostatic field; hence the attraction varies according to the inverse square of the
distances, following the electrostatic law of Coulomb, identical to that of Newton.

The conservation of energy equation remains, by taking the new definition for the
total energy; likewise, the equation of the areas (Kepler’s second law) is replaced by
another equivalent law; the moment of the momentum is a constant, but the
momentum must be defined as was done in the New Dynamics.

The only detectable effect will be a secular motion of the perihelion. With
Lorentz’s theory, we will find for this motion half of what Weber’s law would
give; with the theory of Abraham, two fifths.

If we now assume two mobile bodies gravitating around their shared center of
gravity, the results are hardly different, although the calculations are a little more
complicated. The motion of the perihelion of Mercury would therefore be 700 in
Lorentz’s theory and 5.600 in that of Abraham.

Additionally, the effect is proportional to n3a3, where n is the mean motion of the
body and a the radius of its orbit. For planets, because of Kepler’s third law, the
effect varies according to 1=

ffiffiffiffiffi

a5
p

; it is therefore insignificant except for Mercury.
It is also insignificant for the Moon, even though n is large, because a is extremely

small; in brief, it is five times smaller than for Venus and 600 times smaller for the
moon than for Mercury. For Venus and the Earth, we should also add that the motion
of the perihelion (for the same angular velocity for this motion) would be much more
difficult to detect by astronomical observations because the eccentricity of their
orbits is much smaller than for Mercury.

In brief, the only notable effect on astronomical observations would be a motion
of Mercury’s perihelion, in the same direction as that which was observed without
explanation, but in particular much smaller.

That could be regarded as an argument in favor of the New Dynamics, because
another explanation must still be sought for the largest portion of the anomaly of
Mercury; but, it could still, to a lesser extent, be regarded as an argument against it.
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XV. The Theory of Lesage

It is appropriate to confront these considerations with a theory proposed long ago for
explaining universal gravitation. Let us assume that, in interplanetary space, very
small corpuscles move in all directions, at very high speeds. A spatially isolated
body would not appear to be affected by the impact of these corpuscles, because
these impacts are equally distributed in all directions. But, if two bodies A and B are
present, the body B will play the role of a screen and will intercept a portion of the
corpuscles which, without it, would have struck A. Then, the impacts received by A
in the direction opposite that of B will no longer be counterbalanced or will only be
imperfectly balanced and they will push A towards B.

Such is the theory of Lesage; and we are going to discuss it by placing ourselves
first in the perspective of Ordinary Mechanics. First, how must the impacts called for
by this theory take place? Is it according to the laws of perfectly elastic bodies, or
according to those of inelastic bodies, or according to an intermediate law? The
Lesage corpuscles cannot behave like perfectly elastic bodies; without that, there
would be no effect, corpuscles intersected by the body B would be replaced by others
which would have bounced off B and calculation shows that the compensation
would be perfect.

The impact must therefore drain energy from the corpuscles and this energy
should reappear as heat. But how much heat would be produced that way? We
observe that the attraction passes through the bodies; the Earth therefore has to be
represented, for example, not as a solid screen, but as formed of a very large number
of very small spherical molecules which individually play the role of small screens,
but between which the Lesage corpuscles can move freely. Thus, not only is the
Earth not a solid screen, but it is not even a sieve, because the spaces in it take much
more space than the solids. So that we can be aware of it, recall that Laplace proved
that the attraction, when passing through the Earth is weakened by at most one
ten-millionth, and his proof leaves nothing to be desired: if, in fact, the attraction was
absorbed by the bodies that it passes through, it would no longer be proportional to
the masses; it would be relatively weaker for large bodies than for the small, because
it would have a greater thickness to pass through. The attraction of the Sun on the
Earth would therefore be relatively weaker than that of the Sun on the Moon and its
result would be a very noticeable inequality in the motion of the moon. We will
therefore have to conclude (if we adopt the theory of Lesage) that the total surface of
the spherical molecules which make up the Earth is at most one ten-millionth of the
total surface of the Earth.

Darwin proved that the theory of Lesage only led exactly to Newton’s law by
assuming the corpuscles were entirely without elasticity. The attraction exerted by
the Earth on a mass 1 at a distance 1 will then be proportional both to the total surface
S of the spherical molecules which make it up, the velocity v of the corpuscles, and
the square root of the density ρ of the medium formed by the corpuscles. The heat
produced will be proportional to S, the density ρ and the cube of the velocity v.
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But, the resistance experienced by a body which moves in such a medium has to
be considered; it cannot move, in fact, without going in front of some impacts and by
fleeing, in contrast, before those coming in the opposite direction, such that the
balance achieved in the state of rest can no longer continue. The calculated resistance
is proportional to S, ρ and v; now, it is known that celestial bodies move as if they did
not experience any resistance, and the precision of the observations allows us to set a
limit on the resistance of the medium.

Since this resistance varies with Sρv, whereas the attraction varies as S
ffiffiffi

ρ
p

v, we
see that the ratio or the resistance to the square the attraction is the inverse of the
product Sv.

We therefore have a lower limit on the product. We already had an upper limit of
S (by the absorption of the attraction by the bodies that it traverses); we therefore
have a lower limit on the velocity v, which must be at least equal to 24 � 1017 times
that of light.

From that, we can deduce ρ and the quantity of heat produced; this quantity would
be sufficient for raising the temperature by 1026 degrees per second; the Earth would
therefore receive in a given time 1020 times more heat than the Sun emits in the same
time; I don’t mean the heat from the sun reaching the Earth, but the heat that the Sun
radiates in all directions.

It is obvious that the Earth would not withstand such a situation for long.
The results would be no less fantastic if, in contrast to the views of Darwin, the

corpuscles of Lesage were given an imperfect and nonzero elasticity. In truth, the
energies of these corpuscles would not be completely converted to heat, but the
attraction produced would also be less, such that it would only be the portion of this
energy converted into heat which would contribute to producing the attraction and
that would result in the same thing; this could be remarked with a judicious use of the
Virial Theorem.

The theory of Lesage can be transformed; let us eliminate the corpuscles and
imagine that the ether is traversed in all directions by light waves coming from all
points in space. When a material object receives a light wave, this wave exerts a
mechanical action on it due to the Maxwell-Bartoli pressure, just as if it had received
the impact of a material projectile. The waves in question can therefore play the role
of Lesage corpuscles. That is what, for example, Tommasina accepts.

This does not remove the difficulties; the speed of propagation cannot be that of
light and one is thus led, by the resistance of the medium, to an unacceptable figure.
Additionally, if the light were completely reflected, the effect is null, just as with the
hypothesis of perfectly elastic corpuscles. In order to have attraction, the light must
be partially absorbed; but then heat would be produced. The calculations are
essentially unchanged from those done in the ordinary theory of Lesage, and the
results in that way maintain an aura of fantasy.

From a different perspective, the attraction is not absorbed by the bodies that it
passes through or it is hardly absorbed; it is not the same with the light that we know.
Light which produces Newtonian attraction would have to be considerably different
from ordinary light and have, for example, a very short wavelength. Not to mention
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that, if our eyes were sensitive to this light, the entire sky would have to appear to us
much brighter than the sun, such that the sun would seem to stain it black, without
which the sun would repel us instead of attracting us. For all these reasons, the light
which would serve to explain the attraction would have to be much more like
Röntgen’s x-rays than ordinary light.

Yet still, x-rays would not be sufficient; however penetrating they may seem to
us, they would not be able to pass through the entire Earth; one would have to
imagine x0-rays that are much more penetrating than ordinary x-rays. Next, a portion
of the energy from these x0-rays would have to be destroyed, since without it there
would be no attraction. If one doesn’t want it transformed into heat, which would
lead to an enormous production of heat, it would have to be accepted that it is
radiated in all directions in the form of secondary rays, which could be called x00-rays
and which would have to be much more penetrating still than x0-rays, without which
they would in turn disturb the phenomenon of attraction.

Such are the complicated hypotheses to which one is led when one wants to make
the theory of Lesage viable.

But, everything that we just stated assumes the ordinary laws of Mechanics. Will
things work out better if we accept the New Dynamics? And first, can we keep the
Principle of Relativity? Let’s first give the theory of Lesage its most basic form and
assume space is plowed by material corpuscles; if these corpuscles were perfectly
elastic, the laws for their impact would satisfy this Principle of Relativity, but we
know that then they would have no effect. It has to be assumed that these corpuscles
are not elastic, and then it is difficult to imagine a law for their impact compatible
with the Principle of Relativity. Further, a considerable production of heat would
again be found and again a very sizable resistance of the medium.

If we eliminate the corpuscles and if we return to the hypothesis of Maxwell-
Bartoli pressure, the difficulties will not be any less. That is what Lorentz tried in his
Article for the Amsterdam Academy of Sciences, April 25, 1900.

Let us consider a system of electrons immersed in an ether traversed in all
directions by light waves; one of these electrons, struck by one of these waves is
going to go into vibration; its vibration will be synchronous with that of the light; but
it can have a different phase, if the electron absorbs part of the incident energy. If, in
fact, it absorbs energy, it is because it is the vibration of the ether which drives the
electron; the electron must therefore lag behind the ether. A moving electron is
comparable to a convection current; therefore any magnetic field, in particular the
one which is due to the disruption from the light itself, must exert a mechanical
action on this electron. This action is very small; further, it changes sign in the course
of the period; nonetheless, the mean action is not zero if there is a phase difference
between the vibrations of the electron and that of the ether. The average action is
proportional to this difference and consequently to the energy absorbed by the
electron.
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I’m not able to go into the calculations in detail here; let us just say that the final
result is an attraction between two arbitrary electrons, equal to:

EE1

4πE0r2
:

In this formula, r is the distance between the two electrons, E and E1 are the
energy absorbed by the two electrons during unit time, and E0 is the energy of the
incident wave per unit volume.

Therefore, there cannot be attraction without absorption of light and consequently
without production of heat and that is what compelled Lorentz to abandon this theory
which in the end is not different from that of Lesage-Maxwell-Bartoli. It would have
been much scarier still if he had carried the calculation to the end. He would have
found that the temperature of the Earth would have to increase 1013 degrees per
second.

XVI. Conclusions

I have made an effort in just a few words to give as complete an idea as possible of
these new doctrines; I sought to explain how they had come to be, without giving the
reader room to be scared by their difficulty. The new theories are not yet proven,
much is still needed; they are based only on a sufficiently serious set of probabilities
that one mustn’t treat them with disdain.

Most likely new experiments will teach us what we must finally think of it. The
crux of the question is in Kaufmann’s experiment and those that we can try to
verify it.

Allow me to end with a wish. Let us assume that in a few years these theories
undergo new tests and that they win out; our secondary instruction then runs a
serious danger: some teachers are most likely going to want to make a place for the
new theories. New things are so attractive and it is so hard to appear left behind! At
least, one wants to give glimpses to the children and, before teaching them Ordinary
Mechanics, one will warn them that its time has passed and that it was good at most
for that old jewel from Laplace. And then, they won’t take on the habit of Ordinary
Mechanics.

Is it good to warn them that Ordinary Mechanics is only approximate? Yes. But
later, when they will have gotten all the way to the marrow, when they will have
formed the habit of only thinking with it, when they are no longer be at risk of
forgetting it, then one will be able to show them its limitations without harm.
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They will have to live with ordinary mechanics; it is the only one that they will
always have to apply; whatever the progress of the automobile, our cars will never
reach speeds where it is no longer true. The other is just a luxury, and one must only
think of the luxury when there is no risk of harming the essential.

Henri Poincaré,
of the Académie des Sciences and the Académie française.
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Part II
Discussion



Chapter 7
Discovery of the Electron: Cathode Rays

J. J. Thomson

J. J. Thomson was awarded the Nobel Prize in Physics in 1906 “in recognition of the
great merits of his theoretical and experimental investigations on the conduction of
electricity by gases.” (Nobel Media AB 2019, n.d.). The citation does not mention
electrons or cathode rays, even though it is commonly stated that he discovered the
electron.

Between 1897 and 1899, J. J. Thomson published three papers in the Philosoph-
ical Magazine about his work on “conduction of electricity by gases”; they are
(Thomson, Cathode Rays, 1897a), (Thomson, On the Charge of Electricity Carried
by the Ions Produced by Röntgen Rays, 1898) (Thomson, On the Masses of Ions and
Gases at Low Pressures, 1899). In this series of three papers, J. J. Thomson
respectively measures the charge-to-mass ratio and velocity of the particles in
cathode rays, the charge on ions produced in gas irradiated with X-rays, and the
charge-to-mass ratio and mass of the negative ions released from a polished zinc
surface by the photoelectric effect. George Smith (Smith, 2001) rightly points out
that they need to be considered together.

Before these, J. J. Thomson also published two preliminary papers early in 1897
in the Proceedings of the Cambridge Philosophical Society and The Electrician. The
first is a discussion of the work he had just started on cathode rays and has no
description of equipment or results (Thomson, On the cathode rays, 1897c), and the
second in contrast is clearly worthy of note—it has a discussion of several experi-
ments, introduces corpuscles as a component of atoms and identifies the negative
corpuscles as particles making up cathode rays, and ends with a value of the charge-
to-mass ratio near the bottom of the last column (Thomson, Cathode Rays, 1897b).
This measurement was done using magnetic deflection and the method is described
in the first paper from the series (Thomson, Cathode Rays, 1897a, pp. 300–307).

Continuing with the first in the series of three papers (Thomson, Cathode Rays,
1897a), this would seem to be a good point to ask, what was J. J. Thomson trying to
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accomplish? After this series, J. J. Thomson did not return to publish subsequent
articles on this subject. In contrast, Walter Kaufmann published several papers with
improved measurements of the charge-to-mass ratio. This suggests that J. J.
Thomson’s main interest was not obtaining values (and increasingly accurate values)
for properties of the electron. If it weren’t measuring properties of electrons, what
was he trying to do. Referring to the first paper in the series (Thomson, Cathode
Rays, 1897a), the second sentence states there are “diverse opinions” about cathode
rays and contrasts the view that they are wholly processes in the ether against the
view that they are “wholly material, and . . . mark the paths of particles of matter
charged with negative electricity.” Two paragraphs later he also writes, “The
following experiments were made to test some of the consequences of the
electrified-particle theory.”With this series of experiments, J. J. Thomson is looking
for an experiment to decide between an ether-vortex theory of subatomic processes
and an electrified-particle theory. After the first paper on cathode rays, the series
continues with other electrified particles. In hindsight, the experiments are recog-
nized as decisive evidence of negatively charged particles of very small mass
compared to positive ions encountered in electrolysis.

Jean Perrin

The introduction to the experiment described in the first section of (Thomson,
Cathode Rays, 1897a), “Charge Carried by the Cathode Rays,” reinforces this
perspective. The description starts with a reference to an experiment done by Jean
Perrin. J. J. Thomson does not provide a reference; however, it seems unambiguous
that he is referring to the experiment reported in (Perrin, 1895). It is relevant for us to
look at it.

Jean Perrin—working in Paris—conducted an experiment showing that cathode
rays transported a negative charge1. It appears to be the first published work by the
winner of the 1926 Nobel Prize in physics, famous for his study of Brownian motion.
He starts by stating, “Two hypotheses have been imagined for explaining the
properties of cathode rays.” Like J. J. Thomson’s introduction described above
this introduction establishes the contrast between the two theories. Jean Perrin
continues, “Some . . . think that this phenomenon, like light, is due to vibrations of
the ether.” and then “Others,”—and here he includes J. J. Thomson—“think that
these rays are formed by negatively charged matter.” In these terms, Jean Perrin, sets
up the same contrast as J. J. Thomson between the competing explanations for
cathode rays. Jean Perrin goes on to describe his experimental apparatus,

1Another aspect of Jean Perrin’s paper is worth noting. He wrote that he looked for positive charges
corresponding to the negatively charged cathode rays and writes, “I think I found them in the same
region where the cathode rays form.” (Perrin, 1895) These could be the channel rays (kanalstrahlen)
discussed by Poincaré in (Poincaré, La dynamique de l’électron, 1908) section III and translated on
page 107 of this book.
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corresponding to the description provided by J. J. Thomson, and concludes, “the
cathode rays are therefore charged with negative electricity.” He is providing
experimental evidence for particles over ether. This work is also described in the
first part of his doctoral thesis at the École Normale Supérieure.

While J. J. Thomson and physicists in France and Germany cited this article by
Perrin and I have suggested it was a motivation for their work on cathode rays, I have
seen no indication why Perrin chose to work on this subject. There is no suggestion
in the article itself or in his thesis (including the forward) to indicate who or even
whether someone suggested this topic to him. The footnote at the very end of the
article states, “This work was done at the laboratory of the École Normale and at the
laboratory of Mr. Pellat, at the Sorbonne.” (Perrin, 1895) The forward to Jean
Perrin’s thesis indicates that his work in 1895 was done in Mr. Pellat’s laboratory.
Henri Pellat (b. 1850, d. 1909) had been named adjunct professor with his own
laboratory in 1893. After looking at his bibliography of published books2 and
looking at some of his notes published a few years earlier in Comptes rendus
hebdomadaires de l’Académie des Sciences, including a note in the same volume
from 1895 as Jean Perrin’s article, nothing would suggest Henri Pellat had a research
interest that would lead him to suggest such a topic to a student. The selection of this
topic by a beginning graduate student remains mysterious.

The second part of Perrin’s thesis involved Röntgen rays.
J. J. Thomson continues this first section noting that the experimental apparatus of

Jean Perrin criticized for not excluding the possibility that negative charges inciden-
tally followed the same straight-line path as the fundamental ether phenomenon. To
address this objection, J. J. Thomson modifies the configuration used by Jean Perrin
by adding a bend in the glasswork and providing a magnet to bend both the cathode
rays (visible by their discharge) and the electric charges (measured by an electro-
scope) onto the target.

J. Perrin’s experiment and results alone might be sufficient and J. J. Thomson’s
results with the improved design of the layout of the path for the cathode rays are
sufficient for showing that the cathode rays are particles. J. Perrin stopped at that
point; J. J. Thomson continued.

Cathode Rays

J. J. Thomson (Cathode Rays, 1897a) continues by describing the effect of an
electric field on the rays. When the rays are made to pass between two parallel
aluminum plates connected to a storage battery, the rays were deflected towards the
plate connected to the positive pole of the battery if the vacuum was good enough.
Previously H. Hertz had used this method to measure the electrostatic deflection of
cathode rays, to determine their charge, and did not measure any deflection. His

2https://data.bnf.fr/fr/12744499/henri_pellat/
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negative result was seen as supporting an ether-disturbance interpretation of cathode
rays, but the negative result had come to be viewed as suspect by the time of J. J.
Thomson’s experimental work. J. J. Thomson provides an explanation: H. Hertz did
not have an adequate vacuum. J. J. Thomson notes, “it was only when the vacuum
was a good one that the deflexion took place, but . . . the absence of deflexion is due
to the conductivity of the medium.” Here we have an indication of the importance of
vacuum pumping technology.

This is an opportune point to digress and indicate the importance of mastery of
laboratory skill and technology. One aspect of skill involved glass blowing to
produce glass tubes with metal structures inside and appropriate electrodes passing
through the walls in the right locations. The second aspect involves producing
vacuums—with the associated technology of pumps and processes of pumping,
waiting for outgassing and repeated pumping—with which to achieve low pressures
corresponding to greatly reduced quantities of residual gases. With the need for skill,
also came risks. J. J. Thomson had a reputation as a klutz when it came to handling
laboratory equipment and was generally steered away. Jean Perrin, in a footnote,
indicates that he could not continue a particular line of measurements because his
glasswork broke.3

At this point J. J. Thomson (Cathode Rays, 1897a) had established that cathode
rays are particles and plausibly explained the contradicting results of the earlier
experiment by H. Hertz. Additional experiments to determine particular properties of
the particles were then well justified. The important experimental results are the
mass-to-charge ratio (m/e) obtained by two methods involving magnetic and elec-
trostatic deflection and the velocity of cathode ray particles under different condi-
tions. In presenting his results, J. J. Thomson first notes that the value of the mass-to-
charge ratio is independent of the nature of the residual gas and metal of the
electrodes and is about 10�7 cgs. Then, interpreting the newly measured mass-to-
charge ratio in this context, J. J. Thomson writes that this value “is very small
compared with the value 10�4, which is the smallest value of this quantity previously
known, and which is a value for the hydrogen ion in electrolysis.” J. J. Thomson
argues that the ratio is smaller because of the size but accepts that it could also be
combined with a larger charge. It would seem plausible for him to argue that the
charge on the hydrogen ion (in electrolysis) and on the electron (in cathode rays)
need to be equal in magnitude and opposite in sign to produce a net neutrality; he
does not. Interestingly he does speculate, “If, in the very intense electric field in the
neighborhood of the cathode, the molecules of the gas are dissociated and are split
up, not into the ordinary chemical atoms but into these primordial atoms, which we
shall call for brevity call corpuscles; and if these corpuscles are charged with
electricity and projected from the cathode by the electric field, they would behave
exactly like cathode rays.” In this sentence, we can read J. J. Thomson defining what

3When I, in an undergraduate physics laboratory many years ago, measured the mass-to-charge
ratio of an electron, glasswork and vacuum pumps were not involved; I was shown an instrument on
a laboratory table, told “do this,” “measure that,” and given a handout with more information.
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he meant by “corpuscle”: a building block of atoms. And we can add, knowing the
comparatively small mass-to-charge ratio for the corpuscles in cathode rays, that
they must be quite small, subatomic in fact.

At the end of the first article in the series, J. J. Thomson has the mass-to-charge
ratio of his negatively charged corpuscle, plausible speculation that it is very small
compared to the positive ions in electrolysis, a theory that it is a primordial
component of all atoms and an expectation, consequently, that corpuscles may be
ubiquitous where atoms form positive ions. Trusting and following his experimental
results, he has gone much farther than the project set out in the first two paragraphs of
the paper.

In the next two papers in the series, J. J. Thomson looks at two other configura-
tions were corpuscles may be found in order to measure the charge and confirm that
corpuscles have a very small mass compared atoms.

In the second article (Thomson, On the Charge of Electricity Carried by the Ions
Produced by Röntgen Rays, 1898), the charge on gas ions produced by X-rays is
measured but without information on the mass of the ions whose charge is being
measured in the experiments. And in the third paper (Thomson, On the Masses of
Ions and Gases at Low Pressures, 1899) the mass-to-charge ratio and mass of the
ions released from a negatively-charged, polished, zinc plate exposed to ultraviolet
radiation, the photoelectric effect, are measured. The experiment in the second article
is not able to confirm that the mass of the electron is very small compared to positive
ions. The third article does this and identifies the electron in a different context than
cathode rays. That is, for us, the essential point of the series of papers by J. J.
Thomson; he has identified cathode rays as a particle with a distinctive property and
shown that the same particle is found in an experiment entirely unrelated to
cathode rays.

Ether

To understand the phrase “processes in the ether” in the sentence from J. J. Thomson
quoted above and therefore to understand a distinction between an ether-vortex or
continuous charge model of atomic or subatomic phenomena (exemplified by
(Larmor, 1893), for example), and a material charge or particle model (hard sphere,
in theoretical work by Lorentz and other work discussed in Chapter 9) it is necessary
to consider the role of ether in the earlier conception of charge. The ether formerly
had a role both as a medium for the propagation of light waves (luminiferous ether)
and also as a component of electrodynamics.

The aspect of ether as an absolute medium for the propagation of light waves is
probably more familiar to most readers because it is connected with special relativity
dispensing with the possibility of any absolute frame of reference.
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However, from the publication of Maxwell’s treatise in 1873 until the time of J. J.
Thomson’s work, a larger role was cut out for the ether than just a medium for the
propagation of light. As understood by Maxwell and the Maxwellians4, charge was a
continuous fluid and analogies with fluid flow were prominent. Terminology sug-
gestive of fluid analogies is still used like continuity equation, flux and field lines. In
this fluid view, the appearance of charge on a surface of an object represents the
boundary between a dielectric and matter. Further, charge appears discrete because it
only occurs at the end of Faraday tubes and, for their part, Faraday tubes are a vortex
(or other phenomenon) of the fluid ether.

Because of investigations, for example, with electrolytic solutions, which
suggested the presence of small charged ions in the solution, it became necessary
to have a theory that could account for these ions. This is where the work on an ether-
vortex theory by (Larmor, 1893) mentioned above fits in.

Several points need to be noted when referring to discussions of the ether or
singling out Larmor’s work as an example, as I just did. Over the 20 years following
the publication of Maxwell’s treatise in 1873, different approaches to understanding
and interpreting what Maxwell had written developed. One school of thought, in
England, was represented by the Maxwellians, already mentioned; other schools, in
Germany, developed from work by H. von Helmholtz and by H. Hertz. None of
these theories, including Larmor’s, were entirely satisfactory in addressing the
demands placed on them, and this was especially true in relation to interactions
between magnetic fields, light and matter.

Radiation and optical phenomena provide the connection between ether as
charged fluid and ether as a medium for the propagation of light. Accelerated charge
is associated with an acceleration of the ether resulting in a disturbance propagating
as a transverse wave. The need for a continuous medium for the propagation of light
provides its own set of constraints on the properties of the ether. The interactions
between ether and matter, notably the motion of the Earth through the ether, impose
further constraints and raises questions such as: whether the ether is dragged by the
annual motion of the Earth. Experiments first with aberration and then by Michelson
and Morley looked for effects of this drag to first-order and then to second-order in
the ratio of the velocity of the observer to the speed of light, respectively; no effect
was found.

While J. J. Thomson’s work led to acceptance of the concept of discrete, material
particle-based charge over the course of a few years it did not have the same effect on
the aspect of ether relating to a medium for the propagation of light. In 1905 eight
years after J. J. Thomson’s work, Poincaré and Einstein did not need in their papers
to argue for the discrete, material nature of electrical charge; they did need to use the
18-year-old results from Michelson and Morley to argue that there was no medium
for the propagation of light and no absolute frame of reference. The aspect of the

4For information on who the Maxwellians were and what they did, see (Hunt, 1991). Notably,
Oliver Heaviside, whose contribution to mathematical notation is discussed in Chap. 6, is
among them.
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ether as an absolute reference frame is considered in Chapters 9 and 10. Poincaré
presents other arguments against the ether as a medium for propagation of light in a
later article (Poincaré, La dynamique de l’électron, 1908). These arguments are
largely based on the absurdities that would result from these constraints imposed
on a theory of the ether.

J. J. Thomson’s Motivation

The timing of J. J. Thomson’s work, that is to say his motivation for starting the work
and bring it to a conclusion, need to be considered. Isobel Falconer persuasively
shows that there was a burst of work on the nature of cathode rays starting in 1896
and 1897 (Falconer, 1987). Figure 1 on page 246 is particularly effective in this
respect. In a later subsection of this chapter, a similar table will be built with a list of
references provided in a review article (Kaufmann, Die Entwicklung des
Electronenbegriffs, 1901a). That table also shows a significant jump in articles
published on cathode rays in 1896 and 1897. Falconer (Corpuscles, Electrons and
Cathode Rays: J. J. Thomson and the ‘Discovery of the Electron’, 1987, p. 249)
writes, “The effect of the discovery of X-rays on cathode ray research was clearly
dramatic.” Did the interest in these new rays motivate the research on cathode rays
seen in the jump in publications or is the timing fortuitous? W. Röntgen famously
took an X-ray image of the bones in his wife’s hand in December 1895 and word
quickly spread in January 1896. Röntgen’s discovery was directly connected with
H. Becquerel’s decision to look for radiation directly from natural sources, specif-
ically uranium. (This is discussed more in Chapter 8.) This led to his discovery in the
following months of what were called, for a while, Becquerel rays. Becquerel rays
promptly took their place alongside Röntgen rays (X-rays) and Lenard rays as a topic
of interest, discussion and research. In Germany in the review article by Walter
Kaufmann (Die Entwicklung des Electronenbegriffs, 1901a), he clearly indicates
that X-rays were important to their motivation. In contrast to Becquerel and Kauf-
man, Falconer’s argument for what caused this jump in interest is less persuasive
when applied to J. J. Thomson. As discussed at the beginning of this paragraph J. J.
Thomson stated that his motivation was providing an experimental determination
between competing understandings of cathode rays. He explicitly refers to Jean
Perrin’s experiment (Perrin, 1895) reported within a week or two of Röntgen’s X-ray
image of his wife’s hand. J. J. Thomson does not refer to Becquerel, Lenard or
Röntgen or their discoveries in his three papers. I take at face value J. J. Thomson’s
statement of his intent in (Thomson, Cathode Rays, 1897a) discussed above. I also
see the timing as following from the work by Jean Perrin which coincidentally
appeared at the same time is Röntgen’s discovery.
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Naming the Electron

J. J. Thomson in describing the subject of his work did not use the term “electron,”
even many years later; he preferred “corpuscle.” In the first full-length article
(Thomson, Cathode Rays, 1897a), indicates what he means by corpuscles as
discussed above.

The origin of the term electron for a charge-bearing atomic component is com-
monly credited to George Johnstone Stoney who used it in 1891 in a paper on atomic
spectra. (Stoney, On the Cause of Double Lines and of Equidistant Satellites in the
Spectra of Gases, 1891, p. 585). Stoney also defends his claim of priority for the use
of this term and meaning in 1894 in a letter to the editor (Stoney, Of the “Electron” or
Atom of Electricity, 1894). It is also suggested that the physicist George Fitz Gerald,
an editor of the Philosophical Magazine where Stoney and Thomson published and,
notably, a nephew of Stoney, encouraged the use of the term electron to refer to the
ion or particle investigated by Thomson. In a conference paper presented by
W. Kaufmann (Kaufmann, Die Entwicklung des Electronenbegriffs, 1901a)
September 25, 1901, he cited Stoney’s 1891 paper (cited above) and credits him
with deciding on the now commonly accepted name, electron.

By 1906, the term electron was in common use by H. Poincaré (in particular in the
works translated in Part I of this book), H. A. Lorentz, and others whose work is
mentioned in other chapters. This can be seen as a sign that they, between five and
10 years after J. J. Thomson’s experiments, were not concerned about making a
strong distinction between a particle view and an ether-vortex view for the explana-
tion of subatomic phenomena. In the preface to (Poincaré, Sur la dynamique de
l’électron, 1906), Poincaré indicates the Michelson Morley experiment as grounds
for justifying the reworking of electrodynamics and electron theory without an ether.

Meaning of Discovery

If we view J. J. Thomson’s series of three papers as an experimental determination of
the particle nature of cathode rays (in contrast to an ether-vortex origin) and further
of the mass-to-charge ratio and mass of these particles showing that they were much
smaller than the positively charged ions, then what does it mean to say that
“J. J. Thomson discovered the electron.” Before approaching this question directly,
it is useful to consider some examples of discoveries in physics (and the sciences).

The discovery of radiation from natural sources and of polonium and radium by
Henri Becquerel, and Pierre and Marie Curie (discussed in the next chapter), and the
discovery of the Zeeman effect by Pieter Zeeman all involve easily observed and
reproduced phenomena. In the first case, at the most basic level, Henri Becquerel
observed that photographic plates stored in the dark could be exposed by a rock of
uranium ore placed nearby and that a metal object placed between the ore and the
plate even cast a shadow. Pieter Zeeman showed that when the source (typically a
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flame) of some emission spectral lines was placed in a strong static magnetic field,
certain lines became split into several components. At their core, both involve a
previously unknown natural phenomenon that, once discovered, can be investigated
and studied. Some component of what J. J. Thomson did can be understood in this
sense: even under high vacuum an electric current could still pass from cathode to
anode.

Some discoveries involve the recognition of patterns (empirical laws) in exper-
imental data. In his introduction (Poincaré, Sur la dynamique de l’électron, 1906),
Poincaré mentions Johannes Kepler’s work that led to his three laws of planetary
motion. By analyzing Tycho Brahe’s observations of the position of Mars on the
sky, Kepler was able to establish his laws notably including that planetary orbits are
elliptical.

Later, Isaac Newton was able to establish that Kepler’s laws of planetary motion
could be confirmed as a mathematical consequence of Newton’s laws of motion and
gravitation. This involves taking a new discovery (Newton’s laws of motion and
gravitation) and looking back for confirmation or explanation of earlier discoveries
(or laws) or at least consistency with them. Newton’s laws, together with observa-
tions, were also used to look forward and make predictions resulting in discoveries.

Edmund Halley in 1705 published a book (Halley, 1705) containing a list of the
orbital elements (including the ascending node, orbital inclination and perihelion)
for 24 comets observed between 1337 and 1698. He had calculated the orbital
elements using a method described by Newton based on the laws of motion and
gravitation applied to observations of the comets’ positions on the sky over the days
each was visible. The observations he used included his own observations of a comet
in 1682 and observations by Kepler and Longomontanus of a comet that appeared in
1607. Halley indicates that the main use of the table with the orbital elements for
24 comets is “that whenever a new comet shall appear, we may be able to know, by
comparing together the elements, whether it be any of those which has appeared
before . . . and to foretell its return.” Even though the appearance of the comet (for
example its peak brightness, or the shape or length of its tail) may vary from one
return to another, it could be identified as the same comet if the orbital elements were
the same. And indeed, Halley notes the similarity of the orbital elements for the
comet that appeared in 1531, 1607 and 1682. He concluded that it was the same
comet, and inferred an orbital period of about 76 years. He then predicted, “Hence I
dare venture to foretell, that it will return again in the year 1758.” Halley died in
1742, so he did not see his prediction confirmed in 1758. In honor of its discoverer,
this comet is named after Edmund Halley.

This gives us a way to look again at what J. J. Thomson did. He provides us with a
description of what he found (“a building block of atoms”), and a property and value
with which to distinguish it. His measurement of the mass-to-charge ratio of cathode
ray particles is key to distinguishing the electron as a particle and further to identify it
as the same particle when it appears in a different context. Independent of the intent
and context within which he made the measurement, the measurement itself does
provide a distinctive property with which to confirm the presence of the electron in
other contexts. Measuring the mass-to-charge ratio of the ions released by the
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photoelectric effect in his third paper (Thomson, On the Masses of Ions and Gases at
Low Pressures, 1899) allows J. J. Thomson to confirm that he is working with the
same particle as he did in his first paper and therefore to associate the mass
measurement also in this third paper with both the negative ions in cathode rays
and the photoelectric effect. This property was also useful at that time for identifying
the β ray produced in radioactive decay of uranium as an electron, as discussed in
Chapter 8.

Priority

In discussing the history of physics in the decade between 1895 and 1905, some
English authors seem to write about work at Cavendish Laboratories in Cambridge,
and about continental ideas or physics5. Work on the continent in this timeframe was
not monolithic and did follow a variety of directions including cathode rays.
Awarding of the Nobel Prize to J. J. Thomson suggests he deserves priority for
discovery of the electron. The situation is less clear cut and we need to look at work
on cathode rays in Germany that has not been discussed so far in this section.

In Germany starting in 1897, so roughly at the same time as J. J. Thomson in
England, several people started measurements of the mass-to-charge ratio of cathode
ray particles. In a review paper presented by W. Kaufmann (Die Entwicklung des
Electronenbegriffs, 1901a) at the 73. Naturforscherversammlung zu Hamburg con-
ference on September 25, 19016, he lists seven authors of 13 papers published in
1897 and 1898 measuring properties (including the mass-to-charge ratio) of the
electron. His list of authors and the references to their published work is provided in
Table 7.1, sorted by submission date.

Like Figure 1 in (Falconer, 1987, p. 246), Kaufmann’s list of references prepared
in 1901 shows the number of people working on the subject and with the dates added
it shows the concentration of the work in just two years. Just as Falconer’s Figure 1
reflects her choice of journals to survey, this list reflects Kaufmann’s selection of
articles that were worth referencing. Together, the conclusion is stronger: cathode
rays attracted the research interest of many people in a short time span.

Like the first paper in the series by J. J. Thomson discussed above, several of
these papers reference Jean Perrin’s work published in December 1895 and already
discussed. In his conference review paper, Kaufmann does not mention Perrin’s
work but he does provide an illuminating statement, “The more facts were

5To provide a relevant example, but without suggesting that it is more or less deserving of critique,
consider the first chapter provided by A. B. Pippard from the University of Cambridge for the book
Electron: a Centenary Volume (Springford, 1997). The adjective continental is used three times in
the first 10 pages.
6An English adaptation of this paper was published within two months in The Electrician
(Kaufmann, The Development of the Electron Idea, 1901b). The adaptation does not include this
list of references.
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Table 7.1 Authors working on measuring properties of cathode rays from (Kaufmann, Die
Entwicklung des Electronenbegriffs, 1901a)

Submitted Published Author Citation Title

January
7, 1897

January
7, 1897

E. Wiechert Schriften der phys.
ökon. Gesellsch.
Königsberg 1897.
S. 1

Über das Wesen der
Elektricität

January
7, 1897

May
8, 1897

E. Wiechert Naturwiss.
Rundsch. Mai
1897

Über das Wesen der
Elektricität

May
21, 1897

June
15, 1897

W. Kaufmann Ann. der Phys. 61,
544, 1897

Die magnetische
Ablenkbarkeit der
Kathodenstrahlen und ihre
Abhängigkeit vom
Entladungspotential

August
7, 1897

October
1897

J. J. Thomson Phil. Mag. (5) 44,
293, 1897

Cathode Rays

November
10, 1897

November
9, 1897

W. Wien Verhdl. physilc.
Ges. Berlin 16,
165, 1897

Über die elektrostatischen
Eigenschaften der
Kathodenstrahlen

October
25, 1897

November
25, 1897

W. Kaufmann
and
E. Aschkinass

Ann. der Phys. 62,
588, 1897

Über die Deflexion der
Kathodenstrahlen

October
25, 1897

November
25, 1897

W. Kaufmann Ann. der Phys. 62,
596, 1897

Nachtrag zu der Abhandlung:
„Die magnetische
Ablenkbarkeit der
Kathodenstrahlen etc.“

February
4, 1898

January
31, 1898

T. Des
Coudres

Verhdl. physik.
Ges. Berl. 17,
17, 1898.

Ein neuer Versuch mit
Lenhard’schen Strahlen

January
2, 1898

February
1, 1898

P. Lenard Ann. der Phys. 64,
279, 1898

Über die elektrostatischen
Eigenschaften der
Kathodenstrahlen

March
19, 1898

E. Wiechert Gött. gel. Nachr.
1898. S. 260

Experimentelle
Untersuchungen über die
Geschwindigkeit und die
magnetische Ablenkbarkeit
der Kathodenstrahlen

March
19, 1898

May
15, 1898

W. Kaufmann Ann. der Phys. 65,
431, 1898

Die magnetische
Ablenkbarkeit elektrostatisch
beeinflusster
Kathodenstrahlen

May
1, 1898

May
16, 1898

P. Lenard Ann. der Phys. 65,
504, 1898

Über das Verhalten den
Kathodenstrahlen parallel zu
elektrischer Kraft

October
3, 1898

November
11, 1898

W. Kaufmann Ann. der Phys. 66,
649, 1898

Bemerkungen zu der
Mittheilung von A. Schuster:
„Die magnetische Ablenkung
der Kathodenstrahlen“
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accumulated, the more puzzling became the cathode rays, and eventually matters
went so far that it was almost considered unbecoming for a decent physicist to
concern himself with phenomena so little amenable to theoretical and quantitative
treatment. Then there came suddenly the most puzzling of all obscure phenomena—
the X-rays discovered by Röntgen—and therewith a new stimulus for attacking the
various riddles.” (Kaufmann, The Development of the Electron Idea, 1901b). This is
a clear statement of the motivation of the community by one of the key people
involved with the measurement of the charge-to-mass ratio in Germany.

The place of J. J. Thomson’s papers on this chronological list needs to be
considered. The first of J. J. Thomson’s series of three papers (Thomson, Cathode
Rays, 1897a) is already fourth on the list. The third paper on the list (Kaufmann, Die
magnetische Ablenkbarkeit der Kathodenstrahlen und ihre Abhängigkeit vom
Entladungspotential, 1897) does cite a notice in Nature of publication of J. J.
Thomson’s first, preliminary announcement (Thomson, On the cathode rays,
1897c). As previously noted, this first announcement from J. J. Thomson does not
include a value of the charge-to-mass ratio. J. J. Thomson’s second announcement
(Thomson, Cathode Rays, 1897a) with a value of the charge-to-mass ratio, as
discussed in the first section of this chapter, slips in just before the paper by
Kaufmann: Thomson’s paper in The Electricianwas published under a month before
Kaufmann’s paper in Annalen der Physik; and Thomson’s paper is based on a
“discourse delivered at the Royal Institution, Friday evening, April 30” (Thomson,
Cathode Rays, 1897a) about three weeks before Kaufmann’s paper was submitted.

Referring first to the two papers by Wiechert, although they have the same title,
they do not have the same content. The second paper, published May 8, 1897 in
Naturwissenschaftliche Rundschau (Wiechert, Ueber das Wesen der Elektricität,
1897b) does not have the second, experimental section that appears in the first
paper in Schriften der Physikalisch-Ökonomischen Gesellschaft zu Königsberg
(Wiechert, Über das Wesen der Elektricität, 1897a) and the second paper may also
be further abridged. The second paper is not considered further.

The presentation by Wiechert of his experiment and results in (Wiechert, Über
das Wesen der Elektricität, 1897a) is hard to follow. For example, the origin of the
formula II with the ratio of the cathode ray charge-to-mass ratio to hydrogen ion
charge-to-mass ratio, α, is unknown. Where do k and the numerical constants in this
formula come from? It is hard to know whether to have any confidence in his results.
In the conclusion he indicates that 1/α is between 2000 and 4000. For comparison,
the current accepted value of the ratio of the proton to electron mass is 1836
(National Institute of Standards and Technology, n.d.-b).

By contrast, Kaufmann’s paper from the first half of 1897 (Kaufmann, Die
magnetische Ablenkbarkeit der Kathodenstrahlen und ihre Abhängigkeit vom
Entladungspotential, 1897) is much more satisfactory with a clear explanation of
equipment, methodology and theory. Notably he has seven tables of measurements.
Each table has measurements at 4 to 7 electrode voltage differences. For the results
in the first table he uses aluminum electrodes and uses copper electrodes for the other
tables. He also changes the distance between electrodes and in the last three tables
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uses illuminating gas7, carbon dioxide and hydrogen in place of air. The breadth of
the measurement conditions—metals for electrodes, residual gases in the tubes—is
fully as broad as those used by J. J. Thomson in the first of his series of three papers.

Note that Kaufmann states that the value he determined for the charge-to-mass
ratio of the electron is 107 cgs (Kaufmann, Die magnetische Ablenkbarkeit der
Kathodenstrahlen und ihre Abhängigkeit vom Entladungspotential, 1897, p. 552).
For comparison, J. J. Thomson summarizes his values for the charge-to-mass ratio
(Thomson, On the Masses of Ions and Gases at Low Pressures, 1899, p. 554):
5 � 106 cgs for cathode rays and 7.3 � 106 cgs for electrons released by the
photoelectric effect; he also quotes a value for cathode rays from Lenard of
6.4 � 106 cgs. The currently accepted value of the charge-to-mass ratio of electrons
is 1.759 � 107 cgs (National Institute of Standards and Technology, n.d.-a)

Then Kaufmann stops without reducing the measurements of voltage, magnet
current and deflection. He says he can’t make sense of the results: they indicate that
the charge-to-mass ratio is the same for all electrode materials and filling gases.
Further, it looks like the charge-to-mass ratio is a thousand times larger than
hydrogen ion. The paper ends with the statement that he doesn’t have a satisfactory
explanation of the observed results. It is a disappointing conclusion; in hindsight, it
is easy to say that he should’ve followed where the facts pointed him. His conclusion
however remains what it was and seems to knock him out of consideration for
priority.

This leaves J. J. Thomson with priority for recognizing that cathode rays are
streams of charged particles and measuring the charge-to-mass ratio of the particles.
With this discovery, as with several others in this chapter, events are moving quickly
and similar accomplishments occur with little time between. Here J. J. Thomson was
first and his work that soon followed on the charge-to-mass ratio in ionized gases and
in the particles freed from the metal surface in the photoelectric effect added weight
to his finding by showing that a particle with this distinctive characteristic was found
in different phenomena.
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Chapter 8
Discovery of the Electron: Radioactivity

Wilhelm Röntgen and X-Rays

In December 1895 at roughly the same time as Perrin’s note on cathode rays
appeared in the Comptes rendus, Wilhelm Röntgen famously took an x-ray, the
first, of his wife’s hand showing the bone structure. Word of the sensation spread
quickly and a photograph was shared at the weekly meeting of the Académie des
sciences on January 20, 1896; only a few lines in the minutes mark its discussion
(Oudin & Barthélemy, 1896). In a memoir written in 1903, Henri Becquerel notes
that, “at the moment when Mr. H. Poincaré had just shown the first radiographs sent
by Mr. Röntgen, I asked my colleague whether it had been determined where the site
of emission of these rays was in the empty tube producing the x-rays. He told me that
the origin of the radiation was the bright spot on the wall receiving the cathode flux.
Right away I thought of researching whether the new emission was a manifestation
of vibratory movement which gave rise to the phosphorescence, and whether any
phosphorescent body emitted similar radiation.” (Becquerel, Recherche sur une
propriété nouvelle de la matière, 1903, p. 3) Here we have a case of an interesting
idea occurring to a person well prepared to pursue it. Becquerel had spent many
years researching phosphorescence in crystals and minerals. Phosphorescence is a
phenomenon in which a material absorbs light at one wavelength and reemits it at
another wavelength. That means that in the above quote, Becquerel is suggesting that
a phenomenon of phosphorescence may be occurring in the wall of the empty tube,
with one kind of radiation striking the wall of the tube which then reemits the
radiation as Röntgen rays. This would seem to implicitly assume that the cathode
rays are radiation and not particles. Becquerel’s response to this idea is to ask
whether other fluorescent materials emit Röntgen rays. As shown in that session,
the obvious property of Röntgen rays is to pass through seemingly opaque material,
a hand, and expose a photographic plate. What Becquerel sets out to do is therefore
to expose candidate, fluorescent materials to sunlight while they are on a photo-
graphic plate well sealed against light. If the photographic plates turn out to be
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exposed, it is not because of the sunlight, but because of the materials generating
Röntgen rays by fluorescence, presumably.

By the end of the January 1896 many more lines would be written and photo-
graphs taken, including a noteworthy skeleton of a frog (Röntgen, 1896, p. 61) and a
review by Poincaré (Poincaré, Les rayons cathodiques et les rayons Röntgen, 1896).
In his review, Poincaré confirms that he had presented the pictures for Drs. Oudin
and Barthelemy two weeks earlier and that he understood the phenomenon as
fluorescence in the glass of the tube. He does not mention the article by Jean Perrin
from one month earlier. He expresses uncertainty as to the nature of the cathode rays,
while seeming to lean towards a wave interpretation.

Henri Becquerel and Radiation from Uranium

Those are the circumstances under which Becquerel started his project. After several
attempts with fluorescent materials that provided negative results (i.e. the photo-
graphic plates with silver bromide suspended in gelatin were seen to be unexposed
when developed), he returned to a material he had worked with previously. This is
another aspect in which his previous work and experience prepared him for this
project. Some 15 years earlier he had prepared “very beautiful lamellar crystals of
uranyl and potassium double sulfate” and also had great expectations for working
with uranium salts. (Becquerel, Recherche sur une propriété nouvelle de la matière,
1903, p. 8). As is now well known, Becquerel found in the spring of 1896 that the
uranium salts were able to expose photographic plates sealed from light by wrapping
in black paper, that metal objects placed between the uranium and the photographic
plates cast shadows, and importantly that this happened even when the assembly of
photographic plate, metal object and uranium salt was sealed in the dark in a metal
enclosure. This last aspect is important because it shows that the phenomenon does
not involve fluorescence which is dependent on incident light. Whatever is exposing
the plates—causing the reaction of the suspended silver bromide—has its origin in
the uranium salts and is not the result of the transformation of incident energy by the
uranium salts. On March 3, 1896, Becquerel also used an assortment of salts
showing that the effect was due to the uranium itself and not some feature of the
chemical or crystalline configuration of the salt; this is a first step towards showing
that the emission of the radiation is a property of the atom itself.

Within the week, he found another way to detect the radiation from the uranium
salts. He observed that the uranium salts caused the charge on a gold-leaf electro-
scope to dissipate. In a gold leaf electroscope, two pieces of gold leaf are connected
to each other and suspended from an electrode inside a grounded conducting
container. When the gold leaf is charged through the electrode, the two pieces
repel each other and the angular separation is proportional the net charge. As charge
is conducted from the gold leaf to the conducting container, the angle of separation
decreases. Becquerel first measured the background rate of change of the angular
separation and then measured the rate of change of the separation with a uranyl and
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potassium double sulfate crystal inside the container with the gold leaf. The presence
of the uranium salt caused the charge to dissipate over 60 times faster than the
background rate. He also found that the discharge rate did not depend on whether the
gold leaf was negatively or positively charged; this establishes that the discharge was
not due to the photoelectric effect or to radiation from the uranium salt depositing net
charge of either sign on the gold leaf. Contrary to the photographic technique, the
gold leaf technique provided a quantitative measure of the intensity of the radiation
from the uranium salt. Further experiments placing metal plates between the uranium
salt and the gold leaf that blocked a direct path for the radiation from the uranium to
the gold leaf but did allow circulation of air, also showed that the discharge of the
gold leaf was due to the radiation from the uranium changing the conductivity of
the air.

While Becquerel continued his research on the radiation from uranium salts—
changing the configuration of the electroscope, looking for secondary radiation
produced from exposed materials (consistent with his interest in fluorescence)—he
notes that this line of research was not “at that time the most fertile for the progress of
the question,” (Becquerel, Recherche sur une propriété nouvelle de la matière, 1903,
p. 102). In fact, a review of the entries for Becquerel in the author index for volumes
122 to 151 of the Comptes rendus (minutes) of the Académie des Sciences (Les
Secrétaires Perpétuels, 1927, pp. 161–2) shows that from July 1897 through the
beginning of 1899 he did not publish any notes on radioactivity; he did however
present eight notes on electromagnetic radiation in magnetic fields (including the
Zeeman effect).

I therefore want to take this narrative in a different direction.

Marie and Pierre Curie and Other Natural Sources
of Radiation

My direction follows the search for other materials emitting radiation as uranium
does. In April 1898 G. C. Schmidt in Erlangen (Schmidt, 1898) and Marie Curie in
Paris (Sklodowska Curie M., 1898) almost simultaneously announced that thorium
emits radiation capable of changing the conductivity of air1. Quantitatively, the
leakage currents that flowed through the air—measured by a technique involving
sensitive current measurements with innovative instruments developed by Pierre
Curie—under the effect of radiation from thorium and uranium were nearly the
same. Becquerel’s work two years earlier showed that the radiation produced by
uranium did not change with the chemical salt of uranium, the crystalline structure or
over time elapsed since the discovery; this suggested that the radiation was an atomic
property of uranium. The discovery of radiation from thorium by Schmidt and Curie

1Curie’s paper was read in the April 12 weekly session of the Académie des Sciences; Schmidt’s
paper was submitted to the Annalen der Physik on March 24 and published April 23. Schmidt’s
paper has a note added in proof with a reference to Curie’s paper.
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showed that although many elements did not emit this radiation (Marie Curie
ultimately tested a very large number of elements), uranium was not unique; thorium
emitted it too. In addition to uranium, Schmidt tested thorium oxide, thorium sulfate
and thorium nitrate. Marie Curie also tested thorium oxide and thorium sulfate,
measuring the leakage current through air exposed to the radiation from the sample.
Then in addition to the uranium and thorium salts she tested more samples. She
reported results for 10 other ores or minerals including potassium fluoxytantalate
with a very low current and pitchblende from three different sources with the sample
from Johanngeorgenstadt in Germany showing the highest activity of any sample
tested. Commenting on this “very remarkable” fact Marie Curie comments, “these
minerals may contain an element much more active that uranium.” (Sklodowska
Curie M. , 1898, p. 1102) The following paper by Marie Curie, this time co-authored
with her husband, amplified this topic.

In that article, published just over three months later, they describe their efforts to
chemically separate the highly radioactive component from pitchblende (Curie &
S. Curie, Sur une substance nouvelle radio-active, contenue dans la pechblende,
1898a). After a series of steps seeking to retain the radioactive component and
chemically separate other elements, they arrived at a mixture of the radioactive
component with bismuth. They then separated the sulfate salts of these elements
based on different condensation temperatures from their mixed hot gas. They then
proposed that they had identified a new, highly radioactive element that they
proposed to name polonium. They estimated that its activity was “about 400 times
greater than that of uranium.” (Curie & S. Curie, Sur une substance nouvelle radio-
active, contenue dans la pechblende, 1898a, p. 177).

Five months later the Curies published another article describing the separation of
a second new radioactive element, radium (Curie, Curie, & Bémont, Sur une
nouvelle substance fortement radio-active, contenue dans la pechblende, 1898b).
The Curies worked with 100 kg of mine tailings left after uranium had been extracted
from pitchblende mined in Joachimsthal in then Austria-Hungary. With radium, as
with polonium, they applied a series of steps to chemically separate a mixture of
barium and radium and then they separated the radium and barium based on a
different solubility of the hydrochloride salts. Here they estimated that the activity
was 900 times greater than uranium. Here, unlike with polonium, a distinctive
spectral line of radium was found allowing it to be spectroscopically identified as
a new element (Demarçay, 1898).2 Skeptics did not see the properties of the impure

2It is worth noting the treatment of Marie Curie’s name in these three articles ((Sklodowska Curie
M., 1898), (Curie & S. Curie, Sur une substance nouvelle radio-active, contenue dans la
pechblende, 1898a), (Curie, Curie, & Bémont, Sur une nouvelle substance fortement radio-active,
contenue dans la pechblende, 1898b)). The third was published only eight months after the first. In
the first the author line has her maiden name and her husband’s last name in full with no first initial;
the second has the initial of her maiden name and her husband’s last name in full and no first initial;
and the last has her as Mme. P. Curie—her husband’s name. My first impression is that she
gradually surrendered her identity. Use of her maiden and married names in subsequent articles
shows a more complicated pattern.
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sample and the spectral line measurement as persuasive evidence that the Curies had
detected a new element. The Curies then started working with a much larger quantity
of mine tailings so they could extract an adequate quantity of sufficiently pure
radium to allow measurement of the atomic mass and satisfy the skeptics.3

Within a year, Friedrich Giesel in Braunschweig was also extracting radium from
uranium or tailings (Giesel, Einiges über das Verhalten des radioactiven Baryts and
über Polonium, 1899) and supplying it for use by his colleagues (Elster & Geitel,
1899) in work discussed later in this chapter. As an aside, it is interesting to note that
he had then worked for over 20 years at Chininfabrik Braunschweig as an organic
chemist working on synthesis of cocaine and its derivatives and on cholesterol,
quinizarin (a dye derived from anthraquinone) and cuscohygrine hydrate
(an alkaloid naturally occurring together with cocaine and belladonna). (Stolberg-
Wernigerode, 1964).

With the benefit of hindsight, I am picking my way through the primary research
articles from the late 1890s. Becquerel and others were looking at other properties
and phenomena related to the radioactive elements and the radiation emitted. For
example, this included investigation of optical properties (e.g. reflection and refrac-
tion of the radiation), fluorescence, and induced or secondary radiation. There was
also a suspicion that some gas (“emanation”) was released from some samples and
caused saturation of the leakage current; air moving between the capacitor plates
stopped the saturation.

Investigation of several of these properties and phenomena proved fruitful.
Investigation of the emanations led to an independent rediscovery of actinium and
to a series of short half-life radioactive decay products. Without looking at those
paths, I will look at two things that move my narrative forward in the intended
direction.

Separating the Radiation by Stopping Power and Magnetic
Deflection

The first involves the stopping power required to block the radiation. Ernest Ruth-
erford, then at McGill University in Montréal, published work completed at Caven-
dish Laboratories in September 1898 (Rutherford, Uranium Radiation and the
Electrical Conduction Produced by It, 1899). The focus of the work is the ionization
of the air produced by the radiation from uranium (and thorium); it can be seen both
as an extension of earlier work at Cavendish Laboratories on ionization of air by
x-rays, and also, as an in-depth analysis of the effect, the change in the conductivity
of air because of radiation, discovered by Becquerel and used by Becquerel (with a
gold leaf electroscope) and the Curies (with a sensitive electrometer) to measure the

3Working with the material left after the Curie’s extracted polonium and radium, André-Louis
Debierne separated actinium (Debierne, 1900).
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intensity of radiation from their samples. There is much more to be found in an
article of this length. Rutherford investigates the change in the leakage current as thin
sheets of aluminum are placed between the sample and the capacitor plates; at first
the leakage current drops off quickly with the addition of thin sheets (about
0.0005 cm thick) but after about six sheets the leakage current drops off very slowly
and only falls to one half after about 100 sheets of aluminum (0.05 cm). Here
Rutherford concludes that, “These experiments showed that the uranium radiation
is complex, and that there are present at least two distinct types of radiation—one
that is very readily absorbed, which will be termed for convenience the α radiation,
and the other of a more penetrative character, which will be termed the β radiation.”
(Rutherford, Uranium Radiation and the Electrical Conduction Produced by It, 1899,
p. 116). This is the origin of the term α and β radiation. Rutherford also observed that
a few millimeters of air or a thin layer of uranium is sufficient to stop α radiation. The
stopping power of uranium was such that the intensity of α radiation from a uranium
sample depended on the surface area of the sample; using a thicker sample with the
same surface area did not increase the intensity of α radiation. In contrast the
intensity of β radiation increased with a thicker sample. In addition to uranium,
Rutherford worked with thorium4. Rutherford reported some difficulties working
with thorium, and that compared to uranium it takes three or four times the thickness
of aluminum for the intensity of α radiation from thorium to be reduced by one half
(Rutherford, Uranium Radiation and the Electrical Conduction Produced by It, 1899,
pp. 122–3). With this information we can recognize that in the configuration
Becquerel first used to discover radiation from uranium, the black paper surrounding
the photographic plate would have stopped the α radiation so the Becquerel was in
fact observing the effect of β radiation. The use, shortly later, of an electroscope to
show the change in conductivity of the air near the radioactive sample was sensitive
to both α and β radiation.

The other thing I wanted to look at is the deflection of the radiation by a magnetic
field. In a few months from August 1899 through January 1900 seven people
published results of research looking for deflection of radiation by magnetic fields.
They are in chronological order: (Elster & Geitel, 1899), (Giesel, Über die
Ablenkbarkeit der Becquerelstrahlen in magnetischen Felde, 1899b), (Meyer &
Schweilder, Eine weitere Notiz über das Verhalten von Radium in magnetischen
Felde, 1899) (Meyer & Schweidler, Über das Verhalten von Rdium und Polonium
im magnetischen Felde, 1899), (Meyer & Schweidler, Über das Verhalten von
Radium und Polonium in magnetischen Feld (II. Mittleilung.), 1900), (Becquerel,
Influence d’un champ magnétique sur le rayonnement des corps radio-actifs, 1899a)
and (Curie P. , Action du champ magnétique sur les rayons de Becquerel, 1900). It
should be noted that the first authors got a negative result (Elster & Geitel, 1899).

While this burst of activity is impressive, it should not be surprising. Because of
recent work with magnetic deflection of cathode rays (Thomson, Cathode Rays,

4Note that the announcement of the discovery of radium by the Curies came after the completion of
this article by Rutherford and roughly one month before its publication.
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1897) and because of general efforts to understand similarities and differences
between x-rays, cathode rays and radiation from radioactive substances, it was
obvious to investigate whether radiation from polonium and radium was deflected
by magnetic fields in that way that cathode rays were. Further, the investigation
could not have been done earlier because sufficient quantities of radium and polo-
nium were only then becoming available from Pierre and Marie Curie (Curie, Curie,
& Bémont, Sur une nouvelle substance fortement radio-active, contenue dans la
pechblende, 1989b) using their method and from Friedrich Giesel (Giesel, Einiges
über das Verhalten des radioactiven Baryts and über Polonium, 1899a) using his
variant of the Curie’s method but working with uranium tailings from a different
source. All of the above authors used samples provided by Pierre and Marie Curie or
by Friedrich Giesel.

Pierre Curie, in the last paper on this list (Curie P. , Action du champ magnétique
sur les rayons de Becquerel, 1900), and Marie Curie (Sklowdowska-Curie, 1900)
follow-up on heterogeneity seen in the deflection results from (Meyer & Schweilder,
Eine weitere Notiz über das Verhalten von Radium in magnetischen Felde, 1899)
and (Becquerel, Influence d’un champ magnétique sur le rayonnement des corps
radio-actifs, 1899a). Pierre Curie applied a quantitative technique (again measuring
the leakage current produced by undeflected radiation) to measure the intensity of
the radiation from a source with and without an applied magnetic field, with and
without an absorbing blade of aluminum or black paper, and with different distances
traveled through the magnetic field. Pierre Curie found that the most penetrating rays
are deflected by the magnetic field and the non-penetrating rays are undeflected5.
Further the percentage of the intensity deflected drops off with the distance traveled
through the magnetic field (suggesting a rough indication of the radius of curvature
of the deflection). Finally, Pierre Curie indicates that the radiation from their
polonium is only undeflected whereas the polonium from Friedrich Giesel also
emits deflectable radiation. (Pierre Curie suggests that the newly prepared polonium
from Friedrich Giesel emits deflectable rays that “may be the first to disappear when
the activity of the product decreases.”We can also suspect that the Curies had a purer
sample.) Marie Curie uses their sample of polonium to measure the intensity of
undeflectable radiation passing different distances through air and then through a
thin piece of aluminum. Next, she uses a magnetic field to first deflect the deflectable
radiation from radium and then repeats the measurements for a reduced range of
distances; she observes, “The undeflectable rays from radium behave like the rays
from polonium.”

It can be seen in the previous paragraph that the terms “nonpenetrating and
non-deflectable” and “penetrating and deflectable” used by Henri Becquerel, and
Pierre and Marie Curie are cumbersome; they also correspond to the α radiation and

5With hindsight, we understand that “undeflected” should be replaced with “not measurably
deflected”, because an experimental configuration suited for producing a conveniently measurable
deflection of β rays would produce a deflection of α rays 2.7�10�4 as large, without considering
differences in velocity, and that would be unmeasurably small.
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β radiation described by Rutherford (Uranium Radiation and the Electrical Conduc-
tion Produced by It, 1899). It seems likely that Becquerel and the Curies were aware
of Ernest Rutherford’s terminology. In (Becquerel, Note sur quelques propretés du
rayonnement de l’uranium et des corps radio-actifs, 1899b, p. 771), Henri Becquerel
refers to an important work published on radiation from uranium by Mr. Rutherford.
While the citation provided by Henri Becquerel is incomplete, it must almost
certainly refer to (Rutherford, Uranium Radiation and the Electrical Conduction
Produced by It, 1899) which was published two months earlier and introduced, for
convenience, the terms α radiation and β radiation.

Paul Villard and γ Rays

Continuing the menagerie, while working on optical properties of cathode rays and
deflectable rays from radium, Paul Villard discovered a third class of radiation; “the
previous facts lead us to allow that the undeflectable portion of the emission from
radium contains very penetrating radiation capable of passing through metal plates,
radiation that can be detected with the photographic method.” (Villard, Sur la
réflexion et la réfraction des rayons cathodiques et des rayons déviables de radium,
1900a, p. 1012). In a follow-up paper later that month (Villard, Sur le rayonnement
du radium, 1900b), Paul Villard observed that a 0.3 mm thick strip of lead could
completely stop the penetrating deflectable radiation but only weakened the pene-
trating undeflectable radiation. He indicates that the penetrating power of the
penetrating undeflectable radiation is comparable to x-rays.

Three years later, Ernest Rutherford provided his definition of γ rays and wrote,
“The γ rays which are non-deviable by a magnetic field, and which are of a very
penetrating character.” (Rutherford, The Magnetic and Electric Deviation of the
easily absorbed Rays from Radium, 1903).

Although I have not made a comprehensive search of the works of Paul Villard,
Henri Becquerel, and Pierre and Marie Curie for use of the qualifiers α, β and γ, I
have carefully searched the subset of works that I consulted for other reasons (mostly
between 1896 and 1901) and have not found any instance where they used them,
with one exception. In a review article for the 1900 International Congress of
Physics in Paris (Becquerel, Sur le rayonnement de l’uranium et sur diverses
propriétés physiques du rayonnement des corps radio-actifs, 1900c), Becquerel on
page 58 discusses the article by Rutherford and gives the meaning of the terms α and
β radiation. Becquerel did publish papers in 1903 and 1906 with α radiation in the
title. Rutherford therefore appears to deserve full credit for all three terms: α, β and γ
rays.
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What Are β Rays?

After considering the terminology introduced by Rutherford, I want to return to
consideration of the nature of the penetrating and deflectable rays (β rays in that
terminology). The previous discussion established that β rays were deflected when
their velocity was perpendicular to an imposed magnetic field. The expected next
step would therefore be to establish the sign of the charge and to make quantitative
measurements of the charge-to-mass ratio of the β rays produced by radium similar
to the measurements with cathode rays by J. J. Thomson (Cathode Rays, 1897) and
Walter Kaufmann (Die magnetische Ablenkbarkeit der Kathodenstrahlen und ihre
Abhängigkeit vom Entladungspotential, 1897).

Henri Becquerel (Contribution à l’étude du rayonnement du radium, 1900a)
described work he had undertaken to clarify the nature and properties of β rays. In
a preliminary step (§1), he determined that the effect of air (as compared to vacuum)
on the magnetic deflection of β rays in his experimental configuration is negligible.
The configuration involved a photographic plate lying flat horizontally with a sample
about 1 mm in diameter in a holder on top of the plate, both plate and holder were
arranged in a glass tube that could be evacuated and placed between the poles of an
electromagnet with a horizontal magnetic field. The tube was evacuated and the
magnetic field applied deflecting the β rays in one direction. Then the magnetic field
was stopped, air allowed into the tube and the current reapplied to the electromagnet
in the opposite sense reversing the direction of the horizontal magnetic field. He
found that quantitatively the magnitude of the deflection was the same for both
configurations. This would justify the more convenient approach of measuring
magnetic deflection in air instead of in vacuum. Continuing (now §2), he measured
the magnetic deflection of β rays from two different radium samples; he found that
while the intensities of the radiation were different, the magnetic deflection remained
the same. In §3, Becquerel described configurations showing the curved trajectories
of the β rays from radium samples moving in a magnetic field. Here he placed a
horizontal photographic plate in the horizontal magnetic field of his electromagnet
with the edge of the plate near the central axis of the electromagnet. He turned the
plate with the emulsion side down, placed a lead sheet on the top, glass, side of the
plate, and then his small diameter sample on top of that. In that configuration, he
showed that the β rays from the sample traveling perpendicular to the magnetic field
were brought around full circle to strike the emulsion side of the photographic plate
opposite from the position of the sample. In an extension of this configuration, he
added a second photographic plate perpendicular to the first and butted against the
side of the first plate. In this way he would get images of the β rays partway through
their circular trajectory from the sample on top to the emulsion on bottom. There is
no figure with the article, and no indication of the pattern formed by the β rays on the
vertical photographic plate. It would be interesting to know what this pattern was for
reasons discussed below. Let’s set aside discussion of §4 for a moment and advance
to §5, the last section.
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He started the discussion in that section on page 210 by noting that, “the facts
which were just presented showed that a portion of the radiation from radium is
entirely similar to cathode rays, or to masses of negative electricity transported at
high velocity.” We need to be careful with this statement to understand what he
means by “similar to cathode rays.” The quoted sentence refers to negatively charged
particles, but not charge-to-mass ratio. This distinction was amplified by referring to
a review article by Becquerel from about the same time describing the same series of
experiments; in (Becquerel, Sur le rayonnement de l’uranium et sur diverses
propriétés physiques du rayonnement des corps radio-actifs, 1900c, p. 69), he writes
“To complete the identification of the deflectable radiation from radium and cathode
rays, it is sufficient to show, either that the radiation transports negative electrical
charges, or that it is deflected by an electrostatic field.” (He made a similar statement
twice in the preceding pages.) From my perspective, this is not sufficient since I view
it as also necessary to show that the charge-to-mass ratio of cathode rays and β rays
are the same in order to assure the identification of β rays as electrons.

Continuing the discussion in §5, he used the magnetic deflection of β rays to
estimate the mass-to-charge ratio. He supported this statement with the measurement
of magnetic field strength and radius of curvature giving a value of the charged
particle velocity times the mass-to-charge ratio, vm=e ¼ 1500. The remainder of §5,
appears to be part plausibility (if the velocity were in a particular range, then the
charge-to-mass ratio would agree with previous researchers) and feasibility (the
electrostatic deflection could be measured in a vacuum with electric field strength
comparable to those used for the cathode rays). This plausibility discussion brings
home an important point: he didn’t know the velocity of the β rays in his experiment
or even whether the velocities were roughly similar or vastly different and he did not
know whether he was dealing with a single kind of particle with one charge-to-mass
ratio or a mixture of different particles with varied charge-to-mass ratios. Further
information about the image on the vertical photographic plate in §3 might give
some indication of the size of the difficulty, but it was not provided.

Returning to discuss §4, Becquerel started with a description of images
suggesting fuzziness or “dispersion” in the spatial distribution of the β rays. He
suggested that this dispersion was because the magnetic field separates a heteroge-
neous beam of radiation. In hindsight we understand that the heterogeneity is due to
a single type of particle having a spectrum of velocities. Here Becquerel did not
come close to that understanding and it appears he suggested that the dispersion was
due to different types (or subtypes) of radiation and discussed adding thin metal
plates to the configuration as filters. While at this point Becquerel had shown that β
rays are charged particles, as had been shown with cathode rays, he did not have the
value of the charge-to-mass ratio for β rays that could be compared to the charge-to-
mass ratio for cathode rays.

While the sign of the charge of β rays could be inferred from the direction of
deflection of the β rays in (Becquerel, Contribution à l’étude du rayonnement du
radium, 1900a), two months later in March Pierre and Marie Curie (Curie & Curie,
Sur la charge électrique des rayons déviables du radium, 1900) presented a method
for determining the charge on the β rays that cleverly avoided the need for a vacuum.
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This allowed them to show, by a different route, that “The deflectable radiation from
radium is negative electrical charges.” They had tried to do this by spreading a
radioactive substance on one plate of a capacitor with an air gap and using an
electrometer to measure the sign and magnitude of the current between the two
plates. They were not able to measure the charge with this configuration and they
ascribed the difficulty to ionization of the air between the plates of the capacitor
leading to changes in its conductivity. One way to overcome this difficulty would be
to place the plates of the capacitor in a vacuum eliminating the air. Instead, they filled
the space between the plates with a solid dielectric, paraffin or ebonite, to seal out the
air. (Their actual configuration was slightly different than this suggests since, among
other things, the radium sample was placed against the side of one plate of the
capacitor away from the other plate.) The radium sample and the plate were
separated by a thin layer of aluminum and ebonite that also stopped the weekly
penetrating radiation from reaching the capacitor plate. They were then able to
measure a current with a piezoelectric electrometer. Repeating the experiment with
x-rays in place of the radium sample, they were not able to measure a current
distinguishable from zero. They conclude that, “most likely the radium is the source
of a continuous emission of negatively charged particles of matter.” We can add to
that qualification that they did not yet know the mass, magnitude of the charge, or
even the charge-to-mass ratio of the particles.

Later that same month, Henri Becquerel (Becquerel, Déviation du rayonnement
du radium dans un champ électrique, 1900b) reported on continuation of his work.
His goal was still to be to get “the ratio of the material masses born to the charge that
they transport.” In this configuration, he directed the beam of penetrating radiation
from his radium sample between two conducting plates with a voltage difference
applied to them. In his previous paper (Becquerel, Contribution à l’étude du
rayonnement du radium, 1900a), Becquerel indicated that it would be necessary to
do this in vacuum to achieve the necessary electric field strengths. However, in the
fourth paragraph of this paper (Becquerel, Déviation du rayonnement du radium
dans un champ électrique, 1900b), Becquerel writes, “After several attempts to get,
in vacuum, very large electrostatic fields, I returned to a configuration that I had used
three months ago.” He had reached a limit in the core competence of his laboratory.
He was able by working in air to measure the electrical deflection and get a value
proportional to v2m=e . Again, as with magnetic deflection, he found a spread of
electrostatic deflections and tries to filter them with different thicknesses of alumi-
num; this did not lead to any particular resolution. Using his value for vm=e from the
earlier magnetic deflection work with his value for v2m=e from this electrostatic
deflection work he suggests a value of v ¼ 1.6 � 1010 cm/s. He writes that, “this
number is given here only to show the order of magnitude of the velocity.”

This in fact shows a limit in what Becquerel could do in his lab. Writing three
years later (Becquerel, Recherche sur une propriété nouvelle de la matière, 1903,
p. 181), he reviewed some of the difficulties: diffusion of the rays in air, beam
collimation, beam intensity requiring long exposures with stable voltages, and the
“insufficient resources in my laboratory.” He was not the only one to have difficul-
ties. Working at about the same time in Halle, Germany, Ernst Dorn also tried to
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measure the electrostatic deflection of rays from radium (Dorn E. , 1901). He also
worked in air and had difficulties with beam intensity. Instead of using photographic
plates he used a barium platinum cyanide phosphor screen. The spot on the phosphor
could only be seen in a completely dark room with dark-adjusted eyes; it was not
possible to make quantitative measurements. Becquerel had needed photographic
exposures lasting days. In a letter dated April 15, 1900 Ernst Dorn provided Henri
Becquerel the citation for this work and indicated that he had not yet made quanti-
tative measurements (Dorn E. , 1900).

The following year, Walter Kaufmann (Die magnetische und electrische
Ablenkbarkeit der Becquerelstrahlen und die scheinbare Masse der Elektronen,
1901a) was able to overcome the challenges that had stopped Becquerel and Dorn.
(Kaufmann had provided a preliminary description of the configuration, before
adjustment of field values, about five months earlier (Kaufmann, Methode zur
exakten Bestimmung von Ladung und Geschwindigkeit der Becquerelstraheln,
1901b).) Notably he put the entire path for the rays being measured in a vacuum;
this eliminated any scattering by air and any interference with the imposed electric
and magnetic fields due to secondary ions. He also used a fine hole as a diaphragm to
produce a narrow beam and exposures lasting four days. He then used crossed
electric and magnetic fields to spread the beam by velocity (v) and charge-to-mass
ratio (e/m) resulting in a curve on these two axes on a target photographic plate. The
result was a clean curve tracing the dependence of the charge-to-mass ratio on
velocity of the electron. The spread of the curve along the axis proportional to
velocity shows that the particles have a range of velocities when they pass through
the crossed electric and magnetic fields, and that the dispersion seen by Becquerel
(as a fog in his images) is due to this range of velocities and not to different types of
particles within the β rays.

The results are presented in Table I of (Kaufmann, Die magnetische und
electrische Ablenkbarkeit der Becquerelstrahlen und die scheinbare Masse der
Elektronen 1901a, p. 152) and the last two columns are reproduced above in
Table 8.1.

The results again have the same order of magnitude, 107 cgs, as found by J. J.
Thomson, Lenard, Becquerel and discussed previously. However, it can be imme-
diately seen that the charge-to-mass ratio more than doubles over this small range of
velocities, and decreases steadily as the velocity increases. This is a striking feature
that needs explanation. Kaufmann presents a theory in which the mass observed
during the deflection of the β rays in the crossed electric and magnetic field is equal
to the sum of the true mass and a contribution from electromagnetic self-energy. His

Table 8.1 Charge-to-mass
ratio reproduced from
(Kaufmann, Die magnetische
und electrische Ablenkbarkeit
der Becquerelstrahlen und die
scheinbare Masse der
Elektronen, 1901a, p. 152)

Velocity v
(1010 cm/s)

Charge to Mass e/m
(107 cgs)

2.83 0.63

2.72 0.77

2.59 0.975

2.48 1.17

2.36 1.31
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Table II presents observed and calculated values according to this theory (they are
not reproduced here). The agreement is good, but the number of points is small.
However, more than the agreement, the explanation is interesting because it brings
electromagnetic self-energy into consideration.

Kaufmann provided further measurements and their analysis in two subsequent
papers: (Kaufmann, Die electromagnetishe Masse des Elektrons, 1902) and
(Kaufmann, Über die “Elektromagnetische Masse” der Elektronen, 1903).
(It should be noted Runge provided an improved analysis of the data presented in
Kaufmann’s second paper and the methodology and results appear in (Runge,
1903).) Here again a correction was applied for the electromagnetic self-energy: in
(Kaufmann, Die electromagnetishe Masse des Elektrons, 1902) it is the factor
4=3ψ βð Þ given in equation 2 and in (Kaufmann, Über die “Elektromagnetische
Masse” der Elektronen, 1903) the same factor is given in equation 10 and the
unnumbered equation immediately below it. In support of this factor, Kaufmann
cites Max Abraham (Abraham, Dynamik des Electrons, 1902) and (Abraham,
Prinzipien der Dynamik des Elektrons, 1903); we will come back to this theory of
electron dynamics by Abraham in Chapter 9.

There is an alternative to this factor, 4=3ψ βð Þ, and it was presented by Lorentz in a
work that will also be discussed in Chapter 9 (Lorentz, Electromagnetic phenomena
in a system moving with any velocity smaller than that of, 1904). There Lorentz
re-analyzes other data from (Kaufmann, Die electromagnetishe Masse des Elektrons,
1902) removing Kaufmann’s correction from Abraham’s theory and applying a

correction of 1� v=cð Þ2
� ��1=2

, the transformation from the relativistic mass to the

rest mass of the electron derived by Lorentz in that paper. The results of the
recalculation were presented in Tables III and IV on page 828 of (Lorentz, Electro-
magnetic phenomena in a system moving with any velocity smaller than that of,
1904) which corresponds to page 277 in Part III of this book. In looking at these
tables prepared by Lorentz from Kaufmann’s data, the question to ask is whether the
value k2 with the correction from Abraham or the value k02 with the correction from
Lorentz is better at removing the velocity dependence. Lorentz observes, “The
constancy of k02 is seen to come out no less satisfactory than that of k2.” Chapter 9
confirms that Lorentz could have made a much stronger statement.

The Lorentz transformation of the charge-to-mass ratio to the rest frame can
likewise be applied to Kaufmann’s values from (Kaufmann, Die magnetische und
electrische Ablenkbarkeit der Becquerelstrahlen und die scheinbare Masse der
Elektronen, 1901a) reproduced in Table 8.1, above. The result is shown in Table 8.2.

Somewhere between Becquerel, Kaufmann and this recalculation by Lorentz, all
the pieces are in place for declaring that β rays are electrons like cathode rays;
Kaufmann even uses the name electron in his title. The apparent velocity dependence
of the β ray charge-to-mass ratio that concerned Becquerel is an effect of special
relativity and is accurately explained by the Lorentz transformation between the
increased mass of the relativistic electrons traveling through the crossed electric and
magnetic fields in the apparatus and the rest frame mass of the electron. The
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transformation completely removes the velocity dependence of the charge-to-mass
ratio once the mass is referred to the rest frame of the laboratory.

The same experiment as (Kaufmann, Die magnetische und electrische
Ablenkbarkeit der Becquerelstrahlen und die scheinbare Masse der Elektronen,
1901a) was repeated seven years later by Alfred H. Bucherer with more accurate
equipment and using the Lorentz transformation to the rest mass of the electron in
the measured charge-to-mass ratio (Bucherer, 1908). He found a value for the rest
frame charge-to-mass ratio (e/m0) of 1.730 � 107 cgs. (This value appears in a
supplement that could be a note added in proof, and not in the values in the table.)
This is within 2% of the current accepted value, 1.759 � 1011 Ckg�1 (National
Institute of Standards and Technology, n.d.).6 Although referencing Kaufmann’s
work, Bucherer does not mention or discuss the recalculation done by Lorentz. The
recalculation by Lorentz of Kaufmann’s measurements and this more accurate
measurement by Bucherer are perhaps the earliest confirmations of Lorentz trans-
formations and Einstein’s theory of special relativity.

Digressions

Zeeman Effect

In a series of papers published in 1897, Pieter Zeeman described the results of
experimental work on broadening and splitting of emission spectral lines in strong
magnetic fields done while at the University of Leiden. This phenomenon is now
known as the Zeeman effect. Pieter Zeeman and Hendrik Lorentz shared the 1902
Nobel Prize in physics for “their researches into the influence of magnetism upon
radiation phenomena.”

Table 8.2 Charge-to-mass ratio from (Kaufmann, Die magnetische und electrische Ablenkbarkeit
der Becquerelstrahlen und die scheinbare Masse der Elektronen, 1901a, p. 152) after transformation
to the rest frame

Charge to Mass e/m0

(107 cgs)

1.432

1.374

1.452

1.562

1.593

While Table 8.2 applies the Lorentz transformation to Kaufmann’s stated results, a reanalysis of
Kaufmann’s data is continued in Chapter 9 (p. 178–83) and a curve is fit to his raw measurements of
the electric and magnetic deflections. Those results are in Table 9.1 and the average charge to mass
ratio is 1.641 � 107 CGS.

6The average result from recalculation in Table 8.1 is within about 7%.
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This work deserves to be included in a chapter on discovery of the electron
because Zeeman and Lorentz (and also Poincaré, (Poincaré, La théorie de Lorentz
et le phénomène de Zeeman, 1899)) interpreted it as related to the movement of
electrons within an atom. Unlike other research considered in these chapters, this
work at the University of Leiden did not involve free electrons outside an atom.
Promptly after learning of Zeeman’s results, Lorentz provided a theoretical explana-
tion including a charge-to-mass ratio determined from the experimental results that
was close to other values being measured at the time. This was seen then as persuasive
evidence that the same electrons observed separately were also present within atoms.
However, their interpretation of the results as splitting related to the movement of
electrons within an atom is correct only if one doesn’t look past the surface. Also, the
multiplicity of the splitting of the spectral lines for different atoms (e.g. sodium, iron)
and lines, and their optical rotation proved difficult for them to explain.

Looking back, the apparent agreement of the estimate by Lorentz, based on
Zeeman’s measurements, of the electron charge-to-mass ratio with values obtained
by J. J. Thomson can only be seen as fortuitous. There were simply too many factors
necessary for an explanation (too much below the surface) that were not accessible.

It would be over 30 years before all the necessary pieces of theory and explana-
tion would be in place. An explanation of the discrete frequencies of the un-split
atomic emission lines requires an understanding of the quantized nature of light, and
of the quantized electron orbitals in atoms together with their energy levels (the Bohr
model of the atom); an explanation of the splitting further requires an understanding
of the quantized electron spin of one half (provided by (Dirac, 1928)).

Henri Becquerel, and Pierre and Marie Curie

The work jointly and individually of Henri Becquerel, Pierre Curie and Marie
Sklodowska Curie between 1896 and 1903 is a key part of the historical narrative
in this chapter. In the record of the published articles, the professional relationship
appears to have been collegial, supportive and mutually beneficial. Henri provided
clever insights and ideas: looking for x-ray like radiation from natural sources, trying
uranium, controlling unused photographic plates, using an electroscope to detect
radiation and measuring the charge-to-mass ratio of the deflectable radiation. Pierre
provided precision instrumentation for measuring leakage current, mass and pene-
trating power of radiation. And Marie provided a determination and persistence that
allowed her first to test a large number of substances (including thorium and
pitchblende ore) for radiation, and then to process a ton of uranium processing
tailings (Sklodowska Curie M. , 1899) to extract radium and polonium to determine
the atomic weights. The people themselves were as diverse as the talents they
contributed. Henri Becquerel was an insider; he was a third-generation member of
the Académie des sciences. He was a graduate of a prominent school, the École
Polytechnique, as was Henri Poincaré. Pierre Curie was a graduate of the Faculté des
sciences de Paris, who saw himself as an outsider, and shy. Marie Curie was a
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woman, a foreigner, and, until shortly before she won a Nobel Prize, a doctoral
student. This mix of talents and people seemed to work well.

Then something changed.
This section has cited numerous papers appearing in the minutes of the weekly

sessions of the Académie des Sciences (les Comptes rendus). For a note to appear in
the minutes the author had to be a member of the academy or have a member of the
academy present it for them. Henri Becquerel was a member throughout this time.
Pierre Curie was elected as a member in 1905, the second time he was presented, and
died a year later. Marie Curie never became a member, even after her second Nobel
Prize. This means that except for one paper in early 1906 Pierre and Marie were
dependent on someone else to present their work to the academy. The entries for
Pierre and Marie Curie in the author index for volumes 122 to 151 of the minutes
(Les Secrétaires Perpétuels, 1927, pp. 161–2) show that from the beginning of 1896
till May 1902 when he was first presented as a candidate for membership in the
academy, Pierre Curie had 15 notes published in the minutes where he was the
author or co-author. Checking the first page of each article, it can be seen that only
two were not presented to the academy by Henri Becquerel. After May 1902 until his
death in 1905, nine more notes were published; none of them were presented by
Henri Becquerel. For the same two time periods the numbers of articles for Marie
Curie (excluding notes where she was a co-author with Pierre Curie to avoid double
counting) are less dramatic. Before, of six articles presented, half were presented by
Henri Becquerel; after, there were two articles, and neither was presented by Henri
Becquerel. There is a clear and clean break in collaboration between Pierre Curie and
Henri Becquerel occurring around May 1902. In fact, among the numerous letters of
condolence to Marie Curie after the death of Pierre, the index to the Pierre and Marie
Curie manuscript archives at the Bibliothèque nationale de France does not list one
from Henri Becquerel.

What happened?
Something put the relationship between Pierre Curie and Henri Becquerel under

strain and it reached a breaking point at the time of the first vote of the Académie des
sciences on Pierre Curie’s membership. Pierre Curie wrote to Georges Gouy in a
letter dated March 20, 1902, shortly before this first vote, (Curie P. (n.d.), Pierre et
Marie Curie. Papiers. V — DOCUMENTS A CARACTERE PRIVE. CLI
Correspondance de Pierre Curie et Georges Gouy.) that a lot of hassle had come
with their good fortune and they scarcely had time to breathe. He then writes, “I will
certainly please you by telling you that out of everyone Becquerel is the one who
bothers us the most and we’ve had it up to here with him.” In a subsequent letter in
the same collection, dated June 9, 1902, a week after it was announced that Pierre
Curie was not elected member, he again wrote to Georges Gouy and complained
about the loss and about the tactics of the winning candidate. He then wrote, “Finally
Becquerel, although having declared himself for me, played, I’m sure of it, a double
game. In any case I am convinced that he was delighted that I didn’t get in and I also
think that he must’ve voted for [the other candidate].” There is nothing in this letter
or in subsequent letters in this collection to indicate why Pierre Curie was sure of
these assertions against Henri Becquerel.
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Health Effects

Henri Becquerel, Pierre and Marie Curie, F. Giesel and others were all exposed to
significant quantities of radiation during their work with consequent health effects.
Pierre Curie, in confirming an earlier experiment by Friedrich Giesel (Giesel, Ueber
radioactive Stoffe, 1900), deliberately exposed his forearm to radiation from radium
(“with relatively weak activity”) for 10 hours; the resulting lesion had not fully
healed 52 days later (Becquerel & Curie, Action physiologique des rayons du
radium, 1901). On April 3 to 4, 1901 Henri Becquerel suffered a significant burn
from carrying radioactive materials in his vest pocket (Becquerel & Curie, Action
physiologique des rayons du radium, 1901). In the same report, it is indicated that
Pierre and Marie Curie had both experienced burns to their fingers resulting in
blisters or desquamation. Pierre Curie died in April 1906 at 46 years old, but not
from radiation; in an apparent incident of distracted walking, he bumped into a horse
and fell while crossing a street, and was killed by the traffic. Two years later
Becquerel died at an age of only 54 years; although the cause of death was not
specified, radiation damage to his heart could be a possibility. Friedrich Giesel died
in 1927 of lung cancer that had metastasized from a carcinoma on his right index
finger attributed to radiation from radium (Stolberg-Wernigerode, 1964). Marie
Curie’s situation was likewise unambiguous; she died in 1934 of aplastic anemia,
most likely from long-term exposure to radiation. Although Henri Becquerel may
have been an early death from radiation poisoning, he was not the first. Clarence
Dally, who may have been the first, died in 1904. He was a glassblower working for
Thomas Edison to develop and improve tubes to generate X-rays; he was exposed to
large quantities of radiation during this work with severe health consequences that
led to his death (Brown, 1995).
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Chapter 9
Contributions of Abraham, Lorentz
and Poincaré to Classical Theory
of Electrons

Introduction

The experimental investigation of cathode rays and of penetrating and electrically
deflectable radiation from radioactive decay described in Chapters 7 and 8 of Part II
demonstrated that both are moving electrons. This discovery of electrons empha-
sized a need for a theory of electrons. The article by Poincaré (Poincaré, Sur la
dynamique de l’électron 1906), translated in Part I of this book and presenting a
theory of electrons, builds on and continues beyond slightly earlier articles by Max
Abraham (Abraham, Dynamik des Electrons 1902a) and (Abraham, Prinzipien der
Dynamik des Elektrons 1903), and by Hendrik Lorentz (Lorentz, Electromagnetic
phenomena in a system moving with any velocity smaller than that of 1904). For the
convenience of interested readers, a reformatted copy of Lorentz’s article is provided
in Part III. These theories are the subject of this chapter.

Lorentz’s 1904 paper presents his theory at a mature stage. His earlier work on
electrodynamics extended over much of the previous decade with notable contribu-
tions in 1892 and 1895 (respectively (Lorentz, La théorie électromagnétique de
Maxwell et son application aux corps mouvants 1892) and (Lorentz, Versuch einer
Theorie der electrischen und optischen Erscheinungen in bewegten Körpern 1895)).
Lorentz’s theory and also Larmor’s ether vortex theory (Larmor 1893) provide an
atomistic basis for electrodynamics (Darrigol, The Electron Theories of Larmor and
Lorentz: A Comparative Study 1994). Their theories can be understood as a second
phase of understanding and applying James Clerk Maxwell’s treatise on electricity
and magnetism. In a first phase, Oliver Heaviside, Oliver Lodge and others (together
referred to as the Maxwellians) consolidated the theory by reducing the number of
equations, clarified it by adopting compact vector notation, and used it to solve
practical problems, notably electrical signal propagation in undersea cables (Hunt,
1991). The second phase then involves efforts to understand current and dielectrics
in terms of moving bodies (corps mouvants or bewegtern Körpern in the titles of
Lorentz’s papers cited above) in place of Maxwell’s continuous medium.
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Importantly, there were conflicting ideas about whether these moving bodies are a
manifestation of the ether or instead have an independent mechanical nature. In
connection with Lorentz and this second phase, McCormmach discusses the elec-
tromagnetic worldview and states that it “asserted that the only physical realities are
the electromagnetic ether and electric particles and that all laws of nature are
reducible to properties of the ether, properties which are defined by the electromag-
netic field equations.” (McCormmach, 1970, p. 459).

This context from the 1890s suggests some issues to look for in reading and
comparing the articles by Abraham, Lorentz and Poincaré from 1902, 1904 and 1906
respectively. What is the role of ether, meaning a pervasive, continuous medium?
Importantly, how do the theories address the Michelson-Morley experiment that was
already 20 years old? What is the origin of mass, is mass exclusively electromag-
netic? From a mechanical view, the relation of the theories to established laws of
motion are important. Experimental values were available for the electron charge-to-
mass ratio and they showed a velocity dependence. Could the theories account for
the velocity dependence? What did they say about other properties of the electron
such as shape and size?

Max Abraham1

In three papers Max Abraham presents his theory of electron dynamics: (Abraham,
Dynamik des Electrons, 1902a), (Abraham, Prinzipien des Dynamik des Elektrons,
1902b) and (Abraham, Prinzipien der Dynamik des Elektrons, 1903). These publi-
cation dates place him first among the three authors of electron theories presented in
this chapter. The three articles present largely the same theory with different levels of
discussion and detail, and some differences in secondary matters discussed.

Max Abraham is motivated in this work by measurements in (Kaufmann, Die
magnetische und electrische Ablenkbarkeit der Becquerelstrahlen und die
scheinbare Masse der Elektronen, 1901) showing that the charge-to-mass ratio of
electrons depends on velocity. Working in the context of Lorentz’s theory of
electrodynamics of moving particles (Lorentz, Versuch einer Theorie der
electrischen und optischen Erscheinungen in bewegten Körpern, 1895), Abraham
(Dynamik des Electrons, 1902a) asks two questions about this dependence on
velocity. “Is it possible to derive that correlation quantitatively from the differential
equations of the electromagnetic field? Can the inertia of the electron be completely
explained by the dynamic effect of its electromagnetic field, without invoking a mass
that is independent of electrical charge?” And indicates that, “Only if these questions
can be answered in the affirmative can one see any possibility of an entirely
electromagnetic foundation of mechanics.” Abraham sees the velocity dependence

1Translations from German of quotes used in this section were provided by Nick Hartmann.
Personal Communication February 13, 2020.
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found by Kaufmann as a means to test, possibly even confirm, a view of mechanics,
notably inertial mass, as fundamentally electromagnetic in nature; that is to say, a test
of an electromagnetic worldview. Abraham sets for himself the challenge of answer-
ing these two questions.

To clarify what is meant by electromagnetic mass, we can refer to equation 3 in
(Abraham, Dynamik des Electrons, 1902a, p. 24) which, after adapting the notation,
is:

M þ mð Þ dv
dt

¼ F: ð9:1Þ

where, by definition, M is the material mass and m is the electromagnetic mass.
Using this notation, the two questions quoted in the previous paragraph ask whether
it is possible to find a theoretical expression for m(v) that fits the data and whether
M ¼ 0.

Subsequent discussion in this article and elsewhere refers to transverse and
longitudinal mass; this refers to a possible difference in inertia depending upon
whether an applied force is perpendicular or parallel to the instantaneous velocity.
This results in two equations:

M þ m⊥ð Þ dv
dt

¼ F⊥:

M þ mk
� � dv

dt
¼ Fk:

respectively for the case when the force is perpendicular to the velocity and when the
force is parallel to the velocity, and where, again by definition, m⊥ is the transverse
mass and mk is the longitudinal mass. The case of a force oblique to the velocity
becomes more complicated since, as observed by (Abraham, Dynamik des Elec-
trons, 1902a, p. 28), the electromagnetic mass is no longer a scalar.

Almost immediately, Abraham recognizes and acknowledges two significant
problems affecting progress on this challenge.

The first significant problem relates to the size of the electron. In (Abraham,
Dynamik des Electrons, 1902a, p. 22), he states, “The electron would need to be
regarded here not as a point charge but rather as having spatial extent, since a point
charge would represent an infinite supply of energy.” The self-energy of the (clas-
sical) point charge is infinite. The apparent resolution is to assume that an electron
has a shape, which is not a point, and a characteristic dimension, which is not zero.
These two assumptions lead to another question: how is the charge distributed over
the shape? For a macroscopic, perfectly conducting sphere, the charge is uniformly
distributed over the outermost surface. In contrast for perfect insulator the charge is
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locked in place and might for example be uniformly distributed over the full volume.
We’re now up to three assumptions involved in calculating the self-energy.2

The second significant problem relates to the computational difficulty of calcu-
lating the field of the moving electron and the interaction of the electron with its own
field. Here, Abraham (Dynamik des Electrons, 1902a, p. 23) observes, “That path
appears to be inaccessible, however, given the present-day state of theory: merely
calculating the field of a nonuniformly moving electron is extraordinarily
complex.”3

Abraham attempts to get around this problem by considering the total energy in
the electric and magnetic fields of an electron moving at a constant velocity. This
eliminates acceleration of the electron from consideration and makes the problem
independent of time—consequently, no consideration of retarded potentials, for
example, is needed, and there is no radiation damping. The core of this approach
comes from (Kaufmann, Die magnetische und electrische Ablenkbarkeit der
Becquerelstrahlen und die scheinbare Masse der Elektronen, 1901, p. 153), where
he presents it in a little more than one page. Kaufmann’s approach is built on two
parts.

The first is presented in the beginning of equation 13 in (Kaufmann, Die
magnetische und electrische Ablenkbarkeit der Becquerelstrahlen und die
scheinbare Masse der Elektronen, 1901, p. 153):

mk ¼ 1
v
dW
dv

: ð9:2Þ

W is the total energy in the electric and magnetic fields of the electron moving with a
velocity v. Although (Kaufmann, Die magnetische und electrische Ablenkbarkeit der
Becquerelstrahlen und die scheinbare Masse der Elektronen, 1901) does not distin-
guish longitudinal and transverse mass, it is clear from subsequent discussion that his
equation 13 gives the longitudinal mass.

And the other part is the total electric and magnetic field energy of a sphere of
radius a and charge e traveling with a constant velocity v, with, β ¼ v/c. This part is,
from equation 12 on the same page:

W ¼ e2c2

2a
1
β
ln

1þ β
1� β

� 1

� �
: ð9:3Þ

Kaufmann cites (Searle, 1897) as the origin of this formula. Adapting for
differences in notation, this is the same as equation 25 in (Searle, 1897, p. 340).
The context and meaning of the equation discussed by Kaufmann match the

2For more recent context for this problem, the reader may consult (Feynman, Leighton, and Sands
1963) Volume II, Chapter 28, Electromagnetic Mass.
3And for this problem, the reader may consult (Jackson, Classical Electrodynamics 1999)
Chapter 16, Radiation Damping, Classical Models of Charged Particles (roughly sections
16.1–16.4).
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development and explanation given by Searle; the formula applies to a charged
sphere moving at a constant velocity.

Substitution of equation 9.3 into 9.2 results in:

mk ¼ e2

2a
1
β2

1
β
ln

1� β
1þ β

þ 2
1� β2

� �
: ð9:4Þ

Equation 9.4, in some form and with the associated assumptions, is, equation
13 in (Kaufmann, Die magnetische und electrische Ablenkbarkeit der
Becquerelstrahlen und die scheinbare Masse der Elektronen, 1901, p. 153), equation
25e in (Abraham, Dynamik des Electrons, 1902a, p. 38), equation 10a in (Abraham,
Prinzipien des Dynamik des Elektrons, 1902b, p. 61) and equation 16e in (Abraham,
Prinzipien der Dynamik des Elektrons, 1903, p. 152).

Abraham, (Dynamik des Electrons, 1902a, p. 21) does mention both papers by
Kaufmann and Searle (referenced above) but indicates the need for substantial
additional study. His study extends over many pages and I have been selective in
looking at his treatment of the velocity dependence of electromagnetic mass and his
reasoning contributing to it.

Abraham provides a justification for equation 9.2 by relating the change in the
total energy of the electron, including the kinetic energy and the energy in the
electric and magnetic fields, to the work done on the electron by a force parallel to
the steady velocity of the electron. This leads fairly directly to equation 8 (Abraham,
Dynamik des Electrons, 1902a, p. 26), which is the same as equation 9.2 above. This
reasoning is filled with conflicting assumptions: the electron is assumed to be
traveling at a constant velocity without acceleration, and then assumed to be subject
to a force that does work and changes the total energy. The calculation of the
differential work is based on the velocity from the ongoing steady displacement
and not from a differential velocity produced by the force. Any change in the kinetic
energy is neglected; Abraham may even implicitly assume that the kinetic energy is
associated only with the mechanical mass. It is hard to see how this mix of
assumptions sorts itself out. In (Poincaré, Sur la dynamique de l’électron, 1906,
pp. 159–60; p. 82–83) and notably equation 4, Poincaré approaches these assump-
tions differently. Here he reasons from the electromagnetic action, the speed of the
electron and its shape. Recognizing the need, without approximation, to consider the
retarded potentials, Poincaré makes the simplifying assumption that the higher order
derivatives of the action with respect to the velocity and shape can be neglected
compared to the first order derivatives. This eliminates acceleration and is therefore
quasi-stationary. He does derive equation 9.2, moving it to more solid dynamical
ground. I am skeptical about the usefulness of a quasi-stationary assumption here.4

In equation 25d (Abraham, Dynamik des Electrons, 1902a, p. 38) provides a
formula for the transverse mass, a companion to Equation 9.4. Here the reasoning

4For possible comparison with Einstein see §10 of (Einstein, Zur Elektrodynamik bewegter Körper
1905).
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seems on more satisfying ground; a force perpendicular to the velocity results in a
shift in the direction of motion comparable to a circular motion with a very large
radius of curvature. He can relate the force to the centripetal acceleration and the
change in angular momentum. Also, here, U is the Lagrangian, so equation 25d
could also be based on equating the conjugate momentum to the derivative of the
Lagrangian with respect to velocity.5

m⊥ ¼ e2

2a
1
β2

1þ β2

2β
ln

1þ β
1� β

� 1

� �
: ð9:5Þ

Once (Abraham, Dynamik des Electrons, 1902a) makes this distinction between
the longitudinal and transverse mass and provides a formula for calculating the
transverse mass, Kaufmann only calculates the transverse mass. Equation 9.5 is
equation 15 in (Kaufmann, Über die electomagnetische Masse des Elektrons, 1902b,
p. 294), equation 2 in (Kaufmann, Die electromagnetishe Masse des Elektrons,
1902a, p. 54), and equation 10 in (Kaufmann, Über die “Elektromagnetische
Masse” der Elektronen, 1903, p. 96). Equation 9.5 is also part of Equation 9.7 below.

The point I am emphasizing here is that the only explicit formula for the
dependence of (transverse) mass on velocity from Abraham and also the only one
used in Kaufmann’s analysis of his data is based on the assumption of a spherical
electron with a constant radius.

An electron that changed shape as it moved would require associated internal
forces and self-energy (now referred to as Poincaré stress and discussed starting on
page 189 below) that could not be of electromagnetic origin. Forces that are not of
electromagnetic origin are inconsistent with an electromagnetic worldview.

Abraham is more emphatic about this point in (Abraham, Prinzipien der Dynamik
des Elektrons, 1903, p. 108), writing, “Also the assumption of a deformable electron
seemed to me to be inadmissible for reasons of principle. For it leads to the
consequence that in the change of shape work is done by the electromagnetic forces,
or against them, that thus besides the electromagnetic energy an inner potential
energy of the electron is to be used. If this were really necessary, the electromagnetic
justification of the theory of cathode and Becquerel radiation, a purely electrical
process, would already be impossible.”

An electron that does not change shape avoids that problem, but it is inconsistent
with both the observational failure to detect movement relative to the ether and with
the principle that absolute motion cannot be detected. While Abraham chooses to be
consistent with the electromagnetic worldview, there is clearly no way forward for
an assumption of an undeformable electron.

Poincaré’s discussion of the forces internal to the electron is covered in the last
section of this chapter.

5In Equation 9.2W is the total energy, not the Lagrangian, so this reasoning would not apply there.
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Hendrik Lorentz

Lorentz’s paper (Lorentz, Electromagnetic phenomena in a system moving with any
velocity smaller than that of, 1904) starts with a discussion of experiments to
determine the “influence exerted on electric and optical phenomena by a translation,
such as all systems have in virtue of the Earth’s annual motion.” This discussion
refers first to the Michelson-Morley experiment—that led Lorentz and Fitzgerald “to
the conclusion that the dimensions of solid bodies are slightly altered by their motion
through the ether”—and continues with the experiments within the previous few
years that also showed no effect. Lorentz is persuaded of the existence of the ether
and is seeking to reconcile its existence with negative experimental results.

Continuing, Lorentz presents the equations of electrodynamics with the equation
for the electrical and magnetic force per unit charge in his equations 2 and the
Lorentz transformations in equations 3 to 5 (in this book, these equations are
reproduced in Part III on page 262). He proposes to refer the equations of electro-
dynamics to a system moving at a constant velocity. Lorentz does not use terms
suggesting that the untransformed equations refer to a state of absolute rest, but this
is not excluded when reading between the lines. Note that the transformation defined
in equations 4 and 5 contain a numerical quantity, l, that will be discussed later. At
this point in the article, Lorentz allows that it could be a second or higher order
function of the velocity of the moving system.

Lorentz’s application of the transformation to the equations of electrodynamics
and the electromagnetic force leads to the equations of electrodynamics (equation 9)
and the force (equation 10) in the moving system. Upon comparing Lorentz’s
equations of electrodynamics in the moving system (equation 9) to the equations
in the stationary system (equation 2), it is immediately clear, in Lorentz’s derivation,
that the equations of electrodynamics have been changed by the transformation to
the moving system because in the equation for the divergence of the electric
displacement in the moving system, the charge density has been multiplied by a
factor of 1� wu0x=c

2
� �

; the other three equations are however unchanged.
This factor, multiplying the charge density, should not have been there; it results

from an error in applying the transformations from the stationary system to the
moving system. It is surprising that an article of such historical importance for its
presentation of the transformations now named after the author would have an error
so evident in hindsight. The error however did not go unobserved; within a year it
was found by Poincaré who commented on it in two places.

First Poincaré pointed out this error in a letter to Lorentz from about April
27, 1905 (Kox, 2008, pp. 176–8, letter 126; p. 37–9)6. (There is a translation of
this letter in Chapter 3 of this book on page 37.) This letter was written just over a
month before the weekly session of the Académie des Sciences when Poincaré
presented (Poincaré, Sur la dynamique de l’électron, 1905). Poincaré quotes the

6Here and elsewhere, the first page number refers to the original publication and the second page
number (following the semicolon) refers to the page number in Part I of this book.
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transformation of the charge density (equation 7) in (Lorentz, Electromagnetic
phenomena in a system moving with any velocity smaller than that of, 1904,
p. 813; p. 263)7 and provides his correction. He also provides his corrections to
the transformation of the electromagnetic force per unit charge to the moving
system. The error and corrections are discussed more below.

Second, in Poincaré’s discussion of the transformation and their application to the
equations of electrodynamics (Poincaré, 1906, pp. 133–4; p. 49–50), he states that he
has a divergence from Lorentz: Lorentz’s equations 7 and 8. The first equation
(equation 7) relates the charge density in the moving system and the charge density
in the stationary system. It is incorrect because it does not reflect a correct calculation
of the unit volume of the moving charge seen in the stationary system. Poincaré
provides the correct relationship between the two charge densities in his equation
4. Comparing their definitions of the terms, we can see that the factor 1� wu0x=c

2
� �

in Lorentz’s notation is written (1 � Eξ0) in Poincaré’s notation. Further, using the
identity written below Poincaré’s equation 4 and the definition of k, we can rewrite
this factor as [k2(1 + εξ)]�1, and it becomes clear that Poincaré’s correction to the
transformation of the charge density eliminates the extraneous factor multiplying the
charge density in the equation for the divergence of the displacement. The second
equation (equation 8) relates the velocity of the electron in the stationary system to
the velocity in the moving system; it reflects an incorrect composition of the two
velocities. Poincaré notes that while the two equations are incorrect, the product of
the transformations of the charge density and velocity are correct.

This same extra factor in the divergence of the displacement also shows up in
equations 10 and 13 (Lorentz, Electromagnetic phenomena in a system moving with
any velocity smaller than that of, 1904, pp. 813–814; p. 263–4). In equation 10 for
the force on the unit charge, it results in a missing term, u0xD

0
x in the final parentheses

of the x component of the force and in extra terms at the end of the y and
z components of the force. In equation 13, which gives the displacement in the
moving system as a function of the vector and scalar potentials, the term þ w

c grad
0Ax

is extra.
Although the charge density appears again in the formula for the curl of the

magnetic field, there it appears as a product with the velocity and is correct because
of the compensating errors mentioned at the end of an earlier paragraph.

Taking a step back, perhaps for additional confirmation, Poincaré shows that with
his transformation of the charge density, the continuity equation for charge density,
satisfied in a stationary system, is also satisfied in the moving system.8 Stated
differently, he confirms the charge is conserved in both the stationary and moving
systems.

7Equation 19a in (Abraham, Dynamik des Electrons, 1902a, p. 33) has the same relation between
moving and resting charge density as equation 7 in (Lorentz, Electromagnetic phenomena in a
system moving with any velocity smaller than that of, 1904, p. 813; p. 263).
8This point is discussed further in a following section on Poincaré’s contribution and starts on page
184.
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We, also taking a step back, can take a second look at Lorentz’s transformations
of the spatial coordinates and time given in the equations 4 and 5. First note that there
is a typo in the first term on the right-hand side of equation 5; that term, lk t, should be
written klt9. Substantively, the transformation for the x-coordinate, parallel to the
velocity w, does not include this velocity and should be rewritten x0 ¼ kl(x� wt). Did
this contribute to the errors in his equations 4 and 9?

In any case, the error in Lorentz’s equation 9 prevents him from seeing that the
equations of electrodynamics are unchanged under his transformation. In contrast,
equations 9 and 12 as written even suggest that an experiment might be conceived
for determining the direction and magnitude of velocity of the moving system. That
would offer a means for measuring the velocity of the laboratory relative to ether at
absolute rest. Lorentz does not comment on this possibility.

On the same page, there is a very important concept that Lorentz presents: local
time. Local time is the time (t0) in the moving system and is related to the time in the
system at rest by a transformation that mixes the velocity of the moving system with
the time and position in the stationary system (Lorentz, Electromagnetic phenomena
in a system moving with any velocity smaller than that of, 1904, pp. 812; p. 262, eqn.
5). Local time was an earlier introduction of Lorentz retained in this paper. Poincaré
had discussed local time in (Poincaré, La théorie de Lorentz et le principe de
réaction, 1900, pp. 262–8; pp. 31–36). That discussion is relevant here and includes
setting watches with crossed light signals. Lorentz uses the term, local time, in this
article, to indicate the time in the moving system and distinguish it from the time in
the stationary system. This is a rudimentary use that does not seem to have benefited
from Poincaré’s discussion six years earlier. Lorentz does not comment on the
resulting mixing of time and position; it is left up to Poincaré and Einstein to pick
up the subject.

Next, meaning at the beginning of §6, Lorentz takes up an example of an
electrostatic system, which he indicates to mean that the electron in the moving
system has no velocity relative to the system. Lorentz indicates quantities measured
in this system with a prime and indicates velocity of the electron by the vector u.
Meaning that he takes u0 ¼ 0. This effectively removes any influence of the error in
the transformation of the charge density (equation 7) from the subsequent discus-
sion, since the error depends on u0x.

The paragraph between equations 20 and 21 (Lorentz, Electromagnetic phenom-
ena in a system moving with any velocity smaller than that of, 1904, p. 815; p. 265)
provides an insight into how Lorentz thinks of his transformation and its use. Over a
century later, we are used to thinking, for example, of the transformations as
providing a way for two different observers each in an inertial reference frame to
reconcile their understanding of a single event they both observe, such as a train
arriving at the platform. In this paragraph, Lorentz asks the reader to compare a
“moving system” and “another system. . . which remains at rest.” He indicates that

9And the typo is worth pointing out because it goes unremarked and repeated by (Miller, 1973) in
equation 33d.
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the way to do this is by multiplying the dimensions parallel to the direction of motion
in the moving system by kl (the inverse of the contraction) and then comparing
“corresponding” elements of the two systems. This is recognizably different from an
interpretation based on special relativity and our current understanding. One can see
how this might be applied to an interferometer with one arm oriented in the direction
of the Earth’s movement through the ether and the other arm perpendicular to the
motion; the two arms then being the corresponding elements. Certainly, there are
other situations where identifying the corresponding elements is less clear.

Continuing, Lorentz works towards two conclusions. First, he concludes that the
transformation that he proposes for electrons can in fact be applied to systems built
up from electrons and even to macroscopic systems such as laboratory experiments,
for example for measuring motion relative to the ether. This is a statement of the
electromagnetic view. Second, he derives in equation 30 the longitudinal electro-
magnetic mass, meaning the self-energy, of an electron with charge e and radius
R moving with velocity w:

mk ¼ e2

6πc2R
d klwð Þ
dw

m⊥ ¼ e2

6πc2R
kl

So far, l has not been determined although it must be one when w is zero and
could be a second or higher order function of w/c. Physically l corresponds to a
transformation of the dimensions perpendicular to the direction of motion. In the
theories of Abraham, Lorentz and Langevin-Bucherer, an electron seen at rest is
spherical and an electron moving with a fixed velocity w along the x-axis may have a
different shape. Since the transformation is symmetric about the direction of motion,
the x-axis, we can consider the two-dimensional shape of the electron in a plane
containing the x-axis. At rest, the shape is a circle and in motion it is an ellipse with
the ratio of the semi-major axis to semi-minor axis equal to kl/l. Therefore, the
moving electron is an ellipsoid, and the aspect ratio is independent of l. For example,
Langevin’s assumption requiring that the volume of the electron remains unchanged
at different velocities is equivalent to requiring that kl3 ¼ 1. Abraham’s assumption
is that an electron is undeformable, meaning kl and l are each identically one, and
therefore remains spherical is incompatible with the Lorentz transformations. Fur-
ther details are provided in (Poincaré, Sur la dynamique de l’électron, 1906,
pp. 154–55; p. 77).

To determine l, Lorentz reasons from transformations of force and acceleration
that the factor d(klw)/dw, appearing in the longitudinal mass above, must be equal to
k3l and because of the definition of k, this means lmust be a constant independent of
the velocity and hence l ¼ 1.
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That brings us to the third divergence10 raised by Poincaré in the letter of April
27, 1905 (Kox, 2008, p. 176–8, letter 126; p. 37–9): Poincaré does not find
Lorentz’s reasoning leading to the conclusion l ¼ 1 conclusive. In a second letter
(undated but presumably between April 27 and June 5, 1905) (Kox, 2008, pp. 178–9,
letter 127; p. 39–40), Poincaré tells Lorentz that viewing the transformations as a
group requires that l ¼ 1. This is a wholly mathematical proof disconnected from
discussion of the shape or volume of the moving electron.

My discussion so far of Lorentz’s model has focused on some serious problems in
the details of (Lorentz, Electromagnetic phenomena in a system moving with any
velocity smaller than that of, 1904). I should not allow that to be the last word. These
are in fact details. The achievement of the paper and the reason why it is now,
justifiably well-known is because Lorentz presents the transformations, which
Poincaré named after him, and shows that they explain why motion through the
ether cannot be detected. This is a big achievement which Poincaré and history
noted.

Section 11 starts with the statement that “It is easily seen that the proposed theory
can account for a large number of facts.” The examples in the section all relate to
accounting for why laboratory experiments have not detected motion relative to the
ether. This is exactly the point that I emphasized in the previous paragraph as a
success of Lorentz’s theory.

In the next to last section, Lorentz reprocesses the data for the β ray charge-to-
mass ratio data presented in (Kaufmann, Die electromagnetishe Masse des
Elektrons, 1902a). This is a very interesting step, and seems to get overlooked.
Kaufmann’s published results used the relation from Abraham’s theory (i.e. ψ(β)) to
attempt to remove the velocity dependence from the charge-to-mass ratio. (Lorentz,
Electromagnetic phenomena in a system moving with any velocity smaller than that
of, 1904, pp. 828–30; p. 277–9) reproduces the results from Kaufmann with the
symbols β, and k2 where the first is proportional to the velocity and the second to the
rest-frame charge-to-mass ratio based on Abraham’s formula. They are shown in the
first and third columns of the tables. It needs to be understood that in these tables
ψ(β) is a value calculated from β and not a separate measured quantity. Equation
(35) presents the relationship between the charge-to-mass ratio and ψ(β), but note
that there are other factors included in the proportions related to fitting the data
including k1 and also s which is given in the table titles. The last two columns in the
tables β0 and k02 are the results of reprocessing by Lorentz. Here β0 ¼ s ∙ β and k02 is
calculated with Lorentz’s formula 38. In Abraham’s theory k2 should be constant,
and in Lorentz’s theory k02 should be constant. (Lorentz, Electromagnetic phenomena
in a system moving with any velocity smaller than that of, 1904) states, “The
constancy of k02 is seen to come out no less satisfactory than that of k2.” Looking

10If you’re keeping count and wondering what the second divergence is, it is that charged electrons are
not stable if there are only electrical forces. This is discussed starting page 189 below. The additional
forces required for stability are now called the Poincaré stresses. Poincaré brings the need for this
additional force to Lorentz’s attention in a third letter in the same timeframe (Kox 2008, p. 179, letter
128; p. 40). There is no extant reply from Lorentz to Poincaré to any of these three letters.
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at the columns of numbers it is easy to agree with this observation. It is possible to
make a better comparison, and my comparison is shown in the next section of this
chapter. That comparison shows that Lorentz could have made a much stronger
statement. His theory does in fact explain the results of Kaufmann’s experiment
much better than analysis with Abraham’s theory.

In the final section of (Lorentz, Electromagnetic phenomena in a system moving
with any velocity smaller than that of, 1904), Lorentz returns to experiments for
detection of the Earth’s motion through the ether and suggest that the expected
results of Trouton’s experiment are too small to measure.

In concluding this section, I think back to Poincaré’s letter (Kox, 2008, p. 176–8,
letter 126; p. 37–39) where he states, concerning the work Lorentz presented in this
paper, “I agree with you on all the essential points; however there are a few
divergences in the details.” Some of the essential points in this article by Lorentz
are: the concept of local time, the recognition that the transformations do make it
impossible to detect motion relative to the ether, and that the same transformations
demand an increase of mass with velocity. The step of re-analyzing Kaufmann’s data
with his theory instead of Abraham’s is also clever and, as discussed in the following
section, provides stronger support for his theory then Lorentz realized.

Reanalyzing Kaufmann’s Data

In Chapter 8, pages 158–160 I discussed experimental data from Kaufmann and also
Lorentz’s reprocessing of that data in connection with confirming that β rays have a
single rest frame charge-to-mass ratio (i.e. there aren’t multiple types of β rays) and
also that the rest frame charge-to-mass ratio for β rays matched the ratio for electrons
from other contexts. Here I take another look at Kaufmann’s data from (Kaufmann,
Die electromagnetishe Masse des Elektrons, 1902a) and (Kaufmann, Über die
“Elektromagnetische Masse” der Elektronen, 1903); my intent is to compare how
well Abraham’s and Lorentz’s theories (discussed in the previous two sections)
explain the velocity dependence of the charge-to-mass ratio of the β ray moving
through the crossed electric and magnetic fields of the experiment, and also to
determine a value for the rest-frame ratio.

Kaufmann’s experimental apparatus exposed a photographic plate to β rays from
a radium source that had passed through crossed electric and magnetic fields. After
developing the plate, a curve was visible and the data analysis started with measuring
the coordinates of selected points on the curve in centimeters relative to an arbitrary
origin. This raw data is reproduced, for example, in the first two columns of Tables I
to III in (Kaufmann, Die electromagnetishe Masse des Elektrons, 1902a). The z and
y values from these two columns are related to the deflections of the β ray by the
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electric field and by the magnetic field. In (Kaufmann, Die electromagnetishe Masse
des Elektrons, 1902a) the deflections are represented by ζ and ηwhere the relation of
these quantities to the velocity and to the moving charge-to-mass ratio are given by
equations 5 and 6. In (Kaufmann, Über die “Elektromagnetische Masse” der
Elektronen, 1903), the deflections are represented by z0 and y0 where the
corresponding equations are 8 and 9. (In these equations, F andH are the magnitudes
of the electric and magnetic fields in the apparatus.)

From Abraham’s theory discussed in the first section of this chapter we expect
that:

e
m

¼ 4
3
∙ e
m0

∙ 1
ψ βð Þ ð9:6Þ

where

ψ βð Þ ¼ 1
β2

1þ β2

2β
∙ ln 1þ β

1� β

� �
� 1

� �
ð9:7Þ

and where β is the ratio of the speed of the electron seen in the laboratory frame to the
speed of light, m is the mass of the moving electron, m0 is the mass of the electron
referred to the rest frame and e is the charge of the electron. Equations 9.6 and 9.7 are
equivalent to Equation 9.5 above (noting that m0 ¼ 2e2/3a); as discussed there, the
equation is based on the assumption of an undeformed sphere of radius amoving at a
constant speed.

Using the equations referenced above from Kaufmann, we know that e/m is
proportional to ζ2/η. Since the magnitude of the laboratory electric and magnetic
fields enters the proportion, data from different photographic plates cannot be
combined. I am not otherwise concerned at this point with other constant factors
occurring outside 1/ψ(β). To determine 1/ψ(β), I use the value of β recalculated by
Lorentz, or in (Runge, 1903) or calculated by Kaufmann, in order of preference, and
recalculate the function myself using Equation 9.7.

Equation 9.6 can then be written in terms of the measured quantities as:

ζ2

η
¼ a

e
m0

∙ 1
ψ βð Þ ð9:60Þ

where a is a constant of proportionality.
Here I can plot ζ2/η against 1/ψ(β). Based on Equation 9.60, I expect the plot to

show a linear relationship and the quality of the linear fit to the data is a test of the
agreement with the data of Abraham’s theory relating the moving electron mass to
the rest mass.
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From Lorentz’s theory, the corresponding relationship is:

e
m
¼ e

m0
∙

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

q
ð9:8Þ

where the same symbols have the same meaning as above.
The same observations as above apply to e/m and also apply to β which is

proportional to ζ/η. Equation 9.8 can then be rewritten in terms of the measured
quantities and yields:

η2 ¼ aζ2 þ b
e
m0

� ��2

ζ4 ð9:80Þ

where again a and b are constants.
Lorentz (Electromagnetic phenomena in a system moving with any velocity

smaller than that of, 1904, p. 829; p. 278) has the same equation as Equation 9.80

here, except it doesn’t explicitly show the rest frame charge-to-mass ratio.
In this case I can plot η2 against ζ2. Based on Equation 9.80, I expect this plot to

show a quadratic relationship and the quality of the fit to the data is a test of the
agreement with the data of Lorentz’s theory relating the moving electron mass to the
rest mass.

Fitting the data to Lorentz’s relationship involves two free parameters. Fitting the
data to Abraham’s relationship involve only one free parameter. However, the
calculation of β by Lorentz or Runge used a least-squares fit that had one free
parameter. Comparing the fits should be fair.

Figures 9.1 and 9.2 show results for a dataset from 1902 (Kaufmann, Die
electromagnetishe Masse des Elektrons, 1902a, p. 55, Table IV).

Figures 9.3 and 9.4 show results for a dataset from 1903 (Kaufmann, Über die
“Elektromagnetische Masse” der Elektronen, 1903, p. 99, plate 18).

I have only presented two pairs of comparisons and both show a substantially
better fit to the Lorentz transformation than to Abraham’s theory. I have however
done this comparison for all datasets from (Kaufmann, Die electromagnetishe Masse
des Elektrons, 1902a) and (Kaufmann, Über die “Elektromagnetische Masse” der
Elektronen, 1903). In all cases, the Lorentz transformation is a better fit to
Kaufmann’s data from 1902 and 1903 relating electron charge-to-mass ratio and
velocity. The statement by Lorentz quoted above, “to come out no less satisfactory
than that” of Abraham, is supported by this analysis; in fact, a much stronger
statement by Lorentz is justified.

Equation 9.80 and the fits to the quadratic curves in 9.4 provide a means to
determine the electron rest frame charge-to-mass ratio from Kaufmann’s data.
Returning to equations 5 and 6 in (Kaufmann, Über die “Elektromagnetische
Masse” der Elektronen, 1903) and Equation 9.8 above, referring to the coefficient
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R2 = 0.976
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Figure 9.1 Data from (Kaufmann, Die electromagnetishe Masse des Elektrons, 1902a, p. 55,
Table IV) and fitting of β from (Lorentz, Electromagnetic phenomena in a system moving with any
velocity smaller than that of, 1904, p. 828; p. 278) with calculation to show relationship expected in
Equation 9.60. All units are arbitrary.
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Figure 9.2 Data from (Kaufmann, Die electromagnetishe Masse des Elektrons, 1902a, p. 55,
Table IV) with calculation to show relationship expected in Equation 9.80. All units are arbitrary.
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R2 = 0.9222
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Figure 9.3 Data from (Kaufmann, Über die “Elektromagnetische Masse” der Elektronen, 1903,
p. 99, plate 18) and fitting of β from (Runge, 1903, p. 329) with calculation to show relationship
expected in Equation 9.60. All units are arbitrary.
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Figure 9.4 Data from (Kaufmann, Über die “Elektromagnetische Masse” der Elektronen, 1903,
p. 99, plate 18) with calculation to show relationship expected in Equation 9.80. All units are
arbitrary.
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of the linear term in the fit to a quadratic equation in Figure 9.4 as C1 and the
coefficient of the quadratic term as C2, it can be shown that:

e
m0

¼ 2c
x22 þ x1x2

� �
H�1

ffiffiffiffiffiffi
C1

C2

r
ð9:9Þ

The constants x1 and x2 depend on the configuration of the equipment and are
given in (Kaufmann, Über die “Elektromagnetische Masse” der Elektronen, 1903)
between equations 5 and 6. The speed of light is c.H is the magnetic field strengthen;
it is given in Kaufmann’s Table VI. The numerical constant in parenthesis is
therefore 7.186 � 1010 cgs units.

The results of the recalculation for the four plates from (Kaufmann, Über die
“Elektromagnetische Masse” der Elektronen, 1903) are gathered in the Table 9.1,
below.11 The results from Kaufmann and the recalculation by (Runge, 1903) are
included for comparison with the reminder that they are calculated using Abraham’s
formula.

For comparison with the average value 1.641� 107 cgs units from Table 9.1, note
that Alfred Bucherer (Messungen an Becquerelstrahlen. Die experimentelle
Bestätigung der Lorentz-Einsteinschen Theorie., 1908) got a value of 1.730 � 107

cgs units, and that the current accepted value is 1.758 � 107 cgs units (National
Institute of Standards and Technology, n.d.).

This work by Kaufmann and Lorentz, followed by more accurate measurements
by (Bucherer, 1908), are an early experimental confirmation of special relativity.

Table 9.1 Charge-to-mass ratio reproduced from (Kaufmann, Die magnetische und electrische
Ablenkbarkeit der Becquerelstrahlen und die scheinbare Masse der Elektronen, 1901, p. 152)

Plate H C1 C2

e=m0
(Kaufmann, 1903) (Runge, 1903)

in 107 cgs units

15 200 0.0572 0.3356 1.483 1.74 1.669

18 200 0.0682 0.2455 1.894 1.97 1.917

19 200 0.0542 0.2787 1.584 1.80 1.755

24 199 0.0475 0.2414 1.602 1.73 1.653

Average: 1.641 1.810 1.749

Standard Deviation: 0.177 0.111 0.121

11I have done the corresponding analysis with the data from (Kaufmann, Die electromagnetishe
Masse des Elektrons, 1902a), but the standard deviation is much larger so it didn’t seem worth
presenting the results.
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Henri Poincaré

In (Poincaré, Sur la dynamique de l’électron, 1906), Poincaré took up and moved
forward topics raised by Abraham and Lorentz discussed above, including his
divergences from Lorentz discussed in the context of the three letters from Poincaré
to Lorentz. That is the subject of this section. Poincaré also made a significant
departure from Abraham and Lorentz concerning electromagnetic mass and ether,
and brings gravitation into consideration. That is one part of Chapter 10.

Poincaré started his §1 by presenting the equations of electrodynamics, the
Lorentz force and the Lorentz transformations respectively in equations 1, 2 and
3 (Poincaré, Sur la dynamique de l’électron, 1906, p. 132; p. 48). The inverse of the
Lorentz transformation is presented in equation 30. These equations correct the two
points noted above on page 175: in the transformation of the time, the factor k is
moved from the denominator to numerator and in the transformation of the
x-coordinate the term proportional to the time, t, is added reflecting the motion of
the reference frame. The first correction is a simple typo. The second correction
assures that, in the limit of small velocities, the Lorentz transformation of the
coordinate along the direction of movement reduces to a Galilean coordinate trans-
formation; this correction is also simple.

Transformation of Charge Density—First Divergence

In Equation 7, Lorentz (Electromagnetic phenomena in a system moving with any
velocity smaller than that of, 1904, p. 813; p. 263) indicated, without further
explanation, that the transformation of the charge density between the moving and
stationary systems was proportional to kl3. Presumably, Lorentz assumed that the
charge on the electron would be the same in the moving and stationary systems and
that the volume in the stationary system would be proportional to xyz and the volume
in the corresponding ellipsoid in the moving system would be proportional to x0y0z0.
Then, applying his transformations from his equation 4, gives x0y0z0 ¼ kl3xyz and
hence the factor in Lorentz’s transformation of the charge density.

This is the first divergence that Poincaré wrote about in a letter to Lorentz and
which was mentioned in the section on Lorentz above. The letter is also translated in
Part I, Chapter 3.

Poincaré was explicit in his calculation of the volume. He started with the
equation of a sphere moving with a velocity u in one coordinate system and
substituted in the transformation into a second coordinate system (primed) moving
at a constant velocity w relative to the first. That gave him the equation for an
ellipsoid12 moving at a constant velocity in the second coordinate system and he then

12For possible comparison with Einstein concerning shape see §4 of (Einstein, Zur Elektrodynamik
bewegter Körper 1905).
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calculated the volume of the ellipsoid from its equation. This resulted in a factor for
the density (inverse of the volume relationship) of k(1 + uw/c2)/l3. This means that:

ρ0 ¼ k

l3
1þ uw

c2

	 

ρ

which is Poincaré’s equation 4 in §1.13

At this point, Poincaré also calculated separately the transformation of the
velocity of the moving sphere. In a Galilean transformation the velocity in the
second system would be u + w, a direct sum of the velocities. In equation 8, Lorentz
(Electromagnetic phenomena in a system moving with any velocity smaller than that
of, 1904, p. 813; p. 263) directly stated (again without explanation) that the trans-
formation is:

u0 ¼ k2 uþ wð Þ ¼ uþ w
1þ w2=c2

:

In contrast (Poincaré, Sur la dynamique de l’électron, 1906, p. 133; p. 50) shows
the derivation of the composition of velocities:

u0 ¼ dx0

dt0 ¼
k
l d xþ wtð Þ

k
l d t þ xw=c2ð Þ ¼

uþ w
1þ uw=c2

: ð9:10Þ

This formula has the result that a sphere moving with velocity u transformed to
coordinates moving with velocity w has the same composed velocity as a sphere
moving with velocity w transformed to coordinates moving with velocity u; this is
not true of Lorentz’s formula for the transformation of the velocity.

I think this may be a good point to consider what the origin of this first divergence
might be. In choosing words to describe Lorentz’s steps above, I have tried to reflect
his view of corresponding systems. Seen that way, Lorentz was trying to compare
the volume of corresponding spheres—actually one sphere and one ellipsoid. Con-
traction of the semi-minor axes by the factors k and l result in a new volume
proportional to the product of the semi-minor axes and the proportion kl3, above,
found by Lorentz. Thus, the perspective of comparison of corresponding objects
leads to Lorentz’s comparison of the two volumes and a divergence from Poincaré.
Poincaré used the Lorentz transformations to change from one coordinate system to
another. (We can see that they are inertial since his derivation of the transformation
of the velocity u to u0 depends on the assumption that dw/dt¼ 0.) Here the coordinate
system transformation can be seen since Poincaré wrote the equation for a moving
sphere and applied the transformation to the equation which results in an equation for
a moving ellipsoid; from each equation he could determine the volume of the shape.

13For possible comparison with Einstein see §9 of (Einstein, Zur Elektrodynamik bewegter Körper
1905).
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The perspective of transforming coordinate systems can also be seen in the
discussion at the end of the previous paragraph comparing the transformation of
velocity. Poincaré’s version of the velocity transformation has a symmetry (in the
term uw/c2) that is absent in Lorentz’s version (which has the term w2/c2).

This aspect of the divergence comes into clearer focus in Poincaré’s discussion at
the beginning of §4 (Poincaré, Sur la dynamique de l’électron, 1906, p. 144; p. 64).
There he wrote that the Lorentz transformations form a group and argued that
consequently a transformation from a first coordinate system (without primes) to a
second coordinate system (with primes) with a relative velocity εc¼ u followed by a
transformation to a third coordinate system (with double primes) with a relative
velocity ε0c ¼ w must have the same result as a transformation directly from the first
coordinate system to the third coordinate system with a velocity ε00c ¼ u0 that is a
composition of u and w. An immediate consequence is that the composition of
velocities is correctly given by equation 9.10 above, which Poincaré wrote as:14

ε00 ¼ εþ ε0

1þ εε0 : ð9:100Þ

Poincaré had a fundamentally different understanding of the meaning and use of
the transformations than Lorentz did. That is the divergence. It led Lorentz into a
misunderstanding that Poincaré avoided.

Further, this transformation involves a four-vector: one temporal and three spatial
coordinates. Additionally, the transformation mixes spatial and temporal coordinates
from one system to another. To the extent that he noticed it, Poincaré did not
comment on the mixing in the articles translated in Part I. This stands in contrast
Einstein who started his 1905 paper (Einstein, Zur Elektrodynamik bewegter
Körper, 1905) with a discussion of time and simultaneity, and the loss of simulta-
neity when observing from different reference frames.

It is a recognized consequence of equation 9.10 that adding two velocities, even
close to the speed of light, cannot result in a velocity greater than the speed of light.
A decay product shot forward from a decaying particle traveling at nearly the speed
of light will not reach a speed greater than the speed of light, even if the product is
itself an energetic photon.

Continuing in §1, Poincaré’s values for ρ0 and u0 (above) can be substituted into
the left-hand side of the continuity equation for charge in the moving coordinates:

dρ0

dt0 þ
X dρ0u0

dx0 ¼ 0

which simplifies to

14For possible comparison with Einstein see §5 of (Einstein, Zur Elektrodynamik bewegter Körper
1905).
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1
l4

dρ
dt

þ
X dρu

dx

� �
¼ 0

showing that if the continuity equation for charge is satisfied in one system then it is
satisfied in the other. That is to say, the continuity equation is unchanged under
Lorentz transformation15. As Poincaré observed, “With the hypothesis from Lorentz,
this condition would not be satisfied.”

Unchanged under Lorentz Transformation (Covariant)

With the correct transformation for the charge density, Poincaré was able to apply
the Lorentz transformations to the equations of electrodynamics and the Lorentz
force and confirmed that they are unchanged by the transformations.16 Lorentz had
not been able to confirm that these equations were unchanged under Lorentz
transformation because of the first divergence.

As noted in the previous subsection, Poincaré also showed that the continuity
equation for charge density was invariant under Lorentz transformation and how to
compose velocities.

As discussed in the following subsection, Poincaré’s group-based arguments
showed that the Minkowski space-time interval (see Equation 9.11, below) is
unchanged.

It should also be noted that Poincaré showed that the conditions for electron
stability are unchanged under Lorentz transformation, showing that an electron with
only electromagnetic forces is unstable at rest and in motion.

In this article, Poincaré used the action and electromagnetic Lagrangian and they
became important tools in several sections. He used them to re-derive the equation
for the Lorentz force, the form of the Poincaré stress and the longitudinal and
transverse mass in quasi-stationary motion. It is therefore worth taking a look at
his demonstration in §3 that the action and Lagrangian are unchanged under Lorentz
transformation. He did this by presenting the electromagnetic action in the first
equation in the section and applying the Lorentz transformations to the fields and
to the differentials for the integration. This leads directly to a proof that the
Lagrangian is unchanged up to a factor of l4 (and he subsequently shows that
l ¼ 1) and that the action is unchanged, without qualification. Lastly, he needed to
show that the variant of the action (δJ) given in equation 2 of §3 is unchanged under
Lorentz transformation; this is similar to the demonstration for equation 10 in §2. He

15Because the continuity equation is unchanged by Lorentz transformation, it indicates that (cρ, J) is
a four-vector. For more, see (Jackson, Classical Electrodynamics, 1999, pp. 554–555, eqn. 11.129).
16For possible comparison with Einstein see §6 and §9 of (Einstein, Zur Elektrodynamik bewegter
Körper, 1905).
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showed this with an application of the Lorentz transformations correctly including
composition of velocities.

Transformations as Group with Invariants—Third Divergence

As noted above on page 176, the third divergence of Poincaré from Lorentz arises
because Poincaré did not find Lorentz’s argument that l ¼ 1 persuasive. l is the
longitudinal component of the transformation; if it is 1, then the transverse dimen-
sions of the moving electron are unchanged. To address this, Poincaré provided an
entirely theoretical proof that l ¼ 1 based on the recognition that the coordinate
transformations must form a group, as discussed in §4. The heart of the argument is
discussed above in the paragraph introducing Equation 9.100. He reasoned that the
transformation from system A to B and then system B to C must have the same result
as a transformation directly from system A to C, if the velocities are combined
correctly. And Equation 9.100 shows the correct way to combine the velocities. This
result was confirmed for the calculation of k, since it indicated that after the
successive transformations from A to B then B to C the resulting value of k is
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ε002

p
as expected for a direct transformation from A to C using the composed

velocity from equation 9.100. However, for l, the value after applying the two
transformations is ll0 which must equal l00. This is only possible for l ¼ l0 ¼ l00 ¼ 1.17

Poincaré continued discussion of the group implications in this section with the
infinitesimal generator of the group. He recognized that these generators are equiv-
alent to infinitesimal translations along the axes and infinitesimal rotations around
the axes. In this context he notes that a reversal of the direction of motion (by a 180�

rotation) must be equivalent to the inverse transformation providing a second group-
based argument that l ¼ 1. This equality indicates that there is no amplification by
the translation. He also noted that these transformations must leave the quadratic
form

x2 þ y2 þ z2 � c2t2 ð9:11Þ

unchanged.
In §9 where Poincaré presented work on a theory of gravitation that is unaffected

by Lorentz transformation in the same way as the electromagnetic forces18, Poincaré
(Sur la dynamique de l’électron, 1906, p. 168; p. 93) returned to look for “invariants
of the Lorentz group.” He repeated that the transformations in this group are linear
and do not change the quadratic form given in Equation 9.11 above. He asked us to
consider

17For possible comparison with Einstein see last pages of §3 of (Einstein, Zur Elektrodynamik
bewegter Körper, 1905) for an argument that φ(v) ¼ 1 based on a translation and its inverse.
18There is limited further discussion of this work in the following chapter, Chapter 10.
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x, y, z, ict

as the coordinates of a point in four-dimensional space. In the context of the theory
of gravitation, he was looking for invariants that involved the position and velocity at
both the attracting and attracted body and invariants that involved the force and time
rate of change of energy (T ¼ F ∙ v/c). This led to the four invariants respectively in
equation 5 and equation 7 in (Poincaré, Sur la dynamique de l’électron, 1906,
pp. 169–70; p. 94–5) in §9. Each invariant has an associated four-vector.

Electron Stability: Poincaré Stress—Second Divergence

This brings us to the first discussion by Poincaré of the second divergence from
Lorentz. Poincaré (Sur la dynamique de l’électron, 1906, p. 136; p. 53) presented the
conditions for the stability of an electron that “is exclusively of electromagnetic
origin” and “only subject to forces of electromagnetic origin.” The conditions are
unchanged under Lorentz transformation. The conditions are only satisfied if there is
no charge. This is worse than suggested by Abraham in the quote on page 172 above;
there Abraham required electrons be undeformable to avoid the implications of work
done to change the shape of electrons. Instead, in the electromagnetic world view,
electrons are unstable at any speed.

Poincaré concluded §1 with the statement: “One therefore has to accept that in
addition to electromagnetic forces, there are either other forces or bonds. One must
then look at what conditions these forces or bonds must satisfy for the equilibrium of
the electrons to be undisturbed by the transformation.” These “other forces or bonds”
required for stability of a classical electron are now known as Poincaré stress.
Poincaré also took up the discussion of the necessary “forces or bonds” in §6 as
part of the discussion of the shape of stationary and moving electrons.

Although the title of §6 is “Contraction of Electrons”, the subject of the section is
now actually known as Poincaré stress; it is the subject of the second divergence
mentioned by Poincaré in the letter to Lorentz from about April 27, 1905 (Kox,
2008, pp. 176–8, letter 126; p. 37–39) discussed above.

For purposes of discussion and generality, Poincaré brought an arbitrary l back
into consideration as part of a discussion of electron shape changing with velocity. In
this section, he also referred to an ideal immobile electron and a real moving
electron.19 Poincaré reviews the shape of the electron in the theories from Abraham,
Lorentz and Langevin. As noted in the first section of this chapter, Abraham’s
electron is an undeformable sphere and that assumption is unacceptable on nearly

19In fact, the discussion of real and ideal electrons reads as if it were written in the context of
Lorentz’s corresponding states; it is a notable contrast to the discussion of the volume of a moving
sphere and the derivation of the transformation of charge density and the equation of continuity for
charge.
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all counts. Lorentz’s electron is spherical at rest and deformed, according to the
Lorentz transformation, in motion (“real electron”). Langevin (Sur l’origine des
radiations et l’inertie électromagnétique, 1905), in a theory of electromagnetic
radiation, proposed an electron with constant volume so kl3 ¼ const.

Poincaré wrote the electric field for an ideal electron, meaning at rest, with no
magnetic field and an electric field defined in terms of an unspecified potential. He
then determined the corresponding electric and magnetic fields for a real electron,
meaning moving, using the Lorentz transformation of the fields. (This is equation
1 (Poincaré, Sur la dynamique de l’électron, 1906, p. 152; p. 73).) He gave the
longitudinal and transverse electrical energy and the magnetic energy
(respectively A, B and C) in the moving system in terms of integrals of the fields
over all space and time, and used the previously determined transformations to relate
these quantities to the corresponding energies in the immobile system. The total
energy is then E ¼ A + B + C and the Lagrangian (Poincaré calls it the “action per
unit time”) is H ¼ A + B � C.

Next, Poincaré takes the electromagnetic momentum (in his notation D) as the
component of the Poynting vector in the direction of motion integrated over all
space.20 then, in the first part of equation 2 Poincaré (Sur la dynamique de l’électron,
1906, p. 153; p. 76) required that D ¼ dH/dε. In an exercise left to the reader,
Poincaré states that this is only satisfied if l ¼ k�1/3. This condition means that the
volume of the electron must be constant; this is Langevin’s assumption or, in the
limiting case of l ¼ 1, it is Abraham’s undeformable electron.

Either way this result is a problem, since it is inconsistent with the Lorentz
transformation. Looking for solutions to this problem, Poincaré first switched to a
different Lagrangian and with it explored different options. For the Lagrangian itself,
he used the Lagrangian for a spherical electron moving at a constant velocity from
(Abraham, Prinzipien des Dynamik des Elektrons, 1902b, p. 37), equation 25.21 This
is the same Lagrangian as discussed in the first section of this chapter on page 172 in
connection with equation 9.5.

20This is not correct and introduces an incorrect factor of order unity. The core of the problem is an
incorrect application of the Lorentz transformation; an approach similar to that taken by Poincaré
with the transformation of the charge density in §1 and discussed above is needed. That is to say a
manifestly covariant four-vector approach is needed. Poincaré’s equation for the momentum is the
same as, for example, equation 2–13 in (Rohrlich 2007, p. 15). But as Rohrlich indicates, it is not
correct. Rohrlich on page 17 provides a brief history of the multiple times this problem and the
correction were found and provides a detailed discussion of the resolution in section 6–3, pages
129–134.
21Interestingly, Poincaré, while noting that this formula applies to a spherical electron, does not
follow the reference to Searle mentioned by Abraham at the top of the following page and provided
a few pages earlier which does have the corresponding potential for an ellipsoid (specifically
equation 23 (Searle 1897, p. 340)); he manages to make do.
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In a first exploration with the second Lagrangian, Poincaré (Sur la dynamique de
l’électron, 1906, p. 155; p. 78) asked us to “imagine that the electron is subject to a
binding force, such that there is a relation between r and θ.” Here, θ is the
eccentricity of the ellipsoidal moving electron. For Abraham, the electron is
undeformable, the moving electron remains a sphere, and therefore θ ¼ 1. For
Lorentz, the eccentricity of the moving electron is due to the Lorentz contraction
and therefore θ ¼ k. This binding force would maintain the electrostatic stability of
the stationary electron. Poincaré found that this does not change the earlier conclu-
sion that the volume of the electron must be constant. The static binding force does
not resolve the electron stability problem.

Now, Poincaré (Sur la dynamique de l’électron, 1906, p. 157; p. 80) asked, “what
additional forces, other than the binding forces, would need to be involved to
incorporate Lorentz’s law”? Poincaré answered this by adding an additional poten-
tial, F(θ, r), to the Lagrangian based on Abraham’s equation 25, and first retains the
assumption that there is a binding force relating r and θ, such that r ¼ bθm.
Additionally requiring that k ¼ θ, consistent with the Lorentz transformations,
Poincaré finds for the potential:

F ¼ a
3bk

where a is a numerical constant entering through Abraham’s Lagrangian.
Finally, Poincaré assumed that there is no binding relation between r and θ and

assumes a general potential of the form:

F ¼ Arαθβ:

Conditions on the Lagrangian were then used to determine the parameters A, α,
and β, again in the assumption of the Lorentz transformations. The result is:

F ¼ a

3b4
k2r3:

With the Lorentz transformations, stability of the electron requires “adding an
additional potential proportional to the volume of the electron” (Poincaré, Sur la
dynamique de l’électron, 1906, p. 158; p. 81), his emphasis. Later (page 165; page
90), Poincaré considers the Lagrangian in the limit of small velocities and deter-
mines that b is inversely proportional to the rest mass, which he refers to as the
“experimental mass”.
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In summary, Poincaré determines that the stability of classical, relativistic elec-
trons depends on a negative internal pressure22 proportional to:

m0
4k2r3:

This is the Poincaré stress. Stability of electrons, in pre-quantum theory, requires
a force that is not of electromagnetic origin. Poincaré has shown that it is impossible
to have both Lorentz transformations (whether to make the ether undetectable or
absolute motion undetectable) and an electromagnetic world view.

Synopsis

The three theories of electrons considered in this chapter, from Abraham, Lorentz
and Poincaré, lead to different perspectives based on different constraints each
person brought to the theory.

Abraham favored an explanation of mass entirely based on electromagnetic
forces and saw an opportunity to explain the recently discovered dependence of
electron mass on velocity. He recognized that any change in shape of a moving
electron would result in a change in self-energy that was not due to electromagnetic
forces so he assumed an undeformable, spherical electron. He was able to develop a
formula for the dependence of electromagnetic mass on velocity and the formula was
used by Kaufmann in several papers for analyzing his data on electric and magnetic
deflection of high-speed electrons.

Lorentz, continuing his earlier work on electrodynamics of moving bodies,
presented the transformations that Poincaré named after him. Lorentz used these
transformations to explain why the ether could not be detected. His electron was
spherical at rest, became ellipsoidal in motion, and its change in mass with velocity
was a consequence of the transformations. Reanalyzing some of Kaufman’s data,
Lorentz showed that his theory explained the experimental results at least as well is
Abraham’s theory. In fact, a fuller reanalysis shows that Lorentz’s theory provides a
much better explanation.

Poincaré indicated his general agreement with Lorentz’s theory but indicated
three divergences from Lorentz. With a more insightful application of the trans-
formations, Poincaré obtained the correct transformation of the charge density. He
was therefore able to show that the equations of electrodynamics, the continuity
equation for charge density, the Lorentz force and electromagnetic Lagrangian are
all unchanged under Lorentz transformation. Poincaré recognized that the

22In the Introduction, (Poincaré, Sur la dynamique de l’électron 1906, p. 130; p. 46) referred to it as
an external pressure. Positive external pressure and negative internal pressure largely amounts to the
same thing. Since his argumentation is based on the Lagrangian, he does not have a specific
mechanism to distinguish between an external and internal origin of the pressure.
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transformations form a group; this offered him a better argument that there is no
change in the dimensions perpendicular to the direction of motion and Poincaré
explicitly looked for invariants of the group finding that the space-time interval is an
invariant. Poincaré (Sur la dynamique de l’électron, 1906, p. 163; p. 88) wrote that
this means that “Lorentz’s hypothesis is the only one which is compatible with the
impossibility of showing absolute motion.” Poincaré also showed that a completely
electromagnetic explanation of the electron mass is impossible and determines the
additional non-electromagnetic potential which is needed to assure the stability of
electrons, the Poincaré stress.
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Chapter 10
Poincaré as a Physicist

Introduction

In the previous chapter, Chapter 9, I gave some attention to distinguishing the
contributions of Abraham, Lorentz and Poincaré to a pre-quantum theory of elec-
trons. That work involved a close, objective consideration of what each had done.
This chapter, in contrast, steps back and takes a broader, more subjective view of
how Poincaré approached and carried out this work. For me, two things are notable.
On the positive side, there is his work to expound on and extend the work of Lorentz.
His choice to name the transformations after Lorentz is warranted; Poincaré’s choice
to refer to additions and corrections he provided as Lorentz’s theory seems very
charitable. This is especially so when Poincaré states that absolute motion cannot be
detected when Lorentz was arguing only that the ether cannot be detected. In
contrast, Poincaré seems to have missed opportunities to make a number of strong
predictive statements: for example, “there is no need for an ether.” There are other
things that are notable. Why didn’t he make these predictions?

A Koan

Let us imagine an astronomer before Copernicus who was thinking about the Ptolemaic
system; he would notice that for all the planets one of the two circles, epicycle or deferent, is
traversed in the same time. That cannot be by chance; there is therefore some unknown
mysterious link between all the planets.
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Copernicus, by simply changing the coordinate system regarded as fixed, made this
appearance disappear; each planet now describes only one circle and the periods of revolu-
tion become independent (until Kepler reestablished the link between them that was thought
to have been destroyed).

(Poincaré, Sur la dynamique de l’électron, 1906, p. 131; p. 47)1

The above quote from the introduction is frequently discussed with varied
interpretations. These interpretations may say more about the person interpreting
the quote than about the person who wrote it.

Let me start with a fairly obvious remark: the time to traverse the epicycle or
deferent Poincaré refers to is 365 days, one year. Since the Earth is stationary in the
Ptolemaic system, the orbital period of the Earth shows up in other places instead.
When Copernicus re-centered the model of the solar system on the Sun, the orbital
period of the Earth became explicitly associated with the Earth and no longer with
the other planets.

Poincaré was advocating looking for things that cannot be by chance and finding
the unknown link.

As a general statement, that is sound advice for physicists. In the specific context
of the following paragraphs what does Poincaré mean? Well, that’s a little bit more
complicated.

In my reading, Poincaré is first referring to the last section of the paper where he
extends “Lorentz’s theory” to all forces and therefore develops a theory of gravita-
tion that is unchanged under Lorentz transformation. This brings the speed of light
into the law of gravitation and Poincaré is wondering why the speed of light appears
in both electrodynamics and gravitation. Poincaré argues against a purely electro-
magnetic explanation of all forces and mechanics, so he might reasonably ask why
the velocity of electromagnetic waves appears in a theory of gravitation. Perhaps it
points to an underlying connection between fundamental forces.

My readers certainly may still apply their own interpretation to the koan.

Advocating for Others

A key positive aspect of Poincaré’s work is the steps he takes to expound on, clarify
and extend the work of others. In the documents translated in Part I, those others are
notably Lorentz and Langevin. In Chapter 9, in the summary of the work by Poincaré
on a theory of electrons, I structured my exposition by focusing on the three
divergences from Lorentz that Poincaré discussed in three letters written to Lorentz
in the spring of 1905. (I translated those letters in Part I, Chapter 3.) That suited my
purpose of distinguishing what Lorentz and Poincaré had done in treating the subject
matter, since it served to show that Poincaré had gone far beyond what Lorentz did or

1Here and elsewhere, the first page number refers to the original publication and the second page
number (following the semicolon) refers to the page number in Part I of this book.

196 B. D. Popp



even aspired to do. It seems plausible to think that Poincaré could have similarly
focused on his contributions and emphasized how what he did was new and
different. My point here is that Poincaré did not.

As an example, consider Poincaré’s derivation of the Lorentz force on a charged
particle subject to electric and magnetic fields in (Poincaré, Sur la dynamique de
l’électron, 1906, §2). In the second sentence Poincaré writes, “I will however go
back over the question because I prefer to present it in a slightly different form which
will be useful for my purpose.” Poincaré thus acknowledges the work (Lorentz,
Contributions to the theory of electrons. I, 1902), which might not get much
attention otherwise, and credits Lorentz with the idea of using a least action,
Lagrangian approach that Poincaré uses extensively in the remainder of this paper.
This promotes Lorentz and does nothing to diminish Poincaré.

For other examples involving Poincaré’s discussion of Lorentz’s work, the
situation is substantially different. Consider discussion of the application of the
Lorentz transformations to the equations of electrodynamics. Lorentz does do this,
but because of an error (“the first divergence” between Lorentz and Poincaré) he gets
equations that are changed by the transformation. He does not discuss the meaning of
these changes. Therefore, when Poincaré identifies the correction (transforming the
charge density so that the equation of continuity for charge is unchanged under the
Lorentz transformation, which is related to treating charge density and current as a
four-vector) and shows that the equations of electrodynamics are unchanged, he is
on new ground. Additionally, when he concludes that this means that the equations
of electrodynamics, and therefore electromagnetic and optical phenomena also, are
compatible with the impossibility of determining absolute motion, he moves further
into new territory. It seems hard to imagine that he would have been justifiably
criticized for putting his name on this new territory. He does not do that. Instead, he
refers to it as part of Lorentz’s theory.

Poincaré first brings the key issues to Lorentz’s attention in private letters that are
notably polite and collegial. The journal article that follows downplays the issues
(they are divergences, not errors) and does not mark out how far Poincaré had gone
beyond what Lorentz did. In fact, I think this is very charitable, more than just
collegial. The tenor of the discussion of Poincaré’s contribution to the understanding
of special relativity (discussed in Chapter 11) would be very different if the same
charity he showed to Lorentz were applied to him.

Poincaré has a full section (Poincaré, Sur la dynamique de l’électron, 1906,
pp. 146–151; p. 67–70) discussing the theory of electromagnetic radiation by
Langevin (Sur l’origine des radiations et l’inertie électromagnétique, 1905). As
with Lorentz this is an example of Poincaré presenting and amplifying the work of
a colleague. A close comparison of the two papers would take me too far afield. A
more casual reading of the section still shows that Poincaré put his mark on the
presentation of Langevin’s work. In one case, Poincaré shows how to use the
Lorentz transformations to make the calculation of the field due to a uniformly
moving electron easier. He starts with a well-known solution for the electric field of a
stationary electron he next applies Lorentz transformations to the electric and
magnetic field for transformation to coordinates where the electron has the required
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uniform velocity. The result is the magnetic and electric fields for a uniformly
moving electron (Poincaré, Sur la dynamique de l’électron, 1906, p. 149; p. 70,
equation 4). Since the equations are unchanged under Lorentz transformation, a valid
solution of the equations must still be a valid solution after transformation. Poincaré
used this to find a solution to the equations in coordinates that were easy to work in
and then transform this solution to the coordinates needed for Langevin’s work. This
makes for a very interesting alternate approach to a part of what Langevin did.

Latter sections “Predictions” and “Attitude”, looks at this from a different side.
When Poincaré goes beyond explaining and extends to new material, why doesn’t he
put his name on it and make a prediction with it?

Underlying Principles

Olivier Darrigol (Henri Poincaré’s Criticism of Fin de Siècle Electrodynamics,
1995) states that, “Poincaré favoured a ‘physics of principles’ in which the compat-
ibility of theories with general principles was more important than the completeness
of their physical picture.” This preference for principles can be seen in the work
translated in Part I. A key example is Poincaré’s concern with ad hoc assumptions in
Lorentz’s work to explain why the ether cannot be detected; Poincaré’s evident
response is to propose the relativity postulate which declares the impossibility of
detecting absolute motion. The ad hoc assumption is no longer needed. Similarly
arguments for and use of the principle of conservation of momentum are essential to
the reasoning in (Poincaré, La théorie de Lorentz et le principe de réaction, 1900).

Lorentz and Fitzgerald had introduced the contraction of the length of bodies
moving through the ether as an ad hoc assumption for explaining why experiments
for detecting the absolute motion of the Earth through a pervasive ether, such as the
Michelson-Morley experiment, had failed. In caricature, it was a means conceived to
explain an experiment that contradicted what they were persuaded was true. Under-
standably, for two reasons, Poincaré did not like this approach. First, the introduction
of this ad hoc assumption contradicted his preference for basing theories in physics
on principles. Also, he did not share their opinion about the existence of the ether
(discussed below).

In the first two paragraphs of (Poincaré, Sur la dynamique de l’électron, 1906,
p. 129; p. 45), we find that Poincaré did not see the experiments that did not “provide
us a means for determining the absolute motion of the Earth” as a difficulty to be
addressed with an explanation. Instead, Poincaré saw the experiments as pointing to
a general law of nature that he is “naturally lead to accept,” the Relativity Postulate.

In that paragraph of the introduction, Poincaré defines the relativity postulate as
the “impossibility of showing the absolute motion of the Earth,” although elsewhere
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he does state it in other forms. For example, Poincaré (Sur la dynamique de
l’électron, 1905, p. 1505; p. 41) states the relativity postulate as, “it is completely
impossible to determine absolute motion” (his emphasis). Poincaré indicates that it is
a postulate because it can still be confirmed or rejected by experiment.2

Let us look at another statement of the relativity postulate “Lorentz’s hypothesis
is the only one which is compatible with the impossibility of showing absolute
motion” (Poincaré, Sur la dynamique de l’électron, 1906, p. 163; p. 88). Miller
(A study of Henri Poincaré’s “Sur la Dynamique de l’Électron”, 1973, p. 296)
paraphrases it as, “Therefore, only if l ¼ 1 can the equations of motion transform. . .
in such a way as to exclude the possibility of detecting the ether.” This paraphrase
misrepresents Poincaré’s statement in three ways. It is useful to look at this misrep-
resentation more closely because it serves to expose the force of Poincaré’s state-
ment of the postulate of relativity. First is the issue of what is being evaluated:
“Lorentz’s hypothesis is the only one” (broad) or “l ¼ 1” (very narrow). The next is
the strength of the criterion being applied. With Poincaré, “compatibility with the
impossibility” is called for. Miller looks for a “way to exclude.” Last, in the criterion,
Poincaré did not use the word ether (a point discussed below); he wrote “absolute
motion” and that is less ambiguous (e.g. which concept of ether, how might it be
detected) and much broader. Poincaré is in fact using the relativity postulate as a
strong criterion to reject Abraham and Langevin’s theories, and any others that might
allow a way to detect absolute motion.1

Continuing to look at Poincaré’s insistence on underlying principles, let us look at
his defense of conservation of momentum. Poincaré (La théorie de Lorentz et le
principe de réaction, 1900, p. 270; p. 29) asks, “Why is conservation of momentum
obvious to our thinking?” His explanation is that a violation of the conservation of
momentum would lead fairly directly to perpetual motion; perpetual motion is even
less palatable. Further, conservation of momentum appears to be a consequence of
conservation of energy. For theories of electrodynamics Poincaré here again applies
a principle as a criterion for rejecting theories, stating “all theories which do not
respect this principle [of conservation of momentum] would be condemned as a
group” (Poincaré, La théorie de Lorentz et le principe de réaction, 1900).

Methods

It is expected that Poincaré, as a mathematician, would bring mathematical tools and
techniques to his work in physics.

2For possible comparison with Einstein see the definition on the first page of (Einstein, Zur
Elektrodynamik bewegter Körper, 1905), “conjecture that not only in mechanics, but in electrody-
namics as well, the phenomena do not have any properties corresponding to the concept of absolute
rest.”
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A notable feature of (Poincaré, Sur la dynamique de l’électron, 1906) is the use of
the Lagrangian and the related principle of least action “Principle of Least Action” is
even the title of §2. This method is another, more subtle and very distinctive way that
Poincaré argues by principles. It provides a means to derive fundamental relations
using the energy of a system and a variational principle minimizing a function of this
energy. This function of the energy is the Lagrangian and the integral of the
Lagrangian over all space and between two defined times is the action. As an
example, in §2 just mentioned, Poincaré uses the energy in the electric and magnetic
field and the work done on a charged particle to re-derive the formula for the electric
and magnetic force per unit mass acting on the moving particle, called the Lorentz
force.3 The usefulness of the method can be seen, since relatively simple assump-
tions were used to arrive at a useful, general formula governing the motion of the
particle.

In the following section Poincaré shows that the Lagrangian for l ¼ 1 (meaning
that the Lorentz transformations do not change the dimensions perpendicular to the
direction of motion) and the action in general are unchanged under Lorentz trans-
formation. This is necessary to establish the usefulness of the Lagrangian method in
contexts where v2/c2 approaches 1.

Continuing to use the Lagrangian, Poincaré (Sur la dynamique de l’électron, 1906
§6) derives the additional potential (Poincaré stress) needed to stabilize an electron
against repulsive Coulomb forces. While this proof does not require any additional
assumptions, it does not provide any information about the origin of the force or the
mechanism for stabilizing the electron either.

Poincaré (Sur la dynamique de l’électron, 1906 §4) recognizes that the Lorentz
transformations form a group. He is then able to apply methods relevant to groups
and use them in several different contexts. First, as discussed in Chapter 9, it is the
basis of his argument that l ¼ 1, since he had not been persuaded by other
considerations proposed by Lorentz. Further, the identification of this group feeds
two other considerations: looking for invariants and a geometric interpretation.

Looking for and using invariants is a method that Poincaré keeps returning to.4

the first invariant is x2 + y2 + z2 � c2t2; Poincaré calls it a quadratic form. It was later
named the space-time invariant by Hermann Minkowski. No matter what
un-accelerated reference frame you measure it in, the wavefront of a flash of light
in space time is a sphere. Einstein (Zur Elektrodynamik bewegter Körper, 1905 §3)
used this invariant to argue for the plausibility of these transformations. It also means
that the distance between any two points in space-time does not change with the
observer. As discussed in Chapter 9, Poincaré also determines other invariants from
the Lorentz transformation group.

Poincaré’s recognition that the Lorentz transformations form a group lead him to
a geometric interpretation of spacetime in which he considered x, y, z, and ict “as the

3The earlier derivation of the Lorentz force using least action is in (Lorentz, Contributions to the
theory of electrons. I, 1902).
4See for example (Poincaré, On the Three-Body Problem and the Equations of Dynamics, 2017).
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coordinates of [a point] in four-dimensional space. We have seen that the Lorentz
transformation is solely a rotation of this space around the origin, which is regarded
as fixed.” (Poincaré, Sur la dynamique de l’électron, 1906, p. 168; p. 94). Poincaré
does not expand on this idea. Famously Hermann Minkowski (Minkowski, 1908)
did, independently. This seems to be a missed opportunity, to be considered with
others in a following section.

Related to this geometric interpretation of space-time is a change in how Poincaré
used the Lorentz transformations. This is seen in how Poincaré used the Lorentz
transformations to discuss charge and current seen by different observers; he does
this in a way that departs from Lorentz’s corresponding states. In Lorentz’s view, the
transformation allows comparison of a moving electron or arm of an interferometer
with a corresponding one at rest with the ether. While Poincaré does at times use the
transformations this way, it is clear that, as in this example, he does use the trans-
formations in a geometric sense as a transformation between observations of one
event by two different observers. Related, but secondary, there are some hints that
Poincaré is close to recognizing some covariant four-vectors; due emphasis must be
placed on my choice of the word “hints.” Some examples, notably charge and
current density, are discussed in Chapter 9.

Predictions

Poincaré (La théorie de Lorentz et le principe de réaction, 1900, p. 242; p. 13) says,
“Good theories are flexible.” (His emphasis.) They also make predictions that are
verifiable or falsifiable. For example, Abraham (Dynamik des Electrons, 1902)
proposed an explanation and formula for explaining the dependence of β ray mass
on velocity seen in the data from (Kaufmann, Die magnetische und electrische
Ablenkbarkeit der Becquerelstrahlen und die scheinbare Masse der Elektronen,
1901), and the agreement between the two appeared satisfactory. Lorentz (Electro-
magnetic phenomena in a system moving with any velocity smaller than that of,
1904) provided a different explanation and a formula in better agreement with
Kaufmann’s data.

What are Poincaré’s predictions?
A massive body can’t be accelerated to the speed of light. Poincaré

(La dynamique de l’électron, 1908, p. 396; p. 120) writes, “Thus the mass, the
momentum and the energy become infinite when the velocity is equal to that of light.
The result of this is that no body can reach a velocity greater than that of light by any
means.” (His emphasis.)

As noted above, Poincaré viewed the principle of conservation of momentum as
an important underlying principle. In (Poincaré, La théorie de Lorentz et le principe
de réaction, 1900), he uses this principle to show that electromagnetic radiation must
transfer momentum from the emitter to the receiver producing a recoil in the emitter.
Further, he concludes that this transfer of momentum also conserves angular
momentum. Next, Poincaré estimates the magnitude of the effect and shows that a
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1 kg machine emitting 3 kW in a single direction produces a recoil with the force of
10�5 N, which he concludes is unmeasurably small. He recognized the connection of
this transfer with the known phenomenon of radiation pressure. This phenomenon
was used, for example, to explain the formation of comet tails: momentum trans-
ferred from solar radiation to gas and particles released from the comet push them
away from the Sun. As discussed further below, Einstein (Das Prinzip von der
Erhaltung der Schwerpunktsbewegung und die Traegheit der Energie, 1906) takes
the further step of connecting this transfer of momentum found by Poincaré with the
transfer of mass and its energy content between the emitter and receiver.

In the previous chapter, Chapter 9, Max Abraham had recognized that a require-
ment that mass be solely of electromagnetic origin (which was key to the electro-
magnetic worldview) was a constraint on theories of electrons and consequently
adopted a model electron that was an undeformable sphere. Poincaré showed that
Abraham’s model electron was not consistent with the relativity postulate, so that the
mass of an electron could not be exclusively of electromagnetic origin. This means
that Poincaré had shown there was a serious defect with the electromagnetic
worldview. It wasn’t the only problem he observed. Poincaré (La dynamique de
l’électron, 1908, p. 390; p. 109) observes that “the total mass of a [proton] is much
larger than that of a negative electron.” Poincaré allows that there could be multiple
explanations. For example, they could have the same electromagnetic mass, but
significantly different “real mass” accounting for the difference in total mass. Or, the
proton could be much smaller, resulting in a much larger electromagnetic self-
energy. (And he emphasizes, “I definitely mean much smaller.”) Feynman adds an
interesting twist to this argument by comparing electrons and muons (Feynman,
Leighton, & Sands, 1963, pp. 28–12). Their masses are very different, but otherwise
the properties are nearly identical. As Poincaré concluded, there is much more going
on with mass than just electromagnetic self-energy.

In fact, Poincaré goes farther than that summary. At the beginning of his
discussion of gravitation, Poincaré (Sur la dynamique de l’électron, 1906, p. 166;
p. 91, §9) writes, “But there are other forces to which an electromagnetic origin
cannot be attributed, such as gravitation, for example. It can in fact happen that two
systems of bodies produce equivalent electromagnetic fields, meaning exerting the
same action on charged bodies and on currents and that however these two systems
do not exert the same gravitational action on Newtonian masses. The gravitational
field is therefore distinct from the electromagnetic field.” This statement is in direct
contradiction with the electromagnetic worldview and positions gravitation as an
equal, fundamental force with the electromagnetic force. In itself, I don’t see this
dramatic change in perspective as leading to a prediction. However, someone who
thinks that all forces and masses are of electromagnetic origin does not need to look
at a separate theory of gravitation. Poincaré does not agree with that view and
therefore immediately turns his attention to gravitation.

In the same paragraph as cited above, Poincaré also writes, “Forces of any origin,
and in particular gravitation, are affected by a translation (or, if you prefer, by the
Lorentz transformation) in the same way as the electromagnetic forces.” (His
emphasis.) This is related to one of the frequently discussed contrasts between
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Einstein and Poincaré. Einstein started from principles (e.g. the relativity postulate:
the speed of light is always constant) and arrived at the Lorentz transformations as a
kinematic consequence. Poincaré started with electromagnetic and optical phenom-
ena and showed that the Lorentz transformations were required so that absolute
motion could not be detected. From the above quote, it is clear that Poincaré,
although starting from a different point and moving in a different direction, has
arrived at the same conclusion: whatever the origin of the force, it must not be
possible to detect absolute motion.

Arriving at things in this direction, Poincaré recognizes that there is an important
consequence to requiring that the Lorentz transformations apply to gravitational
forces: the gravitational force will additionally have to depend on the relative motion
of the attracting bodies via a retarded potential. Poincaré moves forward with
developing a theory of gravitation that is unchanged under Lorentz transformation.
Among other things, this leads to predictions that gravitation propagates with the
speed of light and that there are gravitational waves. Poincaré ends the article
expressing the hope that the divergence between his covariant theory of gravitation
and Newton’s law of gravitation will be large enough to be observable. In a
following paper, Poincaré (La dynamique de l’électron, 1908, pp. 399–400;
p. 124–125, §14) §14 discusses the 3800 anomaly in the precession of Mercury’s
perihelion as a possible test. He indicates that his theory can explain 700 precession. It
should however be noted that Mercury’s motion is accelerated so a theory based on
Lorentz transformations and therefore constant velocities is not applicable. Poincaré
has pointed in a new direction and taken a first step.

Note that I’m not counting Poincaré stress as a prediction; they are consequences
of the theory, but it’s hard to see how, even in principle, the stabilizing pressure
could be measured or falsified.

I do want to look for possible missed opportunities, but I need to be cautious
about the enormous benefit of hindsight. The following items are all ones that
Einstein did say, and that Poincaré would have had a sound basis for saying
independently because of his own work.

There is no need for a luminiferous ether. Certainly Lorentz contractions brought
ether theories closer to being unfalsifiable, which would seem to make the theories as
a class a candidate for elimination. As noted at the beginning of Chapter 7, work
reported in (Thomson, Cathode Rays, 1897) sought to determine whether cathode
rays are wholly processes in the ether or wholly material. In less than a decade the
answer is fully settled. Poincaré’s electron theory is entirely particle based and has
no place for processes in the ether. Does this leave any need for the ether in theory or
principle? Darrigol (Henri Poincaré’s Criticism of Fin de Siècle Electrodynamics,
1995) states that, “Poincaré early adopted a skeptical attitude toward ether, and
identified progress with a gradual elimination of this concept.” For example,
Poincaré uses the term “ether” three times in (Poincaré, Sur la dynamique de
l’électron, 1906): the first two times are in the introduction and the second time is
in §6 as part of the discussion of the shape of the electron and the theories of
Abraham, Lorentz and Langevin-Bucherer. It might seem that he was eliminating the
word from his vocabulary, but then we turn to (Poincaré, La dynamique de
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l’électron, 1908) and he uses the word almost 50 times. Some of those times he uses
the word to explain or argue against a theory of the ether, but not always. Poincaré
had sound reasons and opportunity in one or both of these papers to make a strong
statement against the ether; he did not.

Einstein (Zur Elektrodynamik bewegter Körper, 1905) states as a postulate that
“in empty space light is always propagated with a definite velocity V which is
independent of the state of motion of the emitting body.” Poincaré’s approach to the
argumentation does not need this postulate. It is however a consequence of the law of
addition of velocities that Poincaré derived (e.g. Equation 9.100) and Poincaré does
not comment on it.

While it is going too far to consider this a missed prediction, it is still worth noting
that Einstein (Das Prinzip von der Erhaltung der Schwerpunktsbewegung und die
Traegheit der Energie, 1906) showed that (Poincaré, La théorie de Lorentz et le
principe de réaction, 1900), discussed above, was one step from showing that since
electromagnetic radiation transferred momentum between bodies it also had to
transport mass between them with an energy content mc2. Edmund Whittaker
(Whittaker, 1953, p. 51) even allows it to be understood that Poincaré had taken
this last step six years before Einstein. Instead, it must not be overlooked that
Einstein wrote (Das Prinzip von der Erhaltung der Schwerpunktsbewegung und
die Traegheit der Energie, 1906) months after the last of his five famous papers
from 1905. Einstein had written in 1905 about the energy content of matter. The
understanding gained from that paper had to have helped Einstein understand what
Poincaré had come close to, and to write about it himself in the 1906 paper.

While not a prediction, Poincaré, as discussed in the previous section, did
recognize that the Lorentz transformations correspond to a rotation of coordinates
in four-dimensional spacetime. Poincaré would seem to have been in an excellent
position to explore and develop a mathematical theory of spacetime. He did not and
this opportunity glanced at by Poincaré, was left to Hermann Minkowski two years
later.

The point of this section is to present some subjects where Poincaré came close to
making some important predictions. And that serves to prepare the ground for the
discussion in the following section that asks, “why didn’t he?” The positive side of
this section is that Henri Poincaré was dealing with the right subjects in an important
field at the right time.

Attitude

The premise of the previous section is that, after having developed and collected
postulates, then having applied his methods to them, Poincaré should have been in a
position to say something akin to, “If I’ve understood correctly, then when you look
here, you will see this.” I referred to the “look here—see this” as predictions and
asked that they be verifiable or falsifiable. In my analogy that is to say, if you
measure the mass of the electron as a function of the velocity with this equipment
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then the experimental data will be represented by this function. This is exactly the
point of Lorentz’s reprocessing of Kaufman’s data; it allowed Lorentz to write in
response to Abraham: the experimental data is represented at least as well by my
function.

So when I chose attitude as the title for this section, I was thinking, asking myself,
what was it in Poincaré’s thought process, in his personality, in his view of his role in
a community of scientists that kept him from making one or more of the statements
that in the previous section I suggested he could have made?

Before getting to that question, let me look at other factors that I think are
relevant.

There are some formerly useful ideas that Poincaré could throw overboard, but
holds on to. I’ve included the declaration that there is no ether among the missed
predictions above. Chapter 12 includes a discussion of vector notation. Poincaré was
writing out vectors (e.g. for electric and magnetic fields) and derivatives in Cartesian
coordinates in work published in 1890 and he was still doing that in 1906, even
though, in between, he had clearly been exposed to and understood more compact
and less cumbersome formalism familiar to us. Using Cartesian coordinates is
clearly a case of Poincaré being conservative and sticking with what was working
well for him. Poincaré’s attachment to the principle of conservation of momentum is
a positive side of this trait.

Poincaré, in his letters to Lorentz translated in Chapter 3, referred to “differences
in detail” and an argument that “does not seem conclusive.” The differences
Poincaré indicated are discussed in Chapter 9. The first one goes to the core of
understanding how to apply the Lorentz transformations and prevents Lorentz from
recognizing that the equations of electrodynamics are unchanged under Lorentz
transformation. It is hard to see that as a matter of detail; Poincaré seems to have
some reason for downplaying the differences between him and Lorentz.

Consider also the last line of the introduction to (Poincaré, La théorie de Lorentz
et le principe de réaction, 1900). There, Poincaré wrote, I’m asking the reader “to
forgive me for having presented at such length ideas with so little novelty.” This is
very self-abasing. The article recognizably has significant novelty in the discussion
of momentum transport by radiation and the concept of local time.

Why is Poincaré taking such a deferential approach to Lorentz and to his readers
(who are presumably physicists)?

It suggests several possibilities to me. Poincaré may not want to step out of place
as an outsider, may want to avoid offending anyone and especially not the insiders
like Lorentz. There is also modesty, in the sense of “Sorry to bother you, I just need a
few minutes of your time.” He may be reluctant to overstate the case or even claim
that he has something important to contribute to physics.

This diffidence and reluctance seen in his writing may be a symptom. His failure
to make the predications discussed above—predictions that seem well justified in his
writing and in hindsight—may also be symptoms. What is causing the symptoms?

Really, this is something of a mystery.
Howard Stein (Physics and PhilosophyMeet: the Strange Case of Poincaré, 2014)

refers to the discussion of (Poincaré, Sur la dynamique de l’électron, 1906)
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(including this situation that I just described where he did not make justified pre-
dictions) as strange and adds, “But I have not seen it pointed out just how strange; I
know of nothing like it in the entire history of physics.”

Howard Stein sees an explanation in the role that Poincaré takes for himself in his
philosophy of science. He states this as, “The basic mistake that I ascribe to Poincaré
is that of seeing the significance of theoretical work as residing essentially and
exclusively in its function in organizing knowledge.” He continues, “Indeed, I am
inclined to venture the psychological hypothesis that Poincaré, whose confidence in
his own mathematical powers was very great indeed, had some diffidence about
trespassing on the domain of physical prediction.” (Stein, 2014, p. 23, footnote 55)
(His emphasis.) I started the previous section with the statement that good theories
made predictions that could be verified or falsified. In the same footnote, Howard
Stein indicates that in Poincaré’s philosophy of science, “Poincaré did not regard
such new consequences as a desideratum for a theory, indeed that in a certain sense
he viewed it as unreasonable and illegitimate for a theory to be expected to have such
consequences.”

Olivier Darrigol (The Mystery of the Einstein-Poincaré Connection, 2004),
referring to a different but related mystery, states, “Poincaré and Einstein belonged
to the fringes of the physics community. One was a foremost mathematician with a
special interest in physics, the other a young patent clerk trained at the Zurich
Polytechnikum. They both lacked some of the prejudices of established physicists;
they both took the stance of an impartial judge; they both preferred to reformulate
existing theories in their own way rather than digging out the original motivations of
their authors.”

Through the selection of similar words like organizing, judge, trespassing and
fringes by Darrigol and Stein, we can see commonality in their perception of
characteristics that might lead Poincaré to not make predictions in physics theories.

I think there is another related symptom that is commonly stated in the form of
one of several questions: why didn’t Poincaré respond to Einstein’s paper? Why
didn’t Poincaré make a further elaboration of his theory? Why didn’t he do some-
thing, anything?

First, it’s possible that Poincaré thought of his 1906 work as an elaboration or
clarification of Lorentz’s theory and that he had already done his part with the
exposition he provided. (This understates the difference between Lorentz’s ad hoc
approach—this is what is needed to explain why the ether hasn’t been detected—
Poincaré’s postulate approach—it is what is required by the relativity postulate.) If
Poincaré does not think of it as his theory then it is understandable that he would not
see a need to defend or for further explain. He can leave that to Lorentz or someone
else. This is consistent with a perception that he is an outsider who shouldn’t
overstep his position, or that his role is organizing knowledge and not advancing it.

Let me offer an alternative, affirmative explanation.
Poincaré demands that his readers work. Close and careful reading of Poincaré is

rewarded; it also requires readers to provide many of their own road signs: “Slow,
sharp curve ahead,” “Turnout for scenic vista, next right,” “Major conclusion on
next page.” For example, readers of (Poincaré, On the Three-Body Problem and the

206 B. D. Popp



Equations of Dynamics, 2017, p. 103, Equation 18) who don’t recognize the Duffing
equation may easily miss that Poincaré is discussing fully chaotic behavior of a well-
known non-linear oscillator, and then answer incorrectly the question, “did Poincaré
describe a fully chaotic system?” For a more relevant example, look at (Gray, 2013,
p. 374). There he quotes Poincaré (Poincaré, Sur la dynamique de l’électron, 1905,
p. 1506; p. 43), “the deformable and compressible electron is subject to a kind of
constant external pressure.” (He also has a similar quote from (Poincaré, Sur la
dynamique de l’électron, 1906, p. 130; p. 46).) In these quotes, Poincaré is referring
to the Poincaré stress discussed here in Chapter 9 in the subsection “Electron
Stability.” Classical electrons are not stable with only electromagnetic forces; the
electromagnetic worldview is not possible. The constant external pressure, the
Poincaré stress, is what would be needed to stabilize the electron. Also, because
the observed shape of a moving electron changes with the relative velocity, the
observed self-energy and Lagrangian of the electron also change. Jeremy Gray
appears to miss this point and concludes his discussion (on the same page) with
the sentence, “It is as if the poor moving electrons are doing work battling through
the ether, which appears as some sort of head wind.” This is far removed from what
Poincaré wrote.

Does Poincaré understand how hard he is making his readers work? Maybe not.
He may not realize how much more facile his command of the subject matter is. This
could be a factor in Poincaré’s continued use of the convention of writing out vector
partial-differential equations in Cartesian coordinates without a separate symbol for
partial derivatives. (This point is discussed in Chapter 12.) Perhaps he is fully
comfortable with this notation when others, even Oliver Heaviside, felt a pressing
need for a more compact and expressive notation to follow the reasoning.

Is my list of missed predictions in the previous section because I and other readers
have not provided for ourselves the signs that Poincaré thought would be clearly
understood? I don’t know, but I suggest that it may be a partial explanation.5 Clearly
reading, understanding and explaining Poincaré’s work is a matter of what we each
bring to that effort. As suggested above, it would be interesting if we read his work
with the same attitude that Poincaré brought to (Lorentz, Electromagnetic phenom-
ena in a system moving with any velocity smaller than that of, 1904).

For balance, I need to point out a competing negative explanation. This explana-
tion sees Poincaré as not adequately understanding what he had come across, and
indeed written. The missed predictions that I listed in the previous section are then
seen as physics that was beyond Poincaré’s ability to understand, even with his great
gifts as a mathematician. This view could be summarized by a statement that
Poincaré was a much better mathematician that a physicist.

There is still plenty of room for discussion and no resolution of the mystery in
sight.

5Yes, I know that misunderstood genius is a cliché.
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Conclusion

It is hard to come up with a concise description of Poincaré as a physicist. In part this
is because Poincaré is a complex subject for a biography is his own right.

Getting a clear view of Poincaré as a physicist is made harder because we are near
(or partially in) a polarizing subject, priority for the theory of special relativity. That
priority dispute is something that I cover in the following chapter, Chapter 11.

I started this chapter with a quote from Poincaré that I described as a koan. I think
I need to leave you at the end of the chapter with an even bigger mystery and very
little to guide your assessment.

Notes
1. As mentioned in the preface, (Miller, 1973) and (Whittaker, 1953) should be

approached with caution as sources of information about what Henri Poincaré
wrote and meant. Each appears to have their own significant biases. The follow-
ing chapter, Chapter 11, provides some indication of the nature of their biases.
Please note that (Miller, 1973) was “Communicated by G Holton.”Gerald Holton
and Edmund Whitaker are both principles in the polemic concerning priority for
the theory of special relativity. When reading their works and this chapter
(or indeed this book), I suggest you carefully consider explicit, implicit and
unsuspected biases. For me, please consider both that I have a deep interest in
Henri Poincaré’s work and what I have written in the preface.
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Chapter 11
Einstein, Poincaré and the Origins
of Special Relativity

Introduction

Two papers I translated in this book have had considerable notoriety thrust upon
them because of the historical discussion of priority for the discovery of the theory of
special relativity. The publication date of the first paper serves to establish a first-to-
publish date for Henri Poincaré just a few months before Albert Einstein’s publica-
tion and the second paper by Poincaré provides details for this discussion. The
second paper (Poincaré, Sur la dynamique de l’électron, 1906a) is commonly called
the Palermo paper, a reference to the journal in which it was published. The
corresponding paper by Einstein (Einstein, Zur Elektrodynamik bewegter Körper,
1905)1 is one of his famous series of papers from 1905.

Many gallons of ink have been used to argue about the position of Poincaré’s and
Einstein’s 1905 papers in the discovery of special relativity and precedence for that
discovery. A good deal of the ink in fact seems to be quite toxic which makes the
discussion unattractive.

If, unlike me, you are interested in the discussion of precedence, then I hope that
the translations of relevant papers by Poincaré provided in Part I contributes to your
understanding of what Poincaré wrote.

I also find that discussion to be a distraction from several important topics that
Poincaré does treat and which I do find interesting. In fact, the other chapters in Part
II treat topics that I find both interesting and overlooked. What is an electron? What
holds it together? What did Hendrik Antoon Lorentz and Henri Poincaré contribute
to reworking electrodynamics without an ether and with discrete charges? Further,
there are additional topics here that I haven’t considered: Henri Poincaré in these
papers is also trying to understand the origin of mass, and the unification of
gravitation and electromagnetism. Any of these are meritorious in their own right.

1Quotations from Einstein’s 1905 paper on special relativity used in this chapter are taken from
(Einstein, The Collected Papers of Albert Einstein, 1989).
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Therefore, my reason for preparing this book is not to get involved in that
discussion of precedence for special relativity; it is instead to point out some of
the interesting things done by Poincaré (and Lorentz) that have been drowned out by
the discussion. However, if I were to write this book ignoring the noise from the
discussion, it would leave a rather large elephant in the room. The purpose of this
chapter is therefore to acknowledge the presence of the elephant, look it over, and
then get it out of sight.

A prominent feature of some contributions to this discussion is a checklist of
items seen as necessary for having a full theory of special relativity. (The checklist
may in some situations only be metaphorical. Alternatively, Jeremy Gray (Henri
Poincare: a scientific biography, 2013, p. 368) writes, “the pro-Poincaré faction
can. . . cut and paste their man’s words into a fairly impressive list of insights.”)
Some items on the checklist are Lorentz transformations, demonstration that Max-
well’s equations of electrodynamics are invariant under Lorentz transformation, and
a statement that the speed of light is the same in all inertial reference frames.
Checkmarks are then placed next to these items in a Poincaré column and in an
Einstein column. In this approach to the comparison, there are many checks in the
Poincaré column. Some contributors do see enough checks in the Poincaré column to
assert that Poincaré did have a full theory of special relativity and maybe even some
glimmers on the horizon in the direction of the general theory of relativity.

This checklist approach seems to have three main shortcomings. First, it passes
over a sizeable portion of what Poincaré did write about that isn’t needed for the
special relativity checklist. Other chapters in this book help draw attention to some of
this material that has been passed over. The next shortcoming is that the reductionist
nature of a checklist leaves out consideration of holistic issues: what did Poincaré
and Einstein each write in their respective papers about what they were trying to do
and how they saw the items from the checklist fitting together. I agree with the
statement in (Darrigol, The Mystery of the Einstein-Poincaré Connection, 2004,
p. 618), “in order to compare Poincaré’s and Einstein’s theories properly one must
read every one of their statements in context, taking into account both the inner logic
of their investigations and the contemporary problematics to which they were
responding.” I hope the translations in Part I, and Chapters 9 and 10 are an aid to
readers wishing to follow Darrigol’s prescription. The third shortcoming lies in
understanding how other people saw and worked with what Poincaré and Einstein
had each written.

In this last case, the answer is fairly clear. Poincaré’s paper from 1906 (“the
Palermo paper”) and his follow-up from 1908 seems to have largely languished until
Edmund Whittaker (Whittaker, 1953) brought attention to them (discussed later in
this chapter). In contrast, Einstein’s readers, after a delay, tried to assimilate, write
about and use Einstein’s paper. First Hermann Minkowski in 1908 and then Arnold
Sommerfeld, Paul Langevin and others went down this path. Their efforts and
publications added weight behind Einstein’s work. This path then became the history
of the adoption and acceptance of the theory of special relativity. Books have been
written about that history and I’m not going to look at it further here.

212 B. D. Popp



Instead, returning to the second shortcoming, I now want to look at what Poincaré
and Einstein wrote in their papers about what they were trying to do. This is
necessarily a discussion of what they wrote in a particular place at a particular
time. It does not consider their notes and ideas before they were organized and
exposed for publication; it does not consider how they presented their work at a
different time in a later publication. Then, to frame the discussion, I will look at some
of the earliest contributions to the back-and-forth discussion about priority and also
recent discussion about the discussion, and bring the chapter to a close.

Poincaré on What He Was Trying to Do

To get a more holistic view of what Poincaré thought he was trying to accomplish it
is useful to look at what he wrote in the introduction (Poincaré, Sur la dynamique de
l’électron, 1906a). There he lays out his plan for the paper, and several key
considerations or approaches to his work are evident.

Poincaré starts his introduction with a summary of the evidence—ending with
Michelson’s experiment—that it is impossible to detect experimentally the absolute
motion of the Earth. He accepts this as an experimental law and calls it the Relativity
Postulate. The contraction proposed by Lorentz and Fitz Gerald accounts for the
results of Michelson’s experiment; this must be generalized to the Lorentz transfor-
mation to bring it into agreement with the full generality of the Relativity Postulate.
Since electromagnetic phenomena are not altered by the Lorentz transformations
(Poincaré will prove in this paper that Maxwell’s equations are covariant), Poincaré
concludes that electromagnetic phenomena in stationary and moving systems are
indistinguishable (“the exact image of each other”).

In brief, Poincaré has forged a chain from experimental evidence, with the
relativity postulate and the Lorentz transformation, to the indistinguishability of
inertial reference frames.

Poincaré continues the introduction with an application of the Lorentz transfor-
mation to electrons and consideration of the experimental results of Walter
Kaufmann. This leads Poincaré to consider the shape and electromagnetic mass of
moving electrons. He arrives at the conclusion that subatomic charged particles
subject only to electromagnetic forces are not stable. For them to be stable, some
additional, non-electromagnetic force is required that is “[comparable] to a constant
external pressure”—this force is now referred to as “Poincaré stress.”

The evidence with which Poincaré started the introduction dealt with electromag-
netic and optical phenomena. Next in the introduction, Poincaré considers whether
the relativity postulate and Lorentz transformation apply to phenomena with a
different origin (such as gravitational phenomena), whether inertial mass is solely
of electromagnetic origin, and how Newton’s law of gravitation might need to be
modified to be consistent with the relativity postulate and Lorentz transformation.

Poincaré concludes the introduction by asking whether there is some underlying
explanation for the appearance of the speed of light as the speed of propagation of
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gravitational phenomena. Since the speed of light appears in descriptions of elec-
tromagnetic phenomena and gravitational phenomena, is there a connection between
the two?

This leads to an analogy to Copernicus’s work at the end of the introduction that
some people have found obscure. Before Copernicus, in the Ptolemaic system, the
Earth was taken as the center of the solar system and the apparent position of the
planets calculated based on their motion around the Earth. Copernicus recast the
calculations of the apparent positions in terms of the Sun at the center of the solar
system and the Earth and other planets revolving around the Sun. In the Copernican
system the motion of the Earth in a circle around the Sun in 365 days was explicitly
present and appeared in the calculation of the Earth’s position. In the calculation of
positions in the Ptolemaic system, the circular orbit of the Earth with a 365-day
period was implicitly present in the calculation of the position of each planet. A
person looking at the Ptolemaic calculations might have reasonably asked why
certain patterns repeated for each of the planets. Therefore, in his analogy, Poincaré
looks back to Copernicus who by placing the Sun at the center of the solar system
used the annual circular motion of the Earth around the Sun to explain the identical,
repeated circles and travel times in the Ptolemaic system. We can look forward and,
anachronistically, rephrase Poincaré’s question to ask whether the place of the speed
of light in an underlying theory explains its seemingly separate appearance in both
electromagnetic and gravitational phenomena.

In this synopsis of the introduction to (Poincaré, Sur la dynamique de l’électron,
1906a), we can recognize several considerations important to Poincaré.

The first consideration is experimental evidence.
Immediately in the first paragraph of the introduction, we see the importance of

reasoning from experimental results. The names of two experimentalists are cited in
this paragraph; two more are named on the following page. Based on Michelson’s
experiment, Poincaré states the Relativity Postulate; Poincaré calls it a postulate
because it could still “be confirmed or rejected by more precise experiments.”2 The
Lorentz contraction is presented as a way to take into account the result of
Michelson’s experiment. We then observe Poincaré reasoning from this experimen-
tal basis to see what can be deduced and developed.

Next in the introduction, Poincaré refers to experiments by Kaufmann (measuring
the charge-to-mass ratio and the dependence of electron mass on velocity). Poincaré
mentions Kaufmann twice in the introduction but does not mention him again in the
body of this paper. In the paper, (Poincaré, La dynamique de l’électron, 1908),
Poincaré mentions Kaufmann by name nine times including in the title of §X. This is
a point of departure for discussing the properties (radius and mass in particular)
under Lorentz transformation.

The second consideration is the work of others in the field.

2In my paraphrase, his postulate is a statement about what nature has shown us (by experiment or
observation) and not a statement about how nature is, fundamentally.
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Lorentz’s earlier paper (Lorentz, Electromagnetic phenomena in a system moving
with any velocity smaller than that of, 1904) is critical to this paper by Poincaré
(Poincaré, Sur la dynamique de l’électron, 1905a). Poincaré builds on it and,
throughout he corrects, amplifies and clarifies. Poincaré also summarizes the work
by Max Abraham on electron shape and Paul Langevin on electromagnetic waves.

The third consideration is an attitude of modesty seen as respect or deference to
his colleagues.

Consider the statement at the end of the introduction to (Poincaré, La théorie de
Lorentz et le principe de réaction, 1900, pp. 252, p. 8). Poincaré indicates that his
objections (concerning the need for Lorentz’s theory to conserve momentum) allow
Lorentz’s theory to show its hidden virtues and asks the reader, “to forgive me for
having presented at such length ideas with so little novelty.” Poincaré’s handling of
his divergences from Lorentz discussed at length in Chapter 9 in the letters translated
in Chapter 3 reinforce this point.

The fourth consideration is identifying and using invariants.
Although not evident from the introduction, it is clear from Poincaré’s other work

and again here that he chooses to look for invariants. Here, (Poincaré, Sur la
dynamique de l’électron, 1906a, p. 168; p. 93), below equation 40, Poincaré looks
for invariants of the Lorentz group. He finds that x2 + y2 + z2 � (ct)2 is an invariant.
(Recall that in the units chosen by Poincaré, c ¼ 1.) This is the spacetime interval
that is invariant in Minkowski space. He also finds several other invariants and they
are given in equations (5) and (7).

The fifth consideration is retaining what is thought to be known and established
and working effectively.

As specific examples this means conservation of momentum (principe de réac-
tion) and conservation of energy—stated differently these are both invariants of
motion—and Newton’s law of gravitation. A key consideration in (Poincaré, La
théorie de Lorentz et le principe de réaction, 1900) is that Lorentz’s theory of
electricity and magnetism of moving bodies be adapted to conserve momentum. In
adapting to satisfy this consideration, Poincaré concludes that electromagnetic
radiation must transport momentum.

The negative side of this consideration is that Poincaré continues to retain and use
the term ether in (Poincaré, La dynamique de l’électron, 1908). In adopting the
relativity postulate, Poincaré denies the possibility of detecting absolute motion and
it would seem that the ether should be abandoned too. Einstein writes that the ether is
“superfluous” and makes a clean break. Poincaré could have made a clean break too;
he continues to use the term. A physicist seeking to understand a phenomenon can
certainly have a preference for one reference frame over another even if nature and
the phenomenon do not impose that preference. Still his continued use of the term
ether, which may previously have been a useful consideration, is problematic.
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Einstein on What He Was Trying to Do

Turning now to Einstein’s introduction to his work (Einstein, Zur Elektrodynamik
bewegter Körper, 1905), he starts with the statement of a problem. To illustrate the
problem, he describes a scenario with interaction between a magnet and a conductor.
In one version of the scenario, the conductor moves at a constant velocity past a
stationary magnet. In the other version, the conductor is stationary while a magnet
moves past at a constant velocity. In both versions a current is produced in the
conductor and the resulting magnitude and direction of the current produced is the
same. The current produced cannot be used to determine whether the magnet or the
conductor is moving; only the velocity of whichever one is moving can be deter-
mined. In contrast to the phenomenon just described the description of the two
versions in “electrodynamics—as usually understood at present—” is different.
Einstein characterizes this difference as an asymmetry. And so in his problem
statement in the first sentence he writes, “electrodynamics. . . when applied to
moving bodies, leads to asymmetries that do not seem to attach to the phenomena.”

Following the discussion of symmetry in relative motion in electrodynamics in
the first paragraph, Einstein observes in the second paragraph the failure to detect
absolute motion of the Earth relative to the ether. Einstein says that this is a similar
kind of example. Here the experimental results show that the ether (or equivalently
absolute motion) cannot be detected. The phenomenon (aberration) is symmetric; it
cannot show whether the distant star that is the source of the light is stationary and
the Earth is moving or vice versa.

Einstein uses these two examples of symmetry as a basis for a conjecture that the
phenomena do not have any properties corresponding to absolute rest. Accepting
this conjecture, he raises it to the status of a postulate that he calls “the principle of
relativity.” He adds a second postulate to this: in empty space light always travels
with a definite velocity independent of the motion of the emitting body. Armed with
these two postulates, Einstein would seem to be ready to apply them to electrody-
namics to investigate the consequences. Instead, he turns his attention to clocks and
coordinate systems in the following section and says that insufficient attention to
them is at the root of the difficulties. And that is the conclusion of the introduction.

At the time of writing this introduction and for the next several years, Einstein
was employed as a patent examiner in the Swiss Patent Office in Bern. He was
therefore familiar with the organization used in drafting patents. In general, that
organization has an abstract, a statement of the field of the invention, a discussion of
the prior art (meaning relevant, published work in the field of the invention) along
with a discussion of an unresolved problem or opportunity in the prior art, a brief
description of the invention addressing this problem or opportunity, a detailed
description of the invention and finally the claims setting out the boundaries that
characterize the invention. Looking at the beginning of Einstein’s article in Annalen
der Physik and applying this analogy with patent drafting, we see that Einstein has
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indicated the field of his work (electrodynamics, Maxwell’s theory as currently
understood), provided a brief statement of the problem present in the prior art
(asymmetries in the treatment of phenomena involving relative motion) and then a
brief description of the “invention” (the postulate of relativity and the postulate that
the speed of light is a universal constant). He accomplishes this in a few more than
400 words; for comparison, a patent abstract (which Einstein does not provide) must
preferably not exceed 150 words.

On the other hand, he has not identified or discussed the prior art, that is the
scientific literature in the field. Famously, we do not know which (if any) works by
Lorentz or Poincaré, or anyone else, he was familiar with. Seen one way, this allows
some mythologizing to exist. As an undergraduate physics major, I heard that
Einstein was in some way more philosopher, working on a different plane than
ordinary physicists, and this was reflected in his considerations of symmetry,
simultaneity and the speed of light. A stated consequence is that without Einstein’s
work on the subject special and general relativity would not have been developed
until decades later and would have a substantially different form. Seen another way,
the absence of a discussion by Einstein of what was in the prior art complicates our
assessment and understanding of his reasoning and his understanding of the context
of his theory. Both perspectives make assessment of priority more difficult.

A patent examiner, including Einstein, examining a patent application would look
at the prior art (e.g. references and citations) disclosed in an application and would
on their own search the published literature for additional prior art to identify the
knowledge available to a person working in the field. The examiner organizes the
result of this search in a search report. Comparison of the invention against the
knowledge available to a person working in the field allows the examiner to
determine whether the claimed invention is novel and nonobvious. It seems very
curious that Einstein has not done this in his own work.

In the section following the introduction, Einstein starts his detailed description of
the invention. There, he famously instructs his readers on how to tell time (and the
importance of simultaneity). “We have to bear in mind that all our propositions
involving time are always propositions about simultaneous events. If, for example, I
say that ‘the train arrives here at 7 o’clock,’ that means, more or less,’ the pointing of
the small hand of my clock to 7 and the arrival of the train are simultaneous events.”3

This lesson in telling time applies to a person with a watch in hand standing on the
platform next to the train pulling into the station. The situation becomes more
complicated if the observer, clock and event are at separate locations. Here, Einstein
uses surveyor’s rods and light signals to set out a reference frame with synchronized
clocks.

3An alternate translation, “Wemust take into account that all of our judgments in which time plays a
role are always judgments about simultaneous events. If, for example, I say, ‘That train arrives here
at 7 o’clock,’ it essentially means, ‘The train arriving and the small hand of my watch pointing to
7 are simultaneous events.’” provided by Ken Kronenberg. Personal communication,
December 2016.
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With the synchronized clocks and surveyed framework in place, he can then use
the two postulates (the relativity postulate and that the speed of light in empty space
is a universal constant, independent of movement of the emitter) to determine the
Lorentz transformations as a consequence.

As with Poincaré above, in this synopsis of the introduction to (Einstein, Zur
Elektrodynamik bewegter Körper, 1905), we can recognize several considerations
important to Einstein.

Directly with the first sentence, Einstein brings up the importance of alignment
between natural phenomenon and theoretical explanation. He rejects a theoretical
explanation that is asymmetric for a natural phenomenon that is symmetric. When a
conducting coil moves past a stationary magnet at a constant velocity, a certain
current is produced in the coil and the same current is produced when a magnet
moves past a conducting coil at a constant velocity. An essential minimum constraint
on the theory is that the theory correctly explains the magnitude of the current in both
configurations. Einstein is further demanding that the explanation intrinsic to the
theory be symmetric for both configurations. His consideration of this symmetry in
the phenomenon motivates him to incorporate the principle of relativity into his
theory.

The second consideration is that the speed of light is constant. Where Poincaré
anticipates some underlying connection or significance for the speed of light,
Einstein promotes it to a fundamental, universal constant.

The third consideration relates to reference frames. Here Einstein starts by
explaining how to tell time at one point: it involves the simultaneity of the hands
on his watch and the position of the train next to him and then sets out a reference
frame with synchronized clocks. The importance of simultaneity becomes clear now
because two events that are simultaneous in one reference frame might not be
simultaneous in a different reference frame moving with a constant velocity. This
leads to aptly emphasizing the importance of identifying the relevant reference
frames and correctly using them. This is a key step in understanding many paradoxes
presented in special relativity. Is the half-life of the meson formed high in the Earth’s
atmosphere measured in the reference frame of the observer on the Earth’s surface or
in the reference frame of the meson traveling at a high velocity relative to the
observer?

The Start of the Dispute: Edmund Whittaker

The title of E. T. Whittaker’s book, “A History of the Theories of Aether and
Electricity, the Modern Theories, 1900–1926” (Whittaker, 1953), is curious. In
fact, it is a second volume; about 50 years earlier Whittaker wrote a first volume
covering a long swath of the history of physics with understanding of the ether as an
organizing theme. The preface to this second volume starts, “The purpose of this
volume is to describe the revolution in physics which took place in the first quarter of
the 20th century.” For a book covering this period, the use of ether in the title seems
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anachronistic. Whether you look to Poincaré (Poincaré, Sur la dynamique de
l’électron, 1906a) or Einstein (Einstein, Zur Elektrodynamik bewegter Körper,
1905), ether appears to receive a death blow at the beginning of the quarter-century
he proposes to cover. For Poincaré, the failure to detect absolute motion relative to
the ether leads to the Relativity Postulate. This makes the ether unnecessary for
Poincaré, although it does continue to appear in his writing, in some cases just to
argue for the impossibility of the properties it would be required to have. For his part,
Einstein writes, “introduction of a ‘light ether’ will prove superfluous” because there
is no space at absolute rest. How can a book about physics in the 20th century have
ether in the title?

The title of the second chapter of Whittaker’s book is likewise curious, and also
provocative; it is “The Relativity Theory of Poincaré and Lorentz.” Why isn’t it,
Einstein’s Theory? A plausible first reaction might be that Whittaker is trying to
completely write Einstein out of the history of physics. Referring to the table of
contents, we can see that Einstein’s name appears there nine times in subchapter
titles. So, we see that Einstein has not been written out, but his position in the history
of both special and general relativity has been greatly marginalized. Within the
second chapter, Einstein’s name appears five times. When it first appears, Whittaker
writes, “In the autumn of [1905]. . . Einstein published a paper which set forth the
relativity theory of Poincaré and Lorentz with some amplifications, and which
attracted much attention.” The same paragraph ends with the second mention of
Einstein’s name and credits him with modifications made to the formulas for
aberration and Doppler effect. (Einstein’s name appears once more in this context
and twice in connection with the formula “E ¼ mc2.”) It is a stunning demotion and
calling it provocative seems like understatement.

At this point a digression seems well justified. Whittaker (A History of the
Theories of the Aether and Electricity, The Modern Theories, 1953, p. 51), writes,
“In 1900 Poincaré,3 referring to the fact that in free ether the electromagnetic
momentum is (1/c2) times the Poynting flux of energy, suggested that electromag-
netic energy might possess mass density equal to (1/c2) times the energy density: that
is to say, E ¼ mc2 where E is energy and m is mass.” His footnote 3 is a reference to
(Poincaré, La théorie de Lorentz et le principe de réaction, 1900) translated in Part
I. In that paper, Poincaré is concerned with the transport of momentum by electro-
magnetic radiation, which he shows is necessary for conservation of momentum. He
does relate this to the Poynting vector; he does not take the additional step of
connecting the momentum of the electromagnetic radiation to an inertial mass. As
Whittaker continues his discussion on the following page, he references in footnote
4 (Einstein, Das Prinzip von der Erhaltung der Schwerpunktsbewegung und die
Traegheit der Energie, 1906). In the introduction to that paper, Einstein states that
“the conclusion that the mass of a body changes with the change in its energy
content. . . is the necessary and sufficient condition for the law of the conservation of
motion of the center of gravity to be valid” in systems with both mechanical and
electromagnetic processes. This is closely related to the statement that conservation
of momentum requires that electromagnetic radiation carry momentum. Einstein in
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the next sentence states, “the simple formal considerations that have to be carried out
to prove this statement are in the main already contained in a work by H. Poincaré”
and references (Poincaré, La théorie de Lorentz et le principe de réaction, 1900).4 Up
to a point Einstein and Poincaré follow similar reasoning. Einstein takes the addi-
tional step of relating the inertial mass and the energy. Had Poincaré thought of it, it
would have been a small step beyond what he had done to relate the momentum of
the electromagnetic radiation to an inertial mass and show that the mass is equal to E/
c2. He didn’t take the step. We need to be careful not to credit Poincaré with a
discovery that is implicit in the physics but not explicit in his writing because our
knowledge of subsequent work allows us to see what is close at hand but not firmly
grasped. As for Whittaker’s statement quoted above, I have not found support,
which is clear and does not need hindsight, in the paper by Poincaré he referenced,
or in other papers I looked at.

Returning to the analogy of patent examination used above, it can be seen that
there is one thing of value that Whittaker has provided in this chapter: a search
report. In the footnotes, among other citations, Whittaker cites the following from
before July 1905: (Poincaré, La théorie de Lorentz et le principe de réaction, 1900),
(Poincaré, Électricité et optique, 1901), (Poincaré, L’état actuel et l’avenir de la
physique mathématique, 1904), (Poincaré, Sur la dynamique de l’électron, 1905a),
(Lorentz, Electromagnetic phenomena in a system moving with any velocity smaller
than that of, 1904), two earlier works each by Poincaré and Lorentz and one work by
Joseph Larmor. In preparing a search report, the patent examiner looks for the most
relevant published sources from before the priority date and avoids accumulating
redundant sources. Unlike a patent examiner, Whittaker was not explicitly preparing
a search report, instead he was citing references that support his historical narrative
of the development of the theory. This does not answer questions about what
Einstein knew about this context, and when he knew it; it does show that other
people were publishing papers on questions that in hindsight we can recognize as
related.

Inclusion of a source in a search report indicates that the source needs to be
considered in evaluating the patent but does not demand a particular conclusion by
the examiner. Also, the examiner may well find things that were not unknown to the
inventor; this reflects a difference in their roles and perspectives.

There is a place for the patent examiner to provide a written opinion on the
patentability of the patent application and to reject, object or grant the application. In
this chapter of his book, Whittaker has written his view of the historical development
of the theory of special relativity. It is that view and the perceived provocation, that
led to the voluminous discussion of priority.

4This appears to be the only citation by Einstein up to at least 1920 of a publication by Poincaré.
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Contemporary Reactions from Physicists

Some of the earliest reactions to Whittaker’s demotion of Einstein came from
physicists whose remarks seem to get slipped into other writings as short paragraphs.

Chronologically the first reaction appears to be from Louis de Broglie. It came
roughly within the year after publication of Whittaker’s book and appeared in a
preface that de Broglie wrote for volumes IX and X of Poincaré’s collected papers
(de Broglie, 1954). In a paragraph in the preface, de Broglie wrote:

“Poincaré’s celebrated paper on the Dynamics of the Electron published in 1906 in the
minutes of the mathematics circle of Palermo, after having been summarized in a Note to the
Minutes [of the Académie des sciences], is still very interesting to reread today. Commenting
on the Lorentz transformation and the ideas of the illustrious Dutch physicist on the
contraction of moving bodies and on local time, Henri Poincaré completely developed the
new dynamics of the electron which followed from it: he made a connection to the theory of
electromagnetic radiation that Paul Langevin had just laid out in a beautiful work and he
compared the various assumptions that one could make about the structure of the electron
and its deformation resulting from its movement. Poincaré thus established the new rela-
tivistic dynamics of the electron on a solid base which even now has many applications: he
thus accomplished a work of major importance, but at the same time, perhaps because he
was more mathematician than physicist, he did not grasp the general viewpoint supported by
a minute critique of the measurement of distances and times that the young Albert Einstein
discovered with an inspired intuition and which led to a complete transformation of ideas
about space and time. Poincaré did not take this decisive step, but he is, with Lorentz, the
one who most contributed to making it possible. Let us remark on an important point from
Poincaré’s paper: the discovery of the fact that an electron as Lorentz had conceived it is not
stable under the action of electromagnetic forces alone, that its stability requires the
involvement of another force, of unknown nature, deriving from a potential proportional
to the volume of the electron. This ‘Poincaré pressure’, which can be interpreted as
indicating the incomplete nature of our usual understanding of the electromagnetic field,
still has even now all of its importance and it is often a question in the most recent works on
the structure of the electron. This was a major discovery in physics by the leading
mathematician.”

In the first edition in 1962 (Jackson, Classical Electrodynamics, 1962), Jackson
wrote on page 353, “By supposing that all matter was essentially electromagnetic in
origin and so transformed in the same way as Maxwell’s equations, Lorentz was able
to deduce the contraction law (11.10). Then Poincaré showed that the transformation
of charges and current densities could be made in such a way that all the equations of
electrodynamics are invariant in form under Lorentz transformations. In 1905,
almost at the same time as Poincaré and without knowledge of Lorentz’s paper,
Einstein formulated special relativity in a general and complete way, obtaining the
results of Lorentz and Poincaré, but showing the ideas were of much wider applica-
bility. Instead of basing his discussion on electrodynamics, Einstein showed that just
two postulates were necessary one of them involving a very general property of
light.” This statement does not appear in the third edition (Jackson, Classical
Electrodynamics, 1999).

Chapters 15 and 16 of The Feynman Lectures on Physics, vol. 1 (Feynman,
Leighton, & Sands, 1963) contain scattered references to contributions by Poincaré
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to special relativity. Most notably, Chapter 16 starts, “In this chapter we shall
continue to discuss the principle of relativity of Einstein and Poincaré.” The follow-
ing paragraph in that chapter quotes Poincaré’s statement of the principle of relativ-
ity from (Poincaré, L’état actuel et l’avenir de la physique mathématique, 1904).5

Gerald Holton’s Response to Edmund Whittaker

The first specific response to the provocation by Whittaker comes from Gerald
Holton (Holton, 1960), which falls chronologically between the quotes from de
Broglie and Jackson above. In his paper, Holton takes up the challenge in the last
titled section “Whittaker’s Account of the Origins of Einstein’s Work.”Holton states
the topic of the dispute as, “to what extent Einstein’s work was original rather than
anticipated by, or specifically based on other published work.” In (Whittaker, 1953),
there is not a comparable statement of intent; maybe Whittaker saw this as a case of
near simultaneous, independent discovery and told the history from the perspective
of the first to submit a manuscript to the publisher or again maybe Whittaker was
biased against Einstein, due to his attachment to the ether that extended to the title of
his book, because Einstein called the ether superfluous (see above) whereas Poincaré
had not fully abandoned it. It seems very hard to read into (Whittaker, 1953) a
suggestion of misconduct by Einstein.

Holton does not indicate what use “of other published work” was suggested by
Whittaker—although he does repeatedly insist that Einstein had not seen or read
(Lorentz, Electromagnetic phenomena in a system moving with any velocity smaller
than that of, 1904)—and refers instead to bias and the need to analyze Whittaker’s
work by dealing “with the prior commitments and prejudices of the scholar himself.”
(Holton, 1960, p. 634) Holton then provides seven main findings from considering
Whittaker’s work in light of potential bias.

Instead of considering that direction further, I want to turn to what Holton both
does and does not say about Poincaré’s work. After Holton notes that Whittaker has
not recanted his earlier provocation, Holton states that Whittaker “repeats that
Poincaré in a speech in St. Louis, USA, in September 1904(27) had coined the
phrase ‘principle of relativity.’” Footnote 27 cites (Poincaré, L’état actuel et l’avenir
de la physique mathématique, 1904) and the English translation by G. B. Halsted in
(Poincaré, The Principles of Mathematical Physics, 1905b). Holton in this quote is
denying that Poincaré coined (or at least used) the phrase “principle of relativity” in
1904. About a page later in his second finding, he again refers to (Poincaré, L’état
actuel et l’avenir de la physique mathématique, 1904). He first states that it “turns out

5The translation quoted by Feynman is accurate but does not exactly follow the translation by G. B.
Halsted published in (Poincaré, The Principles of Mathematical Physics, 1905b) and in (Poincaré,
The Value of Science, 1907), or the translation by J. W. Young in (Poincaré, The Present and the
Future of Mathematical Physics, 1906b).
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not to enunciate the new relativity principle” and then provides a direct quote from
Halsted’s translation starting, “‘the principal of relativity, according to which the
laws of physical phenomena should be the same whether for an observer fixed or for
an observer carried along in a uniform motion [of] translation. . .’.” Astonishingly,
this is the same statement used in full by Feynman (Feynman, Leighton, & Sands,
1963) at the beginning of chapter 16, as noted above. On the other hand, Holton does
not cite (Poincaré, Sur la dynamique de l’électron, 1906a); this work would be
highly relevant to any discussion of independent discovery, but would not be
relevant to discussion of the bases of Einstein’s work since it had been submitted
for publication but not yet published at the time Einstein submitted his paper. In an
article communicated by Gerald Holton, Arthur Miller (A study of Henri Poincaré’s
“Sur la Dynamique de l’Électron”, 1973) does discuss this article by Poincaré, but
the general tone seems less than kind.

Conclusion

Provocation of the Einstein camp by Whittaker was met by provocation of the
Poincaré camp by Holton; polemic was met with polemic; and the ink started to
flow. The result is on the whole unappealing.

The translations in Part I accompanied by the discussion in the two previous
chapters, Chapters 9 and 10, can help the reader do their own careful alignment of
what Poincaré and Einstein each wrote in 1905. This is a necessary step for any
meaningful comparison and the result will certainly show areas of substantial
agreement, allowing for differences in modes of expressing their ideas.

Poincaré’s writing is clear but concise. It still leaves plenty of room for his readers
to fill in steps and look between the lines, a point that was brough up late in
Chapter 10. This contributes an interesting challenge in reading Poincaré as there
is also room for misinterpretation or misunderstanding. It also provides insight into
how Poincaré reasoned and mustered his arguments.

Chapter 10 looks at points where Poincaré appeared to be well positioned for
making clear predictions or breaking from formerly useful ideas that had lost their
place. This may lead you to ask, along with me, “Why doesn’t he just say that there is
no need for an ether that cannot be detected?” The section “Attitude” in that chapter
mentions some reasons (although it might be better to call it speculation) why he
didn’t. There is no satisfactory answer. Perhaps the reason is that Poincaré saw his
role in physics as collecting, cataloging and explaining, and as excluding predicting
and extrapolating. That could also point the direction to an answer to the question,
“Why didn’t Poincaré make a response in some form to Einstein’s 1905 and 1906
papers?”

My discussion of (Poincaré, Sur la dynamique de l’électron, 1906a) in Chapter 9
indicates in footnotes sections from (Einstein, Zur Elektrodynamik bewegter Körper,
1905) that may align with Poincaré’s work being discussed. It may show areas where
Poincaré is ahead of Einstein; it does show areas, notably Einstein’s sections 1 and
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2, that don’t seem to have anything with which they could be aligned in (Poincaré,
Sur la dynamique de l’électron, 1906a).

When Poincaré wrote about the space-time invariant and invariance of the
continuity equation for charge, he may have been close to anticipating four-vectors
introduced by Minkowski two years later. Poincaré certainly wrote about a variety of
subjects—notably electron shape and stability—that were outside the more focused
scope covered by Einstein. The discussion in Chapter 9 of the “first divergence” of
Poincaré from Lorentz and his proof of the space-time invariant indicates that
Poincaré understood the Lorentz transformations as transformations between coor-
dinate systems including time and three spatial coordinates and even understood that
this resulted in mixing space and time coordinates. Poincaré’s discussion of local
time in (Poincaré, La théorie de Lorentz et le principe de réaction, 1900) also needs
to be mentioned in this context. It is still clear that Poincaré did not give the
consideration to time and the impact on simultaneity of this mixing that Einstein did.

It therefore has to be noted that Poincaré has no dramatic statements about trains
arriving in stations, no discussion of simultaneity and no suggestion that conclusions
about simultaneity depend on the inertial reference frames selected. There does not
seem to be anything in Poincaré’s writing translated in Part I of this book that is
comparable to (Einstein, Zur Elektrodynamik bewegter Körper, 1905) sections 1
and 2.
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Chapter 12
Adoption of Vector Notation for Classical
Electrodynamics

Considerations

Soon after starting to prepare these translations, I was faced with a choice about how
to deal with Poincaré’s vector and differential notation. Poincaré followed conven-
tions in this matter which have not stood the test of time. The choice was therefore
whether to retain the notational conventions used by Poincaré or to rewrite his
equations (and affected text) to use notation more familiar and comfortable for me
and my readers. Having reached this point, you’re certainly aware that I retained the
original notational conventions.

When I made that choice, I recognized that I would need to provide readers of
these translations with some guidance; that is one purpose of this chapter.

Beyond providing guidance on understanding the notation that Poincaré used,
this chapter looks at the notation used in (Lorentz, Electromagnetic phenomena in a
system moving with any velocity smaller than that of, 1904), since Poincaré was
certainly familiar with that notation in 1905, and then steps back over 15 years earlier
to look at the notational choices made and developed by Joshua Willard Gibbs,
Oliver Heaviside and Henri Poincaré in their efforts to understand James Clerk
Maxwell’s work on electricity and magnetism. All three resist the use of quaternions;
only Poincaré continued Maxwell’s use of Cartesian coordinates and explicit deriv-
atives. In 1890 the right question is, why hadn’t Poincaré seen and adopted
Heaviside’s notation? The answer may be related to a larger question of how readily
scientific and technical knowledge passed across the English Channel at that time.
By 1905 that question is no longer relevant and is replaced by the question, why did
Poincaré continue to use the same notation after having seen a more compact and
effective alternative? Now the answer lies somewhere in the range of preference,
comfort and personal choice.
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Poincaré’s Notation

While Poincaré is familiar with the difference between full and partial differentials,
this is not reflected in the notation where d is used for both. In general (and there may
be exceptions) it is safe to assume that when Poincaré writes d

dt he in fact means ∂
∂t

(in our notation). Please be aware that there are occasions when he does use the
symbol ∂ with a different meaning which he defines on its first use.

If that were the only, or even the main, difference in notation a footnote would
suffice and this chapter would be unnecessary. Poincaré writes out vectors and
differentials by their individual, Cartesian components. In order to have a specific
example, refer to (Poincaré, Sur la dynamique de l’électron, 1906, p. 132; p. 48–49)1

written with Poincaré’s notation.

Lorentz adopted a specific system of units so as to make the factors of 4π
disappear in the formulas. I will do the same and additionally I will choose the
units of length and time such that the speed of light is equal to one. Under these
conditions, by calling: f, g, h the electric displacement; α, β, γ the magnetic
force; F, G, H the vector potential; ψ the scalar potential; ρ the electric charge
density; ξ, η, ζ the electron velocity; and u, v, w the current, then the
fundamental formulas become:

u ¼ df
dt

þ ρξ
dγ
dy

� dβ
dz

, α ¼ dH
dy

� dG
dz

, f ¼ � dF
dt

� dψ
dx

dα
dt

¼ dg
dz

� dh
dy

,
dρ
dt

þ
X dρξ

dx
¼ 0,

X df
dx

¼ ρ,
dψ
dt

þ
X dF

dx
¼ 0,

□ ¼ Δ� d2

dt2
¼

X d2

dx2
� d2

dt2
,□ψ ¼ �ρ,□F ¼ �ρξ:

ð1Þ

An element of matter of volume dxdydz experiences a mechanical force whose
components Xdxdydz, Zdxdydz, Ydxdydz are determined from the formula:

X ¼ ρf þ ρ ηγ � ζβð Þ: ð2Þ

These equations are subject to a remarkable transformation discovered by
Lorentz and which are of interest because they explain why no experiment is
able to let us know the absolute motion of the universe. Let us set:

(continued)

1Here and elsewhere, the first page number refers to the original publication and the second page
number (following the semicolon) refers to the page number in Part I of this book.
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x0 ¼ kl xþ εtð Þ, t0 ¼ kl t þ εxð Þ, y0 ¼ ly, z0 ¼ lz, ð3Þ

where l and ε are arbitrary constants, and where

k ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2

p :

As we read through the first paragraph, we first see that Poincaré adopts electro-
static units for charge and takes c ¼ 1. Next, he tells us that the components of the
electric field and magnetic field are respectively: f, g, h and α, β, γ. We would
normally write these as E and B, respectively. He provides the components of the
vector potential and also the scalar potential, although these go unused. There are the
components of the electron velocity ξ, η, ζ or v. And finally, below equation (1) are
the components of the electromagnetic force on the electron X, Y, Z or F.

This isn’t quite enough to allow us to make sense of equations (1) as two choices
for notational compactness need to be pointed out. First, note that each of the first
four equations refers to only the first component of three vector equations. This
means that the first equation (dropping the current density and using the partial
derivative symbol) needs to be expanded from one component

∂f
∂t

þ ρξ ¼ ∂γ
∂y

� ∂β
∂z

to include the other two components

∂g
∂t

þ ρη ¼ �∂γ
∂x

þ ∂α
∂z

,

∂h
∂t

þ ρζ ¼ ∂β
∂x

� ∂α
∂y

:

There is a vector cross product hidden in here.
Second, the next three equations are all scalar equations, but in the summations

there is no indication that the sum should be done over the three components of the
vectors. This means that, correctly understood, the second of these vector equations
should be written:

∂f
∂x

þ ∂g
∂y

þ ∂h
∂z

¼ ρ:
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Here there is a vector dot product. Applying this understanding, the Laplacian (Δ)
in the first equation in the last row will be understood as:

Δ ¼ ∂2

∂x2
þ ∂2

∂y2
þ ∂2

∂z2

The last step is then to introduce the vector differential operator del (or nabla):

∇ ¼ ∂
∂x

,
∂
∂y

,
∂
∂z

� �

Using del and replacing the components with vectors, we can write these three
examples as:

∂E
∂t

þ ρv ¼ ∇� B,

∇ � E ¼ ρ,

∇2

Pulling all this together, we can rewrite this example in familiar notation:

Lorentz adopted a specific system of units so as to make the factors of 4π
disappear in the formulas. I will do the same and additionally I will choose the
units of length and time such that the speed of light is equal to one. Under these
conditions, by calling: E, the electric field; B, the magnetic field; A, the vector
potential; ψ , the scalar potential; ρ, the electric charge density; v ¼ (vx, vy, vz),
the electron velocity; and J, the current density, then the fundamental formulas
become:

J ¼ ∂E
∂t

þ ρv ¼ ∇� B, B ¼ �∇� A, E ¼ �∂A
∂t

�∇ψ ,

∂B
∂t

¼ �∇� E,
∂ρ
∂t

þ∇ � ρvð Þ ¼ 0, ∇ � E ¼ ρ,
∂ψ
∂t

þ∇ � A ¼ 0

□ ¼ ∇2 � ∂2

∂t2
¼

X ∂2

∂xi2
� ∂2

∂t2
, □ψ ¼ �ρ, □A ¼ �ρv:

ð1Þ

(continued)
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An element of matter of volume dxdydz experiences a mechanical force
Fdxdydz determined from the formula:

F ¼ ρEþ ρ v� Bð Þ: ð2Þ

These equations are subject to a remarkable transformation discovered by
Lorentz and which are of interest because they explain why no experiment is
able to let us know the absolute motion of the universe. Let us set:

x0 ¼ kl xþ εtð Þ, t0 ¼ kl t þ εxð Þ, y0 ¼ ly, z0 ¼ lz , ð3Þ

where l and ε are arbitrary constants, and where

k ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1� E2

p :

Note that the vector and scalar potentials (A and ψ) can be eliminated resulting in
the familiar four Maxwell’s equations for the electric and magnetic fields and a
continuity equation for the charge density.

Lorentz’s Notation

The previous subsection describes Poincaré’s choice of notation that involves
writing the components of vectors and derivatives individually, only writing one
component of vector equations and using an ambiguous summation for scalar
product of two vectors.

In writing (Poincaré, Sur la dynamique de l’électron, 1905) and (Poincaré, Sur la
dynamique de l’électron, 1906), Poincaré heavily references Lorentz’s paper from
the previous year (Lorentz, Electromagnetic phenomena in a system moving with
any velocity smaller than that of, 1904). We can therefore be confident that Poincaré
fully understood the notation that Lorentz had used even though he did not adopt
it. It is therefore worth looking at the notation in Lorentz’s paper.
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There, Maxwell’s equations appear on page 811 (in this book it is page 261; the
equation numbers are unchanged) as equations (2) together with the formula for
electromagnetic force per unit charge (f). In Lorentz’s notation the equations are:

divd ¼ ϱ, divh ¼ 0,

roth ¼ 1
c

_dþ ϱv
� �

,

rotd ¼ � 1
c
_h,

f ¼ dþ 1
c
v � h½ �:

Two notational clues are provided by Lorentz on the previous page. He states, “a
vector will be denoted by a German letter” and that the notation v ∙ h½ � is the “vector
[cross] product.” rot (for rotation) is clearly curl. Replacing fraktur with bold
uppercase Roman letters, a dot over a quantity with ∂

∂t and using curl and �, these
equations become:

div D ¼ ρ, div H ¼ 0,

curl H ¼ 1
c

∂D
∂t

þ ρv

� �
,

curl D ¼ � 1
c
∂H
∂t

,

F ¼ Dþ 1
c
v�H:

Because of a difference in their definitions, f ¼ X=ρ . Since both Poincaré and
Lorentz are working in units where the vacuum permittivity and permeability are by
definition 1, D ¼ E and H ¼ B in vacuum.

Lorentz introduces the vector and scalar potentials on page 813 (locally, page
264) in equations (11) and (12); the Laplacian and grad are defined on page 814
(also, page 264) below equation (14).

Unlike Poincaré, Lorentz’s notation here shows Heaviside’s influence although it
has acquired a German accent. The accent comes through most clearly in the use of
fraktur for vectors. As will be seen below, Augustus Föppl (Föppl, 1894) could be a
plausible source. There are a few differences: Heaviside and Föppl used a large V for
the vector product (instead of the square bracket notation) and used curl, not rot;
Heaviside disliked the use of fraktur because it was difficult to read and write.

This would seem to be the right point to step back to about 1890.
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Understanding J. C. Maxwell

Situating our attention in 1890 places us amidst several endeavors to understand A
Treatise on Electricity and Magnetism (Maxwell, 1873) then over 15 years old. The
effort appears to have had three main components: finding the focus by reducing the
number of equations for the electric and magnetic fields to four; organizing and
clarifying the exposition of the ideas; and providing a notational machinery driven
by the demands of the physics. The result of this effort was several major works on
electricity and magnetism including: (Poincaré, Électricité et optique, I Les théories
de Maxwell, 1890), (Heaviside, 1893) and (Föppl, 1894). This list is not compre-
hensive but does include major works from three different countries in as many
languages. This was not exclusively the province of English scholars.

The effort to understand Maxwell was seen as challenging. Poincaré introduces
his discussion of Maxwell’s theory (Poincaré, Électricité et optique, I Les théories de
Maxwell, 1890, p. v) in 1890 with the statement “The first time a French reader
opens Maxwell’s book, a rising unease and often even distrust initially mixes with
their admiration. It is only after a prolonged exchange and at the cost of great effort
that this feeling passes. Some eminent minds still have it even now.” Although they
are not French, it is easy to imagine Gibbs, American, and Heaviside, English,
agreeing with this sentiment. In the case of Heinrich Hertz in Germany, there is no
need to speculate since he wrote (Hertz, Electric Waves, 1893, p. 27), “If we read
Maxwell’s equations and always interpret the meaning of the word ‘electricity’ in a
suitable way, nearly all the contradictions which at first are so surprising can be made
to disappear. Nevertheless, I must admit that I have not succeeded in doing this
completely, or to my entire satisfaction; otherwise instead of hesitating, I would
speak more definitely.” This is followed by a footnote where Hertz, apparently in
reference to the above quotation from Poincaré or to its spirit, writes, “Poincaré . . .
expresses a similar opinion.”

Returning to the focus of this chapter, the following sections look at the different
notations used by J. W. Gibbs, O. Heaviside, A. Föppl and H. Poincaré, and
secondarily at notation used by others whose work Poincaré likely read. The point
here is to survey the notational choices at that time in order to compare them with the
notation subsequently used by Poincaré in 1905.2

2For a full and comprehensive history of vector analysis, (Crowe, 1985) is an essential source.
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J. W. Gibbs

Of the authors in these sections, J. W. Gibbs alone did not write a book inspired by
his efforts to understand and explain Maxwell’s work, even though that was the
context of his work on vector notation. However, he and Heaviside were the first
using vectors and vector analysis publicly in 1879 and 18823 respectively. In 1884
Gibbs had a book (Gibbs, 1884) on vector analysis printed privately, but copies were
somewhat widely circulated. There is no positive indication that Poincaré had a copy
of the book. For many years running Gibbs taught a course on this subject at Yale
University; his course material forms the basis for a book (Wilson, 1901) by a former
student that was published and released through normal channels.

In (Gibbs, 1884) on pages 16 and 17, Gibbs defines the derivative (we would say
gradient) of a scalar u (∇u), and the divergence and curl of a vector ω (respectively
∇ � ω and ∇ � ω) in terms of Cartesian unit vectors and derivatives with respect to
Cartesian variables. When writing equations, he consistently uses dell (∇) and not
abbreviations like grad, div, curl or rot, and uses � and � for the vector dot product
and cross product respectively. Also notice that Gibbs (as we have also seen with
Poincaré) does not notationally distinguish full and partial derivatives.

This choice of notation matches what an upper-level undergraduate physics major
or graduate student during the last 50 years would have seen in (Jackson, Classical
Electrodynamics, 1999). In that book Jackson’s definitions corresponding to the
ones from Gibbs presented in the previous paragraph appear inside the back cover.

For a second comparison, consider the older classic (Morse & Feshbach, 1953).
On page 31 (equation 1.4.1) they define the gradient of the scalar ψ and use both
gradψ and ∇ψ . Similarly, the divergence of a vectorF is defined on page 35, equation
1.4.5 with both divF and ∇ � F and on page 41 with both curlF and ∇ � F. The
notation using ∇ appears to have been provided for the information of readers who
might encounter it somewhere else. For example, when it comes to writing Max-
well’s equations, Morse and Feshbach on page 205 (equation 2.5.11) use the
notation curlE and divB. As will be seen next curl and div were introduced by
Heaviside.

O. Heaviside

In 1882, Oliver Heaviside began a long series of papers in the English trade journal
The Electrician4. It was in this series of papers that he began his use of vector
notation in public writing. In a paper appearing in the Philosophical Magazine in

3These dates are from (Nahin, 2002, pp. 194-6).
4(Nahin, 2002) in a section of the same title on page 101 and following has an interesting
description of the journal The Electrician. It seems unlikely that Poincaré would have seen anything
written there by Heaviside, unless someone specifically brought it to his attention.
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1885 Heaviside (quoted in (Nahin, 2002, p. 196)) wrote, “Owing to the extraordi-
nary complexity of the investigation when written out in Cartesian form (which I
began doing, but gave up aghast), some abbreviated method of expression becomes
desirable. . . I therefore adopt with some simplification, the method of vectors, which
seems indeed the only proper method.”

When Heaviside’s book on electromagnetic theory was published in 1893, he
devoted an entire chapter to the presentation of vector analysis (Heaviside, 1893,
Chapter 3). Early in the chapter (page 138), Heaviside references “Prof. Gibbs’s
pamphlet” (Gibbs, 1884) and adds it is “an able and in some respects original little
treatise on vector analysis, though too condensed and also too advanced for learners’
use.” From this quote we can also see that even when Heaviside is offering praise,
his words can have a sharp edge. He also ends the paragraph sharply: “As regards his
notation, however, I do not like it.” This would seem to refer to the vector product,
div and curl as discussed shortly.

Proceeding into this chapter, we find first his definition of the scalar product of
two vectors (Heaviside, 1893, p. 149, eqn. 12) in terms of the magnitudes of the two
vectors and the cosine of the angle between them. At this point, Heaviside does not
introduce the components of the vectors going into his definition. He does however
apply the product to unit vectors and prove the various properties. Then, seven pages
later, he shows the expansion of a vector in terms of components and orthogonal unit
vectors. This is clear and without unexpected turns, except perhaps for Heaviside’s
recommendation to leave the dot out of the product as one might do in scalar algebra.

Next, Heaviside defines the vector cross product, the vector product of two
vectors, first in terms of the magnitude of the two vectors, the sine of the angle
between them and the direction along the line perpendicular to the plane defined by
the two vectors (Heaviside, 1893, p. 157, eqn. 34). He then gives the definition of the
vector product in terms of the components of the two vectors and the unit vectors
(Heaviside, 1893, p. 159, eqn. 41). Heaviside represented the scalar product of two
vectors, the dot product, with a dot centered between the two vectors. In contrast, for
the vector product, he does not place a symbol between the two vectors—like a
cross, �, for example—and places a V in front of the two vectors. In that way,
Heaviside writes the vector product of vectors A and B as VAB.5 This is of course
not what we are familiar with for the notation for vector product. First, it isn’t
suggestive of a cross product and second one can easily imagine the potential for
confusion between the symbol V for vector product and V used for some other
magnitude. Föppl, as we’ll discuss below, uses a typographically distinctive variant
of V; that would offer one possibility for reducing confusion. Following the choice
made by Gibbs and using the cross-product notation we’re familiar with is a much
better choice.

5This appears suggestive of the notation for the vector component of a quaternion product.
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The next definition provided by Heaviside is the differential operator ∇ (Heavi-
side, 1893, p. 178, eqn 119):

∇ ¼ i
d
dx

þ j
d
dy

þ k
d
dz

:

which he notes, “is a fictitious vector, inasmuch as . . . its components are not
magnitudes but differentiators.”

With that notational machinery defined, Heaviside is then in the position to define
first the divergence (Heaviside, 1893, p. 188, eqn. 143) and then the curl (Heaviside,
1893, p. 191, eqn. 149). Each definition is provided first in terms of the scalar and
vector products (respectively) of ∇ and a vector. In that way, his definition of curl
starts with V ∇ E, continues with the components and unit vectors, and ends with
curlE.

Heaviside explains his choice to use div and curl on page 194, writing, “The
scalar product of ∇ and D conveys no such distinct idea as does divergence; nor does
the vector product of ∇ and E speak so plainly as the curl or rotation of E.” We can
take this as Heaviside’s explanation for what he did not like about Gibbs’s notation,
which used ∇ �D and ∇� E. The div and curl notation used in Morse and Feschbach,
described above, would therefore meet with Heaviside’s approval.

A. Föppl

Following our look at Heaviside’s notation, we turn our attention to Föppl’s book
(Föppl, 1894). This order is appropriate because Föppl’s work benefits from
Heaviside’s work. In his Foreword (Föppl, 1894, S. VII), Föppl wrote, “In
presenting calculation with vectors, and in many other respects, I followed most
closely the pattern provided by O. Heaviside in his treatises—which have recently
been made available in bookstores as a collection. My presentation is altogether
more influenced by the work of this master than by that of any other physicist—
excepting Maxwell himself, of course. I consider Heaviside to be the outstanding
successor to Maxwell in speculative-critical respects, just as undoubtedly Hertz—
whom we unfortunately lost so young—was his successor in experimentally and
confirming respects.”6 I think we should assume that Föppl is referring to the
published collection of papers that Heaviside had written for The Electrician, and
not the 1893 book that we were just discussing. Either way, in light of this testimony
and the notation used in the book we can conclude that this is not a wholly
independent effort to understand and present Maxwell’s work and is all the same a
worthy effort to reach a larger audience. That audience appears to have included

6Translation from German provided by Ilse Andrews, personal communication, January 8, 2018.
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Albert Einstein as this book is widely cited as the textbook from which he learned
electricity and magnetism.

To our point in this chapter, Augustus Föppl is clear in emphasizing the signif-
icant advantage of using vector notation (Heaviside’s in his case) instead of writing
out Cartesian coordinates.

H. Hertz

Of secondary importance, there are three other physicists whose work on electricity
and magnetism Poincaré certainly read. Let us look first at the notation of Heinrich
Hertz. In various places Poincaré discusses Hertz’s theory of electromagnetic radi-
ation. Most likely, Poincaré would have encountered this in (Hertz, Die Kräft
electrischer Schwingungen behandelt nach der Maxwell'schen Theorie, 1889).
This article is also available in translation as part of a collection in (Hertz, Electric
Waves, 1893). In that article, and in others in the collection, Hertz uses notation
based on Cartesian coordinates similar to Poincaré and does not use vector analysis
and vector differential operators.

J. Larmor

Next, look at (Larmor, 1893). Poincaré wrote a series of commentaries on this paper,
however I haven’t discussed them elsewhere in this book. There are very few
mathematical equations in Larmor’s work and none involve vectors. This would
not have led Poincaré to read or consider a different notation

P. Langevin

Finally look at (Langevin, 1905). Poincaré for example summarizes this paper in
(Poincaré, Sur la dynamique de l’électron, 1906 §5). Langevin makes limited use of
vectors, although he does write out the vector potential and position, velocity and
acceleration of a body in Cartesian coordinates.

H. Poincaré: Électricité et optique

In the 1880s, Poincaré took up the study of Maxwell’s work and in 1890 he
published a book with his lectures from the second semester of 1888–89 on
Maxwell’s theory (Poincaré, Électricité et optique, I Les théories de Maxwell,
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1890); he did not use vectors and vector analysis, instead sticking with Cartesian
coordinates. Gibbs’s book, Elements of Vector Analysis, was printed in 1881.
Heaviside’s book, Electromagnetic Theory, with a chapter on his independent vector
analysis was published in 1893. And, Föppl’s book in which he had two chapters on
vector analysis based on Heaviside’s work was published in 1894. The four—
publishing books within a few years of each other, faced with understanding
Maxwell’s theory and working with the mathematical notation for electrodynam-
ics—abandoned the use of W. Hamilton’s quaternions that Maxwell had used in
1873 along with Cartesian components. In contrast to the other three Poincaré did
not develop vector analysis independently or adopt it then or later.

First Edition

In these published lectures, Poincaré uses the same notation as (Poincaré, Sur la
dynamique de l’électron, 1906, p. 132) 15 years later. In fact by using this notation
(repeated here on page 229), it is easy to recognize that equation (3) (Poincaré, 1890,
p. 15): df

dx þ dg
dy þ dh

dz ¼ ρ states that divergence of the electric field is due to the

charge density. Likewise (Poincaré, 1890, p. 146):

dα
dx

þ dβ
dy

þ dγ
dz

¼ 0

states that the divergence of the magnetic field is zero.
Similarly, one can read in equation (3) on page 144:

α ¼ dH
dy

� dG
dz

β ¼ dF
dz

� dH
dx

γ ¼ dG
dx

� dF
dy

meaning that the magnetic field is given by the curl of the vector potential. (Note that
in the above equations all derivatives are partial derivatives.)

In these examples and in general skimming (Poincaré, 1890), while the notation
appears bulky, it is not an impediment after some practice. In fact, written this way,
one can by inspection see that the divergence of the curl of the vector potential is
identically zero. Written as ∇ ∙ ∇ � A, such a verification by inspection is not
possible. It is understandable that Poincaré could have felt comfortable with this
notation using Cartesian coordinates and explicit derivatives in 1890 and therefore
not been motivated to independently develop vector analysis as Gibbs and
Heaviside did.
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Second Edition

In 1901 a second edition of Électricité et optique was published (Poincaré,
Électricité et optique, 1901), now including lectures from 1899. In a Notice before
the Introduction, Poincaré states that the lecture notes from his courses in 1888 in
1890 are reprinted “with some reworking and modification” and some material
deleted because it was superseded by the lectures from 1899. The new material is
presented in the second part.

A comparison of the tables of contents from the two editions shows no changes in
the subsection titles, the title of Chapter II is changed, a new subsection is added to
Chapter III and the original Chapter XIII has been deleted. The deleted chapter is
clearly the material Poincaré referred to in the Notice. During casual comparison of
the other chapters, I found a couple of added sentences that clarified what was
already there and did not add new content. The reworking is not an overhaul of the
previous content and may only be responses to particular questions or requests for
clarification from readers or students. The new subsection in Chapter III is a Remark
providing a proof of an assumption made in the preceding calculations.

The equations reproduced and discussed above from pages 15, 146 and
144 (Poincaré, Électricité et optique, I Les théories de Maxwell, 1890) now appear
on pages 15, 118 and 117 (Poincaré, Électricité et optique, 1901). These equations
have not been changed from the first to second edition of Électricité et optique. Since
there is no other indication that Poincaré made more than spot changes, the absence
of changes in these equations only suggests that he was satisfied with the notation
involving explicit Cartesian coordinates that he used 10 years later.

The second part containing the new material in the second edition (Poincaré,
Électricité et optique, 1901) starts on page 229. Scanning a few pages suffices to
show that he is continuing to use the same terminology. For example, at the top of
page 241 there is the formula:

dF
dx

þ dG
dy

þ dH
dz

¼ �
Z

df
dx0 dx

0 þ df
dy0 dy

0 þ df
dz0 dz

0
� �

(where F, G and H are components of the vector potential and f is a function of the
potential energy and separation of two current loops). It is more compact to write this as:

∇ � A ¼ �
Z

∇f � dx:

In the first instance of its use with this meaning, on page 292, a summation sign
(∑) is used as shorthand for vector products. As an explanation, Poincaré writes with
reference to equation (16 bis), “the sign indicates a cyclic permutation to be done on
the letters α, β, γ; x, y, z, and F, G, H.” This is the same convention for dot products
as used in equation 1 (Poincaré, Sur la dynamique de l’électron, 1906) and repeated
above on page 228; in particular it is discussed in the second observation on
notational compactness.
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The first line of equation (16 bis) as published is:

T ¼ 1
8π

Z X dγ
dy

� dβ
dz

� �
Fdτ

and following Poincaré’s explanation, it should be expanded to:

T ¼ 1
8π

Z
dγ
dy

� dβ
dz

� �
F þ dα

dz
� dγ

dx

� �
Gþ dβ

dx
� dα

dy

� �
H

� �
dτ

where dτ is an infinitesimal volume element.
In our familiar notation this is:

T ¼ 1
8π

Z
∇� B � Adτ

Poincaré uses integration by parts to show that this is equal to:

T ¼ 1
8π

Z
B �∇� Adτ ¼ 1

8π

Z
B � Bdτ

Explicitly writing the Cartesian coordinates, as Poincaré does, certainly makes it
easier to see and verify the integration by parts. Perhaps Poincaré did see a practical
advantage to staying with the familiar notation.

Poincaré’s Notation, Again

If Poincaré had not seen vector analysis with differential operators earlier, he did see
it when he studied (Lorentz, Electromagnetic phenomena in a system moving with
any velocity smaller than that of, 1904), since Lorentz had used vectors and
differential operators. Poincaré therefore did understand the notation. Even after
this exposure, Poincaré continued to use in his writing largely the same notation for
the partial differential equations of electrodynamics that he had used in 1890.

This consistency in his choice of notation makes it difficult to identify other
occasions between 1890 and 1904 when Poincaré might have been exposed to vector
analysis and differential operators. In his writing, Poincaré is sparing in his use of
references and when they are provided, they appear in-line in brief form. Notation is
clearly an area where Poincaré is conservative in his choices.

It is not only the notation that makes (Poincaré, 1890) seem somewhat unsatis-
factory. Earlier I indicated that the effort to understand Maxwell required effort and
three main components (above, page 233). Notation, just discussed, was the third of
these components.
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The first of the three components was focus. Relating to the focus in both editions
of Électricité et optique, the most obvious issue is the use of the scalar and vector
potentials (whose components are F, G, H in the above equations). Heaviside
explicitly abandons the vector potential (Heaviside, 1893, p. 46), “[Maxwell] how-
ever, makes use of an auxiliary function, the vector potential of the electric current,
and this rather complicates the matter, especially as regards the physical meaning of
the process. It is always desirable when possible to keep as near as one can to first
principles.”

Another issue with focus is the use of auxiliary variables for “displacement
velocity” and other quantities which conceal the time derivatives of electric and
magnetic field components and also results in confusion with current density.

The strong point of Poincaré’s work is the exposition; he has done a good job in
these lectures of organizing and presenting Maxwell’s theory for his students.
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Chapter 13
Translation, Language and Culture

My Practice of Translation

My approach to translation in Part I of this book, in my previous translation of
Poincaré (Poincaré, On the Three-Body Problem and the Equations of Dynamics,
2017), and in my commercial work, where I translate scientific and engineering
documents including notably patents, is pragmatic. There may be some general
value to describing how I work, so readers of my books may be interested to
know how I have prepared these translations.

In my commercial work, my translations are commissioned—I receive a purchase
order and a document in French to be translated, and I may also receive instructions
and reference material. My job is to return a document in English respecting certain
constraints. These constraints obviously include delivery time and compensation;
they may include various instructions such as how to report errors found in the
document to be translated, and whether to assure consistency with reference mate-
rials. In general, there is an expectation of quality and accuracy.

The engineering documents and procedures sent to me for translation may
describe how something was done or what needs to be done. Patents describe an
invention, set clear limits on what is included in the invention, describe an embodi-
ment of the invention and disclose how to practice the invention. In all cases
accuracy is important. If the document provided for translation is a production
procedure that emphasizes limiting the quantity of acetaminophen in a production
area, then a reader of my translation must understand this limitation.

In my commercial work in general, and especially in translating patents, I view
my responsibility as providing a functional substitute, in English, for the documents
sent to me, in French. National laws in France and the United States, and the
European Patent Convention govern patent content and organization, filing and
examination, and enforcement. Various treaties and agreements set multilateral
recognition of other countries’ patents. For this recognition to work in practice, a
patent practitioner (patent attorney or patent agent), patent examiner or patent
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litigator in the US, for example, may need to know the content of the patent filed in
France with its national patent office. The patent professional in the US then has a
need to read and understand the dates, disclosure and claims written in French. To
get that understanding, they request a translation into English since they can fully
read and understand English, but not French. At that point the request is sent to me,
or another patent translator, for translation of the patent from French into English.
Upon receiving the translation, the professional can then draft an application for
filing in the US, assess whether a recently filed application claims the same subject
matter as the French patent, or prepare a brief in patent litigation involving a US
patent claiming priority from the French patent. In all these cases the translation is
used for the same purposes that are recognized for the original document; the one is a
substitute for the other.

The translation of the French patent into English must be complete. If the
translation omits something then the owner of the French patent could lose some
part of their invention described in the French patent and not in the translation.
Similarly, the translation into English cannot add something to the French patent
since this would be an extension of the subject matter and such extension is not
permissible under patent law. I also try to assure that nothing is omitted or added at a
fairly low level of the text. Patent applications may be read and argued in detail and
the meaning of specific words and phrases carefully considered. I work to maintain
an equivalence even at that level.

It is important to understand that a translation of a French patent does not change
it into a US patent. A French patent has been drafted, filed, examined and granted, as
applicable, under French law. None of that changes when the patent is translated into
English. In particular, a patent application drafted for filing in France follows
requirements and conventions that are accepted in France but those same require-
ments and conventions would necessarily lead to an objection by a US Patent and
Trademark Office (USPTO) examiner.

Consequently, preparing a French application for filing with the USPTO for
patent protection in the US is therefore normally a two-step procedure. The first
step is a translation of the application from French to English by a translator, and the
second step is the preparation of a preliminary amendment (a revision of the
application that addresses the objections that might be raised without adding or
removing subject matter) by a patent practitioner.

Similar considerations apply to engineering documents and operating procedures,
which often contain references to French or European standards and regulations. My
role as a translator is to provide a functional substitute for the French document; it
does not involve comparing AFNOR and ASTM standards, or EU and US regula-
tion. A full, accurate translation from French into English does leave some reminders
of its origin.

Unlike standards, regulations and statutes, the laws of physics are universal.
Therefore, when translating scientific publications and research, some of the con-
straints are different but my underlying goal is still to present the research work or
results accurately, without addition or removal.

My work with Poincaré is both similar and different.
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I have translated and studied Poincaré’s work, here and in my previous book, on
my own time and for my own benefit. I first started because I wanted to carefully
study what Poincaré had contributed to dynamical systems theory, and I continued
here because I next wanted to understand what he wrote about electrons, electrody-
namics and relativity. Translating his works was therefore my way of closely reading
what he had written. This was done by going through Poincaré’s writing sentence by
sentence, word by word. As topics I found interesting came up, I would do additional
reading and research to understand the content I was working on. And of course, I
was writing the translation and laying out the equations as I progressed through the
text. With both books I found examples in works written in English where Poincaré
had not been correctly or fully understood. For example, there were questions about
whether Poincaré had considered a system with fully chaotic behavior or held onto
the concept of a pervasive luminiferous ether. I therefore became persuaded that it
was worth undertaking the additional work to prepare my translation for publication.
With this book it also became clear that during the additional reading and research I
had found material that was worth writing up as chapters to accompany the
translation.

My first goal here is therefore personal study and understanding of the work of
Poincaré and the second is offering the fruit of my effort to other people to clarify the
content and the scope of Poincaré’s writing. As with my commercial translation
work, I feel myself constrained (here ethically, there contractually or legally) to
prepare the translation without addition or omission. For example, readers of my
translation of (Poincaré, La théorie de Lorentz et le principe de réaction, 1900) in
Part I can therefore assess whether Poincaré wrote about transfer of momentum by
electromagnetic radiation or transfer of both momentum and mass and be confident
that what they are reading does not misrepresent, by overstating or understating,
what Poincaré wrote. (This example is specifically relevant to my discussion on page
219 of E. T. Whitaker’s book (Whittaker, 1953).)

Reflecting a more literary consideration, I want my writing to bring Poincaré’s
voice through to another language. I am not trying to retell an important story in my
own words. Instead, I am trying to serve Poincaré by helping his expression reach
readers who know English and not French. This is served by matching Poincaré’s
consistency in word choice and syntactic structures with the corresponding consis-
tency in my translation. Poincaré was also known for writing well and clearly and
explaining patiently. In turn I strive to provide a translation that is also well written
and clear. I have worked to understand the scientific context and content of the works
I translate in order for that understanding to inform the many choices I make in
translating each sentence with the hope that the result is seen as having clarity and
fidelity.

Procedurally, I worked through each article I translated by reading and translating
sentence by sentence and paragraph by paragraph, stopping to research terms and
ideas as I felt necessary for either the translation or my own personal interest.
Sometimes I went back to review what I had already done sometimes I reconsidered
and globally changed choices for words or terms. Patiently, eventually, I arrived at a
complete, rough translation. Then, after a break (possibly long), I read through the
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translation on the computer screen side-by-side with Poincaré’s original writing,
edited the translation and made any changes I thought were necessary to improve the
writing, accuracy, or fidelity. I referred to the result of that round of translation
followed by on-screen editing as a first draft. I then had this first draft printed with
Poincaré’s work in French on the left and my translation on the facing page. After a
further break, I read through and edited the translation on paper marking it up in pen.
Once the markup was transferred from paper to the electronic version, it became my
second draft. I keep the rough translation to myself or trusted colleagues. I share the
first draft with friendly readers. My aim with this procedure is to arrive at a second
draft that is ready for submission to the publisher.

Availability of Sources

In my preparation of Part II, I have relied heavily on the work of various authors that
was published in journals between roughly 1890 and 1910, and most especially the
middle part of this range. In a book from even 15 or 20 years ago with this reliance
on primary source material I would expect to see in the acknowledgments a thank
you to librarians or libraries that made access to the source material possible. I would
also expect that the author had spent untold hours in library rare book rooms or
annexes consulting this material. That has not been my case. It is perhaps worthwhile
discussing why and the significant difference that this is made for my work.

In brief, everything I wanted to consult was scanned and available on the internet.
This was for me a tremendous resource and effectively made this book—or at least
Part II—possible. In many cases, the content of the work has been digitized by
optical character recognition and incorporated in the file as a text layer behind the
page image. This makes it possible to search the document for particular keywords;
this does need to be done with some caution since the recognition process is subject
to error, especially with old yellowed paper. Just the same, the availability of
scanned and digitized copies of 19th century scientific journals is a tremendous asset.

The same journal may be available on several websites and this is a point where
significant differences appear. Many of the journals were scanned by Google and
Google may have even indexed the digitized content. My experience using Google
to search for references was fairly frustrating. When searching with Google for an
article using a reference by journal name, year, volume and page, I was more likely
to find other references to the article than to find the actual article I wanted. If I found
a journal series, finding the right volume was still difficult. I abandoned the use of
Google for this purpose.
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I found archive.org to be somewhat easier to use but it was still the source of some
frustration. In my experience the best was the Bibliothèque national de France
(BnF).1 I found on their website substantially all the articles from the Comptes
rendus that I consulted. Their website was easy to use. The tools for picking a
volume and number were straightforward and the tools for paging through a volume
and downloading an article (or page range) were too. Further, the resolution of the
scans prepared by BnF was also quite good; this matters for such things as reading
small subscripts or superscripts in equations on old paper. The Biodiversity Heritage
Library website also had a good interface and content. Websites for the Staats- und
Universitätsbibliothek Göttingen and Deutsche National Bibliothek were also help-
ful and deserving of mention here. Certainly, every organization mentioned here is
deserving of profound thanks and my sincere acknowledgment.

Language Biases

In preparing this book, I have frequently consulted the work of other authors on the
history of science in this field and time. I have also sought out and read closely
specific journal articles. In my earlier translation of Henri Poincaré’s monograph on
the three-body problem (Poincaré, On the Three-Body Problem and the Equations of
Dynamics, 2017), I also looked at what various authors wrote—or might very
appropriately have written, but didn’t—about what Poincaré covered and concluded
about dynamic systems and chaos. In reading those authors, I have seen what I
perceived to be three language-related biases.

First, authors focus on sources published in languages that they can read. As an
interesting example, relevant to this book, I suspect that Ernest Rutherford had a
good command of written French. In the article (Rutherford, Uranium Radiation and
the Electrical Conduction Produced by It, 1899) discussed in Part II, Chapter 8, he
has 18 footnotes providing references to the Philosophical Magazine and Journal of
Science or other United Kingdom journals, 10 with references to Comptes Rendus
de l’Académie des sciences, and two with references to Annalen der Physik. (I did
the tally this way, because the very first footnote lists eight articles by Henri
Becquerel in the Comptes Rendus, which substantially belong together as an ongo-
ing presentation of a smaller number of lines of research, and because I didn’t
eliminate multiple references to the same article.) The cited authors writing in French
include Henri Becquerel, Pierre and Marie Curie, and Jean Perrin. After writing that
article, Rutherford took a position at McGill University in Montreal. Even though
McGill is an English-speaking university and Montreal had a substantially larger
anglophone population before the Quebec separatist movement in the late 1960s

1On February 4, 2020, the website address was https://gallica.bnf.fr/accueil/en/content/accueil-en?
mode¼desktop
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caused an exodus, Rutherford’s willingness to accept a position in a predominantly
French-speaking city also points to his comfort with the language.

This bias towards relying on sources that I can read easily is likely present in this
book. While my ability to read and understand French is nearly as good as English,
my ability to read German is only slightly better than no ability at all. I have
attempted to compensate for this by asking translation colleagues for summaries of
potentially interesting documents or for translation of specific paragraphs and
documents. This has certainly improved my coverage of work by Max Abraham,
Friedrich Giesel and Walter Kaufmann; it is also certain that several chapters would
be substantially better if my ability to read German were more comparable to my
ability to read English and French.

Second, instead of referring to primary sources in a language that they don’t read,
authors may use secondary sources in a language they do read as an indication of
what was written in the primary source.

This is certainly the case in asking whether Poincaré understood fully chaotic
behavior in a dynamical system. In his book (Lorenz, 1993, p. 118), Edward Lorenz
asks, “Did [Poincaré] recognize the phenomenon of full chaos, where most solu-
tions—not just special ones—are sensitively dependent and lack periodicity? He
does not appear to have described his non-periodic solutions as being sensitively
dependent, but he was quite aware of the general phenomenon of sensitive depen-
dence.” There is not an explicit citation of the work by Poincaré in that chapter.
Looking at bibliography at the end of the book (op. cit. page 218) suggests that he
relied on a chapter in a book by Poincaré that was written for a mass audience and
translated into English soon after publication (Poincaré, The Foundations of Science,
1913). If, as I speculate, Lorenz relied on this translated chapter in a secondary work,
he missed out on the large volume of writing on dynamical systems in French by
Poincaré. The answer to the question quoted above is available in Poincaré’s writing
but to find it Lorenz would have had to have access to the content of the work in
French by Poincaré just mentioned. Poincaré in Sur le problème des trois corps et les
équations de la dynamique discusses the Duffing equation (without giving this
name) (Poincaré, On the Three-Body Problem and the Equations of Dynamics,
2017, p. 157 et seq.). This is now used as an example of a non-linear oscillator
and chaotic system. John Guckenheimer and Philip Holmes discusses the Duffing
equation in Section 2.2 of (Guckenheimer and Holmes, 1983). Poincaré’s discussion
shows a clear understanding of a fully chaotic system.

Third, authors misunderstand or misrepresent what was written in primary mate-
rial in a language that they don’t know or don’t fully understand.

Here it’s harder to separate what might be a problem from misunderstanding
another language from misunderstanding subject matter that is complicated and
therefore intrinsically difficult to understand. Since separating is hard, I’m unwilling
to suggest examples here that I may have seen.
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French Historical Present Tense

Both (Poincaré, Sur la dynamique de l’électron, 1905) and (Poincaré, Sur la
dynamique de l’électron, 1906) being with a discussion of evidence that absolute
motion of the Earth relative to an omnipresent background (the ether) cannot be
detected. This starting point is important because it shows that Poincaré accepts that
it is well established that absolute motion of the Earth cannot be measured and that
there is consequently a need for an explanation and a basis in theory.

This introductory discussion is written in the French présent historique (historical
present) tense. Recognizing the use of this tense and correctly translating the tense
into English are important for accurately conveying Poincaré’s acceptance of this
experimental fact and his motivation in preparing the papers.

Professional French-into-English translators commonly encounter the French
présent historique tense in meeting minutes and reports of clinical cases written by
doctors. The secretary prepares the meeting minutes after the meeting is over, and
the doctor is not writing there at the bedside as the illness progresses—even though
the use of the present tense might seem to suggest that. In these documents, the
writers use the présent historique tense to describe events that occurred earlier. This
convention allows the writer to avoid the use of the passé composé tense
(a compound past tense); the convention is therefore similar to the journalistic
recommendation in the US to avoid compound past tenses. The French does have
a simple, meaning not compound, past tense called passé simple but it is largely
limited to literary use; its use elsewhere would add considerable fussiness to the text.
The use of the historical present in these documents allows a writer to avoid the
compound past, on the one hand, and the simple past tense on the other.

Conventionally the French historical present tense is translated into a past tense in
English. This reflects how the corresponding documents are written in the US by
native English speakers. A native speaker might write sentences like, “The meeting
was called to order and the minutes from the previous meeting approved.” and “The
patient, a 58-year-old female, was seen in the emergency department.”

The misuse in English of the present tense for meeting minutes and medical
reports translated from French can give a sense of immediacy that was not intended
in the French writing.

However, in other situations the use in English of the present tense to describe
past events can be a deliberate technique for adding vividness and immediacy. For
example, this technique can even be used to create an atmospheric effect of a
historical reenactment. And so, one can imagine on Patriots’ Day in Massachusetts
a present tense narration of the historical events: “We are standing next to the village
green in Lexington. On one side Capt. Parker is steadying his company of colonial
militia and on the other the vanguard of the 10th Regiment of Foot is marching into
sight.”
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Poincaré in contrast is not narrating a reenactment of these experiments by his use
of the présent historique, and the translation does not call for the immediacy of the
use of the present tense in English.

In preparing the translation of the second paper (Poincaré, Sur la dynamique de
l’électron, 1905), I found three published prior translations (the references are
provided in the subsection Other Translations in the Preface).

When I first looked at these three translations, I quickly realized that they had a
translation mistake in the first sentence.2 The first sentence in Poincaré’s paper is, “Il
semble au premier abord que la lumière et les phénomènes optiques et électriques qui
s’y rattachent vont nous fournir un moyen de déterminer le mouvement absolu de la
Terre, ou plutôt son mouvement, non par rapport aux autres astres, mais par rapport à
l’éther.”

In one translation, this sentence reads, “It seems at first that the aberration of light
and related optical and electrical phenomena will provide us with a means of
determining the absolute motion of the Earth, or rather its motion with respect to
the ether, as opposed to its motion with respect to other celestial bodies.”

In the next translation, the sentence reads, “It would seem at first sight that the
aberration of light and the optical and electrical effects related thereto should afford a
means of determining the absolute motion of the Earth, or rather its motion relative
to the ether instead of relative to the other celestial bodies.”

In the last translation, the sentence reads, “It seems at first sight that the aberration
of light and the related optical and electrical phenomena will provide us with a
means of determining the absolute motion of the Earth, or rather its motion not with
respect to the other stars but with respect to the ether.”

Poincaré’s next two sentences, still written in the same tense, refer to two
experiments respectively by Fresnel in the 1870s and Michelson in 1887 that tried
to use “un moyen de déterminer” and produced conclusive, negative results. There-
fore, historically Poincaré while writing in 1905 was describing an idea that might
have been held in the late 1860s, but was now contradicted by experiment. The
experiments are all well established and not immediate; therefore, in English the use
of the present tense is not accurate.

Despite this historical clue, the people providing these three translations failed to
realize that the historical present tense used by Poincaré should be rendered in
English with the past tense. I translated the sentence as, “On first consideration it
seemed that the aberration of light and the optical phenomena associated with it were
going to provide us a means for determining the absolute motion of the Earth or more
accurately its motion, not with respect to other stars, but with respect to the ether.”
When comparing these translations, the reader should keep in mind the considerable
variation in word choice and style is expected between translations that in their own
right are fully accurate and acceptable.

2In an effort to avoid interference or unintended copying, I have not looked at these translations
beyond the first page.
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Insisting on the correct choice of tense in English matters because Poincaré is
introducing his paper on the dynamics of the electron with a summary of historical
fact. Understanding the tense chosen by Poincaré and translating it correctly into
English conveys Poincaré’s intent. Poincaré is emphasizing that it had not been
possible to detect a background physical medium (known as the ether) against which
to measure absolute motion. Poincaré accepts the inability to detect the ether as
meaning that there is no ether. Starting from this conclusion, Poincaré moves
forward to rework electrodynamics without absolute motion and with electrons.

The Académie Française

Henri Poincaré was elected to the French Académie des sciences on January
31, 1887. He had not yet turned 33. He was elected to the Académie Française on
March 5, 1908, shortly after turning 54.

People who chose to read this book because of his writings on physics and
mathematics will not be surprised by the first of these recognitions. Poincaré’s
reputation in both fields has solidly stood the test of time and readers of this book
will easily accept that he earned election to the French Académie des sciences. The
same readers may in contrast find his election to the Académie Française surprising.
It is however also well earned, and therefore information about the Académie
Française and Poincaré’s election to it may help those readers move past their
surprise.

To accomplish that, it is perhaps best to start with a brief presentation of the
Académie Française and move from there to why Poincaré had earned the recogni-
tion of membership.

The founding of the Académie Française goes back to 1635. (The Académie des
sciences was founded some 30 years later.) The members were to watch over the
purity of the French language and make it capable of the highest eloquence. The
academy published the first edition of its dictionary in 1694. Today the academy
remains a bastion of defense of the French language. The ninth edition of its
dictionary is in the process of being published: the first volume appeared in 1992;
it was followed by two more published volumes, and there are still more to come.

The successive editions of the dictionary of the Académie Française are a visible
part of its effort to standardize the French language and keep it up-to-date. The third
edition of its dictionary was published in 1740 and made reforms to the spelling and
accents of about a third of the 18,000 words in the dictionary (Huchon, 2002). In
addition to exemplifying the role of the Académie Française in standardizing the
spelling and use of the French language, one class of reforms applied to French
spelling in the 1740 edition of the dictionary is important to physicists who want to
correctly pronounce the name of the French physicist Augustin-Jean Fresnel, who
developed the lens commonly used in lighthouses that bears his name and whose
work on aberration is cited by Poincaré in the papers translated in Part I. The spelling
reform that I’m referring to introduced the circumflex to words like hôpital as a
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marker indicating that a silent consonant following the accented vowel was elimi-
nated. This spelling change was not applied to some family names; thus, while the
s in Fresnel had become silent in spoken French it was not dropped and replaced by a
circumflex added in the physicist’s family name. Continuing this digression just a
little longer, many French-Canadian names contain silent s’s that were dropped from
the root word in the 1740 edition of the Académie Française dictionary. (Québec
was founded as a French colony, but ceded to England under the 1713 Treaty of
Utrecht—27 years before this reform.) Examples include names like Duchesne and
Lévesque with roots chêne (oak) and évêque (bishop); the s in these names as in
Fresnel is silent.

This role of the Académie Française continues to this day. With the appearance of
new discoveries, inventions, fashions and ideas there is a corresponding need for
new words. For example, the Académie Française allowed the word courriel (with
origins in Québec) into the French language in June 2003 meaning electronic mail.

In addition to the Académie des sciences, Poincaré was a member of numerous
other societies and academies in many countries. During Poincaré’s induction into
the Académie Française on January 28, 1909, Frédéric Masson (Masson, 1909),
responding to Poincaré’s biographical speech on his predecessor in the seat in the
Académie Française, welcomed Poincaré by noting that he was already a member of
35 academies. His prestige and renown were significant and widespread. No matter
how exclusive, what group wouldn’t want Poincaré as a member? An organization
concerned with promoting the French language (and implicitly French honor) also
wanted such a pillar of French achievement as a member.

Before Poincaré, other famous French scientists were members of the Académie
Française. In the introduction mentioned above, Frédéric Masson indicated that the
Académie Française has a tradition of accepting as members certain members of the
Académie des sciences of exceptional merit. Masson went on to say that the
motivation was to provide for “the active collaboration of scholars ready to clarify
the meaning and use that words from the natural, physical and mathematical sciences
contribute to the language.” Poincaré’s membership in the Académie Française
fulfilled a practical need.

Beyond the merely practical need, some of Poincaré’s predecessors as members
of both the Académie des sciences and the Académie Française were very distin-
guished, and at least two still have substantial name recognition today. Louis Pasteur
was elected first to the Académie des sciences in 1862 and then to the Académie
Française in 1881. He is known for his work on microbiology that includes notably
the method that now bears his name, pasteurization, and rabies vaccine, and for
identifying chirality (handedness) in the molecular structure of tartrates. Pierre-
Simon Laplace was elected first to the Académie des sciences in 1773 and then to
the Académie Française in 1816. He is known for his work on celestial mechanics,
tides and differential equations.
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Prominent French public leaders are also elected to membership in the Académie
Française. Henri Poincaré’s cousin Raymond Poincaré was elected to the Académie
Française in 1909 and went on to serve as president of France during the First World
War. As a further example, former French President Valéry Giscard d’Estaing is a
current member.

Prior to his election, Poincaré had published three best-selling books discussing
philosophy of science and popularizing selected topics from then current science.
Each book was soon translated into English. The books in both English and French
are currently available in print. The first book, Science and Hypothesis (Poincaré, La
science et l’hypothèse, 1902) was published in 1902 and the second edition was
published in 1906. In his welcoming speech, Frédéric Masson (Masson, 1909)
observed that it had sold 16,000 copies. Einstein is known to have read and studied
the 1902 edition of Science and Hypothesis with friends. Beyond their popularity—
or behind it—the books presented a variety of subjects in a clear and engaging way.
Some subjects, like his discussion of probability are still relevant and provide a
perspective that is still fresh and interesting.

Earlier Poincaré had written several books of significant importance in different
areas of mathematics and physics. Notably these books included two editions of his
class notes on electricity and optics, three volumes on celestial mechanics and a book
on the three-body problem. There are more in other areas of mathematics and
physics.

Writing three best-selling books over a span of a few years won’t get anyone a
place in the Académie Française. Writing several major, technical books in math-
ematics and physics won’t do it either. It has to be noted that Poincaré wrote well.
His writing was respected as clear, direct and precise. As Director of the Académie
Française, Jules Claretie, wrote, in a eulogy for Henri Poincaré, “[the Académie
Française members] were seduced by the singularly elegant speech, simple and
limpid, of this master writer who knew everything, verified everything, illuminated
with his definitions, lead with his observations and guided our research, the study of
our language, with his advice.” Writing French well, writing it in the way described
by Claretie will earn a chair in the Académie Française and that is why Henri
Poincaré was elected.

It is certainly that aspect of his writing that makes the content of his work—on its
own very interesting—pleasant and attractive to translate into English, and demands
a translation that accurately and effectively gives a voice in a new language to what
Poincaré wrote in clear and polished French.
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La Belle Époque

The articles translated in Part I of this book and the events discussed in the previous
chapters of Part II cover roughly the time from December 1895 when Jean Perrin
showed that cathode rays were charged particles andW. Röntgen took an x-ray of his
wife’s hand to the most recent article translated in Part I (Poincaré, La dynamique de
l’électron, 1908). This falls within the time known in France as the Belle Époque.
The name, given well after the traumatic and shattering conflict of 1914–18, reflects
nostalgia for a time before the carnage and devastation.3

For a hint at the social context in which Henri Poincaré, Henri Becquerel, Pierre
and Marie Curie worked it is worth looking at some of the markers distinguishing
this period.

From the perspective of peace and conflict the Belle Époque could be said to last
from the end of the Franco-Prussian war and suppression of the Paris commune in
May 1871 to August 1914 when the battle of frontiers and the battle of Tannenberg
started. These prominent markers suggest a clear demarcation of the beginning,
peace, and end, conflict. Clear demarcations are deceptive. In the 1880s, rings of
massive fortifications were built around Liege in Belgium and Verdun in France to
protect against German attack. In the 1890s the French Army developed a new
75 mm field artillery piece with a very effective recoil damper. The damper allowed a
much higher rate of accurate fire since the carriage for the gun did not jump during
firing so that it did not need to be reaimed. This Modèle 75 (or Mle 75 which led to
the nickname Mademoiselle Soixante-quinze) was to prove very effective against
massed infantry. After this preparation for conflict, there was diplomatic conflict but
no shots fired over French and German colonies in North Africa during the first
Moroccan conflict in 1905 and 1906 and a shooting war between Russia and Japan a
year earlier.4 Things weren’t as peaceful as they seemed in hindsight.

The time was also marked by the emergence of heavy industry and engineering. A
particular example is iron; it contributes to many other things relevant to this period
including heavy artillery and cars. As markers two events are worth noting. The first
is the construction of the Eiffel Tower for the Exposition Universelle de Paris in
1889. The design dates to May 1884 and construction started in January 1887. It was
opened to the public in May 1889 during the Exposition. It remains a triumph of iron
and engineering. At the other end of the period is the Titanic. Its construction started
in March 1909 and its maiden voyage started April 10, 1912. Five days later it struck

3For a detailed view of the sociology of this time see (Prost, 2019). Barbara Tuchman (The Proud
Tower: A Portrait of the World Before the War, 1890–1914, 2011) famously wrote, “A phenom-
enon of such extended malignance as the Great War does not come out of a Golden Age.” Her book
is suggested for a wider view of the era. The movieMidnight in Paris (Allen, 2011) has its own view
of golden age thinking (“nostalgia in denial”). Adriana, a French woman from the 1920s, tells Gil
Pender (portrayed by Marion Cottillard and Owen Wilson respectively), “For me la belle époque
Paris would have been perfect.” and “It’s the greatest most beautiful era Paris has ever known.”
4For details and more conflicts see (MacMillan, 2013).
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an iceberg, buckling the iron plates of the hull, and sank within 3 hours with a loss of
over 1500 lives.

The aspect that seems to get the most attention in hindsight is the emergence of
the petit bourgeois, a small but growing middle class with leisure time and dispos-
able income. Below the established privileged class and above the classes laboring in
fields and factories, the petit bourgeois saw enormous improvements in quality of
life that in addition to leisure time included hygiene, health and life expectancy. Here
it is entertainment paid for with disposable income that gained a prominent position
in nostalgia. There are many examples such as Pierre-Auguste Renoir’s Le déjeuner
des canotiers (“Luncheon of the Boating Party”) from 1881. Bars and cabarets like
Le chat noir and the Moulin rouge, and the restaurant Maxim’s followed. Henri de
Toulouse-Lautrec painted scenes of the nightlife and denizens of the demi-monde.
While rising labor unrest after 1910 and the rising influence of Jean Jaurès could be
mentioned as a bracketing event, a better choice is the deeply symbolic Taxis of the
Marne in September 1914. One of the developments of the Belle Époque was the
emergence of the car and with it a fleet of taxis in Paris. As the German advance
approached Paris in late August (and followed the withdrawing French army to the
south on the east side of Paris), the French army moved two infantry regiments by
train from another part of the front, where they had already been fighting, to Paris. To
move the troops from the center of Paris to the front, General Galleni, the military
commandant of the city, requisitioned the taxis September 6–7, 1914. The police
spread the word to the taxi drivers who one-by-one dropped off their fares where
they were and went to their garage to fill up and then to the rally point in Place des
Invalides. By the morning of the 8th, some 3000 to 5000 troops were delivered to the
front east of Paris at Nanteuil-le-Haudouin and Silly-le-Long. For the army the event
is symbolic (and not material) because the number of soldiers moved was small
compared to the size of the forces committed and because they were not actively
involved in the fighting of the First Battle of the Marne over the next week. For the
citizens of Paris, the taxis are symbolic because the citizens contributed to the
defense of their city and gave up their comfort and privilege. (Hanc, 2014)
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Part III
Supplement, H. A. Lorentz



Chapter 14
Electromagnetic Phenomena in a System
Moving with Any Velocity Smaller than
That of Light

Physics. — “Electromagnetic phenomena in a system moving with any velocity
smaller than that of light.” By Prof. H. A. LORENTZ.

§ 1. The problem of determining the influence exerted on electric and optical
phenomena by a translation, such as all systems have in virtue of the Earth’s annual
motion, admits of a comparatively simple solution, so long as only those terms need
be taken into account, which are proportional to the first power of the ratio between
the velocity of translation w and the velocity of light c. Cases in which quantities of
the second order, i.e. of the order w2/c2, may be perceptible, present more difficul-
ties. The first example of this kind. is Michelson’s well-known interference exper-
iment, the negative result of which has led Fitz Gerald and myself to the conclusion
that the dimensions of solid bodies are slightly altered by their motion through the
ether.

Some new experiments in which a second order effect was sought for have
recently been published. Rayleigh1 and Brace2 have examined the question whether
the Earth’s motion may cause a body to become doubly refracting; at first sight this
might be expected, if the just mentioned change of dimensions is admitted. Both
physicists have however come to a negative result.

Author: This article by Hendrik Antoon Lorentz originally appeared in Dutch as “Electromagntishe
verschijnselen in een stelsel dat zich met willekeurige snelheid, Kleiner dan die van het licht,
beweegt” in Verslagen van de gewone vergaderingen der Wis- en Natuurkundige Afdeeling of
the Koninklijke Akademie van Wetenschappen (Netherlands), vol. 12, 1904 p. 986–1009 and in
English as “Electromagnetic phenomena in a system moving with any velocity smaller than that
of light.” in KNAW, Proceedings, 6, 1903–1904, Amsterdam, 1904, p. 809–831.
It is provided here, reformatted for the convenience of the reader. It is discussed in Part II,
Chapter 9; errors in equations 5, 7 and 9 are discussed there.

1Rayleigh, Phil. Mag. (6) 4 (1902), p. 678
2Brace, Phil. Mag. (6) 7 (1904), p. 317.
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In the second place Trouton and Noble3 have endeavored to detect a turning
torque acting on a charged condenser, whose plates make a certain angle with the
direction of translation. The theory of electrons, unless it be modified by some new
hypothesis, would undoubtedly require the existence of such a torque. In order to see
this, it will suffice to consider a condenser with ether as dielectricum. It may he
shown that in every electrostatic system, moving with a velocity w4, there is a certain
amount of “electromagnetic momentum”. If we represent this, in direction and
magnitude, by a vector G, the torque in question will be determined by the vector
product5

G� w: ð1Þ

Now, if the axis of z is chosen perpendicular to the condenser plates, the velocity
w having any direction we like, and if U is the energy of the condenser, calculated in
the ordinary way, the components of G are given6 by the following formulae, which
are exact up to the first order

Gx ¼ 2U
c2

wx, Gy ¼ 2U
c2

wy, Gz ¼ 0:

Substituting these values in (1), we get for the components of the torque, up to
terms of the second order,

2U
c2

wywz, � 2U
c2

wxwz, 0:

These expressions show that the axis of the torque lies in the plane of the plates,
perpendicular to the translation. If α is the angle between the velocity and the normal
to the plates, the moment of the torque will be U

c2 w
2 sin 2α ; it tends to turn the

condenser into such a position that the plates are parallel to the Earth’s motion.
In the apparatus of Trouton and Noble the condenser was fixed to the beam of a

torsion-balance, sufficiently delicate to be deflected by a torque of the above order of
magnitude. No effect could however be observed.

3Trouton and Noble, London Roy. Soc. Trans. A 202 (1903), p. 165.
4A vector will be denoted by a bold letter, its magnitude by the corresponding non-bold letter.
5See my article: Weiterbiklung der Maxwell'schen Theorie. Electronentheorie in the Mathem.
Encyclopadie V 14, § 21, a. (This article will be referenced as M. E.)
6M. E. § 56, c.
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§ 2. The experiments of which I have spoken are not the only reason for which a
new examination of the problems connected with the motion of the Earth is desir-
able. Poincaré7 has objected to the existing theory of electric and optical phenomena
in moving bodies that, in order to explain Michelson’s negative result, the introduc-
tion of a new hypothesis has been required, and that the same necessity may occur
each time new facts will he brought to light. Surely, this course of inventing special
hypotheses for each new experimental result is somewhat artificial. It would be more
satisfactory, if it were possible to show, by means of certain fundamental assump-
tions, and without neglecting terms of one order of magnitude or another, that many
electromagnetic actions are entirely independent of the motion of the system. Some
years ago, I have already sought to frame a theory of this kind8. I believe now to be
able to treat the subject with a better result. The only restriction as regards the
velocity will be that it be smaller than that of light.

§ 3. I shall start from the fundamental equations of the theory of electrons9. Let D
be the dielectric displacement in the ether, H the magnetic force, ρ the volume-
density of the charge of an electron, v the velocity of a point of such a particle, and F
the electric force, i.e. the force, reckoned per unit charge, which is exerted by the
ether on a volume-element of an electron. Then, if we use a fixed system of
coordinates,

∇ � D ¼ ρ, ∇ �H ¼ 0,

∇�H ¼ 1
c

∂D
∂t

þ ρv

� �
,

∇� D ¼ 1
c
∂H
∂t

,

F ¼ Dþ 1
c
v�H:

ð2Þ

I shall now suppose that the system as a whole moves in the direction of x with a
constant velocity w, and I shall denote by u any velocity a point of an electron may
have in addition to this, so that

vx ¼ wþ ux, vy ¼ uy, vz ¼ uz:

7Poincaré, Rapports du Congrès de physique de 1900, Paris, 1, p. 22, 23.
8Lorentz, Ziltingsverslag Akad, v. Wet., 7 (1899), p. 507, Amsterdam Proc., 1898–99, p. 427.
9M.E., §2.
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If the equations (2) are at the same time referred to axes moving with the system,
they become

divD ¼ ρ, divH ¼ 0,

∂Hz

∂y
� ∂Hy

∂z
¼ 1

c
∂
∂t

� w
∂
∂x

� �
Dx þ 1

c
ρ wþ uxð Þ,

∂Hx

∂z
� ∂Hz

∂x
¼ 1

c
∂
∂t

� w
∂
∂x

� �
Dy þ 1

c
ρuy,

∂Hy

∂x
� ∂Hx

∂y
¼ 1

c
∂
∂t

� w
∂
∂x

� �
Dz þ 1

c
ρuy,

∂Dz

∂y
� ∂Dy

∂z
¼ � 1

c
∂
∂t

� w
∂
∂x

� �
Hx,

∂Dx

∂z
� ∂Dz

∂x
¼ � 1

c
∂
∂t

� w
∂
∂x

� �
Hy,

∂Dy

∂x
� ∂Dx

∂y
¼ � 1

c
∂
∂t

� w
∂
∂x

� �
Hz,

f x ¼ Dx þ 1
c

uyHz � uzHy

� �
f y ¼ Dy � wHz þ 1

c
uzHx � uxHzð Þ

f z ¼ Dz � wHy þ 1
c

uzHy � uyHx

� �
§ 4. We shall further transform these formulae by a change of variables. Putting

c2

c2 � w2 ¼ k2, ð3Þ

and understanding by l another numerical quantity, to be determined further on, I
take as new independent variables

x0 ¼ klx, y0 ¼ ly, z0 ¼ lz ð4Þ

t0 ¼ l
k
t � kl

w
c2

x, ð5Þ

and I define two new vectors D0 and H0 by the formulae

D0
x ¼

1
l2
Dx, D0

y ¼
k

l2
Dy � w

c
Hz

� �
, D0

z ¼
k

l2
Dz þ w

c
Hy

� �
,

H0
x ¼

1
l2
Hx, H0

y ¼
k

l2
Hy þ w

c
Dz

� �
, H0

z ¼
k

l2
Hz � w

c
Dy

� �
,

for which, on account of (3), we may also write
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Dx ¼ l2D0
x, Dy ¼ kl2 D0

y þ
w
c
H0

z

� �
, Dz ¼ kl2 D0

z �
w
c
H0

y

� �
,

Hx ¼ l2H0
x, Hy ¼ kl2 H0

y þ
w
c
D0

z

� �
, Hz ¼ kl2 H0

z þ
w
c
D0

y

� �
,

ð6Þ

As to the coefficient l, it is to be considered as a function of w, whose value is
1 for w ¼ 0, and which, for small values of w, differs from unity no more than by an
amount of the second order.

The variable t0 may be called the “local time”; indeed, for k ¼ 1, l ¼ 1 it becomes
identical with what I have formerly understood by this name.

If, finally, we put

1
kl3

ρ ¼ ρ0, ð7Þ

k2ux ¼ u0x, kuy ¼ u0y, kuz ¼ u0z, ð8Þ

these latter quantities being considered as the components of a new vector u0, the
equations take the following form:

div0D0 ¼ 1� wu0x
c2

� �
ρ0, div0H0 ¼ 0,

rot0H0 ¼ 1
c

∂D0

∂t0
þ ρ0u0

� �
,

rot0D0 ¼ � 1
c
∂H0

∂t0

ð9Þ

f x ¼ l2D0
x þ l2 � 1

c
u0yH

0
z � u0zH

0
y

� �
þ l2 � w

c2
u0yD

0
y þ u0zD

0
z

� �
f y ¼ l2

k
D0

y þ
l2

k
� 1
c

u0zH
0
x � u0xH

0
z

� �� l2

k
� w
c2

u0xD
0
y

f z ¼ l2

k
D0

z þ
l2

k
� 1
c

u0xH
0
y � u0yH

0
x

� �
� l2

k
� w
c2

u0xD
0
z

ð10Þ

The meaning of the symbols div0 and rot0 in (9) is similar to that of div and rot in
(2); only, the differentiations with respect to x, y, z are to be replaced by the
corresponding ones with respect to x0, y0, z0.§ 5. The equations (9) lead to the
conclusion that the vectors D0 and H0 may be represented by means of a scalar
potential φ0 and a vector potential A0. These potentials satisfy the equations10

10M. E., §§ 4 and 10.
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Δ0φ0 � 1
c2

∂2φ0

∂t02
¼ �ρ0, ð11Þ

Δ0A0 � 1
c2

∂2A0

∂t02
¼ � 1

c
ρ0u0, ð12Þ

and in terms of them D0 and H0 are given by

D0 ¼ � 1
c
∂A0

∂t0
� grad0φ0 þ w

c
grad0A0

x, ð13Þ

H0 ¼ rot0A0: ð14Þ

The symbol Δ0 is an abbreviation for ∂2

∂x02 þ ∂2

∂y02 þ ∂2

∂z02, and grad
0φ0 denotes a vector

whose components are ∂φ0
∂x0 ,

∂φ0
∂y0 ,

∂φ0
∂z0 . The expression grad0A0

x has a similar meaning.

In order to obtain the solution of (11) and (12) in a simple form, we may take x0, y0,
z0 as the coordinates of a point P0 in a space S0, and ascribe to this point, for each
value of t0, the values of ρ0, u0, φ0, A0, belonging to the corresponding point P (x, y, z, )
of the electromagnetic system. For a definite value t0 of the fourth independent
variable, the potentials φ0 and A0 in the point P of the system or in the corresponding
point P0 of the space S0, are given by11

φ0 ¼ 1
4π

Z
ρ0½ �
r0 dS0 ð15Þ

A0 ¼ 1
4πc

Z
ρ0u0½ �
r0 dS0: ð16Þ

Here dS0 is an element of the space S0, r0 its distance from P0 and the brackets serve
to denote the quantity ρ0 and the vector ρ0u0, such as they are in the element dS0, for
the value t0 � r0=c of the fourth independent variable.

Instead of (15) and (16) we may also write, taking into account (4) and (7),

φ0 ¼ 1
4π

Z
ρ½ �
r0 dS

0 ð17Þ

A0 ¼ 1
4πc

Z
ρu½ �
r

dS, ð18Þ

the integrations now extending over the electromagnetic system itself. It should be
kept in mind that in these formulae r0 does not denote the distance between the
element dS and the point (x, y, z) for which the calculation is to be performed. If the
element lies at the point (x1, y1, z1), we must take

11M. E., §§ 5 and 10.
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r0 ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 x� x1ð Þ2 þ y� y1ð Þ2 þ z� z1ð Þ2

q
:

It is also to be remembered that, if we wish to determine φ0 and A0 for the instant,
at which the local time in P is t0, we must take ρ and ρu0, such as they are in the
element dS at the instant at which the local time of that element is t0 � r0=c.§ 6. It will
suffice for our purpose to consider two special cases. The first is that of an
electrostatic system, i.e. a system having no other motion but the translation with
the velocity w. In this case u0 ¼ 0, and therefore, by (12), A0 ¼ 0. Also, φ0 is
independent of t0, so that the equations (11), (13) and (14) reduce to

Δ0φ0 ¼ �ρ0,

D0 ¼ �grad0φ0, H0 ¼ 0 :
ð19Þ

After having determined the vector D0 by means of these equations, we know also
the electric force acting on electrons that belong to the system. For these the
formulae (10) become, since u0 ¼ 0,

f x ¼ l2D0
x, f y ¼ l2

k
D0

y, f z ¼ l2

k
D0

z, ð20Þ

The result may be put in a simple form if we compare the moving system Σ with
which we are concerned, to another electrostatic system Σ0 which remains at rest and
into which Σ is changed, if the dimensions parallel to the axis of x are multiplied by
kl, and the dimensions which have the direction of y or that of z, by l a deformation
for which (kl, l, l ) is an appropriate symbol. In this new system, which we may
suppose to be placed in the above-mentioned space S0, we shall give to the density
the value ρ0, determined by (7), so that the charges of corresponding elements of
volume and of corresponding electrons are the same in Σ and Σ0. Then we shall
obtain the forces acting on the electrons of the moving system Σ, if we first determine
the corresponding forces in Σ0, and next multiply their components in the direction of
the axis of x by l2, and their components perpendicular to that axis by l2=k. This is
conveniently expressed by the formula

F Σð Þ ¼ l2,
l2

k
,
l2

k

� �
F Σ0ð Þ: ð21Þ

It is further to be remarked that, after having found D0 by (19), we can easily
calculate the electromagnetic momentum in the moving system, or rather its com-
ponent in the direction of the motion. Indeed, the formula
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G ¼ 1
1

Z
D�HdS

shows that

Gx ¼ 1
c

Z
DyHz � DzHy

� �
dS

Therefore, by (6), since H0 ¼ 0

Gx ¼ k2l4w
c2

Z
D02

y þ D02
z

� �
dS ¼ klw

c2

Z
D02

y þ D02
z

� �
dS0: ð22Þ

§ 7. Our second special case is that of a particle having an electric moment, i.e. a
small space S, with a total charge

R
ρdS ¼ 0, but with such a distribution of density,

that the integrals
R
ρxdS,

R
ρydS and

R
ρzdS have values differing from 0.

Let x, y, z be the coordinates, taken relatively to a fixed point A of the particle,
which may be called its center, and let the electric moment be defined as a vector p
whose components are Z

ρxdS,
Z

ρydS,
Z

ρzdS: ð23Þ

Then

dpx
dt

¼
Z

ρuxdS,
dpy
dt

¼
Z

ρuydS,
dpz
dt

¼
Z

ρuzdS : ð24Þ

Of course, if x, y, z are treated as infinitely small, ux, uy, uz must be so likewise.
We shall neglect squares and products of these six quantities.

We shall now apply the equation (17) to the determination of the scalar potential
φ0 for an exterior point P(x, y, z), at finite distance from the polarized particle, and for
the instant at which the local time of this point has some definite value t0. In doing so,
we shall give the symbol [ρ], which, in (17), relates to the instant at which the local
time in dS is t0 � r0=c, a slightly different meaning. Distinguishing by r00 the value of r

0

for the center A, we shall understand by [ρ] the value of the density existing in the
element dS at the point (x, y, z), at the instant t0 at which the local time of A is t0 � r00=c .

It may be seen from (5) that this instant precedes that for which we have to take
the numerator in (17) by

k2
w
c2
bxþ k

l
r00 � r0

c
¼ k2

w
c2
bxþ k

l
1
c

bx∂r0
∂x

þ by∂r0
∂y

þbz∂r0
∂z

� �
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units of time. In this last expression we may put for the differential coefficients their
values at the point A.

In (17) we have now to replace [ρ] by

ρ½ � þ k2
w
c2
bx ∂ρ

∂t

	 

þ k

l
1
c

bx∂r0
∂x

þ by∂r0
∂y

þbz∂r0
∂z

� �
∂ρ
∂t

	 

, ð25Þ

where ∂ρ
∂t

h i
relates again to the time t0. Now, the value of t

0 for which the calculations

are to be performed having been chosen, this time t0 will be a function of the
coordinates x, y, z of the exterior point P. The value of [ρ] will therefore depend
on these coordinates in such a way that

∂ ρ½ �
∂x

¼ � k
l
1
c
∂r0

∂x
∂ρ
∂t

	 

, etc:

by which (25) becomes

ρ½ � þ k2
w
c2
bx ∂ρ

∂t

	 

� bx∂ ρ½ �

∂x
þ by∂ ρ½ �

∂y
þbz∂ ρ½ �

∂z

� �
:

Again, if henceforth we understand by r0 what has above been called r00 the factor
1=r0 must be replaced by

1
r0 � bx ∂

∂x
1
r0

� �
� by ∂

∂y
1
r0

� �
�bz ∂

∂z
1
r0

� �
,

so that after all, in the integral (17), the element dS is multiplied by

ρ½ �
r0 þ k2

w
c2

bx
r0

∂ρ
∂t

	 

� ∂
∂x

bx ρ½ �
r0 � ∂

∂y
by ρ½ �
r0 � ∂

∂z
bz ρ½ �
r0 :

This is simpler than the primitive form, because neither r0, nor the time for which
the quantities enclosed in brackets are to be taken, depend on x, y, z. Using (23) and
remembering that

R
ρdS ¼ 0, we get

φ0 ¼ k2
w

4πc2r0
∂px
∂t

	 

� 1
4π

∂
∂x

px½ �
r0 þ ∂

∂y

py
� �
r0 þ ∂

∂z

pz
� �
r0

( )
,

a formula in which all the enclosed quantities are to be taken for the instant at which
the local time of the center of the particle is t0 � r0=c.
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We shall conclude these calculations by introducing a new vector p0 whose
components are

p0x ¼ klpx, p0y ¼ lpy, p0z ¼ lpz, ð26Þ

passing at the same time to x0, y0, z0, t0 as independent variables. The final result is

φ0 ¼ w
4πc2r0

∂ p0x
� �
∂t0

� 1
4π

∂
∂x0

p0x
� �
r0 þ ∂

∂y0
p0y
h i
r0 þ ∂

∂z0
p0z
� �
r0

8<:
9=;,

As to the formula (18) for the vector potential, its transformation is less compli-
cated, because it contains the infinitely small vector u0. Having regard to (8), (24),
(26) and (5), I find

A0 ¼ w
4πc2r0

∂ p0½ �
∂t0

The field produced by the polarized particle is now wholly determined. The
formula (13) leads to

D0 ¼ � 1
4πc2

∂2 p0½ �
∂t02

þ 1
4π

grad0 ∂
∂x0

p0x
� �
r0 þ ∂

∂y0
p0y
h i
r0 þ ∂

∂z0
p0z
� �
r0

8<:
9=; ð27Þ

and the vector H0 is given by (14). We may further use the equations (20), instead of
the original formulae (10), if we wish to consider the forces exerted by the polarized
particle on a similar one placed at some distance. Indeed, in the second particle, as
well as in the first, the velocities u may he held to be infinitely small.

It is to be remarked that the formulae for a system without translation are implied
in what precedes. For such a system the quantities with accents become identical to
the corresponding ones without accents; also k ¼ 1 and l ¼ 1. The components of
(27) are at the same time those of the electric force which is exerted by one polarized
particle on another.

§ 8. Thus far we have only used the fundamental equations without any new
assumptions. I shall now suppose that the electrons, which I take to be spheres of
radius R in the state of rest, have their dimensions changed by the effect of a
translation, the dimensions in the direction of motion becoming kl times and those
in perpendicular directions l times smaller.

In this deformation, which may be represented by 1
kl ,

1
l ,

1
l

� �
each element of

volume is understood to preserve its charge.
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Our assumption amounts to saying that in an electrostatic system Σ, moving with
a velocity w, all electrons are flattened ellipsoids with their smaller axes in the
direction of motion. If now, in order to apply the theorem of § 6, we subject the
system to the deformation (kl, l, l ), we shall have again spherical electrons of
radius R.

Hence, if we alter the relative position of the centers of the electrons in Σ by
applying the deformation (kl, l, l ), and if, in the points thus obtained, we place the
centers of electrons that remain at rest, we shall get a system, identical to the
imaginary system Σ0, of which we have spoken in § 6. The forces in this system
and those in Σ0 will bear to each other the relation expressed by (21).

In the second place I shall suppose that the forces between uncharged particles,
as well as those between such particles and electrons, are influenced by a translation
in quite the same way as the electric forces in an electrostatic system. In other terms,
whatever be the nature of the particles composing a ponderable body, so long as they
do not move relatively to each other, we shall have between the forces acting in a
system (Σ0) without, and the same system (Σ) with a translation, the relation specified
in (21), if, as regards the relative position of the particles, Σ0 is got from Σ by the
deformation (kl, l, l ), or Σ from Σ0 by the deformation 1

kl ,
1
l ,

1
l

� �
.

We see by this that, as soon as the resulting force is 0 for a particle in Σ0, the same
must be true for the corresponding particle in Σ. Consequently, if, neglecting the
effects of molecular motion, we suppose each particle of a solid body to be in
equilibrium under the action of the attractions and repulsions exerted by its neigh-
bors, and if we take for granted that there is but one configuration of equilibrium, we
may draw the conclusion that the system Σ0, if the velocity w is imparted to it, will of
itself change into the system Σ. In other terms, the translation will produce the
deformation 1

kl ,
1
l ,

1
l

� �
The case of molecular motion will be considered in § 12.
It will easily be seen that the hypothesis that has formerly been made in connec-

tion with Michelson’s experiment, is implied in what has now been said. However,
the present hypothesis is more general because the only limitation imposed on the
motion is that its velocity.be smaller than that of light.

§ 9. We are now in a position to calculate the electromagnetic momentum of a
single electron. For simplicity’s sake I shall suppose the charge e to be uniformly
distributed over the surface, so long as the electron remains at rest. Then, a distri-
bution of the same kind will exist in the system Σ0 with which we are concerned in
the last integral of (22). HenceZ

D0
y
2 þ D0

z
2

� �
dS0 ¼ 2

3

Z
D02dS0 ¼ e2

6π

Z 1

R

dr
r2

¼ e2

6πR3

and
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Gx ¼ e2

6πc2R
klw:

It must be observed that the product kl is a function of w and that, for reasons of
symmetry, the vector G has the direction of the translation. In general, representing
by w the velocity of this motion, we have the vector equation

G ¼ e2

6πc2R
klw: ð28Þ

Now, every change in the motion of a system will entail a corresponding change
in the electromagnetic momentum and will therefore require a certain force, which is
given in direction and magnitude by

F ¼ dG
dt

: ð29Þ

Strictly speaking, the formula (28) may only be applied in the case of a uniform
rectilinear translation. On account of this circumstance—though (29) is always
true—the theory of rapidly varying motions of an electron becomes very compli-
cated, the more so, because the hypothesis of § 8 would imply that the direction and
amount of the deformation are continually changing. It is even hardly probable that
the form of the electron will be determined solely by the velocity existing at the
moment considered.

Nevertheless, provided the changes in the state of motion be sufficiently slow, we
shall get a satisfactory approximation by using (28) at every instant. The application
of (29) to such a quasi-stationary translation, as it has been called by Abraham12, is a
very simple matter. Let, at a certain instant, j1 be the acceleration in the direction of
the path, and j2 the acceleration perpendicular to it. Then the force F will consist of
two components, having the directions of these accelerations and which are given by

F1 ¼ m1 j1 and F2 ¼ m2 j2,

if

m1 ¼ e2

6πc2R
d klwð Þ
dw

and m2 ¼ e2

6πc2R
kl: ð30Þ

Hence, in phenomena in which there is an acceleration in the direction of motion,
the electron behaves as if it had a mass m1, in those in which the acceleration is
normal to the path, as if the mass werem2. These quantitiesm1 andm2, may therefore

12Abraham, Wied. Ann, 10 (1903), p. 105.
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properly be called the “longitudinal” and “transverse” electromagnetic masses of the
electron. I shall suppose that there is no other, no “true” or “material” mass.

Since k and l differ from unity by quantities of the order w2/c2, we find for very
small velocities

m1 ¼ m2 ¼ e2

6πc2R
:

This is the mass with which we are concerned, if there are small vibratory motions
of the electrons in a system without translation. If, on the contrary, motions of this
kind are going on in a body moving with the velocity w in the direction of the axis of
x, we shall have to reckon with the mass m1, as given by (30), if we consider the
vibrations parallel to that axis, and with the mass m2, if we treat of those that are
parallel to OY or OZ. Therefore, in short terms, referring by the index Σ to a moving
system and by Σ0 to one that remains at rest,

m Σð Þ ¼ d klwð Þ
dw

, kl, kl

� �
m Σ0ð Þ: ð31Þ

§ 10. We can now proceed to examine the influence of the Earth’s motion on optical
phenomena in a system of transparent bodies. In discussing this problem, we shall fix
our attention on the variable electric moments in the particles or “atoms” of the
system. To these moments we may apply what has been said in § 7 For the sake of
simplicity we shall suppose that, in each particle, the charge is concentrated in a
certain number of separate electrons, and that the “elastic” forces that act on one of
these and, conjointly with the electric forces, determine its motion, have their origin
within the bounds of the same atom.

I shall show that, if we start from any given state of motion in a system without
translation, we may deduce from it a corresponding state that can exist in the same
system after a translation has been imparted to it, the kind of correspondence being
as specified in what follows.

a. Let A0
1 , A

0
2 , A

0
3 etc. be the centers of the particles in the system without

translation (Σ0); neglecting molecular motions we shall take these points to remain
at rest. The system of points A1, A2, A3 etc., formed by the centers of the particles in
the moving system Σ, is obtained from A0

1, A
0
2, A

0
3 etc. by means of a deformation

1
kl ,

1
l ,

1
l

� �
. According to what has been said in § 8, the centers will of themselves take

these positions A0
1 , A

0
2 , A

0
3 etc. if originally, before there was a translation, they

occupied the positions A1, A2, A3 etc.
We may conceive any point P0 in the space of the system Σ0 to be displaced by the

above deformation, so that a definite point P of Σ corresponds to it. For two
corresponding points P0 and P we shall define corresponding instants, the one
belonging to P0, the other to P, by stating that the true time at the first instant is
equal to the local time, as determined by (5) for the point P, at the second instant. By
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corresponding times for two corresponding particles we shall understand times that
may be said to correspond, if we fix our attention on the centers A0 and A of these
particles.

b. As regards the interior state of the atoms, we shall assume that the configuration
of a particle A in Σ at a certain time may be derived by means of the deformation
1
kl ,

1
l ,

1
l

� �
from the configuration of the corresponding particle in Σ0, such as it is at

the corresponding instant. In so far as this assumption relates to the form of the
electrons themselves, it is implied in the first hypothesis of § 8.

Obviously, if we start from a state really existing in the system Σ0, we have now
completely defined a state of the moving system Σ. The question remains however,
whether this state will likewise be a possible one.

In order to judge this, we may remark in the first place that the electric moments
which we have supposed to exist in the moving system and which we shall denote by
p, will be certain definite functions of the coordinates x, y, z of the centers Λ of the
particles, or, as we shall say, of the coordinates of the particles themselves, and of the
time t. The equations which express the relations between p on one hand and x, y,
z, t on the other, may be replaced by other equations, containing the vectors p0

defined by (26) and the quantities x0, y0, z0, t0 defined by (4) and (5). Now, by the
above assumptions a and b, if in a particle A of the moving system, whose coordi-
nates are x, y, z, we find an electric moment p at the time t, or at the local time t0, the
vector p0 given by (26) will be the moment which exists in the other system at the
true time t0 in a particle whose coordinates are x0, y0, z0. It appears in this way that the
equations between p0, x0, y0, z0, t0 are the same for both systems, the difference being
only this, that for the system Σ0 without translation these symbols indicate the
moment, the coordinates and the true time, whereas their meaning is different for
the moving system, p0, x0, y0, z0, t0 being here related to the moment p, the coordinates
x, y, z and the general time t in the manner expressed by (26), (4) and (5).

It has already been stated that the equation (27) applies to both systems. The
vector D0 will therefore be the same in Σ0 and Σ, provided we always compare
corresponding places and times. However, this vector has not the same meaning in
the two cases. In Σ0 it represents the electric force, in Σ it is related to this force in the
way expressed by (20). We may therefore conclude that the electric forces acting, in
Σ and in Σ0, on corresponding particles at corresponding instants, bear to each other
the relation determined by (21). In virtue of our assumption b, taken in connection
with the second hypothesis of § 8, the same relation will exist between the “elastic”
forces; consequently, the formula (21) may also be regarded as indicating the
relation between the total forces, acting on corresponding electrons, at corresponding
instants.

It is clear that the state we have supposed to exist in the moving system will really
be possible if, in Σ and Σ0, the products of the mass m and the acceleration of an
electron are to each other in the same relation as the forces, i.e. if
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mj Σð Þ ¼ l2,
l2

k
,
l2

k

� �
mj Σ0ð Þ: ð32Þ

Now, we have for the accelerations

j Σð Þ ¼ l

k3
,
l

k2
,
l

k2

� �
j Σ0ð Þ, ð33Þ

as may be deduced from (4) and (5), and combining this with (32), we find for the
masses

m Σð Þ ¼ k3l, kl, kl
� �

m Σ0ð Þ

If this is compared to (31), it appears that, whatever be the value of l the condition
is always satisfied, as regards the masses with which we have to reckon when we
consider vibrations perpendicular to the translation. The only condition we have to
impose on l is therefore

d klwð Þ
dw

¼ k3l:

But, on account of (3),

d kwð Þ
dw

¼ k3,

so that we must put

dl
dw

¼ 0, l ¼ const:

The value of the constant must be unity, because we know already that, for w¼ 0,
l ¼ 1.

We are therefore led to suppose that the influence of a translation on the
dimensions (of the separate electrons and of a ponderable body as a whole) is
confined to those that have the direction of the motion, these becoming k times
smaller than they are in the state of rest. If this hypothesis is added to those we have
already made, we may be sure that two states, the one in the moving system, the
other in the same system while at rest, corresponding as stated above, may both be
possible. Moreover, this correspondence is not limited to the electric momenta of the
particles. In corresponding points that are situated either in the ether between the
particles, or in that surrounding the ponderable bodies, we shall find at
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corresponding times the same vector D0 and, as is easily shown, the same vector H0.
We may sum up by saying: If, in the system without translation, there is a state of
motion in which, at a definite place, the components of p, D and H are certain
functions of the time, then the same system after it has been put in motion (and
thereby deformed) can be the seat of a state of motion in which, at the corresponding
place, the components of p0, D0 and H0 are the same functions of the local time.

There is one point which requires further consideration. The values of the masses
m1 and m2 having been deduced from the theory of quasi-stationary motion, the
question arises, whether we are justified in reckoning with them in the case of the
rapid vibrations of light. Now it is found on closer examination that the motion of an
electron may be treated as quasi-stationary if it changes very little during the time a
light-wave takes to travel over a distance equal to the diameter. This condition is
fulfilled in optical phenomena, because the diameter of an electron is extremely
small in comparison with the wavelength.

§ 11. It is easily seen that the proposed theory can account for a large number of
facts.

Let us take in the first place the case of a system without translation, in some parts
of which we have continually p¼ 0, D ¼ 0, H ¼ 0. Then, in the corresponding state
for the moving system, we shall have in corresponding parts (or, as we may say, in
the same parts of the deformed system) p0 ¼ 0, D0 ¼ 0, H0 ¼ 0. These equations
implying p ¼ 0, D ¼ 0, H ¼ 0, as is seen by (26) and (6), it appears that those parts
which are dark while the system is at rest, will remain so after it has been put in
motion. It will therefore be impossible to detect an influence of the Earth’s motion on
any optical experiment, made with a terrestrial source of light, in which the geomet-
rical distribution of light and darkness is observed. Many experiments on interfer-
ence and diffraction belong to this class.

In the second place, if in two points of a system, rays of light of the same state of
polarization are propagated in the same direction, the ratio between the amplitudes in
these points may be shown not to be altered by a translation. The latter remark
applies to those experiments in which the intensities in adjacent parts of the field of
view are compared.

The above conclusions confirm the results I have formerly obtained by a similar
train of reasoning, in which however the terms of the second order were neglected.
They also contain an explanation of Michelson’s negative result, more general and of
somewhat different form than the one previously given, and they show why Ray-
leigh and Brace could find no signs of double refraction produced by the motion of
the Earth.

As to the experiments of Trouton and Noble, their negative result becomes at
once clear, if we admit the hypotheses of § 8. It may be inferred from these and from
our last assumption (§ 10) that the only effect of the translation must have been a
contraction of the whole system of electrons and other particles constituting the
charged condenser and the beam and thread of the torsion-balance. Such a contrac-
tion does not give rise to a sensible change of direction.
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It need hardly be said that the present theory is put forward with all due reserve.
Though it seems to me that it can account for all well-established facts, it leads to
some consequences that cannot as yet be put to the test of experiment. One of these is
that the result of Michelson’s experiment must remain negative, if the interfering
rays of light are made to travel through some ponderable transparent body.

Our assumption about the contraction of the electrons cannot in itself be pro-
nounced to be either plausible or inadmissible. What we know about the nature of
electrons is very little and the only means of pushing our way farther will be to test
such hypotheses as I have here made. Of course, there will be difficulties, e.g. as
soon as we come to consider the rotation of electrons. Perhaps we shall have to
suppose that in those phenomena in which, if there is no translation, spherical
electrons rotate about a diameter, the points of the electrons in the moving system
will describe elliptic paths, corresponding, in the manner specified in § 10, to the
circular paths described in the other case.

§ 12 It remains to say some words about molecular motion. We may conceive that
bodies in which this has a sensible influence or even predominates, undergo the same
deformation as the systems of particles of constant relative position of which alone
we have spoken till now. Indeed, in two systems of molecules Σ0 and Σ, the first
without and the second with a translation, we may imagine molecular motions
corresponding to each other in such a way that, if a particle in Σ0 has a certain
position at a definite instant, a particle in Σ occupies at the corresponding instant the
corresponding position. This being assumed, we may use the relation (33) between
the accelerations in all those cases in which the velocity of molecular motion is very
small as compared to w. In these cases the molecular forces may be taken to be
determined by the relative positions, independently of the velocities of molecular
motion. If, finally, we suppose these forces to be limited to such small distances that,
for particles acting on each other, the difference of local times may be neglected, one
of the particles, together with those which lie in its sphere of attraction or repulsion,
will form a system which undergoes the often mentioned deformation. In virtue of
the second hypothesis of § 8 we may therefore apply to the resulting molecular force
acting on a particle, the equation (21). Consequently, the proper relation between the
forces and the accelerations will exist in the two cases, if we suppose that the masses
of all particles are influenced by a translation to the same degree as the electro-
magnetic masses of the electrons.

§ 13 The values (30) which I have found for the longitudinal and transverse
masses of an electron, expressed in terms of its velocity, are not the same as those
that have been formerly obtained by Abraham. The ground for this difference is
solely to be sought in the circumstance that, in his theory, the electrons are treated as
spheres of invariable dimensions. Now, as regards the transverse mass, the results of
Abraham have been confirmed in a most remarkable way by Kaufmann’s measure-
ments of the deflection of radium-rays in electric and magnetic fields. Therefore, if
there is not to be a most serious objection to the theory I have now proposed, it must
be possible to show that those measurements agree with my values nearly as well as
with those of Abraham.
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I shall begin by discussing two of the series of measurements published by
Kaufmann13 in 1902. From each series he has deduced two quantities η and ζ, the
“reduced” electric and magnetic deflections, which are related as follows to the ratio
β ¼ w/c:

β ¼ k1
ζ
η
, ψ βð Þ ¼ η

k2ζ
2 : ð34Þ

Here ψ(β) is such a function, that the transverse mass is given by

m2 ¼ 3
4
∙ e2

6πc2R
ψ βð Þ, ð35Þ

whereas k1 and k2 are constant in each series.
It appears from the second of the formulae (30) that my theory leads likewise to

an equation of the form (35); only Abraham’s function ψ(β) must be replaced by

4
3
k ¼ 4

3
1� β2
� ��1=2

Hence, my theory requires that, if we substitute this value for ψ(β) in (34), these
equations shall, still hold. Of course, in seeking to obtain a good agreement, we shall
be justified in giving to k1 and k2 other values than those of Kaufmann, and in taking
for every measurement a proper value of the velocity w, or of the ratio β. Writing sk1,
3
4 k

0
2 and β0 for the new values, we may put (34) in the form

β0 ¼ sk1
ζ
η

ð36Þ

and

1� β2
� ��1=2 ¼ η

k02ζ
2 : ð37Þ

Kaufmann has tested his equations by choosing for k1 such a value that, calcu-
lating β and k2 by means of (34), he got values for this latter number that remained
constant in each series as well as might be. This constancy was the proof of a
sufficient agreement.

I have followed a similar method, using however some of the numbers calculated
by Kaufmann. I have computed for each measurement the value of the expression

13Kaufmann, Physik. Zeitschr. 4 (1902), p. 55.
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k02 ¼ 1� β 02� �1=2 ψ βð Þk2, ð38Þ

that may be got from (37) combined with the second of the equations (34). The
values of ψ(β) and k2 have been taken from Kaufmann’s tables and for β0 I have
substituted the value he has found for β, multiplied by s, the latter coefficient being
chosen with a view to obtaining a good constancy of (38). The results are contained
in the following tables, corresponding to the tables III and IV in Kaufmann’s paper.

III. s ¼ 0.933

β ψ(β) k2 β0 k02
0.851 2.147 1.721 0.794 2.246
0.766 1.86 1.736 0.715 2.258
0.727 1.78 1.725 0.678 2.256
0.6615 1.66 1.727 0.617 2.256
0.6075 1.595 1.655 0.567 2.175

IV. s ¼ 0.954

β ψ(β) k2 β0 k02
0.963 3.23 8.12 0.919 10.36
0.949 2.86 7.99 0.905 9.70
0.933 2.73 7.46 0.890 9.28
0.883 2.31 8.32 0.842 10.36
0.860 2.193 8.09 0.820 10.15
0.830 2.06 8.13 0.702 10.23
0.801 1.96 8.13 0.764 10.28
0.777 1.89 8.04 0.741 10.20
0.752 1.83 8.02 0.717 10.22
0.732 1.785 7.97 0.698 10.18

The constancy of k02 is seen to come out no less satisfactory than that of k2, the
more so as in each case the value of s has been determined by means of only two
measurements. The coefficient has been so chosen that for these two observations,
which were in Table III the first and the last but one, and in Table IV the first and last,
the values of k02 should be proportional to those of k2.

I shall next consider two series from a later publication by Kaufmann14, which
have been calculated by Runge15 by means of the method of least squares, the
coefficients k1 and k2 having been determined in such a way, that the values of η,
calculated, for each observed ζ, from Kaufmann’s equations (34), agree as closely as
may be with the observed values of η.

14Kaufmann, Gött. Nachr. Math. phys. Kl., 1903, p. 90.
15Runge, ibidem, p. 326.
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I have determined by the same condition, likewise using the method of least
squares, the constants a and b in the formula

η2 ¼ aζ2 þ bζ4,

which may be deduced from my equations (36) and (37). Knowing a and b, I find β
for each measurement by means of the relation

β ¼ ffiffiffi
a

p ζ
η

For two plates on which Kaufmann had measured the electric and magnetic
deflections, the results are as follows, the deflections being given in centimeters.

I have not found time for calculating the other tables in Kaufmann’s paper. As
they begin, like the table for Plate 15, with a rather large negative difference between
the values of η which have been deduced from the observations and calculated by
Runge, we may expect a satisfactory agreement with my formulae.

Plate 15. a ¼ 0.06489, b ¼ 0.3039.

ζ

η β

Observed. Calculated by R. Diff. Calculated by L Diff.

Calculated by

R. L.

0.1495 0.0388 0.0404 �16 0.0400 �12 0.987 0.951
0.199 0.0548 0.0550 �2 0.0552 �4 0.964 0.018
0.2475 0.0716 0.0710 +6 0.0715 +1 0.030 0.881
0.296 0.0806 0.0887 +9 0.0895 +1 0.889 0.842
0.3435 0.1080 0.1081 �1 0.1090 �10 0.847 0.803
0.391 0.1290 0.1297 �7 0.1305 �15 0.804 0.763
0.437 0.1524 0.1527 �3 0.1532 �8 0.763 0.727
0.4825 0.1788 0.1777 +11 0.1777 +11 0.724 0.692
0.5265 0.2033 0.2039 �6 0.2033 0 0.688 0.660

Plate N�. 19. a ¼ 0.05867, b ¼ 0.2591.

ζ

η β

Observed. Calculated by R. Diff. Calculated by L. Diff.

Calculated by

R. L

0.1495 0.0404 0 0388 +16 0.0379 +25 0.990 0.954
0.199 0.0529 0 0527 +2 0 0522 +7 0.969 0.923
0.247 0.0678 0 0675 +3 0.0674 +4 0.939 0.888
0.296 0.0834 0.0842 �8 0.0844 �10 0.902 0.849
0.3435 0.1010 0.1022 �3 0.1026 �7 0.862 0.841
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Plate N�. 19. a ¼ 0.05867, b ¼ 0.2591.

ζ

η β

Observed. Calculated by R. Diff. Calculated by L. Diff.

Calculated by

R. L

0.391 0.1219 0.1222 �3 0.1226 �7 0.822 0.773
0.437 0.1420 0.1434 �5 0.1437 �8 0.782 0.736
0.4825 0.1660 0.4665 �5 0.1664 �4 0.744 0.702
0.5265 0.1916 0.1906 +10 0.1902 +14 0.709 0.671

§ 14. I take this opportunity for mentioning an experiment that has been made by
Trouton16 at the suggestion of Fitz Gerald, and in which it was tried to observe the
existence of a sudden impulse acting on a condenser at the moment of charging or
discharging; for this purpose the condenser was suspended by a torsion-balance,
with its plates parallel to the Earth’s motion. For forming an estimate of the effect
that may be expected, it will suffice to consider a condenser with ether as
dielectricum. Now, if the apparatus is charged, there will be (§ 1) an electromagnetic
momentum

G ¼ 2U
c2

w:

(Terms of the third and higher orders are here neglected). This momentum being
produced at the moment of charging, and disappearing at that of discharging, the
condenser must experience in the first case an impulse �G and in the second an
impulse +G.

However Trouton has not been able to observe these jerks.
I believe it may be shown (though his calculations have led him to a different

conclusion) that the sensibility of the apparatus was far from sufficient for the object
Trouton had in view.

Representing, as before, by U the energy of the charged condenser in the state of
rest, and by U + U0 the energy in the stale of motion, we have by the formulae of this
paper, up to the terms of the second order,

U0 ¼ 2w2

c2
U,

an expression, agreeing in order of magnitude with the value used by Trouton for
estimating the effect.

The intensity of the sudden jerk or impulse will therefore be U0=w.
Now, supposing the apparatus to be initially at rest, we may compare the

deflection α, produced by this impulse, to the deflection α0 which may be given to

16Trouton, Dublin Roy. Soc. Trans. (2) 7 (1902), p. 379 (This paper may also be found in The
scientific writings of Fitz Gerald, edited by Larmor, Dublin and London 1902, p. 557).
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the torsion-balance by means of a constant torque K, acting during half the vibration
time. We may also consider the case in which a swinging motion has already been set
up; then the impulse, applied at the moment in which the apparatus passes through
the position of equilibrium, will alter the amplitude by a certain amount β and a
similar effect β0 may be caused by letting the torque K act during the swing from one
extreme position to the other. Let T be the period of swinging and l the distance from
the condenser to the thread of the torsion-balance. Then it is easily found that

α
α0 ¼

β
β0

¼ πU0l
KTw

: ð39Þ

According to Trouton’s statements U0 amounted to one or two ergs, and the
smallest torque by which a sensible deflection could be produced was estimated at
7.5 CGS-units. If we substitute this value for K and take into account that the
velocity of the Earth’s motion is 3�106 cm/sec., we immediately see that (39)
must have been a very small fraction.

Editor’s Notes
1. [Editor: Perhaps this should be Σ0, not S0.]

280 H. A. Lorentz



Index

A
Aberration, 41, 45, 109–113, 115, 124, 138,

216, 219, 250, 251
Abraham, M., 77, 82, 83, 102, 106, 117, 159,

167–172, 174, 176, 178, 180, 184, 189,
190, 192, 201–203, 205, 215, 248, 270,
275, 276

hypothesis, 43, 46, 74, 77, 120, 124
theory, 118, 125, 159, 167–193, 195, 199

Académie des sciences, 130, 135, 147, 149,
161, 162, 173, 221, 247, 251, 252

Académie Française, 130, 251–253
Acceleration wave, 70, 71, 73, 121–122, 124
Action, 9, 13, 22, 29, 38, 40, 43, 46, 54, 73, 79,

80, 82, 88, 91, 104, 106, 115–117, 123,
127, 128, 152, 153, 163, 171, 187, 197,
200, 202, 221, 261, 269

per unit time, 75, 82, 190
Advocating, 196, 197
Air, ionization of, 149, 151, 152, 157
α rays, 107, 152–154
Anteriority, 8
Astronomical observations, 4, 44, 47, 92, 102,

104, 124, 125
Atomic, 137, 140, 149, 151, 161
Attitude, 198, 203–207, 215, 223

B
Barium, 150, 158
Barthelemy, 148
Becquerel, H., 139, 140, 147–149, 151–159,

161–163, 172, 247, 254
Becquerelstrahlen, see β rays

β rays, 44, 102, 104, 109, 142, 152–160, 168,
170–172, 177, 178, 183, 201

Bibliothèque nationale de France (BnF), 162,
247

Bismuth, 150
Blackbody, 122
Brace, D., 259, 274
Brahe, T., 7, 141
Bucherer, A., 46, 160, 183

C
Calculus of variations, 56, 57
Cartesian coordinates, 205, 207, 227, 228, 234,

235, 237–240
Cathode rays, 104–107, 122, 133–145, 147,

148, 152, 154–156, 159, 167, 203, 254
Channel rays, 107, 109, 134
Chaos, 207, 245, 247, 248
Charge, 22, 38, 52, 57, 59, 70, 102, 104, 106,

107, 109, 117, 123, 133–135, 137, 138,
148, 156, 168–170, 173, 174, 179, 184,
186, 189, 197, 201, 224, 229, 261, 266,
268, 269, 271

Charge density, 42, 48, 49, 173–175, 184–187,
189, 190, 192, 197, 231, 238

Charge-to-mass ratio, 105, 133, 134, 136, 137,
140–142, 144, 145, 155–161, 168,
177–180, 183, 214

Chininfabrik Braunschweig, 151
Clock, 6, 216–218
Comet, 116, 141, 202
Composition of velocities, 185–188
Conservation of angular momentum, 20

© Springer Nature Switzerland AG 2020
B. D Popp, Henri Poincaré: Electrons to Special Relativity,
https://doi.org/10.1007/978-3-030-48039-4

281

https://doi.org/10.1007/978-3-030-48039-4#DOI


Conservation of energy, 6, 30, 32, 35, 125,
199, 215

Conservation of momentum, 13–36, 104,
115–117, 175, 198, 199, 201, 204, 205,
215, 219, 220, 224, 245

Continuity equation, 24, 50, 51, 57–59, 138,
174, 186, 187, 189, 192, 197, 224, 231

Contraction, 41, 43, 45, 46, 73–82, 113, 114,
117, 176, 185, 189, 198, 203, 213, 214,
221, 274

Copernicus, N., 47, 48, 195, 196, 214
Core competence, 157
Corpuscle, 106, 107, 126, 127, 133, 137,

139, 140
Corresponding states, 62, 88, 89, 176, 189, 201,

264, 265, 271–274
Covariant, see Lorentz transformation,

unchanged under
Curie, M., 140, 149–151, 153, 154, 156,

161–163, 247, 254
Curie, P., 140, 149–154, 156, 161–163,

247, 254

D
de Broglie, L., 221, 222
Deflection, 104, 106, 107, 135, 136, 145, 152,

153, 155–158, 179, 275, 278–280
electric, 106, 192, 276, 278
magnetic, 106, 133, 151, 152, 154–157,

192, 276, 278
Deformation, see Lorentz contraction
Dielectric, 22, 24, 25, 27, 29, 108, 138, 157,

167, 260, 261, 279
Dynamical systems, 245, 248

E
Earth, 4, 6, 7, 10, 30, 31, 41, 43, 45, 109,

111–115, 125–129, 138, 173, 176, 178,
196, 198, 213, 214, 216, 218, 249, 250,
259–261, 271, 274, 279, 280

Electric
field, 32, 51, 53, 69–71, 82, 101, 102, 104,

106, 119, 123, 135, 136, 156–159, 170,
171, 178, 179, 190, 197, 198, 200, 205,
229–231, 233, 238, 241, 275

Electric and magnetic field energy, 170
Electrodynamics, 36, 111, 137, 140, 167, 168,

170, 173, 192, 196–199, 203, 211, 216,
217, 221, 238, 245, 251

equations of, 42, 168, 173–175, 184,
187, 192, 197, 205, 212, 213, 221,
231–234, 240

Electromagnet, 155
Electromagnetic world view, 189, 192
Electrometer, 151, 157
Electron

charge-to-mass ratio, 136, 141, 142, 145,
158, 160, 161, 168, 178, 180

mass, 90, 144, 179, 180, 192, 193, 214
positive, 108, 109, 117, 119, 123
relativistic, 159, 192
shape, 43, 46, 172, 189–192, 215, 224,

269, 275
size, 74, 75, 168, 169, 176, 269
stability, 187, 189–192, 207
undeformable, 46, 74, 117, 118, 124, 172,

176, 189–192, 202
Electroscope, 135, 149, 152, 161

gold-leaf, 148, 151
Ellipsoid, 42, 46, 49, 74, 77, 80, 81, 88, 93, 113,

114, 117, 176, 184, 185, 269
Energy content, 202, 204, 219
Ether, 30, 41, 45, 47, 74, 104, 105, 108, 109,

111–113, 115, 117, 119, 121–123, 127,
128, 134, 135, 137, 139, 140, 167, 168,
172, 173, 175–178, 184, 192, 195, 198,
199, 201, 203–207, 211, 215, 216, 218,
219, 222, 223, 245, 249–251, 259–261,
273, 279

F
Falsifiable, 201, 204
Fitz Gerald, G., 45, 113, 115, 117, 140, 213,

259, 279
Fluorescent, 147, 148
Force

electromagnetic origin, 14, 21, 38, 42, 43,
46, 53, 57, 90, 91, 103, 118, 169, 172,
189, 192, 196, 202, 213, 228, 255, 261

Four-vector, 186, 187, 189, 190, 197, 201, 224
French, 233, 243–255
Fresnel, A.-J., 27, 45, 112, 250–252

G
Galilean transformation, 185
γ rays, 154
German, 168, 232, 236, 248, 254, 255
Giesel, F., 151–153, 163, 248

282 Index



Gouy, G., 162
Gravitation, 10, 43, 44, 47, 90–102, 118,

122–124, 126, 141, 184, 188, 189, 196,
202, 203, 211, 213, 215

retarded potential, 203
wave, 43, 100, 203

Group, 36, 39, 42, 43, 46, 64–67, 88, 93, 94,
177, 186, 188, 189, 193, 199, 200, 252

H
Hamilton, W., 238
Heaviside, O., 138, 167, 207, 227, 232–234,

236–238, 241
Hertz, H., 71, 104, 122, 135, 136, 138, 233,

236, 237
emitter, 116, 122
exciter, 20, 21, 31
theory, 21, 22, 26–28, 111, 112, 116, 117,

237
Holton, G., 222, 223
Hydrogen ion, 105, 136, 144, 145, 202

I
Index of refraction, 23, 27
Inertial mass, 169, 213, 219, 220
Invariant, 58, 93–95, 97–100, 113, 187–189,

193, 200, 212, 215, 221, 224

J
Joachimsthal, 150
Johanngeorgenstadt, 150

K
Kanalstrahlen, see Channel rays
Kaufmann, W., 43, 44, 46, 102, 106, 118, 119,

129, 134, 139, 140, 142–145, 155, 158,
159, 168, 170–172, 177–183, 192, 201,
205, 213, 214, 248, 275–278

Kepler, J., 47, 111, 125, 141, 196
Koan, 195, 196, 208

L
Lagrangian, 172, 187, 190–192, 197, 200, 207
Langevin, P., 38, 42, 46, 67, 70, 73, 77, 78, 80,

121, 176, 189, 190, 196–199, 212, 215,
221, 237

hypothesis, 40, 43, 76, 77, 79–81

waves, 67–73
Laplace, P.-S., 43, 44, 47, 96, 124, 126, 129,

252
Laws, 6, 9, 11, 17, 20, 26, 30, 31, 36, 41, 43, 45,

47, 73, 80, 91, 92, 96–99, 102, 104–106,
108, 109, 111, 114, 115, 117, 118, 121,
123–126, 128, 141, 168, 191, 196, 198,
203, 204, 213, 215, 219, 221, 223, 243,
244

Leakage current, 149, 151–153, 161
LeSage, G.-L., 126–128
Lie group, 65
Liénard, A.-M., 36, 38, 42
Longomontanus, 141
Lorentz contraction, 45, 48, 117, 191, 203, 214
Lorentz group, 64–67, 91, 93, 99, 188, 215
Lorentz, H.A.

hypothesis, 41, 43, 45, 46, 51, 74, 77, 78,
81, 83, 85, 88, 90, 91, 113, 115, 117,
120, 124, 187, 193, 199

Poincaré divergence from, 37, 44, 174, 185,
189, 205

theory, 13–36, 46, 48, 107, 115, 116, 124,
125, 167, 168, 177, 180, 192, 195–197,
206, 215

Lorentz transformation, 43, 44, 46, 48–53, 61,
64, 70, 71, 73, 74, 84–86, 89, 91, 92,
94–96, 99, 159, 173, 176, 180, 184–188,
190, 192, 197, 200, 202–205, 212–214,
218, 221, 224

unchanged under, 49, 53, 175, 187, 189,
193, 196, 198, 200, 203, 205

M
Magnetic field, 29, 32, 51, 53, 69, 70, 82, 101,

102, 104, 106, 118, 119, 123, 128, 138,
141, 149, 152–156, 158–160, 170, 171,
174, 178, 179, 183, 190, 197, 200, 205,
229, 230, 233, 238, 241, 275

Mars, 141
Mass

electromagnetic, 40, 73, 82, 106, 109, 118,
169–171, 176, 184, 192, 202, 213,
271, 275

gravitational, 91, 116, 202, 213
inertial, 106, 122, 169, 213, 219, 220
relativistic, 159, 192
rest, 90, 159, 160, 178–180, 191, 192

Mass-to-charge ratio, 104, 133, 134, 136, 137,
140–142, 144, 145, 155–159, 161, 168,
177–180, 183, 214

Index 283



Maxwell, J.C., 16, 19–21, 23, 26, 116, 138,
167, 212, 213, 217, 221, 227, 231, 233,
234, 236, 237, 239, 240

theory, 16, 19, 21, 27, 167, 212, 213, 217,
221, 227, 231, 233, 234, 237, 239, 241

Mercury, 104, 119, 125, 203
perihelion, 125, 203

Methodology, 144, 159
Michelson, A., 41, 45, 112, 113, 115, 138, 168,

173, 198, 213, 214, 250, 259, 261, 269,
274

Michelson-Morley experiment, 140, 168, 173,
198

Miller, A., 175, 199, 223
Momentum transfer, 202
Mossotti, 26
Motion

absolute, 30–32, 41, 43, 45, 48, 82, 88, 90,
91, 104, 112, 120, 172, 192, 193, 195,
197–199, 203, 213, 215, 216, 219, 228,
231, 249–251

arbitrary, 88–90, 108, 115
perpetual, 29, 199
quasi-stationary, 82–88, 122, 124, 187, 274
relative, 30–32, 36, 104, 120, 203, 216, 217

N
New dynamics, 119, 125, 128, 221
Newton, I., 6, 9, 10, 20, 43, 47, 92, 96–99, 102,

103, 122, 124, 126, 141, 203, 213, 215
law of gravitation, 10, 91, 122, 203, 213,

215
Nobel Prize, 133, 134, 142, 160, 162
Noble, H., 260, 274

O
Ordinary mechanics, 18, 20, 121, 126, 129
Oudin, P., 147

P
Palermo paper, 211, 212
Particles, 29, 104, 116, 133–137, 140, 141, 145,

147, 156–158, 168, 170, 186, 197, 200,
202, 203, 213, 254, 261, 266, 267, 269,
271–275

Pasteur, L., 252
Patent examiner, 206, 216, 217, 220, 243
Patent office, 216, 244
Patents, 206, 216, 217, 220, 243, 244
Pellat, H., 135

Perihelion of mercury, 125
Perrin, J., 134–136, 139, 142, 147, 148, 247,

254
Phosphorescence, 147
Phosphor screen, 158
Photographic plates, 140, 147, 148, 152, 155,

156, 158, 161, 178, 179
Pitchblende, 150, 161
Poincaré, H., 39–41, 44, 45, 134, 138–140, 147,

161, 167–193, 195–208, 211–224,
227–234, 237–241, 243–254, 261

divergence from Lorentz, 50, 174, 189
stress, 46, 81, 88–90, 172, 177, 187,

189–193, 200, 203, 207, 213, 221
Polonium, 140, 150–153, 161
Ponderomotive forces, 14, 16, 22, 24, 25
Postulate, 5, 6, 10, 41, 45–47, 102, 103, 198,

199, 202–204, 206, 213–219, 221
Poynting’s laws, 17, 26
Poynting vector, 17, 190, 219
Predictions, 10, 141, 195, 198, 201–207, 223

missed, 204, 207
Principe de réaction, see Conservation of

momentum
Principle, 5, 6, 10, 20, 28–30, 32, 35, 36,

38, 43, 46, 54–64, 79, 88, 103, 105, 109,
112, 115, 117–122, 124, 128, 172,
198, 199, 201, 203, 205, 216, 218,
222, 241

Principle of contradiction, 5
Principle of least action, 43, 46, 54, 61, 64, 79,

88, 200
Principle of relative motion, 30, 36, 104
Principle of sufficient reason, 5, 10
Priority, 140, 142–145, 208, 211, 213, 217,

220, 244
Proton, 144, 202
Ptolemaic system, 47, 48, 195, 196, 214

Q
Quadratic form, 66, 93, 188, 200
Quaternions, 227, 235, 238

R
Radiation pressure, 16, 116, 127, 128, 202
Radiometer, 116
Radium, 103–107, 121, 140, 150–157, 161,

163, 178, 275
Rayleigh, W., 259, 274
Reference frame, 139, 175, 184, 186, 200, 212,

213, 215, 217, 218, 224

284 Index



Relativity postulate, 30–32, 41, 43, 45–48,
82, 88, 90, 91, 102, 104, 112, 120, 172,
192, 193, 195, 197–199, 202, 203,
206, 213–216, 218, 219, 228, 231,
249–251

Relativity, principle of, 112–115,
117–118, 120, 122, 124, 128, 216,
218, 222

Rest, 9, 31, 35, 36, 88, 92, 96, 97, 103,
111–113, 117, 123, 127, 159, 160, 173,
175, 178–180, 187, 190–192, 199,
201, 216, 219, 265, 268, 269, 271, 273,
274, 279

absolute, 96, 97, 111, 173, 175, 199,
216, 219

Rod, 29, 217
Röntgen, W., 122, 128, 133, 135, 137, 139,

144, 147, 148, 254
Rutherford, E., 151, 152, 154, 155, 247

S
Scalar potential, 48, 51, 174, 229, 231, 232,

263, 266
Silver bromide, 148
Simultaneity, 7, 10, 11, 186, 217, 218, 224
Simultaneous, 3, 5, 7–9, 11, 116, 217,

218, 222
Sklowdowska, M., 153
Solar system model of atom, 196
Speed of light, 10, 20, 27, 31, 43, 44, 47, 48, 99,

100, 102, 104, 107, 110–112, 114, 120,
121, 124, 138, 179, 183, 186, 201, 203,
212, 214, 217, 218

constant, 218
gravitational wave, 196

Stoney, G.J., 140
Stopping power, 151, 152, 154
Subatomic, 134, 137, 140, 213
Sun, 9, 108, 110, 111, 116, 126–128, 196,

202, 214

T
Thomson, J.J., 105, 133–140, 142, 144, 145,

152, 155, 158, 161, 203
Thorium, 149–152, 161
Time

local, 31, 33, 36, 112–114, 121, 175, 178,
205, 221, 224, 263, 265–267, 271,
274, 275

psychological, 3, 4, 8
real, 31, 114, 121

Tisserand, F., 125
Torque, 260, 280
Translator, 40, 44, 102, 244, 249, 280
Trouton, F., 178, 260, 274, 279, 280

U
Unchanged under Lorentz transformation, 187,

189, 190, 192, 196, 198, 200, 201, 203,
205, 213

Units
c¼1, 37, 48, 215, 228–230
cgs, 183
system of, 48, 228, 230

Uranium, 139, 140, 142, 148–154, 156,
161, 247

V
Vector potential, 48, 228–230, 237–239, 241,

263, 268
Velocity wave, 70, 73, 121
Verifiable, 201, 204
Villard, P., 154
Voltage difference, 144, 157

W
Watch, 31, 112, 113, 175, 217, 218, 251

setting, 31, 112, 175
synchronizing, 217, 218

Weber, H., 125
Wiechert, E., 105, 143, 144

X
X-rays, 128, 133, 137, 139, 144, 147, 148, 151,

153, 154, 157, 161, 163, 254

Z
Zeeman effect, 108, 140, 149, 160, 161
Zeeman, P., 108, 140, 149, 160

Index 285


	Preface
	Experiments on Electrons
	Theory of Electrons
	And More
	Advice for Readers
	Other Translations

	Acknowledgments
	Contents
	Part I: Translation of Selected Papers
	Chapter 1: The Measurement of Time
	Chapter 2: Lorentz´s Theory and the Conservation of Momentum
	Part 1
	Part 2
	Part 3

	Chapter 3: Three Letters to H. A. Lorentz
	First Letter
	Second Letter
	Third Letter

	Chapter 4: Electricity - On the Dynamics of the Electron
	Chapter 5: On the Dynamics of the Electron
	Introduction
	§1 - Lorentz Transformation
	§2 - Principle of Least Action
	§3 - Lorentz Transformation and the Principle of Least Action
	§4 - The Lorentz Group
	§5 - Langevin Waves
	§6 - Contraction of Electrons
	§7 - Quasi-Stationary Motion
	§8 - Arbitrary Motion
	§9 - Hypotheses on Gravitation

	Chapter 6: Dynamics of the Electron
	I. Introduction
	II. Longitudinal and Transverse Mass
	III. Channel Rays
	IV. Lorentz´s Theory
	V. Mechanical Consequences
	VI. Aberration
	VII. The Principle of Relativity
	VIII. The Conservation of Momentum
	IX. Consequences the Principle of Relativity
	X. Kaufmann´s Experiment
	XI. The Principle of Inertia
	XII. Acceleration Wave
	XIII. Gravitation
	XIV.Comparison with Astronomical Observations
	XV. The Theory of Lesage
	XVI. Conclusions


	Part II: Discussion
	Chapter 7: Discovery of the Electron: Cathode Rays
	J. J. Thomson
	Jean Perrin
	Cathode Rays
	Ether
	J. J. Thomson´s Motivation
	Naming the Electron
	Meaning of Discovery
	Priority
	References

	Chapter 8: Discovery of the Electron: Radioactivity
	Wilhelm Röntgen and X-Rays
	Henri Becquerel and Radiation from Uranium
	Marie and Pierre Curie and Other Natural Sources of Radiation
	Separating the Radiation by Stopping Power and Magnetic Deflection
	Paul Villard and γ Rays
	What Are β Rays?
	Digressions
	Zeeman Effect
	Henri Becquerel, and Pierre and Marie Curie
	Health Effects

	References

	Chapter 9: Contributions of Abraham, Lorentz and Poincaré to Classical Theory of Electrons
	Introduction
	Max Abraham
	Hendrik Lorentz
	Reanalyzing Kaufmann´s Data
	Henri Poincaré
	Transformation of Charge Density-First Divergence
	Unchanged under Lorentz Transformation (Covariant)
	Transformations as Group with Invariants-Third Divergence
	Electron Stability: Poincaré Stress-Second Divergence

	Synopsis
	References

	Chapter 10: Poincaré as a Physicist
	Introduction
	A Koan
	Advocating for Others
	Underlying Principles
	Methods
	Predictions
	Attitude
	Conclusion
	References

	Chapter 11: Einstein, Poincaré and the Origins of Special Relativity
	Introduction
	Poincaré on What He Was Trying to Do
	Einstein on What He Was Trying to Do
	The Start of the Dispute: Edmund Whittaker
	Contemporary Reactions from Physicists
	Gerald Holton´s Response to Edmund Whittaker
	Conclusion
	References

	Chapter 12: Adoption of Vector Notation for Classical Electrodynamics
	Considerations
	Poincaré´s Notation
	Lorentz´s Notation
	Understanding J. C. Maxwell
	J. W. Gibbs
	O. Heaviside
	A. Föppl
	H. Hertz
	J. Larmor
	P. Langevin
	H. Poincaré: Électricité et optique
	First Edition
	Second Edition

	Poincaré´s Notation, Again
	References

	Chapter 13: Translation, Language and Culture
	My Practice of Translation
	Availability of Sources
	Language Biases
	French Historical Present Tense
	The Académie Française
	La Belle Époque
	References


	Part III: Supplement, H. A. Lorentz
	Chapter 14: Electromagnetic Phenomena in a System Moving with Any Velocity Smaller than That of Light

	Index

