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Abstract. An adaptive multivariate process modelling approach is developed
to improve the accuracy of traditional canonical variate analysis (CVA) in
predicting the performance of industrial rotating machines under faulty oper-
ating conditions. An adaptive forgetting factor is adopted to update the
covariance and cross-covariance matrices of past and future measurements. The
forgetting factor is adjusted according to the Euclidean norm of the residual
between the predicted model outputs and the actual measurements. The
approach was evaluated using condition monitoring data obtained from an
operational industrial gas compressor. The results show that the proposed
method can be effectively used to predict the performance of industrial rotating
machines under faulty operating conditions.

1 Introduction

Multivariate statistical techniques such as principal component analysis (PCA) (Harrou
et al. 2013), partial least squares (PLS) (Yacoub and Macgregor 2004) and canonical
variate analysis (CVA) (Ruiz-Cárcel et al. 2016) have been widely applied for the
detection of abnormalities in large industrial systems. Multivariate subspace identifi-
cation models based on PCA, PLS or CVA have attracted attention over the past
decades because they can be utilized for process monitoring, modelling and system
identification. The authors of (Juricek et al. 2005) demonstrated that system-
identification models based on CVA outperform modelling models based on regres-
sion methods such as PLS. The authors of (Ruiz-Cárcel et al. 2015) demonstrated that
monitoring methods based on CVA are more suitable for systems working under
changing operating conditions compared to models based on PCA and PLS. The
literature provides examples of extensive application of CVA for industrial process
modelling and health monitoring. Li et al. (2018) developed a prediction method based
on CVA and support vector machine for modelling of industrial reciprocating com-
pressors. The authors of (Larimore et al. 1993) proposed a state-space method using
canonical variable states for modelling linear and nonlinear time series. Negiz and
Cinar (1997) used a CVA-based subspace-identification approach to describe a high-
temperature short-time milk-pasteurization process. CVA was utilized in (Li et al.
2018) to predict performance deterioration and estimate the behaviour of a system
under faulty operating conditions. The authors illustrated the performance of the
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proposed method in a large-scale 3-phase flow facility. Conventional multivariate
subspace-identification approaches based on PCA or PLS are based on the assumption
that the process variables are linearly correlated and are independent and identically
distributed (IID) (Choi et al. 2006). The requirement that process variables be IID and
linear tends to limit the scope of many subspace-identification methods to linear pro-
cesses operating under steady state conditions. Occasionally, problems associated with
the effectiveness of the modelling tools can arise when the underlying assumptions are
violated; for instance, the presence of nonlinear distortions, time-dependency, system
dynamics and varying operating conditions. Therefore, it is necessary to develop
adaptive subspace-identification approaches for systems in which variations in the
mode of operation and changes in the system dynamics are common. A number of
recursive monitoring methods have been proposed to address these limitations. An
extension to the modelling approaches based on the conventional PCA method was
proposed by Lane et al. in (2003). The authors illustrated the performance of the
proposed recursive PCA model in a polymer film-manufacturing process. Choi et al.
(Choi et al. 2006) developed an adaptive multivariate statistical process monitoring
(MSPC) for the monitoring of dynamic processes where variations in operating con-
ditions are incurred. The authors of (Lee and Lee 2008) proposed a recursive state-
space model based on CVA. In that study, the norm of the difference between con-
secutive measurements was used to adjust forgetting factors, and the calculation of the
optimal values of the minimum and maximum forgetting factors was not detailed.

In this paper, we develop an adaptive monitoring tool based on CVA for the
modelling of time-varying processes. We explore the ability of adaptive CVA to
predict the behaviour of industrial rotating machines under slowly evolving faulty
conditions. To obtain an accurate estimate of system outputs, forgetting factors cal-
culated based on the residual between the model outputs and actual measurements are
adopted to update the covariance and cross-covariance matrices of the system. The
proposed method is validated on industrial data captured from an operational gas
compressor.

2 Methodology

Given system input time-series ut and output time-series yt, a linear state-space model
can be built as follows (Qin 2006):

xtþ 1 ¼ Bxt þCut þKet ð1Þ

yt ¼ Dxt þEut þ et ð2Þ

where ut, yt and xt are system inputs, system outputs and state vectors; B;C;D;E and K
are model coefficient matrices; and et is zero-mean and normally distributed inde-
pendent white noise.

The objective of CVA is to maximize the correlation of two sets of variables
(Russell et al. 2000). To generate two data matrices from the measurements, the
measurement vector is expanded at each sampling time by including a, the number of
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previous samples, and b, the number of future samples, to construct the past and future

sample vectors za;t 2 R ny þ nuð Þ�a and ub;t 2 Rnu�b(ny and nu are the number of output
variables and input variables).

za;t ¼

yt�1

ut�1

yt�2
ut�2

..

.

yt�a

ut�a

2
66666664

3
77777775
2 R ny þ nuð Þ�a ð3Þ

ub;t ¼
ut

utþ 1

..

.

utþ b�1

2
6664

3
7775 2 Rnu�b ð4Þ

The observations can be expanded at each sampling time t by including aþ 1

observations to form the extended past vectors zaþ 1;t 2 R ny þ nuð Þ� aþ 1ð Þ:

zaþ 1;t ¼

yt�1

ut�1

yt�2
ut�2

..

.

yt�a�1

ut�a�1

2
66666664

3
77777775
2 R ny þ nuð Þ� aþ 1ð Þ ð5Þ

To avoid the domination of variables with large absolute values, the past and future
sample vectors are normalized to the zero-mean vectors ẑa;t and ûb;t. Then, the vectors
ẑa;t and ûb;t at different sampling times are rearranged to produce the reshaped matrices

Ẑa and bUb:

Ẑa ¼ ẑa;tþ 1; ẑa;tþ 2; . . .; ẑa;tþN
� � 2 R ny þ nuð Þa�N ð6Þ

bUb ¼ ẑb;tþ 1; ẑb;tþ 2; . . .; ẑb;tþN
� � 2 Rnua�N ð7Þ

where N ¼ l� a� bþ 1, and l represents the total number of samples for measure-
ments yt. Cholesky decomposition is then applied to the past and future matrices Ẑa andbUb to configure a Hankel matrix H. To find the linear combination that maximizes the
correlation of the two sets of variables, the truncated Hankel matrix H is decomposed
using singular value decomposition (SVD):
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H ¼ R�1=2
b;b Rb;aR

�1=2
a;a ¼ URVT ð8Þ

where Ra;a and Rb;b are the sample covariance matrices and Rb;a denotes the cross-

covariance matrix of Ẑa and bUb. Ra;a, Rb;b and Rb;a are calculated as follows (Odiowei
and Yi 2010):

Ra;a ¼ ẐaẐ
T
a = N � 1ð Þ ð9Þ

Rb;b ¼ bUb bUT
b = N � 1ð Þ ð10Þ

Rb;a ¼ bUbẐ
T
a = N � 1ð Þ ð11Þ

U, V and
P

have the following form:

U ¼ u1; u2; . . .; ur½ � 2 Rnua�nua

V ¼ v1; v2; . . .; vr½ � 2 R ny þ nuð Þa� ny þ nuð Þa

R ¼
d1 � � � 0
..
. . .

. ..
.

0 � � � dr

2
64

3
75 2 Rnua� ny þ nuð Þa

The columns of U ¼ u1; u2; . . .; ur½ � and the columns of V ¼ v1; v2; . . .; vr½ � are
called the left-singular and right-singular vectors of H. R is a diagonal matrix, and its
diagonal elements are called singular values and depict the degree of correlation
between the corresponding left-singular and right-singular vectors. The right-singular
vectors in V corresponding to the largest q singular values are retained in the truncated

matrix Vq ¼ v1; v2; . . .; vq
� � 2 R ny þ nuð Þa�q. This matrix is used later to perform

dimension reduction on the measured data.

With the truncated matrix Vq, the ny þ nu
� �

dimensional past vector Ẑa 2
R ny þ nuð Þa�N is further converted into a reduced q-dimensional matrix U 2 Rq�N (the
columns of U are zt, which are called canonical state variates) by the following:

U ¼ zt¼1; zt¼2; . . .; zt¼N½ � ¼ K � Ẑa ¼ VT
q R

�1=2
a;a � Ẑa ð12Þ

where K ¼ VT
q R

�1=2
a;a 2 Rq� ny þ nuð Þa is the projection matrix that maps the past

observations into the canonical variate space. In this investigation, the number of q is
determined in the same way as the traditional CVA model. According to the literature
(Odiowei and Yi 2010), if the number of retained states q is no less than the actual
order of the system, we can substitute the state variates xt with the canonical state
variates zt. Therefore, the state variables are defined as a linear combination of the past
measurement vector Ẑa (Lee and Lee 2008):
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x̂tþ 1 ¼ K 0½ �zaþ 1;t ð13Þ
x̂t ¼ 0 K½ �zaþ 1;t ð14Þ

where 0 2 Rq� ny þ nuð Þ with all zero entries. According to the literature (Shang et al.
2015), after the estimates of the state variates are calculated, the matrices B;C;D;E and
K are calculated from the measurements through linear least-squares regression as
follows:

D E½ � ¼ Y :;1:N�a�1ð Þ
X̂ :;1:N�a�1ð Þ
U :;1:N�a�1ð Þ

� �þ
ð15Þ

B C K½ � ¼ X̂ :;2:N�að Þ
X̂ :;1:N�a�1ð Þ
U :;1:N�a�1ð Þ
Ê :;1:N�a�1ð Þ

2
4

3
5

þ

ð16Þ

where Ê ¼ Y � DX̂ � EU.
Due to non-stationary process behaviour, many industrial processes have time-

varying characteristics that may cause rapid changes in state variates over time. The
sample covariance matrices Ra;a and Rb;b and the cross-covariance matrix Ra;b change
according to the change in operating conditions. Constant covariance and cross-
covariance matrices may not be able be fully capture the system dynamics. Therefore,
the exponential weighted moving-average method is employed in this investigation to
update the matrices Ra;a, Rb;b and Rb;a:

Ra;a tð Þ ¼ 1� bð Þza;tzTa;t þ bRa;a t�1ð Þ ð17Þ

Rb;b tð Þ ¼ 1� bð Þub;tuTb;t þ bRb;b t�1ð Þ ð18Þ

Rb;a tð Þ ¼ 1� bð Þub;tzTa;t þ bRb;a t�1ð Þ ð19Þ

where b is the forgetting factor, which is calculated according to the Euclidean norm of
the residual between the predicted model outputs and actual measurements. The initial
values of Ra;a tð Þ, Rb;b tð Þ and Rb;a tð Þ are determined by the traditional CVA model.
Tracking time-varying parameters is an important problem in subspace modelling.
A constant forgetting factor is not suitable for tracking time-varying parameters and
therefore cannot fully reflect the dynamics of a process under nonstationary conditions
(Leung and So 2005). Therefore, the forgetting factor must be changed according to the
rate of process change to yield satisfactory predictive results in time-varying envi-
ronments. In this investigation, the forgetting factor is adjusted based on the Euclidean
norm of the residual between the predicted model outputs and the actual measurements
as adopted in (Shang et al. 2015). When the forgetting factor is small, it gives more
weight to present observations to reduce the impact of past observations on the current
model. As the value of the forgetting factor approaches unity, it gives more weight to
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past measurements, thereby permitting long-term memory of the model. The forgetting
factor used in this study is calculated as follows:

bt ¼ Ae� ket�1kð Þ=r1 ð20Þ

where A is a constant. The empirical parameter selection procedure proposed by (Choi
et al. 2006; Shang et al. 2015) is adopted in this study to determine the value of A.
Typically, a value between 0.999 and 0.9 is selected. k et�1 k denotes the Euclidean
norm of the residual of the actual measurements and model outputs. The tuning
parameter r1 controls the sensitivity of the model to prediction errors. The larger r1 is,
the less sensitive the model is to prediction error. The value of the forgetting factor bt is
adjusted at every time instance when new measurements are available.

After the forgetting factor is determined, weighted recursive least squares (WRLS)
with adaptive forgetting factor (Leung and So 2005; Turksoy et al. 2014) can be used to
update model coefficient matrices B;C;D;E and K. The system described by Eqs. 1
and 2 is rewritten as follows:

yt ¼ Hy
t ;t þ et ð21Þ

x̂tþ 1 ¼ Hx
tWt ð22Þ

whereHy
t ¼ Dt Et½ �, ;t ¼ x̂Tt uTt

� �T ,Hx
t ¼ Bt Ct Kt½ �,Wt ¼ x̂Tt uTt eTt

� �T .
Hy

t can be calculated by using the recursive least squares (RLS) (Turksoy et al. 2013):

Hy
t ¼ Hy

t�1 þ yt �Hy
t�1;t

� �;Tt Pt ð23Þ

Pt ¼ 1=b Pt�1 � Pt�1;t;Tt Pt�1

bþ;Tt Pt�1;t

� 	
ð24Þ

The innovation noise sequence is defined as:

et ¼ yt �Hy
t ;t ð25Þ

Similarly, Hx
t is calculated as follows:

Hx
t ¼ Hx

t�1 þ x̂tþ 1 �Hx
t�1Wt

� �
WT

t Qt ð26Þ

Qt ¼ 1=b Qt�1 � Qt�1WtW
T
t Qt�1

bþWT
t Qt�1Wt

� 	
ð27Þ

The procedures for subspace identification and performance estimation using the
model described above are summarized as follows:
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Step 1: Calculate model coefficient matrices using the traditional CVA model.
Step 2: Calculate the forgetting factor bt as per Eq. 20.
Step 3: Compute the updated covariance and cross-covariance matrices Ra;a tð Þ, Rb;b tð Þ

and Rb;a tð Þ according to Eqs. 17–19.
Step 4: Update the Hankel matrix H as per Eq. 8.
Step 5: Estimate the state vectors x̂tþ 1 and x̂t as per Eqs. 13–14.
Step 6: Update the model coefficient matrices via Eqs. 23–27.
Step 7: Estimate the model outputs yt according to Eqs. 1–2.
Step 8: Update the forgetting factor bt based on the residual between the estimated

outputs and actual measurements.
Step 9: Repeat step 1 – step 8 iteratively.

3 Case Study

Rotating machines that operate at high speed and under high pressure are subject to
performance degradation and failures. If a fault occurs and the fault evolution is slow,
the machine operator may choose to keep the machine running until repair facilities and
spare parts are available at the plant. In such a case, the proposed adaptive ACVA
model can be used to estimate how the system will behave under faulty operating
conditions given future system inputs. In this subsection, the proposed method is
applied to an operational industrial centrifugal compressor to predict the performance
of the machine during bearing degradation.

The measured time series from compressor A consisted of 368 observations and 13
variables. For this study, all data were captured at a sampling rate of one sample per
hour. Table 1 summarizes all measured variables for this compressor. As shown in
Fig. 1, the compressor is operated under healthy conditions during the first 320 sam-
ples. The readings of the four different bearing-temperature sensors start to rise at
around the 321th sampling point; the machine continued to run until the 368th sam-
pling point. At that time, site engineers shut down the compressor for inspection and
maintenance. To compare the performance of the developed ACVA approach with that
of the traditional CVA model, the first 240 sampling points of the monitored time series
were utilized to build an offline CVA model. Then the constructed CVA model was fed
with the speed set points used throughout the degradation process to estimate how the
system was affected by the fault. On the other hand, the developed adaptive CVA
approach was employed to update the constructed model iteratively according to steps
2–8 described in Sect. 2. The predicted outputs obtained from the adaptive CVA model
were compared with those obtained from the traditional CVA model to evaluate the
performance of the proposed adaptive monitoring method.
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In order to determine the optimal number of retained states q, the trained offline
CVA model was first utilized to predict system outputs for the data captured during the
early stages of degradation. The predicted outputs are compared with the actual
measurements and the mean absolute error (MAE) of all output variables are plotted
against different values of retained state in Fig. 2. It can be observed from the figure
that q ¼ 1 gives the lowest prediction error; therefore, q was finally set to 1 to obtain
the optimal model that gives the highest predictive accuracy. The value of A was set to
0.97 according to the empirical parameter-selection procedure proposed by (Choi et al.,
2006; Shang et al. 2015). The value of the forgetting factor bt can be updated at each
time instance based on the difference between the predicted system outputs and the
actual measurements. The value of bt decreases to achieve faster identification with
short memory when the residual of the system outputs is larger. When the residual is
small, using more information about the past improves the prediction accuracy of the
model. The tuning parameter r1 was set to 3.5 in this study, which is the minimum
value that can ensure the convergence of the model while maximizing the sensitivity of
the model to prediction errors.

Fig. 1. Trend of four different bearing temperature sensor measurements of compressor A.

Table 1. Measured variables of compressor A

ID Variable name ID Variable name ID Variable name

1 Speed 6 Radial vibration
overall X 1

11 Radial bearing
temperature 2

2 Suction pressure 7 Radial vibration
overall Y 1

12 Active thrust bearing
temperature

3 Discharge
pressure

8 Radial bearing
temperature 1

13 Inactive thrust bearing
temperature

4 Discharge
temperature

9 Radial vibration
overall X 2

5 Actual flow 10 Radial vibration
overall Y 2
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Figures 3, 4, 5 and 6 show the forecasted outputs of adaptive CVA and CVA
model. The adaptive CVA model can track changes in bearing temperature measure-
ments more accurately than the traditional CVA method. Table 2 summarises the mean
absolute percentage error (MAPE) of the developed ACVA model and conventional
CVA model. These results imply that the proposed method takes advantage of recur-
sive state-space modelling to reveal the correlation between system input and output
signals, thereby increasing the sensitivity of the adaptive CVA to bearing degradation
compared to traditional CVA models.

Fig. 2. MAE for all output variables for different values of retained state q

Fig. 3. Radial bearing temperature 1 under faulty operating conditions predicted by adaptive
CVA and the CVA model

Fig. 4. Radial bearing temperature 2 under faulty operating conditions predicted by adaptive
CVA and the CVA model
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4 Conclusion

This paper proposes an adaptive CVA modelling tool to improve the predictive ac-
curacy of traditional CVA methods. A variable forgetting factor was adopted to update
the model coefficient matrices and covariance and cross-covariance matrices according
to the residuals of the model outputs. The proposed model tracks rapid changes in
system outputs due to the use of the adaptive forgetting factor. Condition-monitoring
data captured from an operational industrial compressor were used to test the validity of
the proposed method. The predicted outputs generated by adaptive CVA highly
coincide with the actual measurements. The proposed method takes advantage of
recursive state-space modelling to enhance the CVA prognostic performance and
increase its sensitivity to bearing deterioration. This method can be used to provide site
engineers with more reliable and robust performance estimates of systems operating

Fig. 5. Active thrust bearing temperature under faulty operating conditions predicted by
adaptive CVA and the CVA model

Fig. 6. Inactive thrust bearing temperature under faulty operating conditions predicted by
adaptive CVA and the CVA model

Table 2. Mean absolute percentage error (100%) for different output variables

MAPE y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12
CVA 1.5 0.2 4.8 3.7 11.7 18.9 1.2 7.3 3.5 0.2 1.7
ACVA 0.1 0 1 0.1 0.03 0.9 0.7 0.1 0.2 0.1 0.2
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under varying and abnormal conditions. The information provided by the proposed
method can be used to forecast the impact of a fault on the operational process and to
develop appropriate production plans and optimal maintenance strategies, thereby
making plant operations more safe, productive and profitable.

References

Choi, S.W., Martin, E.B., Morris, A.J., Lee, I.: Adaptive multivariate statistical process control
for monitoring time-varying processes. Ind. Eng. Chem. Res. 45(9), 3108–3118 (2006)

Harrou, F., Nounou, M.N., Nounou, H.N., Madakyaru, M.: Statistical fault detection using PCA-
based GLR hypothesis testing. J. Loss Prev. Process Ind. 26 (2013). https://doi.org/10.1016/j.
jlp.2012.10.003

Juricek, B., Larimore, W., Juricek, B.C., Seborg, D.E., Larimore, W.E.: Process control
applications of subspace and regression-based identification and monitoring methods. In:
American Control Conference, pp. 2341–2346 (2005). https://doi.org/10.1109/ACC.2005.
1470316

Lane, S., Martin, E.B., Morris, A.J., Gower, P.: Application of exponentially weighted principal
component analysis for the monitoring of a polymer lm manufacturing process. Trans. Inst.
Measur. Control 1, 17–35 (2003)

Larimore, W.E., Drive, F., Baillieul, J.: Identification and filtering of nonlinear systems using
canonical variate analysis. In: Aerospace Control Systems, vol. 1, pp. 837–841 (1993)

Lee, C., Lee, I.B.: Adaptive monitoring statistics with state space model updating based on
canonical variate analysis. Korean J. Chem. Eng. 25(2), 203–208 (2008). https://doi.org/10.
1007/s11814-008-0037-y

Leung, S.H., So, C.F.: Gradient-based variable forgetting factor RLS algorithm in time-varying
environments. IEEE Trans. Sig. Process. 53(8), 3141–3150 (2005). https://doi.org/10.1109/
TSP.2005.851110

Li, X., Duan, F., Loukopoulos, P., Bennett, I., Mba, D.: Canonical variable analysis and long
short-term memory for fault diagnosis and performance estimation of a centrifugal
compressor. Control Eng. Practice 72(January), 177–191 (2018). https://doi.org/10.1016/j.
conengprac.2017.12.006

Li, X., Duan, F., Mba, D., Bennett, I.: Combining canonical variate analysis, probability
approach and support vector regression for failure time prediction. J. Intell. Fuzzy Syst. 746–
752 (2018). https://doi.org/10.1109/sdpc.2017.146

Negiz, A., Cinar, A.: Statistical monitoring of multivariable dynamic processes with state-space
models. AIChE J. 43(8), 2002–2020 (1997). https://doi.org/10.1002/aic.690430810

Odiowei, P.E.P., Yi, C.: Nonlinear dynamic process monitoring using canonical variate analysis
and kernel density estimations. IEEE Trans. Ind. Inform. 6(1), 36–45 (2010). https://doi.org/
10.1109/TII.2009.2032654

Qin, S.J.: An overview of subspace identification. Comput. Chem. Eng. 30(May), 1502–1513
(2006). https://doi.org/10.1016/j.compchemeng.2006.05.045

Ruiz-Cárcel, C., Jaramillo, V.H., Mba, D., Ottewill, J.R., Cao, Y.: Combination of process and
vibration data for improved condition monitoring of industrial systems working under
variable operating conditions. Mechanical Systems and Signal Processing, pp. 1–17 (2015)

Ruiz-Cárcel, C., Lao, L., Cao, Y., Mba, D.: Canonical variate analysis for performance
degradation under faulty conditions. Control Eng. Practice 54, 70–80 (2016). https://doi.org/
10.1016/j.conengprac.2016.05.018

Adaptive Canonical Variate Analysis 695

https://doi.org/10.1016/j.jlp.2012.10.003
https://doi.org/10.1016/j.jlp.2012.10.003
https://doi.org/10.1109/ACC.2005.1470316
https://doi.org/10.1109/ACC.2005.1470316
https://doi.org/10.1007/s11814-008-0037-y
https://doi.org/10.1007/s11814-008-0037-y
https://doi.org/10.1109/TSP.2005.851110
https://doi.org/10.1109/TSP.2005.851110
https://doi.org/10.1016/j.conengprac.2017.12.006
https://doi.org/10.1016/j.conengprac.2017.12.006
https://doi.org/10.1109/sdpc.2017.146
https://doi.org/10.1002/aic.690430810
https://doi.org/10.1109/TII.2009.2032654
https://doi.org/10.1109/TII.2009.2032654
https://doi.org/10.1016/j.compchemeng.2006.05.045
https://doi.org/10.1016/j.conengprac.2016.05.018
https://doi.org/10.1016/j.conengprac.2016.05.018


Russell, E.L., Chiang, L.H., Braatz, R.D.: Fault detection in industrial processes using canonical
variate analysis and dynamic principal component analysis. Chem. Intell. Lab. Syst. 51(1),
81–93 (2000). https://doi.org/10.1016/S0169-7439(00)00058-7

Shang, L., Liu, J., Turksoy, K., Min Shao, Q., Cinar, A.: Stable recursive canonical variate state
space modeling for time-varying processes. Control Eng. Practice 36, 113–119 (2015). https://
doi.org/10.1016/j.conengprac.2014.12.006

Turksoy, K., Bayrak, E.S., Quinn, L., Littlejohn, E., Cinar, A.: Adaptive multivariable closed-
loop control of blood glucose concentration in patients with type 1 diabetes. In: 2013
American Control Conference (ACC), pp. 2905–2910. Washington, D.C. (2013)

Turksoy, K., Quinn, L., Littlejohn, E., Cinar, A.: Multivariable adaptive identification and control
for artificial pancreas systems. IEEE Trans. Biomed. Eng. 61(3), 883–891 (2014)

Yacoub, F., Macgregor, J.F.: Product optimization and control in the latent variable space of
nonlinear PLS models. Chem. Intell. Lab. Syst. 70, 63–74 (2004). https://doi.org/10.1016/j.
chemolab.2003.10.004

696 X. Li and D. Mba

https://doi.org/10.1016/S0169-7439(00)00058-7
https://doi.org/10.1016/j.conengprac.2014.12.006
https://doi.org/10.1016/j.conengprac.2014.12.006
https://doi.org/10.1016/j.chemolab.2003.10.004
https://doi.org/10.1016/j.chemolab.2003.10.004

	Adaptive Canonical Variate Analysis for Performance Estimation with Application to Industrial Rotating Machines
	Abstract
	1 Introduction
	2 Methodology
	3 Case Study
	4 Conclusion
	References




