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I delivered my typewritten doctoral dissertation to the Princeton University
registrar in May 1950, just seventy years before May 2020. In this essay I will
try to provide a very personal survey of my interactions with computer science,
as participant and as observer, over this seventy year period.

The title of my dissertation was On the Theory of Recursive Unsolvability. In
1935 Alonzo Church1 had declared that the recursive functions, defined on the
natural numbers, are precisely those that are algorithmically computable. It was
Gödel who had defined this class, and Church’s student Kleene had found various
alternative formulations of the class. Church and Kleene had also studied a class
of functions, the λ–definable functions, defined in a very different manner, and
it had been proved that the two classes were the same. Meanwhile in England,
Alan Turing’s2 formulation, in terms of what came to be called Turing machines,
was proved by Turing to be equivalent to these other two. E. L. Post3 had
a formulation very close to Turing’s that he had developed independently. Post
had also worked on a quite different formalism, his canonical and normal systems
of productions, during the 1920s and proposed them as providing yet another
formulation he expected to be equivalent to the other three.

In my dissertation I studied various aspects of the theory of recursive func-
tions basing myself on Kleene’s version of Gödel’s formulation. I proved that
Post’s canonical systems were equivalent to the other formulations and, using
Post’s reduction of canonical to normal systems, obtained an unsolvable problem
for normal systems. With this problem as a basis, I obtained my first unsolvable

1 He was my adviser.
2 Church was Turing’s adviser as well. But Turing’s computability paper was written

before he became a Princeton student to work with Church.
3 He was my teacher when I was an undergraduate at City College in New York.
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problem involving Diophantine equations. Was this computer science? A mile
and a half away from the Princeton campus, von Neumann’s computer at the
Institute for Advanced Study was being built in 1950, not to be operational for
another two years. But I was aware of this only dimly if at all. In any case, the
thought that it had any relation to my dissertation would never have occurred
to me. Still Gödel’s advance to what Kleene called “general” recursion from the
earlier “primitive” recursion corresponds to including while loops in program-
ming languages in addition to simple looping constructs. A substantial part of
my dissertation was to appear, couched in the language of Turing machines,
in my book, Computability and Unsolvability, of 1958. In Computing Reviews
this book was called “one of the few classics of computer science” when Dover
reprinted it in 1982. Also, Chomsky’s hierarchy of classes of formal languages
was based explicitly on Post’s production systems.

In the fall of 1950, amid considerable turmoil in my personal life, I found
myself amid the corn fields of southern Illinois, where I had moved to take up a
postdoc position at the University of Illinois at Champaign-Urbana. In the spring
semester I was able to teach a graduate course on recursive functions. I liked
the intuitive feeling of Turing machines and decided to base my presentation on
them rather than on the general recursions in my dissertation. In showing that
complicated algorithms could be coded for Turing machines, I was writing lots
of specific Turing machine code on the blackboard. A freshly minted PhD in
mathematics like me, Ed Moore, who had been auditing the course, came to the
front of the room after one of the sessions and showed me how I could improve
some of the code I had written. Then he said, “We have one of those across the
street.” He was referring to the ORDVAC, a computer built at the University of
Illinois pretty much along the lines of von Neumann’s machine in Princeton.

What brought me to the ORDVAC was the Korean War. When Truman
decided to militarily oppose the invasion of South Korea from the north, a group
of University of Illinois academics, mostly physicists, joined to try to use their
scientific knowledge to aid the effort. I was recruited for this new organization,
the Control Systems Laboratory, and I accepted the offer. To begin with, there
was a heady brew of ideas in the air: Wiener’s cybernetics, Shannon’s theory of
computation, and computers with their unknown potential. Eventually it was
decided to build a prototype of a system in which the ORDVAC controlled
physical devices. Specifically, it was to navigate 100 airplanes in real time. And
the task of writing the program that would do this was given to me.

The ORDVAC was built around a William’s memory in which data was
stored as electric charge on the surface of cathode ray tubes (CRTs). There
were 40 small CRTs each capable of storing 1024 bits in a 32 × 32 array. So the
total memory was 5 KB. A memory access or an addition required 40 ms, and
a multiplication or a division required a full millisecond. My program was to
respond to “radar” information providing position information of the “planes”
by computing a heading for each plane and transmitting it to the plane. The
computation consisted of a sorting part, in which each radar input was matched
with the corresponding plane, and a part in which the headings were computed.



Seventy Years of Computer Science 107

I used a merge-sort algorithm for the first part. For the second part I had the help
of a young physicist, Marius Cohen, who found an algorithm for computing the
sine function to sufficient accuracy using just one division and no multiplications.
All of this had to be interrupted regularly to intercept incoming radar data.
I had to place these interruptions in the code based on a hand calculation using
the published times required for the instructions to be carried out.

Programs for the ORDVAC were written in absolute binary machine lan-
guage, with nothing like an assembly language available. The ORDVAC had no
index register so control of loops required the code to operate on itself. Nev-
ertheless I found programming lots of fun. Also it was clear to me that it was
essentially the same activity that I had been engaged in in the classroom pro-
gramming Turing machines. But it would be some time before I came to under-
stand how intimate the connection is. It was fun, but it wasn’t my own work.
When I was able to obtain support for two years at the Institute for Advanced
Study in Princeton, I eagerly seized the opportunity.

Back in Princeton with my pregnant wife Virginia, whom I had met and
married in Champaign-Urbana, I was free to work out some of my ideas related
to Gödel incompleteness. I also began working on the book that was to become
Computability and Unsolvability. I wanted to show computability as a full-fledged
subject in its own right with diverse applications. Basing it on Turing machines, I
wanted the connections with computer practice to emerge. Before my two years
at the Institute for Advanced Study were up, I was able to bring a complete
handwritten manuscript to the typists. I knew that my handwriting had difficul-
ties, but nevertheless I was dismayed by the poor job the typists had done. Every
page needed many corrections, and when I brought the corrected typescript back
to the typists, they refused to have anything to do with it. I suppose that after
typing the work of such as Einstein, Gödel, and von Neumann, they felt enti-
tled to ignore the needs of 26 year old mere visitor. The typescript languished in
closets for over two years.

The terms of my support gave me the option of seeking summer employment,
and we certainly needed the money. In the summer of 1953 I worked at Bell Labs,
an easy commute from Princeton. My supervisor was Claude Shannon whose
fundamental tract on information theory I had read in Champaign-Urbana. Ed
Moore, who had first told me about the ORDVAC, was there as well. Shan-
non had designed a universal Turing machine with only two states. He raised
the question: Can one provide a precise definition of universality? He pointed
out that unless the input/output is carefully specified, a Turing machine might
exhibit universal behavior only because of the way input data was coded. I liked
the problem and wrote two papers about it.

For the following summer I had managed to receive funding for a project to
program the decision procedure for Presburger arithmetic. I had permission to
use the Institute for Advanced Study computer for the purpose. I completed the
project, and we were off, driving across the country to Davis, California where I
was going to be an assistant professor of mathematics at one of the campuses of
the University of California. While there wasn’t much intellectual activity in the
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Davis mathematics department, in Berkeley, 80 miles away, the great logician
Alfred Tarski led an outstanding group of young scholars. When I was invited to
speak at the weekly colloquium of the Berkeley mathematics department, I took
the opportunity to express my view of computability theory as an autonomous
branch of mathematics. Tarski, who was in the audience, took strong exception
during the discussion after my talk.

After Virginia and I were awakened by the onset of labor, our second son
Nathan was born at home at 4AM. Other than us, the only person in the house
was Nathan’s two year old brother Harold. Virginia’s obstetrician was far away
in Berkeley, and we made do with an obstetric textbook. As I write, Harold and
Nathan are men well into their sixties.

We remained in Davis for just one year and moved to Columbus, Ohio, where
I was again an assistant professor of mathematics teaching elementary subjects.
Again we left after a year. I eagerly accepted an offer from the Hartford Grad-
uate Center that Rensselaer Polytechnic Institute had established in Eastern
Connecticut. I remained there for three very fruitful years. With a faculty of
perhaps a dozen, with only three of us teaching mathematics, it was quite an
interesting place with mature students, quite different from those, not yet 20,
that I had been teaching in Davis and Columbus.

The secretaries there were eager to be helpful and did an excellent job of
turning my manuscript for Computability and Unsolvability into proper shape for
being submitted to a publisher. McGraw-Hill offered me a contract and published
it in their series on “Information Processing and Computers”. In my preface I
wrote:

The existence of universal Turing machines . . . confirms the belief . . . that
it is possible to construct a single “all-purpose” digital computer on which
can be programmed . . . for any conceivable deterministic digital computer.

A quarter of a century was to go by before I came to understand just how
intimate was the relationship between Turing’s abstract model of a universal
computer and physical computers, that the former was the progenitor of the
latter.

The book was written from the point of view of computability as an indepen-
dent discipline. This view was reinforced by a section on applications with chap-
ters on logic, algebra, and number theory. Tarski’s equally valid view, expressed
when he objected to what I had said in my Berkeley talk, was that computability
is a branch of definability theory which is part of mathematical logic.

Of course at the time this book was written, the academic discipline of com-
puter science didn’t yet exist. Nevertheless computer science is indebted to com-
putability theory in several ways. It supplied two models of computation, the
Turing macine and the register machine that proved useful in quantifying the
asymptotic complexity of specific algorithms. Also, the complexity classes poly-
time, NP-completeness, and the levels of the poly-time hierarchy were all defined
by analogy with categories from computability theory.

In the summer of 1957 (a year before Computability and Unsolvability was
published) there was a remarkable five week “Institute for Logic” at Cornell
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University in Ithaca, 220 miles northwest of New York City. 85 logicians
attended, almost all from the U.S. The influence of the newly developing world
of computers was already evident. Alonzo Church lectured on “Application of
Recursive Arithmetic to the Problem of Circuit Synthesis”. I spoke about my
program for Presburger arithmetic. Abraham Robinson discussed “Proving a
Theorem (As Done by Man, Logician, and Computer)”. Rabin and Scott’s fun-
damental work on finite automata was presented. IBM sent a contingent of 13 to
the “Institute”. Among other things they presented FORTRAN, initiating con-
troversy on whether the loss of efficiency in programming in such a “high level”
language compared to using assembly language was supportable. Altogether of
the 82 talks presented, 19 had a definite computer science aspect.

I had become friendly with Hilary Putnam, a young philosopher at Princeton,
and we decided to share a small house in Ithaca with our families for the duration
of the Logic Institute. We were together nearly every day, and this led directly to
our fruitful collaboration. I had studied what I had called Diophantine sets. A set
S of natural numbers is Diophantine if there is a polynomial p(a, x1, x2, . . . , xn)
such that a ∈ S if and only if there are natural numbers x1, x2, . . . , xn for which
p(a, x1, x2, . . . , xn) = 0. In my dissertation I had conjectured that every set of
natural numbers which is listable4, in the sense that there is an algorithm that
generates a list of the members of the set, is also Diophantine. I had taken a first
small step towards proving this conjecture. It was easy to see that the truth of
the conjecture would yield a solution to the tenth of the 23 problems that Hilbert
famously had proposed in 1900. Hilary and I began working on this conjecture;
we found a new approach yielding a nice theorem that we were pleased to present
at the Institute. I would not claim that this was computer science, but it would
be impossible to omit it from any account of our collaboration.

We were so pleased by what we had accomplished that we decided to seek
funding enabling us to work together during the summer months. Because the
experts regarded my conjecture as very unlikely to be true, we thought it would
be hopeless to seek funding for that. So we decided instead to write a proposal
for work on computer generated proofs of theorems. Specifically we proposed
to work on a proof procedure for first order logic. Our proposed procedure was
to include an algorithm for what has come to be called SAT, the satisfiability
problem. We wrote a proposal, but it was too late for submission to the funding
agencies if we hoped to work together the following summer. A friend of Hilary
suggested we send it to the National Security Agency (NSA). Neither of us had
heard of this agency, but, nothing to lose, we submitted it to them. A phone
call came inviting me to visit the NSA’s headquarters in Maryland. When I told
them that I had never heard of the agency, they laughed and said their publicity
office was doing a good job. The NSA was not to remain so obscure for long. It
became front-page news when two of their people defected to the Soviet Union.

When we talked about our proposal, they made it clear that they had no
interest in proof procedures for first order logic, but they were interested in SAT.

4 Other terms for this notion are recursively enumerable set and computably enumer-
able set.
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They warned me that it is a difficult problem and doubted that we could make
much headway in one summer. However if we were willing to work only on
SAT, they were prepared to fund our proposal. I agreed at once. Our report5

submitted to them at the end of the summer, made no mention of the funding
agency, as they had requested. The report introduced the technique of initially
transforming a Boolean formula being tested for satisfiability into conjunctive
normal form. This amounted to a list of disjunctive clauses, a format that came
into widespread use. Various techniques were offered for satisfiability testing with
examples.

The following summer, we had funding from an agency whose mission was to
support fundamental science. Not constrained, we set to work on my conjecture
that every listable set is Diophantine. We managed to find a proof of the weaker
result that every listable set is exponential Diophantine, meaning that variable
exponents were permitted in the algebraic expression.6 For the part of our report
related to my conjecture, see [18] pp. 411–430. While we were writing our report,
we recalled that our proposal to the agency called for work on machine theorem
proving. So using a selection of the algorithms from our report of the previous
summer together with an exhaustive search of the Herbrand universe (a term
I later introduced in [2]), we had our proof procedure. We wrote it up for our
report, and, on a whim, I submitted it to the Journal of the ACM. They published
it [14] and it is easily the most cited of my publications, the source of the “Davis-
Putnam procedure”. Hard copies of our reports to the two agencies are in an
archive maintained by Donald Knuth. Julia told me that when she brought a
copy of our report for the Russian mathematicians, they were astonished that
the US Air Force funded research on Diophantine sets, research that was very
unlikely to lead to any practical applications.

In the spring of 1959, I was surprised to receive a letter offering me a year
appointment at the Institute for Mathematics and Mechanics at New York Uni-
versity (NYU). I had flirted with them before, but their offer at that time had
been unsatisfactory. This institute was totally the creation of Richard Courant.
A Jew, he had been expelled from the mathematical institute at Göttingen of

5 The report is available at [18] as Appendix A pp. 374–408.
6 Our proof had a flaw. It used the fact that there are arbitrarily long arithmetic

progressions consisting entirely of prime numbers. This fact was only proved in 2004
(by Ben Green and Terrence Tao); so we had to call it a hypothesis. We wrote
our work up for our funding agency, the Office of Scientific Research of the US Air
Force. We also submitted it for publication to a mathematical research journal. In
addition we sent a copy to Julia Robinson whose methods had greatly influenced
our approach. To our delight she succeeded in modifying the proof so it did not
need this as yet unproved proposition. We withdrew our paper, and the theorem
was published with the three of us as authors. It followed from the new result that
my conjecture would follow if a single polynomial could be found that satisfied two
simple conditions that Julia had proposed. After the three of us had been trying for
a decade to find such a polynomial, we learned that Yuri Matiyasevich, at the age
of 22, had actually done it. His proof that his equation satisfied Julia’s conditions,
though quite elementary, was intricate and beautiful.
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which he had been a principal founder. There was no mathematical research
activity of consequence at NYU when Courant arrived; he set out to remedy
that, and he certainly succeeded. After his death, his institute was fittingly
renamed: the Courant Institute of Mathematical Sciences. I was very happy to
accept the offer. I was free to do my own research, I could teach a graduate
course in mathematical logic, and I would have access to an IBM 704 computer.
Convinced that we would be in New York for a long time, we cut our ties to
Connecticut, and moved into an apartment overlooking the Hudson River, on
the upper west side of New York.

My access to the IBM 704, tempted me to see how the proof procedure
Hilary and I had developed, would do on a physical computer. I was provided
with two excellent colleagues, both graduate students, Donald Loveland7 and
George Logemann, to do the actual programming. The deficiencies of the Davis-
Putnam proof procedure for first order logic were soon made clear. On any
but the simplest problems, the memory was overwhelmed. We decided to take
advantage of the availability of external storage in the form of tape drives, by
changing the algorithm to make use of them We replaced Rule III from [14]
(which was what would later be called binary resolution) with Rule III∗, we called
“splitting”, which led to the divide-and-conquer algorithm for SAT that came
to be called DPLL. When a split into two cases occurs, the algorithm places one
of them on a stack and attends to the other.8 The Loveland-Logemann program
incorporating the DPLL algorithm for SAT was a substantial improvement over
the previous attempt, but still fell far short. The paper [17], with Loveland
himself one of the authors, discusses this history in more detail, and brings it
up to date in connection with contemporary SAT solvers.

Our experience made it clear that any serious progress would require taming
the exponential growth of substitution instances of atomic formulas. A copy of
Dag Prawitz’s paper [19], that arrived by postal mail at this time, contained
an important clue. Although the actual proof procedure in the paper was far
too unwieldy to be the basis of a useful computer program, it did highlight the
significance of substitutions that make pairs of literals negations of one another.
This was emphasized in my article [2] written in connection with a talk I gave at
a symposium sponsored by the American Mathematical Society. Alan Robinson’s
resolution principle [20] that pointed to a new compelling direction, took from
our work the importance of complementary literals as well input in the form of
a conjunction of clauses, each consisting of a disjunction of literals. I think that
is why Siekmann and Wrightson awarded my [2] a star, signifying an important
article, in their anthology [21]. I discuss the history more fully in [3].

As I had hoped and rather expected, I was offered a tenure-track position at
NYU. However, a better offer came from an unexpected quarter. Yeshiva College
in the Washington Height neighborhood of New York City had long been offering

7 Don later was one of my first PhD students, and, still later, a colleague.
8 Of course the terms “divide-and-conquer” and “stack” were not yet used in computer

science at that time. It may be worth mentioning that both III and III∗ are already
in the report [15] that Hilary and I had prepared for the NSA.
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an undergraduate education that combined an American liberal arts curriculum
with traditional orthodox Jewish rabbinical training. However, Yeshiva College
had become Yeshiva University offering secular graduate education in a number
of areas. As my year as a visitor at NYU was nearing its end, I received an offer
from the newly founded Graduate School of Science at Yeshiva University. It was
a much more attractive offer than the one I had received from NYU. The topics
of the graduate courses I would be teaching would include my own specialty. I
was happy to accept. The Courant Institute graciously continued to make the
IBM 704 and the talents of Loveland and Logemann available, and we were able
to complete our project.

In 1965, for a number of reasons, it was time to leave Yeshiva. I returned to
NYU which was to be my academic home until I retired in 1996. I was Primcipal
Investigator on a mechanical theorem-proving project, but it was Don Loveland,
at that time a colleague at NYU, who seized the opportunity to see his model
elimination procedure implemented. The paper [16] with a number of collabora-
tors, was the result of this effort.

In the spring of 1969, I was living in London, on sabbatical leave, when
a letter arrived from Jürgen Moser, Director of the Courant Institute. A new
department of computer science was being formed at Courant with my old friend
and colleague Jack Schwartz as chair. The letter asked me to join, and, after
some soul searching, I accepted. I found myself involved in the efforts of the
new department to find its place in the Courant Institute. This did not proceed
without a certain amount of friction. The department not only hoped to achieve
success with cutting edge fundamental research in the Courant tradition, but
also offered an undergraduate major that quickly became very popular. The
need for faculty to teach these students provided us with the opportunity to hire
promising new faculty.

For the academic year 1976–77, I was again on sabbatical leave. I had spent
two summers in Berkeley and was eager to try a whole year. To earn a little
extra money, I approached John McCarthy (who had been a fellow student at
Princeton) about a summer job. He suggested that I fly out and give a talk. I
thought a question that Jack Schwartz had posed about extensibility of proof
checkers would be an appropriate topic. I remember working out the easy details
on the plane.9 I had an enjoyable time working at for the month of July at John’s
Artificial Intelligence Laboratory at Stanford University. I loved the atmosphere
of play that John had fostered. The terminals that were everywhere proclaimed
“Take me, I’m yours”, when not in use. I was encouraged to work with the FOL
proof checker that had recently been developed by Richard Weyhrauch. Using
this system, I developed a complete formal proof of the pigeon-hole principle from
axioms for set theory. I found it neat to be able to sit at a keyboard and actually
develop a complete formal proof, but I was irritated by the need to pass through
many painstaking tiny steps to justify inferences that were quite obvious. FOL
formalized a “natural deduction” version of First Order Logic. The standard

9 Jack and I did publish a joint paper based on this which provided a path to my
Erdös number 3. There was another path via Yuri Matiyasevich.
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paradigm for carrying out inferences was to strip quantifiers, apply propositional
calculus, and replace quantifiers. I realized that from the viewpoint of Herbrand
proofs, each of these mini-deductions could be carried out using no more than one
substitution instance of each clause. I decided that this very possibility provided
a reasonable characterization of what it means for an inference to be obvious.
Using the LISP source code for the linked-conjunct theorem prover that had been
developed at Bell Labs, a Stanford undergraduate successfully implemented an
“obvious” facility as an add-on to FOL. I found that having this facility available,
cut the length of my proof of the pigeon-hole principle by a factor of 10. This
work was described at the Seventh Joint International Congress on Artificial
Intelligence held in Vancouver in 1981 [4].10

It became the Computer Science Department’s policy to provide our new
hires with a review as they were completing their third year with us, to help
them and us with an initial indication of their prospects for achieving tenure
after their sixth year. It must have been around 1980 that I was given the task of
conducting such a review of the work of Elaine Weyuker. Her PhD from Rutgers
had been in theoretical computer science. Reading her recent research papers, I
was surprised that she was looking, with a theoretician’s eye, at a very practical
problem: software testing. Programmers will certainly try to eliminate the bugs
from the programs they write. But it is very difficult to envision in advance all
the various environments and other circumstances in which a given program will
be used. Generally, before a program is released to the public, it is tested by
assembling a set of input data, and then running the program on each of these
inputs. It is well understood that for both theoretical and practical reasons,
running a program with a finite set of inputs can not guarantee the correctness
of a program. So, “quality assurance” professionals attempt to assemble test data
that they regard as “adequate”. Elaine was studying this notion of adequacy.

I was both impressed by her work and intrigued by the possibility of studying
in an objective manner, a notion treated in practice subjectively based on intu-
ition and experience. We soon began a collaboration. In addition to a textbook
on theoretical computer science, we wrote three joint papers. [11] is concerned
with the problem of testing a program whose expected input-output behavior is
not known. In such a case one couldn’t tell whether the output generated by a
set of test data is correct. This paper is still cited. Our [12] and [13] suggested
formal definitions of adequacy based on the intuition that an adequate set of test
data should separate the program being tested from all other programs with the
exception of those input-output equivalent to the given program.

An article entitled The Other Turing Machine that appeared in the Computer
Journal in 1977 caught my attention. Up to that point, Turing’s name had
scarcely been mentioned in historical accounts of the origin of modern digital
computers. Although I was convinced that Turing’s exploration of the nature
of computation with his construction of a universal machine had provided their
theoretical underpinnings, I had no idea how concrete the connection was. From
the article I learned that Turing’s Ace Report of 1946 contained the complete

10 Parts of this paragraph were copied verbatim from my [10].
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design of a stored program computer, including the electronic circuits, and even
estimated its total price. In 1986, the same authors, Brian Carpenter and Doran,
published a collection of some of Turing’s previously unpublished manuscripts
including the ACE report itself as well as the text of a remarkable lecture that
Turing had delivered to the London Mathematical Society in February 1947 [1].
In the lecture, Turing explicitly tied the idea of an all-purpose stored program
computer to his concept of a universal machine. In addition he provided an
expansive vision of the future capabilities of the computer.

By this time, it was clear to me that the debate over whether von Neu-
mann should share the credit for the “stored program concept” was entirely
misplaced. Von Neumann who had worked on Hilbert’s foundational program
and who was among the first to recognize the significance of Gödel undecidabil-
ity, would surely have understood the practical relevance of Turing’s theoretical
investigations. Also, as a logician, I could not help being aware of the histori-
cal tradition in which Turing worked. I thought that it was important that the
educated public become aware of some of this. I was determined to write a book
that would tell this story. I applied for and received a Guggenheim award to
fund the necessary research. My “Universal Computer” was published in 2000
[6,7]. In my Introduction I wrote

It was von Neumann’s expertise as a logician and what he had learned
from the English logician Alan Turing that enabled him to understand
the fundamental fact that a computing machine is a logic machine. In
its circuits are embodied the distilled insights of a remarkable collection
of logicians, developed over centuries. Nowadays, when computer technol-
ogy is advancing with such breathtaking rapidity, as we admire the truly
remarkable accomplishments of the engineers, it is all too easy to overlook
the logicians whose ideas made it all possible.

There was a second edition for Turing’s centenary in 2012. A third edition of 2018
gave me the opportunity to write about the remarkable success of Go-playing
computers using deep learning technology.

But I’m getting ahead of myself. The book was to be for the educated pub-
lic. But first, I wanted to make the case for Turing’s crucial role in the origin
of the modern computer to fellow professionals. In my essay [5] I tried to do
this, while including a brief initial section on Leibniz, so as not to neglect the
historical underpinning of Turing’s work.11 Gradually Turing’s role came to be
recognized. By the time my book [6] appeared, I could quote Time magazine
to that effect. The work of Carpenter and Doran played a crucial role in this
change, as did Andrew Hodges’s masterful biography of Turing. I would find it
extremely gratifying to think that my essay might also have played a part.

I was surprised by an email message from Andrew Hodges, Turing’s biog-
rapher, calling my attention to recent publications by the philosopher Jack

11 In writing about Turing’s work at Bletchley Park, I made the error of indicating
that the Colossus was built to decrypt the Enigma traffic needed for the safety of
Atlantic shipping. The Colossus was built to deal with an entirely different traffic.
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Copeland that concerned Turing’s introduction of the notion of an “oracle” in his
Princeton dissertation. Copeland, was proposing that it was time to obtain such
an oracle as a physical reality in order to be able to compute things that were
uncomputable in the sense of the Church-Turing Thesis. In a popular article in
the Scientific American 1999 (coauthored with Diane Proudfoot), he announced:
“the search is on” for an oracle. He even proposed a capacitor storing a charge
whose value was an infinite precision real number that could serve as the oracle.
Anyone who read Turing’s dissertation with a modicum of comprehension would
have understood that Turing’s oracle was a mathematical abstraction introduced
for a specific mathematical purpose. And, as far as Copeland’s capacitor is con-
cerned, since the early years of the twentieth century, it has been understood
that an electric charge consists of an integer number of electrons.

I had previously been astonished by an article by Hava Siegelmann in Science
1995 with the title Computation Beyond the Turing Limit. Science is the very
prestigious journal of the American Association for the Advancement of Science,
where one is used to seeing important research in the biological sciences. I was not
impressed by Siegelmann’s article. It was certainly true that given any language
on a two-letter alphabet, she could produce one of her networks that would
accept it. The secret was that the desired language was coded into an infinite
precision real number which was then used as a weight in one of the “neurons”
in her net. In effect the language was built into the net that accepted it. She
reiterated her claim in her book, Neural Networks and Analog Computation:
Beyond the Turing Limit, Birkhäuser, Boston 1999. I wrote about all of this in
[8], and thought that was the end of the matter.

However, it seemed that there was a hypercomputation movement. There
were various people who thought about computing the uncomputable, unde-
terred by the prospect of trying to do infinitely many things in a finite mount
of time. There was quantum adiabatic cooling to solve Hilbert’s tenth problem
and some who were convinced that our brains are already hypercomputers. At
a meeting of the American Mathematical Society in San Francisco, there was a
special session on hypercomputation. I wrote two additional articles about this
nonsense before saying farewell to it.

It seems to be an article of faith among theoretical computer scientists that
P �= NP. It has long seemed to me that this faith is misplaced. The heuristic
arguments usually given depend on regarding P as the class of languages for
which computationally feasible algorithms exist for deciding membership. But
obviously an algorithm with cpk as a time bound is utterly useless if c and/or k
are large. In my lectures on this topic, I talk about linear programming as pro-
viding a useful lesson. Once thought to likely be NP-hard, linear programming
turned out to be in P. Courtesy of Margaret Wright, I show an example of a
large linear programming problem for which the old exponential time simplex
method does better than the best “barrier” poly-time algorithm. I have no idea
whether the proposition P = NP is true. It may be that P �= NP is true, and
that it hasn’t been proved because of serious technical difficulties. But I think
it is equally likely that it hasn’t been proved because it is false. Perhaps there
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is a poly-time algorithm for SAT with a large exponent in the time bound. My
experience with Hilbert’s tenth problem and people’s attitudes to what we were
trying to do, has led me to believe that our intuitions about polynomials of high
degree are not very reliable.

2012 was the year of Alan Turing’s 100th birthday. So speakers who were
able to give a lecture on a Turing-related subject were in considerable demand
that year. I gave nine talks in places as far apart as Pisa in Italy and Arequipa in
Peru. First in Ghent and then in Boston. my topic was Universality is Ubiquitous
[9]. Turing’s abstract model of computation had been able to achieve universality
with just a few very rudimentary basic operations by providing his devices with
unlimited memory. This suggested that the extent to which a physical device
can approximate universality will depend critically on providing it with as large
a memory as possible. Turing quite explicitly emphasized this in his address
of 1947 [1], and it is evident in the expanding suite of things our devices can
do as larger and larger memories are provided. Because so little is required of
basic operations to achieve universality, it is pointless to retroactively confer
universality on Babbage’s analytic engine or the Colossus built in the Bletchley
Park decryption effort, after imagining them provided with an infinite memory.

Do the non-coding parts of the DNA contain a computational capability?
Perhaps playing a role in evolution? I shamelessly speculated along those lines.

My 90th birthday occurred in 2018. The special session on history and philos-
phy of computation at the meeting in Kiel of the Computability in Europe orga-
nization honored my birthday. I spoke on “Turing’s Vision and Deep Learning”.
I recalled that Turing had imagined a time when a computer would have mod-
ified its original program to such an extent that the programmers would no
longer understand what it was doing. Nevertheless, Turing suggested, it might
be doing good work. The programmers of the neural nets that have achieved such
remarkable success with the ancient game of Go find themselves in exactly this
position. Likewise the programmers of self-driving cars. Thus, bringing together
Turing’s imaginings seventy years ago with some of the most advanced current
technological achievements seems an excellent way to end this story.
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