
The Power of Spreadsheet Computations

Jerzy Tyszkiewicz(B)

Institute of Informatics, University of Warsaw, Warsaw, Poland
jty@mimuw.edu.pl

Abstract. We investigate the expressive power of spreadsheets. We con-
sider spreadsheets which contain only formulas, and assume that they
are small templates, which can be filled to a larger area of the grid to
process input data of variable size. Therefore we can compare them to
well-known machine models of computation. We consider a number of
classes of spreadsheets defined by restrictions on their reference struc-
ture. Two of the classes correspond closely to parallel complexity classes:
we prove a direct correspondence between the dimensions of the spread-
sheet and amount of hardware and time used by a parallel computer to
compute the same function. As a tool, we describe spreadsheets which
are universal in these classes, i.e. can emulate any other spreadsheet from
them. In other cases we provide spreadsheet implementations of a solver
for a polynomial-time complete problem, which indicates that the such
spreadsheets are unlikely to have efficient parallel evaluation algorithms.
Thus we get a picture how the computational power of spreadsheets
depends on their dimensions and structure of references.

Keywords: Spreadsheets · Expressive power · Lower bounds · Upper
bounds · Parallel Random Access Machines · Circuit Value Problem ·
PTIME · NC

1 Introduction

1.1 Why Spreadsheets?

Spreadsheets are an extremely popular type of software systems. They have
conquered very diverse areas of present day politics, business, research, and,
last but not least, our private lives. However, this prevalence is not so evident,
because spreadsheets are typically used in the back office and are not presented
to the public. They make to the news only when something goes really wrong:
for instance a spreadsheet used to justify a widely implemented public policy, as
in the case of the extremely influential report [17] concerning a purported causal
relationship between high national debt and low economic growth, turns out
to contain an error in a formula, affecting the outcome of the calculations [11].

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-48006-6 20) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2020
A. Blass et al. (Eds.): Gurevich Festschrift, LNCS 12180, pp. 305–322, 2020.
https://doi.org/10.1007/978-3-030-48006-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48006-6_20&domain=pdf
http://orcid.org/0000-0003-2858-3124
https://doi.org/10.1007/978-3-030-48006-6_20
https://doi.org/10.1007/978-3-030-48006-6_20
https://doi.org/10.1007/978-3-030-48006-6_20

306 J. Tyszkiewicz

An Excel spreadsheet model was used to manage the investments of JPMorgan
Chase & Co. bank, which led to trade losses estimated in billions of dollars
[6]. Research is not an exception, and a careful reader of Science magazine can
read [7,10], in which a scientific controversy finally turns out to be related to
a spreadsheet mistake. Those notable failures indicate the widespread use and
critical role of spreadsheets in business and research.

Indeed, spreadsheets are among the most frequently used software tools of
any kind. More than 30 years ago after VisiCalc, the first spreadsheet and the
first killer app in the history of personal computers, still relatively little is known
about their computational power.

In recent years there was a significant amount of interest in parallelizing
spreadsheet computations, witnessed both by research papers and patent appli-
cations [2–4,12,14,19]. In this paper, we analyze the computations expressible in
spreadsheets and their relation to parallel complexity classes. Our findings shed
light both on parallelization potential of certain structures in spreadsheets, and
on the fundamental limitations of this approach.

1.2 Measuring the Expressiveness of Spreadsheets

The aim of this paper is to analyze the power of spreadsheets considered as a
tool for specifying general-purpose computations. Our analysis is intended to
concern the spreadsheet model of computation rather than real-life spreadsheet
software. Each spreadsheet is indeed a fully functional program, consisting of
many equations (a.k.a. formulas) located in cells, which are computed in data-
dependent order, with no side-effects. For mathematical convenience, we assume
that the spreadsheet grid is actually infinite and there is no bound on the num-
ber of cells with formulas. Next, we assume that the only data type represented
in spreadsheets are true, unbounded integers. These two assumptions allow us
to apply the methods of computational complexity, which are asymptotic in
nature, to the study of spreadsheets. No macros and user-defined functions writ-
ten in a general programming language are permitted. We also reduce the set
of functions permitted in spreadsheets, to keep our analysis manageable. Still,
these modifications do not affect the underlying general idea of this model of
computation.

Spreadsheets belong to the nonuniform computation models, where for each
input size there is a separate computing device. Uniformity can be introduced
to such a model by imposing that there is a common, low complexity procedure
to create those devices, given the input size. In this respect, spreadsheets come
with a natural, built-in tool to do just that: filling. It is performed by selecting
a rectangular range of cells, clicking a small handle in the lower right corner of
it and extending its boundaries either horizontally or vertically, which results
in copying the formulas present in the initial range to the new, larger area of
the worksheet, with suitable reference adjustments. Filling is the usual way to
produce a spreadsheet processing a large amount of data from a few formulas
prepared manually, or to extend an already existing one to accommodate a new
supply of data.

The Power of Spreadsheet Computations 307

1.3 Technicalities of Spreadsheets

Each cell in the spreadsheet is identified by its column letter and row number,
e.g. C2 is located in the third column and second row. A cell may contain a
constant value or a formula, which calculates a value of that cell. An example
formula A$1+SUM($A$2:$A5) references a single cell A1 and a (vertical) range
A2:A5, consisting of 4 cells in the rectangular spanned by A2 and A5 and its
meaning is self-explanatory. The $ signs indicate how to copy this formula to
another cell and do not affect its evaluation. Upon copying, column and row
identifiers with $ in front remain unchanged, while those without are modified
to remain in the same relative position to the cell holding the formula as in the
original one. If the above formula is copied to another cell two rows down and
one column to the right, the copy is B$1+SUM($A$2:$A7), i.e., it now references
cell B1 and a range A2:A7 consisting of 6 cells.

Finally, the key feature we want to use is filling. It is indeed systematic
copying of formulas. If, e.g., a range A1:B2 consisting of four cells with formulas
is marked and filled down, then the formulas in A3, A5, . . . are created by copying
(according to the method explained above) the formula from A1; those in B3,
B5, . . . are copies of the one from B1 etc. In effect, the filled region is covered by
2 × 2 tiles of copies of cells from the original range. Filling can be repeated.

The spreadsheet software automatically chooses an evaluation order of the
formulas which follows the references (we do not consider cyclic references).

It is generally quite difficult to describe an algorithm behind a spreadsheet
program in plain words. In our case, a small spreadsheet is expanded by filling
to an interconnected network of modified copies of itself, resulting in the code
to be eventually executed. Its operation involves complex interactions between
formulas, their locations which serve as their identifiers, and the mechanism of
filling, which produces adjusted references in the newly created cells. Therefore
we have decided to provide algorithms in the form of commented spreadsheets
in the Electronic Supplementary Material (ESM) of this paper, available from
the Publisher. Apart form Microsoft Excel, they work also under LibreOffice,
Microsoft Excel Online and Google sheets.

1.4 Main Results

The structural properties of spreadsheets which we prove to determine their
computational properties are defined by restrictions on the pattern of references
in formulas, in the sense described above.

Definition 1. A spreadsheet S is row-organized iff all its formulas refer to single
cells and fragments of rows, only.

Dually, S is column-organized iff all its formulas refer to single cells and
fragments of columns, only.

S is un-organized iff it is neither row-organized nor column-organized.
In each case, references to the inputs of S are exempt from those limitations.

308 J. Tyszkiewicz

Definition 2. A spreadsheet S is row-directed iff every formula in it refers only
to cells and ranges located above itself. Such an S can be evaluated in any
top-down order.

Dually, S is column-directed iff every formula refers only to cells and ranges
located to the left of itself. Such an S can be evaluated in any left-right order.

S is un-directed iff it is neither row- nor column-directed. S is bi-directed iff
it is both row- and column-directed. Again, references to the input part of S are
exempt from those limitations.

The above properties are preserved by filling.

We describe the computational power of spreadsheets by relating them to
Parallel Random Access Machines (PRAM for short), both CRCW priority write
and CREW ones.

On several occasions we proceed by implementing instances of the P -complete
Circuit Value Problem (abbreviated CVP) in spreadsheets, in order to demon-
strate that they are unlikely to have efficient parallel evaluation algorithms.

Our first main result is that any given initial row-organized row-directed
spreadsheet can be converted into a program π for an CREW PRAM such that
the function computed by that spreadsheet filled to the dimensions of c columns
and r rows is always the same as that computed by π evaluated on a PRAM
with c processors, O(c) cells of memory and running for O(r log c) time. Thus,
if a spreadsheet is row-organized row-directed, its evaluation can be efficiently
parallelized: the number of columns contributes only a logarithmic factor to
the total computation time. This sets an upper bound on the computational
power of row-organized row-directed spreadsheets. An analogous result holds for
column-organized column-directed spreadsheets.

In order to get a lower bound, and thus determine the class of functions
computable by those spreadsheets, we prove our second main result: there is a
row-organized row-directed spreadsheet with 19 formulas which is a universal
CRCW PRAM evaluator, i.e., one which given a (suitably encoded) program
π together with its input, and filled to the dimensions of p columns and 10t
rows, computes in its last row the description of PRAM after executing t steps
of π on p processors and with p cells of shared memory. This demonstrates
that spreadsheets can implement a natural and broad class of general-purpose
computations.

The same spreadsheet is also a universal row-organized row-directed spread-
sheet: any other spreadsheet from this class can be equivalently expressed as
a program for a PRAM, which in turn can be executed on that spreadsheet.
This above results demonstrate that row-organized row-directed spreadsheets
and PRAMs are almost equivalent in computing power, with clear relations
between the resources in both models. Indeed, translating a spreadsheet into
an equivalent program for PRAM, and then back to spreadsheet, incurs only a
logarithmic overhead, a common effect of translations between different parallel
computation models.

At the same time PRAMs and spreadsheets are extremely different: the for-
mer have only programming primitives and no data analysis ones, while the latter

The Power of Spreadsheet Computations 309

Fig. 1. PRAM evaluator in a row-organized row-directed spreadsheet S1: structure and
mode of operation. Processors are located in columns, and computation time advances
downward. A vertical group of 10 cells constitutes a snapshot of a processor at a given
time, so that extending computation time by one unit requires filling 10 rows. The
filling process is shown in ESM video V1. S1 is provided in ESM.

have only data analysis functions and do not support any form of programming
on the level of the spreadsheet itself.

Further, we demonstrate a row-organized but not row-oriented PRAM simu-
lator (ESM spreadsheet S2), significantly more powerful than the one previously
described. If it is extended to c columns and r rows, computes the description
of PRAM after executing cr/10p steps of π on p processors and with p cells of
shared memory, where p ≤ c is a part of the input. Thus this PRAM simula-
tor can perform either a parallel or a sequential computation, as instructed in
the input, trading off the number of processors and cells of memory for more
computation time.

To get the results for other classes of spreadsheets, we implement instances
of CVP in them. Each time we do so, we get hypothetical lower bounds on the
parallel complexity of evaluating spreadsheets in this class, following from the
anticipated but thus far unproven NC � P . The larger instance we implement,
the higher the lower bound is.

We summarize our results in Table 1. The highlights are the following:
First, row-oriented but not row-organized spreadsheets have parallel evalu-

ation algorithms with c processors and of time complexity O(r log cr), similar
to those for row-organized row-oriented ones discussed above, except that they
need much more memory: O(cr) instead of O(c) cells.

310 J. Tyszkiewicz

Table 1. Summary of demonstrated upper and lower bounds for spreadsheet computa-
tions, depending on their structure. We disregard small changes depending on whether
spreadsheets are row- or column-organized or un-organized, which are discussed in the
main text.

Column directed Column un-directed

Row
directed

Upper bounds O(r log cr) with c
processors and O(c log cr) with r
processors on CREW PRAM
No known PRAM simulation
2n columns and 4n rows
implement CVP instance of size
n

Upper bound O(r log cr) with c pro-
cessors on CREW PRAM
c columns and r rows simulate
CRCW PRAM with c processors
and cells of memory for r/10 steps
1 column and n rows implement
CVP instance of size n

Row
un-directed

Upper bound O(c log cr) time on
CREW PRAM with r processors
c columns and r rows simulate
PRAM with r processors and
cells of memory for c/10 steps
n columns and 1 row implement
CVP instance of size n

Upper bound sequential polynomial
time
c columns and r rows simulate
CRCW PRAM with p processors
and cells of memory for cr/10p
steps, p is a part of the input
c columns and r rows implement
CVP instance of size cr/8

Second, for spreadsheets which are row-oriented but not column-oriented,
and its dual class, one of the dimensions contributes a logarithmic factor to the
computation time, while a CVP instance can be encoded in the other dimension,
which causes its size to appear as a linear factor in the computation time.

Third, for spreadsheets which are simultaneously row-oriented and column-
oriented, one has choice which of the dimensions will contribute a logarithmic
factor and which a linear one to the computation time. However, it is unlikely
that there is an algorithm polylogarithmic with respect to both dimensions,
because if both are large, a large CVP instance can be still encoded.

All the above results taken together give a comprehensive picture of the
computing power of spreadsheets without macros. It turns out that this power
is strongly influenced by the pattern of references within the spreadsheet, in
addition to its size.

2 Spreadsheets

As we have already indicated, we assume that the spreadsheet grid is actually
infinite and any number of rows and columns can be filled with copies of the
initial cells. We never consider spreadsheets of unbounded size: all ranges used
have cells as corners, and the size of the spreadsheet is for us the total number
of cells which contain formulas or are referenced in formulas. The only data type
are true, unbounded integers.

The Power of Spreadsheet Computations 311

The mechanisms of copying formulas and filling have already been described
in Sect. 1.3. Syntactically the present paper is based on Microsoft Excel and the
reference to syntax and meaning of formulas is the on-line help of Microsoft
Excel [13]. The ESM software accompanying this paper has been also prepared
with Excel.

We frequently use names in the ESM spreadsheets. This is a method to assign
a name to a frequently used range of cells, and later on use that name in formulas
to denote that range. We use it for the sole purpose of making formulas shorter
and easier to understand. This method does not increase the computational
abilities of spreadsheets.

2.1 Functions in Spreadsheets

We use standard arithmetical functions: +, ·, − and /.
The syntax of comparison functions is value1relvalue2, where rel is any

of =, <, >, <=, >=, <>. value1 and value2 can be numbers, formulas or cell
references to numbers. The result is TRUE if the arguments are in the specified
relation, and FALSE otherwise.

Logical functions AND(value1,value2,...) and OR(value1,value2,...)
compute the logical conjunction and disjunction of their arguments, respectively.

The flow control functions are the following.
IF(test,value1,value2). If test is, refers or evaluates to TRUE, the func-

tion returns value1, if test is, refers or evaluates to FALSE it returns value2.
In all other cases the result is a #VALUE! error.

IFERROR(value1,value2). This function returns value2 if value1 is, refers
to or evaluates to any error value, and value1 otherwise.

CHOOSE(index-num,value1,value2,...) is a kind of generalization of IF,
because in one formula it allows the choice among up to 29 possible values to be
returned. index-num specifies which value argument is selected. index-num must
be a number between 1 and 29, or a formula or reference to a cell containing a
number between 1 and 29. If index-num is i, CHOOSE returns valuei.

We use two address functions: ROW() and COLUMN(), which return the number
of row (column, resp.) of the cell in which they are located. In case they are given
an argument, a reference to a single cell, they return the row (column, resp.) in
which that reference is located.

We also use aggregating functions. We use only their one-dimensional vari-
ants: all range arguments must be contiguous fragments of either single rows or
single columns.

In MATCH(lookup-value,lookup-range,match-type), lookup-value is the
value to be found in a range specified by lookup-range. lookup-value can
be a number, a formula or a cell reference to a number. match-type in the
spreadsheets we create is typically 0 and causes MATCH to find the first value
that is exactly equal to lookup-value and return its relative position in the
lookup-range.

312 J. Tyszkiewicz

If match-type is 1, then values in lookup-range are assumed to be sorted
into an increasing order, and MATCH finds the first value that is larger or equal to
lookup-value and returns its relative position in the lookup-range. If match-
type is −1, then values in lookup-range are assumed to be sorted into a decreas-
ing order, and MATCH finds the first value that is smaller or equal to lookup-value
and returns its relative position in the lookup-range.

In all three cases, if no value is found which satisfies the criteria, the result is
an error #N/A!. In case of match-type equal ±1 lookup-value is larger (smaller,
resp.) than all values in the sorted lookup-range, the result is the number of
the last non-empty cell in lookup-range.

In INDEX(array,num), array is a range of cells, num can be a number, a for-
mula yielding number or a cell reference to a number. The result of the function
is a value whose relative position in array is given by num.

The last function is SUMIF(criteria-range,criteria,sum-range), which
computes the sum of all values present in sum-range, in the rows/columns,
in which criteria-range contains a value satisfying criteria. The latter
argument has the form relvalue, where rel is any of =, <, >, <=, >=, <> and
value is a number, formula yielding a number or reference to a single cell.
sum-range and criteria-range must be both horizontal or bot vertical. E.g.,
SUMIF(A1:A5,<>B1,C1:C5) sums those values from range A1:A5 for which the
corresponding element in C1:C5) is not equal to the value in B1. This function is
treated as a representative of a broad class of spreadsheet functions, which can
be treated by methods similar to what we employ below.

2.2 Locality

Assume that a small initial spreadsheet S has been filled (perhaps in several
steps) to create a large spreadsheet T .

If k is the height (width, resp.) of S, and a formula in cell c of T references a
range R, then each corner of R is vertically (horizontally, resp.) at most k rows
(columns, resp.) away from either the top row (leftmost column, resp.) due to
an absolute reference, or from c (due to a relative reference).

In particular, in row-organized spreadsheets this very much restricts which
rows can be indeed referenced: only those close to the origin and those close to the
referencing cell. An analogous property holds for column-organized spreadsheets.
We use these locality properties several times below.

3 PRAM Model

A PRAM machine A consists of the following components:

– Unbounded number of cells of global read-and-write shared memory, num-
bered from 1 on, capable of storing one integer.

The Power of Spreadsheet Computations 313

– Unbounded number of cells of global read-only input memory, analogous to
shared memory.

– Unbounded number of processors, numbered from 1 on. Each of them has
three private read and write registers i, j, k for storing integers. Each of them
can access the following read-only registers: s with its own serial number, N
equal to the total number of active processors and M equal to the number of
active cells of shared memory.
The number of private registers can be chosen arbitrarily. We needed some
fixed limit, so we have decided to use 3 of them.

– Program π, which is a list of consecutively numbered instructions of the
following forms, and where x is ranging over i, j, k and u, v over i, j, k, s,N,M ,
M [i],M [j],M [k],M [s], I[i], I[j], I[k], I[s] and integer constants, � ranges over
integer constants:
1. x := u
2. x := u ◦ v, where ◦ is among {+,−, ∗, /}
3. M [x] := u
4. M [x] := u ◦ v, where ◦ is among {+,−, ∗, /}
5. if u < v then goto �

M [x] stands for the shared memory cell whose address is x, and I[x] stands
for the input memory cell whose address is x.

The input sequence v of integers is located in the input memory cells, and
I[1] contains the length of the input sequence, including itself (so that the empty
input sequence is passed to the machine as 1 in I[1]).

Then a fixed number of its processors (say p) is initialized, and a fixed number
of shared memory cells (say m) is initialized.

During the computation each of the processors follows π, updating its private
instruction counter. The state of A at each time t of its computation on input v is
defined to be the sequence of p 4-tuples of integers and a sequence of m integers:
the n-th tuple is the state of the n-th processor, consisting of: the values of its
local variables i, j and k, the value of its instruction counter, while the sequence
of integers represents the content of the shared memory.

Initially (i.e., at time t = 0) the values of local registers are 0, the instruction
counter is 1, and the shared memory values are 0.

A single step of computation of A corresponds to a parallel, simultaneous
change of all p 4-tuples and m integers describing the processors and shared
memory of A.

An attempt to read from a nonexistent input or shared memory cell (i.e.,
of address higher than I[1] or than p, resp.) or to read from cells of numbers
smaller than 1 is an error and the result of this operation is unpredictable: it
may cause the machine to break and stop operating, or to retrieve some value
and continue computation.

An attempt to write to a shared memory cell of zero or negative number is
permitted, but has no effect, and similarly if that number is higher than p. If more
than one processor attempts to read from the same shared or input memory cell,
all of them succeed and get the same value. If more than one processor attempts

314 J. Tyszkiewicz

to write to the same shared memory cell, all the requests are executed, and the
new value of that memory cell is the one written by the processor with the lowest
serial number; the values written by the remaining processors get lost. Reading
is performed before writing, so the processors which read from a shared memory
cell to which other processors wish to write, get the “old” value.

The way of executing its program by A is obvious, with the provision that
if the value of the instruction counter becomes higher than the number of lines
in the program, the processor halts. Thus, given a PRAM A as above and its
input vector v, the computation of M on v is represented by a finite or infinite
sequence of states of A, which may but need not be constant from some moment
on. The result of computation of A after n steps is the content of the shared
memory after completing that step.

Another, substantially weaker model of PRAM is CREW, which results from
CRCW by forbidding concurrent writes altogether.

The programming language of our PRAM machines is extremely simple, but,
as it is well-known, equivalent in computing power to even very rich ones, so
indeed each processor separately has a universal computing power, equivalent
to that of a Turing machine. PRAM is a machine which can easily implement
referential data structures, such as lists, trees, etc., as well as arrays. Therefore
we use them without any further explanation.

4 Complexity Theory

In this paper we use the P -complete problem Circuit Value Problem (abbreviated
CVP). An instance of CVP is a sequence of n Boolean substitutions (the reason
for starting numbering from 2 is purely technical and explained below):

p2 := conn2(inputs2); p3 := conn3(inputs3); . . . pn := connn(inputsn).

The connectives conni can be binary and and or and unary not. Each of
the inputs in inputsk can be either true, or false, or a variable pi with i < k,
indicating that the value of that variable should be used.

The CVP problem is that, given an instance of CVP, to decide if the last
variable is true. This problem is known to be P -complete. We encode CVP in
various spreadsheets in order to demonstrate that they are unlikely to be effi-
ciently parallelizable. For convenience, when we do so we use 0 in place of false,
1 in place of true, for variables we use their numbers as names (we have started
numbering from 2, so this does not lead to confusing truth values with variables),
and we drop all conventional symbols like :=, parentheses and commas, so that
an example instance of CVP

p2 := and(true, false); p3 := or(p2, false); p4 := not(p3); p5 := or(p4, p3)

is encoded by
and 1 0; or 2 0; not 3; or 4, 3

In this paper we estimate the size of CVP instances, which are computable
in the spreadsheets in question. Each time it is easy to translate the size of CVP
instances we produce into the potential lower bounds.

The Power of Spreadsheet Computations 315

5 Un-directed Spreadsheets I: Complexity

It is obvious, that if the cells of a small initial spreadsheet S are filled to cre-
ate c columns and r rows of formulas, then the resulting spreadsheet can be
computed in time polynomial in cr, given the initial S, the dimensions c, r and
the input data of S. The following theorem is neither surprising nor difficult to
demonstrate. It implies that evaluating spreadsheets is P -complete.

Theorem 1. There exists an un-directed, un-organized spreadsheet S4, such that
when it is extended to dimensions of either n rows and 6 columns or 6 rows and
n columns, it computes the solution to the CVP problem of size n, given its
description as input.

Proof. A fully commented spreadsheet S4 is provided in ESM. It consists of
two functionally separate fragments, which can be independently converted into
row-oriented and column-oriented structure. ��

6 Directed Spreadsheets I: Simulating Spreadsheet by
PRAM

In this section, we are going to formulate and prove a theorem about evalu-
ating spreadsheets by PRAM machines. In our model spreadsheets can be of
unbounded size, so we can use asymptotic notation to describe the resources
needed by a PRAM to execute a spreadsheet of a given size. The theorem
below is formulated for row-organized row-directed spreadsheets. Its dual form
for column-organized column-directed spreadsheets holds, too.

Theorem 2. For any row-directed spreadsheet S with input data, there exists
a program π for CREW PRAM, such that if that spreadsheet is filled to make
c columns and r rows, the values of all its cells can be computed by π run for
O(r log cr) time on c processors and cr cells of memory, given the initial S, c, r
and the input data of S.

If S is additionally row-organized, then the values of the cells in the last row
can be computed by π run for O(r log c) steps on a PRAM with c processors and
c cells of memory.

Proof. For each column of the spreadsheet we designate one processor, which
will be responsible for it. Let the serial number of that processor be equal to
the number of the column. The computation of PRAM will be organized into
in rounds, where each round corresponds to computing the next row. The codes
for evaluating particular formulas are hard-coded into the program π.

For each round we assume that certain auxiliary data structures are available,
which enable evaluating aggregating functions efficiently. During each round,
first the new values are computed, and then these structures are updated, so
that they include the cells in the newly created row, as well. Separately, we must
explain how the auxiliary data structures are initialized before the first round.

316 J. Tyszkiewicz

Auxiliary Data Structures. We assume that during each round all the previously
created columns and rows are stored in two copies. Each row is stored in several
copies:

1. for INDEX: in the original form,
2. for MATCH: as a sorted array, where we sort and store two-element records

consisting of the value from the original row and its original address,
3. for SUMIF: for every subset of already existing rows, which potentially may

play hold sum-range and criteria-range in each call of SUMIF, the records
formed from the corresponding elements in these two ranges are sorted accord-
ing to the keys in the criteria-range, and then prefix sums are computed
from the sum-range values.

Each column is stored in similar copies:

1. for INDEX: in the original form,
2. for MATCH: as a balanced binary search tree, in which we store two-element

records consisting of the value from the original row (which is the key) and
its original address.

3. for SUMIF: for every subset of already existing columns, which potentially
may hold sum-range and criteria-range in a call of SUMIF, the records
formed from the corresponding elements in these two ranges are formed.
They are stored in a balanced binary search tree, with keys taken from the
criteria-range, and each node additionally stores the sum of the values
from sum-range in the subtree rooted at this node.

The key observation is that by locality properties described in Sect. 2.2, there
is a bounded number of possible pairs of columns (rows, resp.) that must be
indexed using prefix sums and binary search trees.

Initialization of Auxiliary Data Structures. The size of the initial spreadsheet
with input data is fixed, so this initialization takes constant time and requires
constant amount of memory.

Execution of a Round. Computing Formulas. Henceforth, PRAM must first eval-
uate formulas. Due to the row-oriented structure of the spreadsheet, the formulas
to be computed refer only to data above themselves, so all of them can be eval-
uated independently in parallel. For each of the cells, it is done by a single
processor, responsible for the column of that cell. The values of all functions
except MATCH, INDEX and SUM can be obviously evaluated in constant number
of steps. Note that COLUMN function can be evaluated, because each processor
knows its serial number, equal to the column number. ROW on the other hand is
evaluated by clocking the advancing computation time.

If MATCH looks up a row, a sorted version of that row is in the auxiliary data
structures. The processor can find there the suitable value (and its accompanying
address to be returned) using binary search in time O(log c).

The Power of Spreadsheet Computations 317

If MATCH looks up a column, a binary search tree version of that column is in
the auxiliary data structures, in which the processor can find the suitable value
(and its accompanying address, which should be returned) in time O(log r).

INDEX calls require retrieving a value of a known location from a horizontal
or vertical range, so after recomputing the address to be relative to the complete
row (column, resp.), the values are retrieved from the auxiliary data structures.

Each SUMIF call requires summing values from a horizontal or vertical range
in the auxiliary data structure, as specified by a constraint regarding the values
in criteria-range. Identifying its boundaries is done by binary search using
the key fields, and then the sum can be found using two accesses to the fields
with prefix sums.

In total, computing the new values takes O(log c + log r) = O(log cr) time.

Execution of a Round. Updating Auxiliary Data Structures. Updating auxiliary
data structures requires sorting several rows of values (including the newly cre-
ated row) combined with creating their accompanying prefix sums, and inserting
new records into the binary search trees holding data about columns. The former
can be performed in O(log c) time using logarithmic time linear memory sorting
employing all c processors, like the one described in [9, Section 5.2], and the prefix
sums can be then computed by the algorithm described in [8, Section 30.1.2].

Then all processors in parallel insert the new values from their columns into
the corresponding trees and update sums, in time O(log r).

In total, updating the necessary data structures takes O(log c + log r) =
O(log cr) time.

Cost of the Algorithm. First, initialization of auxiliary data structures takes
constant time. Then the PRAM computation performs r rounds, each of them
takes O(log cr) time, so the total time is O(r log cr). The memory used is constant
times cr.

For the second claim, in a row-organized spreadsheet there is no need to
access columns, so we do not need to maintain their auxiliary data structures.
Thus in this modified version each round can be completed in O(log c) time and
the total running time is O(r log c). By locality properties described in Sect. 2.2,
we need to store constantly many rows simultaneously, and therefore the total
amount of necessary memory is O(c). ��

7 Directed Spreadsheets II: Simulating PRAM by
Spreadsheet

At this point, we have demonstrated that directed spreadsheets can be evaluated
by quite efficient parallel algorithms, establishing thereby an upper bound on
their expressive power. The question of lower bounds arises naturally.

In order to provide an answer, we are going to demonstrate now that there
exists a spreadsheet program, with the following property: any given CRCW
PRAM A can be simulated by a row-organized row-oriented spreadsheet, if suit-
ably encoded in the form of spreadsheet data.

318 J. Tyszkiewicz

Theorem 3. There exists a row-organized row-directed spreadsheet, which is
able to simulate any PRAM A for which p = m, so that columns correspond to
processors of A and rows correspond to computation time.

Precisely speaking, there exists a single spreadsheet S1 consisting of 19 cells
(A2 to A20) with formulas, one row for input and a separate input area for
representation of a program, such that for every CRCW PRAM A with program
π, p processors and p cells of shared memory, and for every input vector v for
A, if one

1. pastes the encoding of π into the program area of S1
2. marks and fills the initial range A2:A20 to the right creating p columns (cor-

responding to the processors and shared memory cells of A)
3. selects the rows from 11 to 20 of these p columns and fills downward so that

the bottom row of the new range is 10t + 10,
4. pastes into S1 the input vector v of A in the first row,

then the cells of the bottom 10 rows compute the state of A after t steps of
computation on v.

This means, that the spreadsheet created from S1 in steps 1, 2 and 3 performs
the first t steps of the computation of A on every input, i.e., it simulates A.

Proof. ESM spreadsheet S1 is the implementation of PRAM in a spreadsheet
with explanation of the formulas used for that purpose, and is depicted in Fig. 1.
Below we highlight the main elements of the construction of S1.

Conceptually, the idea is to make a spreadsheet which computes the sequence
of configurations of the run of A on its input. Time is advancing downward and
configurations are horizontal blocks of 10 rows each. Each column corresponds
to one processor and one cell of shared memory, and formulas located there
take care of advancing the computation and handling read and write operations.
We may conveniently assume that the processor has been made responsible for
operating its associated shared memory cell.

PRAM is a machine with random access. To the contrary, in a spreadsheet
cells (which can be thought of as simple processors) can do random read, but
are allowed to write only to the memory cell they are associated with. Therefore
we have to simulate random writes by other means.

The idea is that any processor willing to write its contents to some shared
memory cell, has to announce this in a globally visible location, indicating the
address to which it attempts to write and the value to be written. Then all
processors use function MATCH to search among the announcements for writes
to their shared memory cells, and if there is one, fetch the value to be written
from the leftmost one using INDEX. This conforms to the priority write CRCW
conflict resolution policy. ��

Apart from ESM spreadsheet S1, we also provide its minor variant S5, per-
mitting structural programming with while-endwhile and if -endif rather than
goto jump instructions.

The construction in S1 provides answer for our questions:

The Power of Spreadsheet Computations 319

1. There is not much room for improvement over Theorem2. Indeed, it offers
O(r log cr) and O(r log c) algorithm for PRAM with c processors and O(c)
cells of memory, when the spreadsheet is row-directed and row-organized. On
the other hand, every PRAM computation taking time t, using c processors
and c cells of memory can be simulated in a row-directed and row-organized
spreadsheet with c columns and about 10t rows.

2. The class of computations expressible in row-directed and row-organized
spreadsheets is indeed very rich, and it includes a natural parallel complexity
class.

It is worth noting, that according to the results already proven, we have the
following.

Corollary 1. S1 is a universal row-oriented row-organized spreadsheet.

Proof. Given a row-oriented row-organized spreadsheet S, one can derive an
CREW PRAM program π, computing the same function as S. This π can be
encoded and provided as (a part of) input to S1, which can execute it.

If the initial S has c columns and r rows, then π should be run on a PRAM
with O(c) processors and memory cells and O(r log c) time. Then, in order to
simulate it, S1 needs O(c) columns and O(r log c) rows.

Thus the overhead of simulating a spreadsheet by the universal one is loga-
rithmic, typical for other universal devices. ��

The interest in the corollary is that S1 uses very few functions, in partic-
ular does not use SUMIF. Therefore this result indicates that the function set
with MATCH and INDEX as the only aggregating functions might form a kind of
core of the spreadsheet language of formulas, at least for the row-oriented row-
organized ones. Thus, in an attempt to create a theoretical model of spreadsheets,
this restricted function set appears as a candidate to be the set of basic opera-
tions, from which the remaining ones can be defined. It would be very much like
the relational algebra and its role in the theoretical formalization of relational
databases. Of course, it concerns only row-oriented row-organized spreadsheets
created by filling.

8 Bi-directed Spreadsheets: Complexity

A bi-directed, column organized spreadsheet extended to dimensions r and c can
be, according to Theorem2, evaluated on a PRAM using O(cr) cells of memory
and

1. O(r) processors in time O(c log r), if treated as column-organized column-
directed.

2. O(c) processors and in time O(r log cr), if treated as row-directed.

One might be tempted to believe that it is possible to combine somehow those
two methods together to yield a parallel evaluation algorithm of even better time
complexity. However, we prove below that there is no evaluation algorithm of
O(logO(1) cr) time complexity unless P = NC.

320 J. Tyszkiewicz

Theorem 4. There exists a bi-directed, column-organized spreadsheet S3, such
that when it is extended to dimensions of 3n rows and 8n columns, it computes
the solution to any CVP instance of size n, given its description as input.

Proof. The main idea is to implement CVP “diagonally”, and a fully commented
implementation is provided as ESM spreadsheet S3. ��

Bi-directed spreadsheets are clearly more restrictive than those which are
directed in one dimension only. Author’s personal experience from the develop-
ment of S3 is that the bi-directed structure is quite unnatural, especially in the
column-organized version. Otherwise very simple computation of CVP required
a significant effort to be programmed. At the same time this structure does not
seem to offer any noticeable advantage in terms of complexity of evaluation.

9 Un-directed Spreadsheets II: What Can They
Compute?

After a successful implementation of a PRAM in a row-directed spreadsheet and
demonstrating that a large class of PRAM computations can be expressed in
spreadsheets, it seems natural to attempt a similar goal for un-directed ones,
too.

We demonstrate below, that one can create an un-directed row-organized
spreadsheet which implements PRAM in a much more flexible way than the
row-directed row-organized one.

Theorem 5. There exists a row-organized (but not row-directed) spreadsheet S2
consisting of 21 cells (A2 to A22) with formulas, one row for input and a separate
input area for representation of a program (including a value of p), such that for
every CRCW PRAM A with program π for every input vector v, if one

1. pastes the encoding of π into the program area of S2
2. marks and fills the initial range A2:A22 to the right for q columns,
3. selects rows from 13 to 22 of these q columns and fills downward so that the

bottom row of the new range is 10t + 12,
4. pastes into S2 the input vector v of A in the first row;
5. inserts a number into the input cell p

then the cells at the intersection of the bottom 10 rows with p columns of numbers
from q−p−q (mod p) to q−q (mod p) compute the state of A after t∗(q/p−1)
steps of computation on v.

Informally, the spreadsheet S2 above is able to simulate any PRAM A, for
which p = m in such a way, that filled to 10t rows and q ≥ p columns, it can
utilize this computation area to encode a PRAM with p processors and p cells
of shared memory, running for tq/p time. Moreover, the parameter p is a part of
the input, so only the whole input specifies, how many processors will be used
in the computation. In particular, for p = 1, this results in a fully sequential
computation of length tq.

The Power of Spreadsheet Computations 321

Proof. The commented spreadsheet is provided as ESM spreadsheet S2. It is
recommended that the reader first analyzes S1, on which S2 is based. ��

It is instructive to compare spreadsheet S4 mentioned in Sect. 5 with the
present S2. It seems at the first glance that the former is a special case of the
latter. However, it is not the case. During the whole computation expressed in
S4 it is always possible to refer to the values computed in the past, no matter
how distant. In S2 the simulated PRAM can only refer to the values computed
in the previous step of simulation. This indicates the difficulty of describing the
computations of a spreadsheet by a machine model. In a spreadsheet, every cell
is immutable, but its value remains accessible forever. In typical machine models
of computation, memory locations are mutable and write operations delete their
previous contents.

10 Summary and Related Research

We have investigated spreadsheets as a class of algorithms, by assuming that
they are small templates, which are filled to a larger area of the grid to process
data of variable size.

Under this scenario we have identified simple structural properties of spread-
sheets, defined in the terms of the pattern of references between cells, which
determine the complexity of the expressible computations.

In this paper, we analyze the computations expressible in spreadsheets and
their relation to parallel complexity classes. Our findings shed light both on
parallelization potential of certain structures in spreadsheets, and on the fun-
damental limitations of this approach. We have already mentioned research on
parallelizing spreadsheet computations [2–4,12,14,19]. There was very little pre-
vious research on lower bounds of the computational power of spreadsheets,
although already [5] observed that they have universal computing power. The
papers [1], [15] and [16] demonstrate simulations of various algorithms and mod-
els o computation using spreadsheets, but without any intent to estimate the full
power of this computation paradigm. Paper [20] demonstrates how to implement
relational algebra queries and several other general algorithms in spreadsheets
(which turn out to be column-organized, but not necessarily column-oriented).
[18] presents an implementation of a subset of Java in a spreadsheet, but without
considering parallelism, which is the core topic of the present paper.

Acknowledgments. Research funded by Polish National Science Centre (Narodowe
Centrum Nauki). The author wishes to thank Jacek Sroka and Aleksy Schubert for
many valuable discussions on the topic.

References

1. Bernstein, M.: Using spreadsheet languages to understand sequence analysis algo-
rithms. Comput. Appl. Biosci. 3, 217–221 (1987)

322 J. Tyszkiewicz

2. Biermann, F.: Data-Parallel Spreadsheet Programming, Ph.D. thesis. IT University
of Copenhagen, Computer Science (2018)

3. Bock, A.A.: Static partitioning of spreadsheets for parallel execution. In: Alferes,
J.J., Johansson, M. (eds.) PADL 2019. LNCS, vol. 11372, pp. 221–237. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-05998-9 14

4. Bock, A.A., Biermann, F.: Puncalc: task-based parallelism and speculative reeval-
uation in spreadsheets. J. Supercomput. 1–21 (2019). https://doi.org/10.1007/
s11227-019-02823-8

5. Casimir, R.J.: Real programmers don’t use spreadsheets. SIGPLAN Not. 27(6),
10–16 (1992)

6. Cavanagh, M.: JPMorgan Chase & Co: Report of JPMorgan Chase & Co., Man-
agement Task Force Regarding 2012 CIO Losses (2012)

7. Chesler, E.J., et al.: In silico mapping of mouse quantitative trait loci. Science
294(5551), 2423 (2001). In Technical Comments

8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press, Cambridge (2001)

9. Gibbons, A., Rytter, W.: Efficient Parallel Algorithms. Cambridge University
Press, Cambridge (1988)

10. Grupe, A., et al.: In silico mapping of complex disease-related traits in mice. Science
292(5523), 1915–1918 (2001)

11. Herndon, T., Ash, M., Pollin, R.: Does high public debt consistently stifle economic
growth? A critique of Reinhart and Rogoff. Camb. J. Econ. 38(2), 257–279 (2014)

12. Kulkarni, S.G., Wierer, J.J., Xu, M.: Calculation of spreadsheet data. US Patent
8,006,175, August 2011

13. Microsoft Corp.: Excel help. http://office.microsoft.com/en-us/excel-help/
14. Olkin, T.M.: Threading spreadsheet calculations. US Patent 10289672, May 2019
15. Premachandra, I.M.: Modeling a turing machine on a spreadsheet: a learning tool.

Int. J. Inf. Manag. Sci. 4(2), 81–92 (1993)
16. Rautama, E., Sutinen, E., Tarhio, J.: Excel as an algorithm animation environment.

In: Proceedings of the 2nd Conference on Integrating Technology into Computer
Science Education, ITiCSE 1997, pp. 24–26. ACM, New York (1997)

17. Reinhart, C.M., Rogoff, K.S.: Growth in a time of debt. Am. Econ. Rev. 100(2),
573–578 (2010)

18. Schubert, A., Sroka, J., Tyszkiewicz, J.: Systematic programming in a spreadsheet.
In: IS-EUD 2017 6th International Symposium on End-User Development, pp. 10–
17. Eindhoven University of Technology (2017)

19. Sroka, J., Leśniewski, A., Kowaluk, M., Stencel, K., Tyszkiewicz, J.: Towards min-
imal algorithms for big data analytics with spreadsheets. In: Proceedings of the
4th ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and
Beyond, p. 1. ACM (2017)

20. Sroka, J., Panasiuk, A., Stencel, K., Tyszkiewicz, J.: Translating relational queries
into spreadsheets. IEEE Trans. Knowl. Data Eng. 27(8), 2291–2303 (2015)

https://doi.org/10.1007/978-3-030-05998-9_14
https://doi.org/10.1007/s11227-019-02823-8
https://doi.org/10.1007/s11227-019-02823-8
http://office.microsoft.com/en-us/excel-help/

	The Power of Spreadsheet Computations
	1 Introduction
	1.1 Why Spreadsheets?
	1.2 Measuring the Expressiveness of Spreadsheets
	1.3 Technicalities of Spreadsheets
	1.4 Main Results

	2 Spreadsheets
	2.1 Functions in Spreadsheets
	2.2 Locality

	3 PRAM Model
	4 Complexity Theory
	5 Un-directed Spreadsheets I: Complexity
	6 Directed Spreadsheets I: Simulating Spreadsheet by PRAM
	7 Directed Spreadsheets II: Simulating PRAM by Spreadsheet
	8 Bi-directed Spreadsheets: Complexity
	9 Un-directed Spreadsheets II: What Can They Compute?
	10 Summary and Related Research
	References

