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Yuri Gurevich (b. 1940)



Dedicated to

Yuri Gurevich

in honor of his 80th birthday
with deep admiration, gratitude and affection.

There was light and gladness and joy and honor
(Esther 8:16)

Wishing him many years filled with joy.



Preface

May 7, 2020, was Yuri Gurevich’s 80th birthday. To celebrate this event and to honor
Yuri and his work, a conference and a Festschrift were planned. The conference,
Yurifest 2020, was to be combined with the 39th Journées sur les Arithmétiques
Faibles also celebrating Yuri’s 80th birthday and was to take place May 18–20 in
Fontainebleau, France. Unfortunately, the coronavirus crisis forced postponement of
Yurifest 2020. The Festschrift, on the other hand, was produced as planned; it is the
present book.

This volume is a collection of articles contributed by some of Yuri’s many friends;
all articles were reviewed as usual. They address a very wide variety of topics, but by
no means all of the fields of logic and computation in which Yuri has made important
progress. Yuri’s work stretches from highly theoretical (e.g., structure of abelian
ordered groups) to very applied (e.g., file-transfer protocols) and from classical prob-
lems (e.g., decision problems for prefix-classes in first-order logic) to the newest
frontiers (e.g., quantum computing).

Yuri retired from Microsoft Research in 2018. This was his second retirement; he
retired from the University of Michigan in 2000 (after moving to Microsoft in 1998 and
being on leave from Michigan for the next two years). Despite being doubly retired,
Yuri remains very active scientifically; see his annotated bibligraphy at https://web.
eecs.umich.edu/*gurevich/annotated.htm for details. He also remains very active
physically, taking long (by other people’s standards) walks near his homes in Michigan
(during the summers) and Florida (during the winters). We wish him many more years
of enjoyable activity, of both sorts.

We thank all those who wrote articles for this volume, all those who anonymously
refereed the articles, all those who were scheduled to speak at the conference in
Fontainebleau before the postponement, and all those who will speak at the rescheduled
conference after the coronavirus crisis ends. We also thank Springer for enabling us to
continue the Fields of Logic and Computation series (LNCS 6300 and 9300) in honor
of Yuri with the present volume.

Spring 2020 Andreas Blass
Patrick Cégielski

Nachum Dershowitz
Manfred Droste

Bernd Finkbeiner

https://web.eecs.umich.edu/~gurevich/annotated.htm
https://web.eecs.umich.edu/~gurevich/annotated.htm
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On Yuri Gurevich



To Yuri at 80 and More than 40 Years
of Friendship

Johann A. Makowsky(B)

Department of Computer Science, Technion-IIT, Haifa, Israel
janos@cs.technion.ac.il

Abstract. An after-dinner speech for Yuri Gurevich’s 80th birthday.

Dear Yuri!
Our paths crossed several times, geographically and scientifically. We met first
in 1976 in Jerusalem, we worked in parallel on the book Model Theoretic Logics,
we explored together in many conversations, but without a single joint publica-
tion, the role of Logic (not only Computability) in the theoretical foundations
of Computer Science, we founded together the European Association of Com-
puter Science Logic. We shared our curiosity and encountered repeatedly, but
not simultaneously, similar questions. We were not competing but occasionally
inspiring each other, for over 44 years. There are others who shared your journey
more than me. Andreas Blass, your most frequent coauthor, and Saharon She-
lah, of course. However, we share the not always easy experience of geographic,
cultural and scientific migration. We met when we were new to an Israel very
different from today’s. It was still during the Cold War, and we were coming
from very different socio-cultural backgrounds. We shared the transition from
mathematical logic to theoretical computer science while still being interested
in foundational questions. The years 1976–1982 included both the Logic Year
in 1980 in Jerusalem, and the recognition of Logic in Computer Science by the
IEEE.

So let me sketch a few stations of our interlacing paths.

First Meeting

I first arrived in Israel in February 1976. I was a Lady Davis Fellow at the Hebrew
University in Jerusalem, invited by Saharon Shelah. At the time I was a junior
faculty at the Free University in West-Berlin. To save money I took a flight with
TAROM, the Romanian Airline, from East-Berlin, via Bucharest, to Tel Aviv.
Saharon personally met me at the airport. He greeted me warmly and helped find-
ing a shared taxi. Finally we sat in a car with five oversized ultra-religious fellow
Jews, squeezed between one of them and his big box for an extra hat, and the car
moved in direction of Jerusalem. “Well”, Saharon resumed our earlier conversa-
tion, “did you think about what I wrote to you in my letter?”. It was my first
visit to Israel. It was still daylight, and I asked Saharon to let me enjoy the view.
c© Springer Nature Switzerland AG 2020
A. Blass et al. (Eds.): Gurevich Festschrift, LNCS 12180, pp. 3–6, 2020.
https://doi.org/10.1007/978-3-030-48006-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48006-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-48006-6_1


4 J. A. Makowsky

Thirty minutes later it was dark. “Well”, Saharon repeated his question. “It’s dark
already, can we talk mathematics, now?”.......

A few days later I was introduced by Saharon to the participants of the Logic
Seminar: Azriel Levy, Haim Gaifman, Menachem Magidor, Jonathan Stavi, Mati
Rubin, Ami Litman, Shai Ben-David, and Yuri Gurevich. Yuri, you were curious
about me, even inquisitive. You were a recent immigrant, not even two years in
Israel, with a Soviet past and full of Zionist hopes. You must have heard about
my political past and my infection with “Communism’s Children Disease” (as
Lenin called Leftism). I felt that you perceived me as a constant provocation.

For you Israel was full of unexpected provocations. You wanted to wear a
hat to protect your baldness from the sun. Soon you learned that choosing a hat
in Israel was always a political statement. Either it showed a religious affiliation
with or without political undertones, or it was a statement of class struggle
with or without secular or laicist undertones. Whatever hat you chose, people
immediately ask questions.

From Nikolayev to Beer-Sheva

Yuri, you went a long way. Born on May 7, 1940 in Nikolayev, in Southern
Ukraine, you left your hometown to study from 1962–1968 in Yekaterinburg
(Sverdlovsk, Russia) at the Ural University, where you also worked as a pro-
grammer. From 1971 on you were a Professor and Chairman of the Computer
Science Department at the Kuban University in Krasnodar (Russia). On your
way to emigration to Israel you spent 1972–73 as a senior science fellow at the
computing center of the Georgian Academy Sciences in Tbilisi (Georgia). Finally,
you arrived in Israel in 1974 to become an Associate Professor of mathematics
at the Ben-Gurion University in Beer-Sheva, Israel. Your early research was on
decidability and undecidability questions for First Order and some fragments of
Second Order Logic for algebraic systems, in particular Ordered Abelian Groups,
and the Decision Problem of Predicate Calculus and some of its variations. Your
early work in Israel continued some of these lines of research which naturally
merged with some of the interests of Saharon Shelah.

From Budapest to Berlin

I was born on March 12, 1948 in Budapest (Hungary). Due to the political
developments in 1948–1949, my parents divorced and my mother emigrated with
me in June 1949 to Zurich, Switzerland. I studied at the Swiss Federal Institute
of Technology in Zurich from 1967–1974. My early research was first in classical,
and later in abstract Model theory. My first work with Saharon Shelah and
Jonathan Stavi was an extension of my PhD-thesis. Saharon invited me to join
him in Jerusalem to continue working with him and Jonathan Stavi. My visit
in 1976 in Jerusalem had a lasting effect. In 1980 joined the Computer Science
Department of the Technion - Israel Institute of Technology.
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Logic in Computer Science

When we first met we both worked with Saharon Shelah. You were an estab-
lished researcher in the Algebra i Logika tradition and I was a young model
theorist with a past in stability theory and a future in abstract model theory.
Our contributions in the book Model Theoretic Logics reflect this. You wrote
the chapter on Monadic Second Order Logic, and I wrote three chapters, one of
them the beginning of Saharon’s theory of Abstract Elementary Classes (then
called Abstract Embedding Relations). But we both developed an interest in
theoretical computer science. Starting in 1978 I happened to discuss problems in
relational databases with Catriel Beeri in Jerusalem. Quite a few topics of our
discussions found their way into M. Vardi’s PhD thesis. I, and independently A.
Chandra and H. Lewis, proved the undecidability of the consequence problem for
embedded database dependencies. You and M. Vardi refined this undecidability
result.

In 1982 I was an invited speaker at the Logic Colloquium in Florence giving
a lecture on Model theoretic issues in theoretical computer science, dealing with
relational data bases and abstract data types. In the same year you visited me in
Haifa to learn from me what my talk had been about. Some of our conversations
influenced your paper on Logic and the challenge of Computer Science. Descriptive
complexity theory was in the making. A. Chandra and D. Harel produced their
landmark papers on computable queries in databases. Inspired by papers by R.
Fagin, A. Selman and N. Jones, N. Immerman and M. Vardi characterized poly-
nomial time and logarithmic space for ordered structures. Descriptive complexity
theory would remain a recurrent topic in your career, and also in mine.

One of the topics we also discussed in 1982 was how to extend the work of
A. Chandra and D. Harel to describe computable transformation of structures
rather than just querying them. You developed from this your Abstract State
Machines, a topic which would finally bring you to work at Microsoft. I worked
with Y. Stavi, and later with E. Dahlhaus, on extending query languages to
hierarchical databases. But my own work in this direction was slowed down by
Y. Stavi’s progressive withdrawal from publishing research, and by my struggle
to find my way in computer science. I helped laying the logical foundations of
the Entity-Relationship model in databases, I dabbled in logic programming,
examined the meaning of normal forms in database, specification of abstract
data types, and explored why Horn formulas matter in computer science. Yuri,
we could have worked together much more.

Another Emigration

You left Israel shortly after our long conversations. There were various reasons
for that. You found a new scientific home in Ann Arbor. You found new collab-
orators, E. Boerger, E. Graedel, and foremost, Andreas Blass. You continued to
visit Jerusalem to work with Saharon. Your vast productivity encompassed many
aspects of computer science. Let me quote from your own description of your
research.
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Your general direction is from pure mathematics to applications: to com-
puter science, software engineering, privacy and security, quantum computing:
You worked first on ordered Abelian groups and the classical decision problem.
Your magnum opus is your book with E. Boerger and E. Graedel on this topic.
You explored monadic second-order theories and games, in collaboration with
S. Shelah and L. Harrington. You worked in finite model theory and database
theory, and in average case complexity. This is where our mutual work interests
met most. You kept questioning what is an algorithm, looking for evidence for
the so called Church Turing thesis. And finally, you had a great impact on the
foundations of software engineering with your abstract state machines, which
even found applications to access control, other security issues, and privacy. In
the last years at Microsoft you got interested in quantum computing, when you
invited me to learn about my only paper in that field.

Happy Birthday

Dear Yuri!
We all wish you a happy birthday, with many years to come. May you

be healthy and enjoy your family, your friends, and your unrelenting scientific
curiosity.

Ad Mea VeEsrim.
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State of the Art in Logics for Verification
of Resource-Bounded Multi-Agent

Systems

Natasha Alechina1(B) and Brian Logan2

1 Utrecht University, Utrecht, The Netherlands
n.a.alechina@uu.nl

2 University of Nottingham, Nottingham, UK
bsl@cs.nott.ac.uk

Abstract. Approaches to the verification of multi-agent systems are
typically based on games or transition systems defined in terms of states
and actions. However such approaches often ignore a key aspect of multi-
agent systems, namely that the agents’ actions require (and sometimes
produce) resources. We survey previous work on the verification of multi-
agent systems that takes resources into account, extending substantially
a survey from 2016 [9].

1 Introduction

A multi-agent system (MAS) is a system that is composed of multiple interacting
agents. An agent is an autonomous entity that has the ability to collect infor-
mation, reason about it, and perform actions in pursuit of its goals or on behalf
of others. Examples of agents are controllers for satellites, non-driver transport
systems such as UAVs, smart manufacturing cells, smart energy grids, and nodes
in sensor networks.

Many distributed hardware and software systems can be naturally modelled
as multi-agent systems. Such systems are often extremely complex, and the inter-
action between the components and their environment can lead to undesired
behaviours that are difficult to predict in advance. With the increasing use of
autonomous agents in safety critical systems, there is a growing need to verify
that their behaviour conforms to the desired system specification, and over the
last decade verification of multi-agent systems has become a thriving research
area [35].

A key approach to the verification of MAS is model checking. Model checking
involves checking whether a model of the system satisfies a temporal logic formula
corresponding to some aspect of the system specification. In a model-checking
approach to the verification of multi-agent systems, a MAS is represented by
a finite state transition system.1 A state transition system consists of a set of
1 There is work on model-checking infinite state transition systems, see, for example,

[18], but in this paper we concentrate on the finite case.

c© Springer Nature Switzerland AG 2020
A. Blass et al. (Eds.): Gurevich Festschrift, LNCS 12180, pp. 9–29, 2020.
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10 N. Alechina and B. Logan

states and transitions between them. Intuitively, each state of a MAS corresponds
to a tuple of states of the agents and of the environment, and each transition
corresponds to actions performed by the agents. Each state is labelled with
atomic propositions that are true in that state. A standard assumption is that
each state in the system has at least one outgoing transition (if a state is a
deadlock state in the original MAS, we can model this by adding a transition
to itself by some null action and labelling it with a ‘deadlock’ proposition).
Properties of the system to be verified are expressed in an appropriate temporal
logic L. The model-checking problem for L is, given a state transition system
M (and possibly a state s) and an L formula φ, check whether φ is true in M
(at state s, or on all paths from s, etc.). For example, Linear Time Temporal
Logic (LTL) can express properties of infinite runs through the system using a
unary operator ‘in the next state’ © (©φ means that on this path, the next state
satisfies φ) and a binary operator ‘until’ U (φUψ means that on this path, ψ holds
after finitely many steps, and before that, φ holds in every state). Using these
operators, one can define operators such as ♦ (in some state on this path) and
� (in every state on this path) and specify properties of interest of the system,
such as deadlock never happens (�¬d) or every request is eventually answered
(�(r → ♦a)). In model checking MAS, such temporal logics are often extended
with additional modalities capturing the knowledge of agents, or the strategic
ability of groups of agents. Model checking has the advantage that it is a fully
automated technique, which facilitates its use in the MAS development process.2

A wide range of approaches to model-checking MAS have been proposed in the
literature, ranging from the adaptation of standard model-checking tools, e.g.,
[20,21] to the development of special-purpose model checkers for multi-agent
systems, e.g., [33,41].

In many multi-agent systems, agents are resource-bounded, in the sense that
they require resources in order to act. Actions require time to complete and
typically require additional resources depending on the application domain, for
example energy or money. For many applications, the availability or otherwise
of resources is critical to the properties to be verified: a multi-agent system
may have very different behaviours depending on the resource endowment of
the agents that comprise it. For example, an agent with insufficient energy may
be unable to complete a task in the time assumed by a team plan if it has to
recharge its battery before performing the task.

In this paper we survey state of the art in the emerging field of logics for
verification of resource-bounded agents, and highlight a number of challenges
that must be overcome to allow practical verification of resource-bounded MAS.
We argue that recent work on the complexity of model-checking for logics of
strategic ability with resources offers the possibility of significant progress in
the field, new verification approaches and tools, and the ability to verify the
properties of a large, important class of autonomous system that were previously
out of reach.

2 Another strand of work focusses on theorem proving, e.g., [44], but such approaches
typically require user interaction to guide the search for a proof.
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The remainder of the paper is organised as follows. In Sect. 2, we intro-
duce some necessary background material on weighted games. Reachability in
weighted games can be seen as a verification technique in its own right; however,
it is included here as a source of technical results relevant for strategic resource
logics. In this section, we also introduce the syntax and semantics of strategy
logics (without resources) that are the underlying formalism for resource logics.
In Sect. 3 we briefly survey recent work in resource logics and study two log-
ics, RB ± ATL and RB± ATL∗, in greater detail. We conclude in Sect. 4 with a
summary of results and open problems.

2 Background

In this section, we recall relevant definitions and results for energy games, vector
addition systems with states, and the logics of strategic ability ATL and ATL∗.

We first introduce some notational conventions. In what follows, we use the
usual point-wise notation for vector comparison and addition. In particular,
(b1, . . . , bn) ≤ (d1, . . . , dn) iff bi ≤ di ∀i ∈ {1, . . . , n}, (b1, . . . , bn) = (d1, . . . , dn)
iff bi = di ∀ i ∈ {1, . . . , n}, and (b1, . . . , bn)+(d1, . . . , dn) = (b1 +d1, . . . , bn +dn)
and (b1, . . . , bn) − (d1, . . . , dn) = (b1 − d1, . . . , bn − dn). We define (b1, . . . , bn) <
(d1, . . . , dn) as (b1, . . . , bn) ≤ (d1, . . . , dn) and (b1, . . . , bn) �= (d1, . . . , dn). Given
a function f returning a vector, we denote by fi the function that returns the i-th
component of the vector returned by f . We use bold letters to denote vectors.

Given a set S, the set of finite sequences of elements from S is denoted by
S+. For a sequence λ = s1 . . . sk ∈ S+, we use the notation λ[i] = si for i ≤ k,
λ[i, j] = si . . . sj ∀ 1 ≤ i ≤ j ≤ k, and |λ| = k for the length of λ.

2.1 Energy Games and Vector Addition Systems with States

Distributed systems that produce and consume resources have been modelled
using a variety of approaches, including Petri nets, energy games and vector
addition systems with states. In this section, we briefly recall some results from
these areas relevant to resource logics and model checking resource-bounded
MAS. We will first briefly introduce a version of energy games before introducing
a variant of alternating vector addition systems with states (AVASS). We focus
on the reachability and non-termination problems for AVASS, as these are the
most relevant for the results on resource logics in Sect. 3.

Energy Games. Energy games [28] are games between two players, played on
multi-weighted game graphs.

Definition 1. A multi-weighted game graph of dimension r is a tuple (S, r,R)
where S is the set of vertices, R ⊆ S × Z

r × S is a finite set of edges labelled
by a vector of integers of length r called a weight. Each vertex has at least one
outgoing edge. The set of vertices is partitioned into two sets, Player 1 vertices
S1 and Player 2 vertices S2.
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The dimension is the number of resource types, where resource types can be, e.g.,
energy, memory or some other kind of capacity, time, money, etc. The vertices can
be thought of as states, and edges as transitions between states with associated
costs and rewards for each resource type. The weight of an edge describes how the
corresponding transition affects the resource amounts. Note that, in the graph,
there are no resource vectors associated with the vertices, so that the structure
can be finitely represented. However we can talk about configurations which are
pairs (s,v) where s is a vertex and v a vector of resources: intuitively, v is the
resource amounts available in s in this configuration. A path is a finite sequence
of configurations (s1,v1), . . . , (sn,vn), such that for each j with 1 ≤ j ≤ n there
is an edge (sj ,vj+1 − vj , sj+1). A play from vertex s is an infinite sequence of
configurations ρ = (s,v), . . . , such that every finite prefix is a path. A strategy
for a player i is a function Fi taking as input a path ρ · (s,v) ending in Player
i vertex s and returning an edge Fi(ρ · (s,v)) of the form (s,u, s′) from E. A
play ρ = (s1,v1), . . . , (sj ,vj) . . . is consistent with a strategy Fp for Player p if
whenever sj is in Sp, then Fp(ρ[1, j]) = (sj ,vj+1 − vj , sj+1).

Definition 2. Given a multi-weighted graph (S, r,R), an initial vertex s, and
a vector b ∈ N

r, a play ρ from s is winning for Player 1 in the energy game
on (S, r,R) with initial credit b if for all configurations ρ[j] = (sj ,vj), vj ≥ 0.
Otherwise, Player 2 wins the play. Player 1 wins the energy game on (S, r,R)
from s with initial credit b if there exists a winning strategy F1 for Player 1,
that is, a strategy such that for all strategies F2 of Player 2, the play consistent
with both strategies is winning for Player 1.

Intuitively, starting in state s with initial credit (resource allocation) b,
Player 1 can play forever without any resource amount dropping below 0. Clearly,
the higher the initial credit, the better for Player 1; if Player 1 has a winning
strategy for (s,b), and b ≤ b′, then Player 1 has a winning strategy from (s,b′).

Definition 3. The following problem is the existence of a winning strategy for
Player 1 with known initial credit.

Input: A multi-weighted graph (S,R, r), an initial state s ∈ S and an initial
credit b.

Question: Does Player 1 have a winning strategy in the corresponding energy
game?

An energy game with unknown initial credit starting in s is won by Player 1
iff for some initial credit, Player 1 has a winning strategy.

Definition 4. The following problem is the existence of a winning strategy for
Player 1 with unknown initial credit.

Input: A multi-weighted graph (S,R, r) and an initial state s ∈ S.
Question: Does Player 1 have a winning strategy in the corresponding energy

game for some initial credit b?
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Both problems (existence of a winning strategy for known and unknown
initial credit) were first shown to be decidable in [22]. In [37] both problems
were shown to be decidable in 2EXPTIME (polynomial in the size of the graph,
double exponential in the dimension r). In [37] it was also shown that the set
of all Pareto optimal (non-dominated) initial credits for which Player 1 has a
winning strategy is computable in time doubly exponential in the dimension and
pseudo-polynomial in the number of states and edges.

There are many versions of energy games: with only unit costs, with only one
resource type, with imperfect information. A version with finite strategies was
studied in [28] and shown to be decidable and in coNP.

Alternating Vector Addition Systems with State. An alternating vector
addition system with state (AVASS) can be used as a setting for various two
player games. There are many different versions of AVASS and decision problems
for them. The game semantics for AVASS presented below was introduced in [38].

Definition 5. An alternating vector addition system with states (AVASS) is
a tuple A = (S, r,R1, R2), where S is a finite set of states, r is the dimension
(number of resource types), R1 ⊆ S × Z

r × S and R2 ⊆ S3.

Intuitively, R1 edges correspond to Player 1 moves, and R2 triples (s, s1, s2)
correspond to Player 2 choices of where to move from the state s, to s1 or to
s2. Note that unlike in energy games, the setting is asymmetric in that only
Player 1 moves change resource amounts. A path of configurations is defined
the same way as for energy games: in a configuration (s,b), if the next move
is (s,v, s′) ∈ R1, then the next configuration is (s′,b + v); if the next move
is (s, s1, s2) ∈ R2, then, depending on the choice made by Player 2, the next
configuration is either (s1,b) or (s2,b).

The following problem is essentially the same as the existence of a winning
strategy for Player 1 in an energy game with known initial credit:

Definition 6. The following problem is the known initial credit non-termination
problem for AVASS:

Input: An AVASS A = (S, r,R1, R2), an initial state s ∈ S and an initial credit
b.

Question: Does Player 1 have a strategy such that every play consistent with
this strategy is infinite and all resource amounts in configurations on the path
are non-negative?

This problem was shown to be decidable and in (r − 1)-EXPTIME in [22],
2EXPTIME hard in [30], and in 2EXPTIME in [37]. The unknown initial credit
version of the problem is also 2EXPTIME-complete [37]. The set of all Pareto
optimal initial credits for which Player 1 has a winning strategy can be computed
in 2EXPTIME [37].

Another problem which has been studied in the AVASS literature is state
reachability. The state reachability problem is whether Player 1 has a strategy to
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reach a particular state while ensuring resource amounts remain non-negative (as
opposed to reachability of a particular configuration (s′,v), which is undecidable,
[40]). The state reachability problem for energy games is undecidable [2].

Definition 7. The following problem is the known initial credit state reachabil-
ity problem for AVASS:

Input: An AVASS A = (S, r,R1, R2), an initial state s ∈ S, an initial credit b
and state s′ ∈ S.

Question: Does Player 1 have a strategy such that every path generated by this
strategy eventually reaches a configuration where the state is s′, and until that
configuration, all resource amounts on the path are non-negative?

This problem was shown to be decidable in [43], and to be 2EXPTIME-
complete in [30]. In the same paper, the state reachability problem with unknown
initial credit was also shown to be 2EXPTIME-complete. The set of all Pareto
optimal initial credits for which Player 1 has a winning strategy can be computed
in 2EXPTIME [37].

Parity Games on AVASS. Another kind of games on AVASS is parity games.
Let A = (S, r,R1, R2) be an AVASS. A colouring col is defined as a map S →
{0, . . . , k} for some k ≥ 1.

Definition 8. The parity game problem for AVASS is as follows:

Input: An AVASS A, an initial state s ∈ A, an initial credit b ∈ N
r and a

colouring col : S → {0, . . . , k}
Question: Does Player 1 have a strategy in (s,b) such that every play consistent

with this strategy is infinite, resource amounts in configurations on the path
are non-negative, and on every play the maximal colour that appears infinitely
often is even?

The parity game problem for alternating VASS is decidable. This was shown
in [5] to be a consequence of Corollary 2 in [1] which states the decidability of
parity games for single-sided VASS. A single-sided VASS is an AVASS where the
set of states is partitioned into S1 and S2, R1 transitions start from states in S1,
R2 transitions start from states in S2, and there is at most one R2 transition
from each S2 state.

2.2 Strategy Logics

In this section, we briefly recall some key results for the strategy logics Alter-
nating Time Temporal Logic (ATL) [16] and the more expressive ATL∗ that are
the underlying formalisms for many of the resource logics discussed in Sect. 3.
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Alternating Time Temporal Logic. ATL generalises other temporal logics
such as Computation Tree Logic (CTL) [29] (which can be seen as a one-agent
ATL) by introducing a notion of strategic ability. ATL allows us to express prop-
erties relating to the strategic abilities of a coalition or set of agents regardless
of what the other agents in the system do.

ATL is interpreted over concurrent game structures. A concurrent game
structure is a transition system in which edges correspond to a tuple of actions
performed simultaneously by all the agents (see below and Fig. 1 for an example).

Definition 9. A concurrent game structure (CGS) is a tuple M = (Agt,
S,Π, π, Act, d, δ) where:

– Agt is a non-empty finite set of n agents,
– S is a non-empty finite set of states;
– Π is a finite set of propositional variables and π : Π → ℘(S) is a truth

assignment which associates each proposition in Π with a subset of states
where it is true;

– Act is a non-empty set of actions
– d : S × Agt → ℘(Act) \ {∅} is a function which assigns to each s ∈ S a

non-empty set of actions available to each agent a ∈ Agt. We denote joint
actions by all agents in Agt available at s by D(s) = d(s, a1) × · · · × d(s, an);

– δ : S × Act|Agt| → S is a partial function that maps every s ∈ S and joint
action σ ∈ D(s) to a state resulting from executing σ in s.

Given a CGS M and a state s ∈ S, a joint action by a coalition A ⊆ Agt is
a tuple σ = (σa)a∈A (where σa is the action that agent a executes as part of σ,
the ath component of σ) such that σa ∈ d(s, a). The set of all joint actions for
A at state s is denoted by DA(s).

Given a joint action by Agt σ ∈ D(s), σA (a projection of σ on A) denotes
the joint action executed by A as part of σ: σA = (σa)a∈A. The set of all possible
outcomes of a joint action σ ∈ DA(s) at state s is:

out(s, σ) = {s′ ∈ S | ∃σ′ ∈ D(s) : σ = σ′
A ∧ s′ = δ(s, σ′)}

Depending on the variant of ATL, a strategy is a choice of actions which
either only depends on the current state (memoryless strategy) or on the finite
history of the current state (perfect recall strategy). In this survey, we concen-
trate mainly on perfect recall strategies. A strategy for a coalition A ⊆ Agt
in a CGS M is a mapping FA : S+ → Act|A| such that, for every λ ∈ S+,
FA(λ) ∈ DA(λ[|λ|]). A computation (infinite path) λ is consistent with a strat-
egy FA iff, for all i, λ[i + 1] ∈ out(λ[i], FA(λ[1, i])). We denote by out(s, FA) the
set of all computations λ starting from s that are consistent with FA.

The language of ATL contains atomic propositions, boolean connectives ¬,∧,
etc. and modalities 〈〈A〉〉©, 〈〈A〉〉� and 〈〈A〉〉U for each subset A of the set of all
agents Agt (or coalition, in ATL terms), which express the strategic ability of
the coalition A. 〈〈A〉〉©φ means that the coalition of agents A has a choice of
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actions such that, regardless of what the other agents in the system do, φ will
hold in the next state. 〈〈A〉〉�φ means that coalition A has a strategy to keep φ
true forever, regardless of what the other agents do. Finally, 〈〈A〉〉φU ψ means
that A has a strategy to ensure that after finitely many steps ψ holds, and in all
the states before that, φ holds.

Given a CGS M and a state s of M , the truth of an ATL formula φ with
respect to M and s is defined inductively on the structure of φ as follows:

– M, s |= p iff s ∈ π(p);
– M, s |= ¬φ iff M, s �|= φ;
– M, s |= φ ∨ ψ iff M, s |= φ or M, s |= ψ;
– M, s |= 〈〈A〉〉©φ iff ∃ strategy FA such that for all λ ∈ out(s, FA), M,λ[2] |= φ;
– M, s |= 〈〈A〉〉φU ψ iff ∃ strategy FA such that for all λ ∈ out(s, FA), ∃i such

that M,λ[i] |= ψ and M,λ[j] |= φ for all j ∈ {1, . . . , i − 1};
– M, s |= 〈〈A〉〉�φ iff ∃ strategy FA such that for all λ ∈ out(s, FA), for all i,

M,λ[i] |= φ.

sI s s'

p

idle, idle

idle, idle

idle, idle

, idle

idle, 

, idle

, 

Fig. 1. Example of a state transition system.

Example. Figure 1 illustrates a simple ATL model of a system with two agents, 1
and 2, and actions α, β, γ and idle. Action tuples on the edges show the actions
of each agent, for example, in the transition from state sI to s, agent 1 performs
action α and agent 2 performs idle. In this system, in state sI , agent 1 has a
(memoryless) strategy to enforce that p holds eventually in the future no matter
what agent 2 does, which can be expressed in ATL as 〈〈{1}〉〉�U p. Similarly,
in sI agent 1 has a memoryless strategy to keep ¬p true forever, so 〈〈{1}〉〉�¬p
holds in sI .

Definition 10. The following problem is the model checking problem for ATL:

Input: A CGS M , a formula φ of ATL, and a state s ∈ M .
Question: Does it hold that M, s |= φ?
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The model-checking problem for ATL can be solved in time polynomial in
the size of the transition system and the property [16], and there exist model-
checking tools for ATL, for example, MOCHA [17] and MCMAS [41].

ATL*. ATL∗ is strictly more expressive than ATL in allowing arbitrary com-
binations of temporal modalities and booleans after the coalition modalities.
The syntax of ATL∗ includes two kinds of formulas, state formulas φ and path
formulas γ. Formulas of ATL∗ are defined by the following syntax:

φ ::= p | ¬φ | φ ∨ φ | 〈〈A〉〉γ
γ ::= φ | ¬γ | γ ∨ γ | ©γ | γ U γ | �γ

where p ∈ Π is a proposition and A ⊆ Agt.
The language of ATL∗ is interpreted on the same CGS as ATL. However,

there are two satisfaction relations, |=s for state formulas, and |=p for path
formulas:

– M, s |=s p iff s ∈ π(p);
– M, s |=s ¬φ iff M, s �|=s φ;
– M, s |=s φ ∨ ψ iff M, s |=s φ or M, s |=s ψ;
– M, s |=s 〈〈Ab〉〉γ iff exists a strategy FA such that for all λ ∈ out(s, FA),

M,λ |=p γ; M,λ |=p φ iff M,λ[1] |=s φ (for state formulas φ)
– M,λ |=p ©γ iff M,λ[2,∞) |=p γ
– M,λ |=p γ1Uγ2 iff ∃k such that M,λ[k,∞) |= γ2 and M,λ[j,∞) |= γ1 for all

j ∈ {1, . . . , k − 1}.
– M,λ |=p �γ iff for all jM, λ[j,∞) |=p γ.

Definition 11. The following problem is the model checking problem for ATL∗:

Input: A CGS M , a state formula φ of ATL∗, and a state s in M .
Question: Does it hold that M, s |=s φ?

The complexity of the model checking problem for ATL∗ is 2EXPTIME-
complete [16].

3 Resource Logics

In order to model multi-agent systems where the actions of agents produce and
consume resources, it is necessary to modify strategy logics in two ways. The
first modification is to add resource annotations to the actions in the transition
system: for each individual action and each resource type, we need to specify
how many units of this resource type the action produces or consumes. For
example, suppose that there are two resource types, r1 and r2 (e.g., energy and
money). Then we can specify that action α in Fig. 1 produces two units of r1
and consumes one unit of r2, action β consumes one unit of r1 and produces one
unit of r2, action γ consumes five units of r1, and action idle does not produce
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or consume any resources. Clearly, this makes the transition system of a CGS
resemble multi-weighted graphs or AVASS introduced in Sect. 2.1.

The second modification is to extend the logical language so that we can
express properties related to resources. For example, we may want to express
a property that a group of agents A can eventually reach a state satisfying
φ or can maintain the truth of ψ forever, provided that they have available
n1 units of resource type r1 and n2 units of resource type r2. Such statements
about coalitional ability under resource bounds can be expressed in an extension
of ATL where coalitional modalities are annotated with a resource bound on
the strategies available to the coalition. We call logics where every action is
associated the resources it produces and/or consumes and where the syntax
allows the resource requirements of agents to be expressed, resource logics.

To illustrate the properties resource logics allow us to express, consider the
model in Fig. 1 with the production and consumption of resources by actions
specified above. In this setting, we can verify if agent 1 can eventually enforce p
provided that it has one unit of r2 in state sI , or whether the coalition of agents
{1, 2} can achieve p under this resource bound by working together. There are
surprisingly many different ways of measuring costs of strategies and deciding
which actions are executable by the agents given the resources available to them,
but under at least one possible semantics, the answer to the first question is no
and to the second one yes, but the latter requires a perfect recall strategy (the
two agents should loop between states sI and s until they produce a sufficient
amount of resource r1, and then execute actions corresponding to the 〈γ, idle〉
transition from s to s′).

Clearly, the model-checking problem for temporal logics is a special case of
the model-checking problem for the corresponding resource logics. The question
is, how much harder does the model-checking problem become when resources
are added?

3.1 Overview of Resource Logics

In this section, we briefly review the historical development of resource logics,
and introduce some resource logics in more detail. We focus on expressiveness
and model-checking complexity, as these features determine the suitability of a
particular logic for practical verification.

Consumption of Resources. Early work on resource logics considered only
consumption of resources (i.e., no action produces resources), and initial results
were encouraging.

One of the first logics capable of expressing resource requirements of agents
was a version of Coalition Logic (CL),3 called Resource-Bounded Coalition Logic
(RBCL), where actions only consume (and don’t produce) resources. RBCL was
introduced in [3] with the primary motivation of modelling systems of resource-
bounded reasoners (with three resource types: time, space, and communication
3 CL is a fragment of ATL with only the next time 〈〈A〉〉© modality.
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cost), however the framework is sufficiently general to model any kind of action.
The model-checking problem for this logic was shown to be decidable in [11] in
polynomial time in the transition system and the property, and exponential in the
number of resource types.

A resource-bounded version of ATL, RB-ATL, where again actions only con-
sume (and not produce) resources was introduced in [4]. It was also shown that
the model-checking problem for this logic is decidable in time polynomial in
the size of the transition system and exponential in the number of resource
types. (For a single resource type, e.g., energy, the model-checking problem is
no harder than for ATL.) Its syntax is the same as RB±ATL given in Sect. 3.2
below, but in the semantics no actions produce resources. Probabilistic RB-ATL
was introduced in [42] and its model checking problem shown to be decidable in
EXPTIME.

Practical work on model-checking standard computer science transition sys-
tems (not multi-agent systems) with resources also falls in the category of
consumption-only systems, for example the probabilistic model-checking of sys-
tems with numerical resources in the PRISM model-checker [39] assumes costs
monotonically increasing with time.

Bounded Production and Undecidability in the Unbounded Setting.
However, when resource production is considered in addition to consumption, the
situation changes. In a separate strand of work, a range of different formalisms for
reasoning about resources was introduced in [23,25]. In those formalisms, both
consumption and production of resources was considered. In [24] it was shown
that the problem of halting on empty input for two-counter automata [36] can
be reduced to the model-checking problem for several of their resource logics.
Since the halting problem for two-counter automata is undecidable, the model-
checking problem for a variety of resource logic with production of resources
is undecidable. The reduction uses two resource types (to represent the values
of the two counters) and either one or two agents depending on the version of
the logic (whether the agents have perfect recall, whether the formula talking
about coalition A can also specify resource availability for remaining agents,
and whether nested operators ‘remember’ initial allocation of resources or can
be evaluated independently of such initial allocation).

The only decidable cases considered in [23] are an extension of CTL with
resources (essentially one-agent ATL) and a version where on every path only a
fixed finite amount of resources can be produced. In [23], the models satisfying
this property are called bounded, and the authors note that RBCL and RB-
ATL are logics over a special kind of bounded models (where no resources are
produced at all). Other decidability results for bounded resource logics have
also been reported in the literature. For example, [31] define a decidable logic,
PRB-ATL (Priced Resource-Bounded ATL), where the total amount of resources
in the system has a fixed bound. The model-checking algorithm for PRB-ATL
requires time polynomial in the size of the model and exponential in the number
of resource types and the resource bound on the system. In [32] an EXPTIME
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lower bound in the number of resource types for the PRB-ATL model-checking
problem is shown.

A general logic over systems with numerical constraints called QATL∗ was
introduced in [26]. In that paper, more undecidability results for the model-
checking problem of QATL∗ and its fragments were shown. For example, QATL
(Quantitative ATL) is undecidable even if no nestings of coalition modalities is
allowed. The main proposals for restoring decidability to the model-checking
problem for QATL in [26] are removing negative payoffs (similar to remov-
ing resource production) and also introducing memoryless strategies. Shared
resources were considered in [27]; most of the cases considered there have unde-
cidable model-checking (apart from the case of a single shared resource, which
has decidable model-checking).

In summary, one approach to decidable model checking in the presence of
resource production is to bound the amount of resources produced globally in
the model. For some systems of resource-bounded agents, this is a reasonable
restriction. For example, agents that need energy to function and are able to
charge their battery, can never ‘produce’ more energy than the capacity of their
battery. This is a typical bounded system. A special case of bounded systems,
where model checking is even more tractable, are systems where one of the
resources is always consumed by any action. A typical example of such a resource
is time. Several resource logics with diminishing resource were investigated in [10]
and shown to have a PSPACE or EXPSPACE model checking procedure (while
the corresponding logic without diminishing resource sometimes has undecidable
model checking).

In the next couple of sections, we report results for resource logics with
unbounded production of resources and a decidable model checking problem.

3.2 RB±ATL

In [12] a version of ATL, RB± ATL, was introduced where actions both produce
and consume resources. The models of the logic do not impose bounds on the
overall production of resources, and the agents have perfect recall. The syntax of
RB ± ATL is very similar to that ofATL, but coalitionmodalities have superscripts
which represent resource allocation to agents. Instead of stating the existence of
some strategy, they state the existence of a strategy such that every computa-
tion generated by following this strategy consumes at most the given amount of
resources. Coming back to the example, the property that agent 1 can eventually
enforce p provided that it has one unit of r2 can be expressed as 〈〈{1}(0,1)〉〉�U p.
Here, (0, 1) is the allocation of 0 units of r1 and 1 unit of r2 to coalition {1}. In
RB ± ATL, resource allocation is only shown for the proponent agents, {1} in this
case. Versions of resource logic where opponents are also resource-bounded all
have an undecidable model-checking problem, see [23]. It is also possible to con-
sider individual allocations of resources to agents in the proponent coalition, which
would affect complexity results below for one resource type.

Formally, the syntax of RB± ATL is defined relative to the following sets:
Agt = {a1, . . . , an} is a set of n agents, Res = {res1, . . . , resr} is a set of
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r resource types, Π is a set of propositions, and B = N
r is a set of resource

bounds. Formulas of RB±ATL are defined by the following syntax:

φ, ψ ::= p | ¬φ | φ ∨ ψ | 〈〈Ab〉〉©φ | 〈〈Ab〉〉φU ψ | 〈〈Ab〉〉�φ

where p ∈ Π is a proposition, A ⊆ Agt, and b ∈ B is a resource bound. Here,
〈〈Ab〉〉©φ means that a coalition A can ensure that the next state satisfies φ
under resource bound b. 〈〈Ab〉〉φU ψ means that A has a strategy to enforce ψ
while maintaining the truth of φ, and the cost of this strategy is at most b.
Finally, 〈〈Ab〉〉�φ means that A has a strategy to maintain ψ forever, and the
cost of this strategy is at most b.

The language is interpreted on resource-bounded concurrent game structures.

Definition 12. A resource-bounded concurrent game structure (RB-CGS) is a
tuple M = (Agt, Res, S,Π, π, Act, d, c, δ) where:

– Agt, S,Π, π, Act, d, δ are as in Definition 9;
– Res is a non-empty finite set of r resource types,
– c : S × Act → Z

r is a partial function which maps a state s and an action σ
to a vector of integers, where the integer in position i indicates consumption
or production of resource ri by the action (here, we assume negative value for
consumption and positive value for production for consistency with AVASS,
unlike in [12]).

A strategy for a set of agents A is a function FA : S+ → ActA such that
FA(λ) ∈ DA([λ[|λ|]). Given a bound b ∈ B, a computation λ ∈ out(s, FA) is
b-consistent iff for every i,

b + Σic(FA(λ[1, i])) ≥ 0

In other words, if agents start with allocation b, the amount of resources any of
the agents have on the computation is never negative for any resource type.

A strategy FA is b-consistent in s, if all computations in out(s, FA) are b-
consistent.

Given a RB-CGS M and a state s of M , the truth of an RB±ATL formula
φ with respect to M and s is defined inductively on the structure of φ as follows:

– M, s |= p iff s ∈ π(p);
– M, s |= ¬φ iff M, s �|= φ;
– M, s |= φ ∨ ψ iff M, s |= φ or M, s |= ψ;
– M, s |= 〈〈Ab〉〉©φ iff ∃ b-consistent strategy FA such that for all λ ∈ out(s, FA),

M,λ[2] |= φ;
– M, s |= 〈〈Ab〉〉φU ψ iff ∃ b-consistent strategy FA such that for all λ ∈

out(s, FA), ∃i such that M,λ[i] |= ψ and M,λ[j] |= φ for all j ∈ {1, . . . , i−1}.
– M, s |= 〈〈Ab〉〉�φ iff ∃ b-conststent strategy FA such that for all λ ∈

out(s, FA), for all i,M, λ[i] |= φ.

Definition 13. The following problem is the model checking problem for
RB±ATL:
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Input: A RB-CGS M , a formula φ of RB±ATL, and a state s ∈ M .
Question: Does it hold that M, s |= φ?

The model-checking problem for RB ±ATL is decidable. The existence of a
decidable resource logic with unbounded production was surprising, as it was
the first indication that it is possible to automatically verify properties of this
important class of resource-bounded multi-agent systems. In [12], decidability of
the model-checking problem was shown by producing a direct model checking
algorithm and arguing that it terminates due to the fact that in any sequence
of elements from N

r, eventually two elements are comparable in ≤ (well-quasi
ordering of Nr).

3.3 Correspondence Between Games on AVASS and RB±ATL
Semantics

There are clear similarities between RB ±ATL semantics and decidable problems
for AVASS and energy games. In [5] these similarities were made precise, and the
model checking problem for RB±ATL was shown to be polynomial in the size
of the model and the formula, and double exponential in the number of resource
types, by reducing the model checking to decision problems on AVASS. We will
briefly recapitulate the correspondence here.

For the purposes of making the correspondence easier to state, the definitions
of AVASS and the state reachability problem were generalised as follows, without
affecting the complexity of decision problems ([5], Lemma 7):

– instead of R2 ⊆ S3, elements in R2 can be tuples of any length n ≥ 2 (but
R2 is finite);

– the input to the reachability problem is a set of goal states S′ ⊆ S (instead
of a singleton set {s′}).

This generalisation of AVASS makes it easier to transfer complexity results from
AVASS to resource logics, since the transition systems that form the models of
resource logics may have more than binary branching, and reachability refers
to properties (sets of states) rather singleton states. Here, we will refer to this
generalisation as generalised AVASS.

Next we briefly elaborate on the concrete reduction of RB ±ATL model-
checking problem to decision problems on generalised AVASS. Assume that we
are designing a state labelling model checking algorithm for RB± ATL, where
given a formula φ and a model, we label each state with subformulas of φ true
in that state, in the increasing order of complexity of subformulas. Clearly, there
is no problem with doing this for propositional variables and for boolean com-
binations of earlier encountered formulas, and in fact also for the next state
operators. The only difficulty is formulas of the form 〈〈Ab〉〉ψ1 U ψ2 or 〈〈Ab〉〉�ψ.
Intuitively, we need to build a different AVASS for every state in the model and
every subformula of this form, and then solve a reachability or non-termination
problem for them. We describe next how we build this generalised AVASS.
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Given an RB-CGS M = (Agt, Res, S,Π, π, Act, d, c, δ), a distinguished state
s∗ (where we want to evaluate the formula) and a coalition A ⊆ Agt (from the
main coalition modality in the formula), the corresponding generalised AVASS
G = (SG, rG, RG

1 , RG
2 ) is constructed as follows. The set of states of G is defined

as follows:

SG = {s∗} ∪ {(s′, α) | s′ ∈ S, α ∈ DA(s′)} ∪ {(σ, s′′) | s′′ ∈ S, σ ∈ D(s′′)}.

Obviously, rG = Res. Transitions are defined as follows:

RG
1 = {(s∗, cost(s∗, α), (s∗, α)) | α ∈ DA(s∗)} ∪ {((σ, s′), costA(s′, σ),

(s′, α)) | (σ, s′) ∈ SG, α ∈ DA(s′)}
RG

2 = {((s′, α), (σ1, s1), . . . , (σk, sk)) | σi ∈ D(s′), α = σi
A, si = δ(s′, σi)}

Note that the size of G is polynomial in M . When evaluating a subformula of
the form 〈〈Ab〉〉�ψ, the strategy witnessing the truth of the formula has to visit
only states satisfying ψ. Since the complexity of ψ is less than the complexity of
〈〈Ab〉〉�ψ, we can assume that we know which states in M satisfy ψ. To compute
the generalised AVASS where a winning strategy for non-termination exists iff
〈〈Ab〉〉�ψ is true, we remove from SG all states where the state component of
the pair does not satisfy ψ. We denote the resulting generalised AVASS Gψ.
Similarly, to make sure that a strategy to reach a ψ2 state always goes only
through ψ1 states before reaching ψ2, we remove from G all states that satisfy
neither ψ1 nor ψ2. We denote the resulting generalised AVASS Gψ1,ψ2 .

In [5], Lemmas 2–6 and Theorem 1 demonstrate that M, s∗ |= 〈〈Ab〉〉ψ1 U ψ2

if, and only if, there is a winning strategy for Player 1 in a reachability game in
the corresponding generalised AVASS Gψ1,ψ2 with initial credit b and target the
set of ψ2 states, and M, s∗ |= 〈〈Ab〉〉�ψ if, and only if, there is a winning strategy
for Player 1 in a non-termination game in the corresponding generalised AVASS
Gψ with initial credit b.

3.4 RB±ATL∗

RB ± ATL∗ is a more expressive logic than RB ± ATL, and was introduced in [5].
As is the case with ATL∗, the syntax of RB±ATL∗ includes state formulas

φ and path formulas γ. Formulas of RB ±ATL∗ are defined by the following
syntax

φ ::= p | ¬φ | φ ∨ φ | 〈〈Ab〉〉γ
γ ::= φ | ¬γ | γ ∨ γ | ©γ | γ U γ | �γ |

where p ∈ Π is a proposition, A ⊆ Agt, and b ∈ B is a resource bound.
The language of RB±ATL∗ is interpreted on the same RB-CGS as

RB ± ATL. The truth definition is identical to that of ATL∗, apart from the
following clause:

– M, s |=s 〈〈Ab〉〉γ iff ∃ b-consistent strategy FA such that for all λ ∈ out(s, FA),
M,λ |=p γ;
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Definition 14. The following problem is the model checking problem for
RB±ATL∗:

Input: A RB-CGS M , a state formula φ of RB±ATL∗, and a state s ∈ M .
Question: Does it hold that M, s |=s φ?

Surprisingly, even without idle actions, which seem to make the difference
between decidable and undecidable model-checking for some resource logics (see
Sect. 3.2), the model checking problem for RB± ATL∗ is decidable [5] by reduc-
tion to parity games on single sided VASS [1]. Moreover, it is decidable in 2EXP-
TIME, that is, has the same complexity as RB± ATL.

In [19], several fragments of RB± ATL and RB± ATL∗ of the form
RB ± ATL (n, r) and RB ±ATL∗ (n, r), where the logic is parameterised by
the number n of agents and the number r of resource types were studied.4 In
particular, RB±ATL (1, 1) was shown to be PTIME-complete, and RB ± ATL∗

(1, 1) PSPACE-complete (see Table 1).

3.5 Other Resource Logics with Decidable Model-Checking

RAL is a very expressive resource logic with undecidable model-checking problem
introduced in [23]. In [6], a new syntactic fragment FRAL of RAL with a decid-
able model-checking problem was identified. FRAL restricts the occurrences of
coalitional modalities on the left of Until formulas. On the other hand, it allows
nested modalities to refer to resource allocation at the time of evaluation, rather
than always considering a fresh resource allocation, as in RB± ATL. For exam-
ple, the formula 〈〈Ab〉〉φU 〈〈A↓〉〉ψ1 U ψ2 says that, given resource allocation b,
coalition A can always reach a state (maintaining φ) where, with the remaining
resources, it can reach ψ2 while maintaining ψ1. In [6] the boundary between
decidability and undecidability was also investigated, and the availability of an
‘idle’ action (i.e., if the semantics requires that in every state each agent has an
action that does not produce or consume resources) was shown to be critical:
model checking FRAL is decidable in the presence of idle actions, and is not
decidable otherwise.

Although model-checking of ATL with perfect recall and uniform strategies
is undecidable, if uniformity is replaced with a weaker notion, for example, if it
is defined in terms of distributed knowledge, model checking becomes decidable
[34]. A similar result hold for RB ±ATSEL, a version of RB ±ATL with syntactic
epistemic knowledge and a weaker notion of uniformity [8].

4 Summary and Future Challenges

In Table 1 we summarise the complexity results for the resource logics with a
decidable model checking problem discussed in Sect. 3. In the table, the ‘Idle’
column indicates whether the semantics for a logic requires that in every state

4 Note that RB ± ATL (n, 1) was referred to in [14] as 1-RB ± ATL.
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each agent has an action that produces and consumes no resources. New results
not appearing in the previous survey [9] are highlighted in bold.

Table 1. Resource logics with decidable model-checking problem

Logic Resource production Idle Complexity of model-checking

RBCL no yes in EXPTIME (PTIME in model) [3]

RB-ATL no yes in EXPTIME (PTIME in model) [4]

PRB-ATL bounded yes EXPTIME-c [32]

RB ± ATL yes yes 2EXPTIME-c [5]

RB ± ATL (n, 1) yes yes in PSPACE [14]

RB ± ATL (1, 1) yes yes PTIME-c [19]

FRAL yes yes ?

RB ± ATSEL yes yes ?

RB ± ATL∗ yes no 2EXPTIME-c [5]

RB ± ATL∗ (n, 1) yes no EXPSPACE-c [5]

RB ± ATL∗ (1, 1) yes yes PSPACE-c [5,19]

The results for (fragments of) RB± ATL and RB± ATL∗ offer the possibility
of significant progress in the verification of resource-bounded multi-agent sys-
tems. However many challenges remain for future research. Below we list three
of the most important.

Understanding the Sources of Undecidability. Developing a better under-
standing of the sources of decidability and undecidability (beyond boundedness)
will be critical to future progress. As observed in [23], subtle differences in truth
conditions for resource logics result in the difference between decidability and
undecidability of the model checking problem. Some work in this direction is
reported in [5–7].

Logics with Lower Complexity. It is useful to discover sources of unde-
cidability and how to construct expressive logics for which the model-checking
problem is decidable. However, it is even more important to be able to develop
logics, or fragments of existing logics such as RB± ATL, that are sufficiently
expressive for practical problems, and where the model-checking problem has
tractable complexity. Only then will we be able to implement practical model-
checking tools for systems of resource-bounded agents.

Practical Tools. Although model checking algorithms have been proposed for
several of the logics surveyed, work on implementation is only beginning. We aim
to develop practical model-checking tools for verifying resource-bounded MAS
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by extending the MCMAS model checker [41] to allow the modelling of multi-
agent systems in which agents can both consume and produce resources. Work
on symbolic encoding of RB-ATL model-checking is reported in [15] and work
on symbolic encoding of RB± ATL model-checking is reported in [13].

Addressing these challenges will allow practical model-checking of resource
logics and significant advances in multi-agent system verification.

Acknowledgements. The authors thank Stéphane Demri for helpful discussions.
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Abstract. The predicativist program for the foundations of mathemat-
ics, initiated by Poincaré and first developed by Weyl, seeks to establish
certainty in mathematics without revolutionizing it. The program was
later extensively pursued by Feferman, who developed proofs systems for
predicative mathematics, and showed that a very large part of classical
analysis can be developed within them. Both Weyl and Feferman worked
within type-theoretic frameworks. In contrast, set theory is almost uni-
versally accepted now as the foundational theory in which the whole of
mathematics can and should be developed. We explain how to recon-
struct Weyl’s ideas and system within the set-theoretical framework,
and indicate the advantages that this approach to predicativity and to
set theory has from both the foundational as well as the computational
points of views.

1 Why Predicativism?

In [24] the basic problem of the research in foundations of mathematics is for-
mulated as follows:

How to reconstruct mathematics on a secure basis, one maximally immune
to rational doubts.

Now Shapiro’s formulates this problem in order to attack it. He acknowledged
that this was the historic problem of FOM (Foundations Of Mathematics), but
according to him, its time has passed. As far as I was able to see, he gave no
reason why he thinks that this problem is not important anymore - except that
it is not fashionable nowadays to work on it. That he is right at least about that
is reflected in the discussion in Sect. 2 of [7] about the value of foundations in
mathematics. Two related questions raised and answered there are: “Why do we
need foundations at all?”, and whether it is true that “the problem of foundations
for mathematics is completely solved; in other words, the study of foundations of
mathematics is dead.” The answer given there to the first question provides three
practical advantages of having a uniform general axiomatic framework (like set
theory) for mathematics, none of them related to the basic problem mentioned
above. The reply to the second is that the present accepted foundations (i.e.
ZFC) is not sufficiently strong, since “There are things in ordinary mathematics
that ‘stick out’ of the set-theoretic foundation” (e.g. category theory). Again: no
worry at all about trusting the content of current mathematics.
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In complete opposition to the views described above and to the tendency
of most working mathematicians (and following them—many philosophers of
mathematics) not to care about the basic problem of foundations, stand people
who do not think that mathematics is just the game of mathematicians. For
them the basic problem is still, and will remain (until solved satisfactorily) the
main big challenge of FOM. As H. Friedman once wrote:1

The question “is mathematics certain?” is of far greater interest to almost
anybody outside of mathematics than any topic in normal mathematics.
And of far greater interest to almost anybody outside of mathematical
logic than any topic in mathematical logic.2

...
The first point about “is mathematics certain?” is that it would appear
that some mathematics may be certain and other mathematics not certain.
Or even that some mathematics is more certain than other mathematics.

The predicativist program ([16]) has been one of the attempts to solve the
basic problem of FOM. It seeks to establish certainty in mathematics in a con-
structive way, but without revolutionizing it (as the intuitionistic program does).
The program was initiated by Poincaré [22], in his follow up on [23]. Its viability
was demonstrated by Hermann Weyl, who seriously developed it for the first
time in his famous small book “Das Kontinuum” ([27], English translation in
[28]). After Weyl, the predicativist program was extensively pursued by Fefer-
man, who in a series of papers (see e.g. [13–16]) developed proof systems for
predicative mathematics. Weyl and Feferman have shown that a very large part
of classical analysis can be developed within their systems. Feferman further
argued that predicative mathematics in fact suffices for developing all the math-
ematics that is actually indispensable to present-day natural sciences. Hence the
predicativist program has been successful in solving the basic problem of FOM.
(In my opinion it is the only one about which this can truly be said.)3

Note 1. As noted in [16], there are a number of ideas of predicativity that have
been considered in the literature. In this paper we reserve the name to the main
one: Poincaré-Weyl-Feferman predicativity, which is sometimes called ‘predica-
tivity given the natural numbers’.

1 See https://cs.nyu.edu/pipermail/fom/1998-September/002156.html.
2 Let me add to this observation of Friedman that I believe that this question has

recently become more important and pressing than perhaps anytime before, since
we live in an era of “alternative facts”, in which not only politicians, but also many
respectable people in the academy deny the existence of anything absolute, claiming
that there is no absolute truth, and there are no absolute moral values. It is very
fashionable therefore to deny the existence of certainty even in Mathematics.

3 There is a price to pay, of course, for this success. There are parts of current mathe-
matics which cannot be justified predicatively. However, as Weyl and Feferman have
shown, the most important parts do.

https://cs.nyu.edu/pipermail/fom/1998-September/002156.html
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2 What Is Predicativism?

A Predicativist is first of all a mathematician who finds as vague and possibly
meaningless the notion of an ‘arbitrary subset of S’ in case S is an infinite
collection. The use of this notion means commitment to the “existence” in a
mysterious way of objects we (as humane beings) cannot even describe, refer to,
or comprehend. Thus most subsets of N (say) are mystic objects that only an
infinite mind (whatever this means) can identify, and belief in their existence
is exactly this: a sort of religious belief. Now beliefs of this sort may be true of
course. God may exist. Angels may exist. Spirits (good and bad) may exist. One
may conduct one’s life according to such beliefs. But pure mathematics, to the
extent it is expected to provide certain knowledge, immune to rational doubts,
cannot be based on beliefs of this sort. (This does not mean that all of useful or
interesting mathematics should be absolutely certain. Thus I see no reason why
the mathematics which is used in some scientific theory should be more certain
than other parts of that theory).

On the other hand a predicativist finds as crystal clear finite mathematical
objects that are (at least potentially) fully describable, have concrete finite rep-
resentations, and can be identified, distinguished from one another and manip-
ulated in precise ways by any finite mind given enough (finite) time and (finite)
space. Examples are the natural numbers, finite strings of symbols from some
finite alphabet, hereditarily finite sets, etc. Moreover: predicativists take as
meaningful and self-evident the use of classical first-order logic at least when
the intended domain of discourse is a constructively defined collection of such
objects, as long as it is finite or potentially infinite. This means that the objects
of the collection can be obtained one by one by an effective process that can be
continued indefinitely. Both Poincare and Weyl took this to be an absolute min-
imum needed not only for mathematical thinking, but for thinking in general,
including thinking about mathematics. Thus our notions of a ‘(formal) proposi-
tion’ and a ‘(formal) proof’ are completely based on this minimum.

The main difficulty of the predicativists is that the “real” numbers, so cen-
tral to modern mathematics and science, are not objects of the crystal clear
type described above. Accordingly, their main problem is how to reconstruct the
theory of real numbers (or at least the most significant parts of it) and (the
most significant parts of) modern analysis “on a secure basis, immune to ratio-
nal doubts”. The border between predicativists and platonists passed therefore
somewhere between N and its powerset P (N), between the rational(s) and the
(arbitrary) irrational(s), between the potential infinite and the actual infinite. On
the other hand the main difference between predicativists and constructivists is
that predicativists acknowledge the fact that there are, or at least can be, mean-
ingful propositions with determined truth-value, without us knowing this value
or being capable of finding it.

Now there are of course infinite higher order constructs, like certain sets of
natural numbers, or certain sets of functions, which are not arbitrary, and can
safely be used. These constructs are acceptable only when introduced through
legitimate definitions that fully determine them. Such definitions cannot of course
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be circular, and one can only refer in them to constructs which were introduced
by previous definitions.

As a concrete example of the way mathematics can be developed according
to predicatively accepted line, we describe in the next section the work done
by Weyl in [27]. The reason for this choice (in addition to its obvious historical
significance) is that for reasons explained below, in our opinion Weyl’s system
is superior to its more modern counterparts (like Feferman’s various systems
or those system which are predicatively acceptable among those investigated in
[25]) for the task of serving as a basis of a predicatively justified, natural and
comprehensive development of classical analysis.

3 Weyl’s “Das Kontinuum”

3.1 Weyl’s Basic Ideas and Principles

As said above, Weyl totally rejected as meaningless the modern notions of an
arbitrary set, and of a function as an arbitrary set of pairs. He insisted that only
sets and functions which have legitimate definitions can be admitted. He also
maintained that the practice of the standard foundations of analysis involves
the sin of vicious circularity. This is due to its use of impredicative definitions
of objects, where a definition is impredicative for Weyl if it tries to select an
object from an ‘open into infinity’ collection. In more details: Weyl divides all
collections into three sorts:

(I) The ‘extensionally determinate’ collections, i.e. those that remain invariant
under extensions of the universe. (An example for Weyl is the collection N
of the natural numbers.)

(II) Collections which may not be extensionally determinate (and so are open),
but are definite in the sense that the question whether a given object belongs
to them has a definite answer. (For Weyl, an example of such a collection is
provided by R, the set of real numbers.)

(III) Collections that are not even definite. (For Weyl an example is provided
here by the collection of continuous functions over R.)

Only a collection of sort (I) or (II) can be an object in Weyl’s universe, and only
one of sort(I) can be treated as closed, so definitions which include quantification
over it are allowed.

At this point a natural question arises: given a definition of a collection, how
can we decide whether it is predicative, in the sense that the defined collection
is extensionally determinate? Most of the first chapter (out of two) of [27] is
devoted to this question, that is: to providing a list of effective rules for produc-
ing predicative definitions, which is sufficiently strong (though not necessarily
complete) for a safe development of analysis.

Here are some of the basic principles that underlie Weyl’s universe:

P1 Every object, as well as each place in a relation, is affiliated with a definite
type (or ‘category’).
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P2 A few of the types are taken as basic. These types should be extension-
ally determinate and well-understood. Associated with each of them are few,
particularly simple primitive relations. One of these relations should be the
identity relation.

P3 One of the basic types is that of the natural numbers, equipped with just two
binary relations: identity and “successor of”.4 In Weyl’s system for analysis
this is the sole basic type.

P4 On top of the basic types there is an infinite hierarchy of ‘ideal’ types. The
objects of the ideal types are sets and functions.5

P5 Existence can be attributed only to a set (or a function) which has a (legit-
imate) definition.

P6 Sets are introduced genetically: they are derived by adequate, “logical” means
from some small collection of basic types and relations.

From P4 it follows that all types are derived from the basic types by repeated
use of two operations: one for introducing types of terms for sets, the other for
introducing types of terms for functions. As for the former, the idea is that if
τ1, . . . , τn are n arbitrary types, then S(τ1×, . . . ,×τn) is the type of terms for
n-dimensional subsets of τ1×, . . . ,×τn. In addition, the list of basic predicates of
the language includes the equality predicate = between terms of the same type,
and the relation ∈ between tuples of objects and sets of such tuples.

It should be emphasized that formulas have two different roles in Weyl’s
system. One is the usual one, of expressing propositions. Their other role, for
which only ‘delimited’ (i.e. predicative) formulas can be used, is as the main tool
for defining (and by this creating) those objects that Weyl calls “ideal”, that is:
sets and functions.

3.2 Weyl’s Notion of a Function

We turn to the nature of the third sort of objects in Weyl’s universes: functions.
Weyl chose to allow only functions whose range is a type of sets, and to make
functions as a sort of a generalization of sets. Hence types of functions have
the form (σ1 × · · · × σk) → S(τ1 × · · · × τn), and the canonical form of terms
of such a type is (in modern notation) λy1, . . . , yk.{(x1, . . . , xn) | ψ}, where ψ
is predicative, and {x1, . . . , xn} ∩ {y1, . . . , yk} = ∅. Concerning this notion of a
function, Weyl remarked that “[O]nce we become aware of it, we also immediately
grasp its significance”. He gave no further explanations about this significance.
However, the same notion of a function was independently used in [4] in order
to provide a unified theory of constructions and operations as they are used in
different branches of mathematics and computer science, including set theory,

4 In particular, addition and multiplication are not primitive in Weyl’s system.
5 Feferman’s direct formalization of Weyl’s system in [14] is just second-order. As was

already demonstrated in [1], his formalization was not faithful to Weyl.
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computability theory, and database theory. It is based on the following two basic
principles (which I believe are essentially what Weyl had in mind):6

– From an abstract logical point of view, the focus of a general theory of com-
putations should be on functions of the form:

λy1, . . . , yk.{〈x1, . . . , xn〉 ∈ Sn | S |= ϕ(x1, . . . , xn, y1, . . . , yk)}
where S is a structure for some first-order signature σ, ϕ is some formula of σ,
and {{x1, . . . , xn}, {y1, . . . , yk}} is a partition of the set of the free variables
of ϕ. Here ϕ is used to define a query with parameters y1, . . . , yk. Accordingly,
the tuple 〈y1, . . . , yk〉 provides here the input, while the output is the set of
answers to the resulting specific query.
Note that usual functions to Sn can be identified with functions of the above
form in which the output is a singleton.

– An allowable query should be stable in the sense that the answer to it does
not depend on the exact domain of S, but only on the values of the param-
eters {y1, . . . , yk} and the part of S which is relevant to them and to the
query (under certain conditions concerning the language and the relevant
structures).

We refer the reader to [4] for further explanations of these two principles, includ-
ing their use for characterizing Church Thesis.

The principles of Weyl that we have described so far are not even sufficient
for defining addition or multiplication of natural numbers. To be able to develop
analysis in a reasonable way nevertheless, Weyl added to his system the crucial
principle of iteration. Given a function F : σ → σ, this principle (in its most basic
form) allows to construct a function IT (F ) : N×σ → σ by letting IT (F )(n, x) =
Fn(x) for n : N and x : σ. In Weyl’s view, this principle is justified by the same
intuition that justifies taking the natural numbers as a basic type. What is
more, according to Weyl its acceptance is what makes it possible to avoid the
ramification (that is made in [13,29]) of the elements of types of the form S(σ)
into levels (something that Weyl rejected as artificial and impractical), sticking
instead to a collection of first level sets, which should be made as extensive as
possible.7

3.3 Axioms, Logic, and Semantics of Weyl’s System

Next we turn to the axioms and logic which (implicitly and in some cases
explicitly) Weyl employs. The axioms are rather standard: comprehension and
6 Some examples of the usefulness and universality in mathematics of Weyl’s notion

of a function: construction problems in Euclidean geometry; procedures for solving
various systems of equations and inequalities; queries in logic programming and
queries in relational databases.

7 In [14] Feferman claimed to spot an incoherence in Weyl’s principles, since the prin-
ciple of iteration makes it possible to go beyond the first level by constructing non-
arithmetical subsets of N. However, the incoherence here is only between Weyl’s
views and Feferman’s unjustified identification of the first-level subsets of N with
the arithmetical ones.
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extensionality axioms for both sets and functions (where by comprehension for
functions we mean β-reduction); the axioms that characterize the successor rela-
tion in N, including induction in the form of an axiom schema8; and an axiom
schema which describes the effect of the iteration operator IT . The logic is
rather standard too: it is classical many-sorted first-order logic, with equality
in all sorts/types, and with variable binding term operators. It is important to
emphasize here that in “Das Kontinuum” Weyl still used classical logic freely,
without expressing any intuitionist tendencies (as he did later).

The last claim seems to raise the following difficulty: if most of the collections
that are referred to in Weyl systems (like the real numbers) are open, how come
Weyl is using classical quantification over them in the propositions he proves?
The answer is that Weyl treated his system as an axiomatic theory, designed
to be able to prove only absolutely true propositions, where (exactly like in set
theory) for Weyl a proposition is ‘absolute’, if its truth value remains unchanged
in the passage from one universe to an expansion of it. Note that in general,
propositions may of course have different truth value in different universes (i.e.
models of Weyl’s system). Thus Weyl writes9:

If we regard the principles of definition as an “open” system, i.e., if we
reserve the right to extend them when necessary by making additions,
then in general the question of whether a given function is continuous
must also remain open (though we may attempt to resolve any delimited
question). For a function which, within our current system, is continuous
can lose this property if our principles of definition are expanded and,
accordingly, the real numbers “presently” available are joined by others in
whose construction the newly added principles of definition play a role.

On the other hand, in each model each proposition does have a definite truth
value. In particular, ¬ϕ ∨ ϕ always has the truth value true, and so is absolute,
even in case ϕ itself is not. This explains and fully justifies the use of classical
logic in Weyl’s system!

For the reader convenience, a full formalization WA of Weyl’s system for
Analysis in [27] (in modern notations and terminology) is presented in Appendix
1 to this paper.

3.4 Developing Analysis in Weyl’s System

In this Section we briefly outline the way Weyl developed the fundamentals of
classical analysis in his system.

The real numbers are introduced in [27] as Dedekind cuts in Q. Since ele-
ments of the latter are essentially represented in [27] by quadruples of natural
numbers (where 〈k, l,m, n〉 represents k/l − m/n), a real number is in Weyl’s
system an object of type S(N4). It follows that R (the set of all real numbers)

8 Unlike what Feferman wrote in [14], the restricted second-order axiom of induction
is not sufficient for some of the proofs given in [27].

9 See P. 87 of [28].
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is a set of sets, and so quantifications over R is not allowed in definitions of sets
and functions. As a result, the LUB principle fails in Weyl’s system. Instead
Weyl proved and used Cauchy’s convergence principle, and the sequential LUB
principle: Every bounded sequence of real numbers has an LUB and a GLB. Weyl
showed that these principle suffice for proving the basic properties of continuous
functions, like that a continuous function assumes all intermediate values, and
that a continuous function on a closed interval is uniformly continuous there,
and has a maximum and minimum. After that, Weyl notes that the theory can
be extended to continuous functions of several real arguments, and that the fun-
damental theorem of algebra also holds in his version of analysis. Finally, Weyl
remarked that “In the realm of continuous functions, differentiation and inte-
gration serve as function-generating processes just as they do in contemporary
analysis: no change in the foundations is required.”

The fragment of analysis developed here by Weyl is very similar to that with
is developed within the second-order system ACA0 in [25]. There is a great
difference, though. Unlike in ACA0 or in Feferman’s predicative systems, Weyl
is using no coding in developing analysis (once the real number and sequences
of them have been introduced). All the definitions and theorems are formulated
almost exactly as in ordinary mathematical books. Thus his definition of the
continuity of a function f in a point a is the usual ε-δ definition (with ε and δ
limited to rational numbers—an insignificant constraint from the classical point
of view as well as his). The proofs of the theorems can be made rather standard
too. Therefore working in Weyl’s system can be done in a rather natural way—
something that cannot be said about the more modern systems, like ACA0.

4 Limitations of Weyl’s System

Although WA has (in our opinion) great advantages over systems like ACA0 or
Feferman’s system W ([14]), it has the following serious drawbacks as well:

1. There are terms in the language of WA for all three sorts of collections (I-III)
that were described in Sect. 3.1, even though collections of sort III (like the
universal element of S(S(S(N))) intuitively is) are not really objects accord-
ing to predicative views in general, and those of Weyl in particular. Even
worse is the fact that beyond the types of the form S(Nn), there is no effec-
tive criterion for distinguishing between, e.g., terms that denote extensionally
determinate collections, and those which do not. Thus no method is provided
by Weyl that can allow us to distinguish between the very different nature of
the following two terms of type S(S(N)), where N = {n : N | n = n}:
(a) {{n} | n ∈ N} = {X : S(N) | ∃n : N.∀k : N.k ∈ X ↔ k = n}
(b) P(N ) − {∅} = {X : S(N) | ∃n : N.n ∈ X}

2. While {X : S(N) | ∀n : N.n ∈ X} is a term of type S(S(N)) that denotes
the singleton {N}, there is no term of type S(S(S(N))) that denotes the
singleton of this set (i.e. {{N}}), even though this collection is obviously
extensionally determinate.
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3. The language of WA makes many duplications and artificial distinctions. For
example, While N is the type of the natural numbers, N is a term of type
S(N), denoting the set of these numbers. Hence N and N are two completely
different things, although their intuitive interpretations are the same. Simi-
larly, if P(N ) = {X : S(N) | ∀n : N.n ∈ X → n = n}, then while S(N) is
the type of sets of natural numbers, P(N ) is a term of type S(S(N)), denot-
ing the set of sets of natural numbers. Hence again S(N) and P(N ) are two
completely different things, even though practically they denote the same
collection.

4. Following Hölder in [17], it seems strange to (practically) allow quantification
over any subset of N , but not over any other extensionally determinate set.

5 Predicative Set Theory - Why and How?

The problems described in the previous sections are mainly due to the type-
theoretic framework within which Weyl’s system has been developed. They would
disappear if the rest of his ideas would instead be implemented within the frame-
work of set theory. The latter has anyway the great practical advantage of being
the one which the great majority of the mathematicians in the world know and
prefer. Thus the basic notions of set theory are nowadays used in any branch and
textbook of modern mathematics. Moreover, as acknowledged in [7], set theory
is almost universally accepted as the foundational theory in which mathematics
should be developed.

Can the type-theoretical framework of WA be replaced by a set-theoretical
one? To answer this question, observe that types are mainly used by Weyl in
order to secure that the terms of his theory define “extensionally determinate”
objects. In [5,6] it is shown that the same goal can be achieved (and in a much
better way) using a predicative pure set theory called PZF, which is at least as
strong as WA, but does not suffer the problematic aspects of the latter which
were described above. On the other hand, PZF adheres to most of the ideas on
which WA is based. This includes:

1. The natural numbers sequence is a well understood mathematical concept,
and as a totality it constitutes a set.

2. The idea of iterating an operation or a relation a finite number of times is
accepted as fundamental.

3. Induction on the natural numbers is accepted as a method of proof in its
full generality, that is: as an (open) scheme.

4. Higher order objects, such as sets or functions, are acceptable only when
introduced through legitimate definitions.

5. A definition of an object should determine it in a unique, absolute way.
6. Objects should be introduced genetically, and be derived by adequate, logical

means from few objects and relations that are taken as basic.
7. The relations of elementhood (∈) and equality (=) are basic.
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8. The use of quantification over a collection of objects should be allowed in
definitions of objects only if that collection forms an object, and is (in Weyl’s
terminology) extensionally determinate, that is: it is introduced by a stable
and invariant definition.

9. Sets are extensional: sets that have the same elements are identical.
10. Using ramification in definitions, and classifying sets of natural numbers

according to “levels”, are artificial, and should be avoided.
11. The use of classical logic is justified.
12. The possibility of introducing new methods of defining sets is taken into

account. Therefore PZF has no single ‘intended universe’.
13. Set terms of of the form {(x1, . . . , xn) | ψ}, and operations of the form

λy1, . . . , yk.{(x1, . . . , xn) | ψ}, have a particularly central role.

Unsurprisingly, some of these common principles are implemented differently
in PZF and in WA.

– The most important difference is with respect to the fifth principle in the
above list. Recall that Weyl tried to implement this principle using two means:
imposing type restrictions on variables, and allowing to use in definitions of
objects only delimited formulas. The first of these means is not available in
PZF, and even with its help the second one would not be sufficient. Therefore
the use of these two independent constraints, one connected with a property
of variables and the other with a property of formulas, is replaced in PZF by
a constraint which is connected with a single relation � between formulas
and set of variables.10 The intuitive meaning of ‘ϕ(x1, . . . , xn, y1, . . . , yk) �
{x1, . . . , xn}’ is that the formula ϕ is “extensionally determinate” (that is:
universe independent) with respect to the set of variables {x1, . . . , xn} for all
values of the parameters y1, . . . , yk. Note that this is a semantic notion. Like
in WA, in order to base a proof system on it, it is imposed in PZF syntactically
(and genetically), using adequate logical rules.

– The ZF -like framework of PZF causes apparent problems with implementing
the first three principles in the list above. (Those that are connected with the
natural numbers.) This is solved by using ancestral logic AL ([3,8,20,21,24])
as the underlying logic, rather than first-order logic. In fact, in [3] it was
argued that the ability to form the transitive closure of a given relation (like
forming the notion of an ancestor from the notion of a parent) should be taken
as a major ingredient of our logical abilities (even prior to our understanding
of the natural numbers), and that this concept is the key for understanding
iteration, as well as inductive reasoning.

In Appendix 2 we present a version of the system PZF from [5], which has
been designed according to the principles described above. An (incomplete)
investigation of its power can be found in [6].

10 Following the terminology of database theory ([26]), we call � ‘the safety relation of
PZF’. (On the theory of safety relations in general, their use, and their connections
with database theory and computability theory, see [2,4].).
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6 The Computational Significance of Predicative Sets

We end this paper by a brief discussion of the importance of predicative set
theory in general, and PZF in particular, to Computer Science.

As is emphasized and demonstrated in [9,10] and in [7], set theory has not
only a great pragmatic advantage as a basic language for mathematical discourse,
but it also has a great computational potential as a basis for specification lan-
guages, declarative programming, proof verifiers, and many other applications in
computer science. However, in order to be used for such tasks, it is necessary to
overcome the following serious gaps that exist between the “official” formulations
of set theory (as given e.g. by ZFC) and actual mathematical practice:

– ZFC treats all the mathematical objects on a par, and so hid the compu-
tational significance of many of them. Thus although certain functions are
first-class citizens in many programming languages, in set theory they are
just “infinite sets”, and ZFC in its usual presentation is an extremely poor
framework for computing with such sets.

– The languages used in official formalizations of ZFC are very remote from real
mathematical practice. In those languages variables (and perhaps a couple of
constants) are the only terms which are directly provided. This feature makes
these formalizations almost useless from a computational point of view. In
contrast, all modern texts in all areas of mathematics (including set theory
itself) employ much richer and more convenient languages. In particular: they
make extensive use of terms for denoting sets, like abstractions terms of the
form {x | ϕ}.

– Full ZFC is far too strong for core mathematics, which practically deals
only with a small fraction of the set-theoretical “universe”. It is obvious that
much weaker systems, corresponding to universes which are smaller, more
effective, and better suited for computations , would do (presumably, such
weaker systems will also be easier to mechanize).

Obviously, PZF , with its extensive use of abstract set terms and operations,
is free from the first two drawbacks. As for the third—not only it does not have
it, but the universe it most naturally defines provides its main computational
significance. Next we explain what this universe is, and what is its significance.

Let T be some set theory. From the platonist point of view the set D(T ) of its
closed terms induces some subset S(T ) of the universe V of sets. In predicative
theories like PZF, the identity of S(T ) depends only on the language of T and
on the interpretations of the symbols (if such exist) that its signature has in
addition to ∈ and =. It does not depend on its axioms. In addition, for any
transitive model M of T , D(T ) determines some subset M(T ) of M (which
might not be an element of M). Now a theory T is computationally interesting
if the set S(T ) it induces is a “universe” in the sense that it is a transitive model
of T . Moreover, T and S(T ) have a special significance from a computational
point of view if in addition the identity of S(T ) is absolute in the sense that
M(T ) = S(T ) for any transitive model M of T (implying that S(T ) is actually
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a minimal transitive model of T ). In such a case computing with the elements
of the abstract minimal model of T reduces to computing with the terms that
denote these elements. Hence what we need to deal with is a collection of terms
equipped with some equality relation (determined by the theory we use). As
usual, a computation here would basically be a reduction of one term to another
one, which should be equal to it, but has a certain “normal form”.

From results in [5] it follows that PZF has both of the properties described
above. In fact, S(PZF) is a well-known set: it is Lωω in Gödel’s hierarchy, which is
identical to Jωω in Jensen’s hierarchy. (See [11,18].) This universe is rich enough
for implementing every data structure one may needs.

Appendix 1. WA: Weyl’s System in [27]

We use σ and τ as metavariables for types, t, s as metavariables for terms, and
ϕ,ψ as metavariables for formulas. We also employ x, y, z, w as general variables
for objects, n, k,m as variables for objects of type N, f, g as variables for objects
of types of functions, X,Y,Z for objects of types of sets. We let σ = σ1×· · ·×σk,
τ = τ1×· · ·×τn, x = x1, . . . , xn, w = w1, . . . , wn, y = y1, . . . , yk, z = z1, . . . , zk,
f = f1, . . . , fm, X = X1, . . . , Xm, ∀x . . . = ¬∃x¬ . . ., ∃x : σ . . . = ∃xσ . . .,
∀z : σ . . . = ∀z1 : σ1 · · · ∀zk : σk . . ..

A.1 Language

Types
1. N is a basic type.
2. If σ1, . . . , σk and τ1, . . . , τn are types, where k ≥ 0 and n ≥ 1, then

(σ1 × · · · × σk) → S(τ1 × · · · × τn) is a type.
Terms and their type(s)

1. xσ : σ whenever xσ is a variable of type σ.11 (We assume an infinite
supply of variables xσ for each type σ.)

2. f(t1, . . . , tk) : S(τ) in case f : σ → S(τ) and ti : σi for 1 ≤ i ≤ k.
3. {(x1, . . . , xn) | ψ} : S(τ) whenever n ≥ 1, xi : τi for 1 ≤ i ≤ n, and ψ is a

delimited formula.
4. λy1, . . . , yk.t : σ → S(τ) in case t : S(τ), and yi : σi for 1 ≤ i ≤ k.
5. IT i

m(f1, . . . , fm) : N×σ×S(τ)m → S(τ) in case m > 0, and for 1 ≤ i ≤ m,
either fi : σ × S(τ) → S(τ) or fi : N × σ × S(τ) → S(τ).

Delimited Formulas (d.f.)
1. If t : N and s : N, then Succ(t, s) is a delimited formula.
2. If t : N and s : N, then t = s is a delimited formula.
3. If t1, . . . , tn are terms of types τ1, . . . , τn respectively, and s : S(τ), then

(t1, . . . , tn) ∈ s is a delimited formula.
4. If ϕ and ψ are s. f. then so are ¬ϕ, (ϕ ∧ ψ) and (ϕ ∨ ψ).
5. If x is a variable of type N, and ϕ is a d. f. then so is ∃xϕ.

11 We shall usually omit the superscript, writing just x : σ.
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Formulas
1. If t : N and s : N, then Succ(t, s) is a formula.
2. If t and s are terms of the same type then t = s is a formula.
3. If t1, . . . , tn are terms of types τ1, . . . , τn respectively, and s : S(τ), then

(t1, . . . , tn) ∈ s is a formula.
4. If ϕ and ψ are formulas then so are ¬ϕ, (ϕ ∧ ψ) and (ϕ ∨ ψ).
5. If x is a variable and ϕ is a formula, then ∃xϕ is a formula.

A.2 Proof System

Logic: Many-sorted first order logic with variable-binding terms operators, and
with equality in all sorts (i.e. types).

Axioms:
Comprehension Axioms

– ∀w.(w) ∈ {(x) | ψ} ↔ ψ[w/x]
– ∀z.(λy.t)(z) = t[z/y]}

Extensionality Schema
– ∀X : S(τ)∀Y : S(τ).X = Y ↔ ∀w : τ .w ∈ X ↔ w ∈ Y
– ∀f : σ → S(τ)∀g : σ → S(τ).f = g ↔ ∀z : σ.f(z) = g(z)

The standard axioms for Succ

– ∃!n∀k.¬Succ(k, n)
– ∀k∃!n.Succ(k, n)
– ∀k∀m∀n.Succ(k, n) ∧ Succ(m,n) → k = m

Induction Schema
ψ{0/n} ∧ (∀n∀k.Succ(n, k) ∧ ψ → ψ{k/n}) → ∀nψ

Axioms Schemas for iteration
For each 1 ≤ i ≤ m:

– ∀z∀f∀X.IT i
m(f)(1,z,X) = fi([1, ]z,X)

– ∀n∀k∀z∀f∀X.Succ(n, k) → IT i
m(f)(k,z,X) =

IT i
m(f)(n,z, f1([k, ]z,X), . . . , fm([k, ]z,X))

Where depending on the type of fi , fi([k, ]z,X) means either
fi(z,X) or fi(k,z,X), and similarly with fi([1, ]z,X).

Appendix 2: The Formal System PZF

Language
The language LPZF of PZF is defined by a simultaneous recursion.

Predicates and Operations
– = and ∈ are binary predicates.
– If ϕ is a formula such that ϕ �PZF ∅, and Fv(ϕ) = {x1, . . . , xn} where

n > 0, then [(x1, . . . , xn) | ϕ] is an n-ary predicate.
– If t is a term such that Fv(t) = {y1, . . . , yk}, then λy1, . . . , yk.t is a k-ary

operation.
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Terms:
– Every variable is a term.
– If ϕ �PZF {x}, then {x | ϕ} is a term.
– If F is a k-ary operation, and t1, . . . , tk are terms, then F (t1, . . . , tk) is a

term.
Formulas:

– If P is an n-ary predicate, then P (t1, . . . , tn) is an atomic formula when-
ever t1, . . . , tn are terms.

– If ϕ and ψ are formulas, and x is a variable, then ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ),
and ∃xϕ are formulas. (∀xϕ and ϕ → ψ are taken as abbreviations for
¬∃x¬ϕ and ¬(ϕ ∧ ¬ψ), respectively.)

– If ϕ is a formula, t and s are terms, and x and y are distinct variables,
then (TCx,yϕ)(t, s) is a formula, and

Fv((TCx,yϕ)(t, s)) = (Fv(ϕ) − {x, y}) ∪ Fv(t) ∪ Fv(s)

The Safety Relation �PZF :
(∈) x ∈ t �PZF {x} if x �∈ Fv(t).
(At) ϕ �PZF ∅ if ϕ is atomic.
(=)] ϕ �PZF {x} if ϕ ∈ {x �= x, x = t, t = x}, and x �∈ Fv(t).
(¬) ¬ϕ �PZF ∅ if ϕ �PZF ∅.
(∨) ϕ ∨ ψ �PZF X if ϕ �PZF X and ψ �PZF X.
(∧) ϕ ∧ ψ �PZF X ∪ Y if ϕ �PZF X, ψ �PZF Y , and Y ∩ Fv(ϕ) = ∅.
(∃) ∃yϕ �PZF X − {y} if y ∈ X and ϕ �PZF X.
(TC) (TCx,yϕ)(x, y) �PZF X if ϕ �PZF X ∪ {x}, or ϕ �PZF X ∪ {y}.

Logic and Axioms

Logic: Classical AL with variable-binding terms operators, and equality.
Axioms:

Extensionality: ∀z(z ∈ x ↔ z ∈ y) → x = y
Comprehension: The universal closures of formulas of the forms:

– x ∈ {x | ϕ} ↔ ϕ

– [(x1, . . . , xn) | ϕ](t1, . . . , tn) ↔ ϕ{t1/x1, . . . , tn/xn}
– (λy1, . . . , yk.t)(s1, . . . , sk) = t{s1/y1, . . . , sk/yk}

∈-induction : (∀x(∀y(y ∈ x → ϕ{y/x}) → ϕ)) → ∀xϕ
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1 Introduction

The goal of this paper is to indicate how a branch of category theory, the branch
dealing with classifying topoi, interacts with some topics in computer science
and some related algebra. Few if any of the results here are new, but I hope that
assembling and juxtaposing them will be of some value.

To avoid excessive repetition, we refer to [2] for a general introduction to the
most relevant ideas from topos theory, and to Johnstone’s book [8], especially
Chapters 4 and 6, for a detailed treatment.

For simplicity, results here will be presented in terms of Grothendieck topoi,
but suitable formulations of them (using the internal logic) hold for elementary
topoi bounded over any base topos with a natural number object.

2 Geometric Formulas, Sequents, and Theories

In this section, we review the definitions and basic properties of some classes
of formulas that play a role in the theory of classifying topoi. We work in the
context of a fixed, possibly multi-sorted, first-order vocabulary, and we treat
equality as a logical symbol. Terms and atomic formulas are defined as usual in
first-order logic.

The class of geometric formulas is the closure of the atomic formulas under
finite conjunctions (including the empty conjunction �), arbitrary, possibly infi-
nite disjunctions (including the empty disjunction ⊥), and existential quantifica-
tion. This class is thus included in the classical infinitary language L∞,ω, but we
shall need to consider it in the context of (formally) intuitionistic logic, because
that is the internal logic of topoi.
c© Springer Nature Switzerland AG 2020
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Despite the restriction to intuitionistic logic, we still have that finite con-
junctions distribute over disjunctions (even infinite disjunctions), that existen-
tial quantifiers can be pulled out of finite conjunctions (with bound variables
renamed if necessary to avoid clashes, as in the algorithm for converting first-
order formulas to prenex form), and that existential quantifiers distribute over
disjunctions. (In contrast, we cannot, in general, pull all of the existential quan-
tifiers out of an infinite disjunction, because the number of quantifiers, though
finite in each disjunct, might not be bounded, and then the prenex form would
have an infinite quantifier prefix.)

These facts suffice to imply that every geometric formula is equivalent to one
in geometric normal form: A disjunction of existential quantifications of finite
conjunctions of atomic formulas.

A geometric sequent is a sentence of the form ∀x (ϕ → ψ) where ϕ and ψ
are geometric formulas all of whose free variables occur in the finite sequence
x. Note that universal quantification and implication are applied here only to
geometric formulas; they cannot be iterated.

A geometric theory is a set of geometric sequents. These are the theories for
which classifying topoi are available.

The axioms of a geometric theory can be put into a somewhat simpler form
as follows. First, in each of the theory’s axioms ∀x (ϕ → ψ), put ϕ and ψ into
geometric normal form. Second, if the antecedent ϕ is a non-trivial disjunction∨

i∈I ϕi, then replace the axiom

∀x
(( ∨

i∈I

ϕi

) → ψ
)

with the logically equivalent set of sequents, one for each i ∈ I,

∀x (ϕi → ψ).

(This step applies, in particular, when I = ∅; it simply removes the always true
and therefore redundant sequent ∀x (⊥ → ψ) from the set of axioms.) After
this step, the antecedents in the axioms are merely existentially quantified finite
conjunctions of atomic formulas. Third, pull the existential quantifiers from the
antecedents out into the universal quantifier prefix, so ∀x ((∃y θ) → ψ) becomes
∀x,y (θ → ψ).

Thus, we can always arrange that, in the axioms of a geometric theory, all
the antecedents are merely conjunctions of atomic formulas. None of these sim-
plifications affect the consequents, which remain general geometric formulas (in
geometric normal form, if desired).

A geometric sequent is called a strict Horn sequent if its antecedent is (as
above) a finite conjunction of atomic formulas and its consequent is a single
atomic formula. It would make little difference if the consequent were a finite
conjunction

∧
ı∈I ψi of atomic formulas, because such a sequent could be replaced

by a logically equivalent finite set of sentences, one for each i, having just a single
ψi in the consequent. On the other hand, existential quantifiers and disjunctions
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in the consequent will, in general, make a big difference, definitely affecting the
structure of classifying topoi.

An important property of strict Horn theories T (i.e., geometric theories
axiomatized by strict Horn sequents) is that one can describe models (in classical
logic) by means of generators and relations. That is, given a set G of generators
and a set R of atomic sentences built from our fixed vocabulary and names for
the generators, there is a model whose elements are essentially the terms built,
again, from the vocabulary plus generators, whose functions act in the natural
way on terms, and whose relations are defined by making all and only those
atomic sentences true which are entailed by the axioms of the theory T plus
the relations in R. The word “essentially” in the preceding sentence refers to
the fact that the equality relation is to be treated like other relations: it is to
hold between two terms if and only if this follows from T plus R. So, strictly
speaking, the elements of this model are not simply terms but rather equivalence
classes of terms with respect to this equality relation. We denote this model by
〈G : R〉. (The assumption that T is axiomatized by strict Horn sequents is used
in proving that the structure so defined satisfies T . For more general geometric
theories, one would need something like Skolemization to take care of existential
quantifiers and completion to take care of disjunctions in the consequents of the
axioms.) Note that the terms and the atomic sentences used in this construction
do not involve variables.

Particularly important for our purposes will be the case where both G and
R are finite. In this case, we speak of finitely presented models of T . When
dealing with these, it will often be convenient to identify the generators with
some variables; this will cause no notational conflict because of the observation
at the end of the preceding paragraph.

3 Classifying Topoi for Strict Horn Theories

The classifying topos of a strict Horn theory T admits a simple description as a
topos of presheaves, i.e., the category of set-valued functors on a certain category
associated to T . In fact, there are two natural ways to view that category, both
of which are useful, so we describe the situation here in some detail.

We write Set for the category whose objects are all of the sets and whose
morphisms are all of the functions between them. For any category C, we write
Cop for the dual category and [C,Set] for the functor category whose objects are
the functors from C to Set and whose morphisms are the natural transformations
between such functors. A presheaf on C is contravariant functor from C to Set,
so the category of presheaves on C is [Cop,Set].

By the classifying topos of a theory T , one means a topos BT such that,
for any topos E, the category of geometric morphisms1 E → BT is equivalent
1 We adopt the “logical” convention that a morphism in this category is a natural
transformation between the left-adjoint parts f∗ of two geometric morphisms. The
“geometric” convention would use the right-adjoint parts instead and would result
in a category dual to ours.
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to the category of models of T in E (in the sense of the internal logic of E).
In other words, models of T in any topos are essentially the same thing as
geometric morphisms from that topos to the classifying topos of T . It is known
[8, Chapter 6] that all geometric theories have classifying topoi.

If T is a strict Horn theory, then its classifying topos is the category
BT = [FPT,Set] of covariant set-valued functors on the category FPT of
finitely presented models of T . This description of the classifying topos for strict
Horn theories is well known; the reference I’m aware of is the 1981 doctoral the-
sis of Andrej Ščedrov (now Andre Scedrov), published in [10]. (The description
is also in [5], which, though published earlier than [10], was written later.)

Thus, the classifying topos BT is the topos of presheaves on the dual category
FPT op. This dual category admits the following alternative description. Given
a finitely presented model 〈G : R〉 of T , we may assume, by renaming the
generators if necessary, that G consists of a finite list x of variables. (Technically,
we should have adopted some such convention sooner, because a presheaf is
supposed to be a set-valued functor on a small category.) Then R is a finite set
of atomic formulas involving variables only from this list x. The conjunction of
R defines a set in any model M of T , namely the set {x :

∧
R}M ; if the list x

has length l then this is the set of those l-tuples from (the underlying set of) M
that satisfy in M all the formulas of R. In fact, for any model M of T in any
topos, we similarly get a subobject {x :

∧
R}M of M l. We think of {x :

∧
R}

(without a superscript M) as a syntactic description of these sets or subobjects,
admitting semantic interpretations in all models M of T . These “syntactic sets”
will be the objects in our alternative description of FPT op.

A morphism from {x : R} to {y : S} is given by a list t of terms, of the
same length as y, and built from our fixed vocabulary and the variables in
x, satisfying the following condition: If one replaces in S each variable from
y by the corresponding term from t, then the resulting (atomic) formulas are
consequences of T and R. The intuition behind this definition is that the terms
t, interpreted in any model M of T , tell how to map {x : R}M to {y : S}M by
sending any tuple of values for x to the resulting values (in M) of the terms t
as values for y. Two lists of terms are regarded as defining the same morphism
if their equality is entailed by T ∪ R.

Notice that a tuple t of terms as described above also provides a homomor-
phism of models from 〈y : S〉 to 〈x : R〉. Namely, given any element of 〈y : S〉,
a term built from our vocabulary and y, substitute the terms t for y to get a
term built from x. It is routine to check that this construction is well-defined,
commutes with the interpretations of our vocabulary’s function symbols, and
preserves, in the forward direction, the interpretation of our vocabulary’s pred-
icate symbols. That is, it is a homomorphism of models of T .

These two ways of interpreting a tuple t of terms provide the equivalence
between FPT op and the category of syntactic sets, a category sometimes called
the syntactic site in this context. (There is a more general notion of syntactic site
in [8, Section 7.4], defined there for finitary geometric theories but generalizable
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to arbitrary geometric theories. It is more complicated than what we have done
here, partly because morphisms are not given by terms in general and partly
because one needs to deal with sheaves rather than presheaves.)

4 The Object Classifier

This section is devoted to the simplest of strict Horn theories, the single-sorted
theory O in the empty vocabulary (so the only atomic formulas are equations
between variables) with no axioms. So a model of O is just a set, and a model
of O in a topos E is just an object of E. (The symbol O for the theory refers to
“object”.)

Although a finitely presented model 〈G : R〉 of O is in general given by a finite
set G of variables and a finite set R of relations, it is always isomorphic to one for
which R is empty and the model is just G. A somewhat inefficient but usefully
generalizable proof of this reduction of R to ∅ consists of two observations: If R
contains a relation of the form x = x, then this can simply be deleted without
changing 〈G : R〉. If R contains an equation x = y with distinct x and y, then
we can delete this relation from R, replace y by x in all other relations in R, and
delete y from G; again, 〈G : R〉 is unchanged.

So the category FPO of finitely presented models of O is (equivalent to)
the category of finite sets and all functions between them, often called Fin. As
indicated earlier, though, it is better to use a small category here, by limiting
the elements of these finite sets to come from some fixed infinite set, and it is
convenient to take that infinite set to be the set of variables. So our Fin is the
category of finite sets of variables. The classifying topos BO = [Fin,Set] is
called the object classifier.

An object in the object classifier topos is thus a covariant functor X : Fin →
Set. So it consists of, first, for each finite set v of variables, a set X(v) and,
second, for each function f : v → w, a function X(f) : X(v) → X(w), subject
to the requirements for a functor that it respect composition and identity maps.

This sort of structure is familiar in a quite different context. Consider a
single-sorted vocabulary consisting of only function symbols (a signature in the
sense of universal algebra), and let X(v), for any finite set v of variables, denote
the set of all simple terms over v, by which I mean terms consisting of a single
function symbol applied to a list of variables from v. (There is no nesting of
function symbols here.) For any f : v → w, there is an obvious function, which
we call X(f) from X(v) to X(w), namely, given a simple term over v, replace
each of those variables by its image under f to get a simple term over w. It is
clear that this construction produces a functor as in the preceding paragraph,
i.e., an object of BO.

If we select, for each function symbol α in our vocabulary, one term formed
by α followed by a list of distinct variables, then any simple term is obtained
from one of these by applying some X(f) to suitably rename the variables. In
this sense, the functor X is generated by these selected terms. We can think of
it as generated by the vocabulary, and we can even, by abuse of language, think
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of X as essentially being the vocabulary. A (single-sorted) functional vocabulary
“is” an object of BO.

The converse, however, is not true. An object of BO can have more structure
than a mere vocabulary. To see the issue in the simplest case, consider an X
arising as above from a functional vocabulary. Suppose v = {x, y} where x and
y are distinct variables, let α be a binary function symbol of our vocabulary,
so α(x, y) is a simple term in X(v), and let f be the non-trivial permutation
of v. Then X(f) maps α(x, y) to a different term α(y, x). More generally, for
arbitrary finite sets v of variables and arbitrary maps f : v → v, the only simple
terms in X(v) that are fixed by X(f) are those in the image of X(i), where i is
the inclusion map into v of the set of fixed points of f . (More generally yet, any
X arising from a functional vocabulary preserves equalizers.)

An arbitrary X in BO may have far more fixed points than this. As an
example, consider a vocabulary with a single, binary function symbol α, and let
X(v) consist not of simple terms over v but of equivalence classes of these under
the commutative law, i.e., α(x, y) = α(y, x). With the obvious action X(f) for
functions f , this produces an object of BO that does not arise from a vocabulary.

One can obviously generalize this example by having function symbols with
various numbers of arguments and various degrees of symmetry under permuta-
tions of their arguments. One could generalize the notion of vocabulary by allow-
ing such symmetry considerations to be built into the vocabulary. For example,
the commutative law α(x, y) = α(y, x) would then not be an axiom but rather
a syntactic identity; the two sides of the equation would be the same term.

This extension of the notion of “vocabulary” to incorporate symmetry is
parallel to an extension that Yuri and I introduced in [3] (see also [4]) incorpo-
rating various sorts of symmetry for predicates. The result (with some additional
modifications2) was what we called thesauri. It seems that the idea of incorpo-
rating symmetry into the functions, rather than predicates, of a vocabulary is
sufficiently similar to deserve the name functional thesauri.

The amount of structure that can occur in objects X of BO, however, goes
beyond symmetry of this sort, because X works with arbitrary functions f , not
just permutations. Thus, for example, if a vocabulary contains a ternary function
symbol β, then X(v) could consist of equivalence classes of simple terms under
the equivalence relation that makes β(x, x, y) = β(x, y, y). More generally, we
can start with objects X of BO given by vocabularies and form all sorts of
quotients by imposing various identities between simple terms.

The reader may wonder why I restricted attention to simple terms. What
would go wrong if we allowed arbitrary terms instead? Nothing would go wrong,
but arbitrary terms have additional structure—namely the possibility of substi-
tuting terms for variables in other terms—that does not appear at the level of

2 The additional modifications involved a group action and a probability distribution
on the set of “truth values” of the predicates, a set that was not required to contain
only “true” and “false”. In our present, functional situation, there are no truth
values, and so those modifications are not applicable.
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just objects of BO. It does, however, appear when we take account more fully of
the role of BO as the object classifier. That will be the topic of the next section.

Before treating nesting, however, we describe the geometric morphisms E →
BO that correspond to objects of a topos E. Suppose that A is an object of E,
that f : E → BO is the corresponding geometric morphism, and that X is an
object of BO. So X is a functor Fin → Set as above, and f∗(X) is an object
of E. One can calculate, following Diaconescu [7] (see also [8, Section 4.3]), that
this object f∗(X) admits the following description in the internal logic of E.
Its elements are equivalence classes of pairs (x,a) where x ∈ X(v) for some
finite set v of variables and a is a v-indexed family (also called a v-tuple) of
elements of A. The equivalence relation is generated by declaring that, for any
map q : w → v, any y ∈ X(w), and any v-tuple a of elements of A, the pair
(X(q)(y),a) is equivalent to (y, (a)q), where (a)q is the w-tuple obtained by
rearranging a according to q, i.e., the w-tuple whose ith component is the q(i)th

component of a.
In the case when X arises from a functional vocabulary, or even from a

functional thesaurus, one can view the element of f∗(X) given by (x,a) as the
result of substituting the elements of a for the variables of v in the simple term
x. That is, the elements of x of X(v) not only transform like function symbols
under the transformations X(f) but are used as function symbols in f∗(X).
It seems worthwhile to view all objects X of BO, not just those arising from
functional thesauri, as some sort of generalized functional vocabularies.

5 Monoidal Structure and Monoids

Because BO is the classifying topos for the theory O of objects, we know that any
topos E is equivalent to the category whose objects are the geometric morphisms
from E to BO and whose morphisms are natural transformations between the
left-adjoint parts of these geometric morphisms. In particular, BO is equivalent
to the category of its own geometric endomorphisms.

The category of geometric endomorphisms of BO (or of any topos) has
a monoidal structure given by composition of endofunctors. That induces a
monoidal structure on the equivalent category BO, and we can calculate this
tensor-product operation on the objects of BO as follows. Let A and B be two
objects of BO, with classifying geometric endomorphisms α and β, respectively,
of BO. Then A ⊗ B is defined as the object of BO classified by the composite
endomorphism α ◦ β, and this is easily computed to be just β∗(A). Applying
the description in the preceding section, we find the following description of this
object A ⊗ B. For any finite set v, the set (A ⊗ B)(v) consists of equivalence
classes of pairs (a, b) where a ∈ A(w) for some finite set w and where b is a
w-tuple of elements of B(v); two such pairs are deemed equivalent if their first
components are related by some rearrangement function q : w → w′ and the
tuples in the second components are correspondingly rearranged.

In terms of generalized vocabularies, this means that the function symbols in
A ⊗ B can be viewed as the result of nesting function symbols of B inside those
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of A. The nesting has depth exactly 2; a function symbol from A is applied to
simple terms from vocabulary B.

In particular, A ⊗ A has function symbols that amount to depth-2 nesting
of function symbols from A. Similarly, products of k factors in this monoidal
structure correspond to depth-k nesting of function symbols.

The identity object I for this monoidal structure is the inclusion functor
Fin → Set, which sends each finite set v and each function between finite sets
to itself. Each variable x in the set v thus becomes a v-place function symbol in
the vocabulary I; it should be thought of as the projection to the xth component.
Often, one does not introduce special symbols for these projections but instead
just uses the variables themselves. With this convention, I can be viewed as
describing depth-0 nesting of function symbols, which seems appropriate since
it is a 0-fold iteration of ⊗.

Like any monoidal structure, that of BO determines a notion of monoid, an
object A of BO equipped with a multiplication morphism μ : A ⊗ A → A and
a unit “element” η : I → A, subject to a category-theoretic formulation of the
associative and unit laws. Using the descriptions of ⊗ and I above, and thinking
of an object A as a generalized functional vocabulary, we find that a monoid
structure on A provides a way to interpret depth-2 nested terms as simple (i.e.,
depth-1) terms via μ. It also provides, via η, simple terms that can be identified
with the variables themselves, i.e., projection operations. Specifically, if x is one
of the elements of a finite set v of variables, then the η-image in A(v) of x ∈ I(v)
serves as the projection from v-tuples to their xth components. It turns out that
the monoid laws, of associativity and units, are exactly what one needs to make
this set-up an abstract clone. To summarize: Monoids in the monoidal category
BO are equivalent to abstract clones.

6 Flatness

In this section, we slightly enlarge the context of the preceding two sections;
instead of working with the theory O that has empty vocabulary and no axioms,
we work with an equational theory, i.e., a theory T whose vocabulary consists of
function symbols, and whose axioms are just equations. Such axioms are strict
Horn sentences whose antecedents are just the empty conjunction �. So we are
essentially doing universal algebra.

Lawvere [9] found an elegant category-theoretic description of the models of
such a theory T . Let FFT be the category of finitely generated free models of
T . It is the full subcategory of FPT consisting of the objects 〈G : R〉 for which
R is empty. Then a model M of T amounts to a functor FFT op → Set that
preserves products.

The dual category mentioned here, FFT op is a syntactic site, as described
earlier, but restricted to objects of the form {x : �}. The semantics of such an
object associates to each model M the power M l, where l is the length of the
sequence of variables x.

Note that a morphism from 〈v : ∅〉 to 〈w : ∅〉 in FFT is given by a v-tuple of
terms built from the vocabulary of T and variables from w (modulo T -provable
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equality). The morphisms of FFT thus amount to tuples of elements from the
clone determined by T . Part of Lawvere’s discovery was that the axioms for
clones, when arranged in this context, become the familiar notion of preserving
products.

What happens if we try to use the simpler category FFT instead of FPT
to produce a classifying topos? Diaconescu’s theorem ([7] or [8, Theorem 4.34])
tells us that [FFT,Set] is the classifying topos for flat presheaves on FFT . We
refer to [8] for the general notion of a flat functor and confine ourselves here to
the case where the domain category has finite products, since this covers our
current situation where the domain is FFT op.

Definition 1. A functor F from a category C with finite products to Set is
flat if it preserves products and, whenever γ, δ : A → B in C and a ∈ F (A)
with F (γ)(a) = F (δ)(a), then there exist α : E → A and e ∈ F (E) such that
γ ◦ α = δ ◦ α and a = F (α)(e).

If C had not only finite products but also equalizers, then flatness would
be equivalent to preserving finite limits. But FFT op does not generally have
equalizers.

The condition about a and e in the definition of flatness says intuitively that
an equation F (γ)(a) = F (δ)(a) between elements in the image of F is “caused”
by an equation γ ◦ α = δ ◦ α in C that is applicable to a because a = F (α)(e).
It is analogous to one of the characterizations of flat modules in algebra that
says any linear relation between elements of the module is “caused” by a linear
relation in the ring.

A more abstract connection with module theory arises from the fact that
one can define a tensor-product between covariant and contravariant set-valued
functors on any small category; the tensor-product is just a set. It then turns
out that a covariant functor is flat if and only if tensor product with it, as an
operation from contravariant functors to sets, is left-exact. This matches the fact
that a module is flat if and only if tensor product with it is left-exact.

Two special cases are worth mentioning. First, if C is a partially ordered set,
considered as a category with at most one morphism between any two objects,
then a flat functor on C amounts to just a filter F in that partially ordered set.
The values of the functor are singletons or empty, and the places where it is a
singleton are the filter F . Second, if C is a group, considered as a category with
only one object, then a flat functor on C amounts to just a torsor under that
group.

Flat functors on any C are models of a certain geometric theory. A particu-
larly interesting case arises when C is FFT for a theory as above but with no
axioms. So, in the language of universal algebra, models of T are arbitrary alge-
bras for the signature of T . By Lawvere’s work, these algebras are the product-
preserving functors FFT op → Set. Which of them are flat? It turns out that
they are characterized by the following geometric sequents, in which we omit the
initial quantifiers; all free variables are to be understood as universally quantified
over the whole sequent.
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– x = t → ⊥ when x is a variable that occurs in the term t but is not the whole
term t.

– f(x) = g(y) → ⊥ when f and g are distinct function symbols.
– f(x) = f(y) → xi = yi where xi and yi are corresponding components of x

and y.

These axioms are familiar from a quite different context: unification. They
are the properties used to simplify unification problems, where one is given a
list of equations between terms and one seeks the most general terms which,
when substituted for the variables, make the given list of equations true (or to
show that no such terms exist). The axioms above, together with general facts
about equality (like substituting equals for equals) are used to simplify the given
equations until the solution becomes trivial.

7 Conclusion

An exploration of a small part of the theory of classifying topoi has led to
connections with thesauri (which first arose in connection with zero-one laws in
finite model theory), with flatness (a useful technical tool in commutative algebra
and a frequently used “good behavior” assumption in algebraic geometry), and
with unification (an essential ingredient in logic programming).

There is much more to explore. We have looked here only at classifying topoi
for strict Horn theories. A natural but small first step is to remove “strict”, i.e.,
to allow the consequent in a sequent to be ⊥ rather than an atomic formula.
It turns out that one still gets a classifying topos of presheaves on a syntactic
site, but not every presentation 〈G : R〉 defines a model, because R can be
inconsistent with the axioms.

Having allowed the empty disjunction in the consequent, it is natural to allow
more general disjunctions. Here, presheaves no longer suffice in general; one needs
sheaves. Nevertheless, those sheaf topoi can often be simplified by means of the
“Lemme de comparaison” of [1], and, in fortunate cases, the simplification can
bring us back to a presheaf topos.

For example, consider the theory with one binary relation 
= and axioms
saying that it is the negation of equality. In the terminology of intuitionistic
logic, the models of this theory are sets with decidable equality. In geometric
form, the axioms are (again omitting universal quantifiers)

– x 
= x → ⊥.
– � → (x = y ∨ x 
= y).

Its classifying topos is the topos [FI,Set] where FI is the category of finite sets
and one-to-one maps, a category that has recently made multiple appearances
in representation theory, beginning with [6].
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Abstract. The relationship between the complexity class AC0 and first-
order logic transfers to the parameterized class para-AC0, the parame-
terized analogue of AC0. In the last years this relationship has turned
out to be very fruitful. In this paper we survey some of the results
obtained, mainly applications of logic to complexity theory. However
the last section presents a strict hierarchy theorem for first-order logic
obtained by a result of complexity theory.

1 Introduction

The complexity class AC0 is seen as a model for effective parallel computing. It is
one of the best understood classical complexity classes. Already in [1,16] it was
shown that Parity, the problem of deciding whether a binary string contains
an even number of 1’s, is not in AC0. Since Parity has a very low complexity,
for many other problems, including Vertex-Cover and Clique, the AC0-lower
bound can be easily derived by reductions from Parity.

Gurevich and Lewis [17] were the first to observe that AC0 is intimately con-
nected to first-order logic. The connection was further sharpened by Barrington
et al. [6]. In fact, the problems decidable by dlogtime-uniform AC0-circuits are
precisely those definable in first-order logic FO with built-in arithmetic.

Based on the general guideline presented in [14] to define the parameterized
analogue of a classical complexity class, in [13] Elberfeld et al. introduced and
studied the parameterized class para-AC0: A problem is in para-AC0 if it can be
computed by dlogtime-uniform AC0-circuits after an (arbitrarily complex) pre-
computation on the parameter. Bannach et al. [3] showed that para-AC0 contains
the parameterized vertex cover problem, one of the archetypal fixed-parameter
tractable problems. Rossman [20] proved that the parameterized clique prob-
lem is not in para-AC0. Using some appropriate weak parameterized reductions,
it is not hard to see that many other parameterized problems, including the
dominating set problem [9], are not in para-AC0.

The connection between AC0 and first-order logic survives in the parameter-
ized world: A parameterized problem is in para-AC0 precisely if it is definable in
FO with built-in arithmetic after a precomputation on the parameter. In [12] it
was proven that for a parameterized problem Q this is equivalent to the fact that
c© Springer Nature Switzerland AG 2020
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all slices of Q (i.e, all classes of positive instances of Q with the same parameter)
are FO-definable with built-in arithmetic and bounded quantifier rank. Moreover
in [12] it was shown with the color-coding method [2] that this is already the
case if every slice is definable in the logic CFO with bounded quantifier rank.
Here CFO, first-order logic with counting, denotes the logic obtained from FO
by adding the quantifiers “there are at least k many x” for k ∈ N and specifying
that each such quantifier adds only one to the quantifier rank. Note that for
the class of all graphs without edges already the existence of at least k vertices
cannot be expressed by an FO-sentence (without arithmetic) of quantifier rank
k − 1, i.e., not by a sentence of quantifier rank independent of k.

Motivated by the preceding result, in [8] we analyzed what classes K of
structures have generalized quantifier elimination. By this we mean that for K
every FO-definable property can already be defined by an FO-formula with built-
in arithmetic whose quantifier rank is bounded by a constant depending only on
K. It turned out that a class K has generalized quantifier elimination if and only
if the model-checking problem for FO on K parameterized by the length of the
formula is in para-AC0. Recently [10] we used this characterization to show that
the model-checking problem for classes of graphs of bounded shrub-depth and
FO (even for monadic second-order logic) is in para-AC0.

To the best of our knowledge so far the color-coding method is the only non-
trivial method to prove generalized quantifier elimination for a class of structures.
There is a close relationship between parameterized model-checking problems
and slicewise FO-definable parameterized problems [5,8]. Perhaps this explains
why nearly all nontrivial proofs showing membership of a parameterized problem
in para-AC0 use the color-coding technique [3–5,9,10,12].

Content of this paper. In Sect. 2 we fix some notation. In Sect. 3 we present
two results (proven in later sections), which we apply to various parameterized
problems in order to show their membership in para-AC0. In Sect. 4 we prove the
following characterization of para-AC0 in terms of FO: A parameterized problem
is in para-AC0 if and only if all its slices are definable in first-order logic with
built-in arithmetic by sentences of bounded quantifier rank. The main tool to
get this kind of slicewise FO-definability is the color-coding method. We explain
this in Sect. 5. Using the characterization via slicewise FO-definability one can
prove that the model-checking problem for a class K of structures and FO is
in para-AC0 just in case K has generalized quantifier elimination. This result is
presented in Sect. 6. While so far all results can be viewed as applications of
logic to complexity theory, in the last section we prove a result the other way
round: We show that the hierarchy whose qth level is the class of FO-sentences
of quantifier rank q is strict on the class of structures with built-in arithmetic.

2 Preliminaries

For n ∈ N we set [n] := {1, . . . , n} and [0, n) := {0, 1, . . . , n − 1}.
A vocabulary τ is a finite set of relation symbols. Each relation symbol R

has an arity denoted by ar(R). A structure A of vocabulary τ , or τ -structure,



Parameterized Parallel Computing and First-Order Logic 59

consists of a nonempty set A called the universe of A, and of an interpretation
RA ⊆ Ar of each r-ary relation symbol R ∈ τ . In this paper all structures have
a finite universe. The letters τ , τ ′, . . . will always denote relational vocabularies.
Let Str[τ ] denote the class of τ -structures.

Formulas ϕ of first-order logic FO of vocabulary τ are built up from atomic
formulas x1 = x2 and Rx1 . . . xr (where R ∈ τ is of arity r and x1, x2, . . . , xr are
variables) using the boolean connectives ¬, ∧, and ∨ and the universal ∀ and
the existential ∃ quantifiers. The quantifier rank qr(ϕ) of an FO-formula is the
maximum number of nested quantifiers in ϕ. By FO[τ ] (and FOq[τ ] for q ∈ N)
we denote the class of FO-formulas (of quantifier rank ≤ q) of vocabulary τ . By
the notation ϕ(x̄) with x̄ = x1, . . . , xe we indicate that the variables free in ϕ are
among x1, . . . , xe and for a structure A and ā = a1, . . . , ae in A by A |= ϕ(ā) we
mean that ā satisfies ϕ(x̄) in A.

3 Tools from Logic to Show Membership in para-AC0

We already mentioned that para-AC0 contains the parameterized problems that
are in dlogtime-uniform AC0 after a precomputation on the parameter. Before
presenting precise definitions and a logical characterization of para-AC0 in Sect. 4,
we deal with two consequences of the results obtained in Sect. 5. They can be used
as “black boxes” to derive membership of parameterized problems in para-AC0.
Indeed many results showing that a parameterized problem is in para-AC0 have
been obtained in this way more or less explicitly. First we recall the definition
of parameterized problem in our logical framework.

Definition 1. A parameterized problem is a subclass Q of Str[τ ]×N for some
vocabulary τ , where for each k ∈ N the class Qk := {A | (A, k) ∈ Q} is closed
under isomorphisms. The class Qk is the kth slice of Q.

Every pair (A, k) ∈ Str[τ ] × N is an instance of Q, A its input and k its
parameter.

In the following Q will always denote a parameterized problem and Q ⊆
Str[τ ] × N unless stated otherwise explicitly.

Let CFO be the extension of FO with counting quantifiers ∃≥k for k ∈ N and
specify that such a quantifier adds one to the quantifier rank. The meaning of a
CFO-formula ∃≥kxϕ(x, ȳ) is the same as that of

∃x1 . . . ∃xk

( ∧
i,j∈[k], i<j

¬xi = xj ∧
∧

i∈[k]

ϕ(xi, ȳ)
)
.

If ϕ itself contains no further counting quantifiers, this is an FO-formula
whose quantifier rank is k + qr(ϕ), i.e., depends on k. We view the quan-
tifiers ∃≤k, ∃=k,. . . in CFO-formulas as abbreviations; e.g., ∃=kxϕ abbreviates
∃≥kxϕ ∧ ¬∃≥k+1xϕ. Note that they all add one to the quantifier rank.

For q ∈ N let CFOq be the class of CFO-formulas of quantifier rank ≤ q.
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Definition 2. The parameterized problem Q is eventually slicewise definable in
CFO with bounded quantifier rank, in short Q ∈evt CFOqr, if there is a q ∈ N,
a computable function k 	→ ϕk with ϕk ∈ CFOq[τ ] and a computable function
evt : N → N such that for all instances (A, k) with |A| ≥ evt(k),

(A, k) ∈ Q ⇐⇒ A |= ϕk.

Here the first “logical” tool to show membership in para-AC0 (proven in Sect. 5).

Proposition 3. Let Q be decidable. If Q ∈evt CFOqr, then Q ∈ para-AC0.

Let us see how we can apply this result. For k ∈ N consider the FO-sentences

ϕk := ∃x1 . . . ∃xk

( ∧
i,j∈[k], i<j

¬xi = xj ∧ ∀y
∧

i∈[k]

Eyxi

)
,

and
ψk := ∃x1 . . . ∃xk

( ∧
i,j∈[k], i<j

¬xi = xj ∧
∧

i,j∈[k], i<j

Exixj

)
.

The sentence ϕk can be written equivalently in the form ∃≥kx∀yEyx and thus
the parameterized problem, whose kth slice is defined by ϕk, is slicewise definable
by sentences in CFO2 and hence, is in para-AC0 (by Proposition 3). For graphs
the sentences ψk slicewise define the clique problem parameterized by the size
of the clique. By a result of Rossman [20] the parameterized clique problem is
not in para-AC0. Hence the ψk’s cannot be written equivalently in CFO with
bounded quantifier rank.

Theorem 4. The parameterized independent set problem p-deg-IS

Instance: A graph G.
Parameter: k ∈ N.

Problem: Is k ≥ deg(G) and does G have an independent
set of k − deg(G) elements?

is in para-AC0.

Proof. An easy induction on � := k − deg(G) shows that every graph G with at
least (deg(G) + 1) · � vertices has an independent set of size �. Hence, for (G, k),
where the graph G has at least (k + 1) · k vertices, we have

(G, k) ∈ p-deg-IS ⇐⇒ k ≥ deg(G). (1)

Let d ∈ N. Then, for every vertex u of G,

G |= ∃≥dyExy (u) ⇐⇒ the degree of u in G is ≥ d.

Hence the degree of G is the unique d such that

G |= ∃x∃≥dyExy ∧ ¬∃x∃≥d+1yExy.
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Thus, by (1), for (G, k) with |G| ≥ (k + 1) · k,

(G, k) ∈ p-deg-IS ⇐⇒ G |=
∨
d≤k

(∃x∃≥dyExy ∧ ¬∃x∃≥d+1yExy
)
.

Therefore, setting evt(k) := (k + 1) · k we see that p-deg-IS is eventually slicewise
definable by CFO2-sentences and hence is in para-AC0 (by Proposition 3). ��

We present a further application of Proposition 3.

Theorem 5. The parameterized weighted satisfiability problem p-WSat(Γ1,1)
for propositional formulas in Γ1,1

Instance: A propositional formula γ of the form
∧

i∈I λi

with literals λi.
Parameter: k ∈ N.

Problem: Does γ have a satisfying assignment setting
exactly k propositional variables to true?

is in para-AC0.

Proof. For unary relation symbols P and N we view a Γ1,1-formula γ :=∧
i∈I λi with variables X1, . . . , Xs as the {P,N}-structure A(γ), where A(γ) :=

{X1, . . . , Xs},

PA(γ) := {Xj | λi = Xj for some i ∈ I NA(γ) := {Xj | λi = ¬Xj for some i ∈ I}.

Clearly, for k ∈ N,

(γ, k) ∈ p-WSat ⇐⇒ PA(γ) ∩ NA(γ) = ∅ and |PA(γ)| = k

⇐⇒ A(γ) |= ¬∃x(Px ∧ Nx) ∧ ∃=kxPx.

Hence, p-WSat(Γ1,1) is eventually slicewise definable by CFO1-sentences and
thus is in para-AC0 (we can take evt(k) := 0). ��

We come to the second tool. Recall that a kernelization for Q is a polynomial
time computable function that assigns to every instance (A, k) of Q an instance
(A′, k′) with

(A, k) ∈ Q ⇐⇒ (A′, k′) ∈ Q (2)

and with |A′| ≤ fs(k) and k′ ≤ fp(k) for some computable functions fs and fp.

Definition 6. We use the notations for a kernelization of the preceding lines.
The kernelization is definable in CFO with bounded quantifier rank if there is a
q ∈ N and computable functions

k 	→ χk
no, k 	→ Φk :=

(
ϕk
uni(x), (ϕ

k
R(x1, . . . , xar(R)))R∈τ

)
, (k, �) 	→ ψk,�,

where all formulas are in CFOq[τ ] and both (a) and (b) are satisfied for all
instances (A, k) of Q.
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(a) If A |= χk
no, then (A, k) /∈ Q.

(b) If A |= ¬χk
no, then “Φk defines A′ in A,” that is,

A′ := {a ∈ A | A |= ϕk
uni(a)} and for R ∈ τ : RA′

=
{
ā ∈ (A′)ar(R) | A |= ϕk

R(ā)
}

.

(c) If A |= ¬χk
no, then k′ is the unique � ∈ N such that A |= ψk,�.

Our second tool reads as follows.

Proposition 7. Assume that Q is decidable. If Q has a kernelization definable
in CFO with bounded quantifier rank, then Q ∈ para-AC0.

Again let us see some examples. By [23] the parameterized matrix-dominating
set problem is fixed-parameter tractable. We show:

Theorem 8. The parameterized matrix-dominating set problem p-Mat-Dom-
Set

Instance: A {0, 1}-matrix M and k ∈ N.
Parameter: k.

Problem: Does M contain a set S of 1-entries of M such
that each 1-entry lies in a row or a column
that contains an element of S?

is in para-AC0.

Proof. We fix a no-instance (M0, k0) of p-Mat-Dom-Set1. In [23] it is shown
that by applying to an instance (M,k) of p-Mat-Dom-Set once Step 1 and
Step 2 we get a matrix M∗ with the following properties:

(M,k) ∈ p-Mat-Dom-Set ⇐⇒ (M∗, k) ∈ p-Mat-Dom-Set.

If (M,k) ∈ p-Mat-Dom-Set, then M∗ has at most 2(k + 1)(2k − 1) rows
and columns.

Step 1: Delete all rows and columns that contain only zeroes.

Step 2: For all rows r, if there are at least k + 2 identical copies of r, then the
rows can be reduced to k + 1 identical copies of r. Similarly for columns.

We set

(M ′, k′) :=

{
(M∗, k), if M∗ has at most 2(k + 1)(2k − 1) rows and columns
(M0, k0), otherwise.

1 The trivial no-instance will be useful in the description of the kernelization function,
though in our formulas we will use χk

no to indicate the cases where the trivial no-
instance would have to be output (rather than presenting the cumbersome formula
that outputs the trivial no-instance).
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Then (M,k) 	→ (M ′, k′) is a kernelization of p-Mat-Dom-Set. We show that it
is definable in CFO with bounded quantifier rank. We view the matrix M as the
structure

M := (R ∪ C,R,C,<,One),

where R and C are the set of rows and the set of columns of M , respectively, <
is an arbitrary ordering of R ∪ C, and One is given by

One r c ⇐⇒ r ∈ R, c ∈ C, and the common element of r and c is a“1”.

Let (M,k) be a yes-instance of p-Mat-Dom-Set. We may take as universe
of M ′ the set of rows r ∈ R and columns c ∈ C, which satisfy the following
conditions:

– the row r does not contain only zeroes and there are at most k identical copies
of r, which are <-smaller than r;

– the column c does not contain only zeroes and there are at most k identical
copies of c, which are <-smaller than c.

We introduce the FO-formulas copy-row(x, y) and copy-column(x, y) expressing
that x and y are identical rows and identical columns, respectively. E.g., we can
take

copy-row(x, y) := Rx ∧ Ry ∧ ∀z
(
Cz → (Onexz ↔ One yz)

)
.

The set M ′ is given by

ϕk
uni(x) :=∃z

(
Onexz∨One zx

)∧∃≤ky
(
y<x∧(copy-row(x, y)∨copy-column(x, y))

)
.

The kernelization is definable in CFO with bounded quantifier rank. In fact, we
can set:

– χk
no := ∃>2·(k+1)·(2k−1)xϕk

uni(x);
– Φk := (ϕk

uni(x), Rx,Cx, x < y,One(x, y));
– ψk,k := ∀xx = x and for � �= k, ψk,� := ¬∀xx = x. ��
Theorem 9. The parameterized vertex cover problem p-Vertex-Cover

Instance: A graph G.
Parameter: k.

Problem: Does G have a vertex cover of size k?

is in para-AC0.

Proof. Again fix a no-instance (G0, k0) of p-Vertex-Cover. To an instance
(G, k) of p-Vertex-Cover we apply once Step 1 and Step 2 (the main ingre-
dients of Buss’ kernelization):
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Step 1: If a vertex v has degree ≥ k + 1 in G, then v must be in every vertex
cover of size k. Simultaneously remove all v of degree ≥ k + 1 in G, say m many,
and set k∗ := k − m.

Step 2: Remove all isolated vertices.

Let G+ be the resulting induced subgraph of G. If k∗ < 0 or G∗ has more than
k∗ · (k + 1) vertices, then (G∗, k∗), and hence also (G, k), is a no-instance of
p-Vertex-Cover. We set

(G′, k′) :=

{
(G∗, k∗), if k∗ ≥ 0 and G∗ has at most k∗ · (k + 1) vertices
(G0, k0), otherwise.

Then (G, k) 	→ (G′, k′) is a kernelization of p-Vertex-Cover. We show that it
is CFO-definable with bounded quantifier rank.

Let (G, k) be a yes-instance of p-Vertex-Cover. Then we have

G |= ϕk
uni(v) ⇐⇒ v is a vertex of G′

for (compare Step 1 and Step 2)

ϕk
uni(x) := ¬∃≥k+1yExy ∧ ¬∀y(Exy → ∃≥k+1yEyz).

The kernelization is definable in CFO with bounded quantifier rank. In fact, we
can set:

– χk
no := ∃≥k+1x∃≥k+1y Exy ∨ ∃>(k−m)·(k+1)xϕk

uni(x);
– Φk := (ϕk

uni(x), Exy);
– ψk,� := ∃=(k−�)x∃≥k+1y Exy if � ≤ k and ψk,� := ¬∀xx = x, otherwise. ��

We kept our two tools as simple as possible; our goal was to present some
applications. There are obvious extensions of our tools. We could consider
the extension CFO∗ of CFO that for all k, � ∈ N contains the quantifiers
∃≥k

� (x1, . . . , x�) (adding � to the quantifier rank) with the meaning “there are
at least k many tuples (x1, . . . , x�).” Proposition 3 would still be valid. In Def-
inition 6 the tuple Φk defines an interpretation of τ -structures in τ -structures
of width one. Proposition 7 would also hold if we allow interpretations of width
greater than one.

4 First-Order Logic Characterization of para-AC0

We present a characterization of para-AC0 in terms of first-order logic. From it
in the next section we will derive the tools we already used in the preceding
section.

By the connection between (dlogtime-uniform) AC0 and first-order logic with
built-in arithmetic we also have to consider so-called arithmetical vocabularies,
which we denote by α, β, . . .. Such an arithmetical vocabulary contains, besides
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relational symbols, the fixed relation symbols < (binary) and +,× (both ternary).
Furthermore, the unary function symbol S and the constant 0.

For an arithmetical vocabulary α we say that an α-structure A is arithmetical
or has built-in arithmetic if the reduct A � {<,+,×, S, 0} (that is, the reduct to
the arithmetical symbols) is isomorphic to

(
[0, n), <[0,n),+[0,n),×[0,n), S[0,n), 0

)
.

Here n := |A|, [0, n) := {0, 1, . . . , n − 1}, <[0,n) is the natural order on [0, n),
+[0,n) and ×[0,n) are the relations of addition and multiplication of N restricted
to [0, n); i.e., +[0,n) := {(a, b, c) | a, b, c ∈ [0, n) with c = a + b} and ×[0,n) :=
{(a, b, c) | a, b, c ∈ [0, n) with c = a · b}.

Furthermore, S[0,n) denotes the successor function on [0, n) with the con-
vention S[0,n)(n − 1) := n − 1. By Ari[α] we denote the class of arithmetical
α-structures.

Atomic FO[α]-formulas may contain terms, i.e., variables or the constant 0
or terms obtained by applying to variables, to 0, or to terms the function symbol
S. By Sk(x) we abbreviate the term S(S(· · ·S(x) · · · )) with k occurrences of S.

As the next lemma shows, every arithmetical structure A can be character-
ized by a quantifier-free sentence up to isomorphism since we can address each
element of A using the successor function. For such a purpose the successor func-
tion was already used in [5,14]. In previous papers we used constant symbols for
an initial segment of the natural numbers instead of the successor function. The
successor function allows a more readable and uniform presentation, not only
here but also in further results.

We leave the proof of the next lemma to the reader (note that the sentence
Sm(0) = Sm+1(0) expresses that the universe has at most m elements in arith-
metical structures).

Lemma 10. For every A ∈ Ari[α] there is a quantifier-free FO[α]-sentence ϕA
such that for all structures B ∈ Ari[α] we have (B |= ϕA ⇐⇒ A ∼= B).
For a vocabulary τ (i.e., for a relational vocabulary without arithmetical sym-
bols) we set α(τ ) := τ ∪ {<,+,×, S, 0}. Recall that Q always denotes a parame-
terized problem with Q ⊆ Str[τ ] × N unless stated otherwise explicitly.

Definition 11. Q is slicewise definable in FO with bounded quantifier rank, in
short Q ∈ XFOqr, if there is a q ∈ N and a computable function k 	→ ϕk with
ϕk ∈ FOq[α(τ )] such that for all (A, k) ∈ Ari[α(τ )] × N,

(A � τ, k) ∈ Q ⇐⇒ A |= ϕk.

We then say that Q is slicewise definable in FOq and also write Q ∈ XFOq.

Using Lemma 10 we get the following simple but useful observation.

Proposition 12. Let Q be decidable. Assume that Q is eventually slicewise
definable in FOq, that is, there is a computable function k 	→ ϕk with ϕk ∈
FOq[α(τ )] and a computable function g : N → N such that for all (A, k) ∈
Ari[α] × N with |A| ≥ g(k),

(A � τ, k) ∈ Q ⇐⇒ A |= ϕk.
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Then Q is slicewise definable in FOq.

Proof. Assume Q is eventually slicewise definable in FOq and let ϕk and g be as
above. The sentence ψk defining the kth slice of Q essentially says

(
the structure has at least g(k) elements and satisfies ϕk

)
or(

the structure has less than g(k) elements and is in Q
)
.

Note that the sentence Sg(k)−1(0) �= Sg(k)−2(0) expresses that the universe has at
least g(k) elements. So we can set (compare Lemma 10)

ψk :=
(
Sg(k)−1(0) �= Sg(k)−2(0) ∧ ϕk

) ∨
∨

(A�τ,k)∈Q,
|A|<g(k)

ϕA.

As Q is decidable, the mapping k 	→ ψk is computable. ��
The importance of the class XFOqr from the point of view of complexity the-

ory stems from the fact that it coincides with the class para-AC0, the class of
parameterized problems that are in dlogtime-uniform AC0 after a precomputa-
tion (see Theorem 15). As dlogtime-uniform AC0 contains precisely the class of
problems definable in first-order logic with built-in arithmetic, the class para-AC0

can be defined directly via first-order logic. For this purpose we need a notion
of union of two arithmetical structures.

Definition 13. Assume A ∈ Ari[α] and A′ ∈ Ari[α′] satisfy A ∩ A′ = ∅ and
α ∩ α′ = {<,+,×, S, 0}. Let U be a new unary relation symbol. We set α � α′ :=
α ∪ α′ ∪ {U}. Then A � A′ is the structure B ∈ Ari[α � α′] with

– B := A ∪ A′;
– UB := A;
– <B := <A ∪ <A′ ∪ {(a, a′) | a ∈ A and a′ ∈ A′}, that is, the order <B extends

the orders <A and <A′
, and in <B every element of A precedes every element

of A′;
– RB := RA for R ∈ α and RB := RA′

for R ∈ α′.

If A∩A′ �= ∅, then we pass to isomorphic structures with disjoint universes before
defining A � A′.

A parameterized problem is in para-AC0 if it is in dlogtime-uniform AC0 after
a precomputation on the parameter, or, equivalently, if it is FO-definable after
a precomputation on the parameter. This equivalence leads to the following
definition.

Definition 14. Let Q be a parameterized problem. Q ∈ para-AC0 if for some
vocabulary α′ there is a computable function pre : N → Ari[α′], a precomputa-
tion, and a sentence ϕ ∈ FO

[
α(τ ) � α′] such that for all (A, k) ∈ Ari[α(τ )] × N,

(A � τ, k) ∈ Q ⇐⇒ A � pre(k) |= ϕ.
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The main result of this section reads as follows. It is the modeltheoretic analogue
of the equivalence between (i) and (ii) of [9, Proposition 3.5].

Theorem 15. para-AC0 = XFOqr.

Proof. XFOqr ⊆ para-AC0: Assume that Q ∈ XFOqr. Then there is a q ∈ N and a
computable function k 	→ ϕk with ϕk ∈ FOq[α(τ )] such that

(A � τ, k) ∈ Q ⇐⇒ A |= ϕk

for all (A, k) ∈ Ari[α(τ )] × N. We have to find a precomputation pre : N →
Ari[α′] and an FO[α(τ )�α′]-sentence ϕ such that for all (A, k) ∈ Ari[α(τ )]×N,

A |= ϕk ⇐⇒ A � pre(k) |= ϕ. (3)

Essentially pre(k) is the parse tree of ϕk and the sentence ϕ expresses that A
satisfies the sentence given by this parse tree, that is, the sentence ϕk.

We can assume that all atomic subformulas in any ϕk containing the symbol
S for the successor function have the form z = Sm(0) for some m ∈ N and some
variable z. In fact, if, say, R in α(τ ) is r-ary, then we can replace an atomic
formula RSm1 (x1) . . . Smr (xr) by ∃y1 . . . ∃yr

(
Ry1 . . . yr ∧ ∧

i∈[r] ∃y(y = Smi(0) ∧
xi + y = yi)

)
. Note that this process increases the quantifier rank of every ϕk at

most by 1+ar(α(τ )), where ar(α(τ )) is the maximum of the arities of the relation
symbols in α(τ ).

We can assume that sentences of quantifier rank ≤ q (hence, every ϕk) has the
variables among x1, . . . , xq and negation symbols only occur in front of atomic
formulas.

Let pk be the number of nodes of the parse tree of ϕk and let mk be the
maximum m such that the term Sm(0) occurs in ϕk. The structure pre(k) ∈
Ari[α′] has universe [0,max{pk,mk + 1}) and the arithmetical symbols have
their natural interpretation in this interval.

We now present the relation symbols of the vocabulary α′. The binary relation
symbol E of α′ is interpreted by the edge relation of the parse tree. Furthermore
α′ contains unary relation symbols Forall, Exists, X 1,. . . , X q, And, Or, and
Neg. For every relational symbol in α(τ ) and for the equality symbol we need
further relation symbols in α′. For R ∈ α(τ ) the vocabulary α′ contains the
unary relation symbols

AtRπ for π : [ar(R)] → [q]

and for the equality symbol the unary relation symbols

At=ρ for ρ : [2] → [q]

and the binary relation symbol

At=,S
j for j ∈ [q].
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For example, for a node u of pre(k), for π : [ar(R)] → [q], ρ : [2] → [q], for
j ∈ [q], and � ≤ mk we have:

Exists pre(k) u ⇐⇒ the node u corresponds to an existentially quantified
variable

Xj
pre(k) u ⇐⇒ the quantifier in u binds the variablexj

Or pre(k) u ⇐⇒ u corresponds to a disjunction
(AtRπ )

pre(k) u ⇐⇒ u corresponds to the atomic formula Rxπ(1) . . . xπ(ar(R))

(At=ρ)
pre(k) u ⇐⇒ u corresponds to the atomic formula xρ(1) = xρ(2)

(At=,S
j ) pre(k) u � ⇐⇒ u corresponds to the atomic formula xj = S�(0).

On the left side of the last line S�(0) refers to the number � element of the universe
of pre(k). We leave it to the reader to write down a sentence ϕ satisfying (3) but
give a hint for the most involved part. Assume that ϕk contains a subformula
of the form xj = S�(0) (with j ∈ [q] and � ≤ mk). Recall that in A � pre(k) the
U -part is A. Hence if b in A � pre(k) is the first element of pre(k), then � in the
universe of pre(k) is b + � in A � pre(k). Hence xj = S�(0) is addressed by the
following part of ϕ:

(
∃x

(¬U x ∧ ∀y(y < x → U y) ∧ ∃z∃z′(x + z = z′ ∧ At=,S
j u z′)

) → xj = z
)
.

For simplicity here we did not take care of the case � ≥ |A|.
para-AC0 ⊆ XFOqr: Assume that Q ∈ para-AC0. Hence, for some vocabulary α′

there is a computable function pre : N → Ari[α′] and an FO[α(τ )� α′]-sentence
ϕ such that for all (A, k) ∈ Ari[α(τ )] × N,

(A � τ, k) ∈ Q ⇐⇒ A � pre(k) |= ϕ.

Clearly, then Q is decidable. Therefore, by Proposition 12, it suffices to show
that for some q ∈ N the problem Q is eventually slicewise definable in FOq, that
is, that there are a computable function g : N → N and a computable function
k 	→ ψk ∈ FOq[α(τ )] such that for all (A, k) ∈ Ari[α(τ )] × N with |A| ≥ g(k) we
have

A � pre(k) |= ϕ ⇐⇒ A |= ψk. (4)

The main idea: As pre is computable, for (A, k) ∈ Ari[α(τ )]×N with sufficiently
large |A| compared with |pre(k)|, we can FO-define pre(k) in A using the built-in
arithmetic. Furthermore, from A and from this FO-defined pre(k) in A, we get
(an isomorphic copy of) A � pre(k) in A by an FO-interpretation. Summing up,
we can FO-interpret A � pre(k) in A. This FO-interpretation yields the desired
ψk satisfying (4).

Some details: In the proof we shall need the following claim. Its proof uses
the fact that every computable function may be defined on the natural numbers
with built-in arithmetic by a Σ1-sentence (that is, by an FO-sentence of the form
∃x1 . . . ∃xnψ with quantifier-free ψ).
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Claim. Let f : N → N be a computable function. Then there is an FO
[{<

,+,×, S, 0}]-formula ψf (x, y) and an increasing and computable function g :
N → N with g(m) > f (m) for m ∈ N such that for all n, a ∈ N with n ≥ g(a)
and b ∈ [0, n),

(
[0, n), <[0,n),+[0,n),×[0,n), S[0,n), 0

)
|= ψf (a, b) ⇐⇒ f (a) = b.

The obvious generalization of this result to functions f : N
s → N for some s ≥ 1

holds, too. �
Let α′, the vocabulary of pre(k), be the set {<,+,×, S, 0, R1, . . . , Rm}, where

Ri is of arity ri. As pre is computable, there is a computable function f : N → N

with
f (k) = |pre(k)|.

We may assume that the universe of pre(k) is
[
0, f (k)

)
and <,+,×, S, 0 have their

natural interpretations in pre(k). For easier presentation, let us assume that the
same holds for A; so, in particular, [0, |A|) is the universe of A.

For i with i ∈ [m] let hi : N
1+ri → {0, 1} be the computable function with

hi(k, b1, . . . , bri
) = 1 ⇐⇒ (

b1, . . . , bri
< f (k) and Ri

pre(k)b1, . . . , bri

)
.

As f and h1, . . . , hm are computable, (we know that they are FO-definable
in arithmetic and) by the claim, there is a computable and increasing func-
tion g : N → N with g(k) > f (k) and there are FO-formulas ψf (x, y) and
ψhi

(x, y1, . . . , yri
) such that for the relevant arguments the formulas ψf (x, y) and

ψhi
(x, y1, . . . , yri

) correctly define f and hi in models with built-in arithmetic of
size at least g(k). Clearly, once we have the values f (k) and hi(k, b1, . . . , bri

)
for i ∈ [m] and b1, . . . , bri

< f (k), we can first-order define pre(k), and hence
(A, R1

pre(k), . . . , Rm
pre(k)), in A, whenever |A| ≥ g(k).

By Proposition 16 (see below) there is an FO-interpretation yielding the
structure A�pre(k) from the structure (A, R1

pre(k), . . . , Rm
pre(k)). Putting these

interpretations together, we obtain an FO-interpretation yielding A � pre(k) in
A assuming |A| ≥ g(k). Thus we obtain from ϕ an FO-sentence ψk satisfying
the equivalence (4). ��

We already considered interpretations of width one in connection with ker-
nelizations. In the previous proof we need a result on FO-interpretations of with
s for some s ∈ N. A part of such an FO-interpretation I is an FO-formula
ϕI
uni(x1, . . . , xs) defining the universe of the defined structure. For example, if

I is an interpretation of τ -structures in a class K ⊆ Ari[α], then for every
structure A ∈ K the set

(ϕI
uni)

A := {(a1, . . . , as) ∈ As | A |= ϕI
uni(a1, . . . , as)}

is the universe of the τ -structure I(A) defined by I in A.
In general, we cannot extend I to an interpretation J of α(τ )-structures in

the class K of arithmetical structures such that

J(A) =
(
I(A), <J(A),+J(A),×J(A), SJ(A), 0J(A)

)
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is in Ari[α(τ )] (i.e., has built-in arithmetic). For example, for σ = {P} with
unary P let K = {A ∈ Ari[α(σ)] | PA �= ∅}. Let τ be the empty vocabulary
and I the interpretation of τ -structures in K with ϕI

uni(x) := Px; i.e., I(A) is
the τ -structure with PA as universe. If for A ∈ K we could extend I to an
interpretation J such that J(A) has built-in arithmetic, then we could express
in J(A), and thus in A, that “PA is even”, i.e., the problem Parity, which is
well known to be impossible.

The next result (proven in [6, Lemma 10.5], see also [19, Exercise 1.33]) shows
that the situation is different if for ϕI

uni(x1, . . . , xs) we have (ϕI
uni)

A = As.

Proposition 16. Let K ⊆ Ari[α] and let I be an FO-interpretation of τ -
structures in K with ϕI

uni = ϕI
uni(x1, . . . , xs). If for all A ∈ K the set (ϕI

uni)
A is an

initial segment in the lexicographic order of As w.r.t. <A, then I can be extended
to an FO-interpretation J of α(τ )-structures in K such that J(A) � τ = I(A) and
J(A) ∈ Ari[α(τ )] for all A ∈ K.

5 The Impact of Color-Coding on First-Order Logic

We show how in arithmetical structures CFO-formulas ∃≥kxϕ(x, ȳ) with first-
order ϕ can be expressed by an FO-formula of quantifier rank independent of k
and then prove the tools used in Sect. 3.

For the first goal we use the color-coding technique of Alon et al. [2] essentially
in the form presented in [15, p. 347]:

Lemma 17. There is an n0 ∈ N such that for all n ≥ n0, all k ≤ n and for
every k-element subset X of [n], there exist a prime p < k2 · log2 n and a q < p
such that the function hp,q : [n] → {0, . . . , k2 − 1} given by hp,q(m) := (q · m
mod p) mod k2 is injective on X.

As already mentioned the following result allows to express the existence
of k elements satisfying a first-order logic property by a bounded number of
quantifiers.

Theorem 18. Let α be an arithmetical vocabulary. There is an algorithm that
assigns to every k ∈ N and every FO[α]-formula ϕ(x, ȳ) an FO[α]-formula χk

ϕ(ȳ)
such that for all A ∈ Ari[α] with k2 ≤ |A|/log |A| and |A| ≥ n0,

A |= ∀ȳ
(∃≥kxϕ(x, ȳ) ↔ χk

ϕ(ȳ)
)

(5)

and qr(χk
ϕ(x̄)) = qr(ϕ(x, ȳ)) +O(1); hence, there is a bound for qr(χk

ϕ(x̄)) indepen-
dent of k.

Note that the conditions “k2 ≤ |A|/log |A| and |A| ≥ n0” on |A| are fulfilled
if |A| ≥ max{2k2

, n0} (here n0 is a natural number according to Lemma 17).

Proof. We use x = (y mod z) as an abbreviation for ∃u(y = u×z+x∧x < z). More
precisely, as + and × are relation symbols, an abbreviation for x = (y mod z) is

∃u∃u′(u′ = u × z ∧ y = u′ + x ∧ x < z).
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By Lemma 17 we can set

χk
ϕ(ȳ) := ∃p∃q

( ∨
0≤i0<...<ik−1<k2

∧
j∈[0,k)

∃z
(
“hp,q(z) = Sij (0)” ∧ ϕ(z, ȳ)

))
,

where

“hp,q(z) = Sij (0)” := (Sq(0) × (z mod Sp(0)) mod Sp(0)) mod Sk2

(0) = Sij (0).

We replaced (q × z mod p) by (q × (z mod p) mod p), since q × z might exceed
|A|. ��

Writing down all the details of the formula χk
ϕ(ȳ) one can show that

qr(χk
ϕ(ȳ))= max{12, qr(ϕ(x̄, y)) + 3}.
Now we can prove the tools introduced in Sect. 3. To get Proposition 3 assume

that the parameterized problem Q is decidable and eventually slicewise definable
in CFO with bounded quantifier rank. By Theorem 18, it is also eventually
slicewise definable in FO with bounded quantifier rank. Hence, by Proposition 12
and Theorem 15, it is para-AC0.

Proof of Proposition 7: Assume that Q ⊆ Str[τ ] × N is decidable and has
a kernelization (A, k) 	→ (A′, k′) with |A′| ≤ fs(k) and k′ ≤ fp(k) for some
computable fs and fp. Moreover, assume that this kernelization is definable by
the computable functions

k 	→ χk
no, k 	→ Φk :=

(
ϕk
uni(x), (ϕ

k
R(x1, . . . , xar(R)))R∈τ

)
, (k, �) 	→ ψk,�,

where all formulas are in CFOq (for some q ∈ N) and satisfy (a)–(b) of Defini-
tion 6 for all instances (A, k) of Q. We show that Q ∈ XFOqr. For B ∈ Ari[α(τ )]
with A := B � τ we have

(A, k) ∈ Q ⇐⇒ B |= ¬χk
no ∧

∨
�≤fp(k)

(
ψk,� ∧

∨
j∈[fs(k)]

(∃=jxϕk
uni(x) ∧ ρj,�)

)
. (6)

Here the sentence ρj,�, a sentence expressing (in B with an A′ with exactly j
elements) that (A′, �) ∈ Q, still has to be defined. We do that by saying that
A′ is isomorphic to one of the structures with j elements that together with the
parameter � is in Q. For this we have to be able to “define” an isomorphism. By
the color-coding method we find p and q and 0 ≤ i0 < · · · < ij−1 < j2 with

hp,q(A
′) = {Si0 (0), . . . , Sij−1 (0)}.

Then, we can speak of the first, the second, . . . element of A′. So if τ contains
among others a binary relation symbol E, we can take as ρj,� a sentence starting
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as follows:

∃p∃q
∨

0≤i0<...<ij−1<j2

( ∧
s∈[0,j)

∃y
(
ϕk
uni(y) ∧ “hp,q(y) = Sis(0)”

) ∧
∨

(B,�)∈Q
B=[0,j)∧

s,t∈[0,j)
EBst

∃y∃z
(
ϕk
uni(y) ∧ ϕk

uni(z) ∧ “hp,q(y) = Sis(0)” ∧ “hp,q(y) = Sit (0)” ∧ ϕk
E(y, z)

)

. . .
)
.

By the color-coding method (in the form of Theorem 18) it is clear that the
sentence on the right hand side of (6) can be replaced by an FO-sentence whose
quantifier rank has a bound independent of k. ��

Theorem 18 can be extended to formulas starting with a quantifier
∃≥k

� (x1, . . . , x�) (see [11]). This allows us to prove the generalizations of our
two tools of Sect. 3 indicated at the end of that section.

As already mentioned in the introduction (nearly) all nontrivial proofs show-
ing membership in para-AC0 use the color-coding method. In [4] repeated appli-
cations of this method have been used in order to show that the hitting set
problem parameterized by the size of the hitting set plus the size of hyperedges
is in para-AC0. In [5] Bannach and Tantau “identify syntactic properties of first-
order quantifiers that can be eliminated from formulas describing parameterized
problems” (applying the color-coding method).

6 The Model-Checking Problem

We have seen that a parameterized problem is in para-AC0 if and only if it is slice-
wise FO-definable with bounded quantifier rank (using built-in arithmetic). This
suggests that for a class K of structures the parameterized model-checking prob-
lem for FO-formulas parameterized by the length of the formula is in para-AC0

if for some q ∈ N every FO-formula is equivalent in K to a formula of bounded
quantifier rank (using built-in arithmetic). It turns out that this condition is
not only sufficient but also necessary for the tractability of the model-checking
problem in the sense of para-AC0. In this section we introduce the exact concepts
and state the precise result.

Definition 19. For a class K of τ -structures the parameterized model-checking
problem p-MC(K,FO) for FO on K is the problem

p-MC(K,Φ)
Instance: A ∈ K, ϕ(x1, . . . , xe) ∈ Φ, and a1, . . . , ae ∈ A.

Parameter: k ∈ N.
Problem: Decide whether |ϕ| = k and A |= ϕ(ā).

We introduce the notion of generalized quantifier elimination.
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Definition 20. Let K be a class of τ -structures. Then FO has generalized quan-
tifier elimination on K if there is a q ∈ N such that for all FO[τ ]-formulas ϕ(x̄)
there is an FO[α(τ )]-formula ϕ∗(x̄) of quantifier rank at most q such that for all
A ∈ Ari[α(τ )] with A � τ ∈ K and all ā in A,

A � τ |= ϕ(ā) ⇐⇒ A |= ϕ∗(ā),

or equivalently,
A |= ∀x̄

(
ϕ(x̄) ↔ ϕ∗(x̄)

)
. (7)

If there is a computable mapping ϕ 	→ ϕ∗, then FO has an effective generalized
quantifier elimination on K.

Loosely speaking if FO has generalized quantifier elimination on K, then
for some q ∈ N every FO-formula ϕ is equivalent in structures of K to an
FO-formula of quantifier rank at most q if we use built-in arithmetic.

The following theorem of [8] contains a precise statement of the result indi-
cated above.

Theorem 21. For a class K of τ -structures the following are equivalent:

(i) FO has an effective generalized quantifier elimination on K.
(ii) p-MC(K,FO) ∈ para-AC0.

As the paper [8] contains a full proof of this theorem, we omit it here.
Recently [10] we showed that p-MC(K,FO) ∈ para-AC0 for every class K of
graphs of bounded shrub-depth. Note that every class of graphs of bounded tree-
depth has bounded shrub-depth. Moreover monadic second-order logic effectively
collapses to first-order logic on classes of bounded shrub-depth (see [10]). Hence,
also the model-checking problem for monadic second-order logic on these classes
is in para-AC0.

7 The Hierarchy (FOq)q∈N on arithmetical structures

For an arithmetical vocabulary α and q ∈ N by FOq[α] � FOq+1[α] on arithmeti-
cal structures we mean that there is an FOq+1[α]-sentence which is not equivalent
to any FOq[α]-sentence on all structures in Ari[α]. We say that the hierarchy(
FOq

)
q∈N

is strict on arithmetical structures if there is an arithmetical vocabu-
lary α such that FOq[α] � FOq+1[α] on arithmetical structures for every q ∈ N.

Theorem 22. The hierarchy
(
FOq

)
q∈N

is strict on arithmetical structures.

First we derive from this result the corresponding hierarchy result for param-
eterized problems in para-AC0.

Corollary 23. Let q ∈ N. Then there is a parameterized problem in XFOq+1 \
XFOq.
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Proof. By Theorem 22 we know that there is an α and an FOq+1[α]-sentence ϕ
which is not equivalent to any FOq[α]-sentences onAri[α]. Then for τ := α\{<,+,
×, S, 0},

Q := {(A � τ, 0) | A ∈ Ari[α] and A |= ϕ}
is not in XFOq (as the 0th slice is not definable by an FOq-sentence). As Q ∈
XFOq+1, this gives the desired separation. ��

Some preparations are necessary in order to prove Theorem 22. First, we
recall how structures are represented by strings. Let τ be a (nonempty, relational)
vocabulary and n ∈ N. We encode a τ -structure A with A = [0, n) by a binary
string enc(A) of length

�τ,n :=
∑
R∈τ

nar(R).

For instance, assume τ = {E,P} with binary E and unary P , then

enc(A) = i0i1 · · · in2−1 j0j1 · · · jn−1,

where for every a, b ∈ [0, n),

ia+b·n = 1 ⇐⇒ (a, b) ∈ EA,

ja = 1 ⇐⇒ a ∈ PA.

Let K be a class of τ -structures. A family of circuits (Cn)n∈N decides K if

– every Cn has �τ,n inputs,
– (A ∈ K ⇐⇒ Cn(enc(A)) = 1) for n ∈ N and every τ -structure A with

A = [0, n).

Recall that for n ∈ N the classes Σn and Πn of formulas are defined as follows:
Σ0 and Π0 are the class of quantifier-free formulas. The class Σn+1 (the class
Πn+1) is the class of formulas of the form ∃x1 . . . ∃xkϕ with ϕ ∈ Πn (of the form
∀x1 . . . ∀xkϕ with ϕ ∈ Σn) and arbitrary k ∈ N.

Lemma 24. Every FO[τ ]-formula of quantifier rank q is logically equivalent to
a Σq+1[τ ]-formula and to a Πq+1[τ ]-formula.

Proof. The proof is by induction on q. For q = 0 the claim is trivial. The induction
step follows from the facts:

– An FO-formula of quantifier rank q + 1 is a Boolean combination of formulas
of the form ∃xψ and ∀xψ, where ψ has quantifier rank ≤ q. In formulas of the
form ∃xψ we replace, using the induction hypothesis, the formula ψ by an
equivalent Σq+1-formula, in formulas of the form ∀xψ we replace the formula
ψ by an equivalent Πq+1-formula.

– Boolean combinations of Σq+1-formulas and of Πq+1-formulas are equivalent
to both, a Σq+2-formula and to a Πq+2-formula. ��
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Lemma 25. Let q ∈ N. Then for every sentence ϕ ∈ FOq[τ ] there is a family
of circuits

(
Cn

)
n∈N

of depth ≤ q + 2 and size nO(1) which decides Mod(ϕ) = {A |
A |= ϕ}. Moreover, the output of Cn is an OR gate, and the bottom layer of
gates in Cn has fan-in bounded by a constant which only depends on ϕ.

Proof. To simplify the discussion, we assume q = 3. The other cases can be
proved along the same lines. By Lemma 24 the sentence ϕ is equivalent to a
Σ4-sentence

ψ = ∃x1,1 · · · ∃x1,i1∀x2,1 · · · ∀x2,i2∃x3,1 · · · ∃x3,i3∀x4,1 · · · ∀x4,i4

∧
p∈I∧

∨
q∈I∨

χpq,

where I∧ and I∨ are index sets and every χpq is a literal.

For n ∈ N we construct the desired circuit C = Cn using the standard trans-
lation from FO-sentences to AC0-circuits. That is, every existential (universal)
quantifier corresponds to a

∨
(
∧

) gate with fan-in n; the conjunction is trans-
lated to a

∧
gate with fan-in |I∧| and the disjunctions to

∨
gates with fan-in

|I∨|. Next we merge consecutive layers of gates that are all
∧

, or that are all∨
. The resulting circuit Cn is of depth q + 2. It has an OR as output gate and

bottom fan-in bounded by |I∨|. ��
Key to our proof of Theorem 22 are the following Boolean functions, also

known as Sipser functions.

Definition 26 ([7,22]). Let d ≥ 1 nd m1, . . . ,md ∈ N. For every i1 ∈ [m1],
i2 ∈ [m2], . . . , id ∈ [md] we introduce a Boolean variable Xi1,...,id

. Define

fm1,...,md

d :=
∧

i1∈[m1]

∨
i2∈[m2]

· · ·
⊙

id∈[md]

Xi1,...,id
, (8)

where
⊙

is
∨

if d is even, and
∨

otherwise. For every d ≥ 2 and m ≥ 1 we set

Sipsermd := fm1,...,md

d

with m1 =
⌈√

m/log m
⌉
, m2 = · · · md−1 = m, and md =

⌈√
d/2 · m · log m

⌉
.

Observe that the size of Sipsermd is bounded by mO(d).

The following lower bound for Sipsermd is proved in [18]. We use the version
presented as Theorem 4.2 in [21].

Theorem 27. Let d ≥ 2. Then there exists a constant βd > 0 so that if a depth
d+1, bottom fan-in k circuit with an OR gate as the output and at most G gates
in levels 1 through d computes Sipsermd , then either G ≥ 2mβd or k ≥ mβd .

Proof of Theorem 22: FO0 � FO1 is trivial by considering the sentence ∃x Ux
where U is a unary relation symbol. We still need to show that for an appropriate
arithmetical vocabulary α it holds FOq[α] � FOq+1[α] on Ari[α] for every q ≥ 1.

Let d,m ∈ N. We identify the function Sipsermd with the circuit in (8) which
computes it. Let E be a binary relation symbol and U a unary relation symbol.
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Then we view the underlying (directed) graph of Sipsermd as a {E,U}-structure
Ad,m with

Ad,m := {vg | g a gate in Sipsermd },

EAd,m := {(vg′ , vg) | g′ is an input to g},

UAd,m := {vg | g is an input to the output gate}.

Let P be a unary relation symbol. Every assignment B of (truth values to the
input nodes of) Sipsermd can be identified with

PAd,m := {g | g an input node assigned to true by B} (9)

For τ ′ := {E,U, P} we define an FO[τ ′]-sentence ϕd such that for all m,

Sipsermd (PAd,m) = true ⇐⇒ (Ad,m, PAd,m ) |= ϕd. (10)

Fix q ≥ 1. Assume q is even and set d := q + 1 (the case of odd q is treated
similarly). We define inductively FO[τ ′]-formulas ψ�(x) by

ψ0(x) := Px, and ψ�+1(x) :=

{
∀y

(
Eyx → ψ�(y)

)
if � is even,

∃y
(
Eyx ∧ ψ�(y)

)
if � is odd.

We set (recall the definition of UAd,m)

ϕq+1 := ∀x(Ux → ψq(x)).

It is straightforward to verify that qr(ϕq+1) = q + 1 and that ϕq+1 satisfies (10)
(for d = q + 1). We define

Sipserq+1 := {A ∈ Ari[α(τ )] | A |= ϕq+1} .

By definition the class Sipserq+1 is axiomatizable in FOq+1[α(τ )]. We show
that the class Sipserq+1 is not axiomatizable in FOq[α(τ )]. For a contradiction,
assume that Sipserq+1 = Mod(ϕ) for some ϕ ∈ FOq[α(τ )]. Then by Lemma 25
there exists a family of circuits

(
Cn

)
n∈N

such that the following conditions are
satisfied.

(C1) Every Cn has �τ,n inputs nodes, depth q + 2, and size �O(1)
τ,n .

(C2) The output of Cn is an OR gate, and its bottom fan-in is bounded by a
constant.

(C3) For every n ∈ N and every τ -structure A with A = [0, n)

A ∈ Sipserq+1 ⇐⇒ Cn(enc(A)) = 1.

Let m ∈ N and let n be the number of variables in Sipsermq+1, i.e.,

n =
⌈√

m/logm
⌉

· mq−1 ·
⌈√

(q + 1)/2 · m · logm
⌉

.
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Consider the structure Aq+1,m associated with Sipsermq+1 and expand it with <,
+,×, S, 0 to an arithmetical α(τ )-structure. Thus for any assignment of the n
inputs, identified with the unary relation PAq+1,m (see (9)), we have

Sipsermq+1(P
Aq+1,m) = 1 ⇐⇒ (Aq+1,m, <,+,×, S, 0, PAq+1,m

) |= ϕ

⇐⇒ Cn

(
enc

(Aq+1,m, <,+,×, S, 0, PAq+1,m
) )

= 1.

Here is the crucial observation. In the string enc(Aq+1,m, <,+,×, S, 0, PAq+1,m )
only the last n bits depend on the assignment, that is, on PAq+1,m . These are
precisely the n input bits for the Sipsermq+1 function. Thus we can simplify the
circuit Cn by fixing the values of the first �τ,n −n inputs according to (Aq+1,m, <,
+,×, S, 0). Let C∗

n be the resulting circuit. We have

Sipsermq+1(P
Aq+1,m) = 1 ⇐⇒ C∗

n(P
Aq+1,m) = 1.

By (C1), C∗
n has depth q + 2 and size nO(1) (as �τ,n = nO(1)). By (C2) its output

is an OR gate, and its bottom fan-in is bounded by a constant. As m ∈ N is
arbitrary, this clearly contradicts Theorem 27. ��
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Abstract. The ternary betweenness relation of a tree, B(x, y, z), indi-
cates that y is on the unique path between x and z. This notion can
be extended to order-theoretic trees defined as partial orders such that
the set of nodes greater than any node is linearly ordered. In such gen-
eralized trees, the unique “path” between two nodes can have infinitely
many nodes.

We generalize some results obtained in a previous article for the
betweenness of join-trees. Join-trees are order-theoretic trees such that
any two nodes have a least upper-bound. The motivation was to define
conveniently the rank-width of a countable graph. We have called quasi-
tree the betweenness relation of a join-tree. We proved that quasi-trees
are axiomatized by a first-order sentence.

Here, we obtain a monadic second-order axiomatization of between-
ness in order-theoretic trees. We also define and compare several induced
betweenness relations, i.e., restrictions to sets of nodes of the betweenness
relations in generalized trees of different kinds. We prove that induced
betweenness in quasi-trees is characterized by a first-order sentence. The
proof uses order-theoretic trees.

Keywords: Betweenness · Order-theoretic tree · Join-tree ·
First-order logic · Monadic second-order logic · Quasi-tree

Introduction

In order to define the rank-width of a countable graph in such a way that it be
the least upper-bound of those of its finite induced subgraphs [8], we defined in
[3] generalized undirected trees called quasi-trees such that the unique “path”
(in a precise sense extending the usual notion) between any two nodes can have
infinitely many nodes, in particular, can have the order-type of the interval [0, 1]
of rational numbers. A related notion is that of an order-theoretic tree defined
as a partial order such that the set of nodes greater than any node is linearly
ordered. It is a join-tree if any two nodes have a least upper-bound. It may have
no root, i.e., no largest element. Quasi-trees can be seen as undirected join-trees.

The betweenness relation of a usual tree is the ternary relation B, such that
B(x, y, z) holds if and only if x, y, z are distinct and y is on the unique path
between x and z. This notion can be generalized to order-theoretic trees. A
quasi-tree is the betweenness relation of a countable (which means possibly finite)
c© Springer Nature Switzerland AG 2020
A. Blass et al. (Eds.): Gurevich Festschrift, LNCS 12180, pp. 79–94, 2020.
https://doi.org/10.1007/978-3-030-48006-6_6
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join-tree, and quasi-trees are the countable structures (N,B) that satisfy (hence,
are axiomatized by) a first-order sentence. We also obtained in [2,3] an algebraic
characterization of the join-trees and quasi-trees that are the unique countable
models of monadic-second order sentences. This type of characterization will be
extended to order-theoretic trees in a future work. In this article, we obtain a
monadic second-order axiomatization for betweenness in order-theoretic trees.

We also define and study several induced betweenness relations, i.e., the
restrictions to sets of nodes of betweenness in generalized trees of different
kinds. An induced betweenness in a quasi-tree need not be a quasi-tree. However,
induced betweenness in quasi-trees is also characterized by a single first-order
sentence, which does not follow immediately from the first-order characteriza-
tion of quasi-trees by a general logical argument. The proof uses order-theoretic
trees.

We obtain four types of betweenness and induced betweenness relations S =
(N,B). In each case, such a structure S is defined from an order-theoretic tree
T . Except for the case of induced betweenness in order-theoretic trees, some
defining tree T can be described in S by monadic second-order formulas. In
technical words, T is defined from S by a monadic second-order transduction
(see [6] for a thorough study).

In order to obtain a concrete view of our generalized trees, we embed them
in topological trees, defined as connected unions of segments of straight lines in
the plane that have no subset homeomorphic to a circle. Induced betweenness
relations in topological trees and in quasi-trees are the same.

Other Works on Betweenness
Betweenness in partial orders of any cardinality is axiomatized by J. Lihova in
[7] by an infinite set of universal first-order sentences. It is not stated whether
this set can be replaced by a finite one, but presumably not. It can be by a
monadic second-order sentence1.

Motivated by the study of convex geometries, V. Chvatal studies in [1]
betweenness in finite triangulated graphs. It is relative to induced paths : y is
between x and z if it is an intermediate vertex on a chordless path between x
and z. No axiomatization is provided.

Complete proofs for all stated results and counter-examples can be found in
[5], which can be read on line at : https://hal.archives-ouvertes.fr/hal-02205829.

1 Definitions and Basic Facts

All sets, trees, graphs and logical structures are countable, which means, finite
or countably infinite. If n is a positive integer, then [n] := {1, 2, ..., n}.

1 Betweenness in partial orders, work in preparation.

https://hal.archives-ouvertes.fr/hal-02205829


Betweenness in Order-Theoretic Trees 81

1.1 Trees

A tree is a possibly empty, undirected graph that is connected and has no cycles.
Hence, it has no loops and no two edges with same end vertices. The set of nodes
of a tree T is NT .

A rooted tree is a nonempty tree equipped with a distinguished node called
its root. We define on NT the partial order ≤T such that x ≤T y if and only if y
is on the unique path between x and the root. The least upper-bound of x and
y, denoted by x �T y is their least common ancestor, also called their join. The
minimal elements are the leaves, and the root is the greatest node.

Fact 1: A partial order (N, ≤) is (NT ,≤T ) for some rooted tree T if and only if
it has a largest element and, for each x ∈ N , the set L≥(x) := {y ∈ N | x ≤ y}
is finite and linearly ordered. These conditions imply that any two nodes have a
join.

1.2 Order-Theoretic Forests and Trees

Definition 2: O-forests and O-trees.
In order to have a simple terminology, we will use the prefix O- to mean

order-theoretic and to distinguish these generalized trees from those of [4].

(a) An O-forest is a pair F = (N, ≤) such that:

1) N is a possibly empty set called the set of nodes,
2) ≤ is a partial order on N such that, for every node x, the set L≥(x) is

linearly ordered.
It is an O-tree if furthermore:

3) every two nodes x and y have an upper-bound.
An O-forest is thus the disjoint union of O-trees that are its connected
components, with respect to its Gaifman graph2. Two nodes are in a same
composing O-tree if and only if they have an upper-bound.
The leaves are the minimal elements. If N has a largest element r (x ≤ r
for all x ∈ N) then F is a rooted O-tree and r is its root.

(b) An O-tree T is a join-tree3 if every two nodes x and y have a least upper-
bound denoted by x �T y and called their join (cf. Subsect. 1.1). �

Examples and Remarks 3

(1) If T is a rooted tree, then (NT ,≤T ) is a join-tree. Every finite O-tree is a
join-tree of this form.

(2) Every linear order is (trivially) a join-tree.
2 Defined for a relational structure: two elements are adjacent if they belong to some

tuple of some relation.
3 An ordered tree is a rooted tree such that the set of sons of any node is linearly

ordered. This notion is extended in [4] to join-trees. Ordered join-trees should not
be confused with order-theoretic trees, that we call O-trees for simplicity.
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(3) Let S := N∪{a, b, c} be strictly ordered by < S such that a <S b, c <S b and
b <S i <S j for all i, j ∈ N such that j < i, and a and c are incomparable.
Then (S,≤S) is a join-tree. In particular a �S c = b. It is not the partial
order associated with any rooted tree by Fact 1. If S′ := S − {b}, we obtain
an O-tree with set of nodes S′. It is not a join-tree because a and c have no
join.

(4) We can consider N ∪ {a, b} as forming a path4 in the join-tree(S,≤S) (of
(3)) between a and 0, the largest element.

2 Quasi-trees and Betweenness in O-Trees

In this section, we will define a betweenness relation in O-trees, and compare it
with the betweenness relation induced by sets of nodes of join-trees or O-trees.
We generalize the notion of quasi-tree defined and studied in [3] and [4].

For a ternary relation B on a set N and x, y ∈ N , we define [x, y]B :=
{x, y} ∪ {z ∈ N | (x, z, y) ∈ B}. If n > 2, then the notation �= (x1, x2, ..., xn)
means that x1, x2, ..., xn are pairwise distinct.

2.1 Betweenness in Trees and Quasi-trees

Definition 4: Betweenness in linear orders and trees.

(a) Let L = (X, ≤) be a linear order5. Its betweenness relation BL is the ternary
relation on X defined by :

BL(x, y, z) :⇐⇒ x < y < z or z < y < x.
(b) If T is a tree or a forest, its betweenness relation BT is the ternary relation

on NT defined by :
BT (x, y, z) :⇐⇒ x, y, z are pairwise distinct and y is on the unique path
between x and z.

If R is a rooted tree, we define its betweenness relation BR as BUnd(R) where
Und(R) is the tree obtained from R by forgetting its root and its edge directions.
We have :

BR(x, y, z) ⇐⇒ x, y, z are pairwise distinct, x and z have a join x �R z
and (x <R y ≤R x �R z or z <R y ≤R x �R z).

(c) With a ternary relation B on a set X, we associate the ternary relation A,
also on X :

A(x, y, z) :⇐⇒ B(x, y, z) ∨ B(x, z, y) ∨ B(y, x, z).
4 Formal definition in [5].
5 This definition can be used in partial orders. The corresponding notion of between-

ness is axiomatized in [7]. We will not use it for defining betweenness in order-
theoretic trees, although these trees are defined as partial orders.
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It is to be read : x, y, z are aligned.
If n ≥ 3, then B+(x1, x2, ..., xn) stands for the conjunction of the conditions

B(xi, xj , xk) for all 1 ≤ i < j < k ≤ n and all 1 ≤ k < j < i ≤ n.

Proposition 5 [Proposition 5.2 in [4]]: (a) The betweenness relation B of a
linear order (X,≤) satisfies the following properties for all x, y, z, u ∈ X.

A1: B(x, y, z) ⇒�= (x, y, z).
A2: B(x, y, z) ⇒ B(z, y, x).
A3: B(x, y, z) ⇒ ¬B(x, z, y).
A4: B(x, y, z) ∧ B(y, z, u) ⇒ B(x, y, u) ∧ B(x, z, u).
A5: B(x, y, z) ∧ B(x, u, y) ⇒ B(x, u, z) ∧ B(u, y, z).
A6: B(x, y, z) ∧ B(x, u, z) ⇒ y = u ∨ [B(x, u, y) ∧ B(u, y, z)]

∨[B(x, y, u) ∧ B(y, u, z)].
A7’: �= (x, y, z) ⇒ A(x, y, z).

(b) The betweenness relation B of a tree T satisfies the properties A1–A6 for
all x, y, z, u in NT together with the following weakening of A7’:

A7: �= (x, y, z) ⇒ A(x, y, z)∨∃w.(B(x,w, y)∧B(y, w, z)∧B(x,w, z)).

Remark 6

(1) A7’ says that if x, y, z are three elements in a linear order, then, one of them
is between the two others. Property A7 says that, in a tree T , if x, y, z are
three nodes not on a path, then there is some node w between any two of
them. Actually :

{w} = Px,y ∩ Py,z ∩ Px,z where Pu,v is the set of nodes on the path
between u and v,

so that we have B(x,w, y) ∧ B(y, w, z) ∧ B(x,w, z).
If T is a rooted tr ee, then w is the least common ancestor of x, y and z. In
the tree T of Fig. 3(b) below, we have w = 1 if x = a, y = d and z = e.

(2) Properties A1–A6 imply that the two cases of the conclusion of A7 are
exclusive6 and that, in the second one, there is a unique node w satisfying
B(x,w, y)∧B(y, w, z)∧B(x,w, z) (by Lemma 11 of [3]), that is denoted by
MS(x, y, z).

(3) Properties A1–A5 belong to the axiomatization of betweenness in partial
orders given in [7].

The letter B and its variants, BT , B1, etc. will denote ternary relations.

Definition 7: More betweenness properties.
We define the following properties of a structure (N,B) :

6 The three cases of A(x, y, z) are exclusive by A2 and A3.
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Fig. 1. Structure S of Example 8.

A8 : ∀u, x, y, z.[�= (u, x, y, z) ∧ B(x, y, z) ⇒
B(u, x, y) ∨ B(u, y, z) ∨ B(x, y, u) ∨ B(y, z, u)].

A8’: ∀u, x, y, z.[�= (u, x, y, z) ∧ B(x, y, z) ∧ ¬A(y, z, u) ⇒ B(x, y, u)].

If (N,B) satisfies A1–A6, the four cases of the conclusion of A8 are not
exclusive : B(u, x, y) implies B(u, y, z) (because of B(x, y, z) and A4).

Example 8: A1–A6 do not imply A8’.
Consider S := ([5], B) where B satisfies (only) B+(1, 2, 3, 4) ∧ B+(5, 3, 4). It is
shown in Fig. 1. (There is no curve line going through 1,2,5 because B(1, 2, 5) is
not assumed to be valid).

Conditions A1–A6 hold but A8’ does not, because we have B(1, 2, 3) ∧
¬A(2, 3, 5) : A8’ would imply B(1, 2, 5) that is not assumed. By the next lemma,
A1-A6 do not imply A8 either. �

In the following proofs and discussions about a structure (N,B), we will
always assume (unless otherwise specified) that A1–A6 hold, and we will not
make their use explicit. We say that (N,B) is trivial if B = ∅. In this case,
Properties A1–A6, A8 and A8’ hold trivially.

Lemma 9: Let (N,B) satisfy A1–A6.

(1) A8 is equivalent to A8’.
(2) A7 implies A8, and thus, A8’.
(3) If A8 holds, then the Gaifman graph of (N,B) is either edgeless (if B = ∅)

or connected.

Definition 10: Quasi-trees [3].

(a) A quasi-tree is a structure S = (N,B) such that B is a ternary relation
on N , called the set of nodes, that satisfies conditions A1–A7. To avoid
uninteresting special cases, we also require that N has at least 3 nodes. We
say that S is discrete if [x, y]B := {z | B(x, z, y)} is finite for all x, y.

(b) From a join-tree J = (N, ≤), we define a ternary relation BJ on N by :
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BJ(x, y, z) :⇐⇒�= (x, y, z) ∧ ([x < y ≤ x �J z] ∨ [z < y ≤ x �J z]),

called its betweenness relation. Here, we take as a definition, the characteri-
zation of BR for rooted trees given in Definition 4(b). Note that x�J z is always
defined.

Theorem 11 [Proposition 5.6 of [4]]:

(1) The structure qt(J) := (N,BJ ) associated with a join-tree J = (N, ≤) with
at least 3 nodes is a quasi-tree. Every quasi-tree is qt(J) for some join-tree J .

(2) A quasi-tree is discrete if and only if it is qt(T ) for some rooted tree T (that
is a join-tree defined as the partial order (NT ,≤T )).

In this article, we will rather think of quasi-trees as betweenness relations of
join-trees, axiomatized by A1–A7.

2.2 Other Betweenness Relations

If B is a ternary relation on V and X ⊆ V , then B[X] := B ∩ (X × X × X) is
the induced relation of B on X.

Definition 12: Induced betweenness in a quasi-tree
If Q = (N,B) is a quasi-tree, X ⊆ N , we say that Q[X] := (X,B[X]) is
an induced betweenness in Q. It is induced on X. It need not be a quasi-tree
because A7 does not hold for a triple (x, y, z) such that MQ(x, y, z) is not in X
(cf. Proposition 5 and Remark 6).

We will prove that a ternary relation is an induced betweenness in a quasi-tree
if and only if it satisfies Properties A1–A6 and A8. The proof uses O-trees.

Proposition 13: An induced betweenness in a quasi-tree satisfies properties
A1–A6 and A8.

Proof: The sentences expressing A1–A6 and A8 are universal.The validity of
such sentences is preserved under taking induced substructures (we are dealing
with relational structures). The result follows from Theorem 11 and Lemma 9(2)
showing that a quasi-tree satisfies A8. �

Definition 14: Betweenness in O-forests.

(a) From an O-forest F = (N, ≤), we define a ternary relation BF on N , called
its betweenness relation, by:

BF (x, y, z) :⇐⇒�= (x, y, z) ∧ [(x < y ≤ x � z) ∨ (z < y ≤ x � z)].
where the join x � z must be defined.

(b) If F = (N, ≤) is an O-forest and X ⊆ N , then (X,BF [X]) is an induced
betweenness relation in F .
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Remark 15: The difference with Definition 10(b) is that if x and z have no
least upper-bound, i.e., if x � z is undefined, then BF contains no triple of the
form (x, y, z). If F is a finite O-tree, it is a join-tree and thus, (N,BF ) is a
quasi-tree. �

Thus we have four classes of betweenness relations S = (N,B) : quasi-trees,
induced betweenness in quasi-trees, betweenness and induced betweenness in
O-forests.

Here are some easy observations.

(1) The induced betweenness (X,B) on a set X of leaves of a tree is trivial,
which means that B = ∅.

(2) The Gaifman graph of a betweenness structure S is connected in the fol-
lowing cases : S is a quasi-tree, or it is a nontrivial induced betweenness in
a quasi-tree (by A8) or it is the betweenness relation of an O-tree with at
least 3 nodes (easy proof). It may be not connected in the other cases.

(3) If S is an induced betweenness in an O-forest consisting of several disjoint
O-trees, then two nodes in the different O-trees cannot belong to a same
triple, and as a consequence, cannot be linked by a path in the Gaifman
graph of S. Hence, a structure (N,B) is the betweenness of an O-forest, or
an induced betweenness in an O-forest if and only if each of its connected
components is so in an O-tree. We will only consider betweenness of O-trees
(class BO) and induced betweenness in O-trees (class IBO).

We will denote by QT the class of quasi-trees and by IBQT the class of
induced betweenness relations in quasi-trees. Figure 2 illustrates the following
inclusions.

Proposition 16: We have the following strict inclusions :

QT ⊂ IBQT, QT ⊂ BO ⊂ IBO and QT ⊂ IBQT ∩ BO.

The classes IBQT and BO are incomparable. For finite structures, we have
QT = BO.

All inclusions are clear from the definitions. Examples S1, S2, S4 and S5 given
in [5] prove the strictness assertions.

3 Axiomatizations and Logically Defined Transformations

The letter B designates always ternary relations.

3.1 First-Order Axiomatizations

Induced Betweenness in Quasi-trees

Theorem 17 [5]: A structure (N,B) is an induced betweenness relation in a
quasi-tree (is in IBQT) if and only if it satisfies Axioms A1–A6 and A8.
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Fig. 2. Four classes and witnesses of proper inclusions.

We present a few notions for its proof. Let S = (N,B) and r ∈ N. We define
a binary relation on N :

x ≤r y :⇐⇒ x = y ∨ y = r ∨ B(x, y, r).

Lemma 18: If S = (N,B) satisfies Axioms A1–A6 and r ∈ N , then T (S, r) :=
(N, ≤r) is an O-tree.

If S satisfies also A8, we will transform T (S, r) into a witness that S is an
induced betweenness. �

Lemma 19: Let S := (N,B) satisfy A1–A6 and A8, and r ∈ N . We have
B ⊆ BT (S,r) if N is finite.�

Remark and example 20

(a) In this lemma, we may have a strict inclusion, and the inclusion B ⊆ BT (S,r)

may be false if S is infinite.
(b) The following example indicates how we can prove Theorem 17.

Let S := (N,B) such that N := {0, a, b, c, d, e, f, g, h} and the following
conditions (and no other one) hold:

B+(0, a, b), B+(0, c, d), B+(0, e, f), B+(0, g, h),
B+(b, a, c, d), B+(f, e, g, h),
B+(b, a, 0, e, f), B+(d, c, 0, e, f), B+(b, a, 0, g, h), B+(d, c, 0, g, h).

Figure 3(a) shows this structure without showing the last four conditions
for the purpose of clarity. The curve line bacd represents B+(b, a, c, d).

By adding new nodes 1 and 2 to T (S, 0) such that a < 1 < 0, c < 1 <
0, e < 2 < 0 and g < 2 < 0, we get the rooted tree T of Fig. 3(b). Then
B = B[N ], hence, is in IBQT. Because of the added node 1, we have
B+(b, a, c, d) without having B+(b, a, 0, c, d).
The proof of Theorem 17 consists in adding new nodes to T (S, r) for such
cases.
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(c) If S = (N,B) satisfies A1–A7 (and thus A8 by Lemma 9(2)), then, for each
r ∈ N , T (S, r) is a join-tree and B = BT (S,r), cf. [4] . �

We know from Definition 10 and Proposition 17 of [3] that a quasi-tree
(N,B) is the betweenness relation of a tree if and only if B is discrete, i.e., that
each set [x, y]B := {x, y} ∪ {z ∈ N | B(x, z, y)} is finite.

Fig. 3. (a) shows S and (b) shows T , Example 20.

Corollary 21: A nontrivial structure (N,B) is an induced betweenness relation
in a tree if and only if it satisfies axioms A1–A6, A8 and is discrete. These
conditions are monadic second-order expressible. �

Axioms A1–A6, A8 are first-order. One cannot express by a first-order sen-
tence that a linear order (X, ≤) is finite. This is expressed by the conjunction of
the following conditions :

(1) (X, ≤) has a minimal element x0 and a maximal one x1.
(2) Each x ∈ X − {x1} has a successor.
(3) (x0, x1) belongs to the transitive closure of the successor relation, that exists

by (2).

Monadic second-order logic is necessary to express Condition (3).

Remark 22: If S = (N,B) is an induced betweenness in a quasi-tree, then
any node r can be taken as root for defining an O-tree T (S, r) and from it, a
join-tree T such that B = BT [N ]. This fact generalizes the observation that the
betweenness in a tree T does not dependent on any root.

Informally, quasi-trees and induced betweenness in quasi-trees are “undi-
rected notions”. This will not be the case for betweenness in O-trees.
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Betweenness in O-Trees. We let BOroot be the class of betweenness relations
of rooted O-trees. These relations satisfy A1–A6.

Proposition 23: The class BOroot is axiomatized by a first-order sentence.

Proof: Consider S = (N,B). If B is the betweenness relation of an O-tree
(N, ≤) with root r, then, ≤ is nothing but ≤r defined before Lemma 18 from B
and r. Let ϕ be the first-order (FO in short) sentence that expresses properties
A1–A6 (relative to B) and the following one :

A9 : there exists r ∈ N such that the O-tree T (S, r) = (N, ≤r) whose partial
order is defined by x ≤r y :⇐⇒ x = y ∨ y = r ∨ B(x, y, r) has a betweenness
relation BT (S,r) equal to B.

That S satisfies A1-A6 insures that (N, ≤r) is an O-tree with root r. The
sentence ϕ holds if and only if S is in BOroot. When it holds, the found node r
defines, via ≤r, the relevant O-tree. �

An example detailed in [5] shows that BOroot is strictly included in BO.

3.2 Monadic Second-Order Aximatisations

Our second main theorem (whose proof is not straightforward) is :

Theorem 24: The class BO is axiomatized by a monadic second-order sen-
tence.

In the proof of Proposition 23, we have defined from S = (N,B) satisfying
A1–A6 and any node r a candidate partial order ≤r for (N, ≤r) to be an O-
tree with root r whose betweenness relation would be B. The order ≤r being
expressible by a first-order sentence, we finally obtained a first-order characteri-
zation of BOroot. For BO, a candidate order will be defined from a line, i.e., an
upwards closed and linearly ordered subset, and not from a single node. (Lem-
mas 25 and 26 show this definition). It follows that we need for our proof, a set
quantification.

Lemma 25 [Proposition 5.3 of [4]]: Let (L,B) satisfy properties A1–A7’ (for
all u, x, y, z ∈ L, cf. Proposition 5). Let a, b be distinct elements of L. There
exists a unique linear order ≤ on L such that a < b and B(L,≤) = B. This order
is quantifier-free definable in the logical structure (L,B) in terms of a and b.�

We will denote this order by ≤L,B,a,b. There is a quantifier-free formula λ,
written with the ternary relation symbol B, such that, for all a, b, u, v in L,
(L,B) |= λ(a, b, u, v) if and only if u ≤L,B,a,b v.

A line in a structure S = (N,B) that satisfies A1–A6 is a set L ⊆ N of
at least 3 elements in which any 3 different elements are aligned (cf. Definition
4(c)) and that is convex, i.e., [x, y]B ⊆ L for all x, y in L.
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Lemma 26: Let T = (N, ≤T ) be an O-tree, L a maximal line in T that has no
largest node. Let a, b ∈ L, such that a <L b, where <L is the restriction of <T

to L.

(1) The partial order ≤T is first-order definable in a unique way in the structure
(N,BT ) in terms of L,≤L, a and b.

(2) It is first-order definable in (N,BT ) in terms of L, a and b.

Proof Sketch of Theorem 24: “Guess” a line L in the given S = (N,B)
and also a, b ∈ L. An associated order ≤ on N is FO definable from a, b, L by
Lemma 26. Check then that it gives an O-tree U such that BU = B. The only
set quantification is for guessing the set L. �

Next we examine in a similar perspective the class IBO. It is easy to see that
IBO = IBOroot.

Proposition 27 [5]: Every structure in the class IBO satisfies Properties A1-
A6 but these properties do not characterize this class.�

The construction of Theorem 24 does not extend to IBO because a finite
structure in IBO may not be an induced betweenness relation of any finite O-
tree. No construction like the one used in the proof of Theorem 17 can produce
an infinite structure from a finite one. Nevertheless:

Conjecture 28: The class IBO is axiomatized by a monadic second-order sen-
tence.

3.3 Logically Defined Constructions

Each betweenness relation (considered in this article) is a structure S = (N,B)
defined from a structure T = (N ′,≤, N) where (N ′,≤) is an O-tree and N ⊆ N ′,
handled as a unary relation. The different cases are shown in Table 1. In each
case a first-order sentence can check whether the structure (N ′,≤, N) is of the
appropriate type, and the relation B is first-order definable in (N ′,≤, N).

Table 1. Transductions that build source structures from betweenness relations.

Structure (N,B) Axiomatization Source structure Transduction

QT FO: A1–A7, Theorem 11 join-tree (N,≤, N) FOT

IBQT FO: A1–A6, A8, Theorem 17 join-tree (N ′,≤, N) MSOT

BO MSO: Theorem 24 O-tree (N,≤, N) MSOT

IBO MSO ?: Conjecture 28 O-tree (N ′,≤, N) not MSOT

The last column indicates which type of logically defined transformation of
structure can construct from (N,B) a source structure (N ′,≤, N) witnessing its
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membership in the considered classes. We call transductions7 such transforma-
tions of relational structures. They are first-order transductions (FOT in short) if
they are specified by FO formulas. They are monadic second-order transductions
(MSOT in short) if they are specified by MSO formulas.

For QT, this follows from the proof of Theorem 11: if S = (N,B) satisfies
A1–A7 and r ∈ N , then, the O-tree T (S, r) = (N, ≤r) is a join-tree and B =
BT (S,r). For BO, the MSO sentence that axiomatizes the class constructs a rele-
vant O-tree (it guesses one, via some line, and checks that the guess is correct).
For IBO, we observed that the source tree may need to be infinite for defining a
finite betweenness structure, which excludes the existence of an MSO transduc-
tion, because these transformations produce structures whose domain size is linear
in that of the input structure. (cf. Definition 1.6, and Chapter 7 of [6]). It remains
to prove the case of IBQT. This is our third main theorem.

Theorem 29: A join-tree (N ′,≤, N) witnessing that a given structure S =
(N,B) is in the class IBQT can be defined from S by MSO formulas.

The proof uses a notion of structuring of O-trees, adapted from the one
defined in [4] for join-trees, that we will also use in Sect. 4. A structuring of T
can be seen as a set of pairwise disjoint linearly ordered subsets whose union is
(NT ,≤T ).

Informally, the construction used for Theorem 17 adds to a tree some “new”
nodes so as to be upper-bounds of pairs of nodes (x, y). For having an MSO
transduction, one can add “copies” of existing elements but not of pairs of ele-
ments. The notion of structuring makes it possible to specify a “hole” in the
O-tree, i.e., a missing least upper-bound, as a copy of a single element.

We can illustrate structurings in a simple case. If in a binary tree, each node
is tagged “left son” or “right son”, then, a structuring consists of the set of
branches (paths) starting from the root or from a right son, and going down by
always going to the left son. The least upper-bound of any two nodes is then the
father of some right son (above one of them). This idea is extended to O-trees,
that are not join-trees in [5].

4 Embeddings in the Plane

We give a geometric characterization of join-trees and of induced betweenness
in quasi-trees, equivalently, in join-trees.

Definition 30: Trees of lines in the plane.

(a) In the Euclidian plane, let L = (Li)i∈N be a family of straight half-lines
(simply called lines below) with respective origins o(Li), that satisfies the
following conditions:

7 By reference to Language Theory where words, terms and trees are transformed
by transductions. There are strong links between language theoretical and logically
defined transductions, see [6].
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(i) if i > 0, then o(Li) ∈ Lj for some j < i,
(ii) for all i, j ∈ N, Li ∩ Lj is {o(Li)} or {o(Lj)} or is empty. (We may have

o(Li) = o(Lj)).
We call L a tree of lines : the union of the lines Li is a connected set
L# in the plane. A path (resp. a cycle) in L# is a homeomorphism h
of the interval [0, 1] of real numbers (respectively of the circle S1) into
L# such that h(0) = x and h(1) = y in the case of a path. For any two
distinct x, y ∈ L#, there is a unique path from x to y (it “follows the
lines”), and consequently, there is no cycle. This path goes through lines
Lk such that k ≤ max{i, j} where x ∈ Li and y ∈ Lj , hence, through
finitely many of them. This path uses a single interval of each line it
goes through, otherwise, there is a cycle.

(b) We obtain a ternary betweenness relation :
BL(x, y, z) :⇐⇒�= (x, y, z) and y is on the path between x and z.

(c) On each line Li, we define a linear order as follows :
x �i y if and only if y = x or y = o(Li) or y is between x and o(Li).

On L#, we define a partial order by :

x � y if and only if x = y or
x ≺ik o(Lik) ≺ik−1 o(Lik−1) ≺ik−2 ... ≺i1 o(Li1) ≺i0 y
for some i0 < i1 < ... < ik. If k = 0, then x ≺i0 y.

It is clear that (L#,�) is an uncountable rooted O-tree : for each x in L#,
the set {y ∈ L# | x � y} is linearly ordered with greatest element o(L0).

Definition 31: Embeddings of join-trees in trees of lines.
Let T = (N, ≤,U) be a structured (countable) join-tree where U is the set of lines.
An embedding of T into a tree of lines L is an injective mapping m : N → L#

such that:

for each U ∈ U , m is order preserving : (U,≤) → (Li,�i) for some i ∈ N,
and
if i �= 0, then m(lsub(U)) = o(Li).

Here, lsub(U) denotes the least element that is strictly above each element
of U .

Lemma 32: If T is a structured join-tree embedded by m into a tree of lines
L, then, its betweenness satisfies:

BT (x, y, z) if and only if �= (x, y, z) ∧ BL(m(x),m(y),m(z)).�

Theorem 33: If L is a tree of lines and N is a countable subset of L#, then
S := (N,BL[N ]) is an induced betweenness in a quasi-tree. Conversely, every
induced betweenness in a quasi-tree is isomorphic to S as above for some tree of
lines L.
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Proof: If L is a tree of lines and N ⊂ L# is countable, then S := (N,BL[N ]) is
in IBQT. A witnessing join-tree T is built as follows. Its set of nodes is N ∪ O
where O is the set of origins of all lines in L. Its order is the restriction to N ∪O
of the order � on L#. Then (N,BL[N ]) = (N,BT [N ]) hence belongs to IBQT.

Conversely, let S = (N,BT [N ]) such that T is a structured join-tree. It is
isomorphic to (N,BL[N ]) for some tree of lines.�

The construction of this tree of lines uses the fact that between two straight
half-lines with same origin A one can draw countably many straight half-lines
with origin A by choosing angles between them of the form α/2i for all i. The
resulting tree of lines is clearly not printable!

5 Concluding Remarks

We exhibit in [5] an FO class of relational structures C such that Ind(C), the class
of induced substructures of those in C, is not FO axiomatizable, and is even not
MSO axiomatizable. This example shows that the FO characterization of IBQT
does not follow by a standard logical argument from the FO characterization of
the class QT, similar to the one used in Proposition 13.

Open Questions

(1) We conjecture that betweenness in O-trees is not first-order axiomatizable.
(2) We also conjecture that the class IBO of induced betweenness relations in

O-trees has a monadic second-order axiomatization.
(3) In [2,4], we have defined quasi-trees and join-trees of different kinds from

regular infinite terms, and proved that they are equivalently the unique
models of monadic second-order sentences. Both types of characterizations
yield finitary descriptions and decidability results, in particular for decid-
ing isomorphism. In a future work, we will extend to O-trees and to their
betweenness relations such descriptions by regular terms, in order to get
equivalences between regularity and MSO-definability.

Acknowledgement. I thank the referee for comments helping me to clarify many
points.
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Abstract. Gurevich [6] conjectured that there is no logic for P or for
NP ∩ coNP. For the latter complexity class, he also showed that the
existence of a logic would imply that NP∩ coNP has a complete problem
under polynomial time reductions. We show that there is an oracle with
respect to which P does have a logic and P �= NP. We also show that a
logic for NP∩coNP follows from the existence of a complete problem and
a further assumption about canonical labelling. For intersection classes
Σp

n ∩ Πp
n higher in the polynomial hierarchy, the existence of a logic is

equivalent to the existence of complete problems.

1 Introduction

In a highly influential paper published in 1988 [6], Yuri Gurevich put forth the
conjecture that there is no logic that captures polynomial time computation. The
question of whether there is a logic for P has been a major driver of research in
finite model theory and descriptive complexity in the last thirty years. In this
line of work, the exact formulation of the question given by Gurevich has played
a central role. Roughly speaking (a precise definition is given later), the question
is whether there is a recursive set S of polynomially-clocked deterministic Turing
machines each of which decides an isomorphism-closed class of structures and
such that for every such class in P, there is a machine in S witnessing this fact.

Gurevich’s conjecture that there is no logic for P implies that P is differ-
ent from NP. This is not, as is often assumed, a simple consequence of Fagin’s
result [5] that there is a logic for NP, i.e. existential second-order logic. Indeed,
knowing Fagin’s theorem and assuming P = NP does not immediately yield a
computable translation from sentences of existential second-order logic to deter-
ministic polynomially-clocked machines. The argument requires a little bit more
work. There is, however, another argument that takes us from P = NP to a
refutation of Gurevich’s conjecture. This relies on the fact that P = NP would
imply the collapse of the polynomial hierarchy and, in particular, that there
is a polynomial-time algorithm for producing a canonical labelling of a graph
(see [1]). A polynomial-time algorithm for canonical labelling of graphs yields
a logic for P (see [2, Proposition 1.7]). Indeed, much of the research around
the existence of logics for P has been concerned with the existence of canonical
labelling algorithms on suitable classes of structures.
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Thus, while P = NP would imply the refutation of Gurevich’s conjecture,
the converse of this statement is not known. Indeed, it is often said that it is
entirely consistent with our knowledge that P is different from NP but there is
a logic for P. The second author of the present paper made this statement in
a lecture in 2012 and was challenged from the audience to provide evidence for
it. Theodore Slaman asked if there is a relativized world in which P is different
from NP but there is a logic for P. In Sect. 4 we show that this is, indeed, the
case. That is we give a construction of an oracle A such that there is a logic for
PA, but PA �= NPA. This should be contrasted with the result shown in [3] that
if P = NP (in the unrelativized sense), then there is a logic for PA for all sets A.

Gurevich also conjectured in [6] that there is no logic for the complexity class
NP ∩ coNP. Relativizations of this conjecture were considered in [3] (published
on the occasion of Yuri’s 70th birthday) where it was shown that this conjecture
is subject to the relativization barrier, in the sense that there are relativized
worlds in which it is true and also relativized worlds in which it is false. The
construction of an oracle for which NP∩ coNP does not have a logic is based on
known constructions of oracles for which NP ∩ coNP does not admit complete
problems under polynomial-time reductions (see [9]), and the fact that a logic for
NP∩coNP would imply the existence of complete problems even under first-order
reductions. This last statement is a theorem stated in [3, Theorem 4] though the
proof was omitted as it is similar to the well-known proof of the corresponding
statement for P [3]. In Sect. 3.1, we give a proof of this fact as a special case of
a more general result about Δ-levels of the polynomial hierarchy. We are able
to show, in Sect. 3.2, for all levels above the first that the existence of complete
problems under polynomial-reductions is equivalent to the existence of complete
problems under first-order reductions.

2 Preliminaries

We work with finite relational signatures. We write σ for an arbitrary such
signature. All our structures are finite, so a σ-structure is a finite set A along
with an interpretation on A of every relation symbol in σ. We write STRUC[σ]
to denote the collection of all finite σ-structures. We do not consider any specific
signatures except that of graphs, i.e. where σ consists of the single binary relation
E. We refer to this signature as GRAPH. We assume a standard encoding of
finite relational structures as strings, as given in [6]. We write |S| for the size
(i.e. number of elements) of a structure S, which is related by a polynomial
factor to the length of the string encoding S. As these polynomial factors are
unimportant for our discussion, we do not distinguish between S and the string
encoding it. Note that, strictly speaking, an encoding of S depends on S and a
choice of order on the universe of S. Where this is significant, we mention the
order explicitly. For full background material on finite model theory, the reader
is referred to [4].

We begin by stating the definition of a logic given by Gurevich [6]
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Definition 2.1 (Logic). A logic L is a pair (SEN,SAT) of functions, taking a
signature σ as parameter, such that

– SEN(σ) is a recursive set. We call ϕ ∈ SEN(σ) an L-sentence on σ.
– SAT(σ) is a recursive subset of {(S, ϕ) | ϕ ∈ SEN(σ), S ∈ STRUC[σ]}, such

that for two isomorphic structures S and S′

∀ϕ ∈ SEN(σ), (S, ϕ) ∈ SAT(σ) ⇐⇒ (S′, ϕ) ∈ SAT(σ)

If ϕ is an L-sentence on σ, we write MOD[ϕ] to mean {S | (S, ϕ) ∈ SAT(σ)}.
Next, we reproduce Gurevich’s definition of a logic capturing polynomial

time.

Definition 2.2. A logic L captures P if:

– there is a Turing machine C such that, on every input L-sentence ϕ of signa-
ture σ, C outputs a pair (M,p), where M is a deterministic Turing machine
and p is a polynomial, such that for all σ-structures S, S ∈ MOD[ϕ] if, and
only if, M accepts S within time p(|S|); and

– if P ⊆ STRUC[σ] is an isomorphism-closed class of structures that belongs to
P, then there exists an L-sentence ϕ of signature σ such that MOD[ϕ] = P.

Definition 2.2 formalises the definition from the opening paragraph of Sect. 1.
It does not give a general definition of capturing a logic for a complexity class, as
it crucially depends on the idea of membership of a class of structures in P being
witnessed by a pair (M,p). Different complexity classes have rather different
notions of witness. In this spirit, the following is Gurevich’s definition of a logic
capturing NP ∩ coNP.

Definition 2.3. A logic L captures NP ∩ coNP if:

– There is a Turing machine C, such that, on every input L-sentence ϕ of sig-
nature σ, C outputs a triple (M,N, p) where M and N are non-determinisitic
Turing machines and p is a polynomial such that:

• ∀S ∈ STRUC[σ], S ∈ MOD[ϕ] if, and only if, there is a computation of
M of length at most p(|S|) by which M accepts S.

• ∀S ∈ STRUC[σ], S ∈ MOD[ϕ] if, and only if, all computations of N on
input S of length at most p(|S|) lead to acceptance.

– If P ⊆ STRUC[σ] is an isomorphism-closed class of structures that belongs
to NP ∩ coNP, then there exists an L-sentence ϕ of signature σ such that
MOD[ϕ] = P.

Here the witness to membership in the class NP ∩ coNP is given by a triple
(M,N, p). It should be noted that in the case of Definition 2.2, the collection of
witnesses (M,p) is a recursive set where we put a semantic, undecidable con-
dition that the class of structures accepted by (M,p) is isomorphism-closed. In
contrast, in the case of Definition 2.3, we have two separate semantic conditions,
namely that the two machines in the witness agree on the class of structures
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accepted and that this class is isomorphism-closed. As noted in [2], it is the first
of these conditions that means that NP ∩ coNP is not even known to have com-
plete problems under polynomial-time reductions and that Gurevich’s conjecture
with regard to NP ∩ coNP is subject to the relativization barrier.

It was proved in [3] that there is a logic for P in the sense of Definition 2.2 if,
and only if, there is a problem in P that is complete under first-order reductions.
A similar statement for a logic for NP ∩ coNP was stated in [3]. In the present
paper, we prove this, and extend it to higher levels of the polynomial hierarchy.
First, we introduce the relevant definitions and notations in connection with the
polynomial hierarchy.

For any set A, PA denotes the class of languages which are accepted by some
deterministic Turing machine with an oracle for A in polynomial time. Similarly
NPA denotes the class of languages which are accepted by some nondeterministic
Turing machine with an oracle for A in polynomial time. The classes of the
polynomial hierarchy are defined as follows.

Definition 2.4. For all n ≥ 1,

– A language L is in Σp
1 if, and only if, L ∈ NP.

– A language L is in Σp
n+1 if, and only if, there is some A ∈ Σp

n such that
L ∈ NPA.

– A language L is in Πp
n if, and only if, L̄ ∈ Σp

n.
– A language L is in Δp

n+1 if, and only if, there is some A ∈ Σp
n such that

L ∈ PA.

It is clear that Δp
n ⊆ Σp

n ∩ Πp
n for all n, but equality is not known for any n.

In terms of the existence of a logic, we know by Fagin’s theorem [5] that there
is a logic for NP, and this is extended by [10] to show that for each n, Σp

n is
captured by the Σn-fragment of second-order logic. Similarly, Πp

n is captured
by the Πn-fragment. We do not, however, obtain by these means a logic for
Σp

n ∩ Πp
n. To make this precise, we introduce here a definition of what it would

mean to capture these classes (in the spirit of Definition 2.3). Before doing so,
it is useful to recall that we have, for each n, a problem that is complete for
Σp

n under polynomial-time reductions. For our purposes, it suffices to take one
such problem, Σn-QBF. This is the problem of deciding the truth of a quantified
Boolean formula in prenex form with n − 1 alternations of quantifiers, starting
with an existential block. By the fact that this problem is Σp

n-complete, it follows
that NPΣn-QBF = Σp

n+1 for all n.

Definition 2.5. For any n ≥ 1, a logic L captures Σp
n+1 ∩ Πp

n+1 if:

– There is a Turing machine C, such that, on every input L-sentence ϕ of sig-
nature σ, C outputs a triple (M,N, p) where M and N are non-determinisitic
oracle Turing machines and p is a polynomial such that:

• ∀S ∈ STRUC[σ], S ∈ MOD[ϕ] if, and only if, there is a computation of
M with oracle Σn-QBF of length at most p(|S|) by which M accepts S.

• ∀S ∈ STRUC[σ], S ∈ MOD[ϕ] if, and only if, all computations of N with
oracle Σn-QBF on input S of length at most p(|S|) lead to acceptance.
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– If P ⊆ STRUC[σ] is an isomorphism-closed class of structures that belongs
to Σp

n+1 ∩ Πp
n+1, then there exists an L-sentence ϕ of signature σ such that

MOD[ϕ] = P.

3 Capturing Intersection Classes in the Polynomial
Hierarchy

The relationship between the existence of a logic for a complexity class and the
existence of complete problems can be somewhat subtle. In the case of syntac-
tic complexity classes like P and NP, there are complete problems under what
we might call computational reductions, even reductions in very weak computa-
tional classes such as AC0. These classes have complete problems under logical
reductions such as first-order reductions if, and only if, there is a logic capturing
them. In the case of NP, we simply know this to be true, but for P it remains
an open question. In the case of NP∩ coNP, which is a semantic class, Gurevich
already showed that the existence of a logic implies that the class has complete
problems under polynomial-time reductions (again, we can take computational
reductions in much weaker complexity classes). It was noted in [3] that this can
be strengthened to the existence of logical reductions. In Sect. 3.1, we prove this
and extend it to all intersection classes in the polynomial hierarchy.

This result has an interesting consequence in connection with the graph
canonical labelling problem. It is well known that if there is a graph canoni-
cal labelling algorithm that runs in polynomial time, then there is a logic for P
(see [2, Proposition 1.7]). In the case of NP ∩ coNP, we are able to show that
if canonical labelling can be done in this class, a notion we make precise below,
then the existence of a logic becomes equivalent to the question of whether the
class has complete problems under polynomial-time reductions. For intersection
classes higher up in the polynomial hierarchy, we know that canonical labelling
can be done in the class and therefore the equivalence holds unconditionally.
This is shown in Sect. 3.2.

3.1 Logics for Intersection Classes

The following strengthening of Gurevich’s result showing that if NP ∩ coNP
admits a logic capturing it, it has a complete problem under poly-time reductions
was stated in [3, Theorem 4].

Theorem 3.1 ([3]). NP ∩ coNP has a complete problem under FO reductions
if, and only if, it admits a logic.

We generalize this theorem to higher levels of the polynomial hierarchy as
follows.

Theorem 3.2. There is a Σp
n ∩ Πp

n-complete problem under first-order reduc-
tions if, and only if, there is a logic capturing Σp

n ∩ Πp
n.
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Proof. In order to prove this result, we need the following lemma:

Lemma 3.3. ([7], p. 228]). Let σ be a finite relational vocabulary. Then, there
exists first-order interpretations Iσ : STRUC[σ] → STRUC[GRAPH] and I−1

σ

such that
∀A ∈ STRUC[σ], I−1

σ (Iσ(A)) ∼= A
Moreover, ∀A,A′ ∈ STRUC[σ],A ∼= A′ ⇐⇒ Iσ(A) ∼= Iσ(A′)

We now use this to prove Theorem 3.2.

(⇒) Let Q be a Σp
n ∩ Πp

n-complete problem under first-order reductions and
let τ be the vocabulary of Q, and let I−1

τ be the reduWe now use this to
provection from Graphs to τ -structures given by Lemma 3.3. We define the
following logic for any signature σ:

• SEN(σ) = {Θ | Θ is a first-order interpretation from σ to GRAPH}
• SAT(σ) = {(S,Θ) | I−1

τ (Θ(S)) ∈ Q}
This logic obviously captures Σp

n ∩ Πp
n. This can be seen by taking a fixed

(M,N, p) that witnesses the membership of Q in Σp
n∩Πp

n. Then, combining
this with polynomial time machines that compute the interpretations Θ
and I−1

τ gives a computable map that takes Θ ∈ SEN(σ) to a witness
(MΘ, NΘ, pΘ) for MOD(Θ) ∈ Σp

n ∩ Πp
n.

(⇐) Let L be a logic for Σp
n ∩ Πp

n. Assume we have an encoding of sentences in
SEN(GRAPH) as integers, and let I be the range of this encoding. Let C
be a deterministic Turing Machine witnessing that L captures Σp

n ∩Πp
n (as

in Definition 2.5).
We aim to define a class Q of structures complete for graph problems in
Σp

n ∩ Πp
n over τ = 〈V,E,
, I〉 where V and I are unary and E and 
 are

binary relation symbols. A structure A = 〈A, V,E,
, I〉 belongs to Q if:
1. 
 is a total, transitive, reflexive relation, i.e. a linear pre-order.
2. ∀a, b, I(a) ∧ I(b) =⇒ a 
 b ∧ b 
 a, and i is the greatest integer such

that ∃x1, x2 . . . xi, x1 � x2 � · · · � xi ∧ I(xi), where x � y ≡ (x 

y ∧ y � x). In other words, I picks the i-th equivalence class in 


3. C on input i runs in time t ≤ |A|, and outputs (M,N, p)
4. |A| ≥ p(|V |)
5. M accepts 〈V,E〉

Q is in Σp
n ∩ Πp

n: 1, 2, 3 and 4 are clearly computable deterministically
in polynomial time. As for 5. it is both in Σp

n, by checking that there
is a computation of M that accepts 〈V,E〉 in p(|V |) steps, and in Πp

n, by
checking that all computations of N of length at most p(|V |) accept 〈V,E〉.
To show that Q is Σp

n ∩Πp
n-hard, let P be a class of graphs in Σp

n ∩Πp
n. Let

ϕ ∈ SEN(GRAPH) be an L-sentence such that MOD[ϕ] = P. Let i ∈ I
be the encoding of ϕ, t the length of the computation of C on input i and
(M,N, p) the output of the computation. Let k and n0 be integers such
that k ≥ i, nk ≥ t, nk ≥ p(n) for all n ≥ n0. We describe a k-ary first-order
interpretation Θ : STRUC[GRAPH] → STRUC[τ ] which is a reduction
from P to Q for all graphs with at least n0 vertices. The finitely many
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cases of graphs with fewer than n0 vertices can be dealt with by adding
a disjunct to the formulas mapping them to some fixed structures inside
or outside Q depending on whether or not they are in P in the standard
way. Our reduction is given by the tuple of formulas (ϕ0, ϕV , ϕE , ϕ�, ϕI)
as follows.

• ϕ0 ≡ true.
• ϕV (x1, . . . , xk) ≡ x1 = x2 = · · · = xk.
• ϕE(x1, . . . xk, y1, . . . , yk) ≡ ϕV (x1, . . . , xk)∧ϕV (y1, . . . , yk)∧E(x1, y1).
• ϕ� defines an arbitrary ordering of basic equality types of k-tuples

from V . Note that the condition k ≥ i guarantees, in particular, that
there are at least i such types.

• ϕI defines the ith equality type.

ϕI(a) ≡ ∃a1, . . . , ai−1,
∧

1≤j<i−1

(ϕ�(aj , aj+1) ∧ ¬ϕ�(aj+1, aj))

∧ ϕ�(ai−1, a) ∧ ¬ϕ�(a, ai−1)

∧ ∀b, ϕ�(b, ai) =⇒
∨

1≤j<i

(ϕ�(aj , b) ∧ ϕ�(b, aj))

For any graph G, I(G) ∈ Q if and only if M accepts (V,E), if and only if
(V,E) |= ϕ, as conditions 1, 2, 3 and 4 result from definition.

3.2 Logical and Computational Reductions

Theorem 3.2 has an interesting consequence. We know that if canonical labelling
of graphs can be done in polynomial time, then there is a logic for P. In the case
of NP ∩ coNP, if canonical labelling is in the class, we still need the additional
condition that NP ∩ coNP is a syntactic class, i.e. it admits complete problems
under computational (e.g. polynomial-time) reductions. Higher up in the polyno-
mial hierarchy, for classes Σp

n∩Πp
n where n ≥ 2, we know that canonical labelling

is, indeed, in the class. There the existence of a logic becomes equivalent to the
question of whether there are complete problems under polynomial-time reduc-
tions. To make this precise, we first need to define what it means for canonical
labelling to be in NP∩coNP, or Σp

n ∩Πp
n, which are classes of decision problems.

An ordered graph is a structure (V,E,≤) where (V,E) is a graph and ≤ is a
linear order on V . A canonical labelling function is a function Can taking ordered
graphs to ordered graphs such that

– if Can(V,E,≤) = (V ′, E′,≤′) then (V,E) ∼= (V ′, E′); and
– if (V,E) ∼= (V ′, E′) then for any linear orders ≤ and ≤′ on V and V ′ respec-

tively, Can(V,E,≤) ∼= Can(V ′, E′,≤′).

We say that a canonical labelling function is in FP (the class of function prob-
lems computable in polynomial time) if it can be computed by a deterministic
Turing machine running in polynomial time. To define a corresponding notion
for NP∩coNP, we use the class TFNP defined by Megiddo and Papadimitriou [8].
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Definition 3.4. We say that a canonical labelling function Can is in TFNP if
the graph of the function, i.e. {(X,Y ) | Can(X) = Y } is in P.

As noted by Megiddo and Papadimitriou [8], TFNP (even though it is not a
class of functions) can be understood as the function problems corresponding to
NP ∩ coNP. This allows us to prove the following result.

Theorem 3.5. If NP∩coNP admits a complete problem under polynomial reduc-
tions, and there is a canonical labelling function in TFNP, then NP∩coNP admits
a complete problem under first-order reductions.

Proof. If Can is in TFNP, there is a nondeterministic machine G which, given a
string encoding an ordered graph G, runs in time polynomial in the size of G
and each computation of G either ends in rejection or, produces on the output
tape an encoding of Can(G). Indeed, the machine G can nondeterministically
guess a string for Can(G), then verify that the guess is correct and write it on
the output tape or reject if it is not.

Let P be an NP∩coNP-complete problem on graphs under polynomial reduc-
tions, and (M,N , p) be a triple witnessing this membership.

Finally, let (Mi, pi)i∈I be an enumeration of pairs where Mi is a determin-
istic Turing machine with output tape and pi is a polynomial. We write fi for
the function on strings computed by the machine Mi when clocked with the
polynomial pi.

We can now construct the following logic L:

• SEN(σ) = I
• SAT(σ) is the set of all (S, i), S ∈ STRUC[σ], i ∈ I such that M accepts

x = fi(Can(Iσ(S))) in p(|x|) steps.

To see that this is a logic, i.e. that the satisfaction relation is well defined, let
S and S′ be two isomorphic σ-structures. By Lemma 3.3, Iσ(S) ∼= Iσ(S′) and
therefore Can(Iσ(S)) = Can(Iσ(S′)). Hence,

∀ϕ ∈ SEN(σ), S |= ϕ ⇐⇒ S′ |= ϕ.

To see that this logic captures NP ∩ coNP, let L be an NP ∩ coNP decidable
class of structures of signature σ. Then, Iσ(L) is an NP ∩ coNP problem (as
I−1
σ (Iσ(L)) = L), so there exists i ∈ I such that Mi computes a reduction

from Iσ(L) to P in time bounded by pi. Therefore, for all S ∈ STRUC[σ],
S ∈ L ⇐⇒ fi(Can(Iσ(S))) ∈ P. In other words, there is i ∈ I such that
MOD[i] = L.

Finally, note that there is a computable translation that takes us from i
to a witness (M,N, p) to the fact that MOD[i] is in NP ∩ coNP. Here M is the
nondeterministic machine that takes as input a σ-structure S and first computes
Iσ(S). This can be done deterministically in polynomial time. It then runs the
non-deterministic machine G. Rejecting computations of this lead to M rejecting,
but accepting computations produce Can(Iσ(S)) on which we now run Mi for
pi(|Can(Iσ(S))|) steps. Finally we run M on the result. N is defined similarly
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except that in the last stage we run N . It can now be checked that this satisfies
all the conditions for a logic capturing NP∩ coNP. Hence by Theorem 3.1, there
is an NP ∩ coNP-complete problem under FO-reductions.

To lift the result to higher levels of the polynomial hierarchy, we first define
what it means for graph canonical labelling to be in the functional variant of
Σp

n ∩ Πp
n.

Definition 3.6. We say that a canonical labelling function Can is in F(Σp
n∩Πp

n)
if the graph of the function, i.e. {(X,Y ) | Can(X) = Y } is in Δp

n.

We can now state the following equivalence.

Theorem 3.7. For n ≥ 2. Σp
n ∩ Πp

n admits a complete problem under
polynomial-time reductions if, and only if, it admits a complete problem under
first-order reductions.

Proof. One implication is trivial. For the other one, the proof is exactly as for
Theorem 3.5, except we know that there is a canonical labelling function in
F(Σp

n ∩ Πp
n) (see [1]).

4 A Relativization of Gurevich’s Conjecture

It is well-known that the conjecture of Gurevich that there is no logic for P
implies the conjecture that P is different from NP. Here we show that there is a
relativized world in which these two conjectures are different, i.e. the first fails
while the second is true.

Theorem 4.1. There is an oracle A, such that there is a logic for PA and
PA �= NPA.

Proof. As constructed in [11], let B be a set such that ΔP,B
2 � ΣP,B

2 . Then take
A to be a ΣP,B

1 -complete set. Then, PA = ΔP,B
2 � ΣP,B

2 = NPA.
Moreover, since ΔP

2 ⊂ PA, there is a graph canonical labelling function Can
computable by a deterministic polynomial-time machine with an oracle for A.
Let (Mi, pi)i∈I be an enumeration of polynomial time bounded oracle Turing
Machines. We can now build a logic for PA:

– SEN(σ) = I
– SAT(σ) = {(S, i),Can(Iσ(S)) is accepted by Mi with oracle A}.

5 Conclusion

A logic capturing a complexity class requires us to find an effective syntax for the
machines that define the class and are isomorphism invariant. For complexity
classes that are inherently syntactic, such as P and NP, this requirement can
be met by finding a suitable canonical labelling algorithm. For other classes
which are inherently semantic, such as NP∩ coNP, the requirement breaks down
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to finding a syntactic characterization (i.e. a complete problem) in addition to
a canonical labelling algorithm. This allows us to explore these questions in
relativized worlds. One interesting question to pursue would be whether the
requirement for a canonical labelling algorithm can itself be done away with in
a relativized world? Could one devise an oracle with respect to which canonical
labelling is not in polynomial-time yet there is a logic for P?
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I delivered my typewritten doctoral dissertation to the Princeton University
registrar in May 1950, just seventy years before May 2020. In this essay I will
try to provide a very personal survey of my interactions with computer science,
as participant and as observer, over this seventy year period.

The title of my dissertation was On the Theory of Recursive Unsolvability. In
1935 Alonzo Church1 had declared that the recursive functions, defined on the
natural numbers, are precisely those that are algorithmically computable. It was
Gödel who had defined this class, and Church’s student Kleene had found various
alternative formulations of the class. Church and Kleene had also studied a class
of functions, the λ–definable functions, defined in a very different manner, and
it had been proved that the two classes were the same. Meanwhile in England,
Alan Turing’s2 formulation, in terms of what came to be called Turing machines,
was proved by Turing to be equivalent to these other two. E. L. Post3 had
a formulation very close to Turing’s that he had developed independently. Post
had also worked on a quite different formalism, his canonical and normal systems
of productions, during the 1920s and proposed them as providing yet another
formulation he expected to be equivalent to the other three.

In my dissertation I studied various aspects of the theory of recursive func-
tions basing myself on Kleene’s version of Gödel’s formulation. I proved that
Post’s canonical systems were equivalent to the other formulations and, using
Post’s reduction of canonical to normal systems, obtained an unsolvable problem
for normal systems. With this problem as a basis, I obtained my first unsolvable

1 He was my adviser.
2 Church was Turing’s adviser as well. But Turing’s computability paper was written

before he became a Princeton student to work with Church.
3 He was my teacher when I was an undergraduate at City College in New York.
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problem involving Diophantine equations. Was this computer science? A mile
and a half away from the Princeton campus, von Neumann’s computer at the
Institute for Advanced Study was being built in 1950, not to be operational for
another two years. But I was aware of this only dimly if at all. In any case, the
thought that it had any relation to my dissertation would never have occurred
to me. Still Gödel’s advance to what Kleene called “general” recursion from the
earlier “primitive” recursion corresponds to including while loops in program-
ming languages in addition to simple looping constructs. A substantial part of
my dissertation was to appear, couched in the language of Turing machines,
in my book, Computability and Unsolvability, of 1958. In Computing Reviews
this book was called “one of the few classics of computer science” when Dover
reprinted it in 1982. Also, Chomsky’s hierarchy of classes of formal languages
was based explicitly on Post’s production systems.

In the fall of 1950, amid considerable turmoil in my personal life, I found
myself amid the corn fields of southern Illinois, where I had moved to take up a
postdoc position at the University of Illinois at Champaign-Urbana. In the spring
semester I was able to teach a graduate course on recursive functions. I liked
the intuitive feeling of Turing machines and decided to base my presentation on
them rather than on the general recursions in my dissertation. In showing that
complicated algorithms could be coded for Turing machines, I was writing lots
of specific Turing machine code on the blackboard. A freshly minted PhD in
mathematics like me, Ed Moore, who had been auditing the course, came to the
front of the room after one of the sessions and showed me how I could improve
some of the code I had written. Then he said, “We have one of those across the
street.” He was referring to the ORDVAC, a computer built at the University of
Illinois pretty much along the lines of von Neumann’s machine in Princeton.

What brought me to the ORDVAC was the Korean War. When Truman
decided to militarily oppose the invasion of South Korea from the north, a group
of University of Illinois academics, mostly physicists, joined to try to use their
scientific knowledge to aid the effort. I was recruited for this new organization,
the Control Systems Laboratory, and I accepted the offer. To begin with, there
was a heady brew of ideas in the air: Wiener’s cybernetics, Shannon’s theory of
computation, and computers with their unknown potential. Eventually it was
decided to build a prototype of a system in which the ORDVAC controlled
physical devices. Specifically, it was to navigate 100 airplanes in real time. And
the task of writing the program that would do this was given to me.

The ORDVAC was built around a William’s memory in which data was
stored as electric charge on the surface of cathode ray tubes (CRTs). There
were 40 small CRTs each capable of storing 1024 bits in a 32 × 32 array. So the
total memory was 5 KB. A memory access or an addition required 40 ms, and
a multiplication or a division required a full millisecond. My program was to
respond to “radar” information providing position information of the “planes”
by computing a heading for each plane and transmitting it to the plane. The
computation consisted of a sorting part, in which each radar input was matched
with the corresponding plane, and a part in which the headings were computed.
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I used a merge-sort algorithm for the first part. For the second part I had the help
of a young physicist, Marius Cohen, who found an algorithm for computing the
sine function to sufficient accuracy using just one division and no multiplications.
All of this had to be interrupted regularly to intercept incoming radar data.
I had to place these interruptions in the code based on a hand calculation using
the published times required for the instructions to be carried out.

Programs for the ORDVAC were written in absolute binary machine lan-
guage, with nothing like an assembly language available. The ORDVAC had no
index register so control of loops required the code to operate on itself. Nev-
ertheless I found programming lots of fun. Also it was clear to me that it was
essentially the same activity that I had been engaged in in the classroom pro-
gramming Turing machines. But it would be some time before I came to under-
stand how intimate the connection is. It was fun, but it wasn’t my own work.
When I was able to obtain support for two years at the Institute for Advanced
Study in Princeton, I eagerly seized the opportunity.

Back in Princeton with my pregnant wife Virginia, whom I had met and
married in Champaign-Urbana, I was free to work out some of my ideas related
to Gödel incompleteness. I also began working on the book that was to become
Computability and Unsolvability. I wanted to show computability as a full-fledged
subject in its own right with diverse applications. Basing it on Turing machines, I
wanted the connections with computer practice to emerge. Before my two years
at the Institute for Advanced Study were up, I was able to bring a complete
handwritten manuscript to the typists. I knew that my handwriting had difficul-
ties, but nevertheless I was dismayed by the poor job the typists had done. Every
page needed many corrections, and when I brought the corrected typescript back
to the typists, they refused to have anything to do with it. I suppose that after
typing the work of such as Einstein, Gödel, and von Neumann, they felt enti-
tled to ignore the needs of 26 year old mere visitor. The typescript languished in
closets for over two years.

The terms of my support gave me the option of seeking summer employment,
and we certainly needed the money. In the summer of 1953 I worked at Bell Labs,
an easy commute from Princeton. My supervisor was Claude Shannon whose
fundamental tract on information theory I had read in Champaign-Urbana. Ed
Moore, who had first told me about the ORDVAC, was there as well. Shan-
non had designed a universal Turing machine with only two states. He raised
the question: Can one provide a precise definition of universality? He pointed
out that unless the input/output is carefully specified, a Turing machine might
exhibit universal behavior only because of the way input data was coded. I liked
the problem and wrote two papers about it.

For the following summer I had managed to receive funding for a project to
program the decision procedure for Presburger arithmetic. I had permission to
use the Institute for Advanced Study computer for the purpose. I completed the
project, and we were off, driving across the country to Davis, California where I
was going to be an assistant professor of mathematics at one of the campuses of
the University of California. While there wasn’t much intellectual activity in the
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Davis mathematics department, in Berkeley, 80 miles away, the great logician
Alfred Tarski led an outstanding group of young scholars. When I was invited to
speak at the weekly colloquium of the Berkeley mathematics department, I took
the opportunity to express my view of computability theory as an autonomous
branch of mathematics. Tarski, who was in the audience, took strong exception
during the discussion after my talk.

After Virginia and I were awakened by the onset of labor, our second son
Nathan was born at home at 4AM. Other than us, the only person in the house
was Nathan’s two year old brother Harold. Virginia’s obstetrician was far away
in Berkeley, and we made do with an obstetric textbook. As I write, Harold and
Nathan are men well into their sixties.

We remained in Davis for just one year and moved to Columbus, Ohio, where
I was again an assistant professor of mathematics teaching elementary subjects.
Again we left after a year. I eagerly accepted an offer from the Hartford Grad-
uate Center that Rensselaer Polytechnic Institute had established in Eastern
Connecticut. I remained there for three very fruitful years. With a faculty of
perhaps a dozen, with only three of us teaching mathematics, it was quite an
interesting place with mature students, quite different from those, not yet 20,
that I had been teaching in Davis and Columbus.

The secretaries there were eager to be helpful and did an excellent job of
turning my manuscript for Computability and Unsolvability into proper shape for
being submitted to a publisher. McGraw-Hill offered me a contract and published
it in their series on “Information Processing and Computers”. In my preface I
wrote:

The existence of universal Turing machines . . . confirms the belief . . . that
it is possible to construct a single “all-purpose” digital computer on which
can be programmed . . . for any conceivable deterministic digital computer.

A quarter of a century was to go by before I came to understand just how
intimate was the relationship between Turing’s abstract model of a universal
computer and physical computers, that the former was the progenitor of the
latter.

The book was written from the point of view of computability as an indepen-
dent discipline. This view was reinforced by a section on applications with chap-
ters on logic, algebra, and number theory. Tarski’s equally valid view, expressed
when he objected to what I had said in my Berkeley talk, was that computability
is a branch of definability theory which is part of mathematical logic.

Of course at the time this book was written, the academic discipline of com-
puter science didn’t yet exist. Nevertheless computer science is indebted to com-
putability theory in several ways. It supplied two models of computation, the
Turing macine and the register machine that proved useful in quantifying the
asymptotic complexity of specific algorithms. Also, the complexity classes poly-
time, NP-completeness, and the levels of the poly-time hierarchy were all defined
by analogy with categories from computability theory.

In the summer of 1957 (a year before Computability and Unsolvability was
published) there was a remarkable five week “Institute for Logic” at Cornell
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University in Ithaca, 220 miles northwest of New York City. 85 logicians
attended, almost all from the U.S. The influence of the newly developing world
of computers was already evident. Alonzo Church lectured on “Application of
Recursive Arithmetic to the Problem of Circuit Synthesis”. I spoke about my
program for Presburger arithmetic. Abraham Robinson discussed “Proving a
Theorem (As Done by Man, Logician, and Computer)”. Rabin and Scott’s fun-
damental work on finite automata was presented. IBM sent a contingent of 13 to
the “Institute”. Among other things they presented FORTRAN, initiating con-
troversy on whether the loss of efficiency in programming in such a “high level”
language compared to using assembly language was supportable. Altogether of
the 82 talks presented, 19 had a definite computer science aspect.

I had become friendly with Hilary Putnam, a young philosopher at Princeton,
and we decided to share a small house in Ithaca with our families for the duration
of the Logic Institute. We were together nearly every day, and this led directly to
our fruitful collaboration. I had studied what I had called Diophantine sets. A set
S of natural numbers is Diophantine if there is a polynomial p(a, x1, x2, . . . , xn)
such that a ∈ S if and only if there are natural numbers x1, x2, . . . , xn for which
p(a, x1, x2, . . . , xn) = 0. In my dissertation I had conjectured that every set of
natural numbers which is listable4, in the sense that there is an algorithm that
generates a list of the members of the set, is also Diophantine. I had taken a first
small step towards proving this conjecture. It was easy to see that the truth of
the conjecture would yield a solution to the tenth of the 23 problems that Hilbert
famously had proposed in 1900. Hilary and I began working on this conjecture;
we found a new approach yielding a nice theorem that we were pleased to present
at the Institute. I would not claim that this was computer science, but it would
be impossible to omit it from any account of our collaboration.

We were so pleased by what we had accomplished that we decided to seek
funding enabling us to work together during the summer months. Because the
experts regarded my conjecture as very unlikely to be true, we thought it would
be hopeless to seek funding for that. So we decided instead to write a proposal
for work on computer generated proofs of theorems. Specifically we proposed
to work on a proof procedure for first order logic. Our proposed procedure was
to include an algorithm for what has come to be called SAT, the satisfiability
problem. We wrote a proposal, but it was too late for submission to the funding
agencies if we hoped to work together the following summer. A friend of Hilary
suggested we send it to the National Security Agency (NSA). Neither of us had
heard of this agency, but, nothing to lose, we submitted it to them. A phone
call came inviting me to visit the NSA’s headquarters in Maryland. When I told
them that I had never heard of the agency, they laughed and said their publicity
office was doing a good job. The NSA was not to remain so obscure for long. It
became front-page news when two of their people defected to the Soviet Union.

When we talked about our proposal, they made it clear that they had no
interest in proof procedures for first order logic, but they were interested in SAT.

4 Other terms for this notion are recursively enumerable set and computably enumer-
able set.
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They warned me that it is a difficult problem and doubted that we could make
much headway in one summer. However if we were willing to work only on
SAT, they were prepared to fund our proposal. I agreed at once. Our report5

submitted to them at the end of the summer, made no mention of the funding
agency, as they had requested. The report introduced the technique of initially
transforming a Boolean formula being tested for satisfiability into conjunctive
normal form. This amounted to a list of disjunctive clauses, a format that came
into widespread use. Various techniques were offered for satisfiability testing with
examples.

The following summer, we had funding from an agency whose mission was to
support fundamental science. Not constrained, we set to work on my conjecture
that every listable set is Diophantine. We managed to find a proof of the weaker
result that every listable set is exponential Diophantine, meaning that variable
exponents were permitted in the algebraic expression.6 For the part of our report
related to my conjecture, see [18] pp. 411–430. While we were writing our report,
we recalled that our proposal to the agency called for work on machine theorem
proving. So using a selection of the algorithms from our report of the previous
summer together with an exhaustive search of the Herbrand universe (a term
I later introduced in [2]), we had our proof procedure. We wrote it up for our
report, and, on a whim, I submitted it to the Journal of the ACM. They published
it [14] and it is easily the most cited of my publications, the source of the “Davis-
Putnam procedure”. Hard copies of our reports to the two agencies are in an
archive maintained by Donald Knuth. Julia told me that when she brought a
copy of our report for the Russian mathematicians, they were astonished that
the US Air Force funded research on Diophantine sets, research that was very
unlikely to lead to any practical applications.

In the spring of 1959, I was surprised to receive a letter offering me a year
appointment at the Institute for Mathematics and Mechanics at New York Uni-
versity (NYU). I had flirted with them before, but their offer at that time had
been unsatisfactory. This institute was totally the creation of Richard Courant.
A Jew, he had been expelled from the mathematical institute at Göttingen of

5 The report is available at [18] as Appendix A pp. 374–408.
6 Our proof had a flaw. It used the fact that there are arbitrarily long arithmetic

progressions consisting entirely of prime numbers. This fact was only proved in 2004
(by Ben Green and Terrence Tao); so we had to call it a hypothesis. We wrote
our work up for our funding agency, the Office of Scientific Research of the US Air
Force. We also submitted it for publication to a mathematical research journal. In
addition we sent a copy to Julia Robinson whose methods had greatly influenced
our approach. To our delight she succeeded in modifying the proof so it did not
need this as yet unproved proposition. We withdrew our paper, and the theorem
was published with the three of us as authors. It followed from the new result that
my conjecture would follow if a single polynomial could be found that satisfied two
simple conditions that Julia had proposed. After the three of us had been trying for
a decade to find such a polynomial, we learned that Yuri Matiyasevich, at the age
of 22, had actually done it. His proof that his equation satisfied Julia’s conditions,
though quite elementary, was intricate and beautiful.
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which he had been a principal founder. There was no mathematical research
activity of consequence at NYU when Courant arrived; he set out to remedy
that, and he certainly succeeded. After his death, his institute was fittingly
renamed: the Courant Institute of Mathematical Sciences. I was very happy to
accept the offer. I was free to do my own research, I could teach a graduate
course in mathematical logic, and I would have access to an IBM 704 computer.
Convinced that we would be in New York for a long time, we cut our ties to
Connecticut, and moved into an apartment overlooking the Hudson River, on
the upper west side of New York.

My access to the IBM 704, tempted me to see how the proof procedure
Hilary and I had developed, would do on a physical computer. I was provided
with two excellent colleagues, both graduate students, Donald Loveland7 and
George Logemann, to do the actual programming. The deficiencies of the Davis-
Putnam proof procedure for first order logic were soon made clear. On any
but the simplest problems, the memory was overwhelmed. We decided to take
advantage of the availability of external storage in the form of tape drives, by
changing the algorithm to make use of them We replaced Rule III from [14]
(which was what would later be called binary resolution) with Rule III∗, we called
“splitting”, which led to the divide-and-conquer algorithm for SAT that came
to be called DPLL. When a split into two cases occurs, the algorithm places one
of them on a stack and attends to the other.8 The Loveland-Logemann program
incorporating the DPLL algorithm for SAT was a substantial improvement over
the previous attempt, but still fell far short. The paper [17], with Loveland
himself one of the authors, discusses this history in more detail, and brings it
up to date in connection with contemporary SAT solvers.

Our experience made it clear that any serious progress would require taming
the exponential growth of substitution instances of atomic formulas. A copy of
Dag Prawitz’s paper [19], that arrived by postal mail at this time, contained
an important clue. Although the actual proof procedure in the paper was far
too unwieldy to be the basis of a useful computer program, it did highlight the
significance of substitutions that make pairs of literals negations of one another.
This was emphasized in my article [2] written in connection with a talk I gave at
a symposium sponsored by the American Mathematical Society. Alan Robinson’s
resolution principle [20] that pointed to a new compelling direction, took from
our work the importance of complementary literals as well input in the form of
a conjunction of clauses, each consisting of a disjunction of literals. I think that
is why Siekmann and Wrightson awarded my [2] a star, signifying an important
article, in their anthology [21]. I discuss the history more fully in [3].

As I had hoped and rather expected, I was offered a tenure-track position at
NYU. However, a better offer came from an unexpected quarter. Yeshiva College
in the Washington Height neighborhood of New York City had long been offering

7 Don later was one of my first PhD students, and, still later, a colleague.
8 Of course the terms “divide-and-conquer” and “stack” were not yet used in computer

science at that time. It may be worth mentioning that both III and III∗ are already
in the report [15] that Hilary and I had prepared for the NSA.
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an undergraduate education that combined an American liberal arts curriculum
with traditional orthodox Jewish rabbinical training. However, Yeshiva College
had become Yeshiva University offering secular graduate education in a number
of areas. As my year as a visitor at NYU was nearing its end, I received an offer
from the newly founded Graduate School of Science at Yeshiva University. It was
a much more attractive offer than the one I had received from NYU. The topics
of the graduate courses I would be teaching would include my own specialty. I
was happy to accept. The Courant Institute graciously continued to make the
IBM 704 and the talents of Loveland and Logemann available, and we were able
to complete our project.

In 1965, for a number of reasons, it was time to leave Yeshiva. I returned to
NYU which was to be my academic home until I retired in 1996. I was Primcipal
Investigator on a mechanical theorem-proving project, but it was Don Loveland,
at that time a colleague at NYU, who seized the opportunity to see his model
elimination procedure implemented. The paper [16] with a number of collabora-
tors, was the result of this effort.

In the spring of 1969, I was living in London, on sabbatical leave, when
a letter arrived from Jürgen Moser, Director of the Courant Institute. A new
department of computer science was being formed at Courant with my old friend
and colleague Jack Schwartz as chair. The letter asked me to join, and, after
some soul searching, I accepted. I found myself involved in the efforts of the
new department to find its place in the Courant Institute. This did not proceed
without a certain amount of friction. The department not only hoped to achieve
success with cutting edge fundamental research in the Courant tradition, but
also offered an undergraduate major that quickly became very popular. The
need for faculty to teach these students provided us with the opportunity to hire
promising new faculty.

For the academic year 1976–77, I was again on sabbatical leave. I had spent
two summers in Berkeley and was eager to try a whole year. To earn a little
extra money, I approached John McCarthy (who had been a fellow student at
Princeton) about a summer job. He suggested that I fly out and give a talk. I
thought a question that Jack Schwartz had posed about extensibility of proof
checkers would be an appropriate topic. I remember working out the easy details
on the plane.9 I had an enjoyable time working at for the month of July at John’s
Artificial Intelligence Laboratory at Stanford University. I loved the atmosphere
of play that John had fostered. The terminals that were everywhere proclaimed
“Take me, I’m yours”, when not in use. I was encouraged to work with the FOL
proof checker that had recently been developed by Richard Weyhrauch. Using
this system, I developed a complete formal proof of the pigeon-hole principle from
axioms for set theory. I found it neat to be able to sit at a keyboard and actually
develop a complete formal proof, but I was irritated by the need to pass through
many painstaking tiny steps to justify inferences that were quite obvious. FOL
formalized a “natural deduction” version of First Order Logic. The standard

9 Jack and I did publish a joint paper based on this which provided a path to my
Erdös number 3. There was another path via Yuri Matiyasevich.
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paradigm for carrying out inferences was to strip quantifiers, apply propositional
calculus, and replace quantifiers. I realized that from the viewpoint of Herbrand
proofs, each of these mini-deductions could be carried out using no more than one
substitution instance of each clause. I decided that this very possibility provided
a reasonable characterization of what it means for an inference to be obvious.
Using the LISP source code for the linked-conjunct theorem prover that had been
developed at Bell Labs, a Stanford undergraduate successfully implemented an
“obvious” facility as an add-on to FOL. I found that having this facility available,
cut the length of my proof of the pigeon-hole principle by a factor of 10. This
work was described at the Seventh Joint International Congress on Artificial
Intelligence held in Vancouver in 1981 [4].10

It became the Computer Science Department’s policy to provide our new
hires with a review as they were completing their third year with us, to help
them and us with an initial indication of their prospects for achieving tenure
after their sixth year. It must have been around 1980 that I was given the task of
conducting such a review of the work of Elaine Weyuker. Her PhD from Rutgers
had been in theoretical computer science. Reading her recent research papers, I
was surprised that she was looking, with a theoretician’s eye, at a very practical
problem: software testing. Programmers will certainly try to eliminate the bugs
from the programs they write. But it is very difficult to envision in advance all
the various environments and other circumstances in which a given program will
be used. Generally, before a program is released to the public, it is tested by
assembling a set of input data, and then running the program on each of these
inputs. It is well understood that for both theoretical and practical reasons,
running a program with a finite set of inputs can not guarantee the correctness
of a program. So, “quality assurance” professionals attempt to assemble test data
that they regard as “adequate”. Elaine was studying this notion of adequacy.

I was both impressed by her work and intrigued by the possibility of studying
in an objective manner, a notion treated in practice subjectively based on intu-
ition and experience. We soon began a collaboration. In addition to a textbook
on theoretical computer science, we wrote three joint papers. [11] is concerned
with the problem of testing a program whose expected input-output behavior is
not known. In such a case one couldn’t tell whether the output generated by a
set of test data is correct. This paper is still cited. Our [12] and [13] suggested
formal definitions of adequacy based on the intuition that an adequate set of test
data should separate the program being tested from all other programs with the
exception of those input-output equivalent to the given program.

An article entitled The Other Turing Machine that appeared in the Computer
Journal in 1977 caught my attention. Up to that point, Turing’s name had
scarcely been mentioned in historical accounts of the origin of modern digital
computers. Although I was convinced that Turing’s exploration of the nature
of computation with his construction of a universal machine had provided their
theoretical underpinnings, I had no idea how concrete the connection was. From
the article I learned that Turing’s Ace Report of 1946 contained the complete

10 Parts of this paragraph were copied verbatim from my [10].
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design of a stored program computer, including the electronic circuits, and even
estimated its total price. In 1986, the same authors, Brian Carpenter and Doran,
published a collection of some of Turing’s previously unpublished manuscripts
including the ACE report itself as well as the text of a remarkable lecture that
Turing had delivered to the London Mathematical Society in February 1947 [1].
In the lecture, Turing explicitly tied the idea of an all-purpose stored program
computer to his concept of a universal machine. In addition he provided an
expansive vision of the future capabilities of the computer.

By this time, it was clear to me that the debate over whether von Neu-
mann should share the credit for the “stored program concept” was entirely
misplaced. Von Neumann who had worked on Hilbert’s foundational program
and who was among the first to recognize the significance of Gödel undecidabil-
ity, would surely have understood the practical relevance of Turing’s theoretical
investigations. Also, as a logician, I could not help being aware of the histori-
cal tradition in which Turing worked. I thought that it was important that the
educated public become aware of some of this. I was determined to write a book
that would tell this story. I applied for and received a Guggenheim award to
fund the necessary research. My “Universal Computer” was published in 2000
[6,7]. In my Introduction I wrote

It was von Neumann’s expertise as a logician and what he had learned
from the English logician Alan Turing that enabled him to understand
the fundamental fact that a computing machine is a logic machine. In
its circuits are embodied the distilled insights of a remarkable collection
of logicians, developed over centuries. Nowadays, when computer technol-
ogy is advancing with such breathtaking rapidity, as we admire the truly
remarkable accomplishments of the engineers, it is all too easy to overlook
the logicians whose ideas made it all possible.

There was a second edition for Turing’s centenary in 2012. A third edition of 2018
gave me the opportunity to write about the remarkable success of Go-playing
computers using deep learning technology.

But I’m getting ahead of myself. The book was to be for the educated pub-
lic. But first, I wanted to make the case for Turing’s crucial role in the origin
of the modern computer to fellow professionals. In my essay [5] I tried to do
this, while including a brief initial section on Leibniz, so as not to neglect the
historical underpinning of Turing’s work.11 Gradually Turing’s role came to be
recognized. By the time my book [6] appeared, I could quote Time magazine
to that effect. The work of Carpenter and Doran played a crucial role in this
change, as did Andrew Hodges’s masterful biography of Turing. I would find it
extremely gratifying to think that my essay might also have played a part.

I was surprised by an email message from Andrew Hodges, Turing’s biog-
rapher, calling my attention to recent publications by the philosopher Jack

11 In writing about Turing’s work at Bletchley Park, I made the error of indicating
that the Colossus was built to decrypt the Enigma traffic needed for the safety of
Atlantic shipping. The Colossus was built to deal with an entirely different traffic.
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Copeland that concerned Turing’s introduction of the notion of an “oracle” in his
Princeton dissertation. Copeland, was proposing that it was time to obtain such
an oracle as a physical reality in order to be able to compute things that were
uncomputable in the sense of the Church-Turing Thesis. In a popular article in
the Scientific American 1999 (coauthored with Diane Proudfoot), he announced:
“the search is on” for an oracle. He even proposed a capacitor storing a charge
whose value was an infinite precision real number that could serve as the oracle.
Anyone who read Turing’s dissertation with a modicum of comprehension would
have understood that Turing’s oracle was a mathematical abstraction introduced
for a specific mathematical purpose. And, as far as Copeland’s capacitor is con-
cerned, since the early years of the twentieth century, it has been understood
that an electric charge consists of an integer number of electrons.

I had previously been astonished by an article by Hava Siegelmann in Science
1995 with the title Computation Beyond the Turing Limit. Science is the very
prestigious journal of the American Association for the Advancement of Science,
where one is used to seeing important research in the biological sciences. I was not
impressed by Siegelmann’s article. It was certainly true that given any language
on a two-letter alphabet, she could produce one of her networks that would
accept it. The secret was that the desired language was coded into an infinite
precision real number which was then used as a weight in one of the “neurons”
in her net. In effect the language was built into the net that accepted it. She
reiterated her claim in her book, Neural Networks and Analog Computation:
Beyond the Turing Limit, Birkhäuser, Boston 1999. I wrote about all of this in
[8], and thought that was the end of the matter.

However, it seemed that there was a hypercomputation movement. There
were various people who thought about computing the uncomputable, unde-
terred by the prospect of trying to do infinitely many things in a finite mount
of time. There was quantum adiabatic cooling to solve Hilbert’s tenth problem
and some who were convinced that our brains are already hypercomputers. At
a meeting of the American Mathematical Society in San Francisco, there was a
special session on hypercomputation. I wrote two additional articles about this
nonsense before saying farewell to it.

It seems to be an article of faith among theoretical computer scientists that
P �= NP. It has long seemed to me that this faith is misplaced. The heuristic
arguments usually given depend on regarding P as the class of languages for
which computationally feasible algorithms exist for deciding membership. But
obviously an algorithm with cpk as a time bound is utterly useless if c and/or k
are large. In my lectures on this topic, I talk about linear programming as pro-
viding a useful lesson. Once thought to likely be NP-hard, linear programming
turned out to be in P. Courtesy of Margaret Wright, I show an example of a
large linear programming problem for which the old exponential time simplex
method does better than the best “barrier” poly-time algorithm. I have no idea
whether the proposition P = NP is true. It may be that P �= NP is true, and
that it hasn’t been proved because of serious technical difficulties. But I think
it is equally likely that it hasn’t been proved because it is false. Perhaps there
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is a poly-time algorithm for SAT with a large exponent in the time bound. My
experience with Hilbert’s tenth problem and people’s attitudes to what we were
trying to do, has led me to believe that our intuitions about polynomials of high
degree are not very reliable.

2012 was the year of Alan Turing’s 100th birthday. So speakers who were
able to give a lecture on a Turing-related subject were in considerable demand
that year. I gave nine talks in places as far apart as Pisa in Italy and Arequipa in
Peru. First in Ghent and then in Boston. my topic was Universality is Ubiquitous
[9]. Turing’s abstract model of computation had been able to achieve universality
with just a few very rudimentary basic operations by providing his devices with
unlimited memory. This suggested that the extent to which a physical device
can approximate universality will depend critically on providing it with as large
a memory as possible. Turing quite explicitly emphasized this in his address
of 1947 [1], and it is evident in the expanding suite of things our devices can
do as larger and larger memories are provided. Because so little is required of
basic operations to achieve universality, it is pointless to retroactively confer
universality on Babbage’s analytic engine or the Colossus built in the Bletchley
Park decryption effort, after imagining them provided with an infinite memory.

Do the non-coding parts of the DNA contain a computational capability?
Perhaps playing a role in evolution? I shamelessly speculated along those lines.

My 90th birthday occurred in 2018. The special session on history and philos-
phy of computation at the meeting in Kiel of the Computability in Europe orga-
nization honored my birthday. I spoke on “Turing’s Vision and Deep Learning”.
I recalled that Turing had imagined a time when a computer would have mod-
ified its original program to such an extent that the programmers would no
longer understand what it was doing. Nevertheless, Turing suggested, it might
be doing good work. The programmers of the neural nets that have achieved such
remarkable success with the ancient game of Go find themselves in exactly this
position. Likewise the programmers of self-driving cars. Thus, bringing together
Turing’s imaginings seventy years ago with some of the most advanced current
technological achievements seems an excellent way to end this story.
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Abstract. We prove (non)convergence laws for random expansions of
product structures. More precisely, we ask which structures A admit a
limit law, saying that the probability that a randomly chosen expan-
sion of An satisfies a fixed first-order sentence always converges when n
approaches infinity. For the groups Zp, where p is prime, we do indeed
have such a limit law, even for the infinitary logic Lω

∞ω, and these proba-
bilities always converge to dyadic rational numbers, whose denominator
only depends on the expansion vocabulary. This can be used to prove
that the Abelian group summation problem is not definable in Lω

∞ω.
Further examples for structures with such a limit law are permutation
structures and structures whose vocabulary only consists of monadic
relations. As a negative example, we prove that the very simple struc-
ture ({0, 1}, ≤) does not have a limit law. Furthermore, we develop a
method based on positive primitive interpretations that allows transfer-
ring (non)convergence results to other structures. Using this method, we
are able to prove that structures with binary function symbols or unary
functions that are not interpreted by permutations do not have a limit
law in general.

1 Introduction

The study of convergence and nonconvergence laws for logical formulae on ran-
dom finite structure has been an important topic of finite model theory since the
discovery of the celebrated 0-1 law for first-order logic, discovered 50 years ago
by Glebskĭı et al. [6] and, independently, by Fagin [5]. Informally, this law says
that any property of finite graphs or finite relational structures that is definable
by a first-order sentence is either almost surely true or almost surely false on
(sufficiently large) randomly chosen finite structures or graphs. More precisely,
let ψ be a first-order sentence of vocabulary τ and, consider, for any positive nat-
ural number n, the probability μn(ψ), that a random τ -structure with universe
c© Springer Nature Switzerland AG 2020
A. Blass et al. (Eds.): Gurevich Festschrift, LNCS 12180, pp. 118–132, 2020.
https://doi.org/10.1007/978-3-030-48006-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48006-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-48006-6_9


Random Expansions of Product Structures 119

[n] := {0, . . . , n − 1} (chosen with uniform probability from all such structures)
is a model of ψ. The 0-1 law says that, for each first-order sentence of any rela-
tional vocabulary, the sequence μn(ψ) converges exponentially fast to either 0
or 1, as n goes to infinity.

Since then, there has been an enormous amount of work on variations of
such questions, related to many different logical systems as well as to more
general probability distributions, focussing not just on 0-1 laws but on more
general questions about convergence and nonconvergence of such sequences of
probabilities μn(ψ). Yuri Gurevich has made significant contributions to this
area. Together with Blass and Kozen, he proved the 0-1 law for the fixed-point
logic LFP [2], a result that later motivated the generalization to the 0-1 law
for Lω

∞ω, the infinitary logic with a bounded number of variables [10]. In [7] he
presented a lucid survey on 0-1 laws. For further results we refer to [3].

Here we consider a further variation of questions about limit laws, which had
originally been motivated by investigations concerning the logical definability
of the Abelian group summation problem. Given a finite group or semigroup
(G,+, 0) and a subset X ⊆ G, we want to determine the sum over all elements
of X. Algorithmically this is a very simple problem. If the elements of X come
in some order, then we process them along that order and calculate the sum
in a trivial way. However, the logical definability of this problem is much more
delicate. If we consider G as an abstract structure and X as an abstract set,
without a linear order and hence without a canonical way to process elements
one by one, then it is unclear how to define the sum in any logic that does not
have the power to quantify over a linear order. Indeed it had been conjectured
that the Abelian summation problem would not even be expressible in Choiceless
Polynomial Time with counting, one of the most powerful known candidates
for a logic that might be capable of defining all polynomial-time computable
properties of finite structures. Although it has eventually been proved in [1] that
this conjecture is false and that, indeed, the summation problem for Abelian
semigroups is even definable in fixed-point logic with counting (FPC), it turned
out that even for the restricted case of groups Zn

p , the summation problem cannot
be defined in fixed-point logic without counting, and in fact not even in the
infinitary logic Lω

∞ω. This last result relied on a new limit kind of limit law for
random expansions of Zn

p that was also established in [1]. Here we investigate
the question what kind of base structures, beyond the groups Zp, admit a limit
law of this kind.

In the next section, we precisely define this problem. We shall then explain
the proof from [1] for the groups Zp. In Sect. 4 we discuss some further cases
where a similar limit law can be established, before we turn to nonconvergence
results. The simplest base structure A for which random expansions of An do
not admit a limit law for first-order logic is A = ({0, 1}, <). We finally discuss a
method based on positive primitive interpretations to transfer such convergence
and nonconvergence results among different base structures, and establish a few
more cases for nonconvergence laws of this kind.
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2 The Problem

Let A be a structure with a finite universe A of finite (not necessarily relational)
vocabulary σ, and let τ be another finite relational vocabulary with σ ∩ τ = ∅.
For each n, let An be the n-fold product of A, defined in the usual way: The
universe of An is An, the set of n-tuples over A, written as functions a : [n] → A
(sometimes also denoted as a = (a(0), . . . , a(n − 1))); for each relation symbol
R ∈ σ of arity r and a1, . . . ar ∈ An, we have that An |=R(a1, . . . , ar) if, and
only if, A |= R(a1(i), . . . , ar(i)) for all i ∈ [n], and for each function symbol f ∈ σ
of arity r and a1, . . . ar, b ∈ An, we have that An |= f(a1, . . . ar) = b if, and only
if, A |= f(a1(i), . . . , ar(i)) = b(i) for all i ∈ [n].

We consider the probability spaces Sn
τ (A) consisting of all (σ ∪ τ)-expansions

of An, with the uniform probability distribution. For every sentence ψ ∈ L(σ∪τ)
(in whatever logic L), let μn(ψ) denote the probability that a randomly chosen
structure B ∈ Sn

τ (A) is a model of ψ.
We are interested to know for which finite structures A the following limit

law holds: For every finite relational vocabulary τ and for every sentence ψ ∈
FO(σ ∪ τ) there exists a (dyadic rational) number q such that

μ(ψ) := lim
n→∞ μn(ψ) = q.

3 The Groups Zp

It has been shown in [1] that such a limit law holds for A := (Zp,+, 0), for any
prime p, not just for FO but also for Lω

∞ω. The proof generalizes the classical
techniques, based on extension axioms, for proving the 0-1 law for FO and Lω

∞ω

on random graphs and random finite relational structures.
Consider the group (Zp,+, 0), for some prime p, and an arbitrary finite rela-

tional vocabulary τ = {X1, . . . , X�}. For each n ∈ N, we consider the probability
spaces Sn(Zp), consisting of all expansions of (the additive group of) the vector
space (Zp)n by relations from τ , with the uniform probability distribution. We
prove the following limit law.

Theorem 1. For every relational vocabulary τ and for every sentence ψ ∈
Lω

∞ω({+, 0} ∪ τ),

lim
n→∞ μn(ψ) =

r

2�
, for � = |τ | and some r ≤ 2�.

Proof. Let δ1, . . . , δm be the m = 2� atomic τ -types in the constant 0 (and
without variables). For each j, δj is a conjunction over � atoms or negated
atoms of form Xi(0, . . . , 0), for Xi ∈ τ . Obviously, for all j ≤ m and all n,
μn(δj) = 1/m.

For any collection a1, . . . , ak of elements of (Zp)n let span(a1, . . . , ak) be the
subspace generated by a1, . . . , ak. Clearly, the size of span(a1, . . . , ak) in (Zp)n

is bounded by pk, for any n.
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Recall that an atomic k-type t(x1, . . . , xk) of a vocabulary σ is a maximal
consistent set of atoms and negated atoms in the variables x1, . . . , xk. In our
case, a k-type t(x1, . . . , xk) specifies the linear dependencies and independencies
of x1, . . . , xk and the truth values of all atoms X(y1, . . . , yr) where X ∈ τ , and
each yi is a Zp-linear combination of x1, . . . , xk.

Definition 2. For each j ≤ m, we define ATj to be the set of all atomic types
t(x1, . . . , xk) of vocabulary {+, 0} ∪ τ such that

(1) t is consistent, i.e. realisable in some B ∈ Sn
τ (A),

(2) t |= δj ,
(3) t implies, for each i ≤ k, that xi 	∈ span(x1, . . . , xi−1).

We then define Tj to be the theory of all extension axioms

exts,t := ∀x̄(s(x̄) → ∃xk+1t(x̄, xk+1))

where s and t are, respectively, atomic k and k + 1-types in ATj with t |= s.

Please notice that condition (3) of Definition 2 is equivalent to: t entails the
linear independence of x1, . . . , xk.

Proposition 3. Every extension axiom exts,t ∈ Tj has asymptotic probability
one on the sequence of spaces Sn

τ (Zp).

Proof. Let (a1, . . . , ak) be a realisation of the atomic type s(x̄) ∈ ATj in some
randomly chosen expansion B of (Zp)n. The type s(x̄) fixes the truth values
of all τ -atoms in the variables x1, . . . , xk and the constant 0, and t(x̄, xk+1)
additionally fixes truth-values for the τ -atoms that contain at least one term
with the variable xk+1. There is a bounded number q of such atoms. Therefore,
if we fix some element b ∈ (Zp)n \ span(a1, . . . , ak), then the probability that
B |= t(ā, b) is 2−q.

The elements b that we have to explore are those outside of span(a1, . . . , ak).
Each of them fixes |span(a1, . . . , ak, b) \ span(a1, . . . , ak)| ≤ (p − 1)pk new ele-
ments, so there are at least pn−k−1 independent choices for b. Since there are
fewer than pnk realisations of s(x̄) in B, the probability that one of them cannot
be extended to a realisation of t(x̄, xk+1) is at most

pnk(1 − 2−q)pn−k−1

which tends to 0 exponentially fast as n goes to infinity.
Thus, the asymptotic probability of every extension axiom exts,t ∈ Tj is one

on Sn
τ (Zp). �


For every j ≤ m, k < ω, let ϑk
j be the conjunction of all extension axioms in

Tj with at most k variables. Further, let E(k, j) be the class of all expansions B
of An (for any finite n ≥ k) such that B |= δj ∧ ϑk

j .

Lemma 4. μ(δj ∧ ϑk
j ) = 1/m for all j ≤ m, k < ω.
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Proposition 5. For every ψ ∈ Lk
∞ω and every j ≤ m, either A |= ψ for all

A ∈ E(k, j), or A |= ¬ψ for all A ∈ E(k, j).

Proof. Take any two structures A,B ∈ E(k, j). From the fact that both struc-
tures satisfy δj ∧ϑk

j we immediately get a winning strategy for the k-pebble game
on A and B (for background on the model comparison games for k-variable logic,
see [4]). Hence the two structures are Lk

∞ω-equivalent, so it cannot be the case
that ψ is true in one and false in the other. �


Given any formula ψ ∈ Lk
∞ω, let r(ψ) = |{j ≤ m : ψ is true in all A ∈

E(k, j)}|. It follows that

μ(ψ) = lim
n→∞ μn(ψ) =

r(ψ)
m

.

Hence the limit law holds for Lω
∞ω. �


Theorem 6. The Abelian group summation problem is not definable in Lω
∞ω.

Proof. Suppose that the Abelian group summation problem is definable by a
formula ϕ(x) ∈ Lk

∞ω such that for every finite Abelian group (H,+, 0), all X ⊆
H and every h ∈ H,

(H,+, 0,X) |= ϕ(h) ⇐⇒
∑

X = h.

Consider the sentence ψ := ∃x(ϕ(x)∧X(x)∧X(0)), which expresses that both
0 and the sum over all elements of X are contained in X. Let G = (Z2,+, 0) and
H = Z

n
2 . For a randomly chosen X ⊆ H all elements of H have equal probability

to be the sum of all elements of X. The probability that this sum is itself an
element of X quickly converges to 1/2. Thus the asymptotic probability of ψ on
the spaces Sn

τ (Z2) converges to 1/4.
However, since we use only one random relation, the denominator of the

asymptotic probabilities in the limit law is 2, so μn(ψ) should converge to either
0,1, or 1/2. Contradiction. �


Categoricity. A classical result about limit laws for finite random structures
states that the theory of all extension axioms is ω-categorical, i.e. it has, up to
isomorphism, precisely one countable model. We can prove an analogous cate-
goricity result in our setting.

Let Z∗
p be the weak ω-product of Zp. Its elements are the functions g : ω → Zp

such that g(n) = 0 for all but finitely many n, addition is defined component-
wise in the obvious way, and 0 is the constant function mapping all n ∈ ω
to 0. The next observation says that the theories {δj} ∪ Tj are categorical for
expansions of Z∗

p.

Proposition 7. Let Aω and Bω be any two expansions of Z
∗
p to {+, 0} ∪ τ -

structures which are both models of {δj}∪Tj. Then Aω and Bω are isomorphic.
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Proof. The universes of both Aω and Bω are the same as for Z
∗
p. Fix an enu-

meration g0, g1, g2, . . . of this set, and define a sequence (fn)n∈ω of partial iso-
morphisms from Aω to Bω as follows. Let f0 = {(0,0)}. Since both Aω and Bω

are models of δj , this is indeed a partial isomorphism. Suppose now that, for
k ≥ 0, fk has already been defined, with domain span(a1, . . . ,ak), and image
span(b1, . . . , bk). Since fk is a partial isomorphism (a1, . . . ,ak) and (b1, . . . , bk)
realise the same atomic type s(x̄).

For even k, let ak+1 be the first element in the enumeration g0, g1, g2, . . .
that does not appear in the domain of fk, and let t(x̄, xk+1) be the atomic type
realised by (a1, . . . ,ak,ak+1). Since Bω |= exts,t the tuple (b1, . . . , bk) can be
extended by a suitable element bk+1 to a realisation of t(x̄, xk+1). This defines
an extension of fk to a partial isomorphism fk+1 from span(a1, . . . ,ak+1) to
span(b1, . . . , bk+1).

For odd k we proceed similarly, by choosing for bk+1 the first element in the
enumeration of the universe that is not contained in the image of fk. Since the
appropriate extension axiom holds in Aω the element bk+1 can then be matched
by an element ak+1 to provide the extension fk+1.

The union f =
⋃

k∈ω fk is then the desired isomorphism between Aω and
Bω. �


4 Limit Laws for Other Structures

In this section, we show that the following structures also have a limit law:

– Structures only equipped with monadic relation symbols.
– Permutation structures, i.e. structures equipped with unary function symbols

that are interpreted by bijective functions.

In Sect. 5, we see concrete examples of two structures that have a nonconver-
gence law instead. One of them has a binary relation symbol, while the another
one has only unary function symbols that are interpreted by certain non-bijective
functions.

4.1 Atomic Types and Extension Axioms in General Structures

We say that an element a ∈ A is uniformly definable in some logic L, if there
exists an L-formula ϕ(x) such that

An |=ϕ(b̄) ⇐⇒ b̄ = (a, a, . . . , a)

for every n ∈ N and b̄ ∈ An. For example, if c ∈ σ is a constant symbol, then
ϕ(x) := x = c is such a uniform definition of cA. Another example is the formula
ϕ0(x) := ∀y(x + y = y) which uniformly defines the neutral element in a group
(G,+).

Now let ū = (u1, . . . , up) be an enumeration of all uniformly FO-definable
elements of A. Let σA := {c1, . . . , cp} be a vocabulary containing constant sym-
bols for these uniformly definable elements and let A′ be the (σ ∪σA)-expansion
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with cA
′

i = ui. Furthermore, let δ1, . . . , δm be the atomic (σA ∪ τ)-types (with
no variables) of possible (σ ∪ σA ∪ τ)-expansions of A′.

Similar to Definition 2, we define the sets ATj (for each j ≤ m) consisting of
all atomic types t(x1, . . . , xk) over the vocabulary σ ∪ σA ∪ τ with the following
properties:

(1) t is consistent, i.e. realisable in some B ∈ Sn
τ (A′).

(2) t |= δj

(3) t |= xi 	= h(x1, . . . , xi−1, xi+1, . . . , xn) where h is a (σ ∪ σA)-term.

Again, for every j ∈ {1, . . . , m}, we let

Tj := {exts,t : s, t ∈ ATj , t is an extension type of s}

where exts,t := ∀x̄(s(x̄) → ∃xk+1t(x̄, xk+1)).

4.2 Only Monadic Relations

Now we investigate the case that the vocabulary σ contains only monadic relation
symbols. Thus, A′ has the form (A, (PA)P∈σ, (cA

′
i )i=1,...,p) where PA ⊆ A for

every relation symbol P ∈ σ and the c1, . . . , cp are interpreted by the uniformly
FO-definable elements of A := (A, (PA)P∈σ). If |A| = 1, then An ∼= A and the
limit law holds due to trivial reasons. Therefore, we consider structures A with
|A| ≥ 2.

Proposition 8. Let L be a logic with FO ≤ L. An element a of A is uniformly
definable in L if, and only if, there are some relation symbols P1, . . . , Pk ∈ σ
with

⋂k
i=1 PA

i = {a}.

Proof. For the direction “⇐”, we prove that
⋂k

i=1 PA
i = {a} implies that the

first-order formula ϕ(x) :=
∧k

i=1 Pix is in fact a uniform definition of a. Towards
this end, let An |=ϕ(b̄) for some b̄ = (b1, . . . , bn) ∈ An. Then bj ∈ ⋂k

i=1 PA
i = {a}

and, hence, bj = a for every j as desired.
“⇒”: Now assume that some L-formula ϕ(x) is a uniform definition of a. Let

σ′ := {P ∈ σ : P monadic relation symbol and a ∈ PA}. Towards a contradic-
tion, assume the existence of some b ∈ ⋂

P∈σ′ PA \ {a}. Since ϕ(x) is a uniform
definition of a, we have An |= ϕ((a, a, . . . , a)) but An 	|= ϕ((b, a, . . . , a)). However,
this is not possible, because the function π : An → An that swaps (a, a, . . . , a)
with (b, a, . . . , a) (and maps every other element onto itself) is an isomorphism of
An for n ≥ 2. Indeed, π is clearly bijective and for every relation symbol P ∈ σ,
we can distinguish between the following two cases:

– P ∈ σ′: Then (a, a, . . . , a) ∈ PAn

and (b, a, . . . , a) ∈ PAn

, because a, b ∈ PA.
– P /∈ σ′: Then a /∈ PA and, hence, (a, a, . . . , a) /∈ PAn

and (b, a, . . . , a) /∈ PAn

,
because a occurs in both tuples at the second position. �


Proposition 9. Let exts,t ∈ Tj. Then μ(exts,t) = 1.
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Proof. Let exts,t = ∀x̄(s(x̄) → ∃yt(x̄, y)). Furthermore, let ā = (a1, . . . , ak) be a
realisation of the atomic type s(x̄) ∈ ATj in some randomly chosen expansion
B of (A′)n. Let σ+ resp. σ− be the set of all monadic relation symbols P such
that Py resp. ¬Py occurs in t. Because t is realisable, it cannot happen that⋂

P∈σ+ PA = ∅. Furthermore, we must have |⋂P ∈σ+ PA| ≥ 2, because otherwise
t could only be realised by a tuple consisting of some uniformly definable element,
but then t violates (3). Choose a, b ∈ ⋂

P∈σ+ PA with a 	= b. Let {P1, . . . , Pr}
be a complete enumeration of σ− without repetitions. For every such Pj ∈ σ−

there must be some bj ∈ ⋂
P∈σ+ PA \ PA

j , because of the same reason that t
would not be realizable otherwise.

Now consider the tuples d̄ := (b1, . . . , br, d̄
′) where d̄′ ∈ {a, b}n−r. Every such

tuple that is different from a1, . . . , ak is a candidate for t, because the conditions
(1)–(3) from the definition of ATj are satisfied. Thus, there are at least 2n−r −k
many elements that might extend ā = (a1, . . . , ak) to a realisation of t. Each of
them has a probability of 2−q of being a realisation of t where q is the number of
τ -literals in t(x̄, y) with y. Therefore, the probability that ā cannot be extended
to a realisation of t is at most (1 − 2−q)2

n−r−k. There are at most |A|nk many
realisations of s. The probability that one of them cannot be extended is at most

|A|nk · (1 − 2−q)2
n−r−k

which tends to 0 exponentially fast as n goes to infinity. Thus μ(exts,t) = 1. �

By following the proof of Theorem1, we obtain an analogous result for the case
where the base structure A exhibits only monadic relations.

Theorem 10. Let σ be a vocabulary consisting only of monadic relation sym-
bols, τ be some relational vocabulary and A be some finite σ-structure. For every
sentence ψ ∈ Lω(σ ∪ τ),

lim
n→∞ μn(ψ) =

r

2�
, for some r ≤ 2�

where μn(ψ) denotes the probability that a random τ -expansion of An satisfies
ψ. The number � is the number of τ -structures with p elements where p is the
number of uniformly definable elements of A.

In Sect. 5, we shall see a counterexample to the limit law for the case where A
is allowed to have binary relations.

4.3 Permutation Structures

Let σ be a vocabulary consisting only of unary function symbols and τ be any
relational vocabulary. We say that A is a permutation structure, if every sA (for
s ∈ σ) is a permutation of A.

We shall prove that permutation structures admit a limit law. First of all, we
observe that An can be decomposed into disjoint copies of finitely many finite
structures that only depend on A.
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Theorem 11. Let A be a finite permutation structure. Then there are finitely
many pairwise non-isomorphic finite structures B1, . . . ,Bq such that every An

is isomorphic to a disjoint union of copies from {B1, . . . ,Bq}.
Proof. Consider some element a ∈ An of An and let An(a) be the substructure
of An that is generated by a. Let #(a) := |{a(i) : i = 1, . . . , n}| be the number of
pairwise different elements occurring in a. Clearly, we have 1 ≤ #(a) ≤ � := |A|.
Choose some b ∈ A#(a) such that {b(1), . . . , b(#(a))} = {a(1), . . . , a(n)} and for
every i ∈ {1, . . . , n}, let ι(i) ∈ {1, . . . ,#(a)} be chosen such that b(ι(i)) = a(i).
Notice that b must consist of pairwise different elements. Let A#(a)(b) be the
substructure of A#(a) generated by b. We claim that An(a) is isomorphic to
the structure A#(a)(b). Let An(a) and A#(a)(b) denote the universe of An(a)
resp. A#(a)(b). A#(a)(b) contains all elements of the form �t(b)�A

#(a)
, while An(a)

consists of all �t(a)�A
n

where t(x) is some σ-term. By definition of An resp.
A#(a), we have that �t(b)�A

#(a)
(i) = �t(b(i))�A and �t(a)�A

n

(j) = �t(a(j))�A.
Since A is a permutation structure, we can thus conclude that the equal-
ity type of a is the same of �t(a)�A

n

and that every �t(b)�A
#(a) ∈ B con-

sists of pairwise different elements. Furthermore, we obtain in particular that
�t(a)�A

n

(i) = �t(a(i))�A = �t(b(ι(i)))�A = �t(b)�A
#(a)

(ι(i)). As a result, the map-
ping π : A#(a)(b) → An(a), (c1, . . . , c#(a)) �→ (cι(1), . . . , cι(n)) is an isomorphism
between A#(a)(b) and An(a). Thus, A can be decomposed into disjoint copies of
Ak(c) where c ∈ Ak consists of pairwise different elements and 1 ≤ k ≤ � = |A|.
So, there are (up to isomorphism) q ≤ ∑�

k=1

(
�
k

)
many such (finite) structures

B1, . . . ,Bq that allow the decomposition of any An. �

For every i = 1, . . . , q let #i(n) be the number of disjoint copies of Bi occurring
in An. If #i(r) ≥ 2 for some r ∈ N, then there are two different tuples ā1, ā2 ∈ Ar

with Bi
∼= Ar(ā1) and Bi

∼= Ar(ā2). Now for n = k · r, consider tuples of the
form (b̄1, . . . , b̄k) ∈ An with b̄i ∈ {ā1, ā2} for every i ≥ 1. Clearly, we have
Bi

∼= An(b̄1, . . . , b̄k) for every such tuple, of which there are at least 2k many.
Thus, #i(n) ≥ 2� n

2r 	 grows exponentially in n.
Now consider the case where #i(r) ≤ 1 for every r ∈ N. Clearly, there must

be at least one r ∈ N with #i(r) = 1 (otherwise Bi would not have been included
in the list B1, . . . ,Bq) and, consequently, there exists some tuple ā ∈ Ar with
Bi

∼= Ar(ā). If ā would consist of two different elements, then tuples with the
same elements as ā but with different equality type would induce more (even
disjoint) copies Bi as substructures. This implies that ā = (a, . . . , a) for some
a ∈ A and, thus, Bi

∼= A(a) ∼= An(a, . . . , a) for every n ≥ 1. Therefore, we
actually have that #i(n) = 1 for every n ≥ 1. Furthermore, it must also be the
case that π(a) = a for every automorphism π of A, because otherwise we would
again find more than one copy of Bi. Since Bi occurs exactly once as a copy
in every An and since a is a fixed point of every automorphism of A, there is a
first-order formula that locates the (unique) copy of Bi and defines (a, . . . , a) in
it, i.e. a must be uniformly definable.

Thus, for every i = 1, . . . , q we have



Random Expansions of Product Structures 127

(i) either #i(n) grows exponentially in n, or
(ii) #i(n) = 1 for every n and Bi

∼= A(a) ∼= An(a, . . . , a) for some uniformly
FO-definable element a ∈ A.

Proposition 12. Let A be a finite permutation structure. Then μ(exts,t) = 1
for every exts,t ∈ Tj , j ≤ m.

Proof. Let exts,t = ∀x̄(s(x̄) → ∃yt(x̄, y)). Furthermore, let ā = (a1, . . . , ak) be a
realisation of the atomic type s(x̄) ∈ ATj in some randomly chosen expansion
B of (A′)n. (Recall that A′ is the expansion of A with names for the uniformly
definable elements.) Let b ∈ (A′)n be an element that satisfies the (σ ∪ σA)-part
of t, i.e. we have (A′)n |= t(ā, b)∩FO(σ ∪σA). Such an element must exist (for n
sufficiently large), because t is consistent (see also condition (1)). As in the proof
of Theorem 11, there must be an index i ∈ {1, . . . , q} such that An(b) ∼= Bi. It is
not possible that #i(n) = 1 for every n ∈ N, since otherwise b would have to be
a tuple consisting only of some FO-definable element a = cA

′
j for some cj ∈ σA,

but then we would have y = cj ∈ t in contradiction to condition (3) Therefore,
#i(n), the number of occurrences of Bi, grows exponentially in n. Let mt be the
number of τ -literals in t(x̄, y) with y. The probability that B |= t(ā, b) is 2−mt

and, therefore, the probability that ā cannot be extended to a realisation of t is
at most (1 − 2−mt)#i(n)−k. Since there are at most |A|nk realisations of s, the
probability that one of them cannot be extended to a realisation of t is at most

|A|nk · (1 − 2−mt)#i(n)−k

which tends to 0 as n goes to infinity, because #i(n) grows exponentially in n.
Thus μ(exts,t) = 1. �

Again, by following the proof of Theorem1, we obtain a limit law for permutation
structures.

Theorem 13. Let A be a finite permutation structure of vocabulary σ. Then
there exists a number m such that for every sentence ψ ∈ Lω(σ ∪ τ),1

lim
n→∞ μn(ψ) =

r

m
, for some r ≤ m.

5 Nonconvergence for Linear Orders

The limit law for random expansions of products of the Abelian groups Zp raised
the question whether such a limit law could be proved for random expansions of
products of any finite structure A.

However, this fails dramatically. Even in the very simple case where A =
({0, 1},≤) we can establish a nonconvergence law, based on Kaufmann’s proof
of the nonconvergence law for monadic second-order logic on random finite struc-
tures [9]. The heart of Kaufmann’s argument is the construction of a formula
which almost surely defines a linear ordering.
1 Please recall that m is still the number of atomic (τ ∪σA)-types that are realisable in
(σ ∪ σA ∪ τ)-expansions of A′. These types δ1, . . . , δm have been defined in Sect. 4.1.
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Proposition 14 (Kaufmann). There exists a first-order formula ϕ<(x, y) of
a vocabulary τ ∪{Y1, . . . , Ym} (where τ consists of four binary predicates and the
Yi are monadic) such that on randomly chosen τ -structures with universe [n],
the probability that, for some interpretation of Y1, . . . Ym, the formula ϕ<(x, y)
defines a linear order, converges to 1 as n goes to infinity.

To obtain an analogous first-order formula on random expansions of An, for
A = ({0, 1},≤), we observe that An is isomorphic to (P([n]),⊆). A random
expansion of An to a ({≤} ∪ τ)-structure Bn can thus be equivalently viewed
as a random (τ ∪ {⊆})-structure Cn with universe P([n]). By restricting the
τ -relations of Cn to singleton sets we further get a random structure Dn with
universe [n] where, for each R ∈ τ and i1, . . . , ik ∈ [n],

Dn |=Ri1 . . . ik ⇐⇒ Cn |= R{i1} . . . {ik}.

Further, let

sing(x) := ∃z(z 	= x ∧ ∀y(z ≤ y ∧ (y ≤ x → (y = z ∨ y = x))).

Clearly, for a = (a1, . . . , an) ∈ {0, 1}n we have that An |= sing(a) if, and only if,
ai = 1 for exactly one i, which means that a represents a singleton set of P([n]).

We now translate arbitrary sentences ϕ ∈ FO(τ ∪{Y1, . . . , Ym}) into formulae
ϕ∗(y1, . . . , ym) ∈ FO({≤} ∪ τ) by the following operations

– replace the set predicates Yi by new element variables yi;
– relativise every first-order quantifier Qz to sing(z), i.e. replace every subfor-

mula ∃zϑ by ∃z(sing(z) ∧ ϑ) and every subformula ∀zϑ by ∀z(sing(z) → ϑ);
– replace atoms Yiz by z ≤ yi.

By induction on ϕ, one easily proves the following correspondence.

Lemma 15. For any expansion of An to a ({≤} ∪ τ)-structure Bn and the
corresponding τ -structure Dn over [n], and for all sets Y1, . . . Ym ⊆ [n] we have
that

Dn |=ϕ(Y1, . . . , Ym) ⇐⇒ Bn |=ϕ∗(f(Y1), . . . , f(Ym))

where f : P([n]) → {0, 1}n is the above mentioned bijection witnessing the iso-
morphism between (P([n],⊆) and An.

By applying this translation to the MSO(τ)-sentence

ψ := ∃Y1 . . . ∃Ym(“ϕ<(x, y) defines a linear order”)

we get a first-order sentence ψ∗ ∈ FO({≤} ∪ τ) (using first-order quantifiers
∃y1 . . . ∃ym to simulate ∃Y1 . . . ∃Ym). Since ψ has asymptotic probability 1 on
random τ -structures, it follows ψ∗ has asymptotic probability 1 on random
expansions of An. Notice that the linear order defined by ϕ∗

< in ψ∗ is not on
the universe of An, but on those elements representing singleton sets in P([n]).
By standard constructions we now can get sentences that have no asymptotic
probability. For instance, consider instead of ψ the MSO-sentence ψodd, with an
additional existentially quantified set variable Z, saying that
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– ϕ<(x, y) defines a linear order,
– Z contains precisely the even elements of this order,
– the minimal and the maximal element of the order belong to Z.

Translating ψodd as above results in a sentence ψ∗
odd ∈ FO({≤}∪τ) such that

μ2n(ψ∗
odd) = 0 for all n, and limn→∞ μ2n+1(ψ∗

odd) = 1. We thus have established
the following nonconvergence law.

Theorem 16. There exists a first-order sentence ψ∗ ∈ FO({≤} ∪ τ) such that
on random expansions of products of A = ({0, 1},≤), the sequence of probabilities
μn(ψ∗) does not converge.

6 Transferring (Non-)Convergence to Other Structures

In this section we present a method that allows us to transfer (non)convergence
laws for structures such as ({0, 1},≤) to other structures. This method is based
on special logical interpretations, only using positive primitive formulae. A for-
mula ϕ ∈ FO(σ) is called positive primitive, if it consists only of ∃,∧ and σ-
atoms. The following lemma is an immediate corollary of [8, Lemma 9.1.4].

Lemma 17. Let A be a σ-structure and ϕ(x1, . . . , xr) ∈ FO(σ) a positive prim-
itive formula. Then for every n and every ā1, . . . , ār ∈ An,

An |=ϕ(ā1, . . . , ār) ⇐⇒ A |= ϕ(ā1(i), . . . , ār(i)) for every i ∈ [n].

Let σ1, σ2 be vocabularies where σ2 is relational. A positive primitive inter-
pretation from σ1 to σ2 (of arity k) is a first-order interpretation I consisting only
of positive primitive formulae (and without congruence formula). More precisely,
I is a sequence (δ, (ψS)S∈σ2) of positive primitive FO(σ1)-formulae where

– δ = δ(x̄) is the domain formula, and
– ψS = ψS(x̄1, . . . , x̄ar(S)) are the relation formulae for S ∈ σ2.

Here, the tuples x̄, ȳ, x̄1, . . . are of length k respectively. We also write ar(I) to
denote the arity of I, which is here the number k. For the sake of simplicity
we always assume σ2 to be relational, but it is not difficult to generalise these
concepts to arbitrary vocabularies.

We say that I interprets a σ2-structures B in a σ1-structure A (and write
I(A) ∼= B) if and only if there exists a bijection h, called the coordinate map,
which maps δA = {ā ∈ Ak : A |= δ(ā)} to B such that for all S ∈ σ2 and
ā1, . . . , āar(S) ∈ δA holds

A |= ψS(ā1, . . . , āar(S)) ⇐⇒ (h(ā1), . . . , h(āar(S))) ∈ SB.

This coordinate map h : δA → B induces coordinate maps hn : δA
n → Bn wit-

nessing I(An) ∼= Bn. To see this, recall that δA
n

= {(ā1, . . . , āk) ∈ (An)k :
An |= δ(ā1, . . . , āk)}. For every (ā1, . . . , āk) ∈ δA

n

and every i ∈ [n], let

(hn(ā1, . . . , āk))(i) := h(ā1(i), . . . , āk(i)).
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Using Lemma 17, it is straightforward (but technical) to verify that this is indeed
the definition of a coordinate map for I(An) ∼= Bn.

Proposition 18. Let I be a positive primitive interpretation with I(A) ∼= B.
Then I(An) ∼= Bn for every n ≥ 1.

A positive primitive interpretation I = (δ, (ψS)S∈σ2) not only defines copies
of σ2-structures inside σ1-structures, but it also can be used to convert σ2-
formulae ϕ(x1, . . . , x�) into σ1-formulae ϕI(x̄1, . . . , x̄�) as follows:

– Replace every variable x by a new k-tuple of variables, denoted by x̄.
– Equalities x = y are turned into

∧
1≤≤k xi = yi.

– Turn atoms like Sx1 . . . xar(S) for S ∈ σ2 into ψS(x̄1, . . . , x̄ar(S)).
– Replace ∃xη and ∀xη by ∃x̄(δ(x̄) ∧ ηI) resp. ∀x̄(δ(x̄) → ηI).

The connection between ϕ and ϕI is made precise in the following well-known
interpretation lemma, which can be adapted for many different logics.

Lemma 19 (Interpretation Lemma for FO). Let I(A) ∼= B with coordinate
map h : δA → B, ϕ(x1, . . . , x�) ∈ FO(σ2) and ā1, . . . , ā� ∈ δA. Then

A |= ϕI(ā1, . . . , ā�) ⇐⇒ B |= ϕ(h(ā1), . . . , h(ā�)).

Now let τ be another finite, relational vocabulary disjoint from σ1 ∪ σ2. A
positive primitive interpretation also serves as a bridge between random (σ2∪τ)-
expansions of B and of (σ1 ∪τ�)-expansions of An. Here, we use τ� := {R� : R ∈
τ} where R� is a new relation symbol of arity ar(I) · ar(R) = k · ar(R) in order
to account for the fact that I operates on k-tuples over A. Furthermore, let Iτ

be the result of adding the formulae ψR(x̄1, . . . , x̄ar(R)) := R�(x̄1, . . . , x̄ar(R)) for
R ∈ τ to I.

Using this new interpretation we can now translate a given (σ2 ∪ τ)-sentence
ϕ into a (σ1 ∪ τ�)-sentence ϕIτ . We write μB,τ

n (ϕ) to denote the probability
that a random (τ ∪ σ2)-expansion of Bn satisfies ϕ, while μA,τ�

n (ϕIτ ) is defined
analogously. The connection between μB,τ

n (ϕ) and μA,τ�

n (ϕIτ ) is clarified in the
following theorem.

Theorem 20. Let I(A) ∼= B for a positive primitive interpretation I from
σ1 to σ2. For every sentence ϕ ∈ FO(σ2 ∪ τ) and every n ≥ 1 it holds that
μA,τ�

n (ϕIτ ) = μB,τ
n (ϕ).

Proof. As in Proposition 18, we have I(An) ∼= Bn witnessed by a coordinate
map hn : δA

n → Bn for every n ≥ 1.
For a randomly chosen (σ1∪τ�)-expansion C of An we obtain a corresponding

(σ2 ∪ τ)-expansion D of Bn by setting

RD := {(hn(ā1), . . . , hn(āk)) : (ā1, . . . , āar(R)) ∈ (RI)C ∩ (δA
n

)ar(R)}.
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Then we have Iτ (C) ∼= D with coordinate map hn and, by the interpretation
lemma (Lemma 19), it follows that C |= ϕIτ ⇐⇒ D |=ϕ. Furthermore, this (σ2 ∪
τ)-structure D is already uniquely determined by C.

Conversely, for a randomly chosen (σ2 ∪τ)-expansion D of Bn, we can define
a corresponding (σ1∪τ�)-expansion C of An by setting (R�)C := h−1

n (RD) where

h−1
n (RD) := {(ā1, . . . , āar(R)) ∈ (δA

n

)ar(R) : (hn(ā1), . . . , hn(āar(R))) ∈ RD}

for R ∈ τ . Again, we have Iτ (C) ∼= D with coordinate map hn and, because of
the interpretation lemma, we again have C |= ϕIτ ⇐⇒ D |=ϕ. Please notice that
we could also define C differently in the case that δA

n 	= An, because then (R�)C

could theoretically contain tuples with elements from An\δA
n

. However, for every
D we would have exactly the same number of possibilities. Thus, μA,τ�

n (ϕIτ ) =
μB,τ

n (ϕ) follows. �

Please recall that a finite σ-structure A has a limit law, if for every finite
relational vocabulary τ and every sentence ϕ ∈ FO(σ ∪ τ), μA,τ (ϕ) :=
limn→∞ μA,τ

n (ϕ) exists. Otherwise, we say that A has no limit law.

Corollary 21. Let σ1, σ2 be vocabularies where σ2 is relational. Let A,B be
finite structures with I(A) ∼= B for a positive primitive logical interpretation I
from σ1 to σ2 without equality formula. Then:

(i) If A has a limit law, then B has a limit law.
(ii) If B has no limit law, then neither does A.

Proof. Since (ii) is just the contraposition of (i), it suffices to prove only one of
these items. Towards proving (ii), assume that B does not have a limit law. Thus,
for some finite, relational vocabulary τ there exists a sentence ψ ∈ FO(σ2 ∪ τ)
such that μB,τ (ψ) = limn→∞ μB,τ

n (ψ) does not exist. By Theorem 20, it follows
that μA,τ�

(ψIτ ) := limn→∞ μA,τ�

n (ψ) = limn→∞ μB,τ
n (ψ) does not exist as well.

Therefore, A has no limit law. �

The following two examples demonstrate how Corollary 21 can be used to trans-
fer nonconvergence laws to other structures.

Example 22. The structure A1 := ({0, 1}, fA1
≤ ) with fA1

≤ (a, b) = 1 ⇐⇒ a ≤ b
inherits the nonconvergence law of ({0, 1},≤), because I := (δ(x), ψ≤(x, y))
where

δ(x) := x = x

ψ≤(x, y) := f≤(x, y) = f≤(x, x)

is a positive primitive logical interpretation (without equality formula) with

I(A1) ∼= ({0, 1},≤).

By Corollary 21(ii), it follows that A1 has no limit law.
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The next example shows that even structures that are only equipped with unary
functions may have a nonconvergence law.

Example 23. Consider A2 := (A2, (sA2
a�→b)a,b∈A2,a�=b, s

A2
{0,1}) where

– A2 := {0, 1, 0′},
– sA2

a�→b(a) := b and sA2
a�→b(c) := c for every a, b, c ∈ A2 with c 	= a,

– sA2
{0,1}(a) = 1 for a ∈ {0, 1} while sA2

{0,1}(0
′) = 0.

Here is a positive primitive logical interpretation I = (δ(x), ψ≤) with I(A2) ∼=
({0, 1},≤):

δ(x) := s0′ �→0(x) = x

ψ≤(x, y) := ∃z(s0′ �→0(z) = x ∧ s0′ �→0(s0 �→1(z)) = y).

Applying Corollary 21(ii) yields that A2 has no limit law.

7 Future Work

While we have analysed some structures with respect to limit laws and intro-
duced a new method to transfer (non)convergence laws between structures, the
question of what structures have such a limit law is not fully settled. There are
many structures for which we do not know whether or not they have a limit law
and this paper is a first step towards a complete characterisation of structures
with limit laws.
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Abstract. During YuriFest 2010 the discovery of a proof search algo-
rithm devised in the 1020s by Ibn S̄ınā (Avicenna) was announced.
A Gurevich abstract state machine was given in evidence that Ibn
S̄ınā really did intend an algorithm; this was needed because Ibn S̄ınā
explained the algorithm by a long sequence of exercises, not by a rigorous
definition. More recently a radically original logical decision algorithm
has come to light in the work of the 12th century Baghdad scholar Abū
al-Barakāt. Taking these algorithms alongside the already known algo-
rithms of al-Khwārizmı̄ for solving quadratic equations, and of al-Khal̄ıl
for listing finite sequences of letters, we can see that the medieval Ara-
bic scholars uncovered a range of algorithms of various kinds. But it
seems that they never brought these algorithms together under a single
notion of ‘algorithm’; in fact we know of no writer who drew a com-
parison between any two of these algorithms. A natural question for
historical research is to uncover what kinds of entity the medieval Ara-
bic scholars thought these algorithms were. The present paper assembles
some raw material that should be relevant to this question, including a
not very successful attempt by al-Fārāb̄ı to institute a theory of logical
procedures.

Keywords: Algorithm · Medieval Arabic · al-Khal̄ıl · Ibn S̄ınā · Abū
al-Barakāt

1 Introduction

‘Further’ in the title above refers to my paper [7] for YuriFest 2010, in which I
gave an abstract state machine to describe the recursive proof search procedure
that Ibn S̄ınā (Avicenna) set out in his Arabic work Qiyās (Syllogism, [10]) in
the 1020s. It turns out that there are a variety of other algorithms known to
medieval Arabic writers. This is partly old news—it’s well known that the name
‘algorithm’ comes from the early 9th century mathematician al-Khwārizmı̄ who
designed the formula for solving quadratic equations in the real numbers (or
more strictly, to any required approximation in the rational numbers) [14]. But
there are other kinds of example too.

I will discuss two examples in particular. One is the dictionary algorithm
of al-Khal̄ıl in the 8th century, which has been studied in the West for some
c© Springer Nature Switzerland AG 2020
A. Blass et al. (Eds.): Gurevich Festschrift, LNCS 12180, pp. 133–146, 2020.
https://doi.org/10.1007/978-3-030-48006-6_10
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decades (for example by Haywood in Chapter Four of his [6]). The other is the
logical decision algorithm of Abū al-Barakāt in the mid 12th century; it seems
that this algorithm was first correctly recovered from Barakāt’s text only in 2017
[8]. Together with the algorithms of al-Khwārizmı̄ and Ibn S̄ınā, these are four
different kinds of algorithm. As far as we know, nobody in the medieval Arabic
world had a notion of ‘algorithm’ that covered all four. We know of no writer
who even compared any two of them.

No doubt this is partly because the algorithms arose in three different disci-
plines: linguistics, mathematics, logic. But information spread freely in the early
Islamic empire, and if there was a link to be noticed, somebody would have
noticed it. More to the point, these four algorithms were algorithms in different
senses.

Roshdi Rashed [13], in a study of a range of Arabic algorithms for solv-
ing numerical equations, opens by identifying three features of al-Khwārizmı̄’s
quadratic algorithm. (i) The procedure to be followed is described formally and
without reference to any one example. (ii) The range of equations solvable by
the algorithm is precisely defined. (iii) The algorithm is presented together with
a proof that it gives a correct answer for each equation in the range. This looks
a good preliminary set of criteria for a sound description of an algorithm. But
when we try to apply the criteria to the other three algorithms (of al-Khal̄ıl,
Ibn S̄ınā and Abū al-Barakāt), it is not even clear what they mean. For example
a claimed solution of a numerical equation is correct if and only if the claimed
solution is a number that satisfies the equation; but what counts as a correct
outcome of a search? Is it the discovery of an item with some specified property,
or is it a path that traverses the whole space to be searched?1 Or for another
example, Ibn S̄ınā explains clearly enough what problems his proof search algo-
rithm is intended to solve; but he sets it as an exercise to transfer the algorithm
from predicative logic to hypothetical logic. The principles behind the algorithm
do in fact transfer as he indicates, but then what is left of feature (ii)?

So there is work to be done in analysing the senses in which these four
algorithms are algorithms, what commonalities between them could have been
explained by the Arabic scholars with the notions that they had at their disposal,
and how far these common features were recognised in each case. This is why
the title of this paper speaks of ‘raw evidence’. I had hoped to carry out some
of this analysis in time for YuriFest 2020, but time was my enemy. The analysis
is still worth attempting.

1 In [7] I distinguished between listing algorithms and search algorithms, placing al-
Khal̄ıl’s algorithm as a listing algorithm and Ibn S̄ınā’s as a search algorithm. I said
that a search algorithm (unlike listing algorithms in general) finds a solution of a
problem by running through a list of partial or total solutions of the problem. This
was in the interests of identifying what was distinctive about Ibn S̄ınā’s algorithm.
But I am not sure that was a sensible distinction. If the problem was to list the
elements of a set, then in any listing of the set the initial segments of the list are
partial solutions of the problem. So here I will treat search algorithms and listing
algorithms as the same thing.
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A third word in the title needs explaining too. These algorithms were all
presented in the Arabic language, by writers who customarily wrote in Arabic.
But colleagues from the Middle East often remind me that not everybody who
writes in Arabic is an Arab. For the record, the more reliable sources suggest
that al-Khal̄ıl was an Arab originally from Yemen or Oman. Abū al-Barakāt
was a Baghdad Jew. The ethnicity of Ibn S̄ınā is unknown; his birthplace is
now within Uzbekistan, but at that date his family could have been Persian or
Sogdian.

For various kinds of information or enlightenment I thank Michael Carter,
Saloua Chatti, Karine Chemla, Catherine Jami, Amirouche Moktefi, Seyed N.
Mousavian, Roshdi Rashed and Robert Wisnovsky, none of whom should be
blamed for any inadequacies below. Since the present paper is only preparatory,
I may well have overlooked important material that should be taken into account.

2 Al-Khal̄ıl, Searching Through a Language

Al-Khal̄ıl bin Ah.mad (died c. 786) is a paradoxical character with one foot in
history and the other in legend. On the side of legend, Talmon in his study of
al-Khal̄ıl [15] opens with a list of seventy-nine medieval sources of information
about al-Khal̄ıl, and he then proceeds to eliminate most of what these sources tell
us, either as dubious inferences from al-Khal̄ıl’s own writings, or as attempts to
bolster claims that his work should be credited to Arab or to Persian culture, or
as ways of endorsing particular ideas by associating al-Khal̄ıl’s name with them.
On the other side we have literally hundreds of reports by S̄ıbawayhi, the founder
of classical Arabic grammatical theory, of discussions that he had with al-Khal̄ıl
on details of Arabic grammar or usage. These discussions are full of subtle and
sophisticated points that still provide insights for a modern grammarian, and
allow us to feel that in reading al-Khal̄ıl’s contributions we are in direct contact
with a first-class mind.

Somewhere between these two extremes lies the book Kitāb al-cayn (Book of
the letter cayn) [12], al-Khal̄ıl’s contribution to lexicography. As it stands the
book can hardly be the work of al-Khal̄ıl, since it often refers to him in the third
person and names other people who reported conversations with him. On the
other hand the book contains an introduction setting out a highly original agenda
for a science of lexicography, and describing in detail some research that al-Khal̄ıl
carried out in aid of this agenda. A common view among modern scholars is that
al-Khal̄ıl designed the book and wrote a substantial amount of it, but his friends
and/or his students played some role in completing it after his death.

Part of al-Khal̄ıl’s agenda is to have a complete record of the entire vocab-
ulary of a language. People interested in the history of lexicography have noted
that this was the first time such an aim was articulated. All earlier dictionaries
had been devoted to specific subject-matter, or to explanations of unusual or
difficult words. One possible anticipation is the Shuōwén Jiéz̀ı, a Chinese dictio-
nary compiled by Xu Shen in the first half of the second century AD. Dichy notes
that this dictionary has entries for fewer than 10,000 ideographic characters, so
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that it ‘could therefore not be deemed to be either a comprehensive lexicon, or
even a dictionary aiming at comprehensiveness’ ([3] p. 48).

Al-Khal̄ıl’s originality goes even further than Dichy argues. Making a dictio-
nary involves arranging the entries in a linear order; both Xu Shen and al-Khal̄ıl
put careful thought into how the entries should be listed. But al-Khal̄ıl was, as
far as we know, the first person to propose a precise and non-trivial procedure
for listing the entire contents of a pre-existing set, linguistic or otherwise. In this
sense he was the first person to propose a search algorithm.

Al-Khal̄ıl’s search algorithm fails Rashed’s test (i): it is not true that the
procedure is described formally and without reference to any one example. The
reason is that al-Khal̄ıl is too concerned to find the best listing for an Arabic
dictionary. Some of what he does could be put into an abstract form, but not
all of it.

The procedure begins by identifying the separate consonants of the language,
together with a canonical listing of these consonants. The consonants that he
chooses are in one-to-one correspondence with the standard twenty-eight letters
of the Arabic alphabet, except that he adds hamza (i.e. glottal stop) as a twenty-
ninth consonant. But his criterion for choosing these letters is independent of
the alphabet, and involves identifying the minimal phonetic segments of words.
His ordering of the consonants is far from the usual alphabetic order, and rests
on an analysis of the site of articulation, starting from the throat and moving
to the lips. (The Indian Devanagari alphabet is organised on a similar principle,
but there is no evidence that it influenced al-Khal̄ıl.)

Now al-Khal̄ıl lists the consonant bases of all Arabic words. He asserts that
every Arabic word has a basis consisting of either two, three, four or five dis-
tinct consonants. He combines the ordering of letters with a scheme that puts
groups of n letters before groups of n + 1 letters. Strikingly he brings together
all the six permutations of a set of three distinct letters, and all the twenty-four
permutations of a set of four distinct letters, and so on.

The Kitāb al-cayn contains a number of calculations of permutations and
combinations. These were taken up soon afterwards by Arabic mathematicians,
and became the basis of the permutations and combinations that children now
learn at school. The point is worth mentioning because it shows that the Arabic
mathematical community was aware of al-Khal̄ıl’s work in the Kitāb al-cayn. The
fact (if it is a fact) that they never picked up the notion of a search algorithm
from his work probably shows that the algorithmic aspect of his invention didn’t
connect with any notion in their mental armoury.

3 Ibn S̄ınā, Proof Search

Avicenna (Ibn S̄ınā, c. 980–1037) crafted the proof search algorithm that was
the topic of my contribution to YuriFest 2010 [7]. Some technical details left
open in [7] will be clarified in [9]. Below I start by sketching the background in
Aristotle’s categorical syllogisms—this will be background to the next section
on Abū al-Barakāt too.
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Aristotle’s categorical syllogisms, at least as Ibn S̄ınā understood them from
the translations of and commentaries on Aristotle, used four kinds of sentence.
We call sentences of these forms the categorical formal sentences, or for short
the categorical sentences:

(a)(B,A) Every B is an A
(e)(B,A) No B is an A
(i)(B,A) Some B is an A
(o)(B,A) Some B is not an A.

The letters B, A are called the term letters; they can be replaced by any two other
distinct letters. The symbolic abbreviations on the left are a modern convenience.
Following al-Fārāb̄ı, Ibn S̄ınā understood the four sentences as in the first-order
formalisations

(a)(B,A) (∀x(Bx → Ax) ∧ ∃xBx)
(e)(B,A) ∀x(Bx → ¬Ax)
(i)(B,A) ∃x(Bx ∧ Ax)
(o)(B,A) (∃x(Bx ∧ ¬Ax) ∨ ∀x¬Bx)

(1)

The set of four categorical sentences above is closed under negation, in the sense
that the negation of each sentence φ is logically equivalent to one of the other
forms, which we will write as φ. Thus (a)(B,A) = (o)(B,A) and (e)(B,A) =
(i)(B,A).

Suppose Φ is a set of categorical sentences and θ is a categorical sentence.
Then Ibn S̄ınā explains what he means by saying that θ is a ‘conclusion’ of Φ. For
our purposes his explanation is equivalent to saying that the sentences Φ ∪ {θ}
can be arranged around a circle:

so that (a) any two adjacent sentences have one term letter in common, and
this term letter occurs in no other sentences around the circle; (b) certain log-
ical requirements are met which together have the consequence that the set of
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sentences around the circle is inconsistent (for example exactly one of the sen-
tences around the circle is negative). We will express (b) as saying that the
sentences are ‘logically correct’.

Ibn S̄ınā’s proof search algorithm addresses the following problem. Suppose
Φ ∪ {θ} can be arranged around a circle as above, except that there is a gap
somewhere in the part of the circle where the sentences of Φ are arranged—so
that two adjacent sentences φi, φi+1 have no letter in common. Suppose also that
we have a supply Ψ of further categorical sentences. What is a sound procedure
for searching for a completion of the circle using a set Ψ0 of sentences from Ψ ,
in such a way that the resulting array of sentences proves that θ is a conclusion
of Φ ∪ Ψ0?

In a nutshell, Ibn S̄ınā proceeds by trying to fill the gap starting at the
lefthand side, using sentences taken from Ψ . The sentences of Ψ are delivered by
an oracle. Suppose for example that the oracle proposes φi1 and φi2 as sentences
with exactly one term letter in common with φi. Ibn S̄ınā’s algorithm checks
for each of these sentences that logical correctness holds locally; otherwise he
discards the sentences. If neither sentence joins up successfully with φi+1 then
we have two new examples of a circle with a gap. The algorithm is applied to
each of these new examples, and further sentences are added to the side of the
gap. This process continues until one of the chains of added sentences joins up
at the righthand side with φi+1 and logical correctness holds throughout the
resulting circle.

In this way the algorithm builds up a tree of attempts to fill the gap in the
circle, continuing until one of these attempts succeeds.

Obviously any agent who tries to carry out the algorithm in real time is
going to need a backtracking mechanism so that all undiscarded branches of the
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tree receive attention repeatedly. Ibn S̄ınā never mentions this problem, still less
solves it. But there is some hope that he was aware of it. He mentions the more
complicated case of a circle with two gaps in it; in this case one would need to try
to fill both gaps simultaneously, so one would have to backtrack between the two
gaps. (At my talk at YuriFest 2010 Andreas Blass remarked that there is another
ramification in this case: a segment of the circle between two gaps could be fitted
into the circle in either of two directions.) Ibn S̄ınā recognises that the two-gap
case introduces a new complication, and he says he will address this complication
in the Appendices to Qiyās. Unfortunately modern scholars working on Ibn S̄ınā
have given up hope of ever seeing these Appendices—probably he never got
around to writing them.

The backtracking is a major element missing in Ibn S̄ınā’s account of his
algorithm in Qiyās ix.6. Another missing item is Rashed’s (iii): Ibn S̄ınā says
nothing to prove that the algorithm gives correct results. But these may be the
only major elements missing. Part of the purpose of writing out the algorithm as
a Gurevich abstract state machine was to test that Ibn S̄ınā’s text does resolve
the other practical questions that have to be answered along the way. In some
cases we have to read off the algorithm rules from Ibn S̄ınā’s examples rather
than from any explicit statement of the rules; but given that, the algorithm
survives the test remarkably well.

4 Abū al-Barakāt, Decision Methods

Abū al-Barakāt bin Malka al-Baghdād̄ı (c. 1080–c. 1165) was a highly original
and insightful scholar based in Baghdad. Until recently he was known chiefly for
his encyclopedic book Kitāb al-Muctabar (roughly ‘Some conclusions that I came
to’) [1], which offers an integrated world view based on detailed study of issues
ranging from mathematical physics to ontology. But Moshe Gil [5] has provided
convincing evidence that he was in fact the same person as the respected Jewish
scholar Rabbi Baruch ben Melekh, and this identification credits him with a
body of Talmudic scholarship as well as some poetry.

Counting pages as in the printed text, Barakāt opens Kitāb al-Muctabar [1]
with 282 pages on knowledge and logic. The section on categorical syllogisms
takes up pages 122 to 148. Let me describe what Barakāt does in these twenty-
seven pages.

We must first go back to Aristotle. In his Prior Analytics Aristotle listed
forty-eight premise-pairs, i.e. ordered pairs of formal categorical sentences with
a single term letter in common. He grouped them into three ‘figures’; the effect
of this grouping was that each premise-pair has four associated categorical sen-
tences that are available to be logical conclusions of the premise-pair. We will
call these four sentences the ‘candidate conclusions’, or the ‘candidates’ for
short. Next, Aristotle classified each of the forty-eight premise-pairs under one
of two heads, which (following Ibn S̄ınā) we will call ‘productive’ and ‘sterile’.
A premise-pair is sterile if it doesn’t entail any of its four candidates. It is pro-
ductive if it does entail at least one of its four candidates; its ‘conclusion’ is the
logically strongest candidate that it entails.
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For example the premise-pair ‘Every C is a B. No A is a B.’ is productive
with conclusion ‘No C is an A’. The premise-pair ‘Some B is a C. Some B is
not an A.’ is sterile.

In Aristotle’s eyes, entailment has to do with inferring and deducing. A con-
clusion is something that we can infer from the premises; except for four cases
that he takes as axioms, he proves that something is a conclusion by giving a
proof of it from the premises. Aristotle assumes that entailment preserves truth,
in the sense that if an interpretation of the term letters makes the premises true,
then it will make the conclusion true too. He points out how this fact can be
used to prove sterility, by giving interpretations that make the premises true but
between them falsify each one of the four candidates.

Barakāt’s first innovation is that he takes this fact about interpretations as
a definition (or at least a necessary and sufficient condition) of entailment. Thus
if Φ is a premise-pair and θ a candidate,

Φ entails θ
if and only if

every interpretation making Φ true makes θ true.
(2)

He shows that we can use this definition to give a decision method for pro-
ductivity of premise-pairs. The idea is to list all interpretations that make the
premises true, and see whether there is some candidate that is true in all these
interpretations.

But how is this possible? For any premise-pair there are infinitely many
different interpretations that make its premises both true. Here Barakāt notices
(though without spelling it out) that we can draw diagrams that are pictures
of interpretations, and any two interpretations that have the same diagram will
make the same assignments of truth and falsehood. So it suffices to list the
diagrams that verify both premises, and check whether there is a candidate
conclusion verified by all of them. With two qualifications given below, there
are exactly 109 diagrams of interpretations of the three letters A,B,C. So it is
humanly quite feasible to run through them all, and it is trivial to check what
sentences they verify.

The two qualifications will be easier to state after we have seen an example
of a diagram. Thus:

C black

A animal

This is the diagram of a two-letter interpretation that assigns ‘black’ to C and
‘animal’ to A. Some animals are black, and this is shown by the overlap in the
middle. Some black things are not animals; this is shown by the arm sticking
out to the left. Some animals are not black; this is shown by the arm sticking
out to the right.
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Note that the diagram is not a diagram of a categorical sentence. We needed
three categorical sentences to express three different parts of the diagram. The
next appearance of line diagrams in logic after Barakāt is in notes of Leibniz five
hundred years later, where we find for instance

B

C

As Leibniz makes clear, this diagram is intended to represent the sentence ‘Some
B is a C’ (or equally ‘Some C is a B’). In order to make the diagram represent
this sentence and not the other two sentences mentioned above, Leibniz includes
the vertical dashed lines as part of the diagram. The later diagrams of Euler
and Venn were also primarily intended to represent sentences, with the effect of
turning Aristotle’s verbal proofs into pictorial proofs. This is not what Barakāt
is doing.

The first qualification is that these diagrams can’t represent an interpretation
that assigns the empty set to some letter. At least before al-Fārāb̄ı in the tenth
century, Aristotelian logicians were quite careless about whether a term can be
read as empty. Al-Fārāb̄ı adopted a precise convention that allows empty terms
(as in (1) above). One can show that if we rule out empty terms—as Barakāt
does by implication—then this makes no difference to which premise-pairs are
productive and which sentences they have as conclusions.

The second qualification is that not all interpretations of three letters allow
diagrams in Barakāt’s style. Here is an undiagrammable interpretation:

A : even nonnegative integer
B : prime nonnegative integer
C : integer � 3

But Barakāt is damn lucky. It turns out firstly that no undiagrammable inter-
pretation verifies any productive premise-pair, and secondly that every sterile
premise-pair can be shown to be sterile using only diagrammable interpreta-
tions. (Of course if he wanted to use undiagrammable interpretations he could
invent some convention for drawing them.)

There are two major innovations in this work of Barakāt. The first is to
use interpretations to prove entailment, rather than using them to prove failure
of entailment. We don’t find this idea stated clearly until Tarski [16] in 1936;
though it could be argued that Gergonne in 1816/7 and Bolzano in 1837 together
come close. (Barakāt’s line diagrams are in fact equivalent to Gergonne’s circle
diagrams [4], but generalised from two to three letters.)

The second innovation is to use the same method to show both productivity
and sterility. In fact Barakāt gives a decision procedure for productivity. As far
as I know, no nontrivial logical decision procedure in this sense appears after
Barakāt until the twentieth century, where it becomes visible in the work of
Post, Behmann, Bernays and others in the 1920s.
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Although Barakāt clearly intends his procedure to be used to classify premise-
pairs as productive or sterile, it is not so clear that he thinks of it as a mechanical
procedure. In his own remarks he tends to treat the diagrams as an aid to
intuition,2 and he is happy to allow intuition to take over some of the work.
This is probably the main reason why his proofs of productivity never list more
than four diagrams, although there are some cases that require sixteen diagrams
for a full proof. Take for example the premise-pair

Not every C is a B. Every A is a B.

There are twelve diagrams that verify both these premises, but Barakāt gives
just two:

C white

B animal

A crow

C white

B animal

A human

We can quickly explain why no further diagrams are needed. In both these dia-
grams the C line sticks out beyond the B line but the A line doesn’t. Any further
facts about the relationships between the lines, as in the remaining ten diagrams,
are irrelevant to the conclusion. As Barakāt says: ‘The example diagrams fully
explain the conclusion without needing [any Aristotle-style proof]’ ([1] 139.14f).

Here is one manuscript version of this passage:

2 ‘Even if it is clear to anyone who forms the concepts that these four [premise-pairs]
are productive, these diagrams—that list precisely the ways in which the terms can
be related to each other as including or included—provide one with mental concepts
that verify the productiveness and remove any doubts about it.’ ([1] p. 131).



Medieval Arabic Notions of Algorithm: Some Further Raw Evidence 143

Inspection of this photo gives further information about both Barakāt and the
copyist. First, comparing with the conventions he uses elsewhere, Barakāt has
switched the letters A and C, and also transposed the first two lines of each
diagram. This illustrates the fact that he is careless (perhaps deliberately) about
points that don’t affect the output of the algorithm.

Second, the copyist has drawn the lines wrong in the second diagram, so as
to claim that every animal is human. This is in fact one of the more reliable
manuscripts. The diagrams in the Hyderabad publication of the book [1] are
almost all wrong. Evidently the copyists didn’t have any idea what the diagrams
were about. The explanation of Barakāt’s diagrams in the great 13th century
logical textbook Asās al-iqtibās of Nas.̄ır al-Dı̄n al-T. ūs̄ı makes similar mistakes
to the copyists; T. ūs̄ı doesn’t understand how line segments relate when one is
higher in the page than the other. Also T. ūs̄ı seems to think the diagrams express
sentences rather than interpretations.

There are some questions about where Barakāt was coming from in giving this
decision algorithm. Other evidence [11] suggests that his main source in logic was
a very early book by Ibn S̄ınā, the H. ikmat al-cArūd. ı̄ya. Ibn S̄ınā wrote this book
when he was only about twenty-one years old, before he got into the details of
designing his own logical system, and presumably before he came anywhere near
putting together his recursive proof search algorithm. So Barakāt’s algorithm
was probably not influenced in any way by Ibn S̄ınā’s. Unfortunately the section
of H. ikmat dealing with categorical syllogisms is missing.

A fuller study of Barakāt will take on board some other relevant background.
It’s clear both that Barakāt took inspiration from Aristotle’s method for prov-
ing sterility, and that he never read it carefully. He was probably unaware of
the inconclusive discussions of the equivalence (2) by Alexander of Aphrodisias
(c. AD 200), or of Paul the Persian’s presentation of productiveness and sterility
as parallels rather than opposites (6th century).

5 Formalising the Procedure

In the case of both Ibn S̄ınā’s proof search and Barakāt’s decision procedure, it
seems that nobody else had a concept of the problems that these procedures were
intended to solve. Nobody asked ‘How can we systematically fill in the gaps in a
proof?’ or ‘How can we systematically discover whether a given set of premises
has a conclusion?’. Even Ibn S̄ınā and Barakāt themselves never explicitly stated
the problems in terms like these. Al-Khal̄ıl and al-Khwārizmı̄ fared better: people
understood what it is to write a dictionary where people know how to find the
words they are looking for, and what it is to solve a quadratic equation.

More precisely, plenty of people did understand what counts as filling a gap
in a proof, and what counts as determining that a premise-pair is or is not pro-
ductive. Aristotle had already discussed these things. What apparently nobody
except Ibn S̄ınā and Barakāt understood was the added concept ‘systematically’,
meaning that we operate according to a set of rules that cover all the relevant
cases. The concept is close to Rashid’s requirement (i): the procedure to be
followed is described formally and without reference to any one example.
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And again, even Ibn S̄ınā and Barakāt gave their procedures through exam-
ples and not through a formal description without reference to particular exam-
ples. But at least in Ibn S̄ınā’s case we know that he considered he had given
the rules in a form where a diligent reader would see how they applied to cases
that go beyond his examples.

So it seems that the readers of Ibn S̄ınā and Barakāt were missing some con-
cepts that have to do with systematic procedures. Closer study should be able
to pin down more precisely what was missing. We know that at least the math-
ematicians had good examples of procedures that raised the relevant questions.
One was the construction of continued fraction representations of ratios between
lengths. Already Plato knew that the ratio of the side of a square to its diagonal
leads to a continued fraction that never halts. But I don’t know whether the
Arabic mathematicians ever thought explicitly in terms of procedures that do
or do not halt, and if so, whether they or anybody else generalised these notions
to non-numerical cases. Certainly neither Ibn S̄ınā nor Barakāt says anything to
suggest they had come across such generalisations.

But approaching the issues from a different direction, we do know of some
discussion by Arabic logicians of the notion of a procedure. Saloua Chatti and
I came across evidence of this in al-Fārāb̄ı’s book Qiyās when we translated it
for the series Ancient Commentators on Aristotle [2]. Al-Fārāb̄ı (c. 870–c. 950)
can be quite scatterbrained and lacking in insight; it’s hard to deny that he
operates at a lower level than either Ibn S̄ınā or Barakāt. But he raises good
questions, sometimes by making interesting mistakes; Ibn S̄ınā took him seriously
and learned much by trying to improve on him. His failure to form a concept
can be used as evidence that the concept was not common property at the time
(i.e. in the early tenth century).

In the second half of his Qiyās, al-Fārāb̄ı studies and generalises two proce-
dures discussed by Aristotle, namely induction and analogy. He sees these pro-
cedures as beginning with a stage that revolves around searching for concepts
that fit certain conditions. In the case of induction the search is for a collection
of particular cases C1, . . . , Cn of the concept B that allow us to prove something
about B by considering the particular cases separately. In the case of analogy
we know that ‘C is an A’, and the search is for a single concept B such that C
is a B, and C being a B is the reason why C is an A. When B has been found,
we can use it to show that other things besides C are As ‘by analogy with C’.
Al-Fārāb̄ı refers to earlier authors who combined these two kinds of search.

Al-Fārāb̄ı says in several places that when the search has been completed
and we have the sought-for concepts in hand, then all that remains is syllogistic
logic. (This is not correct, as Ibn S̄ınā pointed out; but the reason is irrelevant
to us here.) He infers that this fact makes the search unhelpful. His point is not
clear, since obviously the search did help if it found the required concepts. But
he seems to want to devalue the search element of his procedures by comparison
with the purely deductive element. This may reflect some bias in his Aristotelian
background.
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The idea of a search procedure that follows strict formal rules is absent from
al-Fārāb̄ı’s thinking. But he does have the idea of searches where we don’t know
in advance how many steps might be needed. An interesting example is in his
book Tah. l̄ıl (‘Analysis’), where he describes a division procedure from Plato’s
dialogue The Statesman 262a–e. Plato is considering how to prove that every
B is an A. He points out, using his notion of division, that it may be easier to
prove that every B1 is an A and every B2 is an A, where the Bs consist of the
B1s and the B2s. If we start by splitting B into B1 and B2, and find we still
can’t show that every B2 is an A, we can try splitting B2 into B21 and B22, and
checking whether we can show both that every B21 is an A and that every B22 is
an A; and so on indefinitely until the process halts. Al-Fārāb̄ı’s account of this
procedure makes its recursive aspect very clear, and could have helped to steer
Ibn S̄ınā in the direction of his recursive proof search.

Another interesting point from al-Fārāb̄ı’s treatment of procedures—though
it could be just a figment of some careless copying in the manuscripts—is a
passage in which he seems to distribute the steps of a procedure between ‘us’
and ‘him’ ([2] translation, 40, 5–42, 4). One way of reading the passage is that
‘we’ are trying to carry out a search procedure, and ‘he’ is our hired assistant
(say Zayd) who does the actual searching according to our instructions. If this is
right, then it could be an attempt by al-Fārāb̄ı to objectify the procedure in the
form of the instructions that we give to Zayd. If so, the attempt works remarkably
well, because any attentive reader can see that the instructions issued to Zayd
overlook a point which is essential to ensure that Zayd finds things with the
required properties. Al-Fārāb̄ı himself never notices the oversight. But the idea
of objectifying a procedure by turning it into a set of instructions is insightful
and some way ahead of its time.
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Abstract. The aim of this note is to provide a proof of the decidabil-
ity of the generalized membership problem for relatively quasi-convex
subgroups of finitely presented relatively hyperbolic groups, under some
reasonably mild conditions on the peripheral structure of these groups.
These hypotheses are satisfied, in particular, by toral relatively hyper-
bolic groups.
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The problem we consider here is the so-called generalized membership problem,
in a group G generated by a finite set A: given a tuple h1, . . . , hk ∈ F (A) and
letting H be the subgroup they generate in G (that is: H is the subgroup of G
generated by the images of the hi in G), given an additional element g ∈ G (also
in the form of a word in F (A)), decide whether g ∈ H.

Stated as above, this problem is known to be undecidable without strong
assumptions on the group G. Even in the relatively simple case of the direct
product of two rank 2 free groups, F2×F2, there are finitely generated subgroups
with undecidable membership problem (see Mihailova’s subgroup [28]).

Our main result deals with the case where G = 〈A | R〉 is finitely pre-
sented and relatively hyperbolic with respect to a peripheral structure subject
to additional conditions—satisfied, in particular, by toral relatively hyperbolic
groups, see Sect. 2. Note that in these groups, and even in hyperbolic groups,
there are finitely generated subgroups with undecidable membership problem
[30]. We offer a partial algorithm for the generalized membership problem in the
following sense: an algorithm which may not stop on all instances but which will
stop at least on those instances where H is relatively quasi-convex, and which
decides whether g ∈ H when it stops.
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We first survey some algorithmic results for groups, largely centered around
this generalized membership problem, mainly focussing on those results that use
graph-theoretic representations of subgroups, in particular the so-called Stallings
graphs, as these are essential to our main result.

In the second section we use these results, and other results on the structure
of relatively hyperbolic groups, to establish our main theorem.

1 Stallings Graphs and Algorithmic Problems

Stallings [36] formalized a method (now known as Stallings foldings) to asso-
ciate with any finitely generated subgroup H of a free group F (A) an effectively
computable discrete structure, called the Stallings graph of H. This is a finite,
oriented, labeled graph (the edges are labeled by elements of A) with a designated
base vertex, in which the loops at the base vertex are labeled by reduced words
representing the elements of H. Given a finite set of words in F (A), we can com-
pute the Stallings graph of the subgroup H they generate (in time almost linear
[37]), compute the index, the rank and a basis for H, and solve the membership
for H. In particular, this provides an elegant and computationally efficient solu-
tion of the generalized membership problem in F (A): on input (h1, . . . , hn; g),
one first computes the Stallings graph Γ of the subgroup generated by the hi,
and one then verifies whether the reduced word g can be read as a loop at the
base vertex of Γ .

Given generators for another subgroup K, we can use the same tool of
Stallings graphs to decide whether H and K are conjugates, compute their inter-
section and the finite collection (up to conjugacy) of intersections of their conju-
gates, and generally solve many other algorithmic problems, see e.g. [19,27,31].
Most of these problems are solved very efficiently (in polynomial time) by this
method, see [5,19].

Several authors introduced similar constructions to study finitely generated
subgroups of non-free groups. More specifically, we are talking here of having an
effectively constructible labeled graph canonically associated with a subgroup,
solving at least the membership problem and allowing the computation of inter-
sections.

As mentioned in the introduction, one certainly needs to impose constraints
on the group G. We also need to formulate assumptions on the subgroup H ≤ G.
Indeed, even in good situations (e.g. G is automatic, or even hyperbolic), not
every finitely generated subgroup has decidable membership problem [30].

Pioneer work (published in 1996) came from two directions. Kapovich [18]
used the Todd-Coxeter enumeration scheme to produce ever larger fragments of
the Schreier (coset) graph Schreier(G,H), and showed that, if G is geodesically
automatic and H is quasi-convex, one can decide when to stop this process and
produce a Stallings-like graph to decide the membership problem for H. This
yields a partial algorithm for the generalized membership problem, which halts
exactly when the subgroup H is quasi-convex. At the same time, Arzhantseva
and Ol’shanskii [4] studied a construction, starting with the Stallings graph
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of the subgroup H0 ≤ F (A) generated by h1, . . . , hn, and enriching it by a
combination of Stallings foldings and surgical additions of fragments of relators
of G (the so-called AO-moves). For each integer k ≥ 1, they identified a small
cancellation property which ‘almost always’ holds (it is exponentially generic
among the presentations with r relators, r fixed) under which every k-generated
subgroup is quasi-convex, and such that their construction halts after a finite
number of moves, and solves the membership problem for H.

In [26], McCammond and Wise also start from the Stallings graph of the
subgroup H0 ≤ F (A), which they refine by so-called 2-cell attachments. They
then use a geometric assumption (the perimeter reduction hypothesis) on the
complex representing the presentation G = 〈A | R〉, to show that their construc-
tion halts and produces a Stallings-like graph. They show that this geometric
assumption holds in particular when R consists of large powers, or under certain
combinatorial conditions.

Kapovich [18] used his result to show that one can compute the quasi-
convexity index of a (quasi-convex) subgroup. Arzhantseva’s and Ol’shanskii’s
method was used to prove that, generically, a finitely presented group satisfies
the Howson property [2], see [3,20] for other applications. McCammond’s and
Wise’s perimeter reduction hypothesis also leads to a number of algorithmic
results, including the construction of Stallings-like graphs and the solution of
the membership problem in large classes of presentations, many of which are
locally quasi-convex (every finitely generated subgroup is quasi-convex) [26], see
[32] for other applications.

A common feature of these papers above is that they identify a method to
‘grow’ a labeled graph, starting from the Stallings graph of a subgroup of the
free group, and then exploit additional assumptions on both G and H to show
that this growing process can be ‘terminated’ at some point.

It is natural, if we are going to rely on methods where words label paths in
graphs (which one can view as automata), to consider, as Kapovich [18] does,
finitely presented groups G = 〈A | R〉 equipped with an automatic structure,
providing in particular a rational language1 of representatives for the elements
of G, that is, a rational language L over the alphabet A ∪ A−1, composed of
reduced words, and such that μ(L) = G (where μ : F (A) → G is the canonical
onto morphism from the free group over A onto G). It is also natural in this
context to consider only so-called L-rational subgroups H, that is, subgroups
such that L ∩ μ−1(H) is a rational set as well. The notion of L-rationality, first
considered by Gersten and Short [13], is equivalent to a geometric notion of
L-quasi-convexity2. Classical quasi-convexity corresponds to the case where L
is the set of geodesic representatives of the elements of G. See Short [33] for
an example of the usage of automata-theoretic ideas to investigate quasi-convex
subgroups.

1 A language is rational (or regular) if it is accepted by a finite state automaton.
2 Namely: there exists δ > 0 such that every L-representative of an element of H stays

within distance δ of H, in the Cayley graph of G.
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An abundant literature considers the same set of problems for more specific
classes of groups. Cai et al. [8] and later Gurevich and Schupp [15] investigate the
complexity of the generalized membership problem in the modular group. Schupp
[32] applies the results of [26] to large classes of Coxeter groups, which turn
out to be locally quasi-convex. Kapovich, Miasnikov, Weidmann [21] solve the
membership problem for subgroups of certain graphs of groups. Markus-Epstein
[25] constructs a Stallings graph for the subgroups of amalgamated products
of finite groups. Silva, Soler-Escriva, Ventura [34] do the same for subgroups of
virtually free groups. Here again, the groups considered are locally quasi-convex,
and the authors rely on a folding process, much like in the free group case, and
a well-chosen set of representatives. Finally, we mention Delgado and Ventura’s
work [10], where they develop a strong generalization of Stallings graphs to
represent, and to compute with, subgroups of direct products of free and free
abelian groups.

In [22], Kharlampovich et al. proposed a general approach to generalize a
number of the situations listed above while keeping the spirit of the construction
of Stallings graphs. If G is an A-generated group and L is a set of (possibly not
unique) representatives for the elements of G, we define the Stallings graph of a
subgroup H with respect to L to be the fragment ΓL(H) of the Schreier graph
Schreier(G,H) spanned by the loops at vertex H labeled by words of L (that
is: by the L-representatives of the elements of H). It is easily verified that this
graph is finite if and only if H is L-quasi-convex, or L-rational. We will use the
following result in the next section.

Theorem 1 ([22]). Let G be an A-generated group, equipped with an automatic
structure with language of representatives L. There exists a partial algorithm
which, given g, h1, . . . , hk ∈ F (A), halts exactly if the subgroup H generated by
the hi is L-quasi-convex, and in that case outputs the Stallings graph of H with
respect to L.

Note that hyperbolic groups admit an automatic structure with language
of representatives the set of geodesics. In particular, the partial algorithm in
Theorem 1 computes a Stallings graph for the quasi-convex subgroups of hyper-
bolic groups.

Theorem 1 yields a uniform method to solve algorithmic problems for L-
quasi-convex subgroups in automatic groups, including the generalized word
problem and the computation of intersections. It also allows deciding conju-
gacy and almost malnormality, provided the automatic structure on G satisfies
a quantitative version of Hruska’s and Wise’s bounded packing property [17]
(this condition is satisfied by the geodesic automatic structure of hyperbolic
groups), see [22].

Theorem 1 was recently used by Kim in [23] where she, in particular, detects
stability and Morseness in toral relatively hyperbolic groups.

Remark 1 ([18,22]). For the generalized membership problem in particular, the
partial algorithm (halting exactly if H is L-quasi-convex) consists in computing
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the Stallings graph Γ as in Theorem 1, using the automatic structure to compute
an L-representative w of g, and verifying whether w labels a loop at the base
vertex of Γ .

2 The Generalized Membership Problem for Relatively
Hyperbolic Groups

Let G = 〈A | R〉 be a finitely presented group and let P be a finite collection of
finitely generated subgroups of G, called the peripheral subgroups of G. There are
several definitions of G being relatively hyperbolic with respect to the peripheral
structure P, due to Gromov [14], Farb [12], Bowditch [6], Druţu and Sapir [11],
Osin [29]. These definitions turn out to be equivalent (see Bumagin [7], Dahmani
[9], Hruska [16, Theorem 5.1]), we refer to the literature for details [16,29].

If H is a subgroup of G, there are also several definitions of relative quasi-
convexity for H, in terms of natural geometries on G. Again, these are equivalent
(Hruska [16]) and we refer to the literature for precise definitions.

Properties of the parabolic subgroups of H, that is, the subgroups that are
contained in a conjugate of a peripheral subgroup P ∈ P, characterize certain
subclasses of relatively quasi-convex subgroups, which will be useful in the sequel.
We say that H is peripherally finite if every H ∩ P x (P ∈ P, x ∈ G) is finite3;
more generally, we say that H has peripherally finite index if every infinite H∩P x

has finite index in P x4. Such subgroups are always finitely generated (Osin [29,
Thms 4.13 and 4.16] for the peripherally finite case, Kharlampovich et al. [22]
for the peripherally finite index case).

To go forward, we introduce the following assumptions on the peripheral
structure P of the relatively hyperbolic group G.

Assumptions (Hyp)

(H1) Each group P ∈ P satisfies the following: we are given a geodesically bi-
automatic structure for P , on an alphabet XP and with language of repre-
sentatives LP , and we can compute a geodesically bi-automatic structure
on every finite generating set of P (given as a subset of F (XP )).

(H2) The groups in P are slender (a.k.a. noetherian: every one of their sub-
groups is finitely generated) and LERF.

(H3) For each P ∈ P, the set of tuples of words in LP that generate a finite
index subgroup of P is recursively enumerable.

(H4) We can solve the generalized membership problem in each P ∈ P.

Remark 2. Hruska showed that every relatively quasi-convex subgroup of G is
finitely generated, if and only if every group in P is slender [16, Cor. 9.2], so
(H2) is a reasonable hypothesis to make in this algorithmic context.

3 These subgroups are called strongly quasi-convex in [29], and differ from the strongly
quasi-convex subgroups of Tran [38].

4 These subgroups are called fully quasi-convex in [24].
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Remark 3. (Hyp) is satisfied in particular if the peripheral structure P consists
of finitely generated abelian groups, and notably, if G is toral relatively hyperbolic
(that is: G is torsion free and P consists of non-cyclic free abelian groups).

We can now state the central result of this note.

Theorem 2. Let G = 〈A | R〉 be a finitely presented group, relatively hyperbolic
with respect to the peripheral structure P, and satisfying (Hyp). There is a partial
algorithm which, given g, h1, . . . , hk ∈ F (A),

– halts at least if g ∈ H or if the subgroup H of G generated by the hi is
relatively quasi-convex and g 
∈ H;

– when it halts, decides whether g ∈ H.

The algorithm in Theorem 2 is “impractical” in the following sense: there is
no function bounding the time required for the algorithm to stop (if it will stop).
It consists in two semi-algorithms, meant to be run concurrently, until one of
them halts: one trying to witness the fact that g ∈ H and the other trying to
witness the opposite fact.

The rest of this paper consists in the description of these semi-algorithms.

Semi-algorithm to Verify that g ∈ H. It is a classical result that, given the
presentation 〈A | R〉 for G and given a word g ∈ F (A), there is a partial
algorithm which halts exactly if g = 1 in G. Indeed, g = 1 in G if and only if a
sequence of R-rewritings of g eventually leads to the empty word. A systematic
exploration of the R-rewritings of g will eventually uncover this sequence if g = 1
in G.

This semi-algorithm is naturally extended to the problem at hand (does g
belong to H?) as follows. One starts with the Stallings graph Γ of the subgroup
of F (A) generated by the hi (see [36]), and iteratively:

– modify Γ by gluing at every vertex a loop labeled by r for every relator r ∈ R;
– fold Γ (this is the central step of the construction of Stallings graphs: it

consists in identifying vertices p and q each time that there are edges labeled
by a letter a ∈ A from some vertex s to both p and q, or edges labeled by a
letter a from both p and q to some vertex s);

– check whether g labels a loop at the base vertex of Γ . If that is the case, then
g ∈ H and we stop the algorithm. If not, repeat.

A detailed discussion of this semi-algorithm can be found in [22, Section 4.1].

Semi-algorithm to Verify that g 
∈ H. We call a subgroup of the form H ∩ P x

(P ∈ P, x ∈ G) which is infinite, a maximal infinite parabolic subgroup of H.
Our semi-algorithm relies on the following results.

[H] Hruska shows [16, Theorem 9.1] that, if H is relatively quasi-convex, then
there exists a finite collection of maximal infinite parabolic subgroups {Ki}1≤i≤�

such that every infinite maximal parabolic subgroup of H is conjugated in H to
one of the Ki.
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[MMP] Manning and Mart́ınez-Pedroza show the following, under Hypothe-
sis (H2) [24, Theorem 1.7]. Suppose that H ≤ G is relatively quasi-convex,
{Ki}1≤i≤� is a collection of subgroups as in [H], say with Ki = H ∩ P xi

i

(1 ≤ i ≤ �, Pi ∈ P, xi ∈ G) and g 
∈ H. Then there exist subgroups Ri ≤ P xi
i

such that Ri has finite index in P xi
i , Ki ≤ Ri and, if K is generated by H and

the Ri, then g 
∈ K and K has peripherally finite index. Note that [24, Theorem
1.7] is a little more concise than this statement, which is extracted from the
proof in that paper [24, p. 319].

[AC] Antolin and Ciobanu [1, Cor. 1.9, Lemma 5.3, Thm 7.5] show that, under
Hypothesis (H1), one can compute an automatic structure for G, with alphabet
X containing A and the XP (P ∈ P), whose language L of representatives
consists only of geodesics (on alphabet X) and contains the LP (P ∈ P), and
satisfying additional properties.

[KhMW] Kharlampovich et al. [22, Sec. 7] build on [AC] to show that, if H ≤ G
is relatively quasi-convex (with respect to alphabet A) and has peripherally finite
index, then it is L-quasi-convex with respect to alphabet X [22, Thm 7.5]. The
proof of that theorem uses Hypothesis (H4). As explained in Remark 1, this
yields a solution of the membership problem in H.

We can now give our semi-algorithm. For clarity, we give it as a non-
deterministic partial algorithm. Such a non-deterministic algorithm can be
turned into a deterministic one by standard methods (see, e.g., [35, Thm 3.16]).

(1) We first apply [AC] to compute an automatic structure for G on generator
set X (using Hypothesis (H1)). Then we compute a finite presentation of
G on X, say 〈X | RX〉. For instance, RX consists of R, the relators xu−1

x ,
where x ∈ X \ A and ux is a fixed element of F (A) such that x = ux in G,
and all the cyclic permutations of these relators and their inverses.
The words ux can be computed as follows. Since the automatic structure for
G allows us to solve the word problem, one systematically checks whether
xu−1 is trivial, when u runs through F (A). As G is A-generated, some
u ∈ F (A) is equal to x in G.

(2) Choose non-deterministically a tuple x = (x1, · · · , x�) of elements of F (A);
for each 1 ≤ i ≤ �, choose non-deterministically an element Pi ∈ P and a
tuple gi of elements of F (XPi

) generating a finite index subgroup of Pi (this
is possible under Hypothesis (H3)).

(3) For this choice of x and the gi (1 ≤ i ≤ �), let H1 = 〈H ∪ ⋃�
i=1 gi

xi〉. Run
the partial algorithm [KhMW] to decide whether g ∈ H1 (using Hypothesis
(H4)).

Result [MMP] (which assumes Hypothesis (H2)), shows that, if g 
∈ H and
H is relatively quasi-convex, then for an appropriate choice of x and the gi,
H1 is relatively quasi-convex and has peripherally finite index, and g 
∈ H1. As
H1 has peripherally finite index, the partial algorithm in Step (3) will halt and
certify that g 
∈ H1, and hence that g 
∈ H since H ≤ H1.
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Summarizing: if g 
∈ H and H is relatively quasi-convex, then one of the non-
deterministic choices in Step (2) will be such that the partial algorithm halts
and states that g 
∈ H. This completes the proof of Theorem 2.
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4. Arzhantseva, G.N., Ol’shanskĭı, A.Y.: Generality of the class of groups in which
subgroups with a lesser number of generators are free. Mat. Zametki 59(4), 489–
496, 638 (1996)

5. Birget, J.-C., Margolis, S., Meakin, J., Weil, P.: PSPACE-complete problems for
subgroups of free groups and inverse finite automata. Theoret. Comput. Sci. 242(1–
2), 247–281 (2000)

6. Bowditch, B.H.: Relatively hyperbolic groups. Int. J. Algebra Comput. 22(3),
1250016, 66 (2012)

7. Bumagin, I.: On definitions of relatively hyperbolic groups. In: Geometric Methods
in Group Theory. Contemporary Mathematics, vol. 372, pp. 189–196. American
Mathematical Society, Providence (2005)

8. Cai, J.-Y., Fuchs, W.H., Kozen, D., Liu, Z.: Efficient average-case algorithms for
the modular group. In: 35th Annual Symposium on Foundations of Computer
Science, Santa Fe, NM, pp. 143–152. IEEE Computer Society Press, Los Alamitos
(1994)

9. Dahmani, F.: Les groupes relativement hyperboliques et leurs bords.
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Abstract. Kauffman monoids Kn and Jones monoids Jn, n = 2, 3, . . . ,
are two families of monoids relevant in knot theory. We prove a somewhat
counterintuitive result that the Kauffman monoids K3 and K4 satisfy
exactly the same identities. This leads to a polynomial time algorithm
to check whether a given identity holds in K4. As a byproduct, we also
find a polynomial time algorithm for checking identities in the Jones
monoid J4.

1 Background I: Identities and Identity Checking

The present paper deals with the computational complexity of a combinatorial
decision problem (identity checking problem) related to certain algebraic struc-
tures originated in knot theory (Kauffman and Jones monoids). Since our results
and their proofs involve concepts from several different areas, the list of neces-
sary prerequisites is relatively long. We assume the reader’s familiarity with basic
notions of computational complexity and semigroup theory; see, e.g., the early
chapters of (Papadimitriou 1994) and (Clifford and Preston 1961), respectively.
Modulo these basics, we tried to make the paper self-contained, to a reasonable
extent. In particular, in this section we give a quick introduction into semigroup
identities and their checking while the next section provides detailed geometric
definitions of Kauffman and Jones monoids.

We fix a countably infinite set X which we call an alphabet and which ele-
ments we refer to as letters. The set X+ of finite sequences of letters forms a
semigroup under concatenation which is called the free semigroup over X . Ele-
ments of X+ are called words over X . If w = x1 · · · x� with x1, . . . , x� ∈ X is
a word over X , the set {x1, . . . , x�} is called the content of w and is denoted
alph(w) while the number � is referred to as the length of w and is denoted |w|.
We say that a letter x ∈ X occurs in a word w ∈ X+ or, alternatively, w involves
x whenever x ∈ alph(w).

An identity is an expression of the form w � w′ with w,w′ ∈ X+. If S is
a semigroup, we say that the identity w � w′ holds in S or, alternatively, S
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satisfies w � w′ if wϕ = w′ϕ for every homomorphism ϕ : X+ → S. If w � w′

does not hold in S, we say that it fails in S.
The following observations are immediate: if a semigroup S satisfies an iden-

tity w � w′, so do each subsemigroup and each quotient of S; if semigroups S1
and S2 satisfy w � w′, so does their direct product S1 × S2.

It is well known and easy to see that the free semigroup X+ possesses the fol-
lowing universal property: for every semigroup S, every mapping X → S uniquely
extends to a homomorphism X+ → S. Thus, the homomorphisms X+ → S are
in a 1-1 correspondence with the mappings X → S, which we call substitutions.
Therefore we can restate the fact of w � w′ holding in S also in the following
terms: every substitution of elements in S for letters in X yields equal values to
w and w′.

Given a semigroup S, its identity checking problem1 Check-Id(S) is the
following decision problem. The instance of Check-Id(S) is an arbitrary identity
w � w′. The answer to the instance w � w′ is ‘YES’ whenever the identity
w � w′ holds in S; otherwise, the answer is ‘NO’.

We stress that here S is fixed and it is the identity w � w′ that serves as the
input so that the time/space complexity of Check-Id(S) should be measured
in terms of the size of the identity, that is, in |ww′|.

Studying computational complexity of identity checking in semigroups (and
other ‘classical’ algebras such as groups and rings) was proposed by Sapir in the
influential survey (Kharlampovich and Sapir 1995), see Problem 2.4 therein. For
a finite semigroup S, the problem Check-Id(S) is always decidable. Indeed,
given an identity w � w′, there are only finitely many substitutions of elements
in S for letters in alph(ww′), and one can check whether or not each of these
substitutions yields equal values to w and w′. Moreover, Check-Id(S) with S

being finite belongs to the complexity class coNP: if for some words w,w′ that
involve m letters in total, the identity w � w′ fails in the semigroup S, then a
nondeterministic algorithm can guess an m-tuple of elements in S witnessing the
failure and then verify the guess by computing the values of the words w and w′

under the substitution that sends the letters occurring in w � w′ to the entries
of the guessed m-tuple. With multiplication in S assumed to be performed in
unit time, the algorithm takes linear in |ww′| time.

In the literature, there exists many examples of finite semigroups whose iden-
tity checking problem is coNP-complete; see, e.g., (Almeida et al. 2008; Horváth
et al. 2007; Jackson and McKenzie 2006; Kisielewicz 2004; Kĺıma 2009, 2012;
Plescheva and Vértesi 2006; Seif 2005; Seif and Szabó 2006) and the references
therein. However, the task of classifying finite semigroups according to the com-
putational complexity of identity checking appears to be far from being feasible.
In particular, it is not yet accomplished even in the case when the semigroup is a
finite group. Just to give a hint of difficulties that one encounters when approach-
ing this task, we mention the following result by Kĺıma (2009): a finite semigroup
S with Check-Id(S) in P may have both a subsemigroup and a quotient whose
identity checking problems are coNP-complete.

1 Also called the ‘term equivalence problem’ in the literature.
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Studying the identity checking problem for infinite semigroups cannot rely
on the ‘finite’ methods outlined above. Clearly, the brute-force approach of check-
ing through all possible substitutions fails since the set of such substitutions
becomes infinite if their range is an infinite semigroup. The nondeterministic
guessing algorithm also fails in general because an infinite semigroup S may have
undecidable word problem so that it might be impossible to decide whether or
not the values of two words under a substitution are equal in S. Murskǐı (1968)
had constructed an infinite semigroup S such that the problem Check-Id(S) is
undecidable. On the other hand, for many ‘natural’ infinite semigroups such as
semigroups of transformations of an infinite set, or semigroups of relations on
an infinite domain, or semigroups of matrices over an infinite ring, the identity
checking problem trivializes since such ‘big’ semigroups satisfy only trivial iden-
tities, that is, identities of the form w � w. Yet another class of ‘natural’ infinite
semigroups with easy identity checking is formed by various commutative struc-
tures in arithmetics and algebra such as integer numbers or real polynomials,
say, under addition or multiplication. It is folklore that these commutative semi-
groups satisfy exactly so-called balanced identities. (An identity w � w′ is said
to be balanced if every letter occurs in w and w′ the same number of times.
Clearly, this condition can be verified in linear in |ww′| time.)

For a long time, there were no results on the computational complexity of
identity checking for infinite semigroups, except for the two aforementioned
extremes—undecidability and trivial or easy decidability in linear time. Only
recently, the situation has started to change, and a few examples of infinite
semigroups with identity checking decidable in a nontrivial way have appeared.
An interesting instance here is the so-called bicyclic monoid B generated by two
elements a and b subject to the relation ba = 1; this monoid is known to play a
distinguished role in the structure theory of semigroups. The fact that B satis-
fies a nontrivial identity was first discovered by Adian (1962). After that, various
combinatorial, computational, and geometric aspects of identities holding in B

were examined in the literature, see, e.g., (Shneerson 1989; Shleifer 1990; Pastijn
2006), but only short while ago Daviaud et al. (2018) have shown that check-
ing identities in B can be done in polynomial time via quite a tricky algorithm
based on linear programming. Another example is the Kauffman monoid K3

generated by three elements h1, h2, and c subject to the relations hih3−ihi = hi

and h2
i = chi = hic, i = 1, 2; a recent paper by Chen et al. (2020) provides an

algorithm for checking identities in K3 in quasilinear time. The main result of
the present paper extends this algorithm to the Kauffman monoid K4, which we
define next.

2 Background II: Kauffman and Jones Monoids

Let n be an integer greater than 1. The Kauffman monoid2 Kn can be defined as
the monoid with n generators c, h1, . . . , hn−1 subject to the following relations:

2 The name comes from (Borisavljević et al. 2002); in the literature one also meets
the name Temperley–Lieb–Kauffman monoids (see, e.g., Bokut’ and Lee 2005).
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hihj = hjhi if |i − j| ≥ 2, i, j = 1, . . . , n − 1; (1)
hihjhi = hi if |i − j| = 1, i, j = 1, . . . , n − 1; (2)

h2
i = chi = hic for each i = 1, . . . , n − 1. (3)

Kauffman monoids play an important role in knot theory, low-dimensional
topology, topological quantum field theory, quantum groups, etc. As algebraic
objects, these monoids belong to the family of so-called diagram or Brauer-type
monoids that originally arose in representation theory (Brauer 1937) and have
been intensively studied from various viewpoints over the last two decades; see,
e.g., (Auinger 2012, 2014; Auinger et al. 2012, 2015; Dolinka and East 2017,
2018; Dolinka et al. 2015, 2017, 2019; East 2011a, 2011b, 2014a, 2014b, 2018,
2019a, 2019b; East and FitzGerald 2012; East and Gray 2017; East et al. 2018;
FitzGerald and Lau 2011; Kudryavtseva et al. 2006; Kudryavtseva and
Mazorchuk 2006, 2007; Lau and FitzGerald 2006; Maltcev and Mazorchuk 2007;
Mazorchuk 1998, 2002) and references therein.

It is convenient to use, along with the above definition of the monoids Kn

in terms of generators and relations, their more geometric definition due to
Kauffman (1990). We present the latter definition, following (Auinger et al.
2015), where the monoids Kn arise as ‘planar’ submonoids in monoids from
a more general (but easier to define) family.

Let [n] := {1, . . . , n}, [n]′ := {1′, . . . , n′} be two disjoint copies of the set
of the first n positive integers. Consider the set Wn of all pairs (π; s) where π
is a partition of the 2n-element set [n] ∪ [n]′ into 2-element blocks and s is a
nonnegative integer referred to as the number of circles. Such a pair is represented
by a wire diagram as shown in Fig. 1. We represent the elements of [n] by points
on the left hand side of the diagram (left points) while the elements of [n]′

are represented by points on the right hand side of the diagram (right points).
We will omit the labels 1, 2, . . . , 1′, 2′, . . . in our further illustrations. Now, for
(π; s) ∈ Wn, we represent the number s by s closed curves (‘circles’) drawn

1

2

3

4

5

6

7

8

9

1′
2′
3′
4′
5′
6′
7′
8′
9′

Fig. 1. Wire diagram representing an element of W9
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somewhere within the diagram and each block of the partition π is represented
by a line referred to as a wire. Thus, each wire connects two points; it is called
an �-wire if it connects two left points, an r-wire if it connects two right points,
and a t-wire if it connects a left point with a right point. The wire diagram in
Fig. 1 has three wires of each type and corresponds to the pair

({{1, 5′}, {2, 4}, {3, 5}, {6, 9′}, {7, 9}, {8, 8′}, {1′, 2′}, {3′, 4′}, {6′, 7′}}
; 3

)
.

Now we define a multiplication in Wn. Pictorially, in order to multiply two
diagrams, we glue their wires together by identifying each right point u′ of the
first diagram with the corresponding left point u of the second diagram. This
way we obtain a new diagram whose left (respectively, right) points are the left
(respectively, right) points of the first (respectively, second) diagram. Two points
of this new diagram are connected in it if one can reach one of them from the
other by walking along a sequence of consecutive wires of the factors, see Fig. 2.
All circles of the factors are inherited by the product; in addition, some extra
circles may arise from r-wires of the first diagram combined with �-wires of the
second diagram.

In more precise terms, if ξ = (π1; s1), η = (π2; s2), then a left point p and a
right point q′ of the product ξη are connected by a t-wire if and only if one of
the following conditions holds:

• p u′ is a t-wire in ξ and u q′ is a t-wire in η for some u ∈ [n];
• for some s > 1 and some u1, v1, u2, . . . , vs−1, us ∈ [n] (all pairwise distinct),

p u′
1 is a t-wire in ξ and us q′ is a t-wire in η, while ui vi is an

�-wire in η and v′
i u′

i+1 is an r-wire in ξ for each i = 1, . . . , s − 1.
(The reader may trace an application of the second rule in Fig. 2, in which
such a ‘composite’ t-wire connects 1 and 3′ in the product diagram.)

× =

Fig. 2. Multiplication of wire diagrams

Analogous characterizations hold for the �-wires and r-wires of ξη. Here we
include only the rules for forming �-wires as the r-wires of the product are
obtained in a perfectly symmetric way.
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Two left points p and q of ξη are connected by an �-wire if and only if one
of the following conditions holds:

• p q is an �-wire in ξ;
• for some s ≥ 1 and some u1, v1, u2, . . . , vs ∈ [n] (all pairwise distinct),

p u′
1 and q v′

s are t-wires in ξ, while ui vi is an �-wire in η for
each i = 1, . . . , s and if s > 1, then v′

i u′
i+1 is an r-wire in ξ for each

i = 1, . . . , s − 1.
(Again, Fig. 2 provides an instance of the second rule: look at the �-wire that
connects 6 and 8 in the product diagram.)

Finally, each circle of the product ξη corresponds to either a circle in ξ
or η or a sequence u1, v1, . . . , us, vs ∈ [n] with s ≥ 1 and pairwise distinct
u1, v1, . . . , us, vs such that all ui vi are �-wires in η, while all v′

i u′
i+1 and

v′
s u′

1 are r-wires in ξ.
It easy to see that the above defined multiplication in Wn is associative

and that the diagram with 0 circles and the n horizontal t-wires 1 1′ , . . . ,
n n′ is the identity element with respect to the multiplication. Thus, Wn is
a monoid that we term the wire monoid.

Kauffman (1990) has defined the connection monoid Cn as the submonoid
of Wn consisting of all elements of Wn that have a representation as a diagram
whose wires do not cross. (Thus, the left factor and the product in the multi-
plication example in Fig. 2 are not elements of Cn, while the right factor lies in
Cn.) Kauffman has shown that Cn is generated by the hooks h1, . . . , hn−1, where

hi :=
({{i, i + 1}, {i′, (i + 1)′}, {j, j′} | for all j �= i, i + 1

}
; 0

)
,

and the circle c :=
({{j, j′} | for all j = 1, . . . , n

}
; 1

)
, see Fig. 3 for an illustra-

tion. It is easy to check that the generators h1, . . . , hn−1, c satisfy the relations
(1)–(3), whence there exists a homomorphism from the Kauffman monoid Kn

onto the connection monoid Cn. In fact, this homomorphism is an isomorphism
between Kn and Cn; see (Kauffman 1990) for a proof outline and (Borisavljević
et al. 2002) for a very detailed argument. Thus, we may (and will) identify Kn

with Cn in what follows.
Denote by Jn the set of all diagrams in Kn without circles. Observe that

this set is finite; in fact, it is known that the cardinality of Jn is the n-th

Catalan number
1

n + 1

(
2n

n

)
. We define the multiplication of two diagrams in

Jn as follows: we multiply the diagrams as elements of Kn and then reduce the
product to a diagram in Jn by removing all circles. This multiplication makes
Jn a monoid known as the Jones monoid3. Observe that Jn is not a submonoid
of Kn; at the same time, the ‘erasing’ map ξ �→ ξ̄ that forgets the circles of each
diagram ξ ∈ Kn is easily seen to be a surjective homomorphism of Kn onto Jn.

3 The name was suggested by Lau and FitzGerald (2006) to honor the contribution
of V.F.R. Jones to the theory (see, e.g., Jones 1983 Section 4).
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. . .

Fig. 3. The hooks h1, . . . , h8 and the circle c in C9

The hooks h1, . . . , hn−1 clearly satisfy h̄i = hi while c̄ is the identity element
of Jn. This implies that the monoid Jn is generated by h̄1, . . . , h̄n−1 and that
h̄2

i = h̄i for each i = 1, . . . , n − 1. Moreover, if ‖ξ‖ stands for the number of
circles of the diagram ξ ∈ Kn, then the map ξ �→ (

ξ̄, ‖ξ‖) is a bijection between
Kn and the cartesian product of Jn with the set N0 of nonnegative integers. Here
is a simple formula for multiplying diagrams from Kn in these ‘coordinates’:

(
ξ̄, ‖ξ‖) · (

η̄, ‖η‖) =
(
ξ̄η̄, ‖ξ‖ + ‖η‖ + 〈ξ̄, η̄〉), (4)

where the term 〈ξ̄, η̄〉 denotes the number of circles removed when the product
ξ̄η̄ in Jn is formed.

Now, following an idea by Auinger (personal communication), we embed the
monoid Kn into a larger monoid K̂n which is easier to deal with. In terms of
generators and relations, the extended Kauffman monoid K̂n can be defined
as the monoid with n + 1 generators c, d, h1, . . . , hn−1 subject to the relations
(1)–(3) and the additional relations

cd = dc = 1. (5)

Observe that the relations (3) and (5) imply that dhi = hid for each i =
1, . . . , n − 1. Indeed,

dhi = d2chi since dc = 1

= d2hic since chi = hic

= d2hic
2d since cd = 1

= d2c2hid since c2hi = hic
2

= hid since d2c2 = 1.

It is easy to see that the submonoid of K̂n generated by c, h1, . . . , hn−1 is iso-
morphic to Kn.

The interpretation of the extended Kauffman monoid in terms of diagrams
is a bit less natural as it requires introducing two sorts of circles: positive and
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negative. Each diagram may contain only circles of one sort. When two diagrams
are multiplied, the following two rules are obeyed: all newly created circles (which
arise when the diagrams are glued together) are positive; in addition, if the
product diagram inherits some negative circles from its factors, then pairs of
‘opposite’ circles are consecutively removed until only circles of a single sort (or
no circles at all) remain. The Kauffman monoid Kn is then nothing but the
submonoid of all diagrams having only positive circles or no circles at all.

Clearly, the ‘erasing’ homomorphism of Kn onto Jn extends to the monoid
K̂n. If we extend also the circle-counting map Kn → N0 to K̂n, letting ‖ξ‖ = −n

for each diagram ξ with n negative circles, we get that K̂n can be identified with
Jn ×Z, the cartesian product of the corresponding Jones monoid with the set of
all integers, the multiplication on Jn × Z being defined by the formula (4).

3 Rees Matrix Semigroups and Their Identities

We briefly recall the Rees matrix construction; see (Clifford and Preston 1961
Chapter 3) for details and the explanation of the distinguished role played by
this construction in the structure theory of semigroups. Let G be a group, 0 a
symbol beyond G, and I, Λ non-empty sets. Given a Λ×I-matrix P = (pλi) over
G∪ {0}, we define a multiplication on the set (I × G× Λ) ∪ {0} by the following
rules:

a · 0 = 0 · a := 0 for all a ∈ (I × G × Λ) ∪ {0},

(i, g, λ) · (j, h, μ) :=

{
(i, gpλjh, μ) if pλj �= 0,

0 if pλj = 0.
(6)

The multiplication is easily seen to be associative so that (I × G × Λ) ∪ {0}
becomes a semigroup. We denote it by M0(I,G, Λ;P ) and call it the Rees matrix
semigroup over G with the sandwich matrix P . If the matrix P has no zero
entries, the set I × G × Λ forms a subsemigroup in M0(I,G, Λ;P ). We denote
this subsemigroup by M(I,G, Λ;P ) and apply the name ‘Rees matrix semigroup’
also to it.

We need a combinatorial characterization of identities holding in every Rees
matrix semigroup over an abelian group. In order to formulate it, we recall a
few definitions.

For a semigroup S, the notation S1 stands for the least monoid containing S,
that is, S1 := S if S has an identity element and S1 := S∪{1} if S has no identity
element. In the latter case the multiplication in S is extended to S1 in a unique
way such that the fresh symbol 1 becomes the identity element in S1. We adopt
the following notational convention: for s ∈ S, the expression s0 stands for the
identity element of S1.

Recall that we have fixed a countably infinite alphabet X . The monoid X∗ :=
(X+)1 is called the free monoid over X . We say that a word v ∈ X+ occurs in
a word w ∈ X+ if w = u1vu2 for some u1, u2 ∈ X∗. Clearly, v may have several
occurrences in w; we denote the number of occurrences of v in w by occv(w).
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Proposition 1. An identity w � w′ holds in every Rees matrix semigroup over
an abelian group if and only if the words w and w′ satisfy the following three
conditions:

(a) the first letter of w is the same as the first letter of w′;
(b) the last letter of w is the same as the last letter of w′;
(c) for each word v of length 2, occv(w) = occv(w′).

Proof. The result is basically known. For the special case of Rees matrix semi-
groups of the form M(I,G, Λ;P ), it had been proven by Kim and Roush (1979);
some other special cases were considered in a preprint by Mashevitzky (1980).
For the reader’s convenience, we provide a self-contained proof (which is not
difficult at all).

For the ‘only if’ part, let C∞ stand for the infinite cyclic group. We
fix a generator c for C∞ and consider the Rees matrix semigroup S :=

M ({1, 2},C∞, {1, 2};P ) where P :=
(

e c
e e

)
, with e := c0. Suppose the iden-

tity w � w′ holds in S. Define a substitution α : X → S by

xα :=

{
(1, e, 1) if x is the first letter of w,

(2, e, 2) otherwise.

By (6), the first entry of the triple wα is 1, and since wα = w′α, so is the first
entry of the triple w′α. This is only possible provided that w′ starts with x.
We have thus shown that the condition (a) is satisfied. Similarly, by using the
substitution ω : X → S such that

xω :=

{
(1, e, 1) if x is the last letter of w,

(2, e, 2) otherwise,

one verifies that (b) holds as well.
In order to verify (c), take a word v of length 2 that occurs in w. First

consider the case of v = yz, with y and z being distinct letters. Here we invoke
the substitution ϑ : X → S such that

xϑ :=

⎧
⎪⎨
⎪⎩

(1, e, 1) if x = y,

(2, e, 2) if x = z,

(1, e, 2) otherwise.

Using the rule (6) and the structure of the sandwich matrix P , we see that the
middle entries of the triples wϑ and w′ϑ are equal to coccyz(w) and respectively
coccyz(w

′). Since wϑ = w′ϑ, we get occyz(w) = occyz(w′).
It remains to analyze the case of v = y2 for some letter y. In this case the

substitution ψ : X → S defined by

xψ :=

{
(2, e, 1) if x = y,

(1, e, 2) otherwise
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has the property that the middle entries of the triples wψ and w′ψ are equal to
coccy2 (w) and respectively coccy2 (w

′). The equality wψ = w′ψ yields occy2(w) =
occy2(w′). Thus, (c) holds for every word of length 2.

For the ‘if’ part, we isolate an observation that will be re-used later.

Lemma 1. If two words w and w′ satisfy the conditions (a)–(c), then each letter
occurs in w and w′ the same number of times.

Proof. For each letter x ∈ alph(w), we have

occx(w) =
∑

y∈alph(w)

occxy(w) +

{
1 if the last letter of w is x,

0 otherwise.

The same formula holds for w′ and since, by (c), occxy(w) = occxy(w′) for every
letter y and, by (b), w′ ends with x if and only if so does w, we conclude that
occx(w) = occx(w′). ��

Now consider an arbitrary abelian group G and an arbitrary Rees matrix
semigroup M0(I,G, Λ;P ) over G. Take any substitution

ϕ : X → M0(I,G, Λ;P ).

If xϕ = 0 for some x ∈ alph(w), then clearly wϕ = 0 and, by Lemma 1,
w′ϕ = 0, too. Thus, assume that xϕ ∈ I × G × Λ for every x ∈ alph(w). Let
xϕ = (i(x), g(x), λ(x)). The multiplication rule (6) then ensures that the equality
wϕ = 0 is only possible if pλ(x)i(y) = 0 for some (not necessarily distinct) letters
x, y such that the word xy occurs in w. By (c), xy occurs also in w′ whence
w′ϕ = 0. By symmetry, w′ϕ = 0 implies wϕ = 0.

It remains to analyze the situation with both wϕ �= 0 and w′ϕ �= 0, in which
case pλ(x)i(y) ∈ G whenever the word xy occurs in w. Let xfirst and xlast be the
first and respectively the last letter of w. Using the rule (6) and the fact that the
group G is abelian, one readily computes that wϕ = (i(xfirst), g, λ(xlast)), with
the middle entry g given by the following expression:

g =
∏

x∈alph(w)

g(x)occx(w) ×
∏

x,y∈alph(w)
xy occurs in w

p
occxy(w)

λ(x)i(y) .

In view of (a)–(c) and Lemma 1, we get w′ϕ = (i(xfirst), g, λ(xlast)), with the
same group entry g. Hence, the equality wϕ = w′ϕ holds. ��

4 Structure and Identities of J4

The main aim of the present paper is the identity checking problem for the
Kauffman monoid K4. In view of the bijection between K4 and J4 × N0, it is
handy to have a closer look at the Jones monoid J4. The latter monoid consists of
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h̄3 h̄3h̄2 h̄3h̄2h̄1

h̄2h̄3 h̄2 h̄2h̄1

h̄1h̄2h̄3 h̄1h̄2 h̄1

h̄1h̄3 h̄1h̄3h̄2

h̄2h̄1h̄3 h̄2h̄1h̄3h̄2

Fig. 4. The nonidentity diagrams in J4

1
5

(
8
4

)
= 14 diagrams: the identity diagram with four t-wires, nine diagrams with

two t-wires, and four diagrams without t-wires. Figure 4 shows the nonidentity
diagrams in J4.

As a warm-up for our core results, we prove here a structure property of
the monoid J4. This property quickly leads to a polynomial time algorithm for
Check-Id(J4).

Let J�
4 be the ideal of J4 consisting of its nonidentity diagrams, that is, of the

13 diagrams shown in Fig. 4. We consider the following ‘cutting’ map c : J�
4 → J�

4:
if a diagram has no t-wires, c fixes it; if a diagram has two t-wires, c cuts the
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t-wires and then connects the loose ends, forming one new �-wire and one new
r-wire, see Fig. 5 for an illustration. More formally, the action of c on a diagram
with two t-wires amounts to:

– connecting the left points of the t-wires with an �-wire;
– connecting the right points of the t-wires with an r-wire;
– removing the t-wires.

Observe that the above operations make sense for diagrams with two t-wires in
the Jones monoid Jn for every even n ≥ 4.

For the nine diagrams with two t-wires in the 3 × 3-matrix in the upper half
of Fig. 4, the effect of the map c can be described as follows:

– each of the four corner diagrams is sent to h̄1h̄3;
– each of the two extreme diagrams in the middle row (column) is sent to

h̄2h̄1h̄3 (respectively, h̄1h̄3h̄2);
– the central diagram is sent to h̄2h̄1h̄3h̄2.

Fig. 5. The cutting map c on J�
4

Lemma 2. The map c : J�
4 → J�

4 is an endomorphism of J�
4.

Proof. The lemma can be verified by a direct computation. We prefer a more
geometric argument since it also works in a more general situation.

Let ξ ∈ J�
4 have two t-wires. Then the �-wires of ξc are:

the �-wire of ξ, and
the �-wire that connects the left points of the t-wires of ξ.

(7)

Now consider an arbitrary diagram η ∈ J�
4. The product ξc · ηc has the same

�-wires (7). The product ξη has either two or no t-wires. In the latter case its
�-wires coincide with those in (7). If ξη has two t-wires, their left points are the
same as the left points of the t-wires of ξ whence the �-wires of (ξη)c are those
in (7) again.

We see that the �-wires of ξc · ηc and (ξη)c are equal. By symmetry, ξc · ηc
and (ξη)c have the same r-wires as well. Hence, ξc · ηc = (ξη)c. ��
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Remark 1. Let n ≥ 4 be an even number. The set J�
n of all diagrams with at

most two t-wires forms a subsemigroup in the Jones monoid Jn. The proof of
Lemma 2 shows that the cutting map is an endomorphism of J�

n.

Remark 2. As the referee pointed out, the cutting map c was first considered
by East et al. (2018) in the course of their profound studies of congruences on
Brauer monoids and also was used by Dolinka et al. (2019). The Brauer monoid
Bn consists of all diagrams in Wn without circles. The multiplication in Bn is
defined as follows: one multiplies diagrams as elements of Wn and then reduces
the product to a diagram in Wn by removing all circles. Thus, the Brauer monoid
Bn relates to the wire monoid Wn in the very same way as the Jones monoid
Jn related to the Kauffman monoid Kn. Clearly, the set B�

n of all diagrams with
at most two t-wires is a subsemigroup in Bn containing J�

n. Lemma 8.2 in (East
et al. 2018) shows that the cutting map is an endomorphism of B�

n for any even
n ≥ 4, and thus, it implies both Lemma 2 and Remark 1 of the present paper.
The referee nevertheless recommended to retain the above proof of Lemma 2,
as it is informative and keeps the paper self-contained, and we followed this
recommendation.

An endomorphism that fixes each element in its image is called a retraction.
We need the following folklore result of semigroup theory.

Lemma 3. If ϕ is a retraction of a semigroup S such that Sϕ is an ideal of S,
then S is isomorphic to a subdirect product of the ideal Sϕ with the Rees quotient
S/Sϕ. ��
Proposition 2. The semigroup J�

4 is isomorphic to a subdirect product
of a 2 × 2 rectangular band with the Rees matrix semigroup M3 :=
M0

(
{1, 2, 3},E, {1, 2, 3};

(
e e 0
e e e
0 e e

))
over the one-element group E = {e}.

Proof. By the definition of the map c : J�
4 → J�

4, its image is the set I4 consisting
of the four diagrams in J�

4 that have no t-wires. Since c fixes each diagram in I4
and is an endomorphism by Lemma 2, c is a retraction. Clearly, I4 is an ideal of
J�
4. We are in a position to apply Lemma 3, which yields that J�

4 is isomorphic
to a subdirect product of the ideal I4 with the Rees quotient J�

4/I4.
Obviously, I4 is a 2 × 2 rectangular band. As for the Rees quotient J�

4/I4, it
can be mapped onto the Rees matrix semigroup M3 as follows: the zero of J�

4/I4
is sent to 0 and the diagram in the i-th row and j-th column of the 3×3-matrix
in the upper half of Fig. 4 is sent to the triple (i, e, j). One can directly verify
that the bijection defined this way is an isomorphism between J�

4/I4 and M3.��
Clearly, an identity holds in a subdirect product if and only if it holds in

every factor of the product. Thus, Proposition 2 implies that an identity holds
in the semigroup J�

4 if and only if it holds in both I4 and M3. Observe that the
triples (i, e, j) ∈ M3 with i, j ∈ {1, 2} form a 2×2 rectangular band. We see that
I4 is isomorphic to a subsemigroup in M3, and thus, satisfies all identities of the
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latter semigroup. Hence, the semigroups J�
4 and M3 are equationally equivalent,

that is, they satisfy the same identities.
A combinatorial characterization of the identities of M3 is known. Namely,

it easily follows from a result by Trahtman (1981) that an identity w � w′ holds
in M3 if and only if the words w and w′ satisfy the conditions (a) and (b) of
Proposition 1 along with the following condition:

(c’) each word of length 2 occurs in w if and only if it occurs in w′.

It is easy to characterize identities of a semigroup S that are inherited by
the monoid S1. Namely, for a word w ∈ X+ and a proper subset Y of alph(w),
denote by wY the word obtained from w by removing all occurrences of the
letters in Y . The following observation is another part of semigroup folklore.

Lemma 4. Let S be a semigroup. The monoid S1 satisfies an identity w � w′

with alph(w) = alph(w′) if and only if the identity wY � w′
Y holds in S for each

Y ⊂ alph(w). ��
The restriction alph(w) = alph(w′) in Lemma 4 is not essential for what fol-
lows because a monoid satisfying a semigroup identity w � w′ with alph(w) �=
alph(w′) is easily seen to be a group while monoids we consider are very far from
being groups.

Lemma 4 readily implies that if two semigroups S1 and S2 are equation-
ally equivalent, so are the monoids S11 and S12. Hence, the Jones monoid J4 is
equationally equivalent to the monoid M1

3. Summing up, we get the following
characterization of the identities of the monoid J4.

Theorem 1. An identity w � w′ holds in the Jones monoid J4 if and only if
alph(w) = alph(w′) and, for each Y ⊂ alph(w), the words u := wY and u′ := w′

Y

satisfy the following three conditions:

(a) the first letter of u is the same as the first letter of u′;
(b) the last letter of u is the same as the last letter of u′;
(c’) each word of length 2 occurs in u if and only if it occurs in u′. ��

Remark 3. It is not immediately clear whether Theorem 1 provides a polynomial
time algorithm for Check-Id(J4) since a brute force verification of the condi-
tions (a)–(c’) for every proper subset of the set alph(w) requires exponential
in |alph(w)| time. In fact, there exist examples of finite semigroups S such that
Check-Id(S) is in P while Check-Id(S1) is coNP-complete, see, e.g., (Seif 2005;
Kĺıma 2009). However, Seif and Szabó (2006) have proved that one can verify
the conditions (a)–(c’) in polynomial in |ww′| time. Thus, Check-Id(J4) lies
in P. Moreover, using methods developed in (Chen et al. 2020), one can check
whether or nor the monoid J4 satisfies an identity w � w′ with |alph(w)| = k
and |ww′| = n in O(kn log(kn)) time.
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5 Structure of K̂4 and identities of K4

We are ready to attack the identity checking problem for the Kauffman monoid
K4. We approach the problem via a structure property as we did in Sect. 4 for
Check-Id(J4). We start with lifting the cutting map c from Jones to Kauff-
man monoids; technically, it is more convenient to lift the map to the extended
Kauffman monoid K̂4.

Let K̂�
4 be the ideal of K̂4 consisting of all diagrams with at most two t-

wires; in other words, K̂�
4 is nothing but the preimage of J�

4 under the erasing
map ξ �→ ξ̄. We define a map C : K̂�

4 → K̂�
4 as follows: C fixes each diagram that

has no t-wires; if a diagram has two t-wires, C cuts out the middle of each t-wire
and then connects the loose ends, forming one new �-wire, one new r-wire, and a
new negative circle, which then annihilates with a positive circle provided the
initial diagram had positive circles. See Fig. 6 for an illustration.

Fig. 6. The cutting map C on ̂K�
4; solid/dashed circles are positive/negative

Formally, if a diagram ξ ∈ K̂�
4 corresponds to the pair

(
ξ̄, ‖ξ‖) ∈ J�

4 ×Z, then
ξC is the diagram corresponding to the pair

(
ξ̄c, ‖ξ‖ − 1

)
if ξ has two t-wires

and ξC = ξ otherwise. Observe that ξC = ξ̄c for every ξ ∈ K̂�
4.

Lemma 5. The map C : K̂�
4 → K̂�

4 is an endomorphism of K̂�
4.

Proof. We have to show that ξC · ηC = (ξη)C for arbitrary diagrams ξ, η ∈ K̂�
4.

If both ξ and η have no t-wires, so does ξη, and the required equality clearly
holds. Thus, we may assume that at least one of the diagrams has two t-wires.
Due to the symmetry, it is sufficient to analyze the situation when ξ has two
t-wires.

In terms of the coordinatization of K̂4, the diagram ξC·ηC corresponds to the
pair

(
ξC · ηC, ‖ξC·ηC‖) while the pair corresponding to (ξη)C is

(
(ξη)C, ‖(ξη)C‖).

The equality of the first entries of these pairs easily follows from Lemma 2.
Indeed,

ξC · ηC = ξC · ηC = ξ̄c · η̄c since ξ �→ ξ̄ is a homomorphism
= (ξ̄η̄)c by Lemma 2

= (ξη)c = (ξη)C since ξ �→ ξ̄ is a homomorphism.
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Thus, it remains to compute the numbers of circles in ξC ·ηC and in (ξη)C and to
verify that these numbers are equal, that is, ‖ξC · ηC‖ = ‖(ξη)C‖. The following
aims to present the computation in a compact way.

From (4), we see that ‖ξC · ηC‖ = ‖ξC‖ + ‖ηC‖ + 〈ξC, ηC〉. Since ξC = ξ̄c and
ηC = η̄c, the desired equality can be rewritten as

‖ξC‖ + ‖ηC‖ + 〈ξ̄c, η̄c〉 = ‖(ξη)C‖. (8)

We say that a diagram γ ∈ J�
4 matches a diagram δ ∈ J�

4 if for every r-wire
{i′, j′} of γ, the set {i, j} occurs as an �-wire in δ. (Observe that we do not
require the opposite: δ may have an �-wire {s, t}, say, such that {s′, t′} is not an
r-wire in γ.) Clearly, gluing {i′, j′} with {i, j} creates a circle when the product
γδ is being formed.

We split the verification of (8) into three cases. Each of these cases covers a
certain number of pairs (ξ̄, η̄) amongst 9 × 13 = 117 pairs that are subject to
checking. (The assumption that ξ has two t-wires restricts the choice of ξ̄ to the
nine diagrams in the upper half of Fig. 4 while η̄ can be any of the 13 diagrams
from J�

4.) The reader may find it helpful to trace how the argument of each case
works on a typical example; for this, we indicate such examples, after stating
the conditions of the cases.

Case 1 : ξ̄ matches η̄.
Here typical representatives are the pairs (h̄1, h̄1h̄2) and (h̄1, h̄1h̄3).
The condition that ξ̄ matches η̄ means that 〈ξ̄, η̄〉 = 1. Further, it is easy to

see that ξ̄c matches η̄c whence 〈ξ̄c, η̄c〉 = 2. We have ‖ξC‖ = ‖ξ‖ − 1 as ξ has
two t-wires. If η also has two t-wires, then ‖ηC‖ = ‖η| − 1. Thus, computing the
left hand side of (8) yields

‖ξC‖ + ‖ηC‖ + 〈ξ̄c, η̄c〉 = (‖ξ‖ − 1) + (‖η‖ − 1) + 2 = ‖ξ‖ + ‖η‖.

Besides that, the condition that ξ̄ matches η̄ implies that the t-wires of ξ and η
combine and provide two t-wires in ξη. Using this and (4), we get

‖(ξη)C‖ = ‖ξη‖ − 1 = ‖ξ‖ + ‖η‖ + 〈ξ̄, η̄〉 − 1 = ‖ξ‖ + ‖η‖ + 1 − 1 = ‖ξ‖ + ‖η‖.

We conclude that the equality (8) holds.
Now assume that η has no t-wires. Then ‖ηC‖ = ‖η|, whence the left hand

side of (8) is equal to ‖ξ‖ + ‖η‖ + 1. However, in this subcase, the product ξη
also omits t-wires and ‖(ξη)C‖ = ‖ξη‖ = ‖ξ‖ + ‖η‖ + 1, too. Thus, the equality
(8) persists.

Case 2 : ξ̄ does not match η̄ but ξ̄c matches η̄c.
Here a typical representative is the pair (h̄1, h̄3).
Case 2 is only possible if η has two t-wires whence ‖ηC‖ = ‖η| − 1. We have

〈ξ̄, η̄〉 = 0 but 〈ξ̄c, η̄c〉 = 2. Thus, the left hand side of (8) is

‖ξC‖ + ‖ηC‖ + 〈ξ̄c, η̄c〉 = (‖ξ‖ − 1) + (‖η‖ − 1) + 2 = ‖ξ‖ + ‖η‖.
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Further, under the conditions of Case 2, ξη cannot possess t-wires. Therefore,
‖(ξη)C‖ = ‖ξη‖ = ‖ξ‖ + ‖η‖, and the equality (8) holds.

Case 3 : ξ̄c does not match η̄c.
Here typical representatives are the pairs (h̄1, h̄2) and (h̄1, h̄2h̄1h̄3).
Since ξ̄c does not match η̄c, we have 〈ξ̄c, η̄c〉 = 1. In addition, ξ̄ cannot match

η̄ whence 〈ξ̄, η̄〉 = 0. If η has two t-wires, ‖ηC‖ = ‖η| − 1 and the left hand side
of (8) becomes

‖ξC‖ + ‖ηC‖ + 〈ξ̄c, η̄c〉 = (‖ξ‖ − 1) + (‖η‖ − 1) + 1 = ‖ξ‖ + ‖η‖ − 1.

If the r-wire of ξ is {i′, j′}, the �-wire of η must be {j, k} for some k �= i. The set
{1, 2, 3, 4} \ {i, j, k} consists of a unique number h, say. Then one of the t-wires
of ξ has h′ as its right point while one of the t-wires of η has h as its left point,
and we see that ξη has got a t-wire. From this and (4), we compute

‖(ξη)C‖ = ‖ξη‖ − 1 = ‖ξ‖ + ‖η‖ + 〈ξ̄, η̄〉 − 1 = ‖ξ‖ + ‖η‖ − 1,

whence the equality (8) holds.
Finally, consider the subcase when η has no t-wires. Then ‖ηC‖ = ‖η‖ and

the left hand side of (8) becomes ‖ξC‖ + ‖ηC‖ + 〈ξ̄c, η̄c〉 = (‖ξ‖ − 1) + ‖η‖ + 1 =
‖ξ‖ + ‖η‖. Of course, if η omits t-wires, so does ξη, whence ‖(ξη)C‖ = ‖ξη‖ =
‖ξ‖ + ‖η‖, and the equality (8) holds again. ��

Remark 4. When we introduced the extended Kauffman monoids K̂n, we said
that they are easier to deal with, compared with the ‘standard’ Kauffman
monoids Kn. Lemma 5 provides a supporting evidence for this claim. Indeed,
it is not clear if the semigroup K�

4 consisting of diagrams with at most two
t-wires from K4 admits any ‘nice’ endomorphism similar to the cutting map
C : K̂�

4 → K̂�
4. We mention in passing that working with the monoid K̂3 rather

than K3 would have somewhat simplified also the proofs of the main results
in (Chen et al. 2020).

Remark 5. One can define the extended wire monoid Ŵn by allowing diagrams
with negative circles and using the same multiplication as in K̂n. Let Ŵ�

4 be
the ideal of Ŵ4 consisting of all diagrams with at most two t-wires. The referee
observed that the cutting map C : K̂�

4 → K̂�
4 extends to an endomorphism of Ŵ�

4.

Recall that C∞ stands for the infinite cyclic group. As above, we fix a
generator c of C∞ and denote by e the identity element of the group. Con-
sider the Rees matrix semigroups RC2 := M

(
{1, 2},C∞, {1, 2};

(
c2 c
c c2

))
and

MC3 := M0
(
{1, 2, 3},C∞, {1, 2, 3};

(
c e 0
e c e
0 e c

))
.

Proposition 3. The semigroup K̂�
4 is isomorphic to a subdirect product of the

Rees matrix semigroups RC2 and MC3.
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Proof. By the definition of the map C : K̂�
4 → K̂�

4, its image is the set Î4 of all
diagrams in K̂�

4 that have no t-wires. By Lemma 5 C is a retraction. Since Î4

is an ideal of K̂�
4, Lemma 3 applies, providing a decomposition of K̂�

4 into a
subdirect product of Î4 with the Rees quotient K̂�

4/Î4.
It remains to show that Î4 is isomorphic to RC2 and K̂�

4/Î4 is isomorphic to
MC3. Both isomorphisms are easy to describe in terms of the coordinatization
of diagrams from K̂4 by pairs from J4 × Z. If η ∈ Î4 corresponds to the pair
(η̄,m) ∈ J4 ×Z and the diagram η̄ occurs in the i-th row and j-th column of the
2×2-matrix in the lower half of Fig. 4, then η is sent to the triple (i, cm, j) ∈ RC2.
Similarly, if ξ ∈ K̂�

4 \ Î4 corresponds to the pair (ξ̄, n) ∈ J4 ×Z and the diagram
ξ̄ occurs in the k-th row and �-th column of the 3×3-matrix in the upper half of
Fig. 4, then ξ is sent to the triple (k, cn, �) ∈ MC3. Finally, the zero of the Rees
quotient K̂�

4/Î4 is sent to 0 ∈ MC3. Thus, we have got a bijection between Î4

and RC2, as well as a bijection between K̂�
4/Î4 and MC3. The verification that

these bijections constitute semigroup isomorphisms is immediate. ��
Recall the description of the identities of K3 from (Chen et al. 2020).

Theorem 2. An identity w � w′ holds in the Kauffman monoid K3 if and
only if alph(w) = alph(w′) and, for each Y ⊂ alph(w), the words u := wY and
u′ := w′

Y satisfy the following three conditions:

(a) the first letter of u is the same as the first letter of u′;
(b) the last letter of u is the same as the last letter of u′;
(c) for each word of length 2, the number of its occurrences in u is the same
as the number of its occurrences in u′. ��

Theorem 3. The monoids K3 and K4 are equationally equivalent.

Proof. The monoid K3 naturally embeds into K4: the submonoid of K4 gen-
erated by the hooks h1, h2 and the circle c is isomorphic to K3. Therefore,
every identity that holds in K4 must hold in K3. In order to show the con-
verse, we employ Theorem 2. Namely, we are going to verify that every iden-
tity w � w′ that satisfies the conditions of Theorem 2 holds in the extended
Kauffman monoid K̂4. Since K4 embeds into K̂4, this will prove the equational
equivalence of K3 with K4, and moreover, with K̂4.

We have to check that wϕ = w′ϕ for an arbitrary homomorphism ϕ : X+ →
K̂4. Clearly, K̂4 is the disjoint union of its group of units H generated (as a
semigroup) by c and d and the ideal K̂�

4. Let Y := {y ∈ alph(w) | yϕ ∈ H}.
Since cd = dc = 1, we write c−1 for d, and for each y ∈ Y , we let ky ∈ Z be such
that yϕ = cky . Denote the sum

∑
y∈Y occy(w)ky by NY . By Lemma 1 we have

occy(w) = occy(w′), whence the sum
∑

y∈Y occy(w′)ky is also equal to NY . If
Y = alph(w), we have wϕ = cNY = w′ϕ, and we are done.
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Consider the situation where Y ⊂ alph(w). Using the fact that the generators
c and d commute with the hooks h1, h2, h3, we can represent wϕ and w′ϕ as
cNY wY ϕ and cNY w′

Y ϕ respectively. Therefore it remains to verify that wY ϕ =
w′

Y ϕ, and for this, it suffices to show that the identity u � u′ with u := wY

and u′ := w′
Y holds in the semigroup K̂�

4. Since the words u and u′ satisfy the
conditions (a)–(c), the identity u � u′ holds in every Rees matrix semigroup over
an abelian group by Proposition 1. In particular, u � u′ holds in the semigroups
RC2 and MC3, and by Proposition 3 it holds also in K̂�

4, as required. ��
Remark 6. The result of Theorem 3 was unexpected for us since, informally
speaking, the monoid K4 appeared to be much more complicated than its sub-
monoid K3 and it was rather hard to believe that K4 could inherit all identities
of the submonoid. Observe that the Jones monoids J3 and J4 are not equation-
ally equivalent: J3 satisfies the identity x2 � x that clearly fails in J4. Moreover,
it follows from a result by Trahtman (1988) that the identities of J3 and J4
are very different in a sense: there are uncountably many pairwise equationally
non-equivalent semigroups whose identity sets strictly contain the identity set of
J4 and are strictly contained in that of J3. Further, the wire monoids W3 and
W4 are not equationally equivalent: one can verify that W3 satisfies the identity
x7yx � xyx7 that fails in W4. The same identity x7yx � xyx7 can be used
to show that the Brauer monoids B3 and B4 are not equationally equivalent.
Theorem 3 makes a strong contrast to these facts.

Using a suitable reformulation of Theorem 2, Chen et al. (2020 Section 2)
have developed an algorithm that, given an identity w � w′ with |alph(w)| = k
and |ww′| = n, verifies whether or nor the identity holds in the monoid K3 in
O(kn log(kn)) time. Theorem 3 implies that this algorithm can be used to check
identities in the monoid K4. In particular, we have the following fact.

Corollary 1. The problem Check-Id(K4) lies in P. ��
It has been shown in (Chen et al. 2020 Proposition 6) that the equational

equivalence of K3 and K4 does not extend to the monoid K5. For instance, the
identity x2yx � xyx2, which holds in K3 and K4 by Theorems 2 and 3, fails
in K5 under the substitution x �→ h1h2h3, y �→ h4. The proof in (Chen et al.
2020) relies on a normal form for the elements of the monoid Kn suggested by
Jones (1983). Figure 7 illustrates this example; in fact, Fig. 7 can be treated as
an alternative argument showing that the identity x2yx � xyx2 fails in K5 in a
way that complies with the geometric approach of the present paper.

At the moment, we possess no characterization of the identities of the monoid
Kn for any n > 4. Neither do we know whether there are other pairs of equa-
tionally equivalent Kauffman monoids besides K3 and K4.
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x x y x

=

x2yx

x y x x

=

xyx2

Fig. 7. The identity x2yx � xyx2 fails in K5
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Abstract. In this paper, we show that special relativity phenomenon
can be used to reduce computation time of any algorithm from T to

√
T .

For this purpose, we keep computers where they are, but the whole civ-
ilization starts moving around the computers – at an increasing speed,
reaching speeds close to the speed of light. A similar square-root speedup
can be achieved if we place ourselves near a growing black hole. Com-
bining the two schemes can lead to an even faster speedup: from time T
to the 4-th order root 4

√
T .

1 Formulation of the Problem

Need for Fast Computations. At first glance, the situation with computing
speed is very good. The number of computational operations per second has
grown exponentially fast, and continues to grow. Faster and faster high perfor-
mance computers are being designed and built all the time, and the only reason
why they are not built even faster is the cost limitations.

However, while, because of this progress, it has indeed become possible to
solve many computational problems which were difficult to solve in the past,
there are still some challenging practical problems that cannot yet been solved
now. An example of such a problem is predicting where a tornado will go in
the next 15 min. At present, this tornado prediction problem can be solved in
a few hours on a high performance computer, but by then, it will be too late.
As a result, during the tornado season, broad warning are often so frequent that
people often ignore them – and fall victims when the tornado hits their homes.
There are many other problems like this.

What Can We Do – in Addition to What Is Being Done. Computer
engineers and computer scientists are well aware of the need for faster computa-
tions, so computer engineers are working on new hardware that will enable faster
computations, and computer scientists are developing new faster algorithms for
solving different problems. Some of the hardware efforts are based on the same
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physical and engineering principles on which the current computers operate,
some efforts aim to involve different physical phenomena – such as quantum
computing (see, e.g., [5]).

Can we use other physical phenomena as well? We are talking about speeding
up computations, i.e., about time, so a natural place to look for such physical
phenomena is to look for physical effects that change the rate of different physical
processes, i.e., make them run faster or slower.

What We Do in This Paper. This is what we will do in this paper: we
will show how physical phenomena can be used to further speed up computa-
tions. Specifically, for this speed-up, in line with the general idea of relativistic
computation (see, e.g., [1]), we will be using relativistic effects.

2 Physical Phenomena That Change the Rate of Physical
Processes – and How to Use Them to Speed up
Computations

Physical Phenomena That Change the Rate of Physical Processes:
A Brief Reminder. Unfortunately for computations, there are no physical
processes that speed up all physical phenomena, but there are two physical pro-
cesses that slow down all physical phenomena; see, e.g., [2], Vol. I, Chapters
15–17, and Vol. II, Chapter 42, and [6], Chapters 2, 24, and 25.

First, according to Special Relativity Theory, if we travel with some speed
v, then all the processes slow down. The proper time interval s – i.e., the time
interval registered by the observer moving with the speed v – is related to the
time interval t measured by the immobile observer by the formula

s = t ·
√

1 − v2

c2
, (1)

where c denotes the speed of light. The closer the observer’s speed v to the speed
of light c, the larger this slow-down.

Second, according to General Relativity Theory, in the gravitational field,
time also slows down. For immobile observer in a gravitational field, the proper
time interval s is equal to s =

√
g00·t, where t is the time as measured by a distant

observer – who is so far away that this observer is not affected by the gravita-
tional field – and g00 is the 00-component of the metric tensor gij that describes
the geometry of space-time. In the spherically symmetric (Schwarzschild) solu-
tion, we have g00 = 1 − rs

r
, where r is the distance from the center of the

gravitating body and rs
def=

2G · M

c2
, where G is the gravitational constant and

M is the mass of the central body.
Both slow-down effects have been experimentally confirmed with high

accuracy.

How We Can Use These Phenomena to Speed Up Computations. If
these phenomena would speed up all the processes, then it would be easy to
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speed up computations: we would simply place the computers in a body moving
with a high speed and/or located in a strong gravitational field, and we would
thus get computations faster.

In reality, these phenomena slow down all the processes, not speed them
up. So, if we place computers in such a slowed-time environment, we will only
slow down the computations. However, we can speed up computations if we
do the opposite: namely, keep computers in a relatively immobile place with
a reasonably low gravitational field, and place our whole civilization in a fast
moving body and/or in a strong gravitational field. In this case, in terms of the
computers themselves, computations will continue at the same speed as before,
but since our time will be slowed down, we will observe much more computational
steps in the same interval of proper time (i.e., time as measured by our slowed-
down civilization).

In this paper, we analyze what speed up we can obtain in this way – by
analyzing the above slowing-down physical phenomena one by one.

3 Possible Special-Relativity Speed-Up: Analysis of the
Problem and Resulting Formulas

How to Use Special Relativistic Effects for a Computational Speed-
Up: Reminder. To get a computational speed-up, we can place the computer at
the center, and start moving around this computer at a speed close to the speed
of light. Since we cannot immediately reach the speed of light or the desired
trajectory radius, we need to gradually increase our speed and the radius. Let
v(t) denote our speed at time t, and let R(t) denote the radius of our trajectory
at moment t.

Preliminary Analysis of the Problem: Simplified Computations.
According to the above formula (1), a change ds in proper time is related
to the change dt in coordinate time (as measured by the computer clock) as

ds = dt · S(t), where S(t) def=

√
1 − v2(t)

c2
.

The possibility to travel is limited by the need to keep acceleration experi-
enced by all moving persons below or at the usual Earth level g0. The faster we
go, the larger the slow-down effect – and thus, the larger the expected computa-
tional speed-up. Thus, to achieve the largest possible computational speed-up,
we should accelerate as fast as possible. Since possible accelerations are limited
by g0, this means that, to achieve the largest possible speed-up, we should always
accelerate with the maximum possible acceleration g0.

When a body follows a circular orbit with velocity v(t) and radius R(t), it

experiences coordinate acceleration
d2x

dt2
=

v2(t)
R(t)

. As we accelerate, the velocity

gets closer and closer to the speed of light. For large t, the velocity v(t) becomes
close to the speed of light v(t) ≈ c, so we conclude that the following asymptotic
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equality holds:
d2x

dt2
≈ c2

R(t)
. Let us find out what is the value of the experienced

acceleration
d2x

ds2
.

Here,
dx

ds
=

dx

dt
· dt

ds
=

dx

dt
· 1
S(t)

, thus,

d2x

ds2
=

d

ds

(
dx

dt
· 1
S(t)

)
=

dt

ds
· d

dt

(
dx

dt
· 1
S(t)

)
=

1
S(t)

· d

dt

(
dx

dt
· 1
S(t)

)
.

When the body follows a circular orbit with a constant speed, the value S(t) is
a constant, so we have

d

dt

(
dx

dt
· 1
S(t)

)
=

1
S(t)

· d2x

dt2

and thus,
d2x

ds2
=

1
S2(t)

· d2x

dt2
≈ 1

S2(t)
· c2

R(t)
.

Here, the experienced acceleration
d2x

ds2
should be equal to the usual Earth accel-

eration g0, thus

g0 ≈ 1
S2(t)

· c2

R(t)
.

In this case, the relativistic slow-down has the form S(t) =
c√

g0 · R(t)
. The

larger R(t), the larger the slow-down effect and thus, the larger the expected
computational speed up. All the speeds are limited by the speed of light, thus,
we have R(t) ≤ v0 · t, where v0 < c is the speed with which we increase the
radius. To increase the computational speed-up effect, let us consider the case
when R(t) = v0 · t. In this case, the relativistic slow-down effect has the form

S(t) ≈ C−1 · t−1/2,

where we denoted C
def=

√
g0 · v0

c
.

From S(t) =

√
1 − v2(t)

c2
=

c√
g0 · v0 · t

, we conclude that 1 − v2(t)
c2

=

c2

g0 · v0 · t
, and thus,

v(t) = c ·
√

1 − c2

g0 · v0 · t
.

At any moment of time t, we get the following relation between the increase dt
in corresponding time and the increase ds in proper time (i.e., time experienced
by us):

ds

dt
= S(t) ≈ C−1 · t−1/2,
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hence ds ≈ C−1 · dt · t−1/2. Integrating both sides of this asymptotic equality,
we conclude that s ≈ 2C−1 · √

t.
Once the computers finish their computations at time T , they need to send

us the results. This can be done with the speed of light. So, at each moment
t ≥ T of coordinate time, the signal reaches the distance c · (t − T ) from the
computers’ location. We receive this signal when it reaches our location, i.e., at
a moment tr for which c · (tr − T ) = R(tr) = v0 · tr. So, (c − v0) · tr = c · T and
tr =

c

c − v0
· T . At this moment, our experienced time sr is equal to

sr ≈ 2C−1 · √
tr = 2C−1 ·

√
c

c − v0
·
√

T .

Thus, in comparison with the usual (stationary) computations which would
require time T , we indeed get a square-root computational speed-up.

This Is Probably All We Can Get. Please note that this square root speedup
is probably all we can gain: indeed, we tried to extract as much slowing down as
possible with the limitation that the acceleration does not exceed g0. A further
relativistic slow-down would probably require having accelerations much higher
than our usual level g0.

Detailed Analysis and the Resulting Computational Speed-Up
Scheme. In the above simplified computations, we used the formulas which
are valid for the case when the body is moving with a constant speed along the
same circular orbit. In our scheme, both the speed and the radius R(t) increase
with time. Let us now perform a more accurate analysis, that takes these changes
into account and leads to the same asymptotic speed-up. To be more precise,
we will show that it is possible, for each ε > 0, to achieve a speed-up from T to
T 1/2+ε. Since this value ε can be arbitrarily small, from the practical viewpoint,
this means that, in effect, we get the square root speed-up.

To speed up computations, we place computers where they are now, and
start moving the whole civilization. All the motion will be in a plane, with the
civilization following – after some preparation time t0 – a logarithmic spiral
trajectory, i.e., a trajectory that in polar coordinates (R,ϕ) takes the form R =
R0 · exp(k · ϕ), i.e., equivalently, ϕ = K · ln(R/R0) = K · ln(R) − K · ln(R0),
where we denoted K

def= k−1. To show that the corresponding speedup can be

achieved, we will take K =
v0/c√
1 − v2

0

c2

.

For the dependence of the distance R(t) on time t, we consider the following
formula

R(t) =
√

c2 − v2
0 · t − c0 · t2ε,

for an appropriate constant c0 (that will be determined later). We will show that

for an appropriately selected value c0, the perceived acceleration a
def=

∥∥∥∥d2xi

ds2

∥∥∥∥
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will not exceed the Earth’s level g0, and that this trajectory will indeed lead to
the T → T 1/2+ε speedup. Since we are considering only moments after some time
t0, it is sufficient to prove that the asymptotic expression for the acceleration a

does not exceed g′
0

def= g0 − δ for some small δ > 0; this will guarantee that the
acceleration is smaller than g0 for all moments t starting with some moment t0.

Let us first estimate the relativistic slow-down. In the usual Cartesian coor-
dinates, the trajectory has the form

x(t) = R(t) ·cos(K · ln(R)−K · ln(R0)), y(t) = R(t) · sin(K · ln(R)−K · ln(R0)).

Differentiating these formulas with respect to coordinate time t, we conclude
that

dx

dt
= R′(t)·cos(K ·ln(R)−K ln(R0))−R(t)·sin(K ·ln(R)−K ·ln(R0))· K

R(t)
·R′(t)

= R′(t) · (cos(K · ln(R) − K ln(R0)) − K · sin(K · ln(R) − K ln(R0))),

where R′(t) denotes the derivative of the function R(t), and similarly

dy

dt
= R′(t) · (sin(K · ln(R) − K · ln(R0)) + K · cos(K · ln(R) − K · ln(R0))).

Substituting these expressions into the formula

v2 =
(

dx

dt

)2

+
(

dy

dt

)2

,

taking into account that terms proportional to the product of sine and cosine
cancel each other and that sin2(z) + cos2(z) = 1, we conclude that

v2 = (R′(t))2 · (1 + K2).

From the formula for R(t), we get R′(t) =
√

c2 − v2
0 − c0 · 2ε · t−(1−2ε), thus

(R′(t))2 = c2 − v2
0 − 2

√
c2 − v2

0 · c0 · 2ε · t−(1−2ε) + o,

where o denotes terms that are asymptotically smaller than all the terms present
in this formula. So, v2 = (c2−v2

0)·(1+K2)−2
√

c2 − v2
0 ·c0·2ε·(1+K2)·t−(1−2ε)+o.

By our selection of K, the first term in the formula for v2 is equal to c2, so
v2 = c2 − c1 · t−(1−2ε) + o, where we denoted c1

def= 2
√

c2 − v2
0 · c0 · 2ε · (1 + K2).

Thus, 1− v2

c2
= c2 · t−(1−2ε) +o, where c2

def=
c1
c2

and hence, the relativistic slow-

down is equal to S(t) = c3 · t−(1/2−ε) + o, where c3
def=

√
c2. So, asymptotically,

dt

ds
=

1
S(t)

∼ t1/2−ε and
(

dt

ds

)2

∼ t1−2ε.

The perceived acceleration has the form a = ‖ai‖, where

ai =
d

ds

(
dxi

ds

)
=

d

ds

(
dxi

dt
· dt

ds

)
=

dt

ds
· d

dt

(
dxi

dt
· dt

ds

)
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=
(

dt

ds

)2

· d2xi

dt2
+

dt

ds
· dxi

dt
· d

dt

(
dt

ds

)
.

In the second term in the expression for ai, we have
dt

ds
∼ t1/2−ε,

dxi

dt
∼ const,

and
d

dt

(
dt

ds

)
∼ t−(1/2+ε), so the product of these three factors is ∼ t−2ε and

thus, tends to 0 as t increases.

In the first term in the expression for ai, from the above formula for
dx

dt
, we

get

d2x

dt2
= R′′ · (cos(.) − K · sin(.)) − R′ · (sin(.) + K · cos(.)) · K

R
· R′.

For the first term in this expression, we have R′′ ∼ t−(2−2ε), so due to the above

asymptotic for the factor
(

dt

ds

)2

, the product of term proportional to R′′ and

this factor is ∼ t−1 – and thus, also tends to 0 as t increases.
For the remaining term, since R′ ∼ t−(1−ε) and R ∼ t, the term proportional

to R′ · K

R
· R′ is ∼ t−(1−2ε) and thus, the product of this term and the factor(

dt

ds

)2

∼ t1−2ε is asymptotically a constant – and a constant proportional to c0.

A similar conclusion can be made about
d2y

dt2
. So, overall, ai is bounded by a

constant proportional to c0. Hence, by appropriately selecting c0, we can make
this term – and thus, the whole expression ai – as small as needed, in particular,
smaller than the desired acceleration bound g′

0.
Let us now show that in this scheme, we indeed get the desired speed-up.

Indeed, here,
ds

dt
∼ t−(1/2−ε), so for the proper time s =

∫
ds

dt
dt we get s(t) ∼

t1/2+ε.
Suppose that the centrally located computer finishes its computations at time

T , and immediately sends the result to us. This result travels to us with the speed
of light c. Let tr denote the moment of (coordinate) time at which we receive
this result. At this moment of time, we are at the distance R(tr), so it took the

signal time
R(tr)

c
to reach us. Thus, T +

R(tr)
c

= tr. Asymptotically, R(t) ∼√
c2 − v2

0 ·t, so for large T , the above formula takes the following asymptotic form

T +

√
c2 − v2

0

c
·tr = tr, thus T = tr ·

(
1 −

√
1 − v2

0

c2

)
and tr =

T

1 −
√

1 − v2
0

c2

∼ T .

We have shown that our proper (perceived) time s depends on the coordinate
time t as s(t) ∼ t1/2+ε. Thus, by our clocks, we get the result of the computation
at the moment of time s(tr) ∼ T 1/2+ε. So, we indeed get a square root speed-up.
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How Realistic Is This Scheme? How big a radius do we need to reach a rea-
sonable speedup? As we will show, the corresponding radius is – by astronomical
standards – quite reasonable. Indeed, for large t, when v ≈ c, the above formulas
relating S(t) and R(t) leads to

R(t) ≈ c2

g0
≈ (3 · 108 m/sec)2

10 m/sec2
= 9 · 1015 m.

This radius can be compared with a light year – the distance that the light
travels in 1 year – which is equal to

≈ (3 · 108 m/sec) · (3 · 107 sec/year) · (1 year) = 9 · 1015 m,

so for v(t) ≈ c, the radius should be about 1 light year.
With time t, the radius is proportional to t, and the computational speed-up

is proportional to
√

t. Thus, the radius grows as the square of the computational
speed-up. So:

– to get an order of magnitude (10 times) speedup, we need an orbit of radius
102 = 100 light years – reaching to the nearest stars;

– to get a two orders of magnitude (100 times) speedup, we need an orbit of
radius 1002 = 104 light years – almost bringing us to the edge of our Milky
Way Galaxy;

– to get a three orders of magnitude (1000 times) speedup, we need an orbit of
radius 10002 = 106 light years;

– with an orbit of the same radius as the radius of the Universe R(t) ≈ 20
billion = 2 · 1010 light years, we can get

√
2 · 1010 ≈ 1.5 · 105 speedup – more

than hundred thousand times speedup.

This Is Similar to a Quantum Speedup. The above square root speedup is
similar to the speedup of Grover’s quantum algorithm for search in an unsorted
array [3–5]; the difference is that:

– in quantum computing, the speedup is limited to search in an unsorted array,
while

– in the above special-relativity scheme, we get the same speedup for all possible
computations.

Comment. In Russia – where we are from – to ring the church bell, the bell-
ringer moves the bell’s “tongue” (clapper). In Western Europe, they move the
bell itself. This example is often used in Russian papers on algorithm efficiency,
with an emphasis on the fact that, in principle, it is possible to use a third way
to ring the bell: by shaking the whole bell tower. In these papers, this third
way is mentioned simply as a joke, but, as the above computations show, this is
exactly what we are proposing here: since we cannot reach a speedup by making
the computer move, we instead leave the computers intact and move the whole
civilization.
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Speculation. How can we check whether an advanced civilization is already
using this scheme? In this scheme, a civilization rotates around a center, increas-
ing its radius as it goes – i.e., follows a spiral trajectory. In this process, in order
to remain accelerating, the civilization needs to gain more and more kinetic
energy. The only way to get this energy is to burn all the burnable matter that
it encounters along its trajectory. As a result, along the trajectory, where the
matter has been burned, we have low-density areas.

Thus, as a trace of such a civilization, we are left with a shape in which there
are spiral-shaped low-density areas starting from some central point. But this is
exactly how our Galaxy – and many other spiral galaxies – look like. So maybe
this is how spiral galaxies acquired their current shape?

4 Possible General-Relativity Speed-Up: Analysis of the
Problem and Resulting Formulas

Idea. If we keep the computers where they are now, and place the whole civi-
lization (but not the computers) in a strong gravitational field, by moving the
civilization close to a far away massive body, then our proper time will slow
down. Thus, the computations that take the same coordinate time t will require,
in terms of our proper time s, much fewer seconds.

Analysis of the Problem. According to the Schwarzschild’s formula for the
gravitational field of a symmetric body of mass M(t) at a distance R(t) from the
center, the change in the proper time ds (as experience by this body) is related
to the change dt in time t as measured by the distant observer by the formula

ds = ε(t) · dt, where ε(t) def=
√

1 − rs

R(t)
and the parameter rs (known as the

Schwarzschild radius) is equal to

rs
def=

2G · M(t)
c2

;

see, e.g., [2], Vol. II, Chapter 42, and [6], Chapters 24 and 25.
We want to have as large computational speed-up as possible, so we need to

make sure that the corresponding slow-down is as drastic as possible, i.e., that
the slow-down factor ε(t) is as small as possible. For a given rs this means that
we should take R(t) to be as small as possible – i.e., we want to be able to get
as close to the Schwarzschild radius as possible. For usual celestial bodies, the
radius rs is well within them: e.g., for our Sun, this radius is equal to 3 km, much
smaller than the Sun’s size of 1 million km. The only bodies for which their size
is smaller than the Schwarzschild radius are black holes. Thus, in this scheme,
the civilization should move close to a black hole.

Getting too close to the black hole is dangerous: if we get to the surface
R = rs (known as the event horizon), we will never be able to get back to our
world or even send a signal back to our world. Thus, it is desirable to always keep
ourselves at a certain safe distance d0 from the event horizon, a safe distance
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that enables us to move back if some unexpected fluctuation brings us too close
to it. So, the closest we can get to the black hole is at the distance R(t) = rs+d0,
for which rs = R(t) − d0. For these values, the slow-down factor takes the form

ε(t) =

√
1 − R(t) − d0

R(t)
=

√
d0

R(t)
.

Thus, to decrease this factor – and thus, to get larger and larger compu-
tational speed-up – we need to increase R(t). Since we want to keep rs to be
equal to R(t) − d0, this means that we need to also increase rs – and since rs

is proportional to the mass M(t) of the black hole, this means that we have to
continuously increase its mass.

How fast can we increase the radius? Probably we cannot grow R(t) faster
than the speed of light – since otherwise, in the coordinates of the distant
observer, we will have a physically impossible faster-than-light process. So, the
fastest we can grow is at some speed v0 not exceeding the speed of light. In this
case, R(t) = v0 · t, so the speed-up is proportional to ε(t) ∼ t−1/2, and, similarly
to the special relativity case, we get a square-root computational speed-up.

Resulting Speedup Scheme. To speed up computations, we place computers
where they are now. Then we look for a faraway massive black hole, so far away
that its gravitational effect on the computers is negligible.

Then we ourselves move close to this black hole, so that our distance from
this black hole changes with time t as R(t) = v0 · t. While we are doing that, we
are increasing the black hole’s mass, so that its mass at time t becomes equal to

M(t) =
c2 · (R(t) + d0)

2G
, where G is the gravitational constant.

Once the computers finish their computations, they send the results to us by
a direct light-speed signal.

In this scheme, we also get a square-root speedup.

This Is Probably All We Can Get. Please note that, similarly to the special
relativity scheme, this square root speedup is probably all we can gain: indeed,
we tried to extract as much slowing down as possible. A further speedup would
probably bring too dangerously close to the event horizon.

5 Ideally, We Should Use both Speedups

Moving at a speed close to the speed of light decreases the proper time from the
original value t to a much smaller amount s ∼ √

t. Similarly, a location near a
black hole also decreases the observable computation time to a square root of
its original value.

Thus, if we combine these two schemes – i.e., place ourselves near an ever-
increasing black hole and move (together with this black hole) at a speed close to
the speed of light, we will get both speedups, i.e., we will replace the perceived
computation time from T to

√√
T = 4

√
T .
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putation. In: Cuffaro, M.E., Fletcher, S.C. (eds.) Physical Perspectives on Compu-
tation, Computational Perspectives on Physics, pp. 195–215. Cambridge University
Press, Cambridge (2018)

2. Feynman, R., Leighton, R., Sands, M.: The Feynman Lectures on Physics. Addison
Wesley, Boston (2005)

3. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the 28th ACM Symposium on Theory of Computing, pp. 212–219 (1996)

4. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack.
Phys. Rev. Lett. 79(2), 325–328 (1997)

5. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cam-
bridge University Press, Cambridge (2000)

6. Thorne, K.S., Blandford, R.D.: Modern Classical Physics: Optics, Fluids, Plasmas,
Elasticity, Relativity, and Statistical Physics. Princeton University Press, Princeton
(2017)



Towards Verifying Logic Programs
in the Input Language of clingo

Vladimir Lifschitz1 , Patrick Lühne2 , and Torsten Schaub2(B)

1 University of Texas at Austin, Austin, USA
vl@cs.utexas.edu

2 University of Potsdam, Potsdam, Germany
{patrick.luehne,torsten}@cs.uni-potsdam.de

Abstract. We would like to develop methods for verifying programs in
the input language of the answer set solver clingo using software created
for the automation of reasoning in first-order theories. As a step in this
direction, we extend Clark’s completion to a class of clingo programs
that contain arithmetic operations as well as intervals and prove that
every stable model is a model of generalized completion. The translator
anthem calculates the completion of a program and represents it in a
format that can be processed by first-order theorem provers. Some prop-
erties of programs can be verified by anthem and the theorem prover
vampire, working together.

1 Introduction

Rules in a logic program and axioms in a first-order theory can serve, in many
cases, as alternative mechanisms for expressing the same mathematical idea. For
instance, the rule

q(X) ← p(X,Y ) (1)

defines a unary predicate q in terms of a binary predicate p in the language of
logic programs. The same relationship between p and q can be expressed by the
first-order formula

∀X(q(X) ↔ ∃Y p(X,Y )). (2)

Software used by practitioners of logic programming performs reasoning
about predicates that are defined by rules. Consider, for instance, the file

q(X) :- p(X, Y).
p(a, b). p(b, c). (3)
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Its first line represents rule (1); the second line expresses that p is the set
{〈a, b〉, 〈b, c〉}. If we feed this file into an answer set solver,1 then the atoms

q(a) q(b)

are generated: The solver tells us that q is the set {a, b}.
The efficiency of answer set solvers and the expressive possibilities of their

input languages make them valuable tools for many applications [2,6]. On the
other hand, the class of reasoning tasks that they can perform is rather limited.
For instance, it is clear that, under the assumption that q is defined by rule (1),
one of the sets p, q is nonempty if and only if the other is nonempty. But
there seems to be no way to instruct a logic programming system to verify this
assertion. Its syntactic form is not suitable for the forms of automated reasoning
implemented in these systems.

In the world of first-order theorem proving, the situation is different: The
fact that the formula

∃Xq(X) ↔ ∃XY p(X,Y )

is entailed by (2) can be easily verified by a theorem prover.
We would like to develop methods for verifying properties of logic programs

using software created for the automation of reasoning in first-order theories. In
particular, we would like to verify the correctness of logic programs with respect
to specifications expressed in traditional logical and mathematical notation. This
paper describes initial steps towards that goal.

As an example, consider the clingo rule

q(X + Y) :- p(X), p(Y). (4)

It describes an operation that transforms a set p of integers into another set q.
The translator anthem [11,12], implemented as part of this project, turns this
rule into a first-order formula describing the same transformation. The output
of anthem, along with a property of this transformation that we would like to
verify, can be fed into a proof assistant or a theorem prover. In Sect. 5, we will
see, for instance, that the theorem prover vampire [9] can use the output of
anthem to prove that, for every integer n, if all elements of p are less than or
equal to n, then all elements of q are less than or equal to 2n.

To take another example, the clingo program2

p(X) :- X = 0..n, X * X <= n.
q(X) :- p(X), not p(X + 1). (5)

1 Answer set solvers are logic programming systems that calculate stable models
(answer sets) of logic programs. Some of the best-known systems of this kind are
clingo (https://potassco.org/) and dlv (http://www.dlvsystem.com/).

2 As discussed in Sect. 2.1, the “interval term” 0..n in the first rule of this program
is an arithmetic expression that has multiple values—all integers from 0 to n. The
equality between a variable and an interval term in the body of a rule expresses that
the value of the variable is equal to one of the values of the term.

https://potassco.org/
http://www.dlvsystem.com/
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calculates the floor of
√

n, in the sense that the set q that it defines is the singleton
{	√n
}. When clingo is called to find the stable model of this program, the
value of the placeholder n is specified on the command line. In Sect. 5, we will
see how the tandem of anthem and vampire can be used to verify the claim
about the relationship between n and q.

The translation performed by anthem is a generalization of the well-known
process of program completion [1,14]. When applied to rule (1), for instance, it
gives a formula equivalent to (2). This generalization is applicable to programs
containing arithmetic operations and intervals, such as (4) and (5). According to
the theorem stated in Sect. 4.4 and proved in Sect. 6, this generalized completion
formula is satisfied by all stable models of the program. It follows that any
assertion that can be derived from it is a common property of all stable models.
This fact is at the root of the verification method proposed in this paper.

2 Programs

2.1 Terms and Their Values

We assume that three countably infinite sets of symbols are selected: numerals,
symbolic constants, and program variables.3 We assume that a 1-to-1 correspon-
dence between numerals and integers is chosen; the numeral corresponding to
an integer n is denoted by n. Program terms are defined recursively:

– Numerals, symbolic constants, program variables, and the symbols inf and
sup are program terms;

– if t1, t2 are program terms and op is one of the operation names

+ − × / \ . . (6)

then (t1 op t2) is a program term.

The expression −t is shorthand for 0 − t.
A program term, or another syntactic expression, is ground if it does not

contain variables. A ground expression is precomputed if it does not contain
operation names.

For every ground program term t, the set [t] of its values is defined as follows:

– if t is a numeral, a symbolic constant, inf , or sup, then [t] is {t};
– if t is (t1 + t2), then [t] is the set of numerals i + j for all integers i, j such

that i ∈ [t1] and j ∈ [t2]; similarly when t is (t1 − t2) or (t1 × t2);
– if t is (t1/t2), then [t] is the set of numerals 	i/j
 for all integers i, j such

that i ∈ [t1], j ∈ [t2], and j �= 0;
– if t is (t1\t2), then [t] is the set of numerals i − j · 	i/j
 for all integers i, j

such that i ∈ [t1], j ∈ [t2], and j �= 0;
3 We talk about program variables and program terms to distinguish them from the

variables and terms that are allowed in formulas (Sect. 3) and thus can be found in
the output of anthem.
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– if t is (t1 . . t2), then [t] is the set of numerals k for all integers k such that,
for some integers i, j,

i ∈ [t1], j ∈ [t2], and i ≤ k ≤ j.

It is clear that values of a ground program term are precomputed program terms
and that the set of values of any term is finite. It can be empty; for instance, if
c is a symbolic constant, then

[c + 1] = [1/0] = [1 . . 0] = ∅.

For any ground program terms t1, . . . , tn, we denote by [t1, . . . , tn] the set of
tuples r1, . . . , rn for all r1 ∈ [t1], . . . , rn ∈ [tn].

2.2 Rules and Programs

The programming language defined in this section is a subset of the input lan-
guage of clingo. We write programs in abstract syntax [7] that disregards details
related to representing rules by strings of ASCII characters. For example, expres-
sion (1) is the first rule of program (3) written in abstract syntax.

We assume a total order on precomputed program terms such that

(i) inf is its least element and sup is its greatest element,
(ii) for any integers m and n, m < n iff m < n,
(iii) for any integer n and any symbolic constant c, n < c.

An atom is an expression of the form p(t), where p is a symbolic constant
and t is a tuple of program terms. The parentheses can be dropped if t is
empty. A literal is an atom possibly preceded by one or two occurrences of not .
A comparison is an expression of the form (t1 ≺ t2), where t1, t2 are program
terms and ≺ is one of the relation names

= �= < > ≤ ≥ (7)

A rule is an expression of the form

Head ← Body , (8)

where

– Body is a conjunction (possibly empty) of literals and comparisons and
– Head is either an atom (then, we say that (8) is a basic rule), or an atom in

braces (then, (8) is a choice rule), or empty (then, (8) is a constraint).

The arrow can be dropped if Body is empty.
A program is a finite set of rules.
An interpretation is a set of precomputed atoms. The semantics of pro-

grams [7], reviewed in Sect. 6.1, defines which interpretations are stable models
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of a program. We describe here a few features of the semantics that are related
to the topic of this paper.

Terms with Multiple Values in the Head of a Rule. A rule of the form
p(t) ← Body , where t is a ground term, has the same meaning as the collection
of rules p(r) ← Body over all values r of t. For instance, the one-rule program
p(1 . . 3) has the same meaning as the collection of facts p(1), p(2), p(3). A rule
of the form p(1/0) ← Body has the same meaning as the empty program: The
set of stable models of any program would not be affected by adding such a rule.
Using the expression 1/0 in a program is not considered an error.

Terms with Multiple Values in the Body of a Rule. Similarly, a rule of
the form Head ← p(t), where t is a ground term, has the same meaning as the
set of rules Head ← p(r) over all values r of t. A rule of the form Head ← p(1/0)
has the same meaning as the empty program.

Instances of Rules. An instance of a rule R is a ground rule obtained from R by
substituting precomputed program terms for program variables. The semantics
of the language defines the stable models of a program in terms of the set of
instances of its rules. In this sense, program variables are used as variables for
arbitrary precomputed terms. For example, instances of the rule

q(X + 1) ← p(X) (9)

are rules of the form
q(r + 1) ← p(r), (10)

where r is an arbitrary precomputed term—a numeral, a symbolic constant,
inf , or sup. But if r is not a numeral, then rule (10) is equivalent to the empty
program, as discussed above. In this sense, the possibility of substituting terms
other than numerals for r in the process of constructing instances of rule (9) is
not essential. With the rule q(X) ← p(X + 1), the situation is similar.

2.3 Programs with Input

An input can be given to a clingo program in two ways: by specifying the
predicates corresponding to some of the predicate symbols, as in programs (1)
and (4), and by specifying the values of placeholders, as in program (5). The
definition of a program with input [10, Section 3], reproduced below, makes this
idea precise.

A predicate symbol is a pair p/n, where p is a symbolic constant and n is a
nonnegative integer. About a program or another syntactic expression we say
that a predicate symbol p/n occurs in it if it contains an atom of the form
p(t1, . . . , tn).

A program with input is a pair (Π,P ), where Π is a program and P is a finite
set such that each of its elements is

– a symbolic constant or
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– a predicate symbol that does not occur in the heads of the rules of Π.

The elements of P are the input symbols of (Π,P ).
An input for (Π,P ) is a function i defined on P such that

– for every symbolic constant c in P , i(c) is a precomputed term, and
– for every predicate symbol p/n in P , i(p/n) is a finite set of precomputed

atoms containing p/n.

A stable model of (Π,P ) for an input i is a stable model of the program
consisting of

– all atoms in i(p/n) for all predicate symbols p/n in P and
– the rules obtained from the rules of Π by substituting simultaneously the

precomputed terms i(c) for all occurrences of symbolic constants c in P .

We identify (Π, ∅) with Π.

Example 1. The claim about rule (4) made in the introduction can be stated
using this terminology as follows. Consider the program with input that consists
of the rule

q(X + Y ) ← p(X) ∧ p(Y ) (11)

(which is (4) written in abstract notation) and the input symbol p/1. We want
to verify that

for every integer n,
if I is a stable model of this program for an input i

and every term t such that p(t) ∈ i(p/1) is m
for some integer m such that m ≤ n,

then every term t such that q(t) ∈ I is m
for some integer m such that m ≤ 2n.

(12)

(The program in question has actually a unique stable model for every input i.
Verifying properties of this kind automatically goes beyond the scope of this
paper.) Since p/1 does not occur in the head of (11), the condition p(t) ∈ i(p/1)
in this statement can be replaced by p(t) ∈ I.

Example 2. To reformulate the claim about program (5), consider the program
with input that consists of the rules

p(X) ← X = 0 . . n ∧ X × X ≤ n,
q(X) ← p(X) ∧ not p(X + 1) (13)

(program (5) written in abstract notation) and the input symbol n. We want to
verify that

if I is a stable model of this program for an input i
and i(n) is a nonnegative integer,

then the set {t : q(t) ∈ I} is the singleton {	√i(n)
}.
(14)



196 V. Lifschitz et al.

3 Formulas

In formula (2), the implication left-to-right tells us that X does not belong to q
unless p contains a pair of the form 〈X,Y 〉. In program (1), this property of q
is not stated explicitly. Rather, we draw this conclusion from the fact that in
the absence of rules other than (1), an element of p that has the form 〈X,Y 〉
is the only possible evidence for the claim that X belongs to q. The completion
process, which turns (1) into (2), encodes this form of reasoning, specific for logic
programs, in the language of first-order logic.

The generalization of completion defined in this paper also takes into
account another difference between clingo programs and first-order formulas.
In clingo, a ground term may have several values or no values. In first-order
logic, the value of every ground term is unique. Among the operation names (6)
allowed in programs, not a single one represents a total function on the set
of precomputed terms. Consequently, these operation names cannot be used as
function symbols in a first-order language with variables for precomputed terms.

The formulas introduced in this section are first-order formulas with vari-
ables of two sorts: program variables (the same as in Sect. 2.1) that range over
precomputed program terms and new integer variables that range over integers.
In the semantics of the language, integers are identified with the correspond-
ing numerals. The first three of symbols (6) correspond to total functions on
integers, and they are allowed in terms with integer values. The last three are
banned from formulas altogether.

The definitions below follow [12, Section 5]. Arithmetic terms are formed from
numerals and integer variables using the operation symbols +, −, and ×. Arith-
metic terms, symbolic constants, program variables, and the symbols inf and
sup are collectively called formula terms. It is clear that precomputed formula
terms are identical to precomputed program terms. For every ground formula
term, its value is the precomputed term defined recursively in a natural way.

Atomic formulas are expressions of two forms: p(t), where p is a symbolic
constant and t is a tuple of formula terms, and (t1 ≺ t2), where t1 and t2 are
formula terms and ≺ is one of relation names (7). Formulas are formed from
atomic formulas using propositional connectives and quantifiers as usual in first-
order logic.

An interpretation I satisfies a closed atomic formula p(t1, . . . , tn) if the for-
mula p(v1, . . . , vn), where each vi is the value of ti, belongs to I. This relation
is extended to arbitrary closed formulas as usual in first-order logic.

A formula is universally valid if its universal closure is satisfied by all inter-
pretations. For instance, if X is a program variable and I is an integer variable,
then the formula ∃X(X = I) is universally valid because so is its universal clo-
sure ∀I∃X(X = I). The formula ∃I(X = I) expresses that X is an integer. We
denote it by is_int(X).

Formulas F and G are equivalent to each other if F ↔ G is universally valid.
For instance, p(I + J), where I and J are integer variables, is equivalent to
p(J + I).
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4 Completion

4.1 Transforming Program Terms into Formulas

For any program term t, the formula val t(Z), where Z is a program variable that
does not occur in t, expresses, informally speaking, that Z is one of the values
of t [12, Section 6]. It is defined recursively:

– if t is a numeral, a symbolic constant, a program variable, inf , or sup, then
val t(Z) is Z = t;

– if t is (t1 op t2), where op is +, −, or ×, then val t(Z) is

∃IJ(Z = I op J ∧ val t1(I) ∧ val t2(J))

where I, J are fresh integer variables;
– if t is (t1/t2), then val t(Z) is

∃IJQR(I = J × Q + R ∧ val t1(I) ∧ val t2(J)

∧ J �= 0 ∧ R ≥ 0 ∧ R < Q ∧ Z = Q),

where I, J , Q, R are fresh integer variables;
– if t is (t1\t2), then val t(Z) is

∃IJQR(I = J × Q + R ∧ val t1(I) ∧ val t2(J)

∧ J �= 0 ∧ R ≥ 0 ∧ R < Q ∧ Z = R),

where I, J , Q, R are fresh integer variables;
– if t is (t1 . . t2), then val t(Z) is

∃IJK(val t1(I) ∧ val t2(J) ∧ I ≤ K ∧ K ≤ J ∧ Z = K),

where I, J , K are fresh integer variables.

For example, valX+1(Z) is

∃IJ(Z = I + J ∧ I = X ∧ J = 1),

which is equivalent to
∃I(Z = I + 1 ∧ I = X).

Another example: val1..X(Z) is

∃IJK(I = 1 ∧ J = X ∧ I ≤ K ∧ K ≤ J ∧ Z = K),

which is equivalent to

is_int(X) ∧ 1 ≤ Z ∧ Z ≤ X.
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4.2 Transforming Bodies of Rules into Formulas

The translation τ b transforms bodies of rules into formulas.4 For any atom
p(t1, . . . , tn), each of τ b(p(t1, . . . , tn)), τ b(not not p(t1, . . . , tn)) is defined as

∃Z1 . . . Zn(val t1(Z1) ∧ · · · ∧ val tn(Zn) ∧ p(Z1, . . . , Zn))

(where each Zi is a fresh program variable), and τ b(not p(t1, . . . , tn)) is

∃Z1 . . . Zn(val t1(Z1) ∧ · · · ∧ val tn(Zn) ∧ ¬p(Z1, . . . , Zn)).

For any comparison t1 ≺ t2, τ b(t1 ≺ t2) is

∃Z1Z2(val t1(Z1) ∧ val t2(Z2) ∧ Z1 ≺ Z2).

If each of E1, . . . , Em is a literal or a comparison, then τ b(E1 ∧ · · · ∧ Em) stands
for τ b(E1) ∧ · · · ∧ τ b(Em).

For instance, τ b transforms p(1 . . X) into a formula equivalent to

is_int(X) ∧ ∃Z(1 ≤ Z ∧ Z ≤ X ∧ p(Z)).

The expression Y = 1 . . X is transformed into a formula equivalent to

∃Z1Z2(Z1 = Y ∧ is_int(X) ∧ 1 ≤ Z2 ∧ Z2 ≤ X ∧ Z1 = Z2)

and consequently to
is_int(X) ∧ 1 ≤ Y ∧ Y ≤ X.

4.3 Completed Definitions

Given a program with input (Π,P ) and a predicate symbol p/n that occurs in Π
and does not belong to P , we describe a formula called the completed definition
of p/n in (Π,P ).

In completed definitions, the symbolic constants c1, . . . , cl from P are rep-
resented by program variables C1, . . . , Cl, which are assumed to be pairwise
distinct and different from the variables occurring in Π.

The definition of a predicate symbol p/n in (Π,P ) is the set of all rules of Π
that have the forms

p(t1, . . . , tn) ← Body (15)

and
{p(t1, . . . , tn)} ← Body . (16)

If the definition of p/n in (Π,P ) consists of the rules R1, . . . , Rk, then the formula
representations F1, . . . , Fk of these rules are constructed as follows. Take fresh
program variables V1, . . . , Vn. If Ri is (15), then Fi is the formula

τ b(Body) ∧ val t1(V1) ∧ · · · ∧ val tn(Vn).
4 It differs from the translation τB [12, Section 6] in that it disregards the combina-

tion not not . Double negations are essential in the formulas that characterize stable
models but not in completion formulas.
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If Ri is (16), then Fi is the formula

τ b(Body) ∧ p(V1, . . . , Vn) ∧ val t1(V1) ∧ · · · ∧ val tn(Vn). (17)

The completed definition of p/n in Π is obtained from the formula

∀V1 · · · Vn

(

p(V1, . . . , Vn) ↔
k∨

i=1

∃UiFi

)

,

where Ui is the list of all variables occurring in rule Ri, by substituting C1, . . . , Cl

for c1, . . . , cl.

Example 1, continued. The completed definition of q/1 in this program is

∀V (q(V ) ↔ ∃XY (τ b(p(X)) ∧ τ b(p(Y )) ∧ valX+Y (V ))). (18)

It is equivalent to

∀V (q(V ) ↔ ∃IJ(p(I) ∧ p(J) ∧ V = I + J)). (19)

Example 2, continued. The completed definition of p/1 in this program is

∀V (p(V ) ↔ ∃X(τ b(X = 0 . . C) ∧ τ b(X × X ≤ C) ∧ V = X)).

It is equivalent to

∀V (p(V ) ↔ ∃I(I = V ∧ 0 ≤ I ∧ I ≤ C ∧ I × I ≤ C) ∧ is_int(C)). (20)

The completed definition of q/1 is

∀V (q(V ) ↔ ∃X(τ b(p(X)) ∧ τ b(not p(X + 1)) ∧ V = X)).

It is equivalent to

∀V (q(V ) ↔ ∃I(I = V ∧ p(I) ∧ ¬p(I + 1))). (21)

To clarify the role of substituting variables for input symbols in the process
of forming a completed definition, consider the modification of the program from
Example 2 in which n is not treated as an input symbol, so that the set of input
symbols is empty. The completed definition of p/1 is equivalent, in this case, to

∀V (p(V ) ↔ ∃I(I = V ∧ 0 ≤ I ∧ I ≤ n ∧ I × I ≤ n) ∧ is_int(n)). (22)

The subformula is_int(n) is false because the symbolic constant n is not an
integer. It follows that formula (22) is equivalent to ∀V ¬p(V ).
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4.4 Soundness of Completion

The completion of a program with input (Π,P ) is the conjunction of the following
formulas:

– for every predicate symbol that occurs in Π and does not belong to P , its
completed definition;

– for every constraint ← Body in Π, the formula obtained from the universal
closure of ¬τ b(Body) by substituting the variables C1, . . . , Cl for c1, . . . , cl.

It is clear that the completion has no free variables other than C1, . . . , Cl.
In the statement of the theorem, (Π,P ) is a program with input; the expres-

sion Comp(C1, . . . , Cl) stands for its completion.

Theorem. Every stable model of (Π,P ) for an input i satisfies the sentence
Comp(i(c1), . . . , i(cl)).

Corollary. For any formula F (C1, . . . , Cl) with all free variables explicitly
shown, if the formula

Comp(C1, . . . , Cl) → F (C1, . . . , Cl) (23)

is universally valid, then every stable model of (Π,P ) for an input i satisfies
F (i(c1), . . . , i(cl)).

The corollary shows that properties of stable models of a program with input
can be established by proving formulas of form (23) in a first-order theory with
universally valid axioms.

Example 1, continued. Let Comp be formula (19). To establish claim (12), it
is sufficient to prove the universal validity of the formula

Comp → ∀N(∀X(p(X) → ∃I(I = X ∧ I ≤ N))
→ ∀X(q(X) → ∃I(I = X ∧ I ≤ 2 × N))),

(24)

where N and I are integer variables and X is a program variable.

Example 2, Continued. Let Comp(C) be the conjunction of formulas (20)
and (21). To establish claim (14), it is sufficient to prove the universal validity
of the formula

Comp(C) → ∀N(N = C ∧ N ≥ 0

→ ∃M(∀X(q(X) ↔ X = M) ∧ M ≥ 0

∧ M × M ≤ N ∧ (M + 1) × (M + 1) > N)),

(25)

where M and N are integer variables and X is a program variable.
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Fig. 1. Completed definition (18) of q/1 from Example 1 generated by anthem. The
output of anthem is reformatted to improve readability

5 Verifying Properties of Programs

5.1 Generating Completed Definitions

Recall that our goal is to use a reasoning system, such as vampire, for verifying
properties of clingo programs, and that this can be accomplished by proving
formulas of form (23). To prepare an input for such a system, we need to gener-
ate the completed definitions of predicate symbols that occur in the antecedent
of (23). This calculation can be performed by version 0.3 of anthem.5 When
instructed, for instance, to calculate the completed definition of q/1 in pro-
gram (4), anthem generates formula (18) as shown in Fig. 1. anthem internally
converts the output to the TFF (“typed first-order formula”) format of the TPTP
language [15] and passes it on to vampire as an axiom. Formulas in this format
can be processed by many automated reasoners.

In the following experiments, we used vampire 4.4 with the options --mode
casc and --cores 8.

5.2 Verification of Example 1

The set of axioms that were available to vampire in the experiment with Exam-
ple 1 consists of two parts. One is the collection of properties of predicates and
functions on integers that vampire treats as standard. The other includes several
properties of the set of precomputed terms and of the correspondence between
numerals and integers, such as those expressed by conditions (i)–(iii) in Sect. 2.2.
All these axioms are universally valid in the sense of Sect. 3.

The claim about the relationship between p/1 and q/1 that we wanted to
verify in this example is expressed as shown in Fig. 2. anthem transformed this
formula into the TFF format, and vampire derived it from the axioms and the
completed definition generated by anthem (Fig. 1) in a fraction of a second.

5 https://github.com/potassco/anthem/releases.

https://github.com/potassco/anthem/releases
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Fig. 2. The claim from Example 1

Fig. 3. The induction axiom for p/1 from Example 2

5.3 Verification of Example 2

Example 2 was more of a challenge to us as the users of vampire, in two ways.
First, we were unable to prove its claim using only the axiom set described in
Sect. 5.2. Two more axioms, both expressing properties of numbers, had to be
added. One axiom says that an inequality can be multiplied by a positive integer.
Surprisingly, vampire 4.4, the version we worked with, was not able to prove
this fact. The other axiom expresses induction for the predicate p/1 (Fig. 3).

Second, vampire could not prove the conjecture that we are interested in
“with one blow,” at least in reasonable time. We used it as a proof assistant in
a sense that we gave it a sequence of auxiliary conjectures, one by one. As soon
as one of these “lemmas” was verified, we added it to the list of axioms.

Such interactive use of automated reasoners will be necessary, of course, when
working on verifying more complex programs.

6 Proof of the Theorem

6.1 Review: Definition of a Stable Model

For any ground atom p(t),

– τ(p(t)) stands for
∨

r∈[t] p(r);
– τ(not p(t)) stands for

∨
r∈[t] ¬p(r);

– τ(not not p(t)) stands for
∨

r∈[t] ¬¬p(r).

For any ground comparison t1 ≺ t2, τ(t1 ≺ t2) is

– � if the relation ≺ holds between some r1 from [t1] and some r2 from [t2];
– ⊥ otherwise.
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If each of E1, . . . , Em is a ground literal or a ground comparison, then τ(E1 ∧
· · · ∧ Em) stands for τE1 ∧ · · · ∧ τEm.

The propositional image of a ground rule R is the formula formed as follows.
If R is a ground basic rule p(t) ← Body , then its propositional image is

τ(Body) →
∧

r∈[t]

p(r).

If R is a ground choice rule {p(t)} ← Body , then its propositional image is

τ(Body) →
∧

r∈[t]

(p(r) ∨ ¬p(r)).

If R is a ground constraint ← Body , then its propositional image is ¬τ(Body).
For any program Π, its propositional image is the set of the propositional

images of all instances R of its rules. An interpretation is a stable model (or
answer set) of a program Π if it is an answer set of the propositional image
of Π [13].

6.2 Leading Special Case

It is sufficient to prove the theorem for the case when P is empty. To derive the
general case, we can reason as follows. If I is a stable model of (Π,P ), then I is
a stable model of the program Π ′ obtained from Π as described in Sect. 2.3—
by adding some rules of the form p(t) for predicate symbols p/n from P and
by substituting the terms i(c) for all symbolic constants c in P . By the special
case of the theorem with the empty P , I satisfies the completion Comp′ of Π ′.
It remains to observe that every conjunctive term of Comp(i(c1), . . . , i(cl)) is a
conjunctive term of Comp′.

To prove the special case when P is empty, we need to justify three claims:

Claim 1. If a program Π contains a constraint ← Body, then every stable model
of Π satisfies the universal closure of ¬τ b(Body).

In the statements of Claim 2 and Claim 3, the symbols Fi, Ui, and V1, . . . , Vn

are understood as in Sect. 4.3.

Claim 2. For every predicate symbol p/n occurring in Π, every stable model
of Π satisfies the universal closure of the formula

k∨

i=1

∃UiFi → p(V1, . . . , Vn).

Claim 3. For every predicate symbol p/n occurring in Π, every stable model
of Π satisfies the universal closure of the formula

p(V1, . . . , Vn) →
k∨

i=1

∃UiFi.
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6.3 Two Lemmas

The two lemmas below are similar to Propositions 1 and 2 from [12].

Lemma 1. For any ground program term t and any precomputed term r, the
formula val t(r) is equivalent to � if r ∈ [t] and to ⊥ otherwise.

Proof. The proof is by induction on t. If t is a numeral, a symbolic constant, inf ,
or sup, then r ∈ [t] iff r is t. On the other hand, val t(r) is r = t; this formula is
equivalent to � if r is t and to ⊥ otherwise.

Assume that the assertion of the lemma holds for t1 and t2.
If t is (t1 op t2), where op is +, −, or ×, then val t(r) is

∃IJ(r = I op J ∧ val t1(I) ∧ val t2(J)).

An arbitrary interpretation satisfies this formula iff there exist integers i, j such
that

r is i op j, i ∈ [t1], and j ∈ [t2].

This condition holds iff r ∈ [t].
If t is (t1/t2), then val t(r) is

∃IJQR(I = J × Q + R ∧ val t1(I) ∧ val t2(J)

∧ J �= 0 ∧ R ≥ 0 ∧ R < Q ∧ r = Q).

An arbitrary interpretation satisfies this formula iff there exist integers i, j, q,
rem such that

i = jq + rem, i ∈ [t1], j ∈ [t2], j �= 0, 0 ≤ rem < q, and r is q.

Equivalently: Iff there exist integers i and j such that

i ∈ [t1], j ∈ [t2], j �= 0, and r is 	i/j
.
This condition holds iff r ∈ [t].

If t is (t1\t2), then the proof is similar.
If t is (t1 . . t2), then val t(r) is

∃IJK(val t1(I) ∧ val t2(J) ∧ I ≤ K ∧ K ≤ J ∧ r = K).

An arbitrary interpretation satisfies this formula iff there exist integers i, j, k
such that

i ∈ [t1], j ∈ [t2], i ≤ k ≤ j, and r is k.

This condition holds iff r ∈ [t].

Lemma 2. If E is a ground literal or ground comparison, then τ b(E) is equiv-
alent to τE.

Proof. This is immediate from Lemma 1.
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6.4 Proof of Claim 1

Let I be a stable model of a program Π, let ← E1 ∧ · · · ∧ Em be a constraint
from Π, let x be the list of variables occurring in this constraint, and let r be a
list of precomputed terms of the same length as x. Since the rule

← (E1)
x
r ∧ · · · ∧ (Em)xr

is an instance of a rule of Π, the propositional image of Π includes the formula

¬(τ((E1)
x
r ) ∧ · · · ∧ τ((Em)xr )). (26)

Consequently, I satisfies (26). By Lemma 2, it follows that I satisfies the formula

¬(τ b((E1)
x
r ) ∧ · · · ∧ τ b((Em)xr )),

which can be also represented as

¬(τ b(E1)xr ∧ · · · ∧ τ b(Em)xr )

and as
(¬τ b(E1 ∧ · · · ∧ Em))xr .

Since r here is an arbitrary tuple of precomputed terms, it follows that I satisfies
the universal closure of ¬τ b(E1 ∧ · · · ∧ Em).

6.5 Proof of Claim 2

Let I be a stable model of a program Π, and let p/n be a predicate symbol
occurring in Π. We need to show that I satisfies the universal closure of each of
the formulas

Fi → p(V1, . . . , Vn) (27)

(i = 1, . . . , k). If Fi is a formula of form (17), corresponding to a choice rule,
then p(V1, . . . , Vn) is one of its conjunctive terms so that (27) is universally valid.
Otherwise, Fi is the formula

τ b(E1) ∧ · · · ∧ τ b(Em) ∧ val t1(V1) ∧ · · · ∧ val tn(Vn),

corresponding to a basic rule

p(t1, . . . , tn) ← E1 ∧ · · · ∧ Em. (28)

The set of free variables of (27) consists of the variables Ui that occur in rule (28)
and the variables V1, . . . , Vn. We need to prove that for every tuple r of precom-
puted terms of the same length as Ui and every tuple s1, . . . , sn of precomputed
terms, the formula

(τ b(E1))Ui
r ∧· · ·∧(τ b(Em))Ui

r ∧ val t′
1
(s1)∧· · ·∧ val t′

n
(sn) → p(s1, . . . , sn), (29)



206 V. Lifschitz et al.

where t′j (j = 1, . . . , n) stands for (tj)
Ui

r , is universally valid. By Lemma 1, the
formula val t′

j
(sj) is equivalent to � if sj ∈ [t′j ] and to ⊥ otherwise. Consequently,

it is sufficient to consider the case when

s1 ∈ [t′1], . . . , sn ∈ [t′n] (30)

(otherwise, (29) is universally valid). It remains to show that, under condi-
tion (30), I satisfies the formula

(τ b(E1))Ui
r ∧ · · · ∧ (τ b(Em))Ui

r → p(s1, . . . , sn).

This formula can be represented also as

τ b
(
(E1)

Ui

r

)
∧ · · · ∧ τ b

(
(Em)Ui

r

)
→ p(s1, . . . , sn).

By Lemma 2, it is equivalent to

τ
(
(E1)

Ui

r

)
∧ · · · ∧ τ

(
(Em)Ui

r

)
→ p(s1, . . . , sn). (31)

To show that I satisfies (31), consider the instance

p(t′1, . . . , t
′
n) ← (E1)Ui

r ∧ · · · ∧ (Em)Ui

r

of rule (28). The propositional image of that instance has the form

τ
(
(E1)

Ui

r

)
∧ · · · ∧ τ

(
(Em)Ui

r

)
→ C, (32)

where C is a conjunction containing the conjunctive term p(s1, . . . , sn). Since the
interpretation I is a stable model of Π, it satisfies (32) and, consequently, (31).

6.6 Proof of Claim 3

Consider the set Γ of formulas that includes

– for every instance p(t) ← Body of a basic rule of Π, the formulas

τ(Body) → p(r)

for all r in [t], and
– for every instance {p(t)} ← Body of a choice rule of Π, the formulas

τ(Body) ∧ ¬¬p(r) → p(r)

for all r in [t].

This set is strongly equivalent [13] to the propositional image of the program
obtained from Π by removing all constraints. It follows that every stable model I
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of Π is a stable model of Γ and, consequently, is supported by Γ [3, Proposi-
tion 2]. In other words, every element A of I is the consequent of an implication
from Γ such that its antecedent is satisfied by I.

To prove Claim 3, we need to show that for every predicate symbol p/n
occurring in Π and every tuple s1, . . . , sn of precomputed terms, every stable
model I of Π satisfies the formula

p(s1, . . . , sn) →
k∨

i=1

∃Ui(Fi)
V1,...,Vn

s1,...,sn
. (33)

Assume that p(s1, . . . , sn) is an element of I; we need to show that I satisfies
the consequent of (33). Consider an implication from Γ with the consequent
p(s1, . . . , sn) such that its antecedent is satisfied by I.

Case 1. This implication is the formula

τ
(
(E1)

Ui

r

)
∧ · · · ∧ τ

(
(Em)Ui

r

)
→ p(s1, . . . , sn) (34)

corresponding to an instance

p
(
(t1)Ui

r , . . . , (tn)Ui
r

) ← (E1)Ui
r ∧ · · · ∧ (Em)Ui

r

of a basic rule
p(t1, . . . , tn) ← E1 ∧ · · · ∧ Em

such that
s1 ∈ [

(t1)Ui
r

]
, . . . , sn ∈ [

(tn)Ui
r

]
. (35)

By Lemma 2, the antecedent of (34) is equivalent to the formula

τ b
(
(E1)

Ui

r

)
∧ · · · ∧ τ b

(
(Em)Ui

r

)
,

which can be also represented as

(τ b(E1))Ui
r ∧ · · · ∧ τ b((Em))Ui

r .

On the other hand, from conditions (35) and Lemma 1, we conclude that each
of the formulas

val t1(s1)
Ui
r , . . . , val tn(sn)

Ui
r

is equivalent to �. It follows that I satisfies the conjunction

(τ b(E1))Ui
r ∧ · · · ∧ τ b((Em))Ui

r ∧ val t1(s1)
Ui
r ∧ · · · ∧ val t1(s1)

Ui
r ,

which can be written as
(Fi)

V1,...,Vn,Ui

s1,...,sn,r
.

It follows that I satisfies the consequent of (33).
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Case 2. The implication from Γ with the consequent p(s1, . . . , sn) such that its
antecedent is satisfied by I is the formula

τ
(
(E1)

Ui

r

)
∧ · · · ∧ τ

(
(Em)Ui

r

)
∧ ¬¬p(s1, . . . , sn) → p(s1, . . . , sn)

corresponding to an instance
{
p

(
(t1)Ui

r , . . . , (tn)Ui
r

)} ← (E1)Ui
r ∧ · · · ∧ (Em)Ui

r

of a choice rule
{p(t1, . . . , tn)} ← E1 ∧ · · · ∧ Em

such that the terms t1, . . . , tn satisfy condition (35). The proof is similar.

7 Related Work

From early research on the relationship between stable models and completion
for programs without arithmetic [5], we know that every stable model of such a
program is a model of its completion and that the converse holds under a syn-
tactic condition that is now called tightness [3,4]. That work has been extended
to clingo programs with arithmetic [8], but completed definitions as defined
in that paper are not expressed in a standard first-first order language and,
consequently, cannot be processed by existing theorem provers.

The definition of a formula proposed in earlier work on anthem [12] does not
suffer from that defect. vampire is used there to verify the strong equivalence
relation between logic programs.

Acknowledgements. We are grateful to Laura Kovács, Giles Reger, and Martin Suda
for taking the time to answer our questions about the use of vampire. Also, we would
like to thank the anonymous referee for giving us useful suggestions.
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Abstract. Starting from a classical theorem of Gurevich and Kokorin
we survey recent diverging developments of the theories of lattice-ordered
abelian groups and their counterparts equipped with a distinguished
order unit. We will focus on decision and recognition problems. As an
application of Elliott’s classification, we will touch on word problems of
AF C*-algebras.

Keywords: Lattice-ordered abelian group · Unital �-group · Word
problem · Decision problem · Baker-Beynon duality · Markov
unrecognizability theorem · Kroupa-Panti theorem · Marra-Spada
duality · Regular complex · MV-algebra · Finitely generated projective
�-group · Cabrer characterization theorem · Elliott classification · AF
C*-algebra

1 Developments of a Theorem of Gurevich and Kokorin

We refer to [6] for background on lattice-ordered abelian groups, �-groups for
short. A unital �-group is an �-group with a distinguished (strong) order unit.
We let R denote the additive group of real numbers with its usual total order.

A key tool for Hájek’s proof of the completeness of Basic Logic is provided by
partial embeddings of totally ordered abelian groups into R. As shown by Hájek
himself in [35, pp. 25–26], the existence of such partial embeddings immediately
follows from a theorem of Gurevich and Kokorin [34] stating that a universal
formula in the first-order language of ordered abelian groups holds in all totally
ordered abelian groups if it holds in R. Actually, partial embeddings and �-groups
are intertwined in a symbiotic relationship: the construction in the following
elementary proof finds several applications to the basic theory of unital and
non-unital �-groups.

Proposition 1. Any totally ordered abelian group G is partially embeddable
into R. In other words, for each finite set X ⊆ G there is a one-one map f : X →
R which is a partial isomorphism, in the sense that for all x, y, z ∈ G,

(i) z = x + y iff f(z) = f(x) + f(y);
(ii) x ≤ y iff f(x) ≤ f(y).
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Proof. Let X = {x1, . . . , xn} ⊆ G with x1 < · · · < xn. For a uniquely determined
integer r ∈ {1, . . . , n} the subgroup of G generated by X can (and will) be
identified with the rank r free abelian group Z

r. Accordingly, the set C = {x ∈
Z

r | x ≥ 0 in G} is a submonoid of Z
r such that

C ∩ −C = {0} and C ∪ −C = Z
r.

For any two vectors u, v ∈ Z
r we write u ≤C v iff v − u ∈ C (iff u ≤ v in G).

Equipped with the binary relation ≤C , Z
r becomes a totally ordered abelian

group. We next set

dl = xl+1 − xl, whence 0 	= dl ∈ C, (l = 1, . . . , n − 1). (1)

Claim: If 0 ≤ μ1, . . . , μn−1 ∈ R and
∑n−1

l=1 μldl = 0 then μ1 = · · · = μn−1 = 0.

Proof of Claim. For each i = 1, . . . , n we may write xi = (xi1, . . . , xir) for
suitable integers xij . For each j = 1, . . . , r and l = 1, . . . , n − 1, let dlj =
xl+1j − xlj . Arguing by way of contradiction, suppose the homogeneous linear
system

∑n−1
l=1 μldlj = 0 has a solution μ̄1, . . . , μ̄n−1 ≥ 0 with μ̄e > 0 for some

e ∈ {1, . . . , n − 1}. We may safely assume that each one of μ̄1, . . . , μ̄n−1 is
rational. Multiplication by the least common denominator of μ̄1, . . . , μ̄n−1 yields
integers m̄1, . . . , m̄n−1 ≥ 0 such that m̄e ≥ 1 and

∑n−1
l=1 m̄ldl = 0. Since by

(1), 0 <C dl for each l = 1, . . . , n − 1, then 0 <C de ≤C

∑n−1
l=1 m̄ldl = 0, a

contradiction that settles our claim.
For any vectors u, v ∈ R

r let u · v denote their scalar product. In view of our
claim, Gordan’s theorem1 yields a vector g = (γ1, . . . , γr) ∈ R

r such that

dl · g > 0 for each l = 1, . . . , n − 1. (2)

Without loss of generality, the real numbers γ1, . . . , γr can be assumed linearly
independent over Q. Stated otherwise, the map

θ : y = (y1, . . . , yr) ∈ Z
r 
→ y · g = y1γ1 + · · · + yrγr ∈ R (3)

is an isomorphism of Z
r onto the subgroup of R (freely) generated by γ1, . . . , γr.

Therefore, the restriction f of θ to X satisfies condition (i), and the monoid
C ′ = {h ∈ Z

r | h · g ≥ 0} satisfies

C ′ ∩ −C ′ = {0} and C ′ ∪ −C ′ = Z
r, (4)

and equips Z
r with a new total order ≤C′ . Since by (2), 0 <C′ dl ∈ C ′, then

by (1), x1 <C′ x2 <C′ · · · <C′ xn. By (i) and (3)–(4),

0 < θ(dl) = θ(xl+1) − θ(xl) = f(xl+1) − f(xl) for each l = 1, . . . , n − 1,

whence f(x1) < f(x2) < · · · < f(xn). Thus f also satisfies condition (ii). �
1 Like its equivalent reformulation known as Farkas’ lemma, this is one of the many

“Theorems of the Alternative” in Linear Programming and Convex Analysis. See [8,
Theorem 2.2.1, Lemma 2.2.7, Exercise 4, p. 25], [19, 16.10 (i), (ii)], [51, §7.3, and
§7.8 (31)].
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The foregoing proof abbreviates the original one in [21], and has a key role
in the short proof [20, pp. 171–173] of the completeness theorem for �Lukasiewicz
infinite-valued logic, first proved by Rose and Rosser in [49] using a syntactical
method, and then by Chang in [16] using model-theoretic techniques. Partial
isomorphisms are also similarly applied to prove the following basic results in
�-group theory:

Proposition 2. (a) If an equation fails in an �-group then it fails in R.2

(b) If an equation fails in a unital �-group then it fails in the additive group
R of real numbers with the usual order and the element 1 as the distinguished
order unit.

Using the continuity of the lattice operations in free �-groups and in free unital
�-groups (see below for details), one can further replace R by Z in (a), and by
Q in (b).

Gurevich devoted much energy to �-groups, well beyond [34]. At the very
beginning of his scientific career he obtained the following main results: Answer-
ing a question of Tarski, in [30,31] he proved that the first-order theory of totally
ordered abelian groups is decidable. Answering a question of Malcev, in [32] he
proved that the first-order theory of �-groups is hereditarily undecidable. See
[28] and [33, 1.2] for further information on his later work on the subject and its
ramifications.

2 �-groups and Unital �-groups: Structural Differences

We will survey a selection of recent results in the theories of �-groups and, espe-
cially, unital �-groups and their underlying geometric structure, with particular
reference to decision and recognition problems. In [36, §2] one can find a fairly
updated account of the similarities between the classes of �-groups and unital
�-groups. In the following sections we will instead single out a number of main
structural dissimilarities. The equational definability of �-groups vs. the first-
order undefinability of unital �-groups is not one of them, because there is a
categorical equivalence Γ between unital �-groups and the equational class of
MV-algebras, [41, Theorem 3.9].

As a first example, maximal ideals need not exist in �-groups, [6, 13.1.8], but
they always exist in unital �-groups, [6, 13.2.6]. As a consequence, for every unital
�-group, the Riesz representation theorem combined with the lattice version of
the Stone-Weierstrass theorem yields the following result:

Proposition 3. (See [43, §10 and references therein].) For every unital �-group
(G, u) the integral yields a one-one correspondence between the set of regular
Borel probability measures on the maximal spectral space of G with the hull-
kernel topology, and the set of normalized positive linear functionals on (G, u).

2 This result goes back to Weinberg [54] who proved that every free �-group is a
subdirect product of copies of the integers.
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The MV-algebraic counterpart of Proposition 3, known as the Kroupa-Panti
theorem, is easily obtainable as a corollary by a routine application of the Γ
functor.

A second example is given by the following result. While this is a routine
exercise for the working category theorist, a proof is given for the sake of com-
pleteness.

Proposition 4. �-groups and unital �-groups do not form equivalent categories.

Proof. The category of �-groups has a zero (= both initial and terminal) object,
namely the singleton �-group {0}. The category of unital �-groups has a terminal
object {0}, an initial object (Z, 1), and these are not isomorphic. Since categorical
equivalence preserves zero objects, these two categories are not equivalent. �
The �-isomorphism Problem for �-groups
A third main dissimilarity between �-groups and unital �-groups stems from the
different piecewise linear structures underlying their respective free objects.

As a Turing machine input, any combinatorial manifold may be coded by
a finite union P of simplexes Si in some euclidean space R

n, where the coor-
dinates of each vertex of Si are rational. Any such P is said to be a ratio-
nal polyhedron.3 Homeomorphisms are correspondingly replaced by rational PL-
homeomorphisms, i.e., invertible (affine) piecewise linear maps φ such that every
linear piece of both φ and its inverse has rational coefficients.

The following celebrated result, known as Markov unrecognizability theorem,
put an end to the time-honored program of equipping every combinatorial man-
ifold P with a computable set of complete invariants:

Proposition 5. (A.A. Markov, 1958, see [18], [38, p.144], [52] and references
therein.) The problem whether two rational polyhedra P and Q are rationally
PL-homeomorphic is undecidable.

And yet, the recognition problem is recursively enumerable: some Turing
machine effectively enumerates all pairs of rationally PL-homeomorphic rational
polyhedra.

Let Fn denote the free n-generator �-group. The Baker-Beynon duality theory
[2], [5] yields a geometric representation of Fn as the �-group of all real-valued
piecewise homogeneous linear continuous functions over R

n, each linear piece
having integer coefficients. Every �-group term t(X1, . . . , Xn) is then interpreted
in Fn as an element t̂ : R

n → R of Fn. To this purpose, for each i = 1, . . . , n
one sets X̂i = the ith coordinate function πi : R

n → R, and then inductively lets
the operation symbols ∨,∧,+,− act as the pointwise operations of max, min,
sum and subtraction in R. The zero symbol is interpreted as the constant zero
function over R

n.
The undecidability of the �-isomorphism problem for finitely presented �-

groups follows by combining Markov’s theorem with the Baker-Beynon duality:
3 P need not be convex, nor connected. The simplexes Si need not have the same

dimension. This is the terminology of [53]. Polyhedra are called “compact polyhedra”
in [50].
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Proposition 6. [29, Theorem 1] The following problem is undecidable:
INSTANCE: �-group terms s and t in the same variables X1, . . . , Xn.
QUESTION: Is the quotient of the free n-generator �-group Fn by the ideal gen-
erated by ŝ, isomorphic to the quotient of Fn by the ideal generated by t̂?

For the sake of completeness we record here further decidability and unde-
cidability results concerning Fn:

Proposition 7. [44, Theorem 1.1] The following problem is decidable:
INSTANCE: �-group terms t1, . . . , tn in the same variables X1, . . . , Xm.
QUESTION: Is the �-subgroup of Fm generated by t̂1, . . . , t̂n isomorphic to Fn?

Proposition 8. [44, Theorem 1.2] The following problem is undecidable:
INSTANCE: �-group terms t1, . . . , tn in the same variables X1, . . . , Xm, and an
integer l > 0.
QUESTION: Is the �-subgroup of Fm generated by t̂1, . . . , t̂n isomorphic to Fl ?

Proposition 9. [45, Theorem 1.3] The following problem is decidable:
INSTANCE: �-group terms t1, . . . , tn in the same variables X1, . . . , Xn.
QUESTION: Is {t̂1, . . . , t̂n} a free generating set of Fn?

The Unital �-isomorphism Problem for Unital �-groups
For n = 1, 2, . . ., and nonempty compact set Q ⊆ R

n we denote by

MR(Q) (5)

the unital �-group of all integral piecewise (affine) linear continuous functions
f : Q → R. In other words, there are linear polynomials p1, . . . , pm with integer
coefficients such that for all x ∈ Q there is i ∈ {1, . . . , m} with f(x) = pi(x).
MR(Q) is equipped with the pointwise operations +,−,max,min of the totally
ordered group R, and with the constant function 1 on [0, 1]n as the distinguished
order unit.4

By McNaughton’s representation theorem, [39], [22, Theorem 9.1.5], the
equivalence Γ of [41, §3] sends MR([0, 1]n) into the free n-generator MV-algebra.
The freeness properties of MR([0, 1]n) in the category of unital �-groups are
made explicit by Proposition 2(b), as well as by the following result together
with Proposition 11 below:

Proposition 10. [41, Corollary 4.16] The coordinate maps ξi : [0, 1]n → R yield
a generating set of MR([0, 1]n). For every unital �-group (G, u) and elements
0 ≤ g1, . . . , gn ≤ u, if the set {g1, . . . , gn, u} generates G then there is a unique
unital �-homomorphism ψ of MR([0, 1]n) onto G such that ψ(ξi) = gi for each
i = 1, . . . , n.

An ideal i of a unital �-group (G, u) is the kernel of a unital �-homomorphism
of (G, u). We say that i is principal if it is finitely generated. Equivalently, i is
generated by a single element of (G, u).
4 MR(Q) is denoted M(Q) in [10].
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A unital �-group (G, u) is finitely presented if for some n = 1, 2, . . . and
principal ideal j of G there is a unital �-isomorphism between (G, u) and the
quotient MR([0, 1]n)/j.

In category theory there is a notion of “finitely presented object” that coin-
cides with the algebraic one for equational classes (see [1] and [27]). However, this
latter notion is inapplicable to unital �-groups. More generally, let SET denote
the category of sets with functions as arrows. Following Gabriel and Ulmer [27,
6.1] let us say that an object in a locally small category C is finitely presentable
in the categorical sense if the hom-functor

HomC(A,−) : C → SET

preserves filtered colimits.
Since unital �-groups are equivalent to the equational class of MV-algebras

via the Γ functor, from [1] or [27] we have:5

Proposition 11. For every unital �-group (G, u) the following conditions are
equivalent:

(i) (G, u) is finitely presented, in symbols, (G, u) ∼= MR([0, 1]n)/j for some
principal ideal j of G.

(ii) (G, u) is finitely presentable in the categorical sense.

Any unital �-group terms s, t in the variables X1, . . . , Xn determine elements
ŝ, t̂ ∈ MR([0, 1]n) in the usual way, once each variable Xi is interpreted as the
ith coordinate function ξi : [0, 1]n → R.

The counterpart of the decision problem in Proposition 6 for finitely presented
unital �-groups is as follows:

INSTANCE: Unital �-group terms s(X1, . . . , Xn) and t(X1, . . . , Xn).
QUESTION: Is the quotient of the free n-generator unital �-group MR([0, 1]n)
by the ideal generated by ŝ, unitally �-isomorphic to the quotient of MR([0, 1]n)
by the ideal generated by t̂?

It is not known whether this problem is undecidable.

The corresponding (via Proposition 13 below) geometric recognition problem is
also open:

INSTANCE: Rational polyhedra P and Q in euclidean n-space.
QUESTION: Does there exist a Z-homeomorphism of P onto Q, i.e., a PL home-
omorphism η such that all linear pieces of η and η−1 have integer coefficients?

5 See [10, Theorem 2.2] for details.
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3 The Polyhedral Geometry of Unital �-groups

Over past years, perhaps now more than ever before, the deep interplay between
algebra, order, and geometry in the theory of unital �-groups has found applica-
tions outside the realm of ordered groups. The next few lines are devoted to the
relevant (altogether minimal) prerequisites in polyhedral geometry necessary to
give an account of these applications.

Regular Triangulations and Rational Polyhedra
We refer to [50] and [53] for background on polyhedral topology. For any simplex
T we denote by ∂T the set of its vertices. For any F ⊆ ∂T , the convex hull of F
is called a face of T .

For every simplicial complex K, its support |K| is the pointset union of all
simplexes of K, and ∂K denotes the set of its vertices, i.e., the set of the vertices
of its simplexes. A simplicial complex K is said to be rational if each simplex T
of K is rational, i.e., all vertices of T are rational. Given a rational polyhedron
P , a rational triangulation of P is a rational simplicial complex K such that
P = |K|. It is well known that every rational polyhedron P can be equipped
with a rational triangulation, (see, e.g., [4, Theorem 1]).

For any rational point r = (r1, . . . , rn) ∈ R
n we let den(r) denote the least

common denominator of the coordinates of r. The vector

(den(r) · r1, . . . ,den(r) · rn, den(r)) ∈ Z
n+1

is called the homogeneous correspondent of r.
A simplex T ⊆ R

n is said to be regular6 if it is rational and the set of
homogeneous correspondents of its vertices is part of a basis of the free abelian
group Z

n+1. A regular triangulation of a rational polyhedron P is a triangulation
of P consisting of regular simplexes.

Proposition 12. Every rational polyhedron has a regular triangulation.

Proof. This is a consequence of the affine version of the desingularization pro-
cedure for rational fans, [26, p. 253], [48, Chapter 1]. See [42, Proposition 1] for
details. �

For any rational polyhedron P ⊆ R
n a map ζ : P → R

m is called a Z-map if
there is a rational triangulation K of P such that over every simplex T of K,
ζ coincides with some (affine) linear map ηT with integer coefficients. Thus in
particular, a map ι : P → Q is a Z-homeomorphism iff it is a one-one Z-map of
P onto Q whose inverse is also a Z-map.

A Duality
Let PZ denote the category whose objects are rational polyhedra in R

n (n =
1, 2, . . .), and whose morphisms are Z-maps. Let Ufp denote the category of
finitely presented unital �-groups with unital �-homomorphisms.

6 “Unimodular” in [22] and [42].
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Proposition 13 (Duality). Let the functor MR : PZ → Ufp be defined by7:

Objetcs: For P ∈ PZ, MR(P ) is the set of all Z-maps from P into R.
Arrows: For ψ : P → Q a Z-map, MR(ψ)(f) = f ◦ ψ, for each f ∈ MR(Q),

where ◦ denotes composition. Then MR yields a duality between the categories
PZ and Ufp. Stated otherwise, MR is a categorical equivalence between PZ and
the opposite category of Ufp.

Proof. Combine the Marra-Spada duality theorem [37, Theorem 3.4] with [41,
§3], where the equivalence Γ between unital �-groups and MV-algebras is con-
structed. By direct inspection, Γ (MR(P )) = the MV-algebra of [0, 1]-valued
functions of MR(P ) equipped with the pointwise MV-algebraic operations of
[0, 1]. Recalling Proposition 11(i), finitely presented unital �-groups correspond
via Γ to finitely presented MV-algebras. �

For later use we record here a nontrivial consequence of this duality:

Proposition 14. [10, Theorem 3.3] Given rational polyhedra P ⊆ R
n and

Q ⊆ R
m, let us agree to say that a Z-map η : P → Q is strict if it is a Z-home-

omorphism onto its range. Then the following conditions are equivalent:

(i) η is a strict Z-map.
(ii) den(η(x)) = den(x) for each rational point x ∈ P .
(iii) For each regular simplex T ⊆ P , the image η(T ) is regular simplex, and

den(η(x)) = den(x) for each x ∈ ∂T .
(iv) For some (equivalently, for every) regular triangulation K of P such that η

is (affine) linear on each simplex of K, η(K) is a regular triangulation of
η(P ) and den(η(x)) = den(x) for each x ∈ ∂K.

(v) The map MR(η) : MR(Q) → MR(P ) is surjective.

4 Exact and Finitely Generated Projective Unital
�-groups

A unital �-group (G, u) is said to be exact if it is finitely presented and there
exists a one-one unital �-homomorphism of (G, u) into some free unital �-group
MR([0, 1]n).

A simplex T is said to be strongly regular if it is regular and the greatest
common divisor of the denominators of the vertices of T is equal to 1. A tri-
angulation K of a polyhedron P ⊆ [0, 1]n is strongly regular if each maximal
simplex of K is strongly regular. When P has a strongly regular triangulation
we say that P is strongly regular.

Proposition 15. Let K and H be regular triangulations of a polyhedron P ⊆
[0, 1]n. Then K is strongly regular iff so is H.

7 Note that our present MR(Q) agrees with (5) above.
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Proof. [13, Lemma 4.2]. The proof relies on the positive solution of the weak
Oda factorization conjecture, [26, p. 183] by Morelli, [40], and W�lodarczyk, [56].
�

Example. To see that the cube [0, 1]n is strongly regular let us equip the set
{0, 1}n of its vertices with the following partial order: (v1, . . . , vn) � (w1, . . . , wn)
iff vi ≤ wi for each i = 1, . . . , n. Let K be the triangulation of [0, 1]n whose
maximal simplexes are the convex closures of the n! maximal chains in the poset
〈{0, 1}n,�〉. Then K is strongly regular.

For all points v, w ∈ R
n we let dist(v, w) denote their euclidean distance. As

usual, “gcd” denotes greatest common divisor.
Strong regularity has the following local characterization:

Proposition 16. [10, Theorem 4.4] Let P ⊆ R
n be a rational polyhedron. Then

the following conditions are equivalent:

(i) P is strongly regular.
(ii) For each v ∈ P and 0 < δ ∈ R there exists w ∈ P such that dist(v, w) < δ,

and gcd(den(v),den(w)) = 1.

Proposition 17. [10, Theorem 4.10] A unital �-group is exact iff it is unitally
�-isomorphic to MR(P ) for some strongly regular connected polyhedron P ⊆ R

n

containing a vertex of the cube [0, 1]n.

A Z-map ρ : P → P is said to be a Z-retraction of P if ρ ◦ ρ = ρ. The
rational polyhedron R = ρ(P ) is said to be a Z-retract of P .

Proposition 18. [14, Proposition 7.2] For R a rational polyhedron, presented
as a union of rational simplexes in [0, 1]n, checking whether R is a Z-retract of
[0, 1]n is an undecidable problem.

Finitely Generated Projective Unital �-Groups
As a particular case of a general definition, a unital �-group (G, u) is said to be
projective if whenever ψ : (G1, u1) → (G2, u2) is a unital �-homomorphism onto
(G2, u2) and φ : (G, u) → (G2, u2) is a unital �-homomorphism, there is a unital �-
homomorphism θ : (G, u) → (G1, u1) such that φ = ψ ◦θ. Equivalently, there are
unital �-homomorphisms ι : (G, u) → MR([0, 1]n) and σ : MR([0, 1]n) → (G, u)
such that σ ◦ ι is the identity map on G.

For unital �-groups we have the following proper inclusions, [10, (4.1), Theo-
rem 4.10]:

Finitely generated projective � Exact � Finitely presented.

Proposition 19. A unital �-group is finitely generated projective iff for some
n = 1, 2, . . . it is unitally �-isomorphic to MR(P ) for some Z-retract P of [0, 1]n.

Proof. From Proposition 13. See [12, Theorem 1.2] for details. �
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A deeper characterization will be given in Proposition 21. To this purpose,
let K be a simplicial complex, S an n-simplex of K, and T an (n − 1)-face of
S which is not a face of any other n-simplex of K. T is then called a free face
S. If S has a free face, S is not a proper face of any simplex of K, and hence
K\{S, T} is a subcomplex of K. The transformation of K 
→ K\{S, T} is known
as an elementary collapse. If a simplicial complex Λ can be obtained from K by
a sequence of elementary collapses we say that K collapses to Λ. A simplicial
complex K is collapsible if it collapses to the simplicial complex consisting of one
of its vertices (equivalently, of any of its vertices [55, p. 248]).

Proposition 20. [13, Theorem 6.1] Let P ⊆ [0, 1]n be a polyhedron. Suppose
P satisfies the following conditions:
(i) P has a collapsible triangulation;
(ii) P contains a vertex of the cube [0, 1]n;
(iii) P is strongly regular.
Then P is a Z-retract of [0, 1]n.

The last main dissimilarity between �-groups and unital �-groups considered
in this paper concerns finitely generated projectives. Beynon [5, Theorem 3.1]
proved that an �-group is finitely generated projective iff it is finitely presented.8

But for unital �-groups being finitely generated projective is a much stricter
condition than being finitely presented:

Proposition 21. (a) Let (G, u) be a finitely generated projective unital �-group.
Arbitrarily pick elements g1, . . . , gn ∈ [0, u] that form a generating set of (G, u).
Then (G, u) is unitally �-isomorphic to the unital �-group MR(P ) obtained by
restricting to P the functions of MR([0, 1]n), for some set P satisfying the fol-
lowing conditions:
(i) P is a rational polyhedron in [0, 1]n containing a vertex of the cube [0, 1]n;
(ii) P is contractible (i.e., homotopy equivalent to a point);
(iii) P is strongly regular.

(b) Conversely, if a unital �-group (G, u) is unitally �-isomorphic to MR(P )
with P satisfying conditions (i)–(iii) for some n, then (G, u) is finitely generated
and projective.

Proof. (a) [13, Theorem 5.2, Corollary 7.1(I)]. (b) This is Cabrer’s characteriza-
tion theorem [11, Theorem 4.8], a remarkable tour de force in algebraic topology.
�

Computable Numerical Invariants
At the end of the day, �-groups and unital �-groups have very different geometric,
topological, and algebraic properties. Further, every finitely presented unital �-
group MR(P ) is blessed with the wealth of computable numerical invariants
typically arising from the regular triangulations of its dual rational polyhedron
P given by Proposition 13. These invariants include:
8 Also see Baker’s analysis of finitely generated projective vector lattices in [2, Theo-

rem 5.1].
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The number nd of rational points of denominator d lying in P , d = 1, 2, . . . .
(Proposition 14 shows that Z-homeomorphisms preserve denominators of
rational points.)
The list LP of cardinalities of all regular triangulations of P having the small-
est possible number of vertices. (By Proposition 12, LP is nonempty. Trivially,
LP is finite.)
The smallest number m = mP such that there is a Z-map η which embeds P
into R

m with preservation of denominators. (By Proposition 14, any such η
is necessarily a “strict” map.)
The d-dimensional rational volume λd(P ) of P , for each d = 1, 2, . . . ,mP .
(See [42, Theorem 2.1].)

None of these invariants makes sense for finitely presented �-groups and their
rational fans given by the Baker-Beynon duality. The abundance of these com-
putable invariants may account for the impasse over the isomorphism problem
of finitely presented unital �-groups, despite the time and effort devoted to it.

5 Unital �-groups, MV-algebras, and Elliott’s
Classification

Finite and Infinite Quantum Systems
Any quantum system S with finitely many degrees of freedom has an irreducible
representation on a Hilbert space HS which is uniquely determined up to unitary
equivalence (this is von Neumann’s uniqueness theorem). Observables are self-
adjoint operators in HS. Pure states are extremal positive linear normalized
functionals on the C*-algebra B(HS) of bounded linear operators on HS. States
are weighted sums of pure states.

On the contrary, systems T in quantum statistical mechanics or in relativistic
quantum field theory have infinitely many degrees of freedom. T typically has
many inequivalent representations, corresponding to its macroscopically different
classes of states, and we can no longer speak of the Hilbert space of T. The
appropriate mathematization of T is given by a C*-algebra AT. The observables
(resp., the states) of T are the self-adjoint elements of AT, (resp., the normalized
positive linear functionals on AT). In quantum statistical mechanics an essential
feature of a macroscopic assembly T of particles is that the state equations are
size independent. We are naturally led to an idealization of T as an infinite
volume limit of increasingly large finite systems T1 ⊆ T2 ⊆ T3 ⊆ · · · with
constant density.9 The observables of T are constructed from the self-adjoint
elements of what Bratteli [9] named an AF C*-algebra A = AT, i.e., the norm
closure of an ascending sequence of finite-dimensional C*-algebras, all with the
same unit.

9 In this way one can describe, for instance, phase transitions as singularities in the
thermodynamic potentials.
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Projections and Their Murray-von Neumann Equivalence Classes
Propositions expressing the properties of a finite system S are interpreted by
Birkhoff and von Neumann as projections of B(HS). The set of projections is
equipped with a form of complementation and lattice operations that are remi-
niscent of the boolean connectives.

Projections in any AF C*-algebra A have no lesser role than projections have
in B(HS). Following [23], [24], for any two projections p, q of an AF C*-algebra
A we write p ∼ q if p is Murray-von Neumann equivalent to q. This means
p = x∗x and q = xx∗ for some x ∈ A. The equivalence class of p is denoted
[p]. If p is equivalent to a subprojection of q we write p � q. The reflexive and
transitive �-relation is preserved under equivalence. Further, by [23, Theorem
IV.2.3], p � q � p ⇒ p ∼ q. The partial order � on the set L(A) of equivalence
classes of projections in A is called the Murray-von Neumann order. Elliott’s
partial addition in L(A) is defined by setting [p] + [q] = [p + q] whenever p and
q are orthogonal. This yields a countable partially ordered “local” semigroup.
Elliott’s partial addition is monotone with respect to the �-order.

By Elliott’s classification [25], L(A1) ∼= L(A2) iff A1
∼= A2.

AF�-algebras, MV-algebras and Elliott’s Classification
When the Murray-von Neumann order of projections of A is a lattice we say
that A is an AF�-algebra. Many (if not most) classes of AF C*-algebras in the
literature are in fact AF�-algebras, [46, Foreword].

Proposition 22. [47, Theorem 1] For every AF C*-algebra A, Elliott’s par-
tial addition + in L(A) has at most one extension to an associative, commuta-
tive, monotone operation ⊕ : L(A)2 → L(A) such that for each projection p ∈ A,
[1A − p] is the �-smallest equivalence class [q] ∈ L(A) satisfying [p] ⊕ [q] = [1A].

The semigroup (S(A),⊕) extending L(A) exists iff A is an AF�-algebra.
Let A1 and A2 be AF�-algebras. From Elliott’s classification it follows that for
each j = 1, 2, letting ⊕j be the extension of Elliott’s addition, then

(S(A1),⊕1) ∼= (S(A2),⊕2) iff A1
∼= A2.

By [47, Theorem 2, Proposition 2.2], for every AF�-algebra A, the opera-
tion [p]∗ = [1A − p] transforms (S(A),⊕) into a countable involutive monoid
(E(A), 0,∗ ,⊕). The Murray-von Neumann lattice order � of equivalence classes
of projections [p], [q] ∈ E(A) is definable from the involutive monoidal operations
of E(A), upon setting

[p] ∨ [q] = ([p]∗ ⊕ [q])∗ ⊕ [q] and [p] ∧ [q] = ([p]∗ ∨ [q]∗)∗.

As a consequence:

Proposition 23. Up to isomorphism, the map A 
→ (E(A), 0,∗ ,⊕) is a one-one
correspondence between AF�-algebras and countable MV-algebras.

We say that E(A) is the Elliott (involutive) monoid of A.
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Word Problems in AF C*-algebras
Any commutative AF C*-algebra is isomorphic to the C*-algebra C(X) of
all continuous complex-valued functions defined over a separable boolean (i.e.,
totally disconnected, compact Hausdorff) space X. Thus AF C*-algebras may
be thought of as a sort of noncommutative boolean algebras [7, §7.1]. For AF�-
algebras this intuition is made more precise by Proposition 23, upon recalling
that MV-algebras were introduced by Chang to give a proof of the complete-
ness of the �Lukasiewicz axioms. (See [15–17].) Chang himself noted in [15] that
boolean algebras coincide with MV-algebras satisfying the idempotency equation
x ⊕ x = x.

In view of the categorical equivalence Γ between unital �-groups and MV-
algebras, one may naturally look for a characterization of the unital �-group
GA corresponding to the Elliott involutive monoid of an AF�-algebra A. By [41,
Theorem 3.9],

GA = Γ (K0(A), K0(A)+, [1A]),

the latter being the unital �-group associated to A by the K0-theoretic reformu-
lation of Elliott’s classification, [23], [24].

In [46] the computational theory of unital �-groups and their equivalent refor-
mulation in terms of MV-algebras is applied to investigate the complexity of the
word problem of several classes of AF�-algebras. In view of Elliott’s classification
and Proposition 22, the problem asks whether two formulas in the language of
MV-algebras (resp., in the language of unital �-groups) denote the same Murray-
von Neumann equivalence class of projections of a given AF�-algebra.

Polynomial time results are proved for the Behncke-Leptin C*-algebras Am,n,
[3], as well as for a large set of Effros-Shen algebras Fθ, [24], including the case
when θ = 1/e, or θ is a real algebraic number.

At the other extreme, Gödel incompleteness results for AF�-algebras are
obtained in [41] and [46].

The natural deductive-algorithmic machinery of �Lukasiewicz infinite-valued
logic, combined with the arithmetic-geometric structure of the rational polyhedra
dual to finitely presented unital �-groups, thus provides a natural framework for
the algorithmic theory of AF�-algebras.

Acknowledgement. The author is grateful to the reviewer for her/his valuable
remarks and for providing a short proof of Proposition 4.
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and Hájek’s completeness theorem for basic logic. Multiple Valued Logic (Special
issue dedicated to the memory of Grigore Moisil) 6, 89–94 (2001)

22. Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-
valued Reasoning. Trends in Logic, vol. 7. Kluwer, Dordrecht (2000)

23. Davidson, K.R.: C*-Algebras by Example. Fields Institute Monographs, vol. 6.
American Mathematical Society, Providence (1996)

24. Effros, E.G.: Dimensions and C*-Algebras. CBMS Regional Conference Series in
Mathematics, vol. 46. American Mathematical Society, Providence (1981)

25. Elliott, G.A.: On the classification of inductive limits of sequences of semisimple
finite-dimensional algebras. J. Algebra 38, 29–44 (1976)

26. Ewald, G.: Combinatorial Convexity and Algebraic Geometry. Springer, New York
(1996). https://doi.org/10.1007/978-1-4612-4044-0
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Abstract. The First-Order Monadic Logic of Order (FO[<]) is a promi-
nent logic for the specification of properties of systems evolving in time.
The celebrated result of Kamp [14] states that a temporal logic with
just two modalities Until and Since has the same expressive power as
FO[<] over the standard discrete time of naturals and continuous time
of reals. An influential consequence of Kamp’s theorem is that this tem-
poral logic has emerged as the canonical Linear Time Temporal Logic
(LTL). Neither LTL nor FO[<] can express over the reals properties like
P holds exactly after one unit of time. Such local metric properties are
easily expressible in FO[<,+1] - the extension of FO[<] by +1 function.
Hirshfeld and Rabinovich [10] proved that no temporal logic with a finite
set of modalities has the same expressive power as FO[<,+1].

FO[<,+1] lacks expressive power to specify a natural global metric
property “the current moment is an integer.” Surprisingly, we show that
the extension of FO[<,+1] by a monadic predicate “x is an integer” is
equivalent to a temporal logic with a finite set of modalities.

1 Introduction

1.1 Temporal Logics and Kamp’s Theorem

Temporal Logics were introduced to Computer Science by Pnueli in [18]. They
provide a convenient framework for reasoning about “reactive” systems. This
made temporal logics a popular subject in the Computer Science community,
enjoying extensive research in the past 30 years.

In a temporal logic we describe basic system properties by atomic propositions
that hold at some points in time, but not at others. More complex properties
are expressed by formulas built from the atoms using Boolean connectives and
Modalities (temporal connectives): A k-place modality M transforms statements
ϕ1, . . . , ϕk possibly on ‘past’ or ‘future’ points to a statement M(ϕ1, . . . , ϕk) on
the ‘present’ point. The rule to determine the truth of a statement M(ϕ1, . . . , ϕk)
is called a truth table. The choice of particular modalities with their truth tables
yields different temporal logics.

A basic modality is � - eventually: �P says: “P holds some time in the
future.” It is formalized by a formula ϕ(z0, P ) := (∃z > z0)P (z) with one
free variable z0 (for the current moment). This is a formula of the First-Order
c© Springer Nature Switzerland AG 2020
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https://doi.org/10.1007/978-3-030-48006-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48006-6_16&domain=pdf
http://orcid.org/0000-0002-1460-2358
https://doi.org/10.1007/978-3-030-48006-6_16


The Expressive Power of Temporal and First-Order Metric Logics 227

Monadic Logic of Order (FO[<]) - a fundamental formalism in Mathematical
Logic where formulas are built from atomic monadic formulas P (z) and atomic
order formulas z1 = z2, z1 < z2, by Boolean connectives and first-order quanti-
fiers ∃z and ∀z. Most modalities used in the literature are defined by such first-
order truth tables, and, as a result, every temporal formula translates directly
into an equivalent first-order formula. Thus, the different temporal logics may
be considered a convenient way to present fragments of first-order logic. A first-
order logic can also serve as a yardstick by which one can check the strength of
temporal logics. A temporal logic is expressively complete for a fragment L of a
predicate logic if every formula of L with a single free variable is equivalent to a
temporal formula.

Actually, the notion of expressive completeness is with respect to the type
of the underlying model since the question whether two formulas are equivalent
depends on the domain over which they are evaluated. The standard linear time
intended models are the Naturals 〈N, <〉 for discrete time and the Reals 〈R, <〉
for continuous time.

A major result concerning temporal logics is Kamp’s theorem [5,14] which
states that the temporal logic with two modalities “P Until Q” and “P Since Q”
is expressively complete for FO[<] over the above two linear time canonical
models.

LTL (Linear Time Temporal Logic) is the temporal logic with two modalities
Until and Since. An influential consequence of Kamp’s result is that LTL has
emerged as the canonical temporal logic.

1.2 Expressing Metrical Properties

The choice between FO[<] and LTL is merely a matter of personal preference,
as far as only the expressive power is concerned. For discrete time these logics
suffice. Properties like “Every P will be followed promptly enough by a Q”
can be explicitly written once a number k is chosen, and “promptly enough” is
interpreted as: “within k steps.”

LTL and FO[<] are expressively equivalent whether the system evolves in
discrete or in continuous time. However, for continuous time both logics lack the
power to express properties of the kind just described, and we must strengthen
their expressive power.

Some measure of length of time needs to be included, and the language must
be adapted to it. This is done by assuming that there is a basic unit of length;
let’s call it “length 1.” For predicate logic it is a standard procedure to extend
the language by a name for the “+1” function, or for a corresponding relation.
It will then be the question which fragment of the extended language FO[<,+1]
suits our needs.

Burgess and Gurevich [4] proved that FO[<] is decidable over the reals. Unfor-
tunately, FO[<,+1] is undecidable over the reals. Much research was carried
out to find decidable temporal logics which can specify some metric properties.
Extending temporal logic, without relating it to a corresponding predicate logic,
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has led to a veritable babel of metric temporal logics over the reals [1–3,5,7–
9,15,16,21]. The most popular among decidable temporal logics is MITL (Metric
Interval Temporal Logic) introduced by Alur, Feder and Henzinger [1]. MITL
uses infinitely many modalities. However, it has the same expressive power as
QTL (Quantitative Temporal Logic [9]), which has besides the modalities Until
and Since two metric modalities: ♦(0,1)P and ♦(−1,0)P . The first one states that
P will happen (at least once) within the next unit of time, and the second says
that P happened within the last unit of time.

Adding the power to say “P will be true (at least once) within the next unit
of time” is natural and necessary. There is, however, no reason to believe that
this gives us the required expressive power. Is it enough, or do we need additional
modalities? If we must add more modalities, which ones should we choose? A.
Pnueli was the first to address these questions.

In previous work we have defined the counting modalities Cn(P ) and
←−
C n(P )

for n ∈ Nat. Cn(P ) says “P will hold at least at n points within the next unit
of time” and its dual

←−
C n(P ) says “P was true at least at n points within the

previous unit of time” [9,10].
TLC (Temporal Logic with Counting) is the extension of LTL by all count-

ing modalities. For n ∈ N, a fragment TLCn of TLC has only finitely many
modalities: Until, Since and Ck,

←−
C k for k ≤ n. In particular, TLC 1 is exactly

QTL and has the same expressive power as MITL.
We proved in [9–11] the following:

1. TLC is decidable and equivalent to a natural fragment of FO[<,+1].
2. TLCn is strictly less expressive than TLCn+1, so this is a strict hierarchy.
3. If the expressive power of a temporal logic L is between TLC and FO[<,+1],

then L has infinitely many modalities.

As a consequence of (3), and in contrast to Kamp’s theorem, no temporal logic
with a finite set of modalities is expressively equivalent to FO[<,+1] over the
reals.

1.3 Kamp’s Theorem in Metric Setting

Over the reals, FO[<,+1] still lacks expressive power to specify a natural global
metric property “the current moment is an integer.”

This paper is concerned with the expressive power of FO[<,+1] over the
expansion RZ of the reals by a monadic predicate interpreted as the set of inte-
gers. We prove that FO[<,+1] has the same expressive power as a temporal logic
with a finite set of modalities, hence an analog of Kamp’s theorem holds.

More specifically, MTL (Metric Temporal Logic [15]) in addition to four
modalities of QTL has two more modalities: �=1 and �=−1; �=1(P ) says: “P is
true exactly after one unit of time” its dual �=−1(P ) says “P was true exactly
before one unit of time.”

Our main result states that FO[<,+1] has the same expressive power as MTL
over RZ.
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The paper is organized as follows. Section 2 provides definitions of the first-
order monadic logics and of temporal logics. In Sect. 3, Kamp’s theorem and
our main result are stated. Section 4 outlines a proof of the main theorem. The
structure of the proof of expressive completeness is similar to the simplified
proof of Kamp’s theorem [20]. We recall the relevant notions and propositions
from [6,20] used in the proof of Kamp’s theorem. Then, we generalize these
propositions to the metric setting and prove expressive equivalence of MTL and
FO[<,+1] over RZ. Sections 5–7 contain the proof of main technical lemmas,
which uses some ideas from [17,19]. The last section presents conclusion and
discusses related works.

2 Logics

In this section we recall definitions of the first-order monadic logics and of tem-
poral logics.

Fix a set Σ of atoms. We use P,R, S . . . to denote members of Σ. The syntax
and semantics of both logics are defined below with respect to such Σ.

2.1 First-Order Monadic Logics

In the context of first-order logics, the atoms of Σ are considered as unary
predicate symbols.

The signature of FO[<] (first-order monadic logic of order) in addition to Σ
contains two binary relation symbols: < and =. We use x, y, z, . . . for (first-order)
variables. The formulas are defined by the following grammar:

atomic := x < y | x = y | P (x) (where P ∈ Σ)

ϕ := atomic | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xϕ | ∀xϕ

We will also use the standard abbreviated notation for bounded quantifiers, e.g.,
(∃x)>z(. . . ) denotes ∃x((x > z) ∧ (. . . )), and (∀x)<z(. . . ) denotes ∀x((x < z) →
(. . . )), and ((∀x)<z2

>z1
(. . . ) denotes ∀x((z1 < x < z2) → (. . . )), etc.

A Σ-structure (or just structure) M for FO[<] is a tuple M = (T , <, I)
where T is a set - the domain of M, < is a linear order relation on T , and
I : Σ → P(T ) is the interpretation of Σ (where P is the powerset notation).

FO[<,+1] is the extension of FO[<] by a unary +1 functional symbol. We
mostly will be interested in the interpretations of FO[<,+1] over the reals. Under
such interpretations, the domain of M is the set R of reals, < and +1 are inter-
preted in the standard way, and unary predicate symbols from Σ are interpreted
as unary predicates on the reals. We call such structures R-structures. If, in
addition, Σ contains a predicate name Int, interpreted as the set Z of integers,
a structure is called an RZ structure.

It will be convenient for us to use another first-order language which is equiv-
alent to FO[<,+1] over RZ structures. This is the extension of FO[<] by a unary
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function symbol 
x� - interpreted as the integer part of x, and by the unary func-
tions +c for c ∈ Z. Its terms are defined by the grammar t := x | 
t� | t + c for
c ∈ Z. A standard term is a term of the form 
x� + c or x + c. It is clear that
every term is equivalent to a standard term. By abusing notations, this logic will
be also denoted by FO[<,+1].

We use the standard notation M, a1, a2, . . . an |= ϕ(x1, x2, . . . xn) to indicate
that the formula ϕ with free variables among x1, . . . , xn is satisfiable in M when
xi are interpreted as elements ai of M.

2.2 Temporal Logics

In the context of temporal logics the atoms of Σ are used as atomic propositions
(also called propositional atoms). Formulas are built using these atoms, and a
set (finite or infinite) B of modality names, where a non-negative integer arity
is associated with each modality M ∈ B.

LTL (Linear Time Temporal Logic) has two modalities strict-Until and strict-
Since. LTL formulas are defined by the following grammar:

F := P | ¬F | F ∨ F | F ∧ F | F Until F | F Since F, where P ∈ Σ.

MTL (Metric Temporal Logic) has four additional unary modalities: MTL syn-
tax extends the syntax of LTL by the following rules: If F is a formula, then
♦(0,1)F, ♦(−1,0)F, �=1F and ♦=−1F are formulas.

QTL (Quantitative Temporal Logic) is the fragment of MTL which uses only
the modalities Until, Since, ♦(0,1) and ♦(−1,0).

Semantics. The semantics defines when a temporal formula holds at a time-
point (or moment or element of the domain) in a structure M.

The semantics is defined inductively: given a structure M with a domain T
and a ∈ T , define when a formula F holds in M at a - notation: M, a |= F -
as follows:

– M, a |= P iff a ∈ I(P ) for any atom P ∈ Σ.
– M, a |= F ∨G iff M, a |= F or M, a |= G; similarly (“pointwise”) for ∧, ¬.
– M, a |= F Until G iff there is a′ > a such that M, a′ |= G and M, b |= F

for every b in an open interval (a, a′).
– M, a |= F Since G iff there is a′ < a such that M, a′ |= G and M, b |= F

for every b in an open interval (a′, a).

MTL is interpreted over the reals with the standard interpretation of +1 and −1
functional symbols. It has four additional semantical clauses for modalities: ♦(0,1) -
within the next unit of time, ♦(−1,0) - within the last unit of time, �=1 - exactly
after one unit of time, and �=−1 - exactly before one unit of time.

– M, a |= �=1F iff M, a + 1 |= F .
– M, a |= ♦=−1F iff M, a − 1 |= F .
– M, a |= ♦(0,1)F iff there is a′ ∈ (a, a + 1) such that M, a′ |= F .
– M, a |= ♦(−1,0)F iff there is a′ ∈ (a − 1, a) such that M, a′ |= F .
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In RZ structures Σ contains a symbol Int, interpreted as the set Z of integers,
and

– M, a |= Int iff a is an integer.

We conclude this section by recalling a definition of a temporal logic TLC with
an infinite sets of modalities. Thought TLC is not used directly in our technical
results, it is useful to explain the role of Z in expressing the modality of TLC
by MTL formulas.

TLC (Temporal Logic with Counting) is the extension of LTL by an infinite
set of modalitues Cn and

←−
C n for n ∈ N - counting modalities. The TLC syntax

extends the syntax of LTL by the following rules: if F is a formula, then Cn(F )
and

←−
C n(F ) are formulas. The semantical clauses for modalities: Cn(P ) - “P will

hold at least at n points within the next unit of time,” and
←−
C n(P ) - “P was

true at least at n points within the previous unit of time” are:

– M, a |= Cn(F ) iff there are a1 < a2 < · · · < an ∈ (a, a + 1) such that
M, ai |= F for i ≤ n.

– M, a |= ←−
C n(F ) iff there are a1 < a2 < · · · < an ∈ (a − 1, a) such that

M, ai |= F for i ≤ n.

Note that C1(P ) (respectively,
←−
C 1(P )) is equivalent to ♦(−1,0)(P ) (respectively,

�=−1(P )).
In [19], we proved that all counting modalities are expressible in MTL over the

expansion of the reals by two monadic predicate: integers and the even integers.
Let us illustrate the role of Int and show how to express all counting modal-

ities Cn(P ) and
←−
C n(P ) (for n ∈ Nat) in MTL over RZ. First, for every k ∈ N,

there is an LTL formula Forwardk(P,Q) which expresses “from the current
moment until the next occurrence of Q there are at least k points in P .”
Similarly, there is an LTL formula Backwardk(P,Q) which expresses “between
the current moment and the previous occurrence of Q (including the moment
of this occurrence) there are at least k points in P .” Finally, Cn(P ) - “P
holds at least at n points within the next unit of time” - is equivalent to the
conjunction of Int → Forwardn(P, Int) and ¬Int → ∨n

k=0(Forwardk(P, Int) ∧
�=1Backwardn−k(P, Int)). The dual modality

←−
C n(P ) is expressed similarly.

3 Expressive Equivalence

Equivalence between temporal and first-order formulas with a single free variable
is naturally defined as: F is equivalent to ϕ(x) over a class C of structures iff for
any M ∈ C and a ∈ M: M, a |= F ⇔ M, a |= ϕ(x).

Let L and L′ be temporal logics. L is expressively complete for (or, at least
as expressive as) L′ over a class C, if for every formula F ′ ∈ L′ there is F ∈ L
which is equivalent to F ′ over C. In this case we write L′ �exp L. Similarly, if L′

is a first-order logic, L′ �exp L if for every formula ϕ(x) in L with a single free
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variable, there is a formula F ∈ L equivalent to ϕ. L and L′ are expressively
equivalent (notation L =exp L′) over C iff L′ �exp L and L �exp L′ over C.

The fundamental result of Kamp [5,14] implies that a temporal logic with
just two modalities Until and Since has the same expressive power as FO[<] over
the canonical linear time models (N, <), (R, <) and non-negative reals (R≥0, <).

An influential consequence of Kamp’s result is that LTL has emerged as the
canonical temporal logic.

A technical notion that unifies the canonical linear time models is Dedekind
completeness.

A linear order (T,<) is Dedekind complete if every non-empty subset (of the
domain) which has an upper bound has a least upper bound. The canonical
linear time models (N, <), (R, <) and (R≥0, <) are Dedekind complete, while
the order of the rationals is not Dedekind complete.

Kamp’s theorem states that LTL is expressively equivalent to FO[<] over
Dedekind complete orders.

Theorem 3.1 (Kamp [14]) 1. Given any LTL formula A there is an FO[<]
formula ϕA(x) which is equivalent to A over all linear orders.

2. Given any FO[<] formula ϕ(x) with one free variable, there is an LTL formula
Aϕ which is equivalent to ϕ over Dedekind complete orders.
Moreover, ϕA and Aϕ are computable from A and ϕ.

The correspondence between predicate logics and temporal logics becomes con-
siderably more complicated with the introduction of metric specifications.

All logics mentioned in Sect. 2.2 are less expressive than FO[<,+1] over the
reals. The translation from the formulas of these logics to equivalent formulas of
FO[<,+1] is straightforward.

Their expressive power can be summarized as follows: QTL ≺exp TLC [9,
10], and QTL ≺exp MTL [1]. Moreover, since TLC is decidable, while MTL is
undecidable, it follows that TLC cannot express �=1P . In [10] we proved that
MTL cannot express C2(P ) - “P occurs twice in the next unit interval.” Hence,
the expressive power of MTL and TLC is incomparable.

Actually, the main result of [10] is much stronger. In particular, it implies
that if L is a temporal logic with a finite set of modalities and L �exp FO[<,+1],
then there is n such that a counting modality Cn(P ) is not expressible in L.

As a consequence, in contrast to Kamp’s theorem, no temporal logic with a
finite set of modalities is expressively equivalent to FO[<,+1] over the reals.

Our main result is that over the expansions of (R, <,+1) by a monadic
predicate “the current moment is an integer” FO[<,+1] is expressively equivalent
to a finite base temporal logic MTL.

Theorem 3.2 (Main) 1. Given any MTL formula A there is an FO[<,+1]
formula ϕA(x) which is equivalent to A over RZ.

2. Given any FO[<,+1] formula ϕ(x) with one free variable, there is a MTL
formula Aϕ which is equivalent to ϕ over RZ.
Moreover, ϕA and Aϕ are computable from A and ϕ.
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Theorem 3.2 (1) is easily proved by the structural induction. The main technical
contribution of our paper is the proof of Theorem 3.2 (2). The proof is construc-
tive. An algorithm which for every FO[<,+1] formula ϕ(x) constructs a MTL
formula which is equivalent to ϕ is easily extracted from our proof.

It is a routine exercise to adapt the proof of Theorem 3.2 to the non-negative
reals, and to show that MTL and FO[<,+1] are expressively equivalent over
the non-negative reals expanded by a predicate interpreted as the set of natural
numbers.

4 Proof Outline

The structure of our proof is similar to the proof of Kamp’s theorem in [20].
We first recall the relevant notions and propositions from [6,20]. Then, we state
their generalization to metric setting and prove expressive equivalence of MTL
and FO[<,+1] over RZ.

Definition 4.1 (Decomposition and
−→∃ ∀-formulas). Let Σ be a set of

monadic predicate names.

– A decomposition formula (D-formula) over Σ is a formula χ(z0, . . . , zm) of
the form:

∃xn . . . ∃x1∃x0 (xn > xn−1 > · · · > x1 > x0) ∧
m∧

i=0

zi = xki
∧

n∧

j=0

αj(xj) ∧
n∧

j=1

[(∀y)<xj

>xj−1
βj(y)] (1)

∧ (∀y)>xn
βn+1(y) ∧ (∀y)<x0β0(y)

where z = {z0, . . . , zm} and x = {x0, . . . , xn} are disjoint lists of variables,
0 ≤ ki < kj ≤ n for i < j and all αj, βj are quantifier free formulas with one
variable over Σ. Observe that χ(z0, . . . , zm) implies ∧m−1

i=0 (zi < zi+1).
– An

−→∃ ∀-formula over Σ is a conjunction of a D-formula as in (1) and∧s
i=0(ui = zh(i)), where u0, . . . , us are variables and h : {0, . . . , s} →

{0, . . . , m}.

The next definition plays a major role in the proof of Kamp’s theorem [6,20].

Definition 4.2. Let M be a structure with the signature including unary pred-
icate names Σ, and L be a temporal logic. We denote by L[Σ] the set of unary
predicate names Σ∪{A | A is an L-formula over Σ }. The canonical L-expansion
of M is an expansion of M to a structure with unary predicate names L[Σ],
where each predicate name A ∈ L[Σ] is interpreted as {a ∈ M | M, a |= A}.

Note that if A is an L-formula over L[Σ] predicates, then it is equivalent to an L
-formula over Σ, and hence to an atomic formula in the canonical L-expansions.

The
−→∃ ∀ formulas are defined as previously, but now they can use as atoms

L definable predicates.
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We say that first-order formulas in a signature which includes L[Σ] are equiv-
alent over M (respectively, over a class C of structures) if they are equivalent in
the canonical expansion of M (in the canonical expansion of every M ∈ C).

Propositions 4.4–4.5 were proved1 in [20].

Proposition 4.3 (From
−→∃ ∀-formulas to temporal formulas). Let L be

a temporal logic such that L �exp LTL. Then, every
−→∃ ∀-formula with one free

variable is equivalent (over the canonical L-expansions) to an L formula.

Proposition 4.4 (From first-order formulas to
−→∃ ∀-formulas). Let L be

a temporal logic such that L �exp LTL. Then every FO[<] formula is equivalent
(over the canonical L expansions of Dedekind complete orders) to a disjunction
of

−→∃ ∀-formulas.

Setting L := LTL in the next proposition we obtain Kamp’s theorem.

Proposition 4.5. Let L �exp LTL be a temporal logic. Then every FO[<] for-
mula with one free variable is equivalent (over the canonical L-expansions) to
an L formula.

The structure of our proof is similar to that of Kamp’s theorem. Recall that a
substitution σ is a map from variables to terms. We use {t0/z0, . . . , tn/zn} for
the substitution which maps zi to ti. For a formula ψ, the result of replacing
free occurrences of zi by ti is denoted by ψσ (as usual, we have to avoid that the
variables occurring in ti are captured in ψσ). Recall that the standard terms in
FO[<,+1] are variables or of the form z + c or 
z� + c, where c ∈ Z. Every term
of FO[<,+1] is equivalent to a standard term. From now on we use the word
“term” for “standard term.”

Definition 4.6. A simple (metric) formula is a formula of the form ψσ, where
ψ is an

−→∃ ∀-formula, and σ is a substitution.

In a simple metric formula no bound variable is in the scope of function sym-
bols 
 � or +c for c �= 0, We will prove the next two Propositions which are
adaptations of Propositions 4.4 and 4.3 to the metrical setting:

Proposition 4.7 (From simple formulas to MTL formulas). Every simple
metric formula with one free variable is equivalent (over the canonical MTL-
expansions of RZ) to an MTL formula.

Proposition 4.8 (From first-order formulas to simple metric formu-
las). Every FO[<,+1] formula is equivalent (over the canonical MTL expan-
sions of RZ) to a disjunction of simple formulas.

1 For the sake of simplicity these propositions were stated for L := LTL. However,
their proofs are sound for any L �exp LTL.
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Propositions 4.8 and 4.7 immediately imply Theorem 3.2 (2) - our main result.

Proof. (of Theorem 3.2 (2).) Let ϕ(x) be a FO[<,+1] formula with one free
variable. By Proposition 4.8, it is equivalent to a disjunction ψi of simple for-
mulas. By Proposition 4.7, ψi is equivalent to a MTL formula Ai. Therefore, ϕ
is equivalent to a MTL formula ∨Ai. ��

Our proofs are organized as follows. The next section presents simple Lem-
mas. Proposition 4.7 is proved in Sect. 6 and Proposition 4.8 is proved in Sect. 7.
The proofs of Propositions 4.7 and 4.8 often reuse Propositions 4.4 and 4.3.

5 Notations and Observations

Notations. As usual, �=2P abbreviates �=1�=1P , and �=c for c ∈ Z is defined
similarly. We denote by FreeVar(ϕ) the set of free variables of ϕ.

Let σ := {t0/z0, . . . , ti/zn} be a substitution. We use dom(σ) for {z0, . . . , zn}
and Term(σ) for {σ(z) | z ∈ dom(σ)}. Recall that the terms of FO[<,+1] are of
the form z, 
z�+c and z+c, where z is a variable; and in a simple metric formula
no bound variable is in the scope of function symbols 
 � or +c for c �= 0.

For a quantifier free formula ϕ we denote by Term(ϕ) the set of terms that
appear in ϕ. For a simple formula ϕ := ψσ we use Term(ϕ) for {σ(z) | z ∈
FreeVar(ψ)}. For a Boolean combination ϕ of simple and quantifier free formulas
ϕi we denote by Term(ϕ) the union of Term(ϕi).

In this section we state simple lemmas which will be used in the proofs of
Propositions 4.7 and 4.8. All these lemmas easily follow from the definitions.

Lemma 5.1. Every atomic FO[<,+1] formula is equivalent to a disjunction of
simple formulas.

Let T be a set of terms. An order constraint Ord over T is a conjunction of
formulas of the form t = t′ and t′ < t for t, t′ ∈ T . An order constraint Ord is
linear if for every t1, t2 ∈ Term(Ord): either Ord implies t1 < t2, or Ord implies
t2 < t1, or Ord implies t1 = t2.

Let ϕ be a simple formula ψσ, where ψ :=
∧s

i=0(ui = zh(i)) ∧ χ(z0, . . . , zm)
is an

−→∃ ∀-formula as in Definition 4.1. We denote by Ordϕ, the (linear) order
constraint generated by ϕ over Term(ϕ), which is defined as

∧s
i=0 σ(ui) =

σ(zh(i)) ∧
∧m−1

j=0 σ(zj) < σ(zj+1).

Lemma 5.2. 1. Let Ord be an order constraint. Then Ord is equivalent to a
disjunction of simple formulas, and ¬Ord is equivalent to a disjunction of
simple formulas.

2. If ϕ is a simple formula, then ¬ϕ is equivalent to a disjunction of simple
formulas.

3. A Boolean combination of simple formulas is equivalent to a disjunction of
simple formulas.

Proof. (1) is immediate.
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(2) Let ϕ := ψσ, where ψ is an
−→∃ ∀-formula. Then ¬ϕ is equivalent to ¬Ordϕ∨

(¬ψ)σ. Since, ¬ψ is an FO[<] formula, by Proposition 4.4, it is equivalent
to a disjunction ∨ψi of

−→∃ ∀-formulas. Therefore, (¬ψ)σ is equivalent to a
disjunction of simple formulas, and ¬ϕ is equivalent to a disjunction of
simple formulas.

(3) immediately by (2).
��

Lemma 5.3. 1. If Ord is an order constraint, then Ord is equivalent to a dis-
junction of linear order constraints Ord i such that Term(Ord i) = Term(Ord)
for every i.

2. If ϕ is a simple formula and Ord is an order constraint, then ϕ ∧ Ord
is equivalent to a disjunction of simple formulas ϕi such that Term(ϕi) =
Term(ϕ) ∪ Term(Ord) for every i.

Lemma 5.4. Let χ(z0, . . . , zm) be a D-formula as in (1) (hence, χ implies∧m−1
i=0 (zi < zi+1)).

1. χ is equivalent to a conjunction ∧m−1
i=0 χi(zi, zi+1) of D-formulas with two

variables.
2. More generally, if 0 = l0 < l1 < l2 < · · · < ls = m, then χ is equivalent

to a conjunction ∧s−1
i=0χi(zli , . . . , zli+1) of D-formulas with free variables as

displayed.
3. Let z be a fresh variable. Then χ ∧ z < z0 is equivalent to a D-formula χ′

with FreeVar(χ′) = {z, z0, . . . , zm}. Similarly, for ϕ ∧ zm < z.
4. A conjunction of D-formulas with the same set of free variables is equivalent

to a disjunction of (other) D-formulas with the same set of free variables.

Lemma 5.5 (Shifting monadic predicates by a constant). Let
ϕ(z0, . . . , zn) be an FO[<,+1] formula, c ∈ Z, and let ϕc be obtained from ϕ
when every monadic predicate P in ϕ is replaced by (a monadic predicate defin-
able by) �=cP .

1. Then M, a0, . . . , an |= ϕc iff M, a0 + c, . . . , an + c |= ϕ.
2. If ϕ is a D (respectively,

−→∃ ∀ or simple) formula, then ϕc is a D (respectively,−→∃ ∀ or simple) formula.
3. If ψ is an

−→∃ ∀-formula, then ψσ is equivalent to ψcσ−c, where σ−c(z) :=
σ(z) − c for every z ∈ FreeVar(ψ).

6 From Simple Formulas to MTL Formulas - Proof of
Proposition 4.7

In this section we prove Proposition 4.7 which states that every simple metric
formula with one free variable is equivalent (over the canonical MTL-expansions
of RZ) to an MTL formula. Proposition 4.7 immediately follows from Claims 1
and 2 below.
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Claim 1. A simple formula with one free variable z is equivalent to a disjunction
of formulas of one of the following forms:

(A) z = 
z� ∧ χ(z0, z1)σ0, where χ is a D-formula as in (1) and
σ0 := {
z� + c/z0, 
z� + c + 1/z1}.

(B) 
z� < z < 
z� + 1 ∧ χ(z0, z1, z2)σ0, where χ is a D-formula as in (1) and
σ0 := {
z� + c/z0, z + c/z1, 
z� + c + 1/z2}.

Claim 2. Any formula of the form (A) or (B) is equivalent to an MTL formula.

Proof of Claim 2. The only non-trivial metric constraint in formulas of these
forms is that the distance between two integer points 
z� + c and 
z� + c + 1
is one. This can be easily formalized in FO[<] using the monadic predicate Int.
Below are formal details.

We will translate formulas of the form (B) to equivalent MTL formulas (the
translation of formulas of the form (A) is simpler).

If ϕ is of the form (B), then it is equivalent to the conjunction of ¬Int(z)
and

(
∃z0z2(Int(z0) ∧ Int(z2) ∧ z0 < z1 < z2 ∧ (∀u)<z2

>z0
¬Int(y) ∧ χ)

)
σ, where

σ := {z+c/z1}. Since ∃z0z2(Int(z0)∧ Int(z2)∧z0 < z1 < z2 ∧ (∀u)<z2
>z0

¬Int(y)∧χ)
is an FO[<] formula, it is equivalent to an MTL formula A, by Proposition 4.5.
Therefore, ϕ is equivalent to an MTL formula ¬Int ∧ �=cA. ��
Proof of Claim 1. We assume that a least term of ϕ w.r.t. Ordϕ is of the form

z� + c (otherwise, by Lemma 5.3 we can rewrite ϕ as a disjunction of simple
formulas with this property). There is N ∈ N such that Ordϕ implies that all
terms in Term(ϕ) are less than 
z� + c + N .

Let T := {
z� + c + j | j = 0, . . . , N} ∪ {z + c + j | j = 0, . . . , N − 1}. Note
that Term(ϕ) � T .

Let Ord i (for i < K ∈ N) be all satisfiable linear orders on T (there are finitely
many such orders). Then ϕ is equivalent to ∨i(ϕ ∧ Ordi). Hence, (by Lemma
5.3), ϕ is equivalent to a disjunction of simple formulas ϕi with Term(ϕi) = T .

Since, z + c, 
z� + c ∈ T , it follows that either Ordϕi
→ z = 
z� or Ordϕi

→
z > 
z�. If Ordϕi

implies z = 
z�, we show that ϕi is equivalent to a disjunction
of formulas of the form (A); if Ordϕi

implies z > 
z�, we show that ϕi is
equivalent to a disjunction of formulas of the form (B).

We will show the second assertion (the first one is simpler). Assume Ordϕi
→

z > 
z�, then there is χ(z0, . . . , z2N ) as in (1) such that ϕi is equivalent to

z� < z∧χσ where σ(z2j) = 
z�+c+j and σ(z2j−1) = z+c+j for j = 0, . . . , N .

By Lemma 5.4(2), χ is equivalent to ∧N−1
j=0 χj(z2j , z2j+1, z2j+2) where χj are

D formulas with FreeVar(χj) = {z2j , z2j+1, z2j+2}.
Replace in χj each monadic predicate P by a predicate definable by �=c+jP ,

and rename its free variables z2j , z2j+1, z2j+2 to z0, z1, z2; the result is a D-
formula ψj(z0, z1, z2). Then by Lemma 5.5, we obtain that χσ is equivalent to
(∧N−1

j=0 ψj(z0, z1, z2))σ0, where σ0 := {
z� + c/z0, z + c/z1, 
z� + c + 1/z2}.
Finally, ∧N−1

j=0 ψj(z0, z1, z2) is equivalent, by Lemma 5.4(4), to a disjunction
of D formulas with free variables z0, z1, z2. Therefore, ϕi is equivalent to a dis-
junction of formulas of the form (B). ��
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7 From First-Order Formulas to Simple Formulas - Proof
of Proposition 4.8

In this section we prove Proposition 4.8 which states that every FO[<,+1] for-
mula is equivalent (over the canonical MTL expansions of RZ) to a disjunction
of simple formulas.

The main technical result of this section is:

Proposition 7.1. If ϕ is a simple formula, then ∃zϕ is equivalent to a Boolean
combination of simple formulas.

Proposition 4.8 follows (by a straightforward structural induction) from Propo-
sition 7.1 and Lemmas 5.1 and 5.2(3).

In [17], we proved that for every N ∈ N, every FO[<,+1] sentence (no free
variable) is equivalent to an MTL formula over the class of real intervals of length
< N . The following locality properties of formulas with a single free variable play
a key role in our proof of Proposition 4.7: if ϕ(z) is a simple formula with one
free variable, then there is N ∈ N such that Ordϕ implies that the distance
between t1 and t2 is < N for every t1, t2 ∈ Term(ϕ). This locality property
fails for formulas with several free variables. Yet, for every formula ϕ we can
decompose Ordϕ into local components, as stated in Lemma 7.3.

Definition 7.2. A linear order constraint Ord is local if there is N ∈ N such
that Ord implies that for every t1, t2 ∈ Term(Ord), the distance between t1 and
t2 is less than N (i.e., Ord → (t2 < t1 + N ∧ t1 < t2 + N)).

A linear constraint can be decomposed into local constraints and a linear order
between them.

Lemma 7.3. Let Ord be a satisfiable linear constraint. Then, there are
Ord0, . . . ,Ordk such that:

1. Ord i are local constraints.
2. Term(Ord) = ∪iTerm(Ord i).
3. FreeVar(Ord i) ∩ FreeVar(Ord j) = ∅ for i �= j.
4. Let tleati be a leat and tgreatesti be a greatest term in Ord i. Then, Ord is

equivalent to
∧k

i=0 Ord i ∧
∧k−1

i=0 (tgreatesti < tleasti+1 ).

Terminology. Ord i and Term(Ord i), as above, are called local components of
Ord . Whenever Ord is clear from the context and z ∈ FreeVar(Ordi), then Ord i

is also called the local component of z.

Proof. Define an equivalence relation ∼ on Term(Ord) as: t1 ∼ t2 if there is
N ∈ N such that Ord implies that the distance between t1 and t2 is less than
N . It is easy to see that ∼ is a convex equivalence relation, i.e., if t1 ∼ t2, and
Ord → (t1 < t < t2), then t1 ∼ t ∼ t2. Let Ti (for i = 0, . . . , k) be the equivalence
classes of ∼. It is clear that FreeVar(Ti) ∩ FreeVar(Tj) = ∅ for i �= j. Let Ord i

be the order induced by Ord on Ti, i.e., for t1, t2 ∈ Ti: (1) t1 < t2 ∈ Ord i iff
Ord → t1 < t2 and (2) t1 = t2 ∈ Ord i iff Ord → t1 = t2.

It is easy to see that Ord i are local orders which satisfy the conclusion of
Lemma 7.3. ��
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Let us proceed with a proof of Proposition 7.1. Given a simple formula ϕ with
z ∈ FreeVar(ϕ). We show that ∃zϕ is equivalent to a Boolean combination of
simple formulas, according to the following cases:

Case 1. Ordϕ has only one local component.
Case 2. The local component of z is the last or the first local component of

Ordϕ.
Case 3. There are local components before and after the local component

of z.
Let Ord i be the local component of z. For each of the above cases we will

consider two subcases: (A) z is the only variable in FreeVar(Ord i), and (B) There
are other variables in FreeVar(Ord i).

The road map of the proof is as follows:
Subcase 1.A immediately follows from Proposition 4.7. The proof of subcase

1.B is very similar to the proof of Proposition 4.7; however, due to additional
variables, the notations are heavier.

Subcases 2.A and 3.A easily follow from Proposition 4.7.
Subcases 2.B and 3.B are reducible to Case 1, using standard logical equiv-

alences.
Though the proof is lengthy, it is simple.

7.1 Case 1

We consider two subcases:
Subcase A. FreeVar(ϕ) = {z}. In this subcase, by Proposition 4.7, there is

an MTL formula A equivalent to ϕ. Hence, ∃zϕ is equivalent (in the canonical
MTL expansion) to an

−→∃ ∀-sentence ∃xA(x). It is also equivalent to an MTL
formula B := �A∨A∨←−

�A, where �A (respectively, ←−
�A) abbreviates TrueUntilA

(respectively, TrueSinceA).
Subcase B. There is u ∈ FreeVar(ϕ) such that u is not z.
The proof for subcase B is similar to the proof of Proposition 4.7 (see Sect. 6).
First, we can assume that Ordϕ is satisfiable (otherwise, the formula is

equivalent to False). Let T := Term(ϕ). We can assume that 
u� + c is a
least term and 
u� + c + N is a greatest term in T , and if t ∈ T and
Ordϕ → (
u� + c ≤ t + d < 
u� + c + N), then t + d ∈ T (otherwise, use
Lemma 5.3 to rewrite ϕ as a disjunction of formulas with these properties).

Next, we eliminate all terms of the form 
v� + d for each variable v which is
different from u. Indeed, if such term t occurs in T , then Ordϕ → (
v� + d =

u� + c + i) for some i < N . Hence, we can replace t by 
u� + c + i.

Therefore, we can assume that the set of terms T := Term(ϕ) of our formula
ϕ has the following properties:

1. 
u� + c is the least and 
u� + c + N is the greatest element of T .
2. Let V := FreeVar(ϕ). Then, there are cv ∈ Z for v ∈ V such that T =

{
u� + c + i | i ≤ N} ∪ {v + cv + i | i = 0, . . . , N − 1}.
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Define an equivalence relation ≈ on V as v ≈ v′ if Ordϕ implies that v and v′

have the same fractional part, i.e., if Ordϕ → (v + cv = v′ + cv′) for constants
cv, cv′ defined in (2). Assume that ≈ has l equivalence classes V0, . . . , Vl. Define
v(i) to be a variable in Vi. Furthermore, we can assume that Ordϕ implies that
v(i) + cv(i) < v(j) + cv(j) for i < j.

Now, ϕ is equivalent to the conjunction of E :=
∧l

i=1(
∧

v∈Vi\v(i) v(i)+cv(i) =
v + cv) and χ(z0, . . . , zN×(l+1))σ, where χ is a D formula and σ(zj×(l+1)) :=

u� + c + j for j = 0, . . . , N and σ(zi+j×(l+1)) := v(i) + cv(i) + j for i = 1, . . . , l
and j = 0, . . . , N − 1.

If the first conjunct E has an occurrence of z, i.e., z+d = v+d′ occurs there,
then we can replace all occurrences of z in ϕ by v +d′ −d. The resulting formula
ϕ′ does not have free occurrences of z and is equivalent to ϕ. Therefore, ∃zϕ is
equivalent to ϕ′.

If E has no occurrence of z, then ∃zϕ is equivalent to E ∧ ∃z(χσ).
Therefore, it remains to prove that ∃z(χσ) is equivalent to a Boolean com-

bination of simple formulas.
Our strategy is similar to the proof of Proposition 4.7 (see Sect. 6).
We are going to prove:

Claim 1. χσ is equivalent to a disjunction of formulas of the form:

(C) ψ(z0, . . . zl+1)σ0, where
1. ψ is a D-formula, and Ordψ implies z0 < z1 < · · · < zl+1.
2. σ0(z0) = 
u� + c, σ0(zl+1) = 
u� + c + 1 and σ0(zi) = v(i) + cv(i) for

i = 1, . . . , l.
3. All variables v(i) are different from each other.

Claim 2. If ψ and σ are as in (C), then ∃z(ψσ) is equivalent to a simple formula.
Claims 1 and 2 imply that ∃z(χσ) is equivalent to a disjunction of simple

formulas.

The proof of Claim 2 is easy. Indeed, ∃x
(
α{x + c/xi}

)
is equivalent to ∃xiα,

whenever x is not free in α. Since z is v(i) for some i, we obtain by the above
equivalence that ∃z(ψσ0) is equivalent to (∃ziψ)σ0. Observe that ∃ziψ is an−→∃ ∀-formula. Therefore, ∃z(ψσ0) is equivalent to a simple formula (∃ziψ)σ0.

The proof of Claim 1 is similar to the proof of Claim 1 in Sect. 6.
Namely, we can rewrite χ(z0, . . . , zN×(l+1)) as a conjunction of D-formulas

χ0(z0, . . . , zl+1), . . . , χi(zi×(l+1), . . . , z(i+1)×(l+1)), . . . , χN−1(z(N−1)×(l+1), . . . ,
zN×(l+1)), with free variables as displayed. Replace in χi each monadic pred-
icate P by a predicate definable by �=c+iP , and rename its free variables
zi×(l+1), . . . , z(i+1)×(l+1) to z0, . . . zl; the result is a D formula ψi(z0, z1, . . . , zl+1).

By Lemma 5.5, χσ is equivalent to (
∧

i ψi)σ0. Finally, since ψi are D-formulas
and FreeVar(ψi) = {z0, . . . , zl+1}, we obtain, by Lemma 5.4, that

∧
i ψi is equiv-

alent to a disjunction of D-formulas, and χσ is equivalent to a disjunction of
formulas of the form (C).

This completes the proof of Claim 2.



The Expressive Power of Temporal and First-Order Metric Logics 241

7.2 Case 2

Let Ord := Ordϕ and assume that Ord is decomposed as in Lemma 7.3, and
z ∈ FreeVar(Ordk) (the case when z in the first local component is dual).

Let Ord<k be the order induced by Ord on ∪k−1
i=0 Ti and Ord ′ be the order

induced by Ord on tgreatest
k−1 ∪Tk. Then, ϕ is equivalent to ϕ1∧ϕ2, where ϕ1 and ϕ2

are simple formulas such that Term(ϕ1) = ∪k−1
i=0 Ti, Term(ϕ2) = {tgreatest

k−1 } ∪ Tk

and Ordϕ2 = Ord ′. Since z is not free in ϕ1, we obtain that ∃zϕ is equivalent
to ϕ1 ∧ ∃zϕ2. So, it remains to prove that ∃zϕ2 is equivalent to a Boolean
combination of simple formulas.

ϕ2 has two local components and the first one contains only one term.
We have reduced Case 2 to a slightly simpler version:
Ordϕ has two local components: T0 = {t} and T1 such that z ∈ FreeVar(T1).
We consider two subcases:
Subcase A. z is the only free variable T1.
Subcase B. There is u ∈ FreeVar(ϕ) such that u is not z.
Subcase A. Let t1 be a least term in T1. We can assume that it is of the form


z� + c. Indeed, otherwise t1 is z + c. From the following equivalence

(t < z + c ∧ z + c �= 
z� + c) ↔ (t < 
z� + c ∨ (
z� + c < t ∧ t < z + c))

We obtain that ϕ is equivalent to a disjunction of (ϕ ∧ t < 
z� + c) and of
ϕ∧z > t > 
z�+c. The second disjunct is equivalent to a formula with one local
component. Hence, ∃z(ϕ ∧ t > 
z� + c) is equivalent to a Boolean combination
of simple formulas by case 1. The first disjunct has the desirable property that
the minimal term of T1 is 
z� + c.

Next, ϕ is equivalent to ψ(z0, z1, . . . , zm)σ where ψ is an
−→∃ ∀-formula, σ(z0) =

t, σ(z1) = 
z� + c and σ(zi) ∈ T1 for i > 1.
Hence, ϕ is equivalent to ψ1(z0, z1)σ ∧ ψ2(z1, . . . zm)σ for

−→∃ ∀-formulas ψ1

and ψ2.
Since ψ2σ contains only one free variable, it is equivalent to an MTL formula

A, by Proposition 4.7.
Hence, ∃zϕ is equivalent to (∃z1θ(z0, z1)){t/z0}, where θ(z0, z1) expresses the

following:

1. ψ1(z0, z1) ∧ Int(z1) and
2. A holds somewhere in the interval [z1−c, z1−c+1), i.e., �=−c(A∨♦(0,1)A)(z1).

Therefore, θ(z0, z1) is equivalent to an FO[<] formula (in the canonical MTL-
expansions). Hence, ∃z1θ(z0, z1) is equivalent to a disjunction of

−→∃ ∀-formulas
and ∃zϕ is equivalent to a disjunction of simple formulas.

Subcase B. By standard logical equivalences this subcase is reducible to Case
1 considered in Sect. 7.1. Below are the details. T1 is a local component (w.r.t.
Ordϕ). Therefore, there is N ∈ N such that 
u� − N is less than all elements in
T1.

ϕ is equivalent to a disjunction of ϕ1 := t ≥ 
u� − N ∧ ϕ and ϕ2 := t <

u� − N ∧ ϕ.
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Hence, ∃zϕ is equivalent to (∃zϕ1) ∨ (∃zϕ2).
We are going to show that both disjuncts are equivalent to a Boolean com-

bination of simple formulas; hence, so is ∃zϕ.
Indeed, Ordϕ1 has only one local component (since t < t′ for every t′ ∈ T1

and u ∈ FreeVar(T1)). Therefore, by Case 1, ∃zϕ1 is equivalent to a Boolean
combination of simple formulas.

ϕ2 is equivalent to ψ(z0, z1, . . . , zm)σ where (1) ψ is an
−→∃ ∀-formula such

that Ordψ → z0 < z1 ∧
∧m

i=2(z1 < zi) and (2) σ(z0) = t, σ(z1) = 
u� − N and
σ(zi) ∈ T1 for i > 1.

Therefore, ψ is equivalent to ψ1(z0, z1) ∧ ψ2(z1, . . . zm), where ψi are
−→∃ ∀-

formulas. Now, ψσ is equivalent to ψ1σ ∧ψ2σ and (a) z /∈ FreeVar(ψ1σ) and (b)
ψ2σ has only one local component. Hence, ∃zϕ2 is equivalent to a conjunction of
simple formulas ψ1σ and of ∃z(ψ2σ) which is equivalent, by case 1, to a Boolean
combination of simple formulas.

This completes the proof of subcase B of case 2.

7.3 Case 3

First, similarly to Case 2, we can reduce this case to a version with three local
components, where the minimal and the maximal components have one term.

Next, let the local components of Ordϕ be T0, T1 and T2, where T0 = {t0}
and T2 = {t2} and z ∈ FreeVar(T1). Consider two subcases:

Subcase A. z is the only free variable in T1.
Subcase B. There is u ∈ FreeVar(ϕ) such that u is not z.
In subcase A, we can further assume that the least term of T1 is 
z� + c and

the greatest is 
z� + d for some c, d ∈ N.
Then, ϕ is equivalent to ψ(z0, z1, . . . zm, zm+1)σ, where ψ is an

−→∃ ∀-formula
and

– Ordψ → (z0 < z1 < zm < zm+1 ∧
∧m−1

i=2 (z1 < zi < zm) and
– σ(z0) = t0, σ(zm+1) = t2, and σ(z1) = 
z� + c, σ(zm) = 
z� + d are integers,

and σ(zi) ∈ T1 for i = 2, . . . ,m − 1.

Hence, ψ is equivalent to a conjunction ψ1(z0, z1)∧ψ2(z1, . . . zm)∧ψ3(zm, zm+1)
of

−→∃ ∀ formulas.
The only free variable in ψ2σ is z, and therefore, by Proposition 4.7, ψ2σ

is equivalent to A(z), where A is an atomic predicate (in the canonical MTL-
expansion).

Therefore, ∃zϕ is equivalent to (∃z1zmθ(z0, z1, zm, zm+1)){t0/z0, t2/zm+1},
where θ(z0, z1, z2, z3) expresses the following:

1. ψ1(z0, z1) ∧ Int(z1) ∧ Int(zm) ∧ ψ3(zm, zm+1) and
2. Int(z1) ∧ Int(zm) ∧ zm = z1 + d − c and
3. A holds somewhere in the interval [z1−c, z1−c+1), i.e., �=−c(A∨♦(0,1)A)(z1).
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The second item states: “there are d − c − 1 integer points in (z1, z2) and
Int(z1) ∧ Int(z2),” and it is expressible by a FO[<] formula over RZ. Therefore,
θ(z0, z1, zm, zm+1) is equivalent to a FO[<].

Hence, ∃z1zmθ is equivalent to a disjunction of
−→∃ ∀-formulas and ∃zϕ is

equivalent to a disjunction of simple formulas.
By standard logical equivalences, subcase B is reducible to case 1 or case 2.

We skip the details.

8 Conclusion and Related Works

A major result concerning temporal logics is Kamp’s theorem [5,14] which
implies that the temporal logic with two modalities “P Until Q” and “P Since Q”
is expressively equivalent to First-Order Monadic Logic of Order (FO[<]) over
the standard linear time intended models - the Naturals 〈N, <〉 for discrete time
and the Reals 〈R, <〉 for continuous time.

FO[<] is a fundamental formalism; however, FO[<] cannot express over the
reals properties like “P holds exactly after one unit of time.” Such local metric
properties are easily expressible in FO[<,+1] - the extension of FO[<] by +1
function. In contrast to the Kamp theorem, no temporal logic with a finite set
of modalities is expressively equivalent over the reals to FO[<,+1] [10].

Actually, in [10] a much stronger result is proved. Recall that counting modal-
ities Cn(P ) - “P will hold at least at n points within the next unit of time” are
defined by FO[<,+1] formulas. In [10], we proved that no temporal logic with
a finite or infinite family of modalities which are defined by FO[<,+1] formulas
with bounded quantifier depth can express over R all the modalities Cn(P ).

FO[<,+1] lacks expressive power to specify the natural global metric prop-
erty “the current moment is an integer.”

Surprisingly, our main result states that FO[<,+1] has the same expressive
power as the temporal logic MTL (with only six modalities) over the expansion
of the reals by a monadic predicate “x is an integer.” We could use alternative
notations. Let FO [<,+1, Int] be the expansion of the monadic first-order logic by
a unary function symbol +1 and a unary relation symbol Int interpreted over the
reals as the plus one function and as the set of integers. Let MTL[Int] be obtained
from MTL by adding modality Int defined by M, a |= Int iff a is an integer. Our
main result - Theorem 3.2 - can be rephrased as FO [<,+1, Int] is expressively
equivalent over R to MTL[Int]. (Technically, it is slightly more convenient in our
proof to treat Int as a monadic predicate and not as a modality.)

Our proof uses some techniques from [17], where we proved a result that can
be viewed as an extension of Kamp’s theorem to metric logics over bounded real
time domains: for every N ∈ N, FO[<,+1] and MTL are expressively equivalent
over the class of real intervals of length < N . Note that for every MTL formula
A there is FO[<,+1] formula ψA which is equivalent to A over all real time
intervals2. For every FO[<,+1] formula ψ with one free variable, we constructed
2 Formally, FO[<,+1] over bounded intervals uses a binary relation “x at distance one
from y” instead of +1 function.
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in [17] an MTL formula AN
ψ which is equivalent to ψ over the real intervals

of length < N ; MTL formulas AN1
ψ and AN2

ψ are different for N1 �= N2. It
can be proved that there is no uniform (independent from N) translation from
FO[<,+1] to an equivalent (over [0, N) interval) MTL formula. Finally, note
that for every N ∈ N, there is a FO[<,+1] formula intN (t) which defines the set
of integers in the interval [0, N). Indeed, let α0(t) be ∀t′(t ≤ t) and αi+1(t) :=
∃t′(αi(t′) ∧ t = t′ + 1) for i < N − 1. The unique element which satisfies αi(t) in
[0, N) is i; hence, intN (t) can be defined as ∨N−1

i=0 αi(t). Therefore, the expansion
of interval [0, N) by a monadic predicate “x is an integer” does not increase the
expressive power of FO[<,+1].

Our results were obtained in 2012, independently of the result of Paul Hunter
[12] which states that the temporal logic MTLC which in addition to MTL
modalities has all counting modalities is expressively equivalent to FO[<,+1]
(without the need for the additional unary predicate for the integers). Though
MTLC has infinitely many modalities, Hunter’s result implies the main result
of this paper, since one can express the counting modalities in MTL, using the
monadic predicate for the integers, as shown in the last paragraph of Sect. 2.
On the other hand, Hunter’s result can be proved by a minor modification of
our proof. In particular, Propositions 4.7 and 4.8 hold when MTL is replaced by
MTLC and RZ is replaced by R.

The proof techniques of this paper and of [12] - though possessing common
elements - are quite different.

In [13], the logic FO[<,+Q] was introduced. This logic adds to FO[<,+1] an
infinite family of unary function symbols: +q for each rational q. Every fragment
of FO[<,+Q] which uses only finitely many +q functions is strictly less expressive
than FO[<,+Q]. Therefore, no temporal logic with finitely many modalities
is expressively equivalent to FO[<,+Q]. The main result of [13] states that
FO[<,+Q] is expressively equivalent to MTLQ, where MTLQ is a temporal logic
obtained from MTL by adding modality �=q, for every rational q, and modalities
�(0,q) and �(−q,0) for every positive rational q. Recall that a counting modality
C2(P ) - “P will hold at least twice within the next unit of time” is definable by an
FO[<,+1] formula ψ(z0) := ∃x1∃x2(z0 < x1 < x2 < z0+1)∧P (x1)∧P (x2), and
C2(P ) is not expressible in MTL over the reals [10]. Let us illustrate how C2(P )
was expressed in MTLQ using fractional constants [13]. The idea is to consider
three cases according to whether P is true twice in the interval (z0, z0+ 1

2 ], twice
in the interval [z0 + 1

2 , z0 + 1) or once in (z0, z0 + 1
2 ) and (z0 + 1

2 ), z0 + 1). The
last case is equivalent to an MTLQ formula �(0, 12 )

P ∧�=1(�(− 1
2 ,0)P ); an MTLQ

formula �(0, 12 )
(P ∧�(0, 12 )

P ) holds in the first case and implies C2(P ); an MTLQ

formula �=1(�(− 1
2 ,0)(P ∧ �(− 1

2 ,0)P ) holds in the second case and also implies
C2(P ). Therefore, C2(P ) is equivalent to a disjunction of these three formulas.

Note that every predicate logic is expressively equivalent to a modal logic with
an infinite set of modalities. For every predicate formula ψ(t) with one free first-
order variable, one can consider the modality with a truth table defined by ψ.
The modal logic with all these modalities and the predicate logic are expressively
equivalent. Hence, if a predicate logic is expressively equivalent to no temporal
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logic with a finite set of modalities, one can try to find an equivalent temporal
logic with an infinitely many modalities which are “natural” or “simple” in some
sense.

Table 1 lists predicate logics and corresponding expressively equivalent tem-
poral logics and summarizes our comparison. Note, thought both MTLC and
MTLQ use infinitely many modalities, all modalities in MTLQ are defined by
FO[<,+Q] formulas of quantifier depth at most two, while the MTLC modali-
ties cannot be defined in a fragment of FO[<,+1] of bounded quantifier depth.

Table 1. Predicate logics and corresponding expressively equivalent temporal logics

Predicate logic Temporal logic Models Cardinality of the
set of modalities

Reference

FO[<] LTL All Dedekind
complete linear
orders

Finite [14]

FO[<,+1] MTL Intervals [0, N) Finite [17]

FO[<,+1] MTL RZ Finite This paper

FO [<,+1, Int] MTL[Int] R Finite This paper

FO[<,+1] MTLC R Infinite [12]

FO[<,+Q] MTLQ R Infinite [13]
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Abstract. This paper compares a first-order theory of ordinals proposed
by the author to the theory published 1965 by Gaisi Takeuti. A clarifi-
cation of the relative deductive strength of the two theories is obtained.

1 Introduction and Main Results

In [3] the author proposed the theory ThOrd of ordinals. This paper also men-
tions the theory ThTak of ordinals published by Gaisi Takeuti in [6] already in
1965. The aim of ThOrd was to provide a set of axioms amenable for imple-
mentation in a theorem prover and strong enough for possible applications in
program verification. The theory ThOrd was indeed implemented in the KeY pro-
gram verification system, [1], and used to automatically prove termination of the
Goodstein sequences. A closer description of this verification effort is contained
in [3]. Takeuti’s aim with ThTak, on the other hand, was to find a first-order
theory that gets as close as possible to prove all properties of the ordinals that
can be proved in full ZF set theory. The present paper provides a comparison of
the two theories ThOrd and ThTak which was missing until now.

Contents. After settling the terminology in Sect. 2 the axioms systems for ThOrd

and ThTak are presented with explanatory comments in Sect. 3. The main effort
in the comparison of the two theories is to show that the well-ordering of pairs of
ordinals and the resulting coding of pairs of ordinals that is part of the axioms
of ThTak can also be derived in ThOrd. This is done in Sects. 4 and 5. Section 6
exposes the limitation of ThOrd that the existence of epsilon numbers cannot be
derived. Section 7 gives a short review of the results from the paper [6].

2 Preliminaries

The two theories we want to compare use different vocabularies. Thus enriching
a vocabulary becomes a frequent necessity. To avoid ambiguities in terminology
we collect here the relevant definitions and facts.

Definition 1. Let T1, T2 be theories with languages L1 ⊆ L2.
T2 is called a conservative extension of T1 if for every sentence φ in the

smaller language L1

T1 � φ ⇔ T2 � φ

c© Springer Nature Switzerland AG 2020
A. Blass et al. (Eds.): Gurevich Festschrift, LNCS 12180, pp. 247–257, 2020.
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Definition 2. Let a theory T1 with language L1 be given, r(x̄) a new relation,
f(x̄) a new function symbol and φ(x̄), ψ(x̄, y) formulas in L1. The theory T2

obtained from T1 by adding the axiom

∀x̄(r(x̄) ↔ φ(x̄))

or
∀x̄∀y(f(x̄) = y ↔ ψ(x̄, y))

is called a relational, resp. functional extension by explicit definition.

Every relational extension by explicit definition is a conservative extension. A
functional extension by explicit definition is a conservative extension only if
T1 � ∀x̄∃y(ψ(x̄, y)).

We will also use below recursive definitions, as usual, and implicit definitions
of the functions decode1 and decode2 in Fig. 6 on page 8 below. All extensions
of this type lead to conservative extensions.

Definition 3. Let T1, T2 be theories with languages L1 ⊆ L2.
T2 is called a reducible extension of T1 if for every sentence φ2 in the lan-

guage L2 there is a sentence φ1 in the language L1 satisfying

T2 � φ1 ↔ φ2

Here reducible is my nomenclature, I did not find another name in the literature.
Extensions by explicit or implicit definitions are reducible. Extension by

recursive definitions are reducible only in very special cases, e.g.; in classical
Peano arithmetic where a coding of finite sequences of natural numbers of arbi-
trary length is available. I found no analog coding for finite sequences of ordinals.

The following criterion is sometimes useful to establish conservative exten-
sions.

Lemma 1. Let T1, T2 be theories with languages L1 ⊆ L2 such that

1. For every model M2 of T2 the restriction of M2 to the language L1 is a model
of T1

2. For every model M1 of T1 there is an expansion of M1 to the language L2

that is a model of T2

Then T2 is a conservative extension of T1.

3 Comparing ThOrd and ThTak

The first-order language LOrd of ThOrd is built on the vocabulary with the binary
predicate symbols <, ≤, the unary predicate symbol lim, the unary function +1,
and the constants 0 and ω. The axioms are listed in Fig. 1. Items 1 to 6 are axioms
for Peano arithmetic. To get beyond Peano arithmetic a new counting principle
besides the successor is needed. This role is in our case taken by the supremum
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1. ∀x, y, z(x < y ∧ y < z → x < z) transitivity
2. ∀x(¬x < x) strict order
3. ∀x, y(x < y ∨ x

.= y ∨ y < x) total order
4. ∀x(0 ≤ x) 0 is smallest element
5. ∀x(x < x + 1) ∧ ∀x, y(x < y → x + 1 ≤ y) successor function
6. ∀x(∀y(y < x → φ(y/x)) → φ) → ∀xφ transfinite induction scheme
7. ∀z(z < n → m[z/x] ≤ supx<nm) def of supremum, part 1
8. ∀u(∀z(z < n → m[z/x] ≤ u) → supx<nm ≤ u) def of supremum, part 2
9. 0 < ω ∧ ¬∃x(ω .= x + 1) ω is a limit ordinal

10. ∀y(0 < y ∧ ∀x(x < ω → x + 1 < y)− > ω ≤ y) ω is the least limit ordinal

11. ∀x, y(x ≤ y ↔ x < y ∨ x = y) Def. of ≤
12. ∀x(lim(x) ↔ x 	= 0 ∧ ¬∃y(x = y + 1)) Def. of limit ordinal

Fig. 1. The axioms of ThOrd

operator, axioms 7 and 8. The standard natural numbers are still a model of the
axioms from 1 to 8. The existence of a limit number is needed to get the ball
rolling, axioms 9 and 10. The definitions of ≤ and lim are already included in the
core set of axioms for ThOrd since they are utterly convenient in the formulation
of the axioms.

The sup operator is a variable-binding term constructor, thus not listed in
the vocabulary. If t and b are terms and x a variable not occurring in b then
supx<bt is a term. It is well known that these constructors can be equivalently
replaced by ordinary function symbols. A proof of a quite general case may be
found in [7, Sect. 2.3.3].

Let L+
Ord be the language extending LOrd by increasing the vocabulary by

the constant 1 and the binary function max, + (ordinal addition), ∗ (ordinal
multiplication),ˆ(ordinal exponentiation). The theory Th+

Ord extends ThOrd by
the usual definitions of the new symbols. Th+

Ord is a conservative extension of
ThOrd.

Figure 2 lists the axioms of Takeuti’s theory of ordinals in the order as they
occur in the paper [6]. We changed the original notation a bit and use x + 1
instead of x′, encode(x, y) for j(x, y), decode1(x) for g1(x) and decode2(x) for
g2(x).

We notice immediately that ThTak is at least as strong as ThOrd, axioms 1 to
3 and axiom 5 in Fig. 2 guarantee that < is a strict total ordering with least ele-
ment 0, axioms 4, 8, and 9 characterize ω as the least limit ordinal, axioms 6 and
7 stipulate the x+1 is the immediate successor of x. Since the term constructor
sup from ThOrd is not a symbol in ThTak the phrase at least as strong has to be
taken with a little grain of salt: There is a definitional extension of ThTak that
implies all axioms of ThOrd. Indeed the replacement axiom, 21, guarantees that
adding the bounded supremum constructor is a conservative definitional exten-
sion. Finally the axiom scheme for transfinite induction is literally the same in
both theories.
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1. x < y ∨ x
.= y ∨ y < x

2. ¬x < x
3. x < y ∧ y < z → x < z
4. 0 < ω
5. 0 ≤ x
6. x < y → x + 1 ≤ y
7. x < x + 1
8. x < ω → x + 1 < ω
9. 0 < y ∧ ∀x(x < y → x + 1 < y)− > ω ≤ y)

10. x ≤ y ↔ max(x, y) .= y
11. max(x, y) .= max(y, x)
12. x < y ↔ less(x, y) .= 0
13. less(x, y) ≤ 1
14. encode(decode1(x), decode2(x)) = x
15. decode1(encode(x, y)) = x
16. decode2(encode(x, y)) = x
17. encode(v, w) < encode(x, y) ↔ max(v, w) < max(x, y)∨

(max(v, w) .= max(x, y) ∧ w < y)∨
(max(v, w) .= max(x, y) ∧ w

.= y ∧ v < x)
18. (t(c) .= 0 ∧ c < b) → t(μx<bt(x))

.= 0 ∧ t(μx<bt(x)) < c
19. μx<bt(x)

.= 0 ∨ (t(μx<bt(x))
.= 0 ∧ μx<bt(x) < b)

20. ∀x(∀y(y < x → φ(y)) → φ) → ∀xφ transfinite induction scheme
21. ∀x, y, z(φ(x, y) ∧ φ(x, z) → y = z) →

∀a∃b∀y(∃x(φ(x, y) ∧ x < a) → y < b)
replacement axiom scheme

22. ∃u(∀v, x, y, z(φ(y, x, v) ∧ φ(z, x, v) → y = z)
→ ∀v∃x(x < u ∧ ∀y(y < a → ¬φ(x, y, v))))

cardinality axiom scheme

Fig. 2. Takeuti’s Theory of Ordinals ThTak

Next we turn to investigate the reverse implication: is ThOrd as strong as
ThTak? It is easily seen that the axioms and schemes 1 to 9, and 20 if they are
not literally axioms are derivable in ThOrd. Axioms 12 and 13 in Fig. 2 define a
Boolean binary predicate less that codes the order relation <, while axioms 18
and 19 define a bounded μ-operator. We can equally well add these definitions to
ThOrd and nothing needs to be checked since the axioms of ThTak do not claim
any properties of the thus defined new vocabulary. Adding the μ-operator leads
to a conservative extension since the existence of a minimal instance follows from
the least number principle, which is an easy consequence of transfinite induction.
A tiny bit different is the situation with the maximum operator. It is defined in
axiom 14 and axiom 17 requires this operator to be symmetric. But, symmetry
also follows effortlessly from the definition.

This leaves us with the axioms 14 to 17. These state that encode is an injective
and surjective coding function for pairs of ordinals with decode1 and decode2
being the decoding functions for the first and second coordinate. Furthermore,
encode should satisfy a certain monotonicity property. No definition of these
functions is offered. In the next section we will present a definitional extension
of ThOrd and demonstrate that axioms 14 to 17 can be derived from it.
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Finally, we note that the axiom schemes 22 and 21 in Fig. 2 apparently cannot
be derived in ThOrd. Takeuti gives the cardinality axiom special status and marks
every theorem of ThTak that depends on it with an asterisk *. In the proof that
the inner model constructed in [6] is indeed a model of ZF axiom scheme 22 is
only needed to prove that the power set axiom holds true.

4 A Well-Ordering of Pairs of Ordinals

The results of this and the next section are well-known. Proofs using an auto-
mated reasoning tool, however, have, to the best of my knowledge, not been
reported before. The theory ThOrd and its extensions have been implemented
in the KeY verification system, [1], and more than 200 theorems, among them
all the results listed in this paper, have been interactively proved with KeY.
Further details may be found in the technical report [4]. Proof files are available
at https://www.key-project.org/flocs2018. Thus, we do not give any proofs in
the following two sections. The more accessible results are just stated while for
the more demanding verifications lists of intermediate stepping-stone-lemmas
are provided.

The goal of the next section, Sect. 5, is to extend ThOrd with definitions for
the functions encode, decode1, and decode2, plus some auxiliary functions and
predicates, such that in this definitional extension axioms 14 to 17 in Fig. 2 are
provable.

In the present section we take a preparatory step towards this goal. We add
a predicate for the left-hand side of the formula in line 17 in Fig. 2.

(v, w) 
 (x, y) ↔ max(v, w) < max(x, y)∨
(max(v, w) .= max(x, y) ∧ w < y)∨
(max(v, w) .= max(x, y) ∧ w

.= y ∧ v < x)

(1)

The relation 
 is an ordering of pairs of ordinals. If the maximum of x and y
is greater than the maximum of v and w then (v, w) 
 (x, y). If the maxima
are equal the pairs are sorted lexicographically the second coordinate being the
most significant. The relation 
 is a strict total ordering and turns out to be
even a well-ordering on pairs of ordinals. Since the well-ordering property cannot
be expressed in first-order logic we verify that the following implication is true
for every formula φ.

∀v1, v2 (∀v3, v4((v3, v4) 
 (v1, v2) → φ(v3, v4)) → φ(v1, v2))
→ ∀v1∀v2φ(v1, v2)

(2)

Now, that we know that 
 is a well-ordering it makes sense to introduce the
predicates for successor and limit elements

succp((v, w, x, y) ⇔ (x, y) is the immediate successor of (v, w) w.r.t 

limp(x, y) ⇔ there is no (v, w) with succp((v, w, x, y)

i.e.; (x, y) is a limit pair in the ordering 


https://www.key-project.org/flocs2018
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1. ∀v1, v2, v3(succp(v1, v1, v1 + 1, 0))
2. ∀v1, v2(v2 + 1 < v1 → succp(v1, v2, v1, v2 + 1)
3. ∀v1, v2; (v2 + 1 = v1 → succp(v1, v2, 0, v2 + 1))
4. ∀v1, v2(v1 < v2 → succp(v1, v2, v1 + 1, v2))
5. succp(v1, v1, w1, w2) → w1 .= v1 + 1 ∧ w2 .= 0
6. (v2 + 1 < v1 ∧ succp(v1, v2, w1, w2) → w1 .= v1 ∧ w2 .= v2 + 1
7. succp(v2 + 1, v2, w1, w2) → w1 .= 0 ∧ w2 .= v2 + 1
8. (v1 < v2 ∧ succp(v1, v2, w1, w2)) → w1 .= v1 + 1 ∧ w2 .= v2
9. ∀v1, v2∃w1, w2(succp(v1, v2, w1, w2))

10. succp(v1, v2, w1, w2) → max(w1, w2) ≤ max(v1, v2) + 1

Fig. 3. Successor pairs in the well-ordering �

For successor pairs the properties in Fig. 3 can be derived. This properties
are broken down into small parts that can more easily be applied during, prefer-
ably automatic, proof search. Taken together they give necessary and sufficient
conditions for (x, y) to be the successor pair of (v, w) which may be summarized
as

succp(v, w, x, y) ↔ v = w ∧ x = v + 1 ∧ y = 0
∨
v < w ∧ x = v + 1 ∧ y = w
∨
v > w + 1 ∧ x = v ∧ y = w + 1
∨
v = w + 1 ∧ x = 0 ∧ y = w + 1

(3)

1. limp(0, 0)
2. ∀v1, v2(lim(v2) ∧ v2 ≤ v1 → limp(v1, v2))
3. ∀v1, v2(lim(v1) ∧ v1 ≤ v2 → limp(v1, v2 + 1))
4. ∀v(lim(v) → limp(0, v))
5. ∀v(lim(v) → limp(v, 0))
6. ∀v1, v2(lim(v1) ∧ lim(v2) → limp(v1, v2))
7. ∀v1, v2(limp(v1, v2) → (v1 = 0 ∧ v2 = 0) ∨ (v1 = 0 ∧ lim(v2))∨

(lim(v1) ∧ v2 = 0) ∨ (lim(v1) ∧ lim(v2))∨
(v2 ≤ v1 ∧ lim(v2)) ∨ (lim(v1) ∧ ∃v3(v2 = v3 + 1 ∧ v1 < v2)

Fig. 4. Limit pairs in the well-ordering �
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Figure 4 provides an analog analysis of limit pairs in the ordering 
 which
may be summarized as follow:

limp(x, y) ↔ x = 0 ∧ y = 0
∨

x = 0 ∧ lim(y)
∨

lim(x) ∧ y = 0
∨

lim(x) ∧ lim(y)
∨

y ≤ x ∧ lim(y)
∨

y > x ∧ lim(x) ∧ ∃z(y = z + 1)

(4)

The distinction between successor pairs and limit pairs makes it possible to
formulate and prove a second form of the transfinite induction principle whose
help in proving complex statements can hardly be overrated.

∀v1, v2( φ(v1, v2) → (∀w1, w2(succp(v1, v2, w1, w2) → φ(w1, w2)))
∧
limp(v1, v2)∧

∀w1, w2((w1, w2) 
 (v1, v2) → φ(w1, w2)) → φ(v1, v2))
→ ∀v1, v2φ(v1, v2)

(5)

5 Coding Pairs of Ordinals

The idea for the coding function encode is quite simple: encode(v1, v2) is the
position of the pair (v1, v2) in the well-ordering 
. This leads to

encode(0, 0) = 0
encode(w1, w2) = encode(v1, v2) + 1 if succp(v1, v2, w1, w2)
encode(w1, w2) = the least ordinal greater than encode(v1, v2)

for all (v1, v2) 
 (w1, w2) if limp(w1, w2)

(6)

These definitions correspond to Lines 1 to 3 in Fig. 5. As first consequences we
list encode(v1, v2) = n for 1 ≤ n ≤ 4 in Line 4 of Fig. 5.

As a proper coding function encode should be injective. As a stepping stone
we first prove (strict) monotony as formulated in Line 5 of Fig. 5 while injectivity
follows in Line 6. It is a special, and very convenient, feature of the encoding
function encode that it is surjective, i.e. every ordinal is the code of a pair of
ordinals, Line 10 of Fig. 5. In the course of the proof of surjectivity the weak
increasing property from Line 7 is used.

Let us now turn to decoding. The definition of the two decoding functions is
given in the one axiom in Line 1 of Fig. 6. On the face of it this axiom looks just
a some property that we want the decoding functions to satisfy. But, by what
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1. encode(0, 0)) .= 0
2. succp(v1, v2, w1, w2) → encode(w1, w2)

.= encode(v1, v2) + 1
3. limp(v1, v2) → (∀w1, w2((w1, w2)
(v1, v2) → encode(w1, w2)<encode(v1, v2))

∧
∀x(∀w1, w2((w1, w2) 
 (v1, v2) → encode(w1, w2) < x)

→ encode(v1, v2) ≤ x)
4. encode(1, 0) = 1 ∧ encode(0, 1) = 2 ∧

encode(1, 1) = 3 ∧ encode(2, 0) = 4
5. (v1, v2) 
 (w1, w2) → encode(v1, v2) < encode(w1, w2)
6. encode(v1, v2) = encode(w1, w2) → (v1, v2) = (w1, w2)
7. ∀v1, v2(max(v1, v2) ≤ encode(v1, v2))
8. ∀x, y(a + x ≤ encode(a, x))
9. ∀v1, v2, w1, w2; (encode(v1, v2) < encode(w1, w2) → (v1, v2) 
 (w1, w2))

10. ∀w∃v1, v2(encode(v1, v2) = w)

Fig. 5. Encoding pairs of ordinals

1. ∀w(encode(decode1(w), decode2(w)) = w)
2. ∀v1, v2(decode1(encode(v1, v2)) = v1)
3. ∀v1, v2(decode2(encode(v1, v2)) = v2)

Fig. 6. Decoding for pairs of ordinals

we have proved about the encoding function there is exactly one way to define
decode1 and exactly one way to define decode2 such that the axiom holds true.
Lines 2, 3 in Fig. 6 present two lemmas derivable from the defining axiom.

6 Limitations of ThOrd

Definition 4 (Epsilon naught).
ω0 = ω
ωn+1 = ωωn

ε0 = supn<ω(ωn)
It is convenient to stipulate ω−1 = 1.

This is a semantic definition. There is no term denoting ε0 in ThOrd.

Lemma 2.

1. For n < m < ω we have ωn < ωm.
2. For all n,m < ω

(a) ωn + ωm < ωmax{n,m}+1

(b) ωn ∗ ωm < ωmax{n,m}+1,
(c) ωωm

n < ωmax{n,m}+2

3. ωα = α implies ωm < α for all m.
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4. α, β < ωn implies α + β < ωn.
5. α, β < ωn implies α ∗ β < ωn.

Proof. The proofs are routine. We provide a sketch for the last two items. In
both proofs it suffices to consider the case α = β

(4) The claim is trivial for n = 0. We consider α < ωωn−1 . Let α = ωα0 ∗a0 +
ωα1 ∗a1+ . . .+ar−1 be the Cantor normal form of α. We have α0 < ωn−1. By [2,
page 60ff] the CNF of α + α = ωα0 ∗ (a0 + a0) + ωα1 + a1 ∗ . . . ar−1. This implies
α + α < ωα0+1. Since α0 + 1 is still less than ωn−1 we get α + α < ωωn−1 = ωn

(5) The claim is trivial for n = 0. Let α = ωα0 ∗a0+ωα1 ∗a1+. . .+ar−1 be the
Cantor normal form of α, as above. The normal form of α+α is ωα0+α0 +a0 +R
where R is a sum of ωγ ∗ c with α0 + α0 > γ. From α0 < ωn−1 we get from (4)
α0 + α0 < ωn−1 and thus in total α ∗ α < ωωn−1 . ��

Lemma 3. For a term t in the language L+
Ord of Th+

Ord with the free variables
x1, . . . , xn we denote by ft the n-place function that associates argument tuples
α1, . . . , αn with the value ft(α1, . . . , αn) that is obtained by evaluating term t
under the variable assignment xi � αi.

For every term t there is natural number bt < ω such that

αi < ωmi
for 1 ≤ i ≤ n implies ft(α1, . . . , αn) < ωk+bt

with k = max{mi | 1 ≤ i ≤ n}

Proof. The proof proceeds by structural induction on t. The claim is trivial if t
is just a variable or a constant or t ≡ max(t1, t2)

If t = t1+t2 there are by induction hypothesis bounds bt1 , bt2 such that for all
tuples α1, . . . , αn with αi < ωmi

for all 1 ≤ i ≤ n and k = max{mi | 1 ≤ i ≤ n}.
we have ft1(α1, . . . , αn) < ωk+bt1

and ft2(α1, . . . , αn) < ωk+bt2
. By (2.a) of

Lemma 2 we get ft(α1, . . . , αn) < ωk+b+1 with b = max{bt1 , bt2}.
The cases t = t1 ∗ t2 and t = tt21 are handled analogously.
It remains to consider t = supx0<t1(t2).
By induction hypothesis there are bounds bt1 , bt2 such that for all arguments

α0, α1, . . . , αn with αi < ωmi
we know ft1(α1, . . . , αn) < ωmax{m1,...,mn}+bt1

and ft2(α0, α1, . . . , αn) < ωmax{m0,m1,...,mn}+bt2
. Observe, that the variable x0,

to which α0 is assigned, is not allowed to occur in t1. For fixed α1, . . . , αn

with αi < ωmi
ωmax{m1,...,mn}+bt1

is an upper bound for the assignments
to x0. We thus get for all instantiations α0 for x0 that ft2(α0, α1, . . . , αn) <
ωmax{m1,...,mn}+bt1+bt2

. Thus the left hand side is also an upper bound for the
supremum, i.e. ft(α1, . . . , αn) < ωmax{m1,...,mn}+bt1+bt2

. ��

Definition 5 (ε-Standard Model).
The ε standard model

S = (U,<, 0, 1, ω,max,+, ∗, exp)

has as universe U the set of all ordinals strictly less than ε0: U = {α | α < ε0}.
The constants, the ordering, the maximum function, ordinal addition, multipli-
cation, exponentiation and the supremum operator sup are determined by the
usual set theoretic definitions.
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Lemma 3 guarantees that the evaluations of all function symbols from the
vocabulary L+

Ord and the sup operator never exceed ε0 on arguments from U .

Theorem 1. S is a model for ThOrd.

Proof. Obvious.

Note, that as a consequence of Theorem 1 the existence of ε0 cannot be proved
in ThOrd.

7 Properties of ThTak

For the convenience of the reader we provide a short review of the results in
[6]. In the main body of this paper Gaisi Takeuti construct, mimicking Gödel’s
technique used in his proof of the consistency of the continuum hypothesis, for
an arbitrary model M of ThTak a model SM of ZF set theory. The construction
also yields a Δ0 formula fε(x, y) in the language of ThTak such that for any closed
formula φ in the language of set theory (i.e. ε is the only predicate occurring
in φ)

M |= φo ⇔ SM |= φ (7)

is true where formula φo is obtained from φ by replacing every subformula t1εt2
by fε(t1, t2).

The last page of [6], that is §8, is very cryptic. The opening quote

If we assume the set theory, then we can construct our theory of ordinal
numbers in the set theory (cf. [5]). In this section it is understood that our
theory of ordinal numbers is a subtheory of the set theory in this sense
and . . .

leaves much room for interpretation.
If M is a model of ThTak of this kind in a model T of set theory then it is

assumed that for formulas φ in the language LTak there are translations φ∗ into
the language of set theory such that

M |= φ ⇔ T |= φ∗ (8)

In this special case the universe SM of SM can be described as SM =
{F (α) | α ∈ M}, where F is Gödel’s fundamental function. Furthermore we
have the following

Lemma 4. For any formula φ(x) in the language of set theory and all parame-
ters ᾱ form the universe of M

M |= φo[ᾱ) ⇔ T |= φ[F (ᾱ)]

Proof. This is proved by induction on the structural complexity of φ. For the
only base case, the atomic formula α1 ∈ α2, [6] offers the hint to prove this by
transfinite induction. This is possible since truth in M is expressible in T .

This does however shed no light on the expressive strength of ThTak.
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8 Concluding Remarks

Takeuti advertises in the introduction to his paper [6] his theory ThTak as a
natural extension of Peano arithmetic. In my opinion the main achievement
of the paper is an analysis of minimal requirements to carry through Gödel’s
construction of an inner model of ZF. It is not surprising that these requirements
can be formulated as properties of the ordinals rather than properties of arbitrary
sets.

The theory ThOrd was intended as a basis for an implementation in an auto-
mated theorem prover and has so far met expectations. That the existence of
epsilon numbers cannot be proved in ThOrd does not seem to diminish its use-
fulness in all practical matters. It might be worthwhile considering the addition
of the replacement axiom scheme. This was already deliberated as a possible
variant of ThOrd in [3]. Of course, one would not expect that an end user would
apply instances of the scheme or that the system would use it automatically.
Rather, the replacement scheme would be used to prove within the system the
correctness of the pragmatic proof rules. As an aesthetic benefit one could drop
the sup term constructor in the initial language and add it in a conservative def-
initional extension. I could not settle the question whether the ε-standard model
from Definition 5 is a model of the replacement scheme or not. I guess it is.
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Abstract. The mathematical theory of probabilities does not refer to
the notion of an individual random object. For example, when we toss a
fair coin n times, all 2n bit strings of length n are equiprobable outcomes
and none of them is more “random” than others. However, when testing
a statistical model, e.g., the fair coin hypothesis, we necessarily have to
distinguish between outcomes that contradict this model, i.e., the out-
comes that convince us to reject this model with some level of certainty,
and all other outcomes. The same question arises when we apply ran-
domness tests to some hardware random bits generator.

A similar distinction between random and non-random objects
appears in algorithmic information theory. Algorithmic information the-
ory defines the notion of an individual random sequence and therefore
splits all infinite bit sequences into random and non-random ones. For
finite sequences there is no sharp boundary. Instead, the notion of ran-
domness deficiency can be defined, and sequences with greater deficiency
are considered as “less random” ones. This definition can be given in
terms of randomness tests that are similar to the practical tests used for
checking (pseudo)random bits generators. However, these two kinds of
randomness tests are rarely compared and discussed together.

In this survey we try to discuss current methods of producing and
testing random bits, having in mind algorithmic information theory as
a reference point. We also suggest some approach to construct robust
practical tests for random bits.

1 Testing a Statistical Hypothesis

Probability theory is nowadays considered as a special case of measure theory:
a random variable is a measurable function defined on some probability space
that consists of a set Ω, some σ-algebra of the subsets of Ω, and some σ-additive
measure defined on this σ-algebra. A random variable determines a probability
distribution on the set of possible values.
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When probability theory is applied to some “real world” case, it provides a
statistical hypothesis that is a mathematical model of the process. For example,
for n trials and the fair coin the corresponding model is the uniform distribution
on the set B

n of all possible outcomes, i.e., on all n-bit binary strings. Each
string has probability 2−n. The set Bn can be considered as a probability space,
and ith coin tossing is represented by a random variable ξi defined on this space:
ξi(x1x2 . . . xn) = xi.

Having a mathematical model for a real-life process, we need some way to
check whether this model is adequate or not. Imagine that somebody gives us
a coin, or a more advanced random bits generator. This coin can be asymmet-
ric, and the bit generator can be faulty. To check whether this is the case, we
need to perform some experiment and look at its results. Assume, for example,
that we toss a coin and get 85 heads in a row, as it happened to Rosencrantz
and Guildenstern in Stoppard’s play [34, Act 1]. Should we reject the fair coin
hypothesis? Probably we should—but how can we justify this answer? One can
argue that for a fair coin such an outcome is hardly possible, since its probabil-
ity is negligible, namely, equals 2−85. However, any other sequence of 85 heads
and tails has the same negligible probability—so why this reasoning cannot be
applied to any other outcome?

To discuss this problem in a more general case, let us introduce suitable
terminology. Consider some set X of possible outcomes. We assume that X is
finite. Fix some statistical model P , i.e., a hypothetical probability distribution
on X. A randomness test is an event T ⊂ X that has small probability according
to P . If an experiment produces an outcome that belongs to T , the test is not
passed, and we may reject P . This approach has two main problems. The first
problem, mentioned earlier, is that in most cases every individual outcome x ∈ X
has negligible probability, so the singleton {x} is a test that can be used to reject
P . We discuss this problem later. Now let us comment on the other problem:
how to choose the threshold value for the probability, i.e., how small should be
the probability of T to consider T as a valid randomness test.

In practice, the statistical model is often called the null hypothesis. Usually
we have some experimental data that, as we hope, exhibit some effect. For exam-
ple, we may hope that a new drug increases the survival rate, and indeed we
see some improvement in the experimental group. However, this improvement
could be just a random fluctuation while in fact the survival probability remains
unchanged. We formulate the null hypothesis based on the old value of the sur-
vival probability and then apply some test. The rejection of the null hypothesis
means that we do not consider the data as a random fluctuation, and claim that
the new drug has at least some effect.1

In this approach, the choice of the threshold value obviously should depend
on the importance of the question we consider. Any decision based on statistical
considerations is inherently unreliable, but an acceptable level of this unreli-
ability depends on the possible consequences of a wrong decision. The more
important the consequences are, the smaller threshold for statistical tests is

1 Of course, in practice we want also to be convinced that this effect is beneficial.



260 A. Shen

needed. The choice of the threshold value is often debated. For example, there
is a paper [2] signed by 72 authors that proposes “to change the 〈. . .〉 threshold
for statistical significance from 0.05 to 0.005 for claims of new discoveries”. It
may look ridiculous—obviously both the old threshold and the new one are cho-
sen arbitrarily—but it reflects the existing situation in natural sciences. Other
people point out that fixing a threshold, whatever it is, is a bad practice [1].

2 Randomness Tests

Now let us address the other problem mentioned above. After the experiment
is made, we can find a set T of very small measure that contains the actual
outcome of the experiment, and declare it to be a randomness test. For example,
Rosencrantz could toss a coin 85 times, write down the sequence x of heads and
tails obtained, and then try to convince Guildenstern that the fair coin hypoth-
esis should be rejected, because the set T = {x} is a test that has probability
2−85 according to the hypothesis and still the actual outcome is in T .

This argument is obviously wrong, but it is not that easy to say what
exactly is wrong here. The simplest—and rather convincing—answer is that the
test should be fixed before the experiment. Indeed, if Rosencrantz showed some
sequence of heads and tails to Guildenstern and after that the coin tossing gave
exactly the same sequence, this would be a very convincing reason to reject the
null hypothesis of a fair coin.

Still this answer is not universal. Imagine that we buy a book called “A
Million Random Digits”2. We open it and find that it is filled with zeros. Do we
have reasons to complain? If we have said “Look, this book is suspicious; may
be it contains only zeros” before opening the book, then we definitely do—but
what if not? Or what if we find out that the digits form the decimal expansion
of 8.5π? Note that this hypothesis hardly can come to our mind before we study
the book carefully.

Sometimes the experiment is already in the past, so we look at the data
already produced, like Kepler did when analyzing the planet observations. Prob-
ably, in this case we should require that the test is chosen without knowing the
data, but it is (a) more subjective and (b) rarely happens in practice, usually
people do look at the data before discussing them.

On the other hand, even the test formulated before the experiment could be
dubious. Imagine that there are many people waiting for an outcome of the coin
tossing, and each of them declares her own statistical test, i.e., a set of outcomes
that has probability at most ε. Here ε is some small number; it is the same for
all tests. After the experiment it is found that the outcome fails one of the tests,
i.e., belongs to the small set declared by one of the observers. We are ready to
declare that the null hypothesis is rejected. Should we take into account that
there were many tests? One can argue that the probability to fail at least one
of the N tests is bounded by Nε, not ε, so the result is less convincing than the
2 By the way, one can still buy such a book [27] now (August 2019) for 50.04 euro, or

903.42 euro, if you prefer the first edition, but agree to get a second-hand copy.
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same result with only one observer. This correction factor N is often called the
Bonferroni correction and is quite natural. On the other hand, the observer who
declared the failed test could complain that she did not know anything about
other observers and it is a completely unacceptable practice if actions of other
people beyond her control and knowledge are considered as compromising her
findings. And it is difficult to answer in a really convincing way to this complaint.

In fact, this is not only a philosophical question, but also an important prac-
tical one. If a big laboratory with thousand researchers uses threshold value 0.05
for statistical significance, then we could expect dozens of papers coming from
this lab where this threshold is crossed—even if in fact the null hypothesis is
true all the time.

There are no universally accepted or completely convincing answers to these
questions. However, there is an important idea that is a philosophical motivation
for algorithmic information theory. We discuss it in the next section.

3 “Remarkable” Events as Tests

Recall the example with zeros in the table of random numbers and the corre-
sponding singleton test that consists of the zero sequence. Even if we have not
explicitly formulated this test before reading the table, one can say that this test
is so simple that it could be formulated before the experiment. The fact that all
outcomes are heads/zeros is remarkable, and this makes this test convincing.

This question is discussed by Borel [5]. He quotes Bertrand who asked
whether we should look for a hidden cause if three stars form an equilateral tri-
ange. Borel notes that nobody will find something strange if the angle between
two stars is exactly 13◦42′51.7′′, since nobody would ask whether this happens
or not before the measurement (“car on ne se serait jamais posé cette question
précise avant d’avoir mesuré l’angle”). Borel continues:

La question est de savoir si l’on doit faire ces mêmes réserves dans le cas
où l’on constate qu’un des angles du triangle formé par trois étoiles a une
valeur remarquable et est, par exemple, égal à l’angle du triangle équilatéral
〈. . .〉 Voici ce que l’on peut dire à ce sujet : on doit se défier beaucoup de la
tendance que l’on a à regarder comme remarquable une circonstance que
l’on n’avait pas précisée avant l’expérience, car le nombre des circonstances
qui peuvent apparâıtre comme remarquables, à divers points de vue, est
très considérable [5, p. 112–113]3

This quotation illustrates a trade-off between the probability of the event spec-
ified by some randomness test and its “remarkability”: if there are N events
3 The question is whether we should have the same doubts in the case where one of

the angles of a triangle formed by tree stars has some remarkable value, for example,
is equal to the angle of an equilateral triangle. 〈. . .〉 Here we could say the following:
one should resist strongly to the tendency to consider some observation that was not
specified before the experiment as remarkable, since the number of circumstances
that may look remarkable from different viewpoints is quite significant.
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of probability at most ε that are “as remarkable as the test event” (or “more
remarkable”), then the probability of the combined test event is at most Nε. In
other words, we should consider not an individual test, but the union of all tests
that have the same probability and the same (or greater) “remarkability”.

The problem with this approach is that we need to quantify somehow
the “remarkability”. The algorithmic information theory suggests to take into
account the Kolmogorov complexity of the test, i.e., to count the number of bits
needed to specify the test. More remarkable tests have shorter descriptions and
smaller complexity. The natural way to take the complexity into account is to
multiply the probability by O(2n) if the complexity of the test is n, since there
is at most O(2n) different descriptions of size at most n bits and therefore at
most O(2n) tests of complexity at most n.

However, the word “description” is too vague. One should fix a “description
language” that determines which test corresponds to a given description, i.e., to
a given sequence of bits. Algorithmic information theory does not fix a specific
description language; instead, it defines a class of description languages and
proves that there are optimal description languages in this class. Optimality
is understood “up to O(1) additive term”: a language L is optimal if for any
other language L′ in the class there exist a constant c (depending on L′) with
the following property: if a test T has description of length k via L′, it has a
description of length at most k+ c via L. This implies that two different optimal
languages lead to complexity measures that differ at most by O(1) additive term.

Probably this O(1) precision is the best thing a mathematical theory could
give us. However, if one would like to define “the gold standard” for valid use
of statistical tests, this is obviously not enough, and one should fix some spe-
cific description language. It looks like a difficult task and there are no serious
attempts of this type. Still one could expect that this language should be domain-
specific and take into account the relations and constants that are “naturally
defined” for the objects in question. This is discussed in details by Gurevich
and Passmore [9]. The authors note that questions about statistical tests and
their validity do arise in courts when some statistical argument is suggested as
evidence, but there are no established procedures to evaluate statistical argu-
ments.4 One could also mention a similar (and quite important) case: statistical
“fingerprints” for falsified elections. There are many examples of this type (see
the survey [31] and references within). Let us mention two examples that illus-
trate the problem of “remarkable post factum observations”. Figure 1 (provided
by Kupriyanov [15]) presents the official results of the “presidential elections” in
Russia in 2018 and is constructed as follows: for every polling station where both
the reported participation rate and the fraction of votes for de facto president of

4 In this paper some thought experiments and one real story are considered as exam-
ples. One of the thought experiments is as follows: the wife of a president of a state
lottery turns out to be its winner. Recently I learned that this example is not so
far from the real life as one could think: in 2000 BBC reported that “Zimbabwean
President Robert Mugabe has won the top prize [about $2600] in a lottery organised
by a partly state-owned bank” (http://news.bbc.co.uk/2/hi/africa/621895.stm).

http://news.bbc.co.uk/2/hi/africa/621895.stm
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Fig. 1. “Putin’s grid” in 2018 [15]. Note that vertical and horizontal lines are formed
by data points, they are not the added grid lines.

Russia (Putin) exceed 80%, a corresponding grey point is shown. If several points
coincide, a darker/bigger point appears. Looking at the “grid lines” formed by
these points (for integer percentages; more visible lines appear for the percent-
ages that are multiples of 5), one probably agrees that such a remarkable grid
has negligible probability to appear naturally for any kind of elections. However,
it is far from obvious which statistical test should be considered here and how
can we quantitatively estimate its complexity and its probability.

Related example is provided by “referendum results” in Crimea (Ukraine).
As noted by Alexander Kireev [13], the “official results” in Sevastopol (Crimea)
include the following data: total numbers of registered voters (306258), total
number of ballots (274101) and the number of “yes for the annexation” votes
(262041). The two main ratios (the participation rate and “yes” rate) are suspi-
ciously round: 274101/306258 = 0.895000294 and 262041/274101=0.95600162.
Indeed, in both cases the numerator can be obtained by multiplying the denom-
inator by the integer number of promilles and rounding to the closest integer.
Probably most statisticians would agree that this coincidence is remarkable and
has very small probability, but it is difficult to agree on a specific quantitative
estimate of the corresponding probability after a suitable Bonferroni correction.5

5 A rough estimate is attempted in the survey mentioned above [31, p. 49–50]. It takes
into account other information about the case. Both anomalies, the integer grid and
round percentages, appeared in earlier “elections”, so it is not really fair to call them
“post factum observations”. For the Crimea’s “referendum results” the upper bound
for the probability after the correction is estimated as 0.1%.
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4 Randomness as Incompressibility

Algorithmic information theory (also called Kolmogorov complexity theory) is
outside the scope of this survey6, but let us mention a few results that have philo-
sophical importance and should be kept in mind when discussing randomness at
any level.

Roughly speaking, algorithmic information theory says that randomness is
incompressibility. More precisely, a binary string looks plausible as an outcome
of a fair coin (does not convince us to reject the fair coin hypothesis) if it is
incompressible, i.e., if there is no program that produces this string and is much
shorter than the string itself. In other words, we

– define Kolmogorov complexity of a string as the minimal length of a program
that produces it; in this definition we use some optimal programming language
that makes complexity minimal up to an O(1) additive term;

– note that all n-bit strings have complexity at most n + O(1), since a trivial
program “print x” has almost the same size as x;

– note that at most 2−c fraction of n-bit strings have complexity less than
n − c, so this is a very small minority for non-negligible values of c; we treat
members of this minority as non-random strings.

This approach is consistent with what we said above about valid tests for ran-
domness as simple sets of small probability. Namely, we consider a test that
consists of highly compressible strings, and note that this test is universal in
some sense, i.e., it is as sensitive as any other test, up to an O(1)-constant.

Technically speaking, there is a result that relates complexity to the random-
ness deficiency in terms of tests. We state this result for a simple case (uniform
distribution on the set of strings of given length; see the textbook [33, Sect. 14.1]
for a more general statement). It uses the notion of conditional complexity C(x|u)
of a string x given some u (an integer) defined as the minimal length of a program
that produces x given u as an input.

Consider some integer function d(x) defined on bit strings. Call it a deficiency
function if it satisfies two requirements:

– d(x) is lower semicomputable, i.e., d(x) can be presented as a limit of a non-
decreasing computable sequence of integers (uniformly in x), and

– for every k, the fraction of n-bit strings such that d(x) > k, is O(2−k).

Such a deficiency function determines, for every n, a series of tests for uni-
formly distributed n-bit strings, where the kth test set for n-bit strings consists
of strings of length n such that d(x) > k. In terms of the next section, 2d(x)

is a probability bounded test up to a constant factor. The second requirement
guarantees that the test sets have small probability according to the uniform
6 The short introduction can be found in the lecture notes [30] or in the introductory

part of the textbook [33]. The algorithmic statistics, the part of algorithmic informa-
tion theory that deals specifically with the statistical hypotheses and their testing,
is discussed in two surveys [36,37].
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distribution. The first one means, informally speaking, that the test is “semi-
effective”: if x has some peculiar property that makes it non-random, then we
will ultimately discover this property and d(x) will become large, but we never
can be sure that x does not have properties that make it non-random, since d(·)
is not required to be computable.

Proposition 1. Among the deficiency functions there is a maximal one up to
O(1), i.e., a deficiency function d such that for every other deficiency function
d′ we have d(x) � d′(x)− c for some c and all x. This maximal function is equal
to n − C(x|n) + O(1) for n-bit strings x.

This result shows that the difference between length and complexity is the
“universal measure of non-randomness” that takes into account all regularities
that make a string x non-random. It is easy to prove also that if a string x
belongs to a simple small set, then its deficiency is large, thus confirming the
informal idea that a small set exhibits non-randomness of its elements.

There are many results about randomness deficiencies in this sense, but we
cannot go into the details here and return instead to some other topics that are
important for practical randomness tests.

5 Families of Tests and Continuous Tests

The law of large numbers says that for independent Bernoulli trials, e.g., for
fair coin tossing, the number of successful trials is with high probability close
to its expectation, i.e., to n/2 for n coin tossings. Therefore, large deviation is
a rare event and can be used as a randomness test: as the deviation threshold
increases, the probability of the event “the deviation exceeds this threshold”
decreases, usually rather fast.

Instead of fixing some significance level and the corresponding threshold one
could consider a family of tests: for every significance level ε we consider a set
Tε of measure at most ε. It consists of the outcomes where deviation exceeds
some threshold that depends on ε. As ε decreases, the threshold increases, and
the set Tε and its measure decrease.

Such a family of tests can be combined into one non-negative function t(x)
defined on the set of possible outcomes, if we agree that Tε is the set of outcomes
where t(x) � 1/ε. Here we use c = 1/ε as the threshold instead of ε to simplify
the comparison with expectation-bounded tests discussed below. In this language
the bound for the probability of Tε can be reformulated as

Pr[t(x) � c] � 1/c for every c > 0 (∗)

Informally speaking, t(x) measures the “rarity”, or “randomness deficiency” of
an outcome x: the greater t(x) is, the less plausible is x as an outcome of a
random experiment.

Functions t that satisfy the condition (∗) are called probability-bounded ran-
domness tests [3]. Sometimes it is convenient to use the logarithmic scale and
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replace t by log t. Then the condition (∗) should be replaced by the inequal-
ity Pr[t(x) � d] � 2−d. Note that a similar condition was used for deficiency
functions in Sect. 4.

The condition (∗) is a consequence of a stronger condition
∫

t(x) dP (x) �
1 where P is the probability distribution on the space of outcomes. In other
terms, this stronger requirement means that the expected value of t (over the
distribution P ) is at most 1, and the condition (∗) is its consequence, guaranteed
by Markov’s inequality. The functions t that satisfy this stronger condition are
called expectation-bounded randomness tests [3].

In fact these two notions of test are rather close to each other: if t is a
probability-bounded test, then t/ log2 t is an expectation-bounded test up to
O(1)-factor. Moreover, the following general result is true:

Proposition 2. For every monotone continuous function u : [1,+∞] → [0,∞]
such that

∫ ∞
1

u(z)/z2 dz � 1 and for every probability-bounded test t(·) the com-
position u(t(·)) is an expectation-bounded test.

The statement above [7] is obtained by applying Proposition 2 to u(z) =
z/ log2 z.

6 Where Do We Get Randomness Tests?

As we have mentioned, different classical results of probability theory can be
used as randomness tests. Take for example the law of large numbers. It says
that some event, namely, a large deviation from the expected value, has small
probability. This event can be considered as a test set. Mathematical statistics
provides a whole bunch of tests of this type for different distributions, including
χ2-test, Kolmogorov–Smirnov test, and others.

Another source of statistical tests, though less used in practice, is provided
by the probabilistic existence proofs. Sometimes we can prove that there exists
an object with a given combinatorial property, say, a graph with good expansion
properties, and the proof goes as follows. We consider a probabilistic process
that constructs a random object. In our example this object is a graph. We
prove that with high probability this random object satisfies the combinatorial
property. Now we use the bit source that we want to test as a source of random
bits for the algorithm. If we find out that the object constructed by the algorithm
does not have the combinatorial property in question, we conclude that a rare
event happened, and our source of random bits failed the test.

One should also mention tests inspired by algorithmic information theory
(see, e.g., a 1992 paper by Maurer [20]) Each file compressor (like zip, bzip,
etc.) can be considered as a random test. Assume that we have a sequence of bits,
considered as a file, i.e., a sequence of bytes. If this file can be compressed by n
bytes for some non-negligible n, say, by a dozen of bytes, then this bit sequence
fails the test and can be considered as non-random one. Indeed, the probability of
this event is at most 256−n, up to a factor close to 1. The Bonferroni correction
here says that we should multiply this probability by the number of popular
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compressors, but even if we assume that there are thousands of them in use, it
usually still keeps the probability astronomically small.

There is also a general way to construct probability-bounded tests. It is called
“p-values”, and the two previous examples of randomness tests can be considered
as its special cases. Consider an arbitrary real-valued7 function D defined on the
space of outcomes. The value D(x) is treated as some kind of “deviation” from
what we expect, so we use the letter D. Then consider the function

pD(x) = Pr[{y : D(y) � D(x)}].

(defined on the same set of outcomes). In other words, for every threshold d we
consider the set

Td = {y : D(y) � d}
of all outcomes where the deviation is at least d, and measure the probability of
this event, thus “recalibrating” the deviation function. In this language, pD(x)
is the probability of the event TD(x), the chance to have in a random experiment
of the given type the same deviation as it happened now, or a larger one.

Proposition 3.
(a) For every c � 0, the probability of the event pD(x) � c is at most c.
(b) If each value of function D has probability at most ε, then the probability

of the event pD(x) � c is between c − ε and c.

Proof. The probability pd = Pr[Td] decreases (more precisely, does not increase)
as d increases. The function d 	→ pd is left-continuous since the inequalities
D � d′ for all d′ < d imply D � d. However, it may not be right-continuous, and
a similar argument shows that the gap between the value of pd and the right
limit limd′→d+0 pd′ is the probability of the event {x : D(x) = d}. Now we add to
this picture some threshold c, see Fig. 2. It may happen (case 1) that c is among
the values pd. This case is shown on the left and right pictures (Fig. 2). On the
right picture the function pd is constant on an interval where there are no values

Fig. 2. Proof of Proposition 3

7 This trick in a more general situation where the values of D are elements of some
linearly ordered set, is considered in a paper by Gurevich and Vovk [10].
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of D or these values have probability 0. Case 2: the threshold c may fall in a gap
between some value of pd and the right limit in the same point (denoted by d0),
as shown in the middle picture. The size of the gap is the probability of the event
D(x) = d0 and is at most ε according to our assumption. For the left and right
pictures the inequality pD(x) � c means that D(x) � d0, and the probability of
the event pD(x) � c is exactly pd0 = c, so both statements (a) and (b) are true.
In this case the value of ε does not matter. For the middle picture pD(x) � c
when d > d0, and the probability of this event is not the value of pd when d = d0
but the right limit of pd as d → d0 + 0. Still the difference does not exceed ε
according to the assumption in (b), and again both statements are true.

Remark 1. This proof is given for the general case (X may be infinite); in the
finite case the function pd has only finitely many values, and the graph is a finite
family of horizonal lines.

Remark 2. Proposition 3 obviously implies that the function 1/pD(x) is a prob-
ability-bounded test. This observation allows us to construct many probability-
bounded tests, starting from almost any random variable D. For example, we get
a test from a probabilistic existence proof if we let D be the function that appears
in the combinatorial statement, e.g., the second eigenvalue for the probabilistic
proof that expander graphs exists. The only caveat is that we need to compute
the function d 	→ pd, and this is usually not so easy. This function is often
replaced by some its approximation, and this may lead to problems; see the
discussion below.

Remark 3. If we apply this procedure to a function D that is already a probabi-
lity-bounded test, then by definition we get some new test t = 1/pD such that
t(x) � D(x) for all x. In general, the function t could exceed D if the inequality
in the condition (∗), Sect. 5, is strict.

7 Secondary Tests

There is an important type of randomness tests that can be called “secondary
tests”. Tests of this type appeared already in the classical book of Knuth [14,
Sect. 3.3.1, B] and are extensively used in practical test suites [17]. Recall Propo-
sition 3 and assume for a while that every individual value of D has very small
probability, so we may assume that there are (almost) no gaps in the graph of pd.
Then Proposition 3 says that the random variable pD is uniformly distributed
on [0, 1]. Repeat the test N times, using fresh random bits (from the generator
we are testing) for each repetition. Assuming that the null hypothesis is true,
we get N independent reals that are uniformly distributed in [0, 1]. Then we
may apply any test for the independent uniformly distributed variables, e.g., the
Kolmogorov–Smirnov test for this distribution.

This procedude converts any p-value test for a random bits generator that has
negligible probabilities of individual values into a “secondary test” that could
be much more sensitive. Knuth describes a similar trick, but he does not use
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the recalibration using p-values and applies the Kolmogorov–Smirnov (KS) test
directly to the values of D and the distribution that should appear if the null
hypothesis is true:8

. . . We should observe that the KS test may be used in conjunction with
the χ2 test. . . Suppose we have made, say, 10 independent χ2 tests of
different parts of a random sequence, so that values V1, V2, . . . , V10 have
been obtained. It is not a good policy simply to count how many of the
V ’s are suspiciously large or small. This procedure will work in extreme
cases, and very large or very small values may mean that the sequence has
too much local nonrandomness; but a better general method would be to
plot the empirical distribution of these 10 values and to compare it to the
correct distribution. . . This would give a clearer picture of the results of
the χ2 tests, and in fact the statistics K+

10 and K−
10 [from KS test] could be

determined as an indication of the success or failure. . . [Speaking about
an example discussed earlier:] Notice that all 20 observations in Fig. 4 (c)
[a figure from Knuth’s book that we do not reproduce] fall between the 5
and 95% levels, so we would not have regarded any of them as suspicious,
individually; yet collectively the empirical distribution shows that these
observations are not at all right [14, Sect. 3.3.1, p. 50–51].

We return to the use of secondary tests in practical test suites in the next
section.

8 Testing (Pseudo)randomness in Practice

There are several suits of randomness tests that are often used. The early history
of randomness tests (as well as pseudorandom number generators) is described by
Knuth [14, Sect. 3.3]. He starts with χ2 and Kolmogorov–Smirnov tests, explains
secondary testing (see the quote in the previous section) and also describes
several ad hoc tests.

8.1 Diehard

Later George Marsaglia developed a diehard series of tests that were included
(as C and Fortran sources) in a CD that he prepared [17]. That CD also included
a collection of files with “random” bits, constructed by combining the out-
put of hardware random bits generators with some deterministic pseudorandom
sequences, see below Sect. 10. The description of the tests could be found in
Marsaglia’s papers [16,19]; see also the file tests.txt in the source code of the
tests [17].

However, there are some problems with these tests. They heavily use the
secondary test approach but not always in a correct way. First, one of the tests
computes p-values for data that are not independent, as the following description,
copied verbatim from the source code, shows:
8 This is an equivalent approach since KS-test gives the same result after any monotone

recalibration of the empirical values and theoretical distribution.



270 A. Shen

This is the BIRTHDAY SPACINGS TEST
Choose m birthdays in a year of n days. List the spacings
between the birthdays. If j is the number of values that
occur more than once in that list, then j is asymptotically
Poisson distributed with mean m^3/(4n). Experience shows n
must be quite large, say n>=2^18, for comparing the results
to the Poisson distribution with that mean. This test uses
n=2^24 and m=2^9, so that the underlying distribution for j
is taken to be Poisson with lambda=2^27/(2^26)=2. A sample
of 500 j’s is taken, and a chi-square goodness of fit test
provides a p value. The first test uses bits 1-24 (counting
from the left) from integers in the specified file.

Then the file is closed and reopened. Next, bits 2-25 are
used to provide birthdays, then 3-26 and so on to bits 9-32.
Each set of bits provides a p-value, and the nine p-values
provide a sample for a KSTEST.

As we see from this description, the different p-values use overlapping bits (2–
25, 3–26, etc.) of the same numbers. There is no reason to expect that they
are independent, contrary to the requirements of the Kolmogorov–Smirnov test.
This description also exhibits another problem that appears in many tests from
diehard suite. We use some asymptotic approximation, in this case the Pois-
son distribution, instead of the true distribution, ignoring the approximation
error for which we have no upper bounds. Moreover, even if the error can be
upper-bounded for the primary test, this upper bound does not translate easily
into a bound for an error in the secondary test where we use the approximate
distribution for recalibrating the deviations. Sometimes even the parameters of
approximate distribution are only guessed. For example, in the description of one
of the tests (named OQSO) Marsaglia writes about the distribution: “The mean
is based on theory; sigma comes from extensive simulation”. For the other one
(called “parking lot test”) even the mean is based on simulation: “Simulation
shows that k should average 3523 with sigma 21.9 and is very close to normally
distributed. Thus (k − 3523)/21.9 should be a standard normal variable, which,
converted to a uniform variable, provides input to a KSTEST based on a sample
of 10”. Here KSTEST is the Kolmogorov–Smirnov test for uniform distribution.
The arising problem is described by Marsaglia as follows:

NOTE: Most of the tests in DIEHARD return a p-value, which should
be uniform on [0, 1) if the input file contains truly independent random
bits. Those p-values are obtained by p = F (X), where F is the assumed
distribution of the sample random variable X—often normal. But that
assumed F is just an asymptotic approximation, for which the fit will be
worst in the tails. Thus you should not be surprised with occasional p-
values near 0 or 1, such as .0012 or .9983. When a bit stream really FAILS
BIG, you will get p’s of 0 or 1 to six or more places. By all means, do
not, as a Statistician might, think that a p < .025 or p > .975 means that
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the RNG has “failed the test at the .05 level”. Such p’s happen among
the hundreds that DIEHARD produces, even with good RNG’s. So keep
in mind that “p happens”.

This note combines two warnings. One is quite general and is related to the
question of many tests applied to one sequence, see the discussion of the Bonfer-
roni correction above, Sect. 2. The other one that should be separated from the
first (but is not) is that diehard tests are not really tests in statistical sense,
since they use the approximate distribution for recalibration and therefore small
p-values could appear more often than they should.

Some other tests (not included in diehard) were later suggested by Marsaglia
and Tsang [18].

8.2 Dieharder

A decade later Robert Brown [6] produced an extended version of the diehard
test suite, called dieharder. The code was rewritten and published under GNU
public license, integrated with GNU statistical library and parametrized, so now
one can vary the sample size and the number of p-values easily. New tests were
added and other improvements made. The resulting package is supported by
mainstream Linux distributions. The package involves an extensive documenta-
tion. In particular, the man page says:

A failure of the distribution of p-values at any level of aggregation signals
trouble. 〈. . .〉 The question is, trouble with what? Random number tests
are themselves complex computational objects, and there is a probability
that their code is incorrectly framed or that roundoff or other numerical—
not methodical—errors are contributing to a distortion of the distribution
of some of the p-values obtained.

In this quote two problems are noted: the coding errors in the tests, and the
problems related to the mathematical flaws in the approximate data used to
construct the tests. The suggested solution for both problems is the same: testing
these tests on “reference” random number generators. The man page says:

There are a number of generators that we have theoretical reasons to
expect to be extraordinarily good and to lack correlations out to some
known underlying dimensionality, and that also test out extremely well
quite consistently. By using several such generators and not just one, one
can hope that those generators have (at the very least) different correla-
tions and should not all uniformly fail a test in the same way and with the
same number of p-values. When all of these generators consistently fail a
test at a given level, I tend to suspect that the problem is in the test code,
not the generators, although it is very difficult to be certain. . .
Tests (such as the diehard operm5 and sums test) that consistently fail
at these high resolutions are flagged as being “suspect” 〈. . .〉 and they
are strongly deprecated! Their results should not be used to test random
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number generators pending agreement in the statistics and random number
community that those tests are in fact valid and correct so that observed
failures can indeed safely be attributed to a failure of the intended null
hypothesis.

Unfortunately, dieharder-3.31.1, the last version available as of September
2019, also has some problems. One of them, affecting almost all tests, is the
incorrect code that computes the Kolmogorov – Smirnov statistic. This code
produces incorrect values, sometimes even impossibly small values, and in this
case the computation of p-value gives 1. Indeed, in this case with probability 1
the deviation will be bigger than this impossibly small value. This is (correctly)
interpreted as the test failure. Fortunately, it seems that for larger sample sizes
the error in the statistics computation becomes less important.

8.3 NIST Test Suite

In 2000 the National Institute of Standards published a description of a test
suite for randomness, including the source code. Now there exists an updated
version [21].9

The description starts with some general words about randomness: “For
example, a physical source such as electronic noise may contain a superposi-
tion of regular structures, such as waves or other periodic phenomena, which
may appear to be random, yet are determined to be non-random using statisti-
cal tests” (p. 1–2). Then the authors speak about two types of possible errors:
Type I (rejecting a good generator) and Type II (accepting a bad one) and about
probabilities of these errors. However, their comments are misleading. Authors
explain that a Type I error probability is a probability for a random sequence
to get into the rejection set under a null hypothesis H0—and this is correct.
But then they say something confusing about the Type II errors: “Type II error
probability is 〈. . .〉 P (acceptH0|H0is false)” [21, p. 1–4]. While H0 is a statistical
hypothesis (model), namely, the assumption that the bits are independent and
uniformly distributed, the words “H0 is false” do not define any distribution, so
one cannot speak about this conditional probability. The authors acknowledge
this by saying “The probability of a Type II error is denoted as β. 〈. . .〉 Unlike α
[the probability of a Type I error], β is not a fixed value. 〈. . .〉 The calculation of
Type II error β is more difficult than the calculation of α because of the many
possible types of non-randomness”—but still one could conclude from what the
authors say that Type II error probability is well defined and is some number,
though difficult to compute. This is a gross misunderstanding.

Then the authors explain the meaning of p-values, but again their explana-
tions sound confusing, to say the least: “If a P-value for a test is determined
to be equal to 1, then the sequence appears to have perfect randomness” (page
9 The original version contained 16 randomness tests. In 2004 some errors in two tests

were pointed out [12]. Correcting these errors, the revised version (2010) deleted one
of the tests (the Lempel – Ziv test) and corrected the other one (the Fourier spectral
test).
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1–4). In reality the value 1 is not much better than the value 0, since the cor-
rectly computed p-values have uniform distribution. Even more strange is the
following remark: “For a P-value ≥ 0.001, a sequence would be considered to be
random with a confidence of 99.9%. For a P-value < 0.001, a sequence would be
considered to be non-random with a confidence of 99.9% [21, p. 1–4, line 6 from
below]. The second part could be interpreted in a reasonable way, though one
should be cautious here, especially in the case of many tests. But the first part
is completely misleading. Of course, one test that did not fail convincingly does
not mean that the sequence is random with high confidence!

General remarks about tests constitute Part I of [21]. Parts II and III consist
of the description and commentary for 15 tests. Some are similar to the tests
in diehard while some other are different. The final Part IV, “Testing strategy
and the Result Interpretation”, recommends two ways to analyze the results of
the tests. When several runs of a test produce a sequence of p-values, two forms
of analysis of this sequence are recommended: “Proportion of Sequences Passing
a Test” (4.2.1) and “Uniform Distribution of P -values” (4.2.2). Both are some
variants of secondary tests: assuming that the distribution of p-values is uniform
in [0, 1], authors recommend to look at the proportion of values exceeding some
threshold and to compare it with the Bernoulli distribution (4.2.1), or divide the
interval [0, 1] into some number of bins and apply χ2-test (4.2.2). This approach
replaces the Kolmogorov–Smirnov test used by Marsaglia in diehard, and in
dieharder.

As for the case of dieharder, many tests from the NIST collection use
approximations for computing p-values. The only warning about the conse-
quences of this approach appears in the last section (p. 4-3):

In practice, many reasons can be given to explain why a data set has failed
a statistical test. The following is a list of possible explanations. The list
was compiled based upon NIST statistical testing efforts.
(a) An incorrectly programmed statistical test. 〈. . .〉
(b) An underdeveloped (immature) statistical test.

There are occasions when either probability or complexity theory isn’t
sufficiently developed or understood to facilitate a rigorous analysis of
a statistical test. Over time, statistical tests are revamped in light of
new results. Since many statistical tests are based upon asymptotic
approximations, careful work needs to be done to determine how good
an approximation is.

(c) An improper implementation of a random number generator. 〈. . .〉
(d) Improperly written codes to harness test input data. 〈. . .〉
(e) Poor mathematical routines for computing P-values. 〈. . .〉
(f) Incorrect choices for input parameters.

It is hardly surprising that with such a relaxed approach to statistical test-
ing (“over time, statistical tests are revamped”) the authors have included two
bad tests in the original version of the document, see the paper [12] where the
errors are noted. It is instructive to look at the errors in these tests. The first
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error, in the Fourier spectral test, happened because the expectation and vari-
ance of the approximating normal distribution were computed incorrectly. The
second is more interesting, since two different (and quite predictable) problems
with the p-values approach appeared at the same time. First, the distribution
of the test statistics based on the Lempel–Ziv compression algorithm was not
computed exactly but was approximated using some presumably good pseudo-
random number generator as reference. The experiments with other generators
made in the paper [12] showed that this approximation is dubious. The other
problem could be related to the non-negligible probability of individual values.
As we have mentioned, in this case the distribution of the p-values differs from
the uniform one. The results of numerical experiments described in the paper
suggest that this could be the reason for the rejection of truly random sequences.
In the current version of the NIST document10 this test is excluded (it contains
15 tests instead of 16).

9 How to Make a Robust Test

There are different ways to deal with errors in statistical tests. Finding and
correcting the coding errors is a general problem for all software, and tests are no
exceptions here. One may argue that, since errors are anyway possible for many
reasons (see the list above), we should not insist on the mathematical correctness
of tests, just deleting the tests when they are discovered to be incorrect. Still the
other approach is to do whatever we can to avoid errors that could be avoided. In
this section we explain, following the technical report [32], how one could avoid
problems related (a) to the approximation errors while computing p-values, and
(b) to the non-negligible probabilities of individual outcomes. This will be done
in two steps.

Step 1. Let us still assume that a reference generator that is truly random
is available. But instead of using the reference generator to find the approxi-
mate distributions or to look for suspicious tests, as suggested by the authors
of dieharder and NIST tests, we use it directly. Recall that the we used the
Kolmogorov–Smirnov test to check that the distribution of p-values is consistent
with the uniform distribution, and our problem was that due to approximation
errors and non-zero probabilities of individual deviation values the distribution
of p-values is not exactly uniform under the null hypothesis. However, there is
a version of the Kolmogorov–Smirnov test that deals with two samples. Here
the null hypothesis is that the two samples are formed by independent random
variables with the same distribution, but nothing is assumed about this distri-
bution.
10 Unfortunately, the current version of the NIST report [21] was not checked carefully

either. For example, the description of the serial test (Sect. 2.11.4, (5)) contains
conflicting instructions for computing p-values: the example includes division by
2 that is missing in the general formula. The C code follows the example, not the
general formula. Also the values of igamc function in this section are incorrect, while
the correct values do appear few lines later, in Sect. 2.11.6.
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Therefore, we may proceed as follows. The first sample of p-values is con-
structed using the random numbers generator that we test, as before. The second
sample is constructed exactly in the same way but using the reference generator.
Then we apply the Kolmogorov–Smirnov test for two samples. This procedure
remains valid even if the formulas used to convert the deviations into p-values
are only approximately true, or even completely wrong, since even completely
wrong formulas would be the same for both generators, the one we test and the
reference one. So we can omit the recalibration step completely and just consider
the samples of deviations.

Remark 4. In fact, only the ordering is important, so the Kolmogorov–Smirnov
test for two samples can be presented as follows. We have two arrays of reals,
x1, . . . , xn (one sample) and y1, . . . , ym (another sample). Then we combine them
into one array of length n + m and sort this array, keeping track of the origin:
elements that came from the first and second samples are marked by letters X
and Y respectively. In this way we get a sequence of n + m letters X and Y
that contains n letters X and m letters Y , and consider some test statistic for
the following null hypothesis: all

(
n + m

m

)
sequences of this type are equiprobable.

The Kolmogorov–Smirnov test uses some specific statistic, namely, the maximal
difference between the frequencies of X’s and Y ’s in all prefixes, but the same
approach can be used with any other test for this distribution.

Remark 5. In this way we get a test that does not depend on the approximations
to the distributions that we do not know how to compute. However, there is some
price for it. Since now the reference generator is an additional source of random
variations, we need more samples to get the same sensitivity of the test. This
increase, however, is rather modest.

Step 2. We constructed a randomness test that does not rely on unproven
assumptions about distributions that we cannot compute exactly. However, it
uses a reference generator that is assumed to be truly random, and this is crucial.
Obviously, if we use a faulty reference generator to test a truly random one, the
test will fail (the procedure is symmetric, so we get exactly the same result
when testing a faulty random generator against a truly random reference). In
some sense, we constructed only a “randomized test of randomness”. This is
unsatisfactory, but can be easily avoided using the following trick.

Let us consider n deviation values d1, . . . , dn obtained by using bits from the
generator we are testing. Then construct the other sample, d′

1, . . . , d
′
m, but this

time let us use not the reference generator but the bitwise xor of the bits from
the reference generator and fresh bits from the generator we are testing. Then
we apply the Kolmogorov–Smirnov test to these two samples. If

1. the generator that we are testing is truly random, and
2. the reference generator and the test generator are independent,

then the probability to fail the test is guaranteed to be small due to Kolmogorov–
Smirnov’s result.
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Remark 6. Of course, if the reference generator is not independent with the one
that we want to test, the correctness claim is no more true. For example, if during
the second part the reference generator produces the same bits as the generator
we are testing, the xor bits will be all zeros. However, the independence condition
looks much easier to achieve. For example, the reference bits could be produced
in different place, or in advance, or can even be an output of a fixed deterministic
pseudorandom generator.

Remark 7. If the reference generator produces truly random bits that are inde-
pendent from the output of the generator we are testing, then xor-bits are also
truly random. So our new test is as sensitive as the previous one (the compar-
ison with the reference generator) if the reference generator is truly random,
but the correctness of the new test does not depend on the assumption of true
randomness for the reference generator.

Remark 8. There is one small problem that we have not mentioned yet: while
sorting the array of deviations, we may have ties. If some value from the first
sample coincides with some value from the second sample, then the letter (X
or Y in our notation, see above) is not well defined. However, we can break the
ties randomly, using the bits of the generator we are testing. In this way we may
assume that these bits are truly random when bounding the probability of Type
I error.

Remark 9. The same idea can be used even for “informal” tests. For example,
imagine that we construct some image based on the bits we test, and then people
look at this image and decide whether it looks similar to the pictures of the same
type that use reference generator or there are some visible differences11. Recalling
the interactive non-isomorphism proof and using the same trick as before, we
can make a robust test. Take 2n disjoint bit blocks from the generator under
testing. Use n of them to create images, and do the same for other n blocks but
use the bitwise xor of these blocks and n blocks of the same size from some other
origin. As a source of these auxiliary blocks one may use a reference generator,
or the binary representation of π, or any other source. The only requirement
is that the auxiliary blocks should be fixed before sampling our generator. If
a human expert (or a machine-learning algorithm), looking at the resulting 2n
images, can correctly classify them into two groups according to their origin,
then the generator fails the test, and the probability of this for a true random
bits generator is 2−2n, up to a poly(n)-factor.

One can also consider a more advanced version of this test. Several experts
say how “random” the images are. Then the images are ordered according to
their approval ratings and Kolmogorov–Smirnov test for two samples is used.

11 This is not a purely theoretic possibility: the documentation for some hardware
random bit generators contains pictures of this type.
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10 Hardware Random Generators

Randomness is ubiquitous—from the coin tossing and cosmic rays to the thermal
noise in audio and video recordings, Brownian motion, quantum measurements
and radioactive decay. So one may think that constructing a good randomness
generator is an easy task. However, if we require that the output distribution is
guaranteed with high precision, the problem becomes much more difficult. Coins
may be biased, the independence between the two consecutive coin tosses may
be not absolute, the circuit with the noise is affected also by some undesirable
signals that may not be random, etc. In addition, some technical errors could
happen.

For an illustration one may look at the sequences of bits that are included in
the CD prepared by Marsaglia [17]. Among them there are two bit sequences that
he got from two devices he bought (one from Germany, one from Canada) and a
third bit sequence produced (as Marsaglia says) by some hardware random gen-
erator in California. The names are canada.bit, germany.bit and calif.bit.
The device makers claimed that the bits produced by their devices are perfectly
random. However, applying diehard tests to these sequences, Marsaglia found
that they are far from being random. In fact, looking at two of them (Canada
and Germany), one could guess one of the reasons for their non-randomness [8].
Namely, splitting the bit sequences into bytes (integers in 0 . . . 255 range) and
searching for the two-byte substring 10 10, we find that this substring does not
appear at all (at least among the first 106 bytes I tested), while the expected
number of occurrences is several dozens. To get an idea why this happens, one
may also count the substrings of the form 13 x and find out that one of them
appears much more often than the others: the substring 13 10 occurs more than
four thousand times (instead of expected few dozens).

If the reader worked a lot with Unix and MSDOS computers in 1990s, she
would immediately see a plausible explanation: the file was converted as a text
file from Unix to MSDOS encoding. In Unix the lines of a text file were separated
just by byte 10, while in MSDOS they were separated by 13 10. Converting 10 to
13 10, we make substrings 10 10 impossible and drastically increase the number
of substrings 13 10.

The third file calif.bit probably had some other history that did not
involve Unix to MSDOS conversion, but still fails the tests for the other rea-
sons.12

Marsaglia solved this problem by combining (xoring) the output of the hard-
ware random generators with pseudorandom sequences obtained by some deter-
ministic generators [17, file cdmake.ps]

The sixty 10-megabyte files of random numbers are produced by combining
two or more of the most promising deterministic generators with sources of
random noise from three physical devices (white noise), for those who feel
that physical sources of randomness are better than deterministic sources.

12 We also tested the corrected files, replacing groups 13 10 by 10 in canada.bit and
germany.bit. They still fail many tests in the dieharder suite.
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Some of the files have white noise combined with black noise, the latter
from digital recordings of rap music. And a few of the files even had naked
ladies thrown into the mix, from pixel files on the network. The last two,
digitized music and pictures, are thrown in to illustrate the principle that a
satisfactory stream of random bits remains so after combination [xor-ing]
with the bits of any file.

Fig. 3. A fragment of table of random digits from [27]

A similar combination of the hardware source of somehow random bits and
post-processing was used for the table of random digits published in 1955 [27]
(see Fig. 3 for a small fragment of it):

The random digits in this book were produced by rerandomization of a
basic table generated by an electronic roulette wheel. Briefly, a random fre-
quency pulse source, providing an average about 100,000 pulses per second,
was gated about once per second by a constant frequency pulse. Pulse stan-
dardization circuits passed the pulses through a 5-place binary counter. In
principle the machine was a 32-place roulette wheel which made, on the
average, about 3000 revolutions per trial and produced one number per
second. A binary-to-decimal converter was used which converted 20 of the
32 numbers (the other twelve were discarded) and retained only the final
digit of two-digit numbers; this final digit was fed into an IBM punch to
produce finally a punched card table of random digits.
Production from the original machine showed statistically significant
biases, and the engineers had to make several modifications and refine-
ments of the circuits before production of apparently satisfactory numbers
was achieved. The basic table of a million digits was then produced during
May and June of 1947. This table was subjected to fairly extensive tests
and it was found that it still contained small but statistically significant
biases. 〈. . .〉
[Comparing the results of tests before and after one month of continuous
operations:] Apparently the machine had been running down despite the
fact that periodic electronic checks indicated that it had remained in good
order.
The table was regarded as reasonably satisfactory because the deviations
from expectations in the various tests were all very small—the largest being
less than 2%—and no further effort was made to generate better numbers
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with the machine. However, the table was transformed by adding pairs of
digits modulo 10 in order to improve the distribution of the digits. There
were 20,000 punched cards with 50 digits per card; each digit on a given
card was added modulo 10 to the corresponding digit of the preceding
card to yield a rerandomized digit. It is this transformed table which is
published here 〈. . .〉
These tables were reproduced by photo-offset of pages printed by the IBM
model 856 Cardatype. Because of the very nature of the table, it did not
seem necessary to proofread every page of the final manuscript to catch
random errors of the Cardatype. All pages were scanned for systematic
errors, every twentieth page was proofread 〈. . .〉

We see that the same scheme was used here. However, the post-processing algo-
rithms used in both cases are far from perfect. The sum modulo 10 used by
RAND is almost reversible (if we know the resulting table and the first card,
then we can reconstruct all the cards), so it cannot significantly change the
entropy or the Kolmogorov complexity of the data string. This entropy is prob-
ably insufficient if simple tests fail on the string. The same can be said about
xor-ing with a (deterministic) pseudorandom sequence used by Marsaglia. In
the latter case, the rap music and naked ladies could save the day, assuming
that these strings have enough complexity (generating processes have enough
entropy) and are independent from the data from the electronic devices. But
obviously one would like to have less frivolous and more regular procedure.

11 Random Source and Post-processing

Noise sources are cheap and easy to find. A classical example is a Zener diode
which costs few cents; the noise generated by it is strong enough to be captured
by an inexpensive audio card that has microphone inputs, and one can then try
to convert this noise to a high-quality random bits (“white noise”) using some
processing called “conditioning” or “whitening”. Many commercial devices uses
this scheme (usually with a higher frequency and a lower precision than used in
typical audio cards); here is the description of one of devices of this type:

The TrueRNG Hardware Random Number Generator uses the avalanche
effect in a semiconductor junction to generate true random numbers. The
avalanche effect has long been used for generation of random number/noise
and is a time-tested and proven random noise source. The semiconductor
junction is biased to 12 volts using a boost voltage regulator (since USB
only supplies 5V), amplified, then digitized at high-speed. The digitized
data is selected and whitened internal to the TrueRNG and sent over the
USB port with more than 400 kilobits/second of throughput. 〈. . .〉
The new entropy mixing algorithm takes in 20 bits of entropy and outputs
8 bit to ensure that maximum entropy is maintained. The algorithm uses
multiplication in a Galois field similar to a cyclic redundancy check to mix
the ADC inputs thoroughly while spreading the entropy evenly across all
bits [35].
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On the other hand, one should be careful here, since the properties of Zener
diodes are not guaranteed13, as a simple experiment shows (Fig. 4). It is quite
possible that noise properties may change over time and depend on the environ-
ment (exact voltage and current, temperature etc.) The post-processing should
somehow be robust enough to convert these varying types of noise into random
bits with the same uniform distribution.

Fig. 4. The noise signal and its spectrum for two Zener diodes from the same roll, dig-
itized by the same sound card (Behringer 1204usb) and analyzed by the same program
(audacity).

The scheme of such a hardware random number generator is shown in a
picture from NIST publication [23] (Fig. 5). In addition to the analog source
and the conditioning block this scheme also provides a “health tests” block,
with the obvious goal to raise an alarm when, for example, the analog noise
source becomes broken for some reason, or drastically changed its parameters.
The circuit is called an “entropy source”, not a random bits generator, and
the conditioning block is optional, since in [23] a more complicated scheme is
considered: the output of this block is subjected to the next layer of conditioning
before being sent to the customer. See below Sect. 13.

12 What We Would Like to Have

The ideal situation can be described as follows. There exist

– some mathematical property (E) of the output distribution of the (digital)
noise source; its informal meaning is that “there is enough randomness in the
output of the noise source”;

– some hardware device for which the physicists guarantee (E) unless the device
is visibly broken;

13 The manufacturers of Zener diodes do not care much about the noise since the
primary purpose of Zener diodes is different (and somehow opposite): to produce a
stable voltage.
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Fig. 5. A general scheme of a hardware entropy sources [23, p. 5]

– a deterministic transformation (“conditioning”) and a mathematical theorem
that guarantees that the output of this transformation is distributed almost
uniformly if its input has the property (E).

Unfortunately, the current practice is rather far from this ideal. The NIST
publication mentioned above suggests the property “min-entropy is large” as (E).
This means that each individual outcome has small probability (by definition,
the min-entropy of a distribution is at least k if every outcome has probability
at most 2−k). Here is what they say:

The central mathematical concept underlying this Recommendation is
entropy. Entropy is defined relative to one’s knowledge of an experiment’s
output prior to observation, and reflects the uncertainty associated with
predicting its value—the larger the amount of entropy, the greater the
uncertainty in predicting the value of an observation. There are many pos-
sible measures for entropy; this Recommendation uses a very conservative
measure known as min-entropy, which measures the effectiveness of the
strategy of guessing the most likely output of the entropy source [23, p. 4].

However, min-entropy, being a very important notion, is still not enough to
guarantee the good distribution after any (deterministic) conditioning transfor-
mation. Namely, for any transformation T : Bn → B that maps n-bit strings
into bits, there is a random variable ξ with values in B

n that has min-entropy
at least n − 1 (almost maximal) such that T (ξ) is a constant. Indeed, one of
the preimages T−1(0) and T−1(1) has size at least 2n−1, and we may let ξ be
uniformly distributed in this preimage.

Moreover, even a stronger requirement than high min-entropy, introduced
long ago by M. Santha and U. Vazirani [29], is not enough. This requirement,
for a sequence of random Boolean variables ξ1, ξ2, . . . , ξn, says that

Pr[ξm = 1 | ξ1 = x1, . . . , ξm−1 = xm−1] ∈
(

1
2

− δ,
1
2

+ δ

)
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for every m � n and for every (m − 1)-bit string x1 . . . xm−1. Here δ ∈ (0, 1/2)
is some constant. Assume for example that δ = 1/6; then the requirement says
that whatever bits we have observed, the conditional probabilities to have 0 and
1 as the next bit differ at most by factor 2, being in the interval (1/3, 2/3). This
implies that min-entropy (and Shannon entropy) grows linearly with n, but is
a much stronger condition, saying that in no circumstances we may predict the
next bit reliably. Still, as proven in [29], this condition is not enough to extract
even one “whitened” bit: there is no whitening algorithm that is better than the
trivial one (taking the first bit). This claim can be slightly generalized: no way
to extract k bits is better than the trivial one (just taking the first k bits). Here
is the exact statement that implies this result.

Proposition 4. Let A ⊂ B
n be a subset that has uniform probability p and

let δ ∈ (0, 1/2). Then there exists a sequence of n random Boolean variables
ξ1, . . . , ξn that satisfies the Santha–Vazirani condition for this δ, such that

Pr[ξ1 . . . ξn ∈ A] � pα,

where α is a number such that (1/2)α =
(

1
2

+ δ

)

.

Therefore, if the uniform probability of A is (1/2)k for some k, then the proba-
bility of the event ξ1 . . . ξn ∈ A guaranteed by Proposition 4 (for some Santha–
Vazirani source) is at least (1/2 + δ)k. This means that no transformation
T : Bn → B

k can be better (in terms of extracting min-entropy from Santha–
Vazirani source) than taking the first k bits. Indeed, one of the points in B

k has T -
preimage in B

n of uniform probability at least (1/2)k, and applying Proposition 4
to this preimage we conclude that for some Santha–Vazirani source ξ1, . . . , ξn the
min-entropy of T (ξ1 . . . ξn) is not better than just for ξ1 . . . ξk: probability of some
point in the image distribution is at least (1/2 + δ)k.

Proof. We need to construct a distribution on B
n that satisfies Santha–Vazirani

condition and assigns large probability to A. We do it inductively, following
the suggestion by Ruslan Ishkuvatov. The case n = 1 is obvious. For n > 1,
we split A into two parts 0A0 and 1A1 according to the first bit, where A0

and A1 are subsets of Bn−1 that can be considered as two faces of the Boolean
cube. Let p0 and p1 be the probabilities of A0 and A1 according to the uniform
distribution in B

n−1, so their average is p. Assume that p0 � p1, so p0 = p − x
and p1 = p + x for some x ∈ [0, p]. The induction assumption gives two Santha–
Vazirani distributions on B

n−1 that give large probabilities to A0 and A1, namely,
at least pα

0 and pα
1 . They can be combined into one distribution on B

n, we only
need to chose the probability (between 1/2 − δ and 1/2 + δ) for the first bit,
and then use the two Santha–Vazirani distributions provided by the induction
assumption as conditional distributions. To maximize the resulting probability,
we should put maximal allowed weight on the face where the probability is
greater. It remains to prove then that

(
1
2

− δ

)

pα
0 +

(
1
2

+ δ

)

pα
1 =

(
1
2

− δ

)

(p − x)α +
(

1
2

+ δ

)

(p + x)α � pα.
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For α � 1, the function t 	→ tα is concave, therefore the left hand side is a
concave function of x, and it is enough to check this inequality for endpoints
x = 0 (where it is obvious), and x = p. In the latter case we need to prove that
(1/2 + δ)(2p)α � pα, and this follows directly from the definition of α.

Remark 10. A very simple proof for the case of 1-bit output [28] goes as follows.
If p � 1/2, then for some Santha–Vazirani distribution with parameter δ one can
achieve probability at least 1/2+ δ. Why? It is enough to spread the probability
1/2 + δ uniformly on a subset A′ ⊂ A with uniform probability 1/2, and spread
the remaining probability 1/2 − δ uniformly on the complement of A′.

So the situation is far from ideal: large min-entropy and even stronger
Santha–Vazirani condition are not enough to guarantee the correct distribution
after whitening, for any fixed whitening function. Still some practical solutions,
i.e., some common sense recommendations that help us to avoid obviously faulty
generators, are needed, even if no theoretical guarantees are provided. In the next
section we look at the NIST approach to this problem.

13 What We Have

There are three documents produced by NIST that cover different aspects of
random bits generation. The first, SP 800-90A [22], deals with algorithmic pseu-
dorandom bits (or numbers) generators, called there deterministic random bits
generators14. Here the relevant mathematical theory is not the algorithmic infor-
mation theory but the complexity theory where the notion of (cryptographically
strong) pseudorandom number generator was introduced by Manuel Blum, Sil-
vio Micali and Andrew Yao [4,38]. This theory goes far beyond the scope of our
survey.

Roughly speaking, such a generator is a polynomial-time algorithm that maps
a truly random seed into a (much longer) sequence of bits that is “indistinguish-
able” from a random one by polynomial-size circuits. The indistinguishability
means that no polynomial-size circuit can have significantly different probabil-
ities of (a) accepting the output of the generator for a truly random seed, and
(b) accepting a sequence of truly random bits. An equivalent definition says that
there is no way to predict by a polynomial-size circuit the next bit of the output
sequence (for a random seed) significantly better than by guessing.

The existence of generators with these properties is equivalent to the exis-
tence of one-way functions [11], and this existence is an unproven assumption.
This assumption implies P �= NP, while the reverse implication is not known. For
this reason we do not know any cryptographically strong pseudorandom number
generator for which this property can be proven. Moreover, since the construc-
tions from [11] are quite complicated, practical pseudorandom generators may
use stronger assumptions, like hardness of factoring, or just have no theoreti-
cal justification at all. In fact, NIST [22] not only recommends but also insists

14 Note an oxymoron.
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on using “allowed” methods to generate random bits from the seed, and these
methods are far from being justified mathematically, even in a very weak sense.
For example, one of the methods uses hash values for consecutive bit strings (see
Fig. 6). As explained in [22, page 37], “mechanisms specified in this Recommen-
dation have been designed to use any approved hash function and may be used
by consuming applications requiring various security strengths, providing that
the appropriate hash function is used and sufficient entropy is obtained for the
seed”. On the next page a list of these “approved” hash functions is provided
that includes SHA-1, SHA-224, SHA-512/224, SHA-256, SHA512/256, SHA-384,
SHA-512. According to NIST [25]:

Fig. 6. Part of Fig. 8 on p. 39 in [22] related to the random bit generation using a hash
function (the initialization part is omitted).

An approved hash function is expected to have the following three prop-
erties:
1. Collision resistance: It is computationally infeasible to find two differ-

ent inputs to the hash function that have the same hash value. That
is, if hash is a hash function, it is computationally infeasible to find
two different inputs x and x′ for which hash(x) = hash(x′). Collision
resistance is measured by the amount of work that would be needed to
find a collision for a hash function with high probability. If the amount
of work is 2N , then the collision resistance is N bits 〈. . .〉

2. Preimage resistance 〈. . .〉
3. Second preimage resistance 〈. . .〉

Obviously, for a specific function like SHA-1 or any other mentioned in the list
above, the collision resistance requirement makes no sense if understood liter-
ally: computation infeasibility means high complexity of some function, and here
we have no function. If somebody comes with a collision pair x, x′, the collision
resistance in the näıve sense disappears starting from this moment, so it is not
a mathematical property of a hash function (a mathematical property cannot
suddenly become false), but some property of the current state of art (still mea-
sured in bits!). Moreover, the hash functions mentioned above are obtained by a
complicated ad hoc construction and there are no reasons to believe that some-
thing similar to collision resistance can be proven. Finally, as it is mentioned [22,
p. 89],
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Hash DRBG’s [the random generator based on hash functions] security
depends on the underlying hash function’s behavior when processing a
series of sequential input blocks. If the hash function is replaced by a
random oracle, Hash DRBG is secure. It is difficult to relate the properties
of the hash function required by Hash DRBG with common properties,
such as collision resistance, pre-image resistance, or pseudorandomness.

Indeed, it is impossible to relate the “required” properties with “common” prop-
erties, since a function with no known collisions and high preimage resistance
still may have much more 1s than 0s in most of its outputs, or have the last bit
always equal to 1, therefore being completely unsuitable for Hash DRBG.15 So
the reference to the security properties of the allowed hash functions can only
create a false feeling of security.

The second NIST publication, SP 800-90B [23], describes the allowed con-
structions of the “entropy source” (see Fig. 5 above) while the third one [24]
“addresses the construction of RBGs from the mechanisms in SP 800-90A and
the entropy sources in SP 800-90B” [23, p. 1]. The idea here is that the whitening
(conditioning) process is splitted into two stages. The first stage, described in
SP 800-90B, does only some “rough” conditioning and may not produce a dis-
tribution that is very close to the uniform one. We hope only that the entropy
of its output is close to the output length or at least is a significant fraction of
the length. Then the second stage that may involve deterministic random bits
generators or not is used for “fine-tuning”.16

But what is meant by “entropy” in this description? As we have said, the
NIST recommendations claim to use min-entropy. Still there are some problems
with this approach.

– There is no way to get a reliable lower bound for the min-entropy of a physical
source. If there is some isolated value that appears with probability 2−k, the
min-entropy is at most k, but one needs to make Θ(2k) trials to have a
reasonable chance to see this value at least once.17

15 And the claim about the random oracle model is obviously true and obviously irrel-
evant.

16 The final stage may also use pseudorandom bit generators to provide additional
“backup” layer if the physical source stops working. For example, one may follow
Marsaglia and produce xor of the bit sequences from physical and deterministic
sources. Note that this operation, hiding the problems with physical source, makes
the testing of the output sequence almost useless; testing should be done before this
last step.

17 Things are much better for independent identically distributed (i.i.d.) variables [23,
p. 11]; there are also some physical sources where i.i.d. assumptions are reasonable,
and some tests that can detect some violations of i.i.d. property.
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– Quite often the NIST recommendations treat the notion of entropy infor-
mally, as some mystical substance that can be present in a binary string (and
not in a random variable) and even can be accumulated and/or condensed18.
For example, it is written [23, p. 11] that “in all cases, the DRBG [determin-
istic random bits generator] mechanism expects that when entropy input is
requested, the returned bitstring will contain at least the requested amount
of entropy.” The closest approximation to this interpretation is Kolmogorov
complexity, but it is (a) non-computable and (b) defined up to a constant, and
different reasonable optimal programming languages easily can give the val-
ues that differ by several thousands, so it does not make sense to ask whether
the complexity exceeds (say) 512 or not.

– Moreover, in some cases even more enigmatic explanations are given: “For
the purposes of this Recommendation, an n-bit string is said to have full
entropy if the string is the result of an approved process whereby the entropy
in the input to that process has at least 2n bits of entropy (see [ILL89] and
Sect. 4.2)” [24, p. 11]. Here [ILL89] is the preliminary version of [11] and
neither says anything about approved processes nor justifies the requirement
about 2n bits of entropy.

– As mentioned above for a similar situation, the properties of the functions
used for conditioning, in particular the standard requirements for the security
of a hash function, do not guarantee, even informally, that the output distri-
bution for the hash function applied to an input source of high min-entropy,
is close to the uniform distribution. However, this is implicitly assumed in
the recommendations when an approved process of obtaining a string of full
entropy is described.

– The recommendations encourage the designer to use different combinations
of “approved” constructions (see, e.g., Fig. 7); even if some good properties of
one-stage construction are plausible, the claim that the composition of several
stages will still have good properties, is much less founded.

Fig. 7. The construction of a random bits generator with several layers [24, p. 19].

18 “When the entropy [string?] produced by the entropy source(s) is very long (e.g.,
because the entropy rate of the entropy source(s) is very low), and the entropy bits
may need to be condensed into a shorter bitstring, the Get Entropy function in
Sect. 10.3.1.1 or Sect. 10.3.1.2 shall be used to condense the entropy bits without
losing the available entropy in the bit string.” [23, Sect. 10.3.1, p. 44].
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All these critical remarks do not mean that NIST recommendations are
unnecessary: they reflect the current state of technology, the existing practice
and prevent the appearance of completely bogus generators, therefore playing a
very important role. However, one should keep in mind that they are not based
on any “hard science”; they sometimes use mathematical notions and results but
only as hints and sources of inspiration.

Could we have better recommendations? This is a difficult question. One can
hope for the security through obscurity : if a long sequence of different mathe-
matical operations is performed, this could make an attack much more difficult.
However, the idea that random actions give random results does not look as
a good plan for designing random bits generators. It could be that the careful
choice of a noise source plus one-layer conditioning procedure that is based on
something more suitable than just hash functions, would give a better result
than a complicated multi-layer approach using cryptographic primitives.

14 Final Remarks

The space limitations do not allow us to discuss other interesting questions
related to theory and practice of random bit generators.

On the theory side, there is a lot of knowledge about randomness extractors—
from a complexity-theoretic viewpoint, they are much closely related to the
practical task of conditioning raw randomness than hash functions. It is not
completely clear to what extent we can achieve the goal: to have a clear and
reasonable assumption about raw distribution that provably guarantees that the
output distribution is close to the uniform one. Still we may hope that some
constructions inspired by this theory could be practically useful. In particular,
there are results about extractors with many sources that could be easier to use
(literally or as a source of inspiration), since independence appears more often
in the “real world” than uniform distributions.

From the viewpoint of physics there is a difference between a “random noise”
that comes from statistical mechanics, say, the thermal noise in a resistor, or
the Brownian motion, or some chaotic dynamical systems with external noise,
and more “refined” randomness that comes out of quantum mechanical systems
where the events related to individual microscopic objects can be observed, for
example, experiments with individual photons. However, one can argue that

– there is no clear distinction between two categories: how do we classify Geiger
counter events for a macroscopic piece of slightly radioactive material? how
do we classify the noise in a PN junction (definitely related to some quantum
effects but in multi-particle systems)?

– from the practical viewpoint, it is not clear if one can construct an experimen-
tal device that is “clean” enough to avoid the conditioning step. And if we
use conditioning, do we really have an advantage using a delicate quantum-
mechanical experiment instead of cheaper alternatives? One can argue that
it is better to have “true randomness” instead of “mere chaos”, or something
like this. It definitely sounds good for philosophers or for a sales brochure,
but are there more essential advantages?
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Last but not least, the notions that appear in this discussion (randomness
tests, individual random objects) can be studied from the viewpoint of algorith-
mic information theory. There are many interesting questions and results of this
type [3,26] that are starting points for the “quantitative” theory of randomness.
In this approach, roughly speaking, a result of the form “if α is algorithmically
random, then β is algorithmically random” is made more precise by proving
the upper bound for the randomness deficiency of β in terms of the random
deficiency of α. Interesting questions also appear when we try to translate the
results about some combinatorial constructions (say, randomness extractors or
secret sharing) into the language of algorithmic information theory. But this is
a topic for another long survey.
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Abstract. The paper describes an approach to measuring convergence
of an algorithm to its result in terms of an entropy-like function of parti-
tions of its inputs of a given length. It is a way to relate the set-theoretic
definition of a function to the program that computes it. The approach,
though very preliminary, may show how to improve a given algorithm.

Keywords: Algorithm as sequences of literals · Entropic weight ·
Entropic convergence

1 Introduction

We understand intuitively that an algorithm extracts information from its inputs
while processing them. Unfortunately, as it was noticed by philosophers many
years ago (e.g., see [1]), there is no mathematical theory of information that
reflects our intuition. However, mathematical notion of entropy, that is a measure
of uncertainty is, in a way, related to the quantity of information. More general
way to treat the question of information extraction is by introducing a geometry
in computations but how to do it productively remains an open question. So I
try to approach the subject by means of an entropy-like function.

I introduce one such function that is called entropic weight. This function
is defined for events (i.e., executions of individual commands) of finite sets of
traces of algorithm represented as sequences of literals. So, formally speaking,
no notion of algorithm is needed here. However, I rely it to algorithms that,
for simplicity, are ’low level’ abstract programs. An algorithm considered in this
general framework is denoted A, and the function that it computes, is denoted
F . This function is total and of bounded computational complexity (think not
higher than NP ∪ coNP though formally it is not needed). All its inputs of
size n (the size is polynomially related to the bit size) constitute the set dm,
and the codomain is denoted rn=df F (dm). For better intuition think that dm
is of exponential size.

For simplicity I consider only one-component functions, i.e., functions whose
output can be put in one register within our model of computation. Convolution
or sorting are examples of multi-component functions.
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In Sect. 2 a model of computation is defined, and its runs are reduced to
sequences of literals, i.e., to logic. To illustrate the whole approach I use one
simple function, namely, maximal prefix-suffix maxPS that for a given input
word gives the length of maximal nontrivial prefix that is also its suffix.This
function is denoted ϕ. For maxPS two algorithms are compared, one straight-
forward of quadratic complexity, denoted A0(ϕ), and the other one of linear
complexity, denoted A1(ϕ).

A probabilistic measure and entropic weight are defined in Sect. 3. The algo-
rithms under consideration are deterministic, however in order to get something
like entropy one needs a probabilistic measure. Such a measure on dm is intro-
duced on the basis of Principle of Maximal Uncertainty that says that all outputs
of A are equiprobable at the beginning of its work, i.e., for all v ∈ rn the mea-
sure of its pre-image is 1

|rn | , here and below |U | is the cardinality of a set U . In
this paper the measure is stationary, i.e., it does not change during the work of
A. The entropic weight of events is defined in terms of partitions of dm.

Exact or even ’sufficiently good’ approximate evaluation of entropic weight,
even for Ak(ϕ), is hard, it brings us to open combinatorial problems (see [5]).
But one can estimate the behavior of entropic weight qualitatively and get useful
information about the quality of algorithms. We discuss this at the end of Sect. 3.

The goal of this paper is conceptual: to show that there is a possibility to
define quantitative measures that permit to evaluate some kind of ’information’
convergence of algorithms.

2 Traces of Algorithms and Event Partitions

In description of algorithms we use logical terminology (not programming one)
similar to that was used by Yu. Gurevich [2] for his abstract state machines,
though our model is a traditional sequential algorithm. What are variables in
programming are dynamic functions in our context. We name different objects
in our examples as ‘update’, ‘guard’, ‘event’, ‘input’ etc. before giving general
explanations afterwards.

In particular, the inputs are external functions that may have different values
(i.e., they are dynamic) and cannot be changed by the algorithm. But the algo-
rithm can change its internal functions. Without loss of generality, the output
function is supposed to be updated only once to produce the result. The symbol
% introduces comments in algorithm descriptions.

2.1 Example : Two Algorithms for maxPS

The maxPS problem: given a word over alphabet A, α=df |A| ≥ 2, find the
length of the maximal (longest) prefix, different from the entire word, that is
also a suffix of the word.

Input: A word w over an alphabet A of length n ≥ 1 (so n = n).
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Output: ϕ(n,w) = ϕ(w) = max{k : 0 ≤ k ≤ (n − 1) ∧ w(1..k) = w(n − k +
1..n)}
(w(i..j) denotes w(i)w(i + 1) . . . w(j) for i ≤ j and the empty word for i > j,
and w(i) is the ith character of w).

We consider two algorithms for maxPS: a straightforward one A0(ϕ) with
complexity O (

n2
)
, and another one A1(ϕ) with complexity O (n). The first

one is trivial, the second one is simple and well known. (In the descriptions of
algorithms below we aline else with if, not with then, in order to economize
the space.)

Algorithm A0(ϕ) straightforwardly tries all possible values of ϕ starting with
the biggest one, i.e., (n−1). In the case of failure it takes the next smaller value if
any. The output is denoted by letter ϕ (not boldface), no initial value is needed.

Algorithm A0(ϕ)
1: h := 0; %initialization of the external loop
2: if h ≥ (n−1) then ϕ := 0; halt; %here ϕ is a nullary output function
3: else % case h < (n − 1)
4: begin
5: h := h + 1; i := 1;
6: if w(i) = w(i + h) then
7:

(
if i < n − h then i := i + 1; goto 6;

8: else ϕ := n − h; halt;
)

%case i ≥ (n − h), i.e., i = (n − h)
9: else goto 2 %case w(i) �= w(i + h)

end
The second algorithm that we consider is A1(ϕ). It recursively calculates

ϕ(m,w) for all m starting from m = 1. Denote by letter ϕ (not boldface) an
internal function of A1(ϕ) of type [0..n] → [0..n−1], i.e., an array, that represents
ϕ(w,m) as ϕ(m). Its initial value is ϕ(0) = 0. This function outputs the result.

Denote by ϕk(m) the kth iteration of ϕ(m), k ≥ 1: ϕ1(m) = ϕ(m) and
ϕk+1(m) = ϕ(ϕk(m)), and assume that ϕ0(m) = −1 for all m, ϕ(0, w) = 0 and
min ∅ = 0.

Suppose that ϕ(m) is defined for m < n. Algorithm A1(ϕ) computes
ϕ(m + 1) as ϕs(m) + 1, where s = min{k : w(ϕk(m) + 1) = w(m + 1)}.
Clearly, this computing of ϕs(m) takes O (s) steps. The whole complexity of
A1(ϕ) is linear.

Algorithm A1(ϕ)
1: i := 1; ϕ(1) := 0; ψ := 0; %initialisation;
2: if i ≥ n then

(
ϕ(n) = r := ψ; halt

)
; %by r we denote our

%standard output;
3: else

(
i := i + 1; %case i < n

4: if w(ψ + 1) = w(i) then ( ϕ(i) := ψ + 1; ψ := ψ + 1; goto 2)
5: else % case w(ψ + 1) �= w(i)
6: if ψ > 0 then ψ := ϕ(ψ); goto 4
7: else goto 2

)
%case ψ = 0
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The both algorithms Ak(ϕ) start their work by verifying w(i) = w(i + 1)
for i = 1, 2, ..., and while the equality holds they augment i (lines 6, 7 of A0(ϕ)
and lines 3, 4 of A1(ϕ)). Suppose that event w(n − 1) �= w(n) happens. Then
w(i) = w(i+1) for all i ≤ (n−2), hence the input has the form w1 = an−1b, a �= b.
And inversely, for such an input any Ak(ϕ) arrives at the event w(n−1) �= w(n)
(the traces for input w1 are given in the next Sect. 2). So the information in
the datum w(n − 1) �= w(n) suffices to conclude that ϕ = 0. So any Ak(ϕ) has
enough information to output the result. However, none of these algorithms does
it, they continue to work. The question is what information they are processing,
and how they converge to the result.

2.2 Traces of an Algorithm

In our general framework we consider sets of traces, that can be viewed as sets
of sequences of commands. One can take traces abstractly, so we do not need too
detailed notion of algorithm. However, in order to relate the general setting to the
examples more clearly, we make precisions on the representation of algorithms.

An algorithm A is defined as a program over a vocabulary V.
This vocabulary consists of sets and functions (logical purism demands to

distinguish symbols and interpretations but do not do it). The sets are always
pre-interpreted, i.e., each has a fixed interpretation: natural numbers N, integers
Z, rational numbers Q, elements of finite ring Fm, alphabet B = {0, 1}, alphabet
A, Boolean values Bool, words over one of these alphabets of a fixed length.
Elements of these sets are constants (from the viewpoint of logic their symbols
are nullary static functions). We assume that the values of functions we consider
are constants. We also assume that the length of these values is bounded by
log n + O (1), where n is the input length, mentioned in Sect. 1 and that is
explained just below. This permits to avoid some pathological situations that
are irrelevant to realistic computations, though this constraint is not essential
for our examples.

The functions are classified as pre-interpreted or abstract. Pre-interpreted
functions are: addition and multiplication by constants over N, Z and Q, oper-
ations over Fm, Boolean operations over Bool, basic operations over words if
necessary. Notice that symbols of constants are also pre-interpreted functions.
The vocabulary used in our examples is more modest, we take a richer vocabulary
that can cover other examples (e.g., like in [5]).

Abstract functions are inputs, that are external, i.e., cannot be changed by
A, and internal ones. We assume that in each run of A the output is assigned
only once to the output function, and just at the end, before the command halt.
Notice that what is called variable in programming is a nullary function in our
terminology, a 1-dimensional array is a function of arity 1 etc. The arguments
of an internal function serve as index (like, e.g., the index of a 1-dimensional
array).

Terms and formulas are defined as usual. In particular, atomic formula is
a formula of the form P (Θ), where P is a predicate symbol and Θ is a list of
terms whose length is equal to the arity of P . Literal is an atomic formula or
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its negation. In the examples below the predicates are equalities of characters
or order relations between very basic arithmetic terms. The algorithms of the
examples are simple, for more involved algorithms more ‘powerful’ predicates
may be useful. However, even in our general definitions the formulas are literals,
no more general ones.

Inputs, as well as outputs of A are sets of substructures over V without
proper internal functions. For inputs and output there is defined size that is
polynomially related to their bitwise size (e.g., the length of a word, the number
of vertices in graph etc.). We fix the size and denote it n. For technical simplicity
and without loss of generality we consider the inputs of size exactly n.

As it was mentioned above, the function computed by A is denoted F . Nota-
tions dm and rn were introduced in Sect. 1. Variables for inputs are X, Y
maybe with indices.

The worst case computational complexity of A is denoted t, and the com-
plexity for a given input X is denoted by t(X). We write t → ∞ instead of t → t
or t → t(X).

Two basic commands of A are guard verification and update; the command
halt is not taken into consideration in traces. A guard is a literal (this does
not diminish the generality), and an update (assignment) is an expression of the
form g(Θ) := η, where g is an internal function, Θ is a list of terms matching
the arity of g, and η is a term.

A program of A is constructed by sequential composition from updates,
branchings of the form if guard then Op else Op′, where Op and Op′ are pro-
grams, goto label or halt.

Given an input X, a trace of A for X denoted tr(X), is a sequence of updates
and guards that correspond to the sequence of commands executed by A while
processing X. More precisely, the updates are the updates executed by A, and
the guards are the guards that are true in the branching commands. So such a
guard is either the guard that is written in if-part or its negation. These elements
of traces are called events. The commands halt and goto are not included in
traces. The last event of a trace is an update of the output function. The event
at an instant t is denoted by tr(X, t).

We assume that the values of internal functions are assigned by A, and are
defined when used in updates. In other words, there are no initial values at
instant 0 (or we can say that all these functions have a special value �, meaning
undefined, that is never assigned later), all internal functions are initialized by
A. This means, in particular, that the first update is necessarily by an ‘absolute’
constant or by an input value.

Everywhere below, the letter Θ in expressions like f(Θ), is a list τ1, . . . , τm
of terms whose number of elements is the arity of f .

Definition 1. The value of a term θ in a trace tr(X) at instant t, denoted
θ[X, t], is defined straightforwardly as follows:

• if γ is an external function then its value for any value Θ of its argument Θ
is already defined for a given input X, independently of time instant, and is
denoted γ(Θ)[X] or γ(Θ)[X, t] to have homogenous notations.
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• if θ = γ(Θ), where γ is an external function then

θ[X, t] = γ(Θ[X, t])[X] = γ(τ1[X, t], . . . , τm[X, t])[X];

• if θ = g(Θ), where g is an internal function, and if θ is not updated at t then

θ[X, t] = θ[X, t − 1] = g(τ1[X, t − 1], . . . , τm[X, t − 1])[X, t − 1],

and if tr(X, t) is an update g(Θ) := η then g(Θ)[X, t] = g(Θ[X, t−1])[X, t] =
η[X, t − 1] (an update defines g for some concrete arguments that should be
evaluated before the update).

2.3 Trace Literals

Definition 2. Input image of a term θ at t in tr(X), denoted θ 〈X, t〉, is defined
by recursion over time t and term construction:

• for a term γ(Θ), where γ is an external function, we set γ(Θ) 〈X, t〉 =
γ(Θ 〈X, t〉) for all X and t;

• for g(Θ), where g is a internal function and tr(X, t) is not an update
g(Θ[X, t − 1]) := η, we set g(Θ[X, t − 1]) 〈X, t〉 = g(Θ[X, t − 1]) 〈X, t − 1〉;

• for g(Θ), where g is a internal function and tr(X, t) is an update
g(Θ[X, t − 1]) := η, we set g(Θ[X, t − 1]) 〈X, t〉 = η 〈X, t − 1〉.

One can see that the input image of g(Θ), where g is a internal function, is a
term related to g with a concrete argument, i.e., to some kind of nullary function.
We can treat the only output in some special way, and we do it later, in order
not to loose its trace.

Logical purism demands that for constants we distinguish the symbol and
the value. So for a loop counter i with updates i := 0, i := i+1, i := i+1 we get
as input images of i the terms 0, 0 + 1 and (0 + 1) + 1, where boldface refers
to symbols.

Lemma 1. Input image of a term does not contain internal functions (i.e., is
constructed from pre-interpreted functions and inputs).

Proof. By straightforward induction on the construction of input image.

Definition 3. (Trace) literal of an event E = tr(X, t) is denoted E 〈X, t〉 or
tl(X, t) and is defined as follows:

• if E is an update g(Θ) := η and g is not output then E 〈X, t〉 is the literal

g(Θ[X, t − 1]) 〈X, t〉 = η[X, t];

• if E is an update g(Θ) := η and g is an output function then as E 〈X, t〉 we
take the literal g(Θ[X, t − 1]) = η[X, t];

• if E is a guard P (Θ) then E 〈X, t〉 is the literal P (Θ 〈X, t〉);
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For the example of loop counters i := 0, i := i + 1, i := i + 1 we get as
trace literals 0 = 0, 0 + 1 = 1 and (0 + 1) + 1 = 2. These literals are often not
instructive for the convergence of A to its result.

Trace literals not containing input functions are constant trace literals
(parameter n is treated as a constant that does not depend on other inputs).

In further constructions, as we illustrate in the examples just below, we do
not distinguish symbols and values of constants, and write, e.g., 0 + 1 + 1 = 2
instead of (0 + 1) + 1 = 2. Moreover, instead of a sum of 1’s taken, say m
times, we write simply m or (m − 1) + 1 according to the context (that always
permits to understand what is meant by this notation).

2.4 Traces for MaxPS Algorithms

The trace of algorithm A0(ϕ) from subsection 2.1 for input w1=df an−1b with
a �= b has the form (in order to facilitate the reading we put the current or
acquired value v of a term θ behind it as θ[v]):

h := 0, h < (n − 1), h[1] := h + 1, i := 1, w(1) = w(2), i[1] < (n − 1), i[2] :=
i + 1,
w(2) = w(3), . . . , w(n − 2) = w(n − 1), i[n − 2] < (n − 1), i[n − 1] := i + 1,
w(n − 1) �= w(n), h[1] < (n − 1), h[2] := h + 1, . . . , w(1) �= w(n),
h[n − 1] ≥ (n − 1), ϕ := 0

The respective trace literals are (denote this sequence tl0(w1)):

0 = 0, 0 < (n − 1), 1 = 1, 1 = 1, w(1) = w(2), 0 + 1 < (n − 1), 1 + 1 = 2,
w(2) = w(3), . . . , w(n − 2) = w(n − 1), (n − 3) + 1 < (n − 1),
(n − 2) − 1 = n − 1, w(n − 1) �= w(n), 1 < (n − 1), 2 = 2, . . . , w(1) �= w(n),
n − 1 ≥ (n − 1), ϕ = 0

The trace of A1(ϕ) from subsection 2.1 for input an−1b with a �= b has the
form:

i := 1, ϕ(1) := 0, ψ := 0, i < n, i := i + 1[2], w(1) = w(2), ϕ(2) := ψ + 1[1],
ψ := ψ + 1[1], i < n, i := i + 1[3], w(2) = w(3), ϕ(3) := ψ + 1[2],
ψ := ψ + 1[2], . . . , i[n − 2] < n, i[n − 2] := i + 1[n − 1], w(n − 2) = w(n − 1),
ϕ(n − 1) := ψ + 1[n − 2], ψ := ψ + 1[n − 2], i[n − 1] < n, i := i + 1[n],
w(n − 1) �= w(n), ψ[n − 2] > 0, ψ := ϕ(n − 2)[n − 3], w(n − 2) �= w(n),

ψ[n − 3] > 0, ψ := ϕ(n − 3)[n − 4], w(n − 3) �= w(n), . . . , ψ[1] > 0, ψ := ϕ(1)[0],
w(1) �= w(n), ψ ≤ 0, i[n] ≥ n, ϕ(n) := 0, r := 0
The sequence of trace literals of this trace (denote it tl2(w1)) is:

1 = 1, 0 = 0, 0 = 0, 0 < n, 1 + 1 = 2, w(1) = w(2), 0 + 1 = 1, 0 + 1 = 1,
1 + 1 < n, 2 + 1 = 3, w(2) = w(3), 1 + 1 = 2, 1 + 1 = 2, . . . , (n − 3) + 1 < n,
(n−2)+1 = n−1, w(n−2) = w(n−1), (n−3)+1 = n−2, (n−3)+1 = n−2,
(n − 1) < n, (n − 1) + 1 = n, w(n − 1) �= w(n), (n − 2) > 0, (n − 3) =
n − 3, w(n − 2) �= w(n),
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(n−3) > 0, (n−4) = n−4, w(n−3) �= w(n), . . . , 1 > 0, 0 = 0, w(1) �= w(n),
0 ≤ 0, n ≥ n, 0 = 0, r = 0

Replace constants by their values and delete trivially valid literals from the
trace literal sequences above. We get

for the trace of A0(ϕ):

w(1) = w(2), w(2) = w(3), . . . , w(n − 2) = w(n − 1), w(n − 1) �= w(n),
. . . , w(1) �= w(n), ϕ = 0 (1)

for the trace of A1(ϕ):

w(1) = w(2), w(2) = w(3), . . . , w(n − 2) = w(n − 1), w(n − 1) �= w(n),
w(n − 2) �= w(n), w(n − 3) �= w(n), . . . , w(1) �= w(n), r = 0 (2)

Definition 4. A weeded trace of input X, denoted wtr(X), is a subsequence
of the sequence (tl(X, t))t of trace literals obtained from (tl(X, t))t by deleting
all constant literals.

Denote by wtr(X, k) the kth element of wtr(X), and by tm(X,Λ), where Λ
is an occurrence of a literal in wtr(X), the time instant t such that Λ = tl(X, t),
i.e., such that Λ is the trace literal of tr(X, t).

In a weeded trace, a trace literal that contains a symbol of an input function
may be true or not depending on the value of the input, though we consider
occurrences of this symbol in the trace for a particular input X. In wtr(X) we
leave only such non-trivial, non-constant literals.

These ‘weeded’ trace literal sequences simplify the estimation of entropic
convergence below. The literals in these weeded traces represent events that are
directly involved in processing inputs. In the general case one can insert in a
‘good’ algorithm events of this kind that are useless, just to hide what is really
necessary to do in order to compute the result. So in the general case weeded
traces cannot help much, however for concrete practical algorithms they are
useful.

3 Inputs Partitions and Entropic Weight

In this section the main notions are defined.

3.1 Partitions of Inputs and Measure

A partition of dm is defined by a chosen similarity relation between events that
is denoted ∼. We assume that ∼ is an equivalence relation. The choice of the
probabilistic measure is based on informal Principle of Maximal Uncertainty. In
examples we use as ∼ the equality of trace literals of events, i.e., two events are
similar if their trace literals are equal.
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Let M = |rn|. Fix an order of elements of rn = (ω1, . . . , ωM ), and denote
F̂ k = F −1(ωk). Now the sets F̂ k are ordered according to k.

To an event E = tr(X, t) we relate a set of inputs Ê = Ê[X, t]:

Ê[X, t] = {X ′ ∈ dm : ∃t′. E ∼ tr(X ′, t′)}
(notice, there is no order relation between t and t′),
and an ordered partition

π(E) = π(Ê)=df (Ê ∩ F̂ 1, Ê ∩ F̂ 2, . . . , Ê ∩ F̂M ).

In particular,

Π=df π(dm) = (F̂ 1, F̂ 2, . . . , F̂M )

Π k = Π F k
=df π(F̂ k) = (∅, . . . , ∅, F̂ k, ∅, . . . , ∅)

The latter partitions Π k represent the graph of F in our context, we denote it
gr(F )=df {Π k}k.

We define a measure on dm according to the Principle of Maximal Uncer-
tainty. Imagine that A plays against an adversary that chooses any input to
ensure the maximal uncertainty for A. In this case all outputs of rn(f) are
equiprobable. We consider a static measure, i.e., that one does not change dur-
ing the execution of A.

We set P (F̂ v) =
1
M

for any v ∈ rn(F ), and define P as uniform on each F̂ v.

Practical calculation of P (S) for a set S is combinatorial: P (S) =
∑

k

|S ∩ F̂ k|
M · |F̂ k|

,

where where |U | is the cardinality of a set U . The the measure of one point of

F̂ k is
1

M · |F̂ k|
.

Remark that we can define a metric between ordered partitions (A1, . . . , AM )
and (B1, . . . , BM ):

d((A1, . . . , AM ), (B1, . . . , BM )) =
∑

1≤i≤M

P (Ai � Bi),

where � is symmetric difference of sets, though it remains unclear whether this
kind of metric may help to deepen the understanding of algorithmic processes.

3.2 Entropic Weight

We would like to evaluate the uncertainty of events in a way that says how the
algorithm approaches the result. As a measure of uncertainty we introduce a
function D over partitions π(E) (that can be also seen as a function over events
E or sets Ê) that has the following properties:

(D1) D(dm) = D(Π ) = log M (maximal uncertainty),
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(D2) D(Ê) = 0 for Ê ⊆ F̂ k for all k, in particular D(F̂ k) = 0
(the event E = tr(X, t) determines the result F (X) with certainty),

(D3) D is monotone: it is non-increasing when Ê diminishes.

Look at conditional probability P ( ̂E∩̂F k)

P ( ̂E)
. Intuitively, it measures a contribu-

tion of event E (via its set Ê) to determining what is the probability to have
ωk as the value of F in trace tr(X) and in other traces that contain an event
similar to E. If Ê ⊆ F̂ k then P ( ̂E∩̂F k)

P ( ̂E)
= 1, i.e., according to E the result is ωk.

So we can take as an entropy-like measure this or that average of the conditional
information function − log P ( ̂E∩̂F k)

P ( ̂E)
. As we are interested only in the relation of

E with F , we take some kind of average over Ê—we take it using the measure
over Ê induced by P (then the measure of the whole Ê may be smaller than 1).

Definition 5. Entropic weight of event E (in fact, that of π(E)) is

D(E) = D(Ê) = D(π(E)) = −
∑

k

P (Ê ∩ F̂ k) log
P (Ê ∩ F̂ k)

P (Ê)
. (3)

This function has the properties (D1)–(D3), the properties (D1)–(D2) are
evident, and (D3) is proven in Theorem 1 below.

We use in this proof the formula (4) below that is equivalent to (3) as∑

k

P (Ê ∩ F̂ k) = P (Ê):

D(E) = −
∑

k

P (Ê ∩ F̂ k) log P (Ê ∩ F̂ k) + P (Ê) log P (Ê) (4)

Theorem 1. For any sets S0, S1 ⊆ dm if S0 ⊆ S1 then D(S0) ≤ D(S1)

Proof. Take any interval of time [0, T ], T > 0. Set Ti = iT
|dm | , and let S be a

function from [0, T ] to subsets of dm such that

• S(0) = dm, S(T ) = ∅,
• S(Ti) is constant on [Ti, Ti+1) (0 ≤ i < |dm| − 1)
• |S(Ti) \ S(Ti+1)| = 1.

In other words, S is a decreasing function having subsets of dm as values
(t0 ≤ t1 implies S(t1) ⊆ S(t0)) that looses one element at each point Ti and
remains constant between these points.

Let zk = zk(t) = P (S(t) ∩ F̂ k). It is a decreasing step-function. Replace it
by a decreasing differentiable function xk that coincides with zk at points Ti.
We have 0 ≤ xk ≤ zk ≤ 1

M for all t, and 0 ≤ ∑
k xk ≤ 1.

Define a function D = −∑
k xk log xk + (

∑
k xk) log(

∑
k xk).

Notice that P (S(t)) =
∑

k zk. From this equality and (4) we have

D(Ti) =
( −

∑

k

zk log zk + (
∑

k

zk) log(
∑

k

zk)
)
(Ti) = D(S(Ti)). (5)
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As zk is decreasing then if (
∑

k zk)(t) = 0 for some t, it remains 0 for all bigger
t. We consider D(t) for t for which (

∑
k zk)(t) > 0, these t constitute an initial

interval of [0, T ]. Take derivative of D (recall that log x = lnx
ln 2 ):

D′(t) = −
∑

k

(
x′
k log xk + xk

x′
k

xk · ln 2

)

+
( ∑

k

x′
k

)
log

(∑

k

xk

)
+

(∑

k

xk

)
(∑

k x′
k

)

( ∑
k xk

)
ln 2

= −
∑

k

(
x′
k log xk +

x′
k

ln 2

)
+

( ∑

k

x′
k log

(∑

k

xk

)
+

x′
k

ln 2

)
(6)

In formula (6) the terms x′
k log xk with xk = 0 are zeros as can be seen by

applying L’Hôpital’s rule. Leaving only xk > 0 (for a given t) we infer from (6)
formula (where k are only for xk > 0)

D′(t) =
∑

k

x′
k · log

( ∑
k xk

)

xk
(7)

The functions xk are decreasing, thus x′
k ≤ 0. As

∑
k xk ≥ xk, the value of (7)

is non-positive, hence D(t) is decreasing when S(t) decreases. Coming back to
(5) we get the conclusion of the theorem.

We mention two inequalities that are sometimes useful for the analysis of the
behavior of entropic weight.

Lemma 2. For any J ⊆ [1..M ], M ≥ 3, and S ⊆ dm

Δ(S,J )=df −
∑

k∈J
P (S ∩ F̂ k) log

P (S ∩ F̂ k)
P (S)

≤ |J |
M

log M (8)

Proof. We have

Δ(S,J )=df −
∑

k∈J
P (S ∩ F̂ k) log

P (S ∩ F̂ k)
P (S)

≤

−
∑

k∈J
P (S ∩ F̂ k) log

P (S ∩ F̂ k)
P (dm)

= −
∑

k∈J
P (S ∩ F̂ k) log P (S ∩ F̂ k) (9)

Function x log x is increasing for 0 ≤ x ≤ 0.36 < 1
e , where e is the base of natural

logarithm.
Indeed, take derivative of −x log x = − 1

ln 2x ln x. We get − 1
ln 2 (ln x + 1); this

expression is zero when ln x = −1, i.e., x = 1
e . And the derivative is positive for

0 ≤ x < 1
e .
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Thus, for M ≥ 3 the right-hand side of (8) is a sum of functions increasing
for 0 ≤ P (S ∩ F̂ k) ≤ 1

3 when S grows. Hence,

Δ(S,J ) ≤ −
∑

k∈J
P (F̂ k) log P (F̂ k) = −

∑

k∈J

1
M

log
1
M

=
|J |
M

log M, (10)

that gives (8).

Lemma 3. For any J ⊆ [1..M ] and S ⊆ dm such that S ∩ F̂ k = ∅ for all
k /∈ J , there holds

Δ(S,J ) ≤ P (S) log |J | ≤ log |J | (11)

where we use notation from (8).

Proof. Clearly,
P (S) =

∑
1≤k≤M P (S ∩ F̂ k) =

∑
k∈J P (S ∩ F̂ k),

∑
k∈J

P (S∩̂F k)
P (S) = 1.

Hence, P (S∩̂F k)
P (S) is a probability distribution, and the maximal value of its

entropy is

−
∑

k∈J

P (S ∩ F̂ k)
P (S)

log
P (S ∩ F̂ k)

P (S)
≤ log |J | ⇔ Δ(S,J ) ≤ P (S) log |J |. (12)

As P (S) ≤ 1 from (12) we get (11).

The bound of Lemma 2, when applicable, is better than the last inequality of
Lemma 3 except one small value of |J |. Some applications of these inequalities
can be found in [5].

3.3 On the Behavior of Entropic Weight of Examples

Some information about the quality of A is in the behavior of local minima of
entropic weight in traces. However, local minima in a whole trace are technically
difficult to describe rigorously though often they are intuitively clear. But one
can look at local minima in prefixes of traces that may be also informative and
that are often much easier to detect and describe. A local minimum in a prefix
of a trace may be the last event of the prefix whose entropic weight is smaller
than that its predecessor. So by taking the last local minima in consecutive
prefixes of a trace we extract sequences of decreasing entropic weights that give
an interesting information about the behavior of A.

To illustrate this, take the same ‘worst-case’ input as above, i.e., w1 = an−1b
and look at local minima of entropic weight in traces of A0(ϕ) and of A0(ϕ) for
this input. For simplicity we take weeded traces.

Look at the trace of A0(ϕ) for w1. We rewrite (1) introducing notations ξi
for pieces of wtr(w1):

ξn−1 : w(1) = w(2), w(2) = w(3), . . . , w(n − 1) �= w(n)
ξn−2 : w(1) = w(3), w(2) = w(4), . . . , w(n − 2) �= w(n)
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
ξ2 : w(1) = w(n − 1), w(2) �= w(n)
ξ1 : w(1) �= w(n)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(13)
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Notations for more detailed vision:
ξk,i=df

(
w(i) = w(i+(n−k))

)
for 1 ≤ i ≤ (k−1), ξk,k=df

(
w(k) �= w(n)

)
.

Entropic weight of an event ξk,i is D(ξk,i) = D(ξ̂k,i) = D({w :
∧

j≤i ξk,j ∧
ϕ(w) ≤ k}) for i < k. And it decreases when i goes from 1 to k. Thus the events
ξk,i, 1 < i < k, give local minima of prefixes of wtr(w1). The number of these
local minima is of order n2.

It is much harder to prove that events ξk,k , at least for n
2 ≤ k ≤ (n − 1), are

local minima of the whole trace wtr(w1), and their number is of order n.
Consider the trace wtr(w1) for A1(ϕ), see (2). The events ξn−1,i are the

same as in the previous case and give of order n local minima for prefixes, and
one global minimum D(ξn−1,n−1) = 0 as in the previous case. Whatever be the
remaining behavior, we see that the number of local minima of prefixes is of
order n. One can prove that the number of local minima in the whole trace is a
constant.

So we see that the behavior of A0(ϕ) is much less efficient from the point of
view of extraction of information than that of A1(ϕ). And the behavior of the
entropic weight of A0(ϕ) may give some hints how to improve the algorithm and
its convergence.

Notice that it is interesting to analyze the behavior of entropic weight of algo-
rithm whose complexity is unknown, not like A1(ϕ) or standard wave algorithm
for the shortest path in graphs. For example, algorithms for SAT are of interest.
For such problems the basic operations that constitute traces should be more
‘coarse’, more powerful in order not to be submerged by secondary details. For
example, evaluating of a propositional formula for a given distribution of values
of variables can be one operation.

3.4 Concluding Remarks

The same measure, namely entropic weight, can be applied to describe the con-
vergence of Boolean circuits. For the latter it is easier to define such a measure
of convergence. For a circuit C take all vertices f at a distance h from the out-
put. For an input X denote by f(X) the value of f for X. Our events are of
the form f(X) = a, a ∈ {0, 1}. For each f define D(f,X) as in (3), where
Ê = {X : f(X) = a} and in F̂ k the index k is from {0, 1}. As a measure of con-
vergence take the minimum of all D(f,X), it depends on d. On may introduce
also some kind of integral measure. This gives some setting for the analysis.

As mentioned in the introduction, the goal of this paper is mainly conceptual,
just to show that one can find a way to quantitatively evaluate the convergence
of an algorithm to its results in terms related to the quantity of information.
The described framework is technically hard to apply because of combinatorial
difficulties arising in the evaluation of the entropic weight. Besides that it would
be more interesting and useful to be able to apply such an approach to the
analysis of problems, not only algorithms. There is hope that the framework
can be developed or can inspire a more geometric approach (recall the relation
between measure, entropy and metric [3,4]) and with more relaxed notion of
algorithm.
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Abstract. We investigate the expressive power of spreadsheets. We con-
sider spreadsheets which contain only formulas, and assume that they
are small templates, which can be filled to a larger area of the grid to
process input data of variable size. Therefore we can compare them to
well-known machine models of computation. We consider a number of
classes of spreadsheets defined by restrictions on their reference struc-
ture. Two of the classes correspond closely to parallel complexity classes:
we prove a direct correspondence between the dimensions of the spread-
sheet and amount of hardware and time used by a parallel computer to
compute the same function. As a tool, we describe spreadsheets which
are universal in these classes, i.e. can emulate any other spreadsheet from
them. In other cases we provide spreadsheet implementations of a solver
for a polynomial-time complete problem, which indicates that the such
spreadsheets are unlikely to have efficient parallel evaluation algorithms.
Thus we get a picture how the computational power of spreadsheets
depends on their dimensions and structure of references.

Keywords: Spreadsheets · Expressive power · Lower bounds · Upper
bounds · Parallel Random Access Machines · Circuit Value Problem ·
PTIME · NC

1 Introduction

1.1 Why Spreadsheets?

Spreadsheets are an extremely popular type of software systems. They have
conquered very diverse areas of present day politics, business, research, and,
last but not least, our private lives. However, this prevalence is not so evident,
because spreadsheets are typically used in the back office and are not presented
to the public. They make to the news only when something goes really wrong:
for instance a spreadsheet used to justify a widely implemented public policy, as
in the case of the extremely influential report [17] concerning a purported causal
relationship between high national debt and low economic growth, turns out
to contain an error in a formula, affecting the outcome of the calculations [11].
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An Excel spreadsheet model was used to manage the investments of JPMorgan
Chase & Co. bank, which led to trade losses estimated in billions of dollars
[6]. Research is not an exception, and a careful reader of Science magazine can
read [7,10], in which a scientific controversy finally turns out to be related to
a spreadsheet mistake. Those notable failures indicate the widespread use and
critical role of spreadsheets in business and research.

Indeed, spreadsheets are among the most frequently used software tools of
any kind. More than 30 years ago after VisiCalc, the first spreadsheet and the
first killer app in the history of personal computers, still relatively little is known
about their computational power.

In recent years there was a significant amount of interest in parallelizing
spreadsheet computations, witnessed both by research papers and patent appli-
cations [2–4,12,14,19]. In this paper, we analyze the computations expressible in
spreadsheets and their relation to parallel complexity classes. Our findings shed
light both on parallelization potential of certain structures in spreadsheets, and
on the fundamental limitations of this approach.

1.2 Measuring the Expressiveness of Spreadsheets

The aim of this paper is to analyze the power of spreadsheets considered as a
tool for specifying general-purpose computations. Our analysis is intended to
concern the spreadsheet model of computation rather than real-life spreadsheet
software. Each spreadsheet is indeed a fully functional program, consisting of
many equations (a.k.a. formulas) located in cells, which are computed in data-
dependent order, with no side-effects. For mathematical convenience, we assume
that the spreadsheet grid is actually infinite and there is no bound on the num-
ber of cells with formulas. Next, we assume that the only data type represented
in spreadsheets are true, unbounded integers. These two assumptions allow us
to apply the methods of computational complexity, which are asymptotic in
nature, to the study of spreadsheets. No macros and user-defined functions writ-
ten in a general programming language are permitted. We also reduce the set
of functions permitted in spreadsheets, to keep our analysis manageable. Still,
these modifications do not affect the underlying general idea of this model of
computation.

Spreadsheets belong to the nonuniform computation models, where for each
input size there is a separate computing device. Uniformity can be introduced
to such a model by imposing that there is a common, low complexity procedure
to create those devices, given the input size. In this respect, spreadsheets come
with a natural, built-in tool to do just that: filling. It is performed by selecting
a rectangular range of cells, clicking a small handle in the lower right corner of
it and extending its boundaries either horizontally or vertically, which results
in copying the formulas present in the initial range to the new, larger area of
the worksheet, with suitable reference adjustments. Filling is the usual way to
produce a spreadsheet processing a large amount of data from a few formulas
prepared manually, or to extend an already existing one to accommodate a new
supply of data.
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1.3 Technicalities of Spreadsheets

Each cell in the spreadsheet is identified by its column letter and row number,
e.g. C2 is located in the third column and second row. A cell may contain a
constant value or a formula, which calculates a value of that cell. An example
formula A$1+SUM($A$2:$A5) references a single cell A1 and a (vertical) range
A2:A5, consisting of 4 cells in the rectangular spanned by A2 and A5 and its
meaning is self-explanatory. The $ signs indicate how to copy this formula to
another cell and do not affect its evaluation. Upon copying, column and row
identifiers with $ in front remain unchanged, while those without are modified
to remain in the same relative position to the cell holding the formula as in the
original one. If the above formula is copied to another cell two rows down and
one column to the right, the copy is B$1+SUM($A$2:$A7), i.e., it now references
cell B1 and a range A2:A7 consisting of 6 cells.

Finally, the key feature we want to use is filling. It is indeed systematic
copying of formulas. If, e.g., a range A1:B2 consisting of four cells with formulas
is marked and filled down, then the formulas in A3, A5, . . . are created by copying
(according to the method explained above) the formula from A1; those in B3,
B5, . . . are copies of the one from B1 etc. In effect, the filled region is covered by
2 × 2 tiles of copies of cells from the original range. Filling can be repeated.

The spreadsheet software automatically chooses an evaluation order of the
formulas which follows the references (we do not consider cyclic references).

It is generally quite difficult to describe an algorithm behind a spreadsheet
program in plain words. In our case, a small spreadsheet is expanded by filling
to an interconnected network of modified copies of itself, resulting in the code
to be eventually executed. Its operation involves complex interactions between
formulas, their locations which serve as their identifiers, and the mechanism of
filling, which produces adjusted references in the newly created cells. Therefore
we have decided to provide algorithms in the form of commented spreadsheets
in the Electronic Supplementary Material (ESM) of this paper, available from
the Publisher. Apart form Microsoft Excel, they work also under LibreOffice,
Microsoft Excel Online and Google sheets.

1.4 Main Results

The structural properties of spreadsheets which we prove to determine their
computational properties are defined by restrictions on the pattern of references
in formulas, in the sense described above.

Definition 1. A spreadsheet S is row-organized iff all its formulas refer to single
cells and fragments of rows, only.

Dually, S is column-organized iff all its formulas refer to single cells and
fragments of columns, only.

S is un-organized iff it is neither row-organized nor column-organized.
In each case, references to the inputs of S are exempt from those limitations.
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Definition 2. A spreadsheet S is row-directed iff every formula in it refers only
to cells and ranges located above itself. Such an S can be evaluated in any
top-down order.

Dually, S is column-directed iff every formula refers only to cells and ranges
located to the left of itself. Such an S can be evaluated in any left-right order.

S is un-directed iff it is neither row- nor column-directed. S is bi-directed iff
it is both row- and column-directed. Again, references to the input part of S are
exempt from those limitations.

The above properties are preserved by filling.

We describe the computational power of spreadsheets by relating them to
Parallel Random Access Machines (PRAM for short), both CRCW priority write
and CREW ones.

On several occasions we proceed by implementing instances of the P -complete
Circuit Value Problem (abbreviated CVP) in spreadsheets, in order to demon-
strate that they are unlikely to have efficient parallel evaluation algorithms.

Our first main result is that any given initial row-organized row-directed
spreadsheet can be converted into a program π for an CREW PRAM such that
the function computed by that spreadsheet filled to the dimensions of c columns
and r rows is always the same as that computed by π evaluated on a PRAM
with c processors, O(c) cells of memory and running for O(r log c) time. Thus,
if a spreadsheet is row-organized row-directed, its evaluation can be efficiently
parallelized: the number of columns contributes only a logarithmic factor to
the total computation time. This sets an upper bound on the computational
power of row-organized row-directed spreadsheets. An analogous result holds for
column-organized column-directed spreadsheets.

In order to get a lower bound, and thus determine the class of functions
computable by those spreadsheets, we prove our second main result: there is a
row-organized row-directed spreadsheet with 19 formulas which is a universal
CRCW PRAM evaluator, i.e., one which given a (suitably encoded) program
π together with its input, and filled to the dimensions of p columns and 10t
rows, computes in its last row the description of PRAM after executing t steps
of π on p processors and with p cells of shared memory. This demonstrates
that spreadsheets can implement a natural and broad class of general-purpose
computations.

The same spreadsheet is also a universal row-organized row-directed spread-
sheet: any other spreadsheet from this class can be equivalently expressed as
a program for a PRAM, which in turn can be executed on that spreadsheet.
This above results demonstrate that row-organized row-directed spreadsheets
and PRAMs are almost equivalent in computing power, with clear relations
between the resources in both models. Indeed, translating a spreadsheet into
an equivalent program for PRAM, and then back to spreadsheet, incurs only a
logarithmic overhead, a common effect of translations between different parallel
computation models.

At the same time PRAMs and spreadsheets are extremely different: the for-
mer have only programming primitives and no data analysis ones, while the latter
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Fig. 1. PRAM evaluator in a row-organized row-directed spreadsheet S1: structure and
mode of operation. Processors are located in columns, and computation time advances
downward. A vertical group of 10 cells constitutes a snapshot of a processor at a given
time, so that extending computation time by one unit requires filling 10 rows. The
filling process is shown in ESM video V1. S1 is provided in ESM.

have only data analysis functions and do not support any form of programming
on the level of the spreadsheet itself.

Further, we demonstrate a row-organized but not row-oriented PRAM simu-
lator (ESM spreadsheet S2), significantly more powerful than the one previously
described. If it is extended to c columns and r rows, computes the description
of PRAM after executing cr/10p steps of π on p processors and with p cells of
shared memory, where p ≤ c is a part of the input. Thus this PRAM simula-
tor can perform either a parallel or a sequential computation, as instructed in
the input, trading off the number of processors and cells of memory for more
computation time.

To get the results for other classes of spreadsheets, we implement instances
of CVP in them. Each time we do so, we get hypothetical lower bounds on the
parallel complexity of evaluating spreadsheets in this class, following from the
anticipated but thus far unproven NC � P . The larger instance we implement,
the higher the lower bound is.

We summarize our results in Table 1. The highlights are the following:
First, row-oriented but not row-organized spreadsheets have parallel evalu-

ation algorithms with c processors and of time complexity O(r log cr), similar
to those for row-organized row-oriented ones discussed above, except that they
need much more memory: O(cr) instead of O(c) cells.
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Table 1. Summary of demonstrated upper and lower bounds for spreadsheet computa-
tions, depending on their structure. We disregard small changes depending on whether
spreadsheets are row- or column-organized or un-organized, which are discussed in the
main text.

Column directed Column un-directed

Row
directed

Upper bounds O(r log cr) with c
processors and O(c log cr) with r
processors on CREW PRAM
No known PRAM simulation
2n columns and 4n rows
implement CVP instance of size
n

Upper bound O(r log cr) with c pro-
cessors on CREW PRAM
c columns and r rows simulate
CRCW PRAM with c processors
and cells of memory for r/10 steps
1 column and n rows implement
CVP instance of size n

Row
un-directed

Upper bound O(c log cr) time on
CREW PRAM with r processors
c columns and r rows simulate
PRAM with r processors and
cells of memory for c/10 steps
n columns and 1 row implement
CVP instance of size n

Upper bound sequential polynomial
time
c columns and r rows simulate
CRCW PRAM with p processors
and cells of memory for cr/10p
steps, p is a part of the input
c columns and r rows implement
CVP instance of size cr/8

Second, for spreadsheets which are row-oriented but not column-oriented,
and its dual class, one of the dimensions contributes a logarithmic factor to the
computation time, while a CVP instance can be encoded in the other dimension,
which causes its size to appear as a linear factor in the computation time.

Third, for spreadsheets which are simultaneously row-oriented and column-
oriented, one has choice which of the dimensions will contribute a logarithmic
factor and which a linear one to the computation time. However, it is unlikely
that there is an algorithm polylogarithmic with respect to both dimensions,
because if both are large, a large CVP instance can be still encoded.

All the above results taken together give a comprehensive picture of the
computing power of spreadsheets without macros. It turns out that this power
is strongly influenced by the pattern of references within the spreadsheet, in
addition to its size.

2 Spreadsheets

As we have already indicated, we assume that the spreadsheet grid is actually
infinite and any number of rows and columns can be filled with copies of the
initial cells. We never consider spreadsheets of unbounded size: all ranges used
have cells as corners, and the size of the spreadsheet is for us the total number
of cells which contain formulas or are referenced in formulas. The only data type
are true, unbounded integers.
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The mechanisms of copying formulas and filling have already been described
in Sect. 1.3. Syntactically the present paper is based on Microsoft Excel and the
reference to syntax and meaning of formulas is the on-line help of Microsoft
Excel [13]. The ESM software accompanying this paper has been also prepared
with Excel.

We frequently use names in the ESM spreadsheets. This is a method to assign
a name to a frequently used range of cells, and later on use that name in formulas
to denote that range. We use it for the sole purpose of making formulas shorter
and easier to understand. This method does not increase the computational
abilities of spreadsheets.

2.1 Functions in Spreadsheets

We use standard arithmetical functions: +, ·, − and /.
The syntax of comparison functions is value1relvalue2, where rel is any

of =, <, >, <=, >=, <>. value1 and value2 can be numbers, formulas or cell
references to numbers. The result is TRUE if the arguments are in the specified
relation, and FALSE otherwise.

Logical functions AND(value1,value2,...) and OR(value1,value2,...)
compute the logical conjunction and disjunction of their arguments, respectively.

The flow control functions are the following.
IF(test,value1,value2). If test is, refers or evaluates to TRUE, the func-

tion returns value1, if test is, refers or evaluates to FALSE it returns value2.
In all other cases the result is a #VALUE! error.

IFERROR(value1,value2). This function returns value2 if value1 is, refers
to or evaluates to any error value, and value1 otherwise.

CHOOSE(index-num,value1,value2,...) is a kind of generalization of IF,
because in one formula it allows the choice among up to 29 possible values to be
returned. index-num specifies which value argument is selected. index-num must
be a number between 1 and 29, or a formula or reference to a cell containing a
number between 1 and 29. If index-num is i, CHOOSE returns valuei.

We use two address functions: ROW() and COLUMN(), which return the number
of row (column, resp.) of the cell in which they are located. In case they are given
an argument, a reference to a single cell, they return the row (column, resp.) in
which that reference is located.

We also use aggregating functions. We use only their one-dimensional vari-
ants: all range arguments must be contiguous fragments of either single rows or
single columns.

In MATCH(lookup-value,lookup-range,match-type), lookup-value is the
value to be found in a range specified by lookup-range. lookup-value can
be a number, a formula or a cell reference to a number. match-type in the
spreadsheets we create is typically 0 and causes MATCH to find the first value
that is exactly equal to lookup-value and return its relative position in the
lookup-range.
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If match-type is 1, then values in lookup-range are assumed to be sorted
into an increasing order, and MATCH finds the first value that is larger or equal to
lookup-value and returns its relative position in the lookup-range. If match-
type is −1, then values in lookup-range are assumed to be sorted into a decreas-
ing order, and MATCH finds the first value that is smaller or equal to lookup-value
and returns its relative position in the lookup-range.

In all three cases, if no value is found which satisfies the criteria, the result is
an error #N/A!. In case of match-type equal ±1 lookup-value is larger (smaller,
resp.) than all values in the sorted lookup-range, the result is the number of
the last non-empty cell in lookup-range.

In INDEX(array,num), array is a range of cells, num can be a number, a for-
mula yielding number or a cell reference to a number. The result of the function
is a value whose relative position in array is given by num.

The last function is SUMIF(criteria-range,criteria,sum-range), which
computes the sum of all values present in sum-range, in the rows/columns,
in which criteria-range contains a value satisfying criteria. The latter
argument has the form relvalue, where rel is any of =, <, >, <=, >=, <> and
value is a number, formula yielding a number or reference to a single cell.
sum-range and criteria-range must be both horizontal or bot vertical. E.g.,
SUMIF(A1:A5,<>B1,C1:C5) sums those values from range A1:A5 for which the
corresponding element in C1:C5) is not equal to the value in B1. This function is
treated as a representative of a broad class of spreadsheet functions, which can
be treated by methods similar to what we employ below.

2.2 Locality

Assume that a small initial spreadsheet S has been filled (perhaps in several
steps) to create a large spreadsheet T .

If k is the height (width, resp.) of S, and a formula in cell c of T references a
range R, then each corner of R is vertically (horizontally, resp.) at most k rows
(columns, resp.) away from either the top row (leftmost column, resp.) due to
an absolute reference, or from c (due to a relative reference).

In particular, in row-organized spreadsheets this very much restricts which
rows can be indeed referenced: only those close to the origin and those close to the
referencing cell. An analogous property holds for column-organized spreadsheets.
We use these locality properties several times below.

3 PRAM Model

A PRAM machine A consists of the following components:

– Unbounded number of cells of global read-and-write shared memory, num-
bered from 1 on, capable of storing one integer.
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– Unbounded number of cells of global read-only input memory, analogous to
shared memory.

– Unbounded number of processors, numbered from 1 on. Each of them has
three private read and write registers i, j, k for storing integers. Each of them
can access the following read-only registers: s with its own serial number, N
equal to the total number of active processors and M equal to the number of
active cells of shared memory.
The number of private registers can be chosen arbitrarily. We needed some
fixed limit, so we have decided to use 3 of them.

– Program π, which is a list of consecutively numbered instructions of the
following forms, and where x is ranging over i, j, k and u, v over i, j, k, s,N,M ,
M [i],M [j],M [k],M [s], I[i], I[j], I[k], I[s] and integer constants, � ranges over
integer constants:
1. x := u
2. x := u ◦ v, where ◦ is among {+,−, ∗, /}
3. M [x] := u
4. M [x] := u ◦ v, where ◦ is among {+,−, ∗, /}
5. if u < v then goto �

M [x] stands for the shared memory cell whose address is x, and I[x] stands
for the input memory cell whose address is x.

The input sequence v of integers is located in the input memory cells, and
I[1] contains the length of the input sequence, including itself (so that the empty
input sequence is passed to the machine as 1 in I[1]).

Then a fixed number of its processors (say p) is initialized, and a fixed number
of shared memory cells (say m) is initialized.

During the computation each of the processors follows π, updating its private
instruction counter. The state of A at each time t of its computation on input v is
defined to be the sequence of p 4-tuples of integers and a sequence of m integers:
the n-th tuple is the state of the n-th processor, consisting of: the values of its
local variables i, j and k, the value of its instruction counter, while the sequence
of integers represents the content of the shared memory.

Initially (i.e., at time t = 0) the values of local registers are 0, the instruction
counter is 1, and the shared memory values are 0.

A single step of computation of A corresponds to a parallel, simultaneous
change of all p 4-tuples and m integers describing the processors and shared
memory of A.

An attempt to read from a nonexistent input or shared memory cell (i.e.,
of address higher than I[1] or than p, resp.) or to read from cells of numbers
smaller than 1 is an error and the result of this operation is unpredictable: it
may cause the machine to break and stop operating, or to retrieve some value
and continue computation.

An attempt to write to a shared memory cell of zero or negative number is
permitted, but has no effect, and similarly if that number is higher than p. If more
than one processor attempts to read from the same shared or input memory cell,
all of them succeed and get the same value. If more than one processor attempts
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to write to the same shared memory cell, all the requests are executed, and the
new value of that memory cell is the one written by the processor with the lowest
serial number; the values written by the remaining processors get lost. Reading
is performed before writing, so the processors which read from a shared memory
cell to which other processors wish to write, get the “old” value.

The way of executing its program by A is obvious, with the provision that
if the value of the instruction counter becomes higher than the number of lines
in the program, the processor halts. Thus, given a PRAM A as above and its
input vector v, the computation of M on v is represented by a finite or infinite
sequence of states of A, which may but need not be constant from some moment
on. The result of computation of A after n steps is the content of the shared
memory after completing that step.

Another, substantially weaker model of PRAM is CREW, which results from
CRCW by forbidding concurrent writes altogether.

The programming language of our PRAM machines is extremely simple, but,
as it is well-known, equivalent in computing power to even very rich ones, so
indeed each processor separately has a universal computing power, equivalent
to that of a Turing machine. PRAM is a machine which can easily implement
referential data structures, such as lists, trees, etc., as well as arrays. Therefore
we use them without any further explanation.

4 Complexity Theory

In this paper we use the P -complete problem Circuit Value Problem (abbreviated
CVP). An instance of CVP is a sequence of n Boolean substitutions (the reason
for starting numbering from 2 is purely technical and explained below):

p2 := conn2(inputs2); p3 := conn3(inputs3); . . . pn := connn(inputsn).

The connectives conni can be binary and and or and unary not. Each of
the inputs in inputsk can be either true, or false, or a variable pi with i < k,
indicating that the value of that variable should be used.

The CVP problem is that, given an instance of CVP, to decide if the last
variable is true. This problem is known to be P -complete. We encode CVP in
various spreadsheets in order to demonstrate that they are unlikely to be effi-
ciently parallelizable. For convenience, when we do so we use 0 in place of false,
1 in place of true, for variables we use their numbers as names (we have started
numbering from 2, so this does not lead to confusing truth values with variables),
and we drop all conventional symbols like :=, parentheses and commas, so that
an example instance of CVP

p2 := and(true, false); p3 := or(p2, false); p4 := not(p3); p5 := or(p4, p3)

is encoded by
and 1 0; or 2 0; not 3; or 4, 3

In this paper we estimate the size of CVP instances, which are computable
in the spreadsheets in question. Each time it is easy to translate the size of CVP
instances we produce into the potential lower bounds.
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5 Un-directed Spreadsheets I: Complexity

It is obvious, that if the cells of a small initial spreadsheet S are filled to cre-
ate c columns and r rows of formulas, then the resulting spreadsheet can be
computed in time polynomial in cr, given the initial S, the dimensions c, r and
the input data of S. The following theorem is neither surprising nor difficult to
demonstrate. It implies that evaluating spreadsheets is P -complete.

Theorem 1. There exists an un-directed, un-organized spreadsheet S4, such that
when it is extended to dimensions of either n rows and 6 columns or 6 rows and
n columns, it computes the solution to the CVP problem of size n, given its
description as input.

Proof. A fully commented spreadsheet S4 is provided in ESM. It consists of
two functionally separate fragments, which can be independently converted into
row-oriented and column-oriented structure. ��

6 Directed Spreadsheets I: Simulating Spreadsheet by
PRAM

In this section, we are going to formulate and prove a theorem about evalu-
ating spreadsheets by PRAM machines. In our model spreadsheets can be of
unbounded size, so we can use asymptotic notation to describe the resources
needed by a PRAM to execute a spreadsheet of a given size. The theorem
below is formulated for row-organized row-directed spreadsheets. Its dual form
for column-organized column-directed spreadsheets holds, too.

Theorem 2. For any row-directed spreadsheet S with input data, there exists
a program π for CREW PRAM, such that if that spreadsheet is filled to make
c columns and r rows, the values of all its cells can be computed by π run for
O(r log cr) time on c processors and cr cells of memory, given the initial S, c, r
and the input data of S.

If S is additionally row-organized, then the values of the cells in the last row
can be computed by π run for O(r log c) steps on a PRAM with c processors and
c cells of memory.

Proof. For each column of the spreadsheet we designate one processor, which
will be responsible for it. Let the serial number of that processor be equal to
the number of the column. The computation of PRAM will be organized into
in rounds, where each round corresponds to computing the next row. The codes
for evaluating particular formulas are hard-coded into the program π.

For each round we assume that certain auxiliary data structures are available,
which enable evaluating aggregating functions efficiently. During each round,
first the new values are computed, and then these structures are updated, so
that they include the cells in the newly created row, as well. Separately, we must
explain how the auxiliary data structures are initialized before the first round.
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Auxiliary Data Structures. We assume that during each round all the previously
created columns and rows are stored in two copies. Each row is stored in several
copies:

1. for INDEX: in the original form,
2. for MATCH: as a sorted array, where we sort and store two-element records

consisting of the value from the original row and its original address,
3. for SUMIF: for every subset of already existing rows, which potentially may

play hold sum-range and criteria-range in each call of SUMIF, the records
formed from the corresponding elements in these two ranges are sorted accord-
ing to the keys in the criteria-range, and then prefix sums are computed
from the sum-range values.

Each column is stored in similar copies:

1. for INDEX: in the original form,
2. for MATCH: as a balanced binary search tree, in which we store two-element

records consisting of the value from the original row (which is the key) and
its original address.

3. for SUMIF: for every subset of already existing columns, which potentially
may hold sum-range and criteria-range in a call of SUMIF, the records
formed from the corresponding elements in these two ranges are formed.
They are stored in a balanced binary search tree, with keys taken from the
criteria-range, and each node additionally stores the sum of the values
from sum-range in the subtree rooted at this node.

The key observation is that by locality properties described in Sect. 2.2, there
is a bounded number of possible pairs of columns (rows, resp.) that must be
indexed using prefix sums and binary search trees.

Initialization of Auxiliary Data Structures. The size of the initial spreadsheet
with input data is fixed, so this initialization takes constant time and requires
constant amount of memory.

Execution of a Round. Computing Formulas. Henceforth, PRAM must first eval-
uate formulas. Due to the row-oriented structure of the spreadsheet, the formulas
to be computed refer only to data above themselves, so all of them can be eval-
uated independently in parallel. For each of the cells, it is done by a single
processor, responsible for the column of that cell. The values of all functions
except MATCH, INDEX and SUM can be obviously evaluated in constant number
of steps. Note that COLUMN function can be evaluated, because each processor
knows its serial number, equal to the column number. ROW on the other hand is
evaluated by clocking the advancing computation time.

If MATCH looks up a row, a sorted version of that row is in the auxiliary data
structures. The processor can find there the suitable value (and its accompanying
address to be returned) using binary search in time O(log c).
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If MATCH looks up a column, a binary search tree version of that column is in
the auxiliary data structures, in which the processor can find the suitable value
(and its accompanying address, which should be returned) in time O(log r).

INDEX calls require retrieving a value of a known location from a horizontal
or vertical range, so after recomputing the address to be relative to the complete
row (column, resp.), the values are retrieved from the auxiliary data structures.

Each SUMIF call requires summing values from a horizontal or vertical range
in the auxiliary data structure, as specified by a constraint regarding the values
in criteria-range. Identifying its boundaries is done by binary search using
the key fields, and then the sum can be found using two accesses to the fields
with prefix sums.

In total, computing the new values takes O(log c + log r) = O(log cr) time.

Execution of a Round. Updating Auxiliary Data Structures. Updating auxiliary
data structures requires sorting several rows of values (including the newly cre-
ated row) combined with creating their accompanying prefix sums, and inserting
new records into the binary search trees holding data about columns. The former
can be performed in O(log c) time using logarithmic time linear memory sorting
employing all c processors, like the one described in [9, Section 5.2], and the prefix
sums can be then computed by the algorithm described in [8, Section 30.1.2].

Then all processors in parallel insert the new values from their columns into
the corresponding trees and update sums, in time O(log r).

In total, updating the necessary data structures takes O(log c + log r) =
O(log cr) time.

Cost of the Algorithm. First, initialization of auxiliary data structures takes
constant time. Then the PRAM computation performs r rounds, each of them
takes O(log cr) time, so the total time is O(r log cr). The memory used is constant
times cr.

For the second claim, in a row-organized spreadsheet there is no need to
access columns, so we do not need to maintain their auxiliary data structures.
Thus in this modified version each round can be completed in O(log c) time and
the total running time is O(r log c). By locality properties described in Sect. 2.2,
we need to store constantly many rows simultaneously, and therefore the total
amount of necessary memory is O(c). ��

7 Directed Spreadsheets II: Simulating PRAM by
Spreadsheet

At this point, we have demonstrated that directed spreadsheets can be evaluated
by quite efficient parallel algorithms, establishing thereby an upper bound on
their expressive power. The question of lower bounds arises naturally.

In order to provide an answer, we are going to demonstrate now that there
exists a spreadsheet program, with the following property: any given CRCW
PRAM A can be simulated by a row-organized row-oriented spreadsheet, if suit-
ably encoded in the form of spreadsheet data.
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Theorem 3. There exists a row-organized row-directed spreadsheet, which is
able to simulate any PRAM A for which p = m, so that columns correspond to
processors of A and rows correspond to computation time.

Precisely speaking, there exists a single spreadsheet S1 consisting of 19 cells
(A2 to A20) with formulas, one row for input and a separate input area for
representation of a program, such that for every CRCW PRAM A with program
π, p processors and p cells of shared memory, and for every input vector v for
A, if one

1. pastes the encoding of π into the program area of S1
2. marks and fills the initial range A2:A20 to the right creating p columns (cor-

responding to the processors and shared memory cells of A)
3. selects the rows from 11 to 20 of these p columns and fills downward so that

the bottom row of the new range is 10t + 10,
4. pastes into S1 the input vector v of A in the first row,

then the cells of the bottom 10 rows compute the state of A after t steps of
computation on v.

This means, that the spreadsheet created from S1 in steps 1, 2 and 3 performs
the first t steps of the computation of A on every input, i.e., it simulates A.

Proof. ESM spreadsheet S1 is the implementation of PRAM in a spreadsheet
with explanation of the formulas used for that purpose, and is depicted in Fig. 1.
Below we highlight the main elements of the construction of S1.

Conceptually, the idea is to make a spreadsheet which computes the sequence
of configurations of the run of A on its input. Time is advancing downward and
configurations are horizontal blocks of 10 rows each. Each column corresponds
to one processor and one cell of shared memory, and formulas located there
take care of advancing the computation and handling read and write operations.
We may conveniently assume that the processor has been made responsible for
operating its associated shared memory cell.

PRAM is a machine with random access. To the contrary, in a spreadsheet
cells (which can be thought of as simple processors) can do random read, but
are allowed to write only to the memory cell they are associated with. Therefore
we have to simulate random writes by other means.

The idea is that any processor willing to write its contents to some shared
memory cell, has to announce this in a globally visible location, indicating the
address to which it attempts to write and the value to be written. Then all
processors use function MATCH to search among the announcements for writes
to their shared memory cells, and if there is one, fetch the value to be written
from the leftmost one using INDEX. This conforms to the priority write CRCW
conflict resolution policy. ��

Apart from ESM spreadsheet S1, we also provide its minor variant S5, per-
mitting structural programming with while-endwhile and if -endif rather than
goto jump instructions.

The construction in S1 provides answer for our questions:
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1. There is not much room for improvement over Theorem2. Indeed, it offers
O(r log cr) and O(r log c) algorithm for PRAM with c processors and O(c)
cells of memory, when the spreadsheet is row-directed and row-organized. On
the other hand, every PRAM computation taking time t, using c processors
and c cells of memory can be simulated in a row-directed and row-organized
spreadsheet with c columns and about 10t rows.

2. The class of computations expressible in row-directed and row-organized
spreadsheets is indeed very rich, and it includes a natural parallel complexity
class.

It is worth noting, that according to the results already proven, we have the
following.

Corollary 1. S1 is a universal row-oriented row-organized spreadsheet.

Proof. Given a row-oriented row-organized spreadsheet S, one can derive an
CREW PRAM program π, computing the same function as S. This π can be
encoded and provided as (a part of) input to S1, which can execute it.

If the initial S has c columns and r rows, then π should be run on a PRAM
with O(c) processors and memory cells and O(r log c) time. Then, in order to
simulate it, S1 needs O(c) columns and O(r log c) rows.

Thus the overhead of simulating a spreadsheet by the universal one is loga-
rithmic, typical for other universal devices. ��

The interest in the corollary is that S1 uses very few functions, in partic-
ular does not use SUMIF. Therefore this result indicates that the function set
with MATCH and INDEX as the only aggregating functions might form a kind of
core of the spreadsheet language of formulas, at least for the row-oriented row-
organized ones. Thus, in an attempt to create a theoretical model of spreadsheets,
this restricted function set appears as a candidate to be the set of basic opera-
tions, from which the remaining ones can be defined. It would be very much like
the relational algebra and its role in the theoretical formalization of relational
databases. Of course, it concerns only row-oriented row-organized spreadsheets
created by filling.

8 Bi-directed Spreadsheets: Complexity

A bi-directed, column organized spreadsheet extended to dimensions r and c can
be, according to Theorem2, evaluated on a PRAM using O(cr) cells of memory
and

1. O(r) processors in time O(c log r), if treated as column-organized column-
directed.

2. O(c) processors and in time O(r log cr), if treated as row-directed.

One might be tempted to believe that it is possible to combine somehow those
two methods together to yield a parallel evaluation algorithm of even better time
complexity. However, we prove below that there is no evaluation algorithm of
O(logO(1) cr) time complexity unless P = NC.
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Theorem 4. There exists a bi-directed, column-organized spreadsheet S3, such
that when it is extended to dimensions of 3n rows and 8n columns, it computes
the solution to any CVP instance of size n, given its description as input.

Proof. The main idea is to implement CVP “diagonally”, and a fully commented
implementation is provided as ESM spreadsheet S3. ��

Bi-directed spreadsheets are clearly more restrictive than those which are
directed in one dimension only. Author’s personal experience from the develop-
ment of S3 is that the bi-directed structure is quite unnatural, especially in the
column-organized version. Otherwise very simple computation of CVP required
a significant effort to be programmed. At the same time this structure does not
seem to offer any noticeable advantage in terms of complexity of evaluation.

9 Un-directed Spreadsheets II: What Can They
Compute?

After a successful implementation of a PRAM in a row-directed spreadsheet and
demonstrating that a large class of PRAM computations can be expressed in
spreadsheets, it seems natural to attempt a similar goal for un-directed ones,
too.

We demonstrate below, that one can create an un-directed row-organized
spreadsheet which implements PRAM in a much more flexible way than the
row-directed row-organized one.

Theorem 5. There exists a row-organized (but not row-directed) spreadsheet S2
consisting of 21 cells (A2 to A22) with formulas, one row for input and a separate
input area for representation of a program (including a value of p), such that for
every CRCW PRAM A with program π for every input vector v, if one

1. pastes the encoding of π into the program area of S2
2. marks and fills the initial range A2:A22 to the right for q columns,
3. selects rows from 13 to 22 of these q columns and fills downward so that the

bottom row of the new range is 10t + 12,
4. pastes into S2 the input vector v of A in the first row;
5. inserts a number into the input cell p

then the cells at the intersection of the bottom 10 rows with p columns of numbers
from q−p−q (mod p) to q−q (mod p) compute the state of A after t∗(q/p−1)
steps of computation on v.

Informally, the spreadsheet S2 above is able to simulate any PRAM A, for
which p = m in such a way, that filled to 10t rows and q ≥ p columns, it can
utilize this computation area to encode a PRAM with p processors and p cells
of shared memory, running for tq/p time. Moreover, the parameter p is a part of
the input, so only the whole input specifies, how many processors will be used
in the computation. In particular, for p = 1, this results in a fully sequential
computation of length tq.
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Proof. The commented spreadsheet is provided as ESM spreadsheet S2. It is
recommended that the reader first analyzes S1, on which S2 is based. ��

It is instructive to compare spreadsheet S4 mentioned in Sect. 5 with the
present S2. It seems at the first glance that the former is a special case of the
latter. However, it is not the case. During the whole computation expressed in
S4 it is always possible to refer to the values computed in the past, no matter
how distant. In S2 the simulated PRAM can only refer to the values computed
in the previous step of simulation. This indicates the difficulty of describing the
computations of a spreadsheet by a machine model. In a spreadsheet, every cell
is immutable, but its value remains accessible forever. In typical machine models
of computation, memory locations are mutable and write operations delete their
previous contents.

10 Summary and Related Research

We have investigated spreadsheets as a class of algorithms, by assuming that
they are small templates, which are filled to a larger area of the grid to process
data of variable size.

Under this scenario we have identified simple structural properties of spread-
sheets, defined in the terms of the pattern of references between cells, which
determine the complexity of the expressible computations.

In this paper, we analyze the computations expressible in spreadsheets and
their relation to parallel complexity classes. Our findings shed light both on
parallelization potential of certain structures in spreadsheets, and on the fun-
damental limitations of this approach. We have already mentioned research on
parallelizing spreadsheet computations [2–4,12,14,19]. There was very little pre-
vious research on lower bounds of the computational power of spreadsheets,
although already [5] observed that they have universal computing power. The
papers [1], [15] and [16] demonstrate simulations of various algorithms and mod-
els o computation using spreadsheets, but without any intent to estimate the full
power of this computation paradigm. Paper [20] demonstrates how to implement
relational algebra queries and several other general algorithms in spreadsheets
(which turn out to be column-organized, but not necessarily column-oriented).
[18] presents an implementation of a subset of Java in a spreadsheet, but without
considering parallelism, which is the core topic of the present paper.
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Abstract. This paper proposes an alternative language for expressing
results of the algorithmic theory of randomness. The language is more
precise in that it does not involve unspecified additive or multiplicative
constants, making mathematical results, in principle, applicable in prac-
tice. Our main testing ground for the proposed language is the problem
of defining Bernoulli sequences, which was of great interest to Andrei
Kolmogorov and his students.
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1 Introduction

Yuri’s research interests are extremely diverse, and one of them is the math-
ematical foundations of statistics (a subject that the vast majority of profes-
sional statisticians tend to ignore). The standard approach to testing statistical
hypotheses is based on the notion of p-values. Yuri was the driving force behind
the paper [6], which pointed out difficulties, and suggested ways of overcoming
them, in the standard concept of p-values.

There has been a great deal of criticism of the notion of p-value lately, and
in particular, Glenn Shafer [20] defended the use of betting scores instead. This
paper refers to betting scores as e-values and demonstrates their advantages
by establishing results that become much more precise when they are stated in
terms of e-values instead of p-values.

Both p-values and e-values have been used, albeit somewhat implicitly, in the
algorithmic theory of randomness: Martin-Löf’s tests of algorithmic randomness
[16] are an algorithmic version of p-functions (this is Yuri’s and my [6] term
for functions producing p-values) while Levin’s tests of algorithmic randomness
[2,13] are an algorithmic version of e-functions (this is the term we will use in this
paper for functions producing e-values). Levin’s tests are a natural modification
of Martin-Löf’s tests leading to simpler mathematical results; similarly, many
mathematical results stated in terms of p-values become simpler when stated in
terms of e-values.
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The algorithmic theory of randomness is a powerful source of intuition, but
strictly speaking, its results are not applicable in practice since they always
involve unspecified additive or multiplicative constants. The goal of this paper is
to explore ways of obtaining results that are more precise; in particular, results
that may be applicable in practice. The price to pay is that our results may
involve more quantifiers (usually hidden in our notation) and, therefore, their
statements may at first appear less intuitive.

In Sect. 2 we define p-functions and e-functions in the context of testing
simple statistical hypotheses, explore relations between them, and explain the
intuition behind them. In Sect. 3 we generalize these definitions, results, and
explanations to testing composite statistical hypotheses.

Section 4 is devoted to testing in Bayesian statistics and gives non-algorithmic
results that are particularly clean and intuitive. They will be used as technical
tools later in the paper. In Sect. 5 these results are slightly extended and then
applied to clarifying the difference between statistical randomness and exchange-
ability. (In this paper we use “statistical randomness” to refer to being produced
by an IID probability measure; there will always be either “algorithmic” or “sta-
tistical” standing next to “randomness” in order to distinguish between the two
meanings).

Section 7 explores the question of defining Bernoulli sequences, which was
of great interest to Kolmogorov [8], Martin-Löf [16], and Kolmogorov’s other
students. Kolmogorov defined Bernoulli sequences as exchangeable sequences,
but we will see that another natural definition is narrower than exchangeability.
A precise relation between the two definitions is deduced from a general result
in Sect. 6, which can be regarded as another finitary analogue of de Finetti’s
theorem.

Kolmogorov paid particular attention to algorithmic randomness with respect
to uniform probability measures on finite sets. On one hand, he believed that his
notion of algorithmic randomness in this context “can be regarded as definitive”
[10], and on the other hand, he never seriously suggested any generalizations of
this notion (and never endorsed generalizations proposed by his students). In
Sect. 7 we state a simple result in this direction that characterizes the difference
between Bernoulliness and exchangeability.

In Sects. 4 and 7 we state our results first in terms of e-functions and then
p-functions. Results in terms of e-functions are always simpler and cleaner, sup-
porting Glenn Shafer’s recommendation in [20] to use betting scores more widely.

Remark 1. There is no standard terminology for what we call e-values and e-
functions. In addition to Shafer’s use of “betting scores” for our e-values,

– Grünwald et al. [5] refer to e-values as “s-values” (“s” for “safe”; the expres-
sion “s-values” has been used [4] in a completely different sense, as the minus
binary log of p-values),

– and Gammerman and Vovk [3] refer to the reciprocals of e-values as “i-values”
(“i” for “integral”; this term and its variations were used widely in discussions
in the Department of Computer Science at Royal Holloway, University of
London, around 2000: cf., e.g., “i-test” [18] and “i-randomness” [28]).
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Our “e-value” is motivated by expectation playing a role similar to that of prob-
ability in “p-value” [21, Section 3.8].

No formal knowledge of the algorithmic theory of randomness will be assumed
in this paper; the reader can safely ignore all comparisons between our results
and results of the algorithmic theory of randomness.

Notation
Our notation will be mostly standard or defined at the point where it is first used.
If F is a class of [0,∞]-valued functions on some set Ω and g : [0,∞] → [0,∞] is a
function, we let g(F) stand for the set of all compositions g(f) = g◦f , f ∈ F (i.e,
g is applied to F element-wise). We will also use obvious modifications of this
definition: e.g., 0.5F−0.5 would be interpreted as g(F), where g(u) := 0.5u−0.5

for u ∈ [0,∞].

2 Testing Simple Statistical Hypotheses

Let P be a probability measure on a measurable space Ω. A p-function [6] is a
measurable function f : Ω → [0,∞] such that, for any ε > 0, P{f ≤ ε} ≤ ε.
(Since P is a probability measure, we can assume, without loss of generality, that
f takes values in [0, 1].) An e-function is a measurable function f : Ω → [0,∞]
such that

∫
f dP ≤ 1. (As already mentioned, e-functions have been promoted

in [20] and [5], and also in [22, Section 11.5], using different terminology.)
Let PP be the class of all p-functions and EP be the class of all e-functions,

where the underlying measure P is shown as subscript. We can define p-values
and e-values as values taken by p-functions and e-functions, respectively. The
intuition behind p-values and e-values will be discussed later in this section.

The following is an algorithm-free version of the standard relation (see, e.g.,
[15, Lemma 4.3.5] or [23, Theorem 43]) between Martin-Löf’s and Levin’s algo-
rithmic notions of randomness deficiency.

Proposition 1. For any probability measure P and κ ∈ (0, 1),

κPκ−1
P ⊆ EP ⊆ P−1

P . (1)

Proof. The right inclusion in (1) follows from the Markov inequality: if f is an
e-function,

P{f−1 ≤ ε} = P{f ≥ 1/ε} ≤ ε. (2)

The left inclusion in (1) follows from [22, Section 11.5]. The value of the con-
stant in front of the Pκ−1

P on the left-hand side of (1) follows from
∫ 1

0
pκ−1 dp =

1/κ. 	

Both p-functions and e-functions can be used for testing statistical hypothe-

ses. In this section we only discuss simple statistical hypotheses, i.e., probability
measures. Observing a large e-value or a small p-value with respect to a simple
statistical hypothesis P entitles us to rejecting P as the source of the observed
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data, provided the e-function or p-function were chosen in advance. The e-value
can be interpreted as the amount of evidence against P found by our chosen
e-function. Similarly, the p-value reflects the amount of evidence against P on a
different scale; small p-values reflect a large amount of evidence against P .

Remark 2. Proposition 1 tells us that using p-values and using e-values are
equivalent, on a rather crude scale. Roughly, a p-value of p corresponds to an
e-value of 1/p. The right inclusion in (1) says that any way of producing e-values
e can be translated into a way of producing p-values 1/e. On the other hand, the
left inclusion in (1) says that any way of producing p-values p can be translated
into a way of producing e-values κpκ−1 ≈ 1/p, where the “≈” assumes that we
are interested in the asymptotics as p → 0, κ > 0 is small, and we ignore positive
constant factors (as customary in the algorithmic theory of randomness).

Remark 3. Proposition 1 can be greatly strengthened, under the assumptions of
Remark 2. For example, we can replace (1) by

Hκ(PP ) ⊆ EP ⊆ P−1
P ,

where

Hκ(v) :=

⎧
⎪⎨

⎪⎩

∞ if v = 0
κ(1 + κ)κv−1(− ln v)−1−κ if v ∈ (0, e−1−κ]
0 if v ∈ (e−1−κ, 1]

(3)

and κ ∈ (0,∞) (see [22, Section 11.1]). The value of the coefficient κ(1 + κ)κ in
(3) follows from

∫ e−1−κ

0

v−1(− ln v)−1−κ dv =
1

κ(1 + κ)κ
.

We can rewrite (1) in Proposition 1 as

κ−1P1−κ
P ⊆ E−1

P ⊆ PP , (4)

as
E−1

P ⊆ PP ⊆ κ
1

1−κ E
1

κ−1
P , (5)

and as
EP ⊆ P−1

P ⊆ κ
1

κ−1 E
1

1−κ

P . (6)

3 Testing Composite Statistical Hypotheses

Let Ω be a measurable space, which we will refer to as our sample space, and Θ be
another measurable space (our parameter space). We say that P = (Pθ | θ ∈ Θ)
is a statistical model on Ω if P is a Markov kernel with source Θ and target
Ω: each Pθ is a probability measure on Ω, and for each measurable A ⊆ Ω, the
function Pθ(A) of θ ∈ Θ is measurable.
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The notions of an e-function and a p-function each split in two. We are
usually really interested only in the outcome ω, while the parameter θ is an
auxiliary modelling tool. This motivates the following pair of simpler definitions.
A measurable function f : Ω → [0,∞] is an e-function with respect to the
statistical model P (which is our composite statistical hypothesis in this context)
if

∀θ ∈ Θ :
∫

Ω

f(ω)Pθ(dω) ≤ 1.

In other words, if P ∗(f) ≤ 1, where P ∗ is the upper envelope

P ∗(f) := sup
θ∈Θ

∫
f(ω)Pθ(dω) (7)

(in Bourbaki’s [1, IX.1.1] terminology, P ∗ is an encumbrance provided the inte-
gral in (7) is understood as the upper integral). Similarly, a measurable function
f : Ω → [0, 1] is a p-function with respect to the statistical model P if, for any
ε > 0,

∀θ ∈ Θ : Pθ{ω ∈ Ω | f(ω) ≤ ε} ≤ ε.

In other words, if, for any ε > 0, P ∗(1{f≤ε}) ≤ ε.
Let EP be the class of all e-functions with respect to the statistical model P ,

and PP be the class of all p-functions with respect to P . We can easily generalize
Proposition 1 (the proof stays the same).

Proposition 2. For any statistical model P and κ ∈ (0, 1),

κPκ−1
P ⊆ EP ⊆ P−1

P .

For f ∈ EP , we regard the e-value f(ω) as the amount of evidence against
the statistical model P found by f (which must be chosen in advance) when the
outcome is ω. The interpretation of p-values is similar.

In some case we would like to take the parameter θ into account more seri-
ously. A measurable function f : Ω ×Θ → [0,∞] is a conditional e-function with
respect to the statistical model P if

∀θ ∈ Θ :
∫

Ω

f(ω; θ)Pθ(dω) ≤ 1.

Let ĒP be the class of all such functions. And a measurable function f : Ω×Θ →
[0, 1] is a conditional p-function with respect to P if

∀ε > 0 ∀θ ∈ Θ : Pθ {ω ∈ Ω | f(ω; θ) ≤ ε} ≤ ε.

Let P̄P be the class of all such functions.
We can embed EP (resp. PP ) into ĒP (resp. P̄P ) by identifying a function f

on domain Ω with the function f ′ on domain Ω × Θ that does not depend on
θ ∈ Θ, f ′(ω; θ) := f(ω).

For f ∈ ĒP , we can regard f(ω; θ) as the amount of evidence against the
specific probability measure Pθ in the statistical model P found by f when the
outcome is ω.

We can generalize Proposition 2 further as follows.
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Proposition 3. For any statistical model P and κ ∈ (0, 1),

κP̄κ−1
P ⊆ ĒP ⊆ P̄−1

P . (8)

Remarks 2 and 3 are also applicable in the context of Propositions 2 and 3.

4 The Validity of Bayesian Statistics

In this section we establish the validity of Bayesian statistics in our framework,
mainly as a sanity check. We will translate the results in [31], which are stated
in terms of the algorithmic theory of randomness, to our algorithm-free setting.
It is interesting that the proofs simplify radically, and become almost obvious.
(And remarkably, one statement also simplifies).

Let P = (Pθ | θ ∈ Θ) be a statistical model, as in the previous section, and
Q be a probability measure on the parameter space Θ. Together, P and Q form
a Bayesian model, and Q is known as the prior measure in this context.

The joint probability measure T on the measurable space Ω × Θ is defined
by

T (A × B) :=
∫

B

Pθ(A)Q(dθ),

for all measurable A ⊆ Ω and B ⊆ Θ. Let Y be the marginal distribution of T
on Ω: for any measurable A ⊆ Ω, Y (A) := T (A × Θ).

The product ĒP EQ of ĒP and EQ is defined as the class of all measurable
functions f : Ω × Θ → [0,∞] such that, for some g ∈ ĒP and h ∈ EQ,

f(ω, θ) = g(ω; θ)h(θ) T -a.s. (9)

Such f can be regarded as ways of finding evidence against (ω, θ) being produced
by the Bayesian model (P,Q): to have evidence against (ω, θ) being produced by
(P,Q) we need to have evidence against θ being produced by the prior measure Q
or evidence against ω being produced by Pθ; we combine the last two amounts
of evidence by multiplying them. The following proposition tells us that this
product is precisely the amount of evidence against T found by a suitable e-
function.

Proposition 4. If (Pθ | θ ∈ Θ) is a statistical model with a prior probability
measure Q on Θ, and T is the joint probability measure on Ω × Θ, then

ET = ĒP EQ. (10)

Proposition 4 will be deduced from Theorem 1 in Sect. 5. It is the analogue
of Theorem 1 in [31], which says, in the terminology of that paper, that the level
of impossibility of a pair (θ, ω) with respect to the joint probability measure T
is the product of the level of impossibility of θ with respect to the prior measure
Q and the level of impossibility of ω with respect to the probability measure Pθ.
In an important respect, however, Proposition 4 is simpler than Theorem 1 in
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[31]: in the latter, the level of impossibility of ω with respect to Pθ has to be
conditional on the level of impossibility of θ with respect to Q, whereas in the
former there is no such conditioning. Besides, Proposition 4 is more precise: it
does not involve any constant factors (specified or otherwise).

Remark 4. The non-algorithmic formula (10) being simpler than its counterpart
in the algorithmic theory of randomness is analogous to the non-algorithmic
formula H(x, y) = H(x)+H(y | x) being simpler than its counterpart K(x, y) =
K(x)+K(y | x,K(x)) in the algorithmic theory of complexity, H being entropy
and K being prefix complexity. The fact that K(x, y) does not coincide with
K(x)+K(y | x) to within an additive constant, K being Kolmogorov complexity,
was surprising to Kolmogorov and wasn’t noticed for several years [7,8].

The inf-projection onto Ω of an e-function f ∈ ET with respect to T is the
function (projinf

Ω f) : Ω → [0,∞] defined by
(
projinf

Ω f
)
(ω) := inf

θ∈Θ
f(ω, θ).

Intuitively, projinf
Ω f regards ω as typical under the model if it can be extended

to a typical (ω, θ) for at least one θ. Let projinf
Ω ET be the set of all such inf-

projections.
The results in the rest of this section become simpler if the definitions of

classes E and P are modified slightly: we drop the condition of measurability
on their elements and replace all integrals by upper integrals and all measures
by outer measures. We will use the modified definitions only in the rest of this
section (we could have used them in the whole of this paper, but they become
particularly useful here since projections of measurable functions do not have to
be measurable [24]).

Proposition 5. If T is a probability measure on Ω × Θ and Y is its marginal
distribution on Ω,

EY = projinf
Ω ET . (11)

Proof. To check the inclusion “⊆” in (11), let g ∈ EY , i.e.,
∫

g(ω)Y (dω) ≤ 1.
Setting f(ω, θ) := g(ω), we have

∫
f(ω, θ)T (dω,dθ) ≤ 1 (i.e., f ∈ ET ) and g is

the inf-projection of f onto Ω.
To check the inclusion “⊇” in (11), let f ∈ ET and g := projinf

Ω f . We then
have

∫
g(ω)Y (dω) =

∫
g(ω)T (dω,dθ) ≤

∫
f(ω, θ)T (dω,dθ) ≤ 1. 	


Proposition 5 says that we can acquire evidence against an outcome ω being
produced by the Bayesian model (P,Q) if and only if we can acquire evidence
against (ω, θ) being produced by the model for all θ ∈ Θ.

We can combine Propositions 4 and 5 obtaining

EY = projinf
Ω

(ĒP EQ

)
.
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The rough interpretation is that we can acquire evidence against ω being pro-
duced by Y if and only if we can, for each θ ∈ Θ, acquire evidence against θ
being produced by Q or acquire evidence against ω being produced by Pθ.

The following statements in terms of p-values are cruder, but their interpre-
tation is similar.

Corollary 1. If κ ∈ (0, 1) and (P,Q) is a Bayesian model,

κ−1P1−κ
T ⊆ P̄P PQ ⊆ κ

2
1−κ P

1
1−κ

T .

Proof. We will use the restatements (4) and (5) of Proposition 1 and similar
restatements of Propositions 3 and 2. Therefore, by (10) in Proposition 4,

κ−1P1−κ
T ⊆ E−1

T = (ĒP EQ)−1 = Ē−1
P E−1

Q ⊆ P̄P PQ

and
P̄P PQ ⊆ κ

2
1−κ

(ĒP EQ

) 1
κ−1 = κ

2
1−κ E

1
κ−1
T ⊆ κ

2
1−κ P

1
1−κ

T . 	

Corollary 2. If κ ∈ (0, 1), T is a probability measure on Ω × Θ, and Y is its
marginal distribution on Ω,

κ−1 projsup
Ω P1−κ

T ⊆ PY ⊆ κ
1

1−κ projsup
Ω P

1
1−κ

T ,

where projsup
Ω is defined similarly to projinf

Ω (with sup in place of inf).

Proof. As in the proof of Corollary 1, we have

κ−1 projsup
Ω P1−κ

T ⊆ projsup
Ω E−1

T = E−1
Y ⊆ PY

and
PY ⊆ κ

1
1−κ E

1
κ−1
Y = κ

1
1−κ projsup

Ω E
1

κ−1
T ⊆ κ

1
1−κ projsup

Ω P
1

1−κ

T . 	


5 Parametric Bayesian Models

Now we generalize the notion of a Bayesian model to that of a parametric
Bayesian (or para-Bayesian) model. This is a pair consisting of a statistical
model (Pθ | θ ∈ Θ) on a sample space Ω and a statistical model (Qπ | π ∈ Π) on
the sample space Θ (so that the sample space of the second statistical model is
the parameter space of the first statistical model). Intuitively, a para-Bayesian
model is the counterpart of a Bayesian model in the situation of uncertainty
about the prior: now the prior is a parametric family of probability measures
rather than one probability measure.
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The following definitions are straightforward generalizations of the definitions
for the Bayesian case. The joint statistical model T = (Tπ | π ∈ Π) on the
measurable space Ω × Θ is defined by

Tπ(A × B) :=
∫

B

Pθ(A)Qπ(dθ), (12)

for all measurable A ⊆ Ω and B ⊆ Θ. For each π ∈ Π, Yπ is the marginal
distribution of Tπ on Ω: for any measurable A ⊆ Ω, Yπ(A) := Tπ(A × Θ). The
product ĒP EQ of ĒP and EQ is still defined as the class of all measurable functions
f : Ω ×Θ → [0,∞] such that, for some g ∈ ĒP and h ∈ EQ, we have the equality
in (9) Tπ-a.s., for all π ∈ Π.

Remark 5. Another representation of para-Bayesian models is as a sufficient
statistic, as elaborated in [12]:

– For the para-Bayesian model (P,Q), the statistic (θ, ω) ∈ (Θ × Ω) �→ θ is a
sufficient statistic in the statistical model (Tπ) on the product space Θ × Ω.

– If θ is a sufficient statistic for a statistical model (Tπ) on a sample space Ω,
then (P,Q) is a para-Bayesian model, where Q is the distribution of θ, and
Pθ are (fixed versions of) the conditional distributions given θ.

Remark 6. Yet another way to represent a para-Bayesian model (P,Q) is a
Markov family with time horizon 3:

– the initial state space is Π, the middle one is Θ, and the final one is Ω;
– there is no initial probability measure on Π, the statistical model (Qπ) is

the first Markov kernel, and the statistical model (Pθ) is the second Markov
kernel.

Theorem 1. If (P,Q) is a para-Bayesian model with the joint statistical model
T (as defined by (12)), we have (10).

Proof. The inclusion “⊇” in (10) follows from the definition of T : if g ∈ ĒP and
h ∈ EQ, we have, for all π ∈ Π,

∫

Ω×Θ

g(ω; θ)h(θ)Tπ(dω,dθ) =
∫

Θ

∫

Ω

g(ω; θ)Pθ(dω)h(θ)Qπ(dθ)

≤
∫

Θ

h(θ)Qπ(dθ) ≤ 1.

To check the inclusion “⊆” in (10), let f ∈ ET . Define h : Θ → [0,∞] and
g : Ω × Θ → [0,∞] by

h(θ) :=
∫

f(ω, θ)Pθ(dω)

g(ω; θ) := f(ω, θ)/h(θ)
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(setting, e.g., 0/0 := 0 in the last fraction). Since by definition, f(ω, θ) =
g(ω; θ)h(θ) Tπ-a.s., it suffices to check that h ∈ EQ and g ∈ ĒP . The inclusion
h ∈ EQ follows from the fact that, for any π ∈ Π,
∫

Θ

h(θ)Qπ(dθ) =
∫

Θ

∫

Ω

f(ω, θ)Pθ(dω)Qπ(dθ) =
∫

Ω×Θ

f(ω, θ)Tπ(dω,dθ) ≤ 1.

And the inclusion g ∈ ĒP follows from the fact that, for any θ ∈ Θ,
∫

g(ω; θ)Pθ(dω) =
∫

f(ω, θ)
h(θ)

Pθ(dω) =
∫

f(ω, θ)Pθ(dω)
h(θ)

=
h(θ)
h(θ)

≤ 1

(we have ≤ 1 rather than = 1 because of the possibility h(θ) = 0). 	


6 IID vs Exchangeability: General Case

De Finetti’s theorem (see, e.g., [19, Theorem 1.49]) establishes a close connection
between IID and exchangeability for infinite sequences in Z∞, where Z is a Borel
measurable space: namely, the exchangeable probability measures are the convex
mixtures of the IID probability measures (in particular, their upper envelopes,
and therefore, e- and p-functions, coincide). This section discusses a somewhat
less close connection in the case of sequences of a fixed finite length.

Fix N ∈ {1, 2, . . . } (time horizon), and let Ω := ZN be the set of all sequences
of elements of Z (a measurable space, not necessarily Borel) of length N . An IID
probability measure on Ω is a measure of the type QN , where Q is a probability
measure on Z. The configuration conf(ω) of a sequence ω ∈ Ω is the multiset
of all elements of ω, and a configuration measure is the pushforward of an IID
probability measure on Ω under the mapping conf. Therefore, a configuration
measure is a measure on the set of all multisets in Z of size N (with the natural
quotient σ-algebra).

Let Eiid be the class of all e-functions with respect to the family of all IID
probability measures on Ω and Econf be the class of all e-functions with respect to
the family of all configuration probability measures. Let Eexch be the class of all
e-functions with respect to the family of all exchangeable probability measures
on Ω; remember that a probability measure P on Ω is exchangeable if, for any
permutation π : {1, . . . , N} → {1, . . . , N} and any measurable set E ⊆ ZN ,

P
{
(z1, . . . , zN ) | (zπ(1), . . . , zπ(N)) ∈ E

}
= P (E).

The product EexchEconf of Eexch and Econf is the set of all measurable functions
f : Ω → [0,∞] such that, for some g ∈ Eexch and h ∈ Econf ,

f(ω) = g(ω)h(conf(ω))

holds for almost all ω ∈ Ω (under any IID probability measure).

Corollary 3. It is true that

Eiid = EexchEconf . (13)
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Proof. It suffices to apply Theorem 1 in the situation where Θ is the set of
all configurations, Pθ is the probability measure on ZN concentrated on the
set of all sequences with the configuration θ and uniform on that set (we can
order θ arbitrarily, and then Pθ assigns weight 1/N ! to each permutation of that
ordering), Π is the set of all IID probability measures on Ω, and Qπ is the
pushforward of π ∈ Π with respect to the mapping conf. 	


Corollary 3 is the non-algorithmic analogue of Theorem 3 of [29], given with-
out a proof.

The next theorem gives the ranges of Eiid, Eexch, and Econf . For any set of
functions F we set

supF := sup
f∈F

sup f ;

i.e., supF is the supremum of the values attained by the functions in F . Remem-
ber that the length N of the sequences considered in this section is fixed.

Theorem 2. Suppose |Z| ≥ N . Then

sup Eiid = NN , (14)

sup Eexch = N ! ∼ (2πN)1/2(N/e)N , (15)

sup Econf = NN/N ! ∼ (2πN)−1/2eN , (16)

where the two “∼” refer to the asymptotics as N → ∞.

Theorem 2 shows that (13) remain true when we put sup in from of each of
the three function classes. The counterpart of (16) in the algorithmic theory of
randomness is Theorem 4 in [29].

A crude interpretation of Corollary 3 and Theorem 2 is that the condition
of being an IID sequence can be split into two components: exchangeability and
having an iid configuration; the first component is more important.

Proof (Proof of Theorem 2). For any ω ∈ Ω, supf∈Eiid
f(ω) is attained at f that

takes a non-zero value only at ω. Therefore,

sup Eiid = sup
ω∈Ω

1
supP P ({ω})

,

P ranging over the IID probability measures. The supremum will not change if
P ranges over the probability measures on Z concentrated on the elements of
the sequence ω, which we will assume. Consider an ω consisting of n distinct
elements of Z. Order these distinct elements, and let mi, i = 1, . . . , n, be the
number of times the ith of these elements occurs in ω. Using the maximum
likelihood estimate for the multinomial model, we can see that

1
supP P ({ω})

= (N/m1)m1 . . . (N/mn)mn =
NN

mm1
1 . . . mmn

n
.

The supremum of the last expression is attained when n = N and m1 = · · · =
mn = 1, and it is equal to NN . This completes the proof of (14).



334 V. Vovk

A similar argument also works for (16). We have

sup Econf = sup
m1,...,mn

(N/m1)m1 . . . (N/mn)mn

(
N

m1,...,mn

) =
NN/N !

(mm1
1 /m1!) . . . (mmn

n /mn!)
.

(17)
Since (mm)/m! ≥ 1 for all m ∈ {1, 2, . . . } and (mm)/m! > 1 for all m ∈
{2, 3, . . . }, the second supremum in (17) is also attained when n = N and m1 =
· · · = mn = 1, which completes the proof of (16).

As for (15), it suffices to notice that

sup
m1,...,mn

(
N

m1, . . . ,mn

)

= sup
m1,...,mn

N !
m1! . . . mn!

is attained at n = N and m1 = · · · = mn = 1.
The asymptotic equivalences in (15) and (16) follow from Stirling’s formula.

	

Since the suprema in Theorem 2 are attained at functions that zero every-

where except one point, we have the following corollary.

Corollary 4. If |Z| ≥ N ,

inf Piid = N−N ,

inf Pexch = 1/N ! ∼ (2πN)−1/2(e/N)N ,

inf Pconf = N !/NN ∼ (2πN)1/2e−N .

7 IID vs Exchangeability: Bernoulli Sequences

In this section we apply the definitions and results of the previous sections to the
problem of defining Bernoulli sequences. Kolmogorov’s main publications on this
topic are [8] and [9]. The results of this section will be algorithm-free versions of
the results in [25] (also described in V’yugin’s review [32], Sections 11–13).

The definitions of the previous section simplify as follows. Now Ω := {0, 1}N

is the set of all binary sequences of length N . Let EBern be the class of all e-
functions with respect to the family of all Bernoulli IID probability measures
on Ω (this is a special case of Eiid) and Ebin be the class of all e-functions with
respect to the family of all binomial probability measures on {0, . . . , N} (this is
a special case of Econf); remember that the Bernoulli measure Bp with parameter
p ∈ [0, 1] is defined by Bp({ω}) := pk(1 − p)N−k, where k := +ω is the number
of 1s in ω, and the binomial measure binp with parameter p ∈ [0, 1] is defined
by binp({k}) :=

(
N
k

)
pk(1 − p)N−k. (The notation +ω for the number k of 1s in

ω is motivated by k being the sum of the elements of ω.)
We continue to use the notation Eexch for the class of all e-functions with

respect to the family of all exchangeable probability measures on Ω; a probability
measure P on Ω is exchangeable if and only if P ({ω}) depends on ω only via
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+ω. It is clear that a function f : Ω → [0,∞] is in Eexch if and only if, for each
k ∈ {0, . . . , N},

(
N

k

)−1 ∑

ω∈Ω:+ω=k

f(ω) ≤ 1.

The product EexchEbin of Eexch and Ebin is the set of all functions ω ∈ Ω �→
g(ω)h(+ω) for g ∈ Eexch and h ∈ Ebin. The following is a special case of Corol-
lary 3.

Corollary 5. It is true that

EBern = EexchEbin.

The intuition behind Corollary 5 is that a sequence ω ∈ Ω is Bernoulli
if and only if it is exchangeable and the number of 1s in it is binomial. The
analogue of Corollary 5 in the algorithmic theory of randomness is Theorem 1
in [25], which says, using the terminology of that paper, that the Bernoulliness
deficiency of ω equals the binomiality deficiency of +ω plus the conditional
randomness deficiency of ω in the set of all sequences in {0, 1}N with +ω 1s
given the binomiality deficiency of +ω. Corollary 5 is simpler since it does not
involve any analogue of the condition “given the binomiality deficiency of +ω”.

Remark 7. Kolmogorov’s definition of Bernoulli sequences is via exchangeabil-
ity. We can regard this definition as an approximation to definitions taking into
account the binomiality of the number of 1s. In the paper [8] Kolmogorov uses
the word “approximately” when introducing his notion of Bernoulliness (p. 663,
lines 5–6 after the 4th displayed equation). However, it would be wrong to assume
that here he acknowledges disregarding the requirement that the number of 1s
should be binomial; this is not what he meant when he used the word “approx-
imately” [11].

The reason for Kolmogorov’s definition of Bernoulliness being different from
the definitions based on e-values and p-values is that +ω carries too much infor-
mation about ω; intuitively [26], +ω contains not only useful information about
the probability p of 1 but also noise. To reduce the amount of noise, we will use
an imperfect estimator of p. Set

p(a) := sin2
(
aN−1/2

)
, a = 1, . . . , N∗ − 1, N∗ :=

⌊π

2
N1/2

⌋
, (18)

where �·� stands for integer part. Let E : {0, . . . , N} → [0, 1] be the estimator
of p defined by E(k) := p(a), where p(a) is the element of the set (18) that
is nearest to k/N among those satisfying p(a) ≤ k/N ; if such elements do not
exist, set E(k) := p(1).

Denote by A the partition of the set {0, . . . , N} into the subsets E−1(E(k)),
where k ∈ {0, . . . , N}. For any k ∈ {0, . . . , N}, A(k) := E−1(E(k)) denotes the
element of the partition A containing k. Let Esin be the class of all e-functions
with respect to the statistical model {Uk | k ∈ {0, . . . , N}}, Uk being the uni-
form probability measure on A(k). (This is a Kolmogorov-type statistical model,
consisting of uniform probability measures on finite sets; see, e.g., [30, Section 4].)
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Theorem 3. For some universal constant c > 0,

c−1Esin ⊆ Ebin ⊆ cEsin.

The analogue of Theorem 3 in the algorithmic theory of randomness is The-
orem 2 in [25], and the proof of Theorem 3 can be extracted from that of Theo-
rem 2 in [25] (details omitted).

Remark 8. Paper [25] uses a net slightly different from (18); (18) was introduced
in [26] and also used in [32].

To state corollaries in terms of p-values of Corollary 5 and Theorem 3, we
will use the obvious notation PBern, Pexch, and Pbin.

Corollary 6. For each κ ∈ (0, 1),

κ−1P1−κ
Bern ⊆ PexchPbin ⊆ κ

2
1−κ P

1
1−κ

Bern. (19)

Proof. Similarly to Corollary 1, the left inclusion of (19) follows from

κ−1P1−κ
Bern ⊆ E−1

Bern = E−1
exchE−1

bin ⊆ PexchPbin,

and the right inclusion of (19) follows from

PexchPbin ⊆ κ
2

1−κ (EexchEbin)
1

κ−1 = κ
2

1−κ E
1

κ−1
Bern ⊆ κ

2
1−κ P

1
1−κ

Bern.

	

Corollary 7. There is a universal constant c > 0 such that, for each κ ∈
(0, 0.9),

cκ−1P1−κ
sin ⊆ Pbin ⊆ c−1κ

1
1−κ P

1
1−κ

sin . (20)

Proof. As in the previous proof, the left inclusion of (20) follows from

κ−1P1−κ
sin ⊆ E−1

sin ⊆ c−1E−1
bin ⊆ c−1Pbin,

and the right inclusion from

Pbin ⊆ κ
1

1−κ E
1

κ−1
bin ⊆ c−1κ

1
1−κ E

1
κ−1
sin ⊆ c−1κ

1
1−κ P

1
1−κ

sin ,

where c stands for a positive universal constant. 	

In conclusion of this section, let us state the binary version of Theorem 2

and its corollary.

Theorem 4. Suppose N ∈ {2, 4, . . . } is an even number. Then

sup EBern = 2N , (21)

sup Eexch =
(

N

N/2

)

∼ (πN/2)−1/22N , (22)

sup Ebin = 2N/

(
N

N/2

)

∼ (πN/2)1/2, (23)

where the two “∼” again refer to the asymptotics as N → ∞.
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Proof. The argument is similar to that in the proof of Theorem 2. The supremum
in (21) is attained at the function that takes value 2N at the sequence 0 . . . 01 . . . 1
(N/2 0s followed by N/2 1s) and is zero everywhere else. Replacing 2N by

(
N

N/2

)
,

we obtain a function attaining the supremum in (22). The supremum in (23) is
attained at the function on {0, . . . , N} that takes value 2N/

(
N

N/2

)
at N/2 and is

zero everywhere else. Finally, the asymptotic equivalences follow from Stirling’s
formula. 	


We can see that sup Ebin (given by (23)) is much smaller than sup EBern and
sup Eexch (given by (21) and (22), respectively). This might be interpreted as
exchangeability being the main component of Bernoulliness.

Corollary 8. If N is an even number,

inf PBern = 2−N ,

inf Pexch = 1/

(
N

N/2

)

∼ (πN/2)1/22−N ,

inf Pbin =
(

N

N/2

)

2−N ∼ (πN/2)−1/2.

8 Conclusion

In this section we discuss some directions of further research. A major advantage
of the non-algorithmic approach to randomness proposed in this paper is the
absence of unspecified constants; in principle, all constants can be computed.
The most obvious open problem is to find the best constant c in Theorem 3.

In Sect. 7 we discussed a possible implementation of Kolmogorov’s idea of
defining Bernoulli sequences. However, Kolmogorov’s idea was part of a wider
programme; e.g., in [9, Section 5] he sketches a way of applying a similar approach
to Markov sequences. For other possible applications, see [30, Section 4] (most
of these applications were mentioned by Kolmogorov in his papers and talks).
Analogues of Corollary 5 in Sect. 7 can be established for these other applications
(cf. [12] and Remark 5), but it is not obvious whether Theorem 3 can be extended
in a similar way.

Acknowledgments. Thanks to Wouter Koolen, Vladimir V’yugin, Alex Gammer-
man, and Ilia Nouretdinov for useful discussions.

Appendix: Non-algorithmic Theory of Complexity

The definitions of p-functions and e-functions given at the beginning of Sect. 2
can be applied, without changing a word, to any measure P on Ω, without the
restriction P (Ω) = 1. It is interesting that, for some P , such generalizations also
have useful applications. In particular, the following generalization of Propo-
sition 1 includes an algorithm-free version of standard relations (see, e.g., [14,
Theorem 4]) between plain and prefix Kolmogorov complexities.
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Proposition 6. Let h : [0,∞] → [0,∞] be a continuous function that is strictly
decreasing over {h > 0} and satisfies

∫
h ≤ 1, where

∫
stands for the integration

with respect to the Lebesgue measure. For any measure P ,

h(PP ) ⊆ EP ⊆ P−1
P . (24)

Proof. The right inclusion in (24) still follows from the Markov inequality (2).
As for the left inclusion, we have, for any f ∈ PP and any h satisfying the
conditions of the proposition,

∫
h(f) dP =

∫ ∞

0

P (h(f) ≥ c) dc =
∫ ∞

0

P (f ≤ h−1(c)) dc

≤
∫ ∞

0

h−1(c) dc =
∫

h−1 =
∫

h ≤ 1,

where the last equality follows from Fubini’s theorem. 	

An example of a function h satisfying Proposition 6 is

h(c) :=

{
κ
2 cκ−1 if c ≤ 1
κ
2 c−κ−1 if c ≥ 1,

(25)

where κ ∈ (0, 1) is a constant.
Let P be the counting measure on N. An example of f ∈ PP is f := 2C+1,

where C is plain Kolmogorov complexity; this function f is the smallest, to
within a constant factor, upper semicomputable element of PP (see [23, Theorem
8]). An example of m ∈ EP is the largest, to within a constant factor, lower
semicomputable measure on N (see [23, Section 4.2]). Proposition 6 applied to
the function (25) gives

κ

2
(2C+1)−κ−1 ≤× m ≤× (2C+1)−1,

where ≤× stands for inequality to within a constant factor. The last equation
can be rewritten as

C ≤+ K ≤+ (1 + κ)C,

where K is prefix complexity and ≤+ stands for inequality to within an additive
constant. (Better inequalities can be obtained if we use h of a form similar to
(3).)

Remark 9. The main reason [17] for using “i-values” instead of “e-values” in
the late 1990s and early 2000s (see Remark 1) was the desire to cover the case
of measures P that are not necessarily probability measures, such as counting
measures, which makes “integral” more appropriate than “expectation”.
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