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Abstract Nowadays, electricity transmission investments are made in a liberalized
market environment, in which the transmission system operator, the market, pro-
ducers, and investors have different objectives. The transmission expansion problem
can account for this by bilevel programming, with an investor making expansion
decisions in an upper level while anticipating the result of a lower-level market-
clearing. In this work, we formulate a stochastic transmission expansion problem
of a merchant investor collecting congestion rents determined by the differences
between nodal market prices. The bilevel program can be recast as a mathematical
program with equilibirium constraints (MPEC), but does not allow for linearization
and reformulation by mixed-integer linear programming. Instead, we apply a para-
metric programming approach that facilitates decomposition with respect to both
time periods and scenarios. A numerical study illustrates its ability to solve the prob-
lem, even though standard solvers for non-linear MPECs fail.

1 Introduction

Transmission expansion in power markets may involve many players with different
objectives. For instance, a system operator aims to improve the functioning of the
power system, for example, through social welfare maximization or with respect to
reliability of the network. Generation companies assess the effects of transmission
expansions on their profits, since changes to the network topology involve changes
to supply and demand. In this chapter, we take the perspective of a merchant trans-
mission investor, i.e., a company that installs new transmission lines in order to profit
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from their use. We assume a power network with nodal prices, also known as loca-
tional marginal prices (LMPs) (Sorokin et al. 2012). As a producer sells its power in
the node it is located and at the local LMP, flow of power to another node with a dif-
ferent LMP may involve profits to the owner of the line. The profits from using both
existing and newly installed transmission lines consist of congestion rents defined
by differences in nodal prices (Sorokin et al. 2012). In many cases, a transmission
system operator (TSO) owns and operates the network and the profits translate into
financial transmission rights (FTRs) which are sold in a secondary market or in an
auction. The merchant-investor perspective to transmission investments is based on
profits from long-termfinancial transmission right (LTFTR) offsetting the investment
costs (Rosellón and Kristiansen 2013). Examples of this power market setup can be
found in PJM, New York, California and New England (Kristiansen 2004).

As transmission expansions change the network topology, supply and demand
is affected and the market adopts new LMPs. In particular, the installation of new
transmission lines can connect producers to new nodes, in which the merit order
and therefore the local LMP changes. To model this feedback mechanism between
investment decisions and LMPs and the different objectives of the merchant and
the market, we use bilevel programming. A bilevel programming problem (BPP)
consists of an upper level and a lower level, often illustrated by the leader–follower
paradigm (or Stackelberg game), in which a leader makes an upper-level decision
while accounting for the reaction of one or more followers in the lower level. We
consider the merchant investor as a leader making upper-level investment decisions
while anticipating lower-level market-clearing. Our problem of long-term transmis-
sion expansions is static, but accounts for short-term dynamics of the power system,
including market-clearing. Moreover, by including demand uncertainty, our prob-
lem becomes a two-stage stochastic program with recourse, with the first and second
stages being the upper level and lower level, respectively.

A popular approach to solve a BPP is based on replacing the lower-level prob-
lem by its Karush-Kuhn-Tucker (KKT) optimality conditions, assuming these are
sufficient (Dempe et al. 2015). The resulting problem is a mathematical program
with equilibrium constraints (MPEC), for which solution approaches include refor-
mulation by mixed-integer programming (MIP), non-linear methods or heuristics. In
case the BPP has linear constraints and objectives, a widely applied method is lin-
earization and reformulation by mixed-integer linear programming (MILP). In our
case, the lower-level problem of the BPP is a linear program, meaning that the KKT-
conditions are necessary and sufficient for optimality. Also, the upper-level problem
has linear constraints. However, the upper-level objective function involves bilinear
congestion rents, determined by products of LMPs (lower-level dual variables) and
line flows (lower-level primal variables). These bilinear terms make the resulting
MPEC non-linear and non-convex, and thus, difficult to solve to global optimality.

As an alternative to MILP and MPEC methods, we apply a solution approach
for the merchant investor BPP that is based on parametric programming (Bylling
et al. 2020). This method can solve a BPP with bilinear objective terms to global
optimality. Furthermore, it facilitates decompositionwith respect to both time periods
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and scenarios. In a numerical study, we illustrate its ability to solve the problem, even
though standard solvers for non-linear MPECs fail.

The main objectives of this chapter are:

• To formulate a bilevel programming problem for transmission expansion of a
merchant investor.

• To illustrate the application of parametric programming and its advantages for the
transmission expansion problem.

• To obtain numerical results for a case study of electricity investments in transmis-
sion lines.

The rest of this chapter is organized as follows: Sect. 2 provides an overview of
the existing literature and positions this chapter within recent research. In Sect. 3,
we present the bilevel programming problem of transmission expansion and Sect. 4
describes the parametric programming approach. Numerical results are provided in
Sect. 5 and Sect. 6 concludes.

2 Literature Review

The existing literature includes a number of transmission expansion problems formu-
lated as BPPs. For instance, Conejo et al. (2016) present a bilevel transmission and
generation expansion problemwithmarket-clearing in the lower level and profitmax-
imization at the upper level. Similarly, Garcés et al. (2009) propose a bilevel problem
of a transmission planner who minimizes network expansion costs in the upper level
subject to market-clearing at the lower level. Baringo and Conejo (2012) likewise,
consider a joint generation and transmission expansion, but with the objective tomin-
imize consumer paymentswhen installingwind power units and the required network
reinforcements. These references reformulate the bilevel problem to a mixed-integer
linear program (MILP) via the KKT-conditions. In fact, although the upper-level
objective function by Conejo et al. (2016) and Baringo and Conejo (2012) is bilin-
ear, it can be linearized using theKKT-conditions and strong duality of the lower-level
problem.

The perspective of a merchant transmission investor is proposed by Joskow and
Tirole (2005). This view is taken by Maurovich-Horvat et al. (2014), who formulate
a stochastic bilevel problem and compare transmission investments of a merchant
investor and a TSO. Buijs and Belmans (2012) likewise present a bilevel transmis-
sion expansion problem and analyze different upper-level objectives, including the
merchant’s. Rosellón and Kristiansen (2013) investigate a merchant mechanism to
transmission expansion, using LTFTR as incentive to construct new lines. The result-
ing problem becomes an MPEC, which is solved via its KKT-conditions. Since the
MPEC is non-convex, the KKT-conditions may not be sufficient for optimality, and
thus, the solution may not be globally optimal.

Wecontinue to consider amerchant perspective on transmission expansion.Unfor-
tunately, to the best of our knowledge, the structure of our problem does not allow for
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linearization and reformulation by MILP. For example, our problem fails to satisfy
the sufficient conditions for linearization by Bylling et al. (2020). Also, the above
solution methods may not solve bilevel transmission expansion problems with a
bilinear objective to global optimality. In contrast, we apply a new solution method
that guarantees global optimality.

For other solution methods to BPPs, we refer to the reviews by Dempe et al.
(2015) and Colson et al. (2007). For a review of transmission expansion problems in
general, we refer to Hemmati et al. (2013).

3 The Bilevel Transmission Expansion Problem

This section presents the bilevel programming problem of merchant electricity trans-
mission investments. Our problem consists of two levels: a lower-level market-
clearing problem and an upper-level investment problem.Anomenclature is provided
in Table7 in the Appendix.

In the lower-level market-clearing problem, we assume a perfectly competitive
power market, such that producers offer generation at their marginal production cost.
By further assuming inelastic demand, market-clearing can be formulated as a linear
cost minimization problem; cf. Gabriel et al. (2013). In our setup, market-clearing
accounts for network flow, which is modeled using a DC load flow representation.
To capture short-term dynamics, we consider a number of time periods, e.g., hours,
for which the power market clears. To represent demand uncertainty, we assume a
discrete distributionwith afinite number of scenarios. For fixed upper-level decisions,
the lower-level problemdecomposes into a number of subproblems, one for each time
period and each scenario. The lower-level subproblem of time period t and scenario
s is the following:

minyts ,pts ,θ ts

∑

g∈G
cg ygts (1a)

s.t.
∑

g∈G(i)

ygts −
∑

j∈I(i)

pi jts = dits : λi ts, i ∈ I (1b)

0 ≤ ygts ≤ ymax
g : μ

y
gts, g ∈ G (1c)

pi jts = Bi j (θi ts − θ j ts) : μ
p
i j ts, (i, j) /∈ J (1d)

pi jts = xi j Bi j (θi ts − θ j ts) : μ
p,J
i j ts , (i, j) ∈ J (1e)

− Fmax
i j ≤ pi jts ≤ Fmax

i j : μ
F,min
i j ts , μ

F,max
i j ts , (i, j) /∈ J (1f)

− Fi j ≤ pi jts ≤ Fi j : μ
F ,min
i j ts , μ

F ,max
i j ts , (i, j) ∈ J (1g)

− π ≤ θi ts ≤ π : μ
θ,min
i ts , μ

θ,max
its , i ∈ I (1h)

θi ts = 0 : μ
θ,re f
ts , i = re f (1i)
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where yts = {ygts}g∈G,pts = {pi jts}i, j∈I and θ ts = {θi ts}i∈I . The objective function
minimizes production costs, while the constraints (1b) balance demand and supply
at each node. The constraints (1c) limit power generation by existing capacity for
each generating unit. Similarly, the constraints (1d) and (1e) define the power flow
on existing and candidate lines, respectively, and (1d) and (1e) limit flow by existing
and potential capacity. Potential capacity depends on whether a candidate line has
been installed (xi j = 1) or not (xi j = 0), which is an upper-level decision fixed in the
lower-level problem. Finally, the constraints (1h) restrict the voltage angle at each
node and (1i) define the voltage angle for some reference node of the network to be
zero.

In the upper-level investment problem, the merchant maximizes profits, i.e., con-
gestion rents less investment costs, subject to a total budget. The upper-level problem
is as follows:

maxx,F ,p,λ

∑

t∈T
ρt

∑

s∈S
φs

∑

i, j∈I:i< j

pi j ts
(
λi ts − λ j ts

)
(2a)

−
∑

(i, j)∈J

(
Ki j xi j + ki jFi j

)

s.t. 0 ≤
∑

(i, j)∈J

(
Ki j xi j + ki jFi j

) ≤ Kmax (2b)

0 ≤ Fi j ≤ xi jFmax
i j , i, j ∈ J (2c)

xi j ∈ {0, 1}, i, j ∈ J (2d)

pts is a primal optimal solution to (1), t ∈ T , s ∈ S (2e)

λts is a dual optimal solution to (1), t ∈ T , s ∈ S (2f)

wherex = {xi j }i, j∈I,F = {Fi j }i, j∈I,p = {pi jts}i, j∈I,t∈T ,s∈S andλ = {λts}t∈T ,s∈S .
The objective function maximizes profits from installation of new lines. Profits con-
sists of accumulated hourly congestion rents determined by the differences between
nodal market prices and less fixed and variable investment costs. Constraints (2b)
ensure compliance with the investment budget and the constraints (2c) limit the
maximum capacity installed at each line.

4 The Parametric Programming Method

By replacing the lower-level problem of the BPP by its Karush-Kuhn-Tucker (KKT)
optimality conditions, the resulting problem is a mathematical program with equi-
librium constraints (MPEC). The bilinear term of the upper-level objective function
makes the objective function of the MPEC non-linear. To the best of our knowledge,
it is not possible to linearize this bilinear term and the problem can only be solved
to local optimality by non-linear methods.

Instead,we propose a solution approach for theBPPbased on parametric program-
ming. The approach applies to a linearly constrained BPP with continuous variables
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at both levels, and thus, does not directly apply to the transmission expansion prob-
lem with binary variables in the upper level. For a limited number of candidate lines,
however, the number of binary solutions is moderate (for |J | candidate lines, the
number of solutions is 2|J |). We therefore use the parametric programming approach
in combination with complete enumeration of the of binary solutions. Our method
has the advantage that it solves the bilevel problem with bilinear objective to global
optimality.

In Sect. 4.1 we present the parametric programming method for a BPP with only
continuous variables and in Sect. 4.2, we briefly explain the enumeration of binary
solutions.

4.1 Continuous Upper Level

In this section, we fix the binary decisions x ∈ {0, 1}|J | to install candidate lines or
not and consider only the continuous line capacitiesF ∈ R

|J | as upper-level decision
variables.

We define the upper-level feasibility set S ⊆ R
|J | as the set of upper-level solu-

tions that satisfy the upper-level constraints (2b) and (2c) and that render the lower-
level problem (1) feasible.

The idea behind the parametric programmingmethod is to parameterize the lower-
level primal and dual optimal solutions by the upper-level feasible solutions, i.e.,

p(F) and λ(F), F ∈ S, (3)

such the upper-level objective function can be expressed in terms of upper-level
variables only.

To inspect the optimal solutions to the lower-level problem, let the upper-level
solutionF ∈ S be fixed and let B be a basis for the lower-level linear programming
problem, i.e., a set of linearly independent columns of the constraint matrix. We
consider the corresponding basic solution to the lower-level problem, i.e., for which
the variables corresponding to columns of the basis are called basic variables and the
remaining variables are called non-basic and equal zero.

The following definition stems from parametric programming (Gal 1995).

Definition 1 The critical region �B ⊆ S corresponding to the basis B is the set of
upper-level feasible solutions for which the corresponding basic solution is optimal
in the lower-level problem.

It can be shown that a critical region is a polyhedron; (cf. Gal 1995).
On each critical region, we can characterize the upper-level objective function in

terms of upper-level variables only. This result follows from Bylling et al. (2020).

Proposition 1 Let �B be the critical region corresponding to the basis B. Then, the
bilinear term pi jts(F)(λi ts(F) − λ j ts(F)) is an affine function ofF on the interior
of �B and for all i, j, t, s.
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In other words, the upper-level objective function is a piece-wise linear (but not
necessarily continuous) function which is affine on each critical region. It is easy
to determine the gradient of the affine functions, see Bylling et al. (2020). With the
gradient and a function value of the upper-level objective function for each critical
region, we can obtain an explicit expression for the upper-level objective function.
Furthermore, with an affine objective function and a polyhedral feasibility set, the
restriction of the BPP to a single critical region is a linear programming problem.
We use this to solve the BPP.

Our strategy is to find a cover of the upper-level feasibility set by critical regions,
i.e., a set of bases B such that

S =
⋃

B∈B
�B, (4)

to solve the restricted problems for all critical regions in the cover and finally obtain
a global optimal solution by simply comparing candidate solutions.

To find a cover of S by critical regions, we define neighboring critical regions as
follows, cf. Gal (1995).

Definition 2 Two critical regions, �1,�2, are neighbors if the following holds for
their corresponding bases B1, B2:

1. There exists an F ∈ S for which B1 and B2 are both optimal bases to (1).
2. It is possible to pass from B1 to B2 in one iteration of the dual simplex method.

By Gal (1995), the union of all neighboring critical regions forms a cover of S.
Thus, it is unnecessary to consider all possible bases of the lower-level problem.
Neighboring critical regions are obtained by the following algorithm by Gal (1995),
based on dual simplex.

Algorithm 1 Parametric programming algorithm

Step 0 (initialization) Set h := 0. Given an initial upper-level solution, solve the
lower-level problem (1). Store an optimal basis B0 and set B := {B0}.

Step 1 (iteration h) If B = ∅, then stop. Otherwise, set h := h + 1, select Bh ∈ B
and set B := B \ {Bh}.

Step 2 (determine leaving variable) Let B := Bh . Select a basic variable that has
not yet been inspected and determine if a neighbor exists. If not, return to Step 2.
If all basic variables have been inspected, return to Step 1.

Step 3 (determine entering variable) Carry out an iteration of the dual simplex
method with the basic variable as the leaving variable. Store a neighboring basis
Bj and set B := B ∪ {Bj }. Return to Step 1.

For further details on the parametric programming approach, see Bylling et al.
(2020).
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4.1.1 Decomposition

For fixed upper-level decisions, the lower-level problem of the BPP decomposes into
a number of subproblems, one for each time period and each scenario. We refer to
the BPP with one time period and one scenario as a BPP subproblem. We process
the subproblems individually, which allows for parallel computations and is likely
to provide computational advantages.

By processing a BPP subproblem, we obtain neighboring critical regions for one
time period and scenario. By processing all subproblems, the union of all critical
regions forms a cover of S. Observe that an optimal solution to the restricted BPP
can be found at a vertex of the critical region. Unfortunately, an optimal solution
to the BPP may not be found among the optimal solutions to the restricted BPP
subproblems. However, the vertices of the critical region must be found among the
vertices of the critical regions obtained for one time period and scenario at a time.
Thus, to find an optimal solution to the BPP, we enumerate and evaluate all vertices
of the critical regions of the BPP subproblems. This provides us with a global optimal
solution. For vertex enumeration, we use the procedure of Avis and Fukuda (1996).

The solution algorithm is as follows:

Algorithm 2 Decomposition

Step 1 (parametric programming) Apply the parametric programming Algorithm
1 to the BPP subproblems.

Step 2 (vertex enumeration)Use vertex enumeration for each of the critical regions
obtained in Step 1.

Step 3 (comparison) Collect all solutions from Step 2 and evaluate their upper-
level objective function values.

As an alternative to Algorithm 2, we also propose a heuristic that omits the com-
putationally costly vertex enumeration. In Step 2, we obtain optimal solutions to the
restricted BPP subproblems.

The heuristic can be summarized as:

Algorithm 3 Heuristic

Step 1 (parametric programming) Apply the parametric programming Algorithm
1 to the BPP subproblems.

Step 2 (restricted optimization) Solve the BPP subproblems restricted to each of
the corresponding critical regions obtained in Step 1.

Step 3 (comparison) Collect all vertices from Step 2 and evaluate their upper-level
objective function values.

4.2 Binary Upper Level

This section outlines the combination of the parametric programming approach and
complete enumeration. We simply iterate through the upper-level, binary solutions,
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i.e., all potential configurations of the network. For fixed binary decisions to install
candidate lines or not, x ∈ {0, 1}|J |, we apply parametric programming.

The procedure is as follows:

Algorithm 4 Enumeration

Step 1 (enumeration) Enumerate all binary solutions, x.
Step 2 (parametric programming) For each solution, solve the BPP using Algo-

rithm 1, Algorithm 2 or the Heuristic 3.
Step 3 (comparison) Collect all solutions from Step 2 and their upper-level objec-

tive function values.

4.3 Non-linear Programming

As benchmarks, we also implement a non-linear MPEC formulation and a mixed-
integer non-linear programming (MINLP) formulation of the problem. These can be
solved using standard software, with the upper-level variables x defined as binary.
Since the MPEC and MINLP are non-convex, however, we can only obtain local
optimality.

The MPEC formulation is derived by replacing the lower-level problem, (1), by
the necessary and sufficient KKT-conditions. This formulation is:

max (2a) (5a)

s.t. (2b) − (2d) (5b)

(1b) − (1i) (5c)

cg − λi ts + μ
y
gts ≥ 0 ∀g, t, s (5d)

λi ts − μ
p
i j ts − μ

F,min
i j ts + μ

F,max
i j ts = 0 ∀t, s, (i, j) /∈ J (5e)

λi ts − μ
p
i j ts − μ

F ,min
i j ts + μ

F ,max
i j ts = 0 ∀t, s, (i, j) ∈ J (5f)

− μ
θ,min
i ts + μ

θ,max
i ts = 0 ∀t, s, i 	= ref. (5g)

− μ
θ,min
i ts + μ

θ,max
i ts + μθ,ref

ts = 0 ∀t, s, i = ref. (5h)

ygtsμ
y
gts = 0 ∀g (5i)

(pi jts + Fmax
i j )μ

F,min
i j ts = 0 ∀t, s, (i, j) /∈ J (5j)

(Fmax
i j − pi jts)μ

F,max
i j ts = 0 ∀t, s, (i, j) /∈ J (5k)

(pi jts + Fi j )μ
F ,min
i j ts = 0 ∀t, s, (i, j) ∈ J (5l)

(Fi j − pi jts)μ
F ,max
i j ts = 0 ∀t, s, (i, j) ∈ J (5m)

(θi ts + π)μ
θ,min
i ts = 0 ∀i, t, s (5n)

(π − θi ts)μ
θ,max
i ts = 0 ∀i, t, s (5o)

μ
y
gts, μ

F,min
i j ts , μ

F,max
i j ts , μ

F ,min
i j ts , μ

F ,max
i j ts , μ

θ,min
i ts , μ

θ,max
i ts ≥ 0. (5p)
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A challenge for standard solvers is that all feasible points of the MPEC are non-
regular, i.e. the gradients of the binding constraints are linearly dependent. Most
non-linear optimization solvers even fail to obtain a locally optimal solution. A
way to overcome the non-regularity is by the regularization approach of Scholtes
(2001) and Ralph and Wright (2004). Using this approach, the equality constraints
of complementary slackness are replaced by inequalities and the infeasibility gap is
iteratively reduced. With inequality constraints, the MPEC is regular.

Alternatively, the complementary slackness constraints can be linearized using
disjunctive constraints. Disjunctive constraints introduces a binary variable for each
complementary slackness constraint, i.e., the constraints (5i)–(5o), and a large
constant. The binary variable ensures that the two factors of the product cannot
both be non-zero. The constant, usually denoted by M, has to be sufficiently large
not to cut off any feasible solutions. At the same time, it must be sufficiently small
not to create computational difficulties, see (Pineda et al. 2017) for more details.
The resulting problem is a mixed-integer problem but remains non-linear due to the
bilinear term in the objective function, i.e., is a MINLP. Usually, such problems can
only be solved to local optimality.

Since the above are standardmethods,we use themas benchmarks for the paramet-
ric programming methods. To the best of our knowledge, no other existing methods
can solve this problem to global optimality.

5 Numerical Results

We present a case study of transmission expansion in the Nordic region, with 4 nodes
representing Norway, Sweden, and the two Danish pricing regions: DK1 as Western
Denmark and DK2 as Eastern Denmark; cf. Nord Pool AS (2017).

5.1 Data

We assume that three DC cables are already in place: One connecting the two Danish
price regions, one connecting the Eastern Danish pricing region, and Sweden and one
connecting Sweden and Norway. The existing cables each have a capacity of 1.000
MW. Three additional DC cables can be installed, providing connections where not
already. These are the cables (N ,DK1), (N ,DK2) and (SE,DK1), see Fig. 1. The
topology of the network is not as the current one, but is chosen for the purpose of
illustration.Variable investment costs of each candidate line are assumed to be 20.000
DKK/MW, whereas we disregard fixed investment costs. We likewise disregard the
budget and limitations for installed capacities of candidate transmission lines.

Hourly demand data at each node is available from Nord Pool AS (2017) and we
select the year 2015. This data is clustered into a number of representative hours
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Fig. 1 Network topology.
Solid lines represent existing
lines, dashed lines represent
candidate lines

DK1 DK2

SE

N

(N
,D
K
1)

(N
.D
K
2)

(SE,
DK1

)

Table 1 Generation capacities and production costs

DK1 DK2 SE N

Centralized cap.
(MW)

1.800 2.400 13.800 15.000

Decentralized
cap. (MW)

1.200 1.600 10.000 9.200

Centralized cost
(DKK/MWh)

500 450 400 300

Decentralized
cost
(DKK/MWh)

760 760 700 700

Average demand
(MWh)

2299 1526 15275 14369

using k-means clustering (Hartigan and Wong 1979). We obtain results for different
numbers of representative hours. For simplicity, we disregard demand uncertainty.

Generation capacities and costs for DK1 and DK2 are obtained from
Energianalyse (2014) that divides generation into centralized and decentralized units.
Generation capacities are adjusted to the Norwegian and Swedish nodes by consid-
ering historical production data. As opposed to Denmark, Norway and Sweden have
considerable amounts of hydropower, which is reflected in the lower production costs
of the centralized plants. The generation capacities and production costs are shown
in Table1.

5.2 Implementation

The parametric programming approach to decomposition and the heuristic has been
implemented in R using the interfaces by Berkelaar (2015) to solve LPs and Robere
(2015) for vertex enumeration. The software is open source and free. The MPEC
andMINLP have been implemented in GAMS (2017) and solved using the DICOPT
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solver. All problems are solved on an HP ProLiant server with 4 AMD 2.50 GHz
CPUs and with a total of 64 cores and 256 GB of RAM.

5.3 Optimal Investments

For the most detailed case with 1000 representative hours, an optimal solution is
given in Table2.

As the table shows, investment are made in all candidate lines with maximum
capacity on (N , DK1) and (N , DK2). We use this solution as a benchmark.

The investments in all candidate lines are justified by total congestion rents off-
setting the investment costs. In fact, the transmission of power and differences in
nodal prices generate significant revenues for the merchant investor. We explain this
as follows.

Since the costs of centralized generation are significantly lower than those of
decentralized generation, demand is satisfied by central production unless generation
capacity is binding. As the production costs of Norway and Sweden are lower than
those of the Danish nodes, demand of all nodes is satisfied by central production
in Norway and Sweden, using both existing and newly constructed transmission
lines. Thus, power is transmitted from Norway and Sweden to Denmark unless
transmission capacities are binding, i.e., congestion occurs. As a result, the nodal
prices are determined by the marginal costs of centralized Norwegian and Swedish
generation in many of the representative hours. When congestion occurs, however,
market prices of the Danish nodes are higher than for Norway and Sweden.

Average nodal prices are given in Table3. As expected, average prices are higher
for the Danish nodes than for the Norwegian and Swedish nodes, but the same for
both of the Danish nodes.

In Table4, we list the number of hours (out of the 1000 representative hours) for
which the transmission lines are congested. Furthermore, the direction of the power
flow is indicated by the number of hours with positive and negative flow. We note
that power always flows into the Danish nodes from the (N,DK1), (SE,DK1) and

Table 2 Investment decisions and capacities in candidate lines

(i, j) (N,DK1) (N,DK2) (SE,DK1)

xi j 1 1 1

Fi j 1000 1000 16

Table 3 Average prices at the four nodes in DKK/MWh

DK1 DK2 SE N

491 491 451 357
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Table 4 Number of hours (out of 1000) with congested lines, positive flow and negative flow for
each transmission line

(N,SE) (N,DK1) (N,DK2) (SE,DK1) (SE,DK2) (DK1,DK2)

Congested
lines

947 980 997 1000 812 0

Positive
flow

981 990 1000 1000 1000 90

Negative
flow

19 10 0 0 0 907

(SE,DK2) lines, clearly confirming the relatively low-cost generation from Norway
and Sweden supplied to the Danish market. The (N,SE) and (N,DK1) lines mainly
have flow from Norway to DK1 and Sweden (in 981 and 990 out of 1000 hours,
respectively). All but the (DK1,DK2) line have power flow during all hours and
the (DK1,DK2) line only has 3 out of 1000 hours without flow of power. Thus, the
markets exploits the network at all times.

As canbe seen, the line connectingSweden andDK1 is always congested,meaning
the merchant investor collects congestion rents in all hours. Also, the transmission
lines connecting Norway and Sweden, Norway and DK1, Norway and DK2, and
Sweden and DK2 are almost always congested (between 812 and 997 hours out
of the 1000 representative hours). The only line that is never congested is the one
connecting the two Danish regions, DK1 and DK2.

5.4 Comparison of Solution Methods

We apply two solution methods based on parametric programming: The parametric
programming approach to decomposition (Decomp.) that guarantees global opti-
mality and the parametric programming heuristic (Heuristic). We compare with the
three non-linear programming methods: A standard MPEC solver, a regularization
approach (reg. MPEC), and a reformulation by disjunctive constraints (MINLP). We
solve the BPP with all these methods, varying the number of representative hours by
10 from 10 to 100 and by 100 from 100 to 1000, the result of which is a total of 19
problem instances of increasing size.

The standard MPEC solver returned local infeasibility for all instances, and thus,
we do not report further results of using this solution method. The MINLP method
likewise did not provide any results, with the solver reporting that the search stopped
as the objective function of the NLP subproblems started to deteriorate. While the
regularization approach returned local optimal solutions for all 19 instances, all these
solutions had xi j = 0 andFi j = 0 for all (i, j) ∈ J , i.e., no investments were made.
This results in an optimality gap of 99% and is of no practical use.
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Table 5 Investment decisions from the two solution methods, the decomposition approach and the
heuristic

Decomp. Heuristic

No. of rep.
days

(N,DK1) (N,DK2) (SE,DK1) (N,DK1) (N,DK2) (SE,DK1)

10 1000 1000 275 1000 1000 275

20 1000 1000 126 1000 1000 126

30 1000 1000 33 1000 1000 33

40 1000 1000 128 1000 1000 128

50 1000 994 0 994 1000 0

60 1000 1000 77 1000 1000 77

70 1000 1000 0 1000 1000 0

80 1000 1000 0 1000 1000 0

90 1000 1000 51 1000 1000 51

100 1000 1000 11 1000 1000 11

200 1000 1000 38 1000 1000 38

300 1000 1000 38 1000 1000 62

400 1000 1000 0 1000 1000 0

500 1000 1000 0 1000 1000 4

600 1000 1000 9 769 1000 0

700 1000 1000 10 913 1000 0

800 1000 1000 11 1000 1000 4

900 1000 1000 16 993 1000 0

1000 1000 1000 16 901 1000 0

All numbers in MW

To compare the solutions of the decomposition approach and the heuristic, we
report the investment capacities of the three candidate lines in Table5. We see that
the two solution methods agree in 14 out of 19 cases, as also indicated by the zero
optimality gap in Table6. For both methods, investments are made in lines (N,DK1)
and (N,DK2) at maximum capacity in all but one instance (50 representative days).
The investment in line (SE,DK1) is of a smaller capacity, although in many instances
(14 and 11 out of 19 for the decomposition approach and the heuristic, respectively),
some investment is profitable. In fact, a small capacity is enough to create congestion
and generate some revenue. For the larger instances, however, the heuristic fails to
capture small investments, which results in a significant optimality gap. In particular,
for 600–1000 representative days, the exact approach suggests investment in line
(SE,DK1), whereas in four out of five instances, the heuristic does not.

Table6 provides the solution times of the exact parametric programming approach
and the heuristic as well as their differences in objective function values, i.e., opti-
mality gaps. For a number of representative days higher than 500, the optimality gaps
produced by the heuristic varies from 0.1% to 10.1%.When the number of represen-
tative days is 500 or lower, the heuristic obtains an optimal solution. For instances



A Parametric Programming Approach to Bilevel Merchant … 251

Table 6 Solution times and optimality gaps for the two solution methods, the decomposition
approach and the heuristic

Number of rep. days Sol. time, decomp. (s) Sol. time, heuristic (s) Optimality gap (%)

10 150.7 2.2 0

20 134.7 3.6 0

30 177.6 6 0

40 201.1 9.1 0

50 363.8 15.5 0

60 373.3 16.3 0

70 378.9 21.7 0

80 421.8 28.2 0

90 537.1 34 0

100 838.3 40.7 0

200 1013.9 143 0

300 1182.5 305.5 0.3

400 2308.9 528.2 0

500 3391 818.7 0.1

600 6764.8 1146.4 1.7

700 9142.5 1587.8 7.8

800 10222 2567 3.3

900 13543 3215.5 10.1

1000 16733.8 4238.5 7

with 100 representative days or lower, the heuristic obtains an optimal solution 15–70
times as fast as the decomposition approach. For problems with 200 representative
days or more, the heuristic maintains lower solution times for almost all instances
but with a factor between 4 and 7. While the heuristic provides no guarantees of
optimality, our case study suggests that for small to moderate sized bilevel problems,
it works very well. Furthermore, it solves even large problems relatively fast and
provides solutions within a 10% optimality gap. Its main disadvantage is that the
solutions may be structurally different from the optimal, and thus, this method may
be better suited for cost assessments than for investment planning.

6 Conclusion

This chapter adopts a merchant investor perspective on transmission expansion.
Investment is incentivized by the merchant collecting congestion rents on installed
transmission lines. We formulate a bilevel programming problem in which invest-
ment decisions are made in an upper level and in anticipation of lower-level market-
clearing. With the inclusion of congestion rents, the formulation involves a bilinear
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Table 7 Nomenclature

Sets

T Set of time periods

S Set of scenarios

I Set of network nodes

I(i) Set of nodes connected to node i

J Set of candidate lines

G Set of all production units

G(i) Set of production units at node i

Parameters

ρt Duration of time period t (p.u.)

φs Probability of scenario s (p.u.)

ki j Linear investment cost for candidate line between nodes i and j (e/MW)

Ki j Fixed investment cost for candidate line between nodes i and j (e)

Kmax Investment budget (e)

Fmax
i j Maximum capacity available for candidate transmission line between

nodes i and j (MW)

Fmax
i j installed capacity of existing transmission line between nodes i and j

(MW)

cg Linear production cost for unit g (e/MWh)

ymax
g Maximum production for generation unit g (MW)

dits Demand in node i , at time t and in scenario s (MW)

Variables

xi j Binary investment decision for candidate line between nodes i and j

Fi j Installed capacity of candidate transmission line between nodes i and j
(MW)

pi j ts Power flow between node i and j , at time t and in scenario s (MWh)

θi ts Voltage angle at node i , at time t and in scenario s

ygts Production of unit g, at time t and in scenario s

λi ts Shadow price/dual variable of the balancing constraint at node i , at time t
and in scenario s (e/MWh)

μ
y
gts Dual variable of the capacity constraint for unit g, at time t and in scenario

s

μ
p
i j ts , μ

p,J
i j ts Dual variable of the flow constraint between nodes i and j , at time t and in

scenario s

μ
F,min
i j ts , μ

F,max
i j ts , Dual variable of the capacity constraint between nodes i and j , at time t

and inscenario s

μ
F,min
i j ts , μ

F,max
i j ts Dual variable of the capacity constraint between nodes i and at time t and

in scenario s j

μ
θ,min
i ts , μ

θ,max
i ts , μ

θ,ref
ts Dual variable of the voltage angle constraint of node i , at time t and in

scenario s

Note Bold-face indicates a vector of variables, e.g., x = {xi j }i, j and λ = {λi ts}i,t,s
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revenue term in the upper-level objective function. This makes the problem diffi-
cult to solve to global optimality by standard approaches, such as MPEC or MILP
reformulations.

Instead,we apply an exact algorithmbased on parametric programming that solves
the bilinear bilevel programming problem to global optimality. Furthermore, it allows
for decomposition of the lower-level problem and thereby has potential to provide
computational advantages. We also present a faster, but heuristic version of the algo-
rithm.

We illustrate the problem and the solutionmethods on a case study of transmission
investment in the Nordic region. The numerical results indicate that is it profitable
to be a merchant investor in an electricity network. The parametric programming
approach is able to solve problem instances with up to 1000 representative days
within 4.5 hours while the heuristic terminates in 1.2 hours and with an optimality
gap of up to 10%. For small and moderately sized instances the heuristic found the
optimal solution in 14 out of 19 cases with significantly lower solution times than
the parametric approach. For large instances, however, the structure of the solutions
produced by the heuristic often differ from the optimal.
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