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Nomenclature

(A) Indices and sets

i ∈ I Index and set of merchant investors
l ∈ L Index and set of network loops
m ∈ M Index and set of network branches
n ∈ N Index and set of network nodes
t ∈ T Index and set of time periods in the operational timescale

(B) Parameters

nsm Reference sending node of branch m
nrm Reference receiving node of branch m
� Matrix of sensitivities ϕn,m for power outflow from node n with respect to

power flow on branch m
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� Matrix of sensitivities ψl,m for voltage drop of loop l with respect to power
flow on branch m

F0
m Existing capacity of branch m (MW)

T F
m Fixed investment cost of branch m (£/h)

T V
m Variable investment cost of branch m (£/MWh)

aGn Quadratic cost coefficient of generation company of node n (£/MW2h)
bGn Linear cost coefficient of generation company of node n (£/MWh)
Gmax

n Maximum generation limit of generation company of node n (MW)
aD
n Quadratic benefit coefficient of demand company of node n (£/MW2h)
bD
n Linear benefit coefficient of demand company of node n (£/MWh)
Dmax

n Maximum demand limit of demand company of node n (MW)
wt Weighting factor of period t

(C) Variables

u Vector of binary variables um expressing whether new capacity is added on
branch m (um = 1 if it is um = 0 if it is not)

F Vector of continuous variables Fm expressing the total capacity addition on
branch m (MW)

F(i) Vector of continuous variables Fm(i) expressing the capacity addition by
merchant investor i on branch m (MW)

fm,t Power flow on branch m and period t (MW)
Gn,t Power generated at node n and period t (MW)
Dn,t Power consumed at node n and period t (MW)
pn,t Net power outflow from node n at period t (MW)
λn,t Locational marginal price at node n and period t (£/MWh)

(D) Functions

Tm(·) Investment cost of branch m (£/h)
Cn,t (·) Operating cost of generation company of node n at period t (£/h)
Bn,t (·) Benefit of demand company of node n at period t (£/h)
Ji (i, ·) Surplus of merchant investor i (£/h)
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1 Introduction

1.1 Motivation

During the last decades, deregulation of the electricity industry has been observed
worldwide, involving the unbundling of vertically integrated monopoly utilities, the
introduction of competition in the generation and supply sectors, and the open access
to the electricity networks. In this deregulated environment, two general approaches
are adopted for transmission network planning (Kirschen and Strbac 2004; Joskow
and Tirole 2005; Shrestha and Fonseka 2007; Strbac et al. 2014).

Under the first approach, known as regulated transmission investment planning
and investigated in Part 2 of this book, planning is centrally carried out by a regulatory
authority, the system/network operator or the regulated transmission company, which
realizes under regulatory supervision the optimal transmission expansion plan that
maximizes the social welfare while satisfying security of supply requirements. The
required capital cost plus a suitable rate of return for the transmission company is
recovered from the network users. In this context, quantitative research efforts have
focused on the solution of the centralized optimal transmission planning problem
(Latorre et al. 2003), aswell as the allocation of transmission costs among the network
users (Lima et al. 2009).

Under the second approach, known asmerchant transmission investment planning
(Joskow and Tirole 2005) and investigated in Part 3 of this book, transmission plan-
ning relies on competitive market forces and decentralized, profit-driven decisions of
self-interested players. These players may generally include merchant transmission
companies (companies aiming at making profits through investing in transmission)
as well as generation and demand users of the network, who are rewarded on the
basis of the collected congestion revenues created by their network investments.
This paradigm is gaining continuously ground as it accounts for the interests of
the different market agents and the resulting competition in transmission planning is
advocated as a further step toward the deregulation and liberalization of the electricity
industry (Joskow and Tirole 2005; Shrestha and Fonseka 2007; Strbac et al. 2014;
Gil et al. 2002). The first instances of merchant transmission planning can be found
in the USA, Australia, Argentina, Brazil, and Chile, although the adopted frame-
works constitute a mix of centralized and merchant planning where the regulator
still determines the final expansion plan, reconciling the conflicting interests of the
different entities (Joskow and Tirole 2005; Shrestha and Fonseka 2007; Littlechild
2003; Federal Energy Regulatory Commission 2002; Electric Light & Power 2016;
DUKE American Transmission Co 2017; StarWood Energy Group et al. 2007).

However, critical open questions need to be answered before the widespread
application of this merchant transmission planning paradigm:

(i) Which entities are likely to undertake network investments under this planning
paradigm?
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(ii) Is this planning paradigm able to achieve the same (maximum) social welfare
as the traditional centralized planning approach?

1.2 Relevant Work

A few recent papers have developed quantitative models of this new transmission
planning paradigm in order to answer these questions. Employing Lagrangian relax-
ation (LR) principles, authors in Gil et al. (2002) demonstrate that this decentralized
paradigm leads to the same planning solution as the one obtained by the centralized
paradigm, concluding that introduction of competition in network planning is plau-
sible. However, this outcome is subject to two simplifying assumptions. First of all,
the fixed costs of network assets are neglected because LR is generally unable to
produce the centralized solution in the presence of non-convexities (Bazaraa et al.
2006); as a result, the undeniable economies of scale associated with transmission
investment are not properly considered (Kirschen andStrbac 2004; JoskowandTirole
2005).More importantly, players participating inmerchant transmission planning are
assumed to be competitive, price-taking entities, considering the locational marginal
prices (LMP) as exogenous signals that cannot be influenced by their individual
actions. In reality, however, in a similar fashion as strategic behavior observed in
energy markets, participants will attempt to exercise market power and manipulate
the LMP to increase their profits beyond the competitive equilibrium levels, through
strategic network investments (Joskow and Tirole 2005; Shrestha and Fonseka 2007;
Sauma and Oren 2007; Bushnell and Stoft 1996; Bushnell and Stoft 1997; Molina
and Rudnick 2010).

In Bushnell and Stoft (1996), Bushnell and Stoft (1997) and Joskow and Tirole
(2005), this competitive behavior assumption is removed. Authors in Bushnell
and Stoft (1996), Bushnell and Stoft (1997) show that under certain conditions
(neglect of fixed costs of network assets, congestion rights satisfying certain feasi-
bility constraints, no imperfections in the energy market), merchant investments are
socially efficient. In the seminal work (Joskow and Tirole 2005), the authors demon-
strate through theoretical discussion and illustrative examples that this conclusion
does not hold when the above simplifying conditions are relaxed. However, these
papers investigate the social efficiency of investments by a single merchant company,
neglecting that the very essence of the merchant planning paradigm lies in the intro-
duction of competition in transmission planning, through the participation ofmultiple
players. In fact, authors in Joskow and Tirole (2005) recognize through a simple
3-node example that gaming interactions between multiple merchant investors are
likely in reality (pages 54–55), but they do not provide a comprehensive modeling
framework capturing these interactions.

Authors in Shrestha andFonseka (2007)make the first attempt to consider a setting
with multiple strategic merchant companies and analytically derive the relation
between the procured transmission capacities under the centralized and the merchant
planning paradigm. The results indicate that decentralized planning by merchant
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companies leads to under-investment with respect to the centralized approach but
the extent of this under-investment is reduced as the number of merchant compa-
nies is increased. Extending the analysis to the theoretical case where the number
of merchant companies approaches infinity, the authors in Shrestha and Fonseka
(2007) demonstrate that the differences between the planning solutions of the two
paradigms in this case tend to zero. Although this theoretical scenario with an infi-
nite number of merchant companies does not correspond to a realistic setting, this
result is of great significance as it implies that under a “sufficiently large” number of
competing merchant companies, the socially optimal transmission planning solution
can be approached. However, this paper carries out simplifying assumptions that
sacrifice the generality of the obtained results; transmission branches are presumed
congested at the optimal solution and fixed costs of network assets are neglected.
More importantly, the multiple merchant companies are assumed to make invest-
ment decisions sequentially, without accounting for the reactions of the competing
players. In other words, the adopted approach does not comprehensively model the
decision-making interactions between multiple investors.

1.3 Chapter Contributions

As mentioned in Molina and Rudnick (2010), a non-cooperative game-theoretic
modeling framework is required to accurately capture the strategic behavior and
interactions of multiple merchant investors, discussed in Sect. 1.2. This Chapter
aims at developing such a novel framework and exploiting it to answer the research
questions outlined in Sect. 1.1. More specifically, two different models, both based
on non-cooperative game theory, are developed.

The first model adopts an equilibrium programming approach. The decision-
making problem of each player is formulated as a bi-level optimization problem,
accounting for the impacts of its own actions on LMP as well as the actions of all
competing players. The upper-level problem represents the surplus maximization
of the player, and the lower-level problem represents the energy market clearing
process subject to the network constraints. This bi-level problem is formulated for
different types of players (merchant transmission companies, generation compa-
nies, and demand companies) and solved after converting it to a mathematical
program with equilibrium constraints (MPEC). An iterative diagonalizationmethod
is employed to search for the likely outcome of the strategic interactions between
multiple players, i.e., Nash equilibria (NE) of the game.

Case studies on a simple 2-node system provide the following answers to the
identified research questions:

(i) Which entities are likely to undertake network investments under the merchant
planning paradigm?

Networks investments will be mostly undertaken by generation companies in areas
with low LMP and demand companies in areas with high LMP (higher-motivated
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players), as apart from collecting congestion revenue they also increase their energy
surpluses. Merchant transmission companies, generation companies in areas with
high LMP, and demand companies in areas with low LMP (lower-motivated players)
could also bemotivated to invest by the collection of congestion revenue under certain
circumstances. Case studies illustrate the interdependencies between the different
players’ decisions; in certain cases, the large network capacity desired by higher-
motivated players reduces the obtainable congestion revenue by lower-motivated
players and thus prevents the latter from investing in capacity.

(ii) Is the merchant planning paradigm able to achieve the same (maximum) social
welfare as the traditional centralized planning approach?

The merchant planning solution approaches the centralized one as the number of
competing players increases. The largest deviations from the centralized solution are
observed in the case where the set of participating players includes only merchant
transmission companies, as they procure significantly lower capacity in order to
increase their profits through higher LMP differentials.

However, because of its iterative nature, this first model cannot guarantee conver-
gence to existing NE, especially as the number of players and the size of the network
increase; as a result, the examined case studies are limited to a 2-node system with
up to 10 players. In other words, although this model captures the strategic decision-
making interactions between competing merchant investors and accounts for fixed
costs of transmission assets [aspects not captured by the modeling framework of
Shrestha and Fonseka (2007)], it cannot establish whether the important finding of
Shrestha and Fonseka (2007) (i.e., that merchant planning yields the same solution
as centralized planning under the participation of a “sufficiently large” number of
competing investors) is valid or not, as it cannot deal with a large number of players,
especially in large networks.

In order to address this challenge and validate this important finding of Shrestha
andFonseka (2007), a secondmodel is developed,where the set ofmerchant investors
is approximated as a continuum. The proposed approximation makes the impact of
each infinitesimal player’s decisions on system quantities negligible, allowing us to
derive mathematical conditions for the existence of a NE solution in an analytical
fashion.

Based on this model, this Chapter investigates the validity of the finding of
Shrestha and Fonseka (2007), through analytical and numerical comparison of the
merchant planning solution against the one obtained through the traditional central-
ized paradigm. This comparison demonstrates that merchant planning can achieve
the same (maximum) social welfare as the centralized planning approach only when
the following conditions are satisfied:

(a) fixed investment costs are neglected, and
(b) the network is radial and does not include any loops.

As these conditions do not generally hold in reality, our findings suggest that
even a fully competitive merchant transmission planning framework, involving the
participation of a very large number of competingmerchant investors, is not generally
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capable of maximizing social welfare, as implied by the previous work (Shrestha and
Fonseka 2007). Numerical simulations supporting these findings are carried out on
a 2-node, a 3-node, and a 24-node system, while the largest case study examined in
the previous relevant works discussed in Sect. 1.2 corresponds to a 6-node system.

1.4 Chapter Outline

The rest of this Chapter is organized as follows. Section 2 outlines a basic model of
traditional centralized transmission planning, against which the merchant planning
approach will be later compared. Sections 3 and 4 detail the two developed game-
theoreticmodels and present results of relevant case studies. Finally, Sect. 5 discusses
conclusions and future extensions of this work.

2 Centralized Transmission Planning Model

Under the centralized transmission planning paradigm, a regulatory authority, the
system/network operator or the regulated transmission company, determines the
capacity to be added in the existing network, so as to maximize the long-term social
welfare or, equivalently, minimize the long-term system cost (Kirschen and Strbac
2004). The latter is given by the sum of two terms: the difference between genera-
tion operating cost and demand benefit, plus the investment cost required for deliv-
ering the new capacity. Employing a DC load flow model, the optimization problem
determining the centralized planning solution is formulated as follows:

min
um, Fm, fm,t

Gn,t , Dn,t , pn,t
,∀m,∀n,∀t

S =
∑

m

Tm(um, Fm) +
∑

t

∑

n

wt
[
Cn,t

(
Gn,t

) − Bn,t
(
Dn,t

)]

(1)

where:

Tm(um, Fm) = um
(
T F
m + T V

m Fm
)
,∀m (2)

Subject to:

0 ≤ Fm,∀m (3)

Dn,t + pn,t − Gn,t = 0 : λn,t ,∀n,∀t (4)
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−(
F0
m + umFm

) ≤ fm,t ≤ F0
m + umFm,∀m,∀t (5)

pn,t =
∑

m

ϕn,m fm,t ,∀n,∀t (6)

∑

m

ψl,m fm,t = 0,∀l,∀t (7)

0 ≤ Gn,t ≤ Gmax
n ,∀n,∀t (8)

0 ≤ Dn,t ≤ Dmax
n ,∀n,∀t (9)

Accounting for the realistic economic properties of network investments, the
network investment cost Tm for branch m includes (i) a fixed component, which
does not depend on the procured capacity but only on the binary decision um of
whether new capacity will be added on branch m or not and (ii) a variable compo-
nent, which is incurred when this binary decision is positive (um = 1), and is propor-
tional to the procured capacity Fm , as expressed by (2). System operation constraints
are expressed by (4)–(7); the Lagrangian multipliers λn,t associated with the nodal
demand–supply balance constraints (4) express the LMP at the respective node n and
period t. Generation and demand limits are enforced by (8) and (9).

For presentation clarity and without loss of generality, the above model (as well
as the rest of the models in this Chapter) involves the following assumptions:

(i) the addition of transmission capacity on branch m does not affect its reactance;
in other words, thematrices� and� are constant and do not depend on capacity
additions, and

(ii) a one-to-one mapping between nodes and generation/demand participants; in
other words, each generation/demand participant corresponds to the whole
generation/demand at a particular node n.

3 Modeling Merchant Transmission Planning: Equilibrium
Programming

3.1 Setting and Assumptions

Under the merchant paradigm investigated in this Chapter, transmission planning
relies on competitive market forces and decentralized, profit-driven decisions of
self-interested players. Specifically, different market entities participate in network
planning by making network expansion proposals, including merchant transmission
companies as well as generation and demand companies. These entities are assumed
to be rational players and determine their network expansion proposals so as to
maximize their own economic surpluses. In the case of merchant companies, the
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surplus is given by the difference between the congestion revenue and the investment
cost associated with the network capacity they procure. In the case of generation and
demand companies, apart from the congestion revenue and investment cost of the
procured capacity, their proposals are also driven by the impact of network capacity
additions on their profits from selling energy and on their utilities frombuying energy,
respectively.

The expansion proposals made by the different players are interdependent, since
the power flows, the LMP and the generation/demand dispatch affecting their
surpluses will be driven by the aggregation of the individual network expansion
decisions. Therefore, each player needs to account for the decisions of the rest of the
players. Furthermore, in a similar fashion as behavior observed in energy markets,
each of these players will not act as a price-taker but will rather attempt to manipu-
late the LMP through its expansion decisions in order to increase its surplus beyond
the competitive equilibrium levels. These interactions can be described through a
non-cooperative game among the players involved in the planning process.

3.2 Bi-Level Optimization Model of Merchant Investor

In the non-cooperative game-theoretic setting outlined in Sect. 3.1, the decision-
making of a single player i can be formulated as a bi-level optimization problem, a
modeling approachwidely adopted in literature investigating the strategic behavior of
generation companies in electricity markets (Hobbs et al. 2000; Weber and Overbye
2002; Ruiz and Conejo 2009). The upper-level (UL) problem determines the optimal
individual transmission expansion decisions maximizing the surplus of player i and
is subject to the lower level (LL) problem representing the energy market clearing
process. These two problems are coupled, since the expansion decisions made by the
UL problem affect the power flow constraints of the LL problem, while the power
flows, the LMP and the generation/demand dispatch determined by the LL problem
affect the objective function of the UL problem.

According to Sect. 3.1, the formulation of this bi-level problem depends on
whether the considered player i is a merchant transmission company, a generation
company, or a demand company. In case of a merchant transmission company, this
problem is formulated as follows:

(Upper level)

max
Fm (i),∀m

J (i) =
∑

m

um

[
∑

t

wt
(
λnrm ,t − λnsm ,t

)
fm,t

Fm(i)

Fm + F0
m

]

−
∑

m

um

[
T F
m

Fm(i)

Fm
+ T V

m Fm(i)

]
(10)
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where:

Fm =
∑

i

Fm(i),∀m (11)

um =
{
0 if Fm = 0
1 if Fm = 1

,∀m (12)

Subject to:

0 ≤ Fm(i),∀m (13)

(Lower level)

minGn,t ,Dn,t , fm,t ,pn,t∀m,∀n,∀t
∑

t

∑

n

wt
[
Cn,t

(
Gn,t

) − Bn,t
(
Dn,t

)]
(14)

Subject to:

Dn,t + pn,t − Gn,t = 0 : λn,t ,∀n,∀t (15)

−(
F0
m + umFm

) ≤ fm,t ≤ F0
m + umFm,∀m,∀t (16)

pn,t =
∑

m

ϕn,m fm,t ,∀n,∀t (17)

∑

m

ψl,m fm,t = 0,∀l,∀t (18)

0 ≤ Gn,t ≤ Gmax
n ,∀n,∀t (19)

0 ≤ Dn,t ≤ Dmax
n ,∀n,∀t (20)

The objective function (10) of the UL problem constitutes the surplus of the
merchant transmission company i and is given by the difference between the conges-
tion revenue (first term) and the investment cost (second term) associated with the
network capacity it procures on each branch. The share of the total congestion revenue
belonging to player i is equal to the share of the total capacity it owns, as expressed
by the first ratio in (10). Likewise, the share of the total fixed investment cost paid by
player i is equal to the share of the total capacity addition it procures, as expressed
by the second ratio in (10). This total capacity addition is given by the sum of the
individual players’ capacity additions (11). The UL problem is subject to procured
capacity limits (13) and the LL problem. The latter represents the market clearing
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process, maximizing the short-term social welfare (14), subject to system operation
constraints (15)–(18) and generation/demand limits (19)–(20).

In the case that the considered player i is the generation company of node n, the
objective function of the UL problem is given by (21). Apart from the congestion
revenue (first term) and the investment cost (second term) associatedwith the network
capacity player i procures, this objective function also includes its revenue from
selling energy at the LMP of node n (third term) and its operating cost (fourth term).

maxFm (i),∀m J (i) =
∑

m

um

[
∑

t

wt
(
λnrm ,t − λnsm ,t

)
fm,t

Fm(i)

Fm + F0
m

]

−
∑

m

um

[
T F
m

Fm(i)

Fm
+ T V

m Fm(i)

]

+
∑

t

wtλn,tGn,t −
∑

t

wtCn,t
(
Gn,t

)
(21)

In the case that the considered player i is the demand company of node n, the
objective function of the UL problem is given by (22). Apart from the congestion
revenue (first term) and the investment cost (second term) associatedwith the network
capacity player i procures, this objective function also includes its payment for buying
energy at the LMP of node n (third term) and its perceived benefit (fourth term).

maxFm (i),∀m J (i) =
∑

m

um

[
∑

t

wt
(
λnrm ,t − λnsm ,t

)
fm,t

Fm(i)

Fm + F0
m

]

−
∑

m

um

[
T F
m

Fm(i)

Fm
+ T V

m Fm(i)

]

−
∑

t

wtλn,t Dn,t +
∑

t

wt Bn,t
(
Dn,t

)
(22)

In order to solve this bi-level optimization problem in a mathematically rigorous
fashion, following the approach adopted in literature investigating the strategic
behavior of generation companies in electricity markets (Hobbs et al. 2000; Weber
and Overbye 2002; Ruiz and Conejo 2009), we convert it to a mathematical program
with equilibrium constraints (MPEC). This is achieved through the replacement of
the LL problem by its Karush–Kuhn–Tucker (KKT) optimality conditions, which is
enabled by the continuity and convexity of the LL problem. The MPEC formulation
is omitted but follows the logic detailed in Hobbs et al. (2000), Weber and Overbye
(2002), Ruiz and Conejo (2009).
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3.3 Determining Nash Equilibrium

The above bi-level optimization/MPEC model expresses the decision-making
problem of a single player i. Our interest, however, lies in determining the likely
outcome of the strategic interactions betweenmultiple merchant investors, given that
the very essence of the merchant planning paradigm is the introduction of compe-
tition in transmission planning (Sect. 1.1). According to game theory (Fudenberg
and Tirole 1991), this likely outcome corresponds to a Nash equilibrium (NE) of the
non-cooperative game, which expresses a condition where none of the players can
increase its surplus by unilaterally modifying its decisions.

In order to determine a NE solution of the merchant planning game, the iterative
diagonalization method, which was in introduced the mathematical paper (Pang and
Chan 1982) and was employed in Hobbs et al. (2000), Weber and Overbye (2002),
is adopted. This iterative procedure involves three steps:

(1) The players’ expansion decisions are initialized, the iteration counter is set to 1
and the convergence tolerance ε is determined.

(2) At every iteration r, each player determines its expansion decisions by solving
its respective MPEC, accounting for the decisions of the rest of the players as
fixed parameters, equal to their values at iteration r − 1.

(3) The vector of all players’ decisions at iteration r is compared to the one at
iteration r−1. If their distance is lower than ε, the iterative procedure terminates.
As discussed in Hobbs et al. (2000), Weber and Overbye (2002), the resulting
outcome after convergence corresponds by definition to a pure strategy NE of
the game, since none of the players can increase its surplus by unilaterally
modifying its decisions.

It should be noted at this point that existence and uniqueness of NE are not
generally guaranteed and that the iterative diagonalization approach is not generally
guaranteed to converge, even if NE exist (Hobbs et al. 2000; Weber and Overbye
2002).

3.4 Case Studies on 2-Node System: Analyzing Which
Entities Undertake Network Investments

The relevant generation and demand data (Kirschen and Strbac 2004) of the 2-node
system considered in the case studies of this Section is illustrated in Fig. 1. It is
assumed that the existing capacity of the single branch is zero and that the operational
timescale of the planning problem includes a single time period. Generation costs are
assumed to be quadratic functions of the respective power productions. The demands
in the two nodes are assumed inelastic and equal to constant values, i.e., their benefit
functions are constant and can thus be omitted from the two optimization problems.
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Fig. 1 Topology and parameters of 2-node system

The investment cost includes only a variable component T V
1 = 4£/MWhwhile fixed

costs are neglected (T F
1 = 0).

In order to comprehensively analyze the outputs of the merchant planning model,
the following five cases with different sets of participating players have been exam-
ined. The NE determined by the diagonalization approach of Sect. 3.3 in each of
these cases are presented in Table 1. Due to the existence of a single network branch
in the considered system, the subscript m = 1 is omitted from the representation
Fm(i) of the expansion decisions in Table 1.

Case 1.1 The set of players includes two merchant transmission companies M1

and M2. The two companies procure equal capacities in the NE solution. Table 2
justifies the expansion decision of each of the two players given the decision of its
competitor as determined by the NE solution of Table 1. By procuring a capacity
of 267 MW, each company collects a congestion revenue which is higher than the
incurred investment cost and therefore makes a positive profit of £2131. It is noted
that energy surplus is not defined in the case of merchant companies, as they are not
involved in the energy market.

Case 1.2 The set of players includes the two generation companies G1 and G2 of
nodes 1 and 2, respectively. Only G1 procures capacity in the NE solution. The
addition of network capacity increases the power exported from the lower-priced
(due to the combination of cheaper generation and lower demand) node 1 to the

Table 1 Merchant planning solutions in 2-node system

Case Players’ expansion decisions in NE (MW)

1.1 F(M1) = 267, F(M2) = 267

1.2 F(G1) = 580, F(G2) = 0

1.3 F(D1) = 0, F(D2) = 900

1.4 F(G1) = 345, F(G2) = 0, F(D1) = 0, F(D2) = 588

1.5 F(G1) = 345, F(G2) = 0, F(D1) = 0, F(D2) = 588, F(M1) = 0, F(M2) = 0
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Table 2 Justification of expansion decision of each player given its competitor’s decision in Case
1.1

Energy surplus
(£)

Congestion
revenue (£)

Investment cost
(£)

Total surplus (£)

M1: surplus
change by
procuring 267 MW
instead of 0 MW

N/A 3199 −1068 2131

M2: surplus
change by
procuring 267 MW
instead of 0 MW

N/A 3199 −1068 2131

higher-priced (due to the combination of more expensive generation and higher
demand) node 2. Therefore, it also reduces the LMP differential between the two
nodes, by increasing the LMP in node 1 and reducing the LMP in node 2. As a
result, G1 invests in network capacity not only to collect congestion revenue (like
the merchant companies of Case 1.1) but also to increase its energy surplus [given
by the difference between its revenue from selling energy and its operating cost in
(21)], as demonstrated in Table 3. On the other hand, G2 does not invest despite
the potential congestion revenue, due to the adverse effect of the interconnection on
its energy surplus; this is justified by Table 3, which presents the impact of a small
capacity procurement by G2 (10 MW) on its surplus.

Case 1.3 The set of players includes the two demand companies D1 and D2 of
nodes 1 and 2, respectively. Only D2 procures capacity in the NE solution. Since the
addition of network capacity reduces the LMP in node 2, D2 invests in high network
capacity in order to increase its energy surplus (i.e., reduce its energy payment, since
demand is assumed inelastic), despite the fact that the congestion revenue it collects
does not cover the incurred investment cost (Table 4). On the other hand, D1 does not
invest due to both the adverse effect of the interconnection on its energy surplus and

Table 3 Justification of expansion decision of each player given its competitor’s decision in Case
1.2

Energy surplus
(£)

Congestion
revenue (£)

Investment cost
(£)

Total surplus (£)

G1: surplus change
by procuring
580 MW instead of
0 MW

4582 6148 −2320 8410

G2: surplus change
by procuring
10 MW instead of
0 MW

−183 103 −40 −120
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Table 4 Justification of expansion decision of each player given its competitor’s decision in Case
1.3

Energy surplus
(£)

Congestion
revenue (£)

Investment cost
(£)

Total surplus (£)

D1: surplus change
by procuring
10 MW instead of
0 MW

−50 7 −40 −83

D2: surplus change
by procuring
900 MW instead of
0 MW

27,000 900 −3600 24,300

the fact that the potential congestion revenue does not cover the required investment
cost, given the high capacity procured by D2 (Table 4).

Case 1.4 The set of players includes the two generation companies G1 and G2 and
the two demand companies D1 and D2. Following the analysis of Cases 1.2 and
1.3, G1 and D2 procure capacity in the NE solution in order to increase their energy
surpluses (increase their energy profit and reduce their energy payment, respectively),
despite the fact that they do not collect any congestion revenue in this case (Table 5).
The reason behind this zero congestion revenue is that the total capacity procured
in the NE solution of this case is so high that it eliminates congestion and therefore
the price differential between the two nodes. It is also worth noting that this value of
the total capacity (F(G1) + F(D2) = 933MW) constitutes the minimum value for

Table 5 Justification of expansion decision of each player given its competitors’ decisions in Case
1.4

Energy surplus
(£)

Congestion
revenue (£)

Investment cost
(£)

Total surplus (£)

G1: surplus change
by procuring
345 MW instead of
0 MW

4350 0 −1380 2970

G2: surplus change
by procuring
10 MW instead of
0 MW

0 0 −40 −40

D1: surplus change
by procuring
10 MW instead of
0 MW

0 0 −40 −40

D2: surplus change
by procuring
588 MW instead of
0 MW

17,655 0 −2352 15,303
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which congestion is eliminated (Kirschen and Strbac 2004). In other words, no player
has motivation to invest in further capacity, as this action will not affect the dispatch
and the LMP, and consequently they will have to incur the additional investment cost
without improving their energy surplus and congestion revenue. This also explains
whyG2 and D1 experience no change in their energy surplus and congestion revenue
from potential investments (Table 5) and thus do not invest in network capacity.

Case 1.5 The set of players includes the two generation companies G1 and G2, the
two demand companies D1 and D2, and two merchant transmission companies M1

andM2. As inCase 1.4,G1 and D2 procure capacity in theNE solution. Given that the
total capacity they procure is so high that it eliminates congestion and the price differ-
ential between the two nodes, the two merchant companies do not have motivation
to invest in further capacity (Table 6), in contrast with Case 1.1 where they consti-
tute the only participating players. This result demonstrates the interdependencies
between the different players’ decisions in the merchant planning framework.

Table 6 Justification of expansion decision of each player given its competitors’ decisions in Case
1.5

Energy surplus
(£)

Congestion
revenue (£)

Investment cost
(£)

Total surplus (£)

G1: surplus change
by procuring
345 MW instead of
0 MW

4350 0 −1380 2970

G2: surplus change
by procuring
10 MW instead of
0 MW

0 0 −40 −40

D1: surplus change
by procuring
10 MW instead of
0 MW

0 0 −40 −40

D2: surplus change
by procuring
588 MW instead of
0 MW

17,655 0 −2352 15,303

M1: surplus
change by
procuring 10 MW
instead of 0 MW

N/A 0 −40 −40

M2: surplus
change by
procuring 10 MW
instead of 0 MW

N/A 0 −40 −40
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Table 7 Merchant planning solutions in 2-node system with higher generation cost differential
between the two nodes

Case Players’ expansion decisions in NE (MW)

1.1 F(M1) = 456, F(M2) = 456

1.2 F(G1) = 900, F(G2) = 50

1.3 F(D1) = 11, F(D2) = 1177

1.4 F(G1) = 558, F(G2) = 0, F(D1) = 0, F(D2) = 904

1.5 F(G1) = 558, F(G2) = 0, F(D1) = 0, F(D2) = 904, F(M1) = 0, F(M2) = 0

Next, we analyze the outputs of the merchant planning model in each of the above
five cases when the linear cost coefficient of generation company G2 is increased to
30£/MWh (Table 7).

In every case, the total and individual capacity additions are increasedwith respect
to Table 1, due to the higher generation cost differential (and therefore higher LMP
differential) between the two nodes, which motivates further capacity investments.

Furthermore, the particularly interesting difference in the results is that G2 and
D1 invest in network capacity in Cases 1.2 and 1.3, respectively. This is because the
higher LMP differential makes the collected congestion revenues more significant
than the adverse effect of these investments on their energy surpluses and the required
investment costs (Tables 8 and 9). However, the capacity procured by G2 and D1 is
still lower than the one procured by G1 and D2, respectively, who are motivated to
invest in capacity not only by the congestion revenues but also by the improvement
of their energy surpluses.

Furthermore, in Cases 1.4 and 1.5, the total capacity procured by the higher-
motivated players G1 and D2 reduces the obtainable congestion revenue by G2

and D1, preventing the latter from investing in capacity (Table 10), in contrast with
Cases 1.2 and 1.3 where fewer players participate. This result again demonstrates the
interdependencies between the different players’ decisions in the merchant planning
framework.

Table 8 Justification of expansion decision of each player given its competitor’s decision in Case
1.2 with higher generation cost differential between the two nodes

Energy surplus
(£)

Congestion
revenue (£)

Investment cost
(£)

Total surplus (£)

G1: surplus change
by procuring
900 MW instead of
0 MW

9000 14,850 −3600 20,250

G2: surplus change
by procuring
50 MW instead of
0 MW

−575 825 −200 50
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Table 9 Justification of expansion decision of each player given its competitor’s decision in Case
1.3 with higher generation cost differential between the two nodes

Energy surplus
(£)

Congestion
revenue (£)

Investment cost
(£)

Total surplus (£)

D1: surplus change
by procuring
11 MW instead of
0 MW

−55 103 −44 4

D2: surplus change
by procuring
1177 MW instead
of 0 MW

35,310 11,017 −4708 41,619

Table 10 Justification of expansion decision of each player given its competitors’ decisions in
Case 1.4 with higher generation cost differential between the two nodes

Energy surplus
(£)

Congestion
revenue (£)

Investment cost
(£)

Total surplus (£)

G1: surplus change
by procuring
558 MW instead of
0 MW

9391 636 −2232 7795

G2: surplus change
by procuring
10 MW instead of
0 MW

−7 8 −40 −39

D1: surplus change
by procuring
10 MW instead of
0 MW

−50 8 −40 −82

D2: surplus change
by procuring
904 MW instead of
0 MW

27,120 1031 −3616 24,535

3.5 Case Studies on 2-Node System: Comparing Centralized
and Merchant Planning Solutions

In this Section, we make an attempt to validate the important findings of the
previous work (Shrestha and Fonseka 2007), i.e., that the merchant planning solution
approaches the centralized one as the number of participating players increases, and
the two solutions become identical under the participation of a “sufficiently large”
number of players. To this purpose,we apply the developed equilibriumprogramming
model to the same 2-node system presented in Sect. 3.4.

In this context, we have executed the developed model for different scenarios
regarding the number of participating players as well as the centralized planning
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model of Sect. 2, and compared their solutions. Figures 2, 3, and 4 present the total
network capacity in the merchant planning solution and the percentage deviation of
the long-term system cost of this solution from the respective cost of the centralized
solution, when the set of players participating in merchant planning includes:

– From 1 to 10 merchant transmission companies (Fig. 2).
– From 1 to 10 generation companies per node (Fig. 3). Each identical company at

node 1 and 2 owns an equal share of the total generation capacity at the respective
node.

– From 1 to 10 demand companies per node (Fig. 4). Each identical company at
node 1 and 2 supplies an equal share of the total demand at the respective node.
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Fig. 2 Merchant planning solution in 2-node system for different numbers of participatingmerchant
transmission companies
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Fig. 3 Merchant planning solution in 2-node system for different numbers of participating
generation companies



400 D. Papadaskalopoulos et al.

0,00%

0,10%

0,20%

0,30%

0,40%

800

820

840

860

880

900

920

1 2 3 4 5 6 7 8 9 10

D
ev

ia
tio

n 
fr

om
 c

en
tra

liz
ed

 sy
st

em
 

co
st

 (%
)

To
ta

l n
et

w
or

k 
ca

pa
ci

ty
 (M

W
)

Number of demand companies per node

Total network capacity
Deviation from centralized system cost

Fig. 4 Merchant planning solution in 2-node system for different numbers of participating demand
companies

The above results seem to suggest that the findings of Shrestha and Fonseka
(2007) are valid, since the total network capacity and system cost of the merchant
planning solution approach the respective capacity (800MW) and system cost of the
centralized planning solution, as the number of participating players increases. The
largest deviations from the centralized solution are observed in the case where the
participating players are merchant transmission companies (Fig. 2), as they procure
significantly lower capacity in order to increase their surpluses through higher LMP
differentials.

However, these results are not sufficient to comprehensively validate the findings
of Shrestha and Fonseka (2007). First of all, the examined studies include up to
10 “active” players (i.e., players procuring positive capacity, unlike the generation
companies at node 2 and the demand companies at node 1 in the cases of Figs. 3 and
4, respectively). Therefore, although the merchant planning solution approaches the
centralized one, we cannot guarantee that this trend will be still valid for a larger
number of players and that the two solutions will eventually become identical under
the participation of a “sufficiently large” number of players. Furthermore and more
importantly, the examined studies are carried out on a very simple 2-node system;
we cannot guarantee that the observed trend will be still valid in larger, more realistic
systems.

Unfortunately, the developed equilibrium programming model cannot effectively
deal with such larger numbers of players and larger networks. This is because the
employed diagonalization approach (Sect. 3.3) cannot guarantee convergence to an
existing NE, since it is very sensitive to the initialization of the players’ decisions
and its iterative nature often results in an oscillatory behavior, with these problems
being aggravated when the number of players and the size of the network increase.
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4 Modeling Merchant Transmission Planning: Continuum
Approximation

4.1 Setting and Assumptions

In order to overcome the limitations of the equilibriumprogrammingmodel presented
in the previous Section and comprehensively validate the findings of Shrestha and
Fonseka (2007), a second model is developed in this Section. This model also adopts
a non-cooperative game-theoretic framework. However, in order to deal effectively
with a large number of players, the set of players is approximated as a continuum
(Khan and Sun 2002). Similar approaches have been previously considered in other
economic (Aumann 1964, 1966) and smart grid (Couillet et al. 2012; De Paola et al.
2016) applications. The proposed approximation makes the impact of each infinites-
imal player’s decisions on system quantities negligible, allowing us to derive math-
ematical conditions for the existence of a NE solution in an analytical fashion, and
therefore avoid the limitations of the iterative diagonalization approach, discussed
in Sect. 3.5.

Before proceeding to a detailed description of this secondmodel, it should be noted
that it has its own limitations. First of all, the proposed continuum approximation
implies that the number of players approaches infinity, which does not correspond
to realistic settings where the number of players is always finite. Nevertheless, this
theoretical scenario constitutes a good approximation of a setting with a “sufficiently
large” number of players, and, more importantly, it is also examined in Shrestha and
Fonseka (2007), the very findings of which we aim at validating. Secondly, this
continuum approximation implies that the considered players are identical. There-
fore, this model cannot provide an answer to the first research question of Sect. 1.1
(which entities are likely to undertake network investments under merchant plan-
ning), for which the equilibrium programming model of Sect. 3 is more suitable. For
this reason, the players we consider in this second model are merchant transmission
companieswhich are similar in practice, rather than generation or demand companies
which have distinct characteristics (such as generation operating costs, generation
capacities, and demand sizes.).

Under the proposed continuum approximation, the set of merchant transmission
companies is not described as a finite collection I = {1, 2, .., |I |} (as in the equilib-
rium programming model of Sect. 3), but rather as a closed interval I ⊂ R. With
this approximation, system quantities such as investment decisions um and Fm are
not impacted by each infinitesimal player’s decisions, but only depend on the aggre-
gation of all players’ decisions. In this context, the total capacity addition on branch
m is not expressed by the sum (11) but rather as the integration:

Fm = ∫
I
Fm(i)di (23)
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The surplus function (10) of player i can be expressed as J (i, F(i), u, F) where
F(i) = {Fm(i),∀m} denotes the vector of the investment decisions of player i, and
u = {um,∀m} and F = {Fm,∀m} denote the vectors of the aggregate binary invest-
ment decisions and total capacity investment decisions of all players, respectively.
Given the above approximation, player i can only modify F(i) but cannot impact u
and F.

4.2 Determining Nash Equilibrium

Consider feasible vectors F∗(i), u∗, and F∗. Based on the definition ofNE (Sect. 3.3),
and given that player i can only modify F(i), these quantities constitute a NE of the
merchant planning game if, for any feasible vector F(i), the following holds:

J
(
i, F∗(i), u∗, F∗) ≥ J

(
i, F(i), u∗, F∗) (24)

It is thus critical to analyze which values of F(i) maximize the surplus function
(10) of player i for fixed values of u and F. Note that this surplus function is linear
with respect to each individual capacity addition Fm(i) and can alternatively be
written as:

J (i, F(i), u, F) =
∑

m

Λ(um, Fm) · Fm(i) (25)

where the term Λ(um, Fm) is expressed as:

Λ(um, Fm) = um

∑
t wt

(
λnrm ,t − λnsm ,t

)
fm,t

Fm + F0
m

− um

(
T F
m

Fm
+ T V

m

)
(26)

Three different conditions need to be examined for each term of the sum in (25):

– Λ(um, Fm) > 0: the function J is monotonically increasing with respect to Fm(i).
It follows that the surplus of player i can always be increased by selecting a higher
value of Fm(i) and therefore a NE can never be reached.

– Λ(um, Fm) < 0: the function J is monotonically decreasing with respect to Fm(i).
Therefore, the surplus of player i can always be increased by choosing a lower
value of Fm(i). As a result, a NE could potentially be reached if and only if
Fm(i) = 0,∀i . This is never the case, as the mentioned conditions would lead to
um = 0 and Λ(um, Fm) = 0, contradicting the initial hypothesis.

– Λ(um, Fm) = 0: the function J does not depend on Fm(i). If this is true for all
m ∈ M , (24) holds as equality and a NE is reached. It should be noted that, in this
case, the marginal value [first term of (26)] and the marginal cost [second term of
(26)] of an additional unit of network capacity investment by player i are equal.
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Based on the three conditions examined above, the following result can be
deduced:

Theorem 1 The vectors F∗(i), u∗, and F∗ constitute a NE of the merchant planning
game if and only if :

u∗
mF

∗
m

∑

t

wt
(
λnrm ,t − λnsm ,t

)
fm,t = u∗

m

(
F∗
m + F0

m

)(
T F
m + T V

m F∗
m

)
,∀m (27)

Proof The three above conditions for Λ(um, Fm) are considered. When
Λ(um, Fm) > 0, we have established that a NE does not exist. This is consis-
tent with the theorem statement, as (27) does not hold in this case. In fact, since
Λ(um, Fm) > 0, the term in the left-hand side of (27) is strictly larger than the
term in the right-hand side of (27). A similar procedure can be followed for the case
Λ(um, Fm) < 0: having established that a NE is never reached, it is sufficient to
note that the left-hand side of (27) is strictly smaller than its right-hand side. When
Λ(um, Fm) = 0, it has been shown that a NE is reached and (27) always holds, thus
concluding the proof.

Theorem 1 provides the necessary and sufficient conditions (27) for existence
of a NE of the merchant planning game in an analytical fashion. However, as
mentioned in Sect. 3.3, according to game-theory literature (Fudenberg and Tirole
1991), uniqueness of NE is generally not guaranteed. Therefore, it is possible that
multiple different investment solutions fulfill (27). Since the focus of this work is not
on identifying all possible NE of the merchant planning game but rather on inves-
tigating whether merchant planning can yield the same social welfare maximizing
solution as centralized planning, we will seek for the NE solution yielding the largest
social welfare.

Therefore, the optimization model we will employ for determining the merchant
planning solution is formulated as follows:

min
um, Fm, fm,t

Gn,t , Dn,t , pn,t
,∀m,∀n,∀t

S =
∑

m

Tm(um, Fm)

+
∑

t

∑

n

wt
[
Cn,t

(
Gn,t

) − Bn,t
(
Dn,t

)]
(28)

Subject to (3)–(9),

umFm

∑

t

wt
(
λnrm ,t − λnsm ,t

)
fm,t = um

(
Fm + F0

m

)(
T F
m + T V

m Fm
)
,∀m (29)

This problem is similar to the one determining the centralized planning solution
(Sect. 2), but it also considers the NE condition (29) of Theorem 1, to be verified on
each network branch.
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4.3 Theoretical Comparison of Centralized and Merchant
Planning Solutions

Given the analytical formulations of the optimization problems determining the
centralized solution (CS) (Sect. 2) and the merchant solution (MS) under the partic-
ipation of a “sufficiently large” number of players (Sect. 4.2), this Section aims at
theoretically analyzing under which conditions the two solutions are identical. Based
on our analysis, we claim that this equivalence holds if the following conditions are
satisfied:

(A1) Fixed investment costs are neglected, i.e., T F
m = 0,∀m.

(A2) The network is radial and does not include any loops, i.e., L = ∅.
The sufficiency of the aforementioned conditions A1 and A2 is theoretically

proved through Theorem 2 below. This theorem claims that if A1 and A2 hold, then
the CS and MS coincide. In order to simplify the theoretical analysis, two auxiliary
conditions are introduced:

(B1) The operational timescale of the planning problem includes a single period,
i.e., |T | = 1.

(B2) The existing capacity of every branch is zero, i.e., F0
m = 0,∀m.

Theorem 2 The CS determined by problem (1), (3)–(9) and the MS determined by
problem (28), (3)–(9), (29) coincide if conditions A1, A2, B1, and B2 hold.

Proof Without loss of generality, it is assumed that the capacity addition of the CS is
positive for all branches, i.e., Fm > 0,∀m. If this is not the case for some branches,
the following analysis can be performed on the subset of branches M̃ ⊂ M for which
this assumption holds, i.e., M̃ = {m ∈ M : Fm > 0, um = 1}. If this is not the case
for any branch, i.e., Fm = 0, um = 0,∀m, it can be shown that the CS and MS
coincide as both sides of the NE conditions (29) are zero.

Given condition B1, the subscript t is omitted in the remainder of this proof. Under
the current assumptions, a simplified expression can be derived for the problem (1),
(3)–(9) determining the CS. Given condition A1, the investment cost term (2) in the
objective function (1) can be rewritten as:

Tm = T V
m Fm,∀m (30)

Regarding the constraints, (7) is omitted as a result of condition A2. Assuming
without loss of generality a “positive” power flow on each branch (i.e., power flows
from the reference sending node to the reference receiving node), we implicitly
account for constraints (5) by imposing:

fm = Fm,∀m (31)

These equations hold since (i) fm > Fm violates (5) given that F0
m = 0 from

condition B2 and ii) fm < Fm is suboptimal as the unused capacity Fm− fm increases
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the objective function (1). As a result of the above, by combining (4) and (6) and by
rewriting each of the (8) and (9) as two separate constraints, the problem determining
the CS can be reformulated as:

min
Fm,∀m

Gn, Dn,∀n
S =

∑

m

T V
m Fm +

∑

n

[Cn(Gn) − Bn(Dn)] (32)

Subject to:

Dn +
∑

m

ϕn,mFm − Gn = 0 : λn,∀n (33)

−Gn ≤ 0 : μ−
n ,∀n (34)

Gn − Gmax
n ≤ 0 : μ+

n ,∀n (35)

−Dn ≤ 0 : ν−
n ,∀n (36)

Dn − Dmax
n ≤ 0 : ν+

n ,∀n (37)

The Lagrangian function associated with this optimization problem is expressed
as:

L =
∑

m

T V
m Fm +

∑

n

[Cn(Gn) − Bn(Dn)]

+
∑

n

λn

(
Dn +

∑

m

ϕn,mFm − Gn

)

−
∑

n

μ−
n Gn +

∑

n

μ+
n

(
Gn − Gmax

n

)

−
∑

n

ν−
n Dn +

∑

n

ν+
n

(
Dn − Dmax

n

)
(38)

Derivation of the Lagrangian with respect to Fm yields the following set of
necessary conditions for optimality:

∂L

∂Fm
= T V

m +
∑

n

ϕn,mλn = 0,∀m (39)

The term ϕn,m in (39) denotes the element in the nth row and mth column of the
sensitivity matrix �, describing the network topology. For each column m of �, we
have ϕnsm ,m = 1 and ϕnrm ,m = −1, while ϕn,m = 0 for all nodes n not connected to
branch m. Therefore, (39) can be rewritten as:
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T V
m + λnsm − λnrm = 0,∀m (40)

Regarding the MS, as a result of conditions A1, B1, B2, and (31), the necessary
and sufficient conditions (29) for achieving NE can be rewritten as:

λnrm − λnsm = T V
m ,∀m (41)

The optimality conditions (40) of the CS are equivalent to the NE conditions (41)
of the MS. This implies that the CS and the MS coincide, concluding the proof.

It should be noted that although the above theoretical analysis considers the auxil-
iary simplifying hypotheses B1 and B2, the case studies presented in the following
Sections will numerically demonstrate that B1 and B2 are not necessary. In other
words, it will be shown that the CS and the MS coincide even when B1 and B2 do
not hold. On the other hand, these case studies indicate that A1 and A2 are not only
sufficient but also necessary: the CS and MS are in principle different when one of
the conditions A1 or A2 does not hold.

The physical significance behind the sufficiency and necessity of conditions A1
and A2 is particularly interesting and is discussed below:

Condition A1: As demonstrated in Kirschen and Strbac (2004), under the CS, the
total congestion revenue in the whole network covers exactly the variable compo-
nent of the total investment cost but does not cover fixed costs. On the other hand,
the NE condition (29) of the MS requires that the total congestion revenue covers
exactly the total investment cost (i.e., both variable and fixed components), as the
rational merchant transmission companies do not accept economic losses. There-
fore, as demonstrated by the case studies in the following Sections, when fixed costs
are accounted for, the total network capacity procured under the MS is lower than
the respective capacity procured under the CS, in order to increase the collected
congestion revenue and thus cover the fixed costs.

Condition A2: Under the CS, although the total congestion revenue in the whole
network is equal to the variable component of the total investment cost, this equality
does not necessarily hold for each individual network branch when the network is
meshed; in such cases, some branches may generate higher congestion revenue than
their variable investment cost, while other branches may generate lower congestion
revenue, as demonstrated in Kirschen and Strbac (2004). On the other hand, the NE
condition (29) of the MS requires that this equality holds on an individual branch
basis, as demonstrated by the case studies in the following Sections. This requirement
makes sense since the impact of each infinitesimal player’s decisions on system
conditions is negligible. As a result, each of these players assesses its decision for
each branch individually, ignoring the impact of this decision on the congestion
revenue associated with other branches; it will strive to increase its procured capacity
on a branchm if the obtainable congestion revenue fromm is higher than the required
investment cost and decrease it if the obtainable congestion revenue from m is lower
than the required investment cost. Therefore, as demonstrated by the following case
studies, the CS and MS do not coincide when the network is meshed.
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Table 11 Centralized and merchant planning solutions in 2-node system

Case 1.1 Case 1.2

CS MS CS MS

F1 (MW) 800 800 800 690

Congestion revenue (£/h) 3200 3200 3200 5042

Investment cost (£/h) 3200 3200 5483 5042

4.4 Case Studies on 2-Node System

The 2-node system (Fig. 1) and the relevant assumptions considered in the case
studies of this Section are the same with the ones considered in Sects. 3.4 and 3.5.
The only difference is that two different cases regarding the transmission investment
cost have been examined in this Section, with the respective CS and MS presented
in Table 11.

Case 1.1: The investment cost includes only a variable component T V
1 = 4£/MWh

while fixed costs are neglected (T F
1 = 0). In this case, the CS and MS are identical

and involve investment on a line of 800MW (Table 11). This result follows from
Theorem 2, as conditions A1, A2, B1, and B2 hold and therefore the CS and MS
must coincide.

Case 1.2: The investment cost includes both a variable component T V
1 = 4 £/MWh

and a fixed component T F
1 = 2283 £/h. The capacity procured under the CS does not

change with respect to Case 1.1 and, as discussed in Sect. 4.3, the congestion revenue
does not cover the full investment cost, due to the existence of fixed costs. On the
other hand, the capacity procured under theMS is now reduced to 690MW, to ensure
that the congestion revenue covers the full investment cost (Sect. 4.3). This result
suggests that condition A1 (zero fixed investment costs) is a necessary condition for
the CS and MS to coincide.

4.5 Case Studies on 3-Node System

The considered 3-node system along with its relevant generation and demand data
(Kirschen and Strbac 2004) is illustrated in Fig. 5. It is assumed that the existing
capacity of the three branches is zero, their investment costs are equal and their
reactances after any capacity addition are equal. The operational timescale of the
planning problem includes two time periods with weighting factors w1 = 0.25 and
w2 = 0.75. Generation costs are assumed to be quadratic functions of the respective
power productions and demands are assumed inelastic. Four different cases have
been examined, with the respective CS and MS presented in Table 12.
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Fig. 5 Topology and parameters of 3-node system

Case 2.1: The investment cost includes only a variable component T V
m =

3.42 £/MWh,∀m, while fixed costs are neglected. In contrast to Case 1.1, the CS and
MS are different (Table 12). As discussed in Sect. 4.3, while the equality between
congestion revenue and investment cost holds for each individual network branch
under the MS, the same does not hold under the CS. This result suggests that condi-
tion A2 (no network loops) and/or condition B1 (single period in the operational
timescale) is/are necessary condition(s) for the CS and MS to coincide.

Case 2.2: In order to investigate which of the conditions A2 and B1 is critical for
the equivalence between the CS and MS, we consider a case where capacity can be
added only on branches 1 and 2, imposing F3 = 0 in the two optimization problems.
All the other parameters remain the same as in Case 2.1. In this scenario, the CS
and MS are identical (Table 12). This suggests that A2 is a necessary condition for
the CS and the MS to coincide, since in this scenario the network is radial and does
not include loops. On the other hand, it also demonstrates that condition B1 is not
necessary for the CS and MS to coincide.

Case 2.3: In order to further explore this interesting result, we consider a theoretical
scenario where capacity can be added on all three branches but Kirchhoff’s voltage
law (KVL), expressed through (7), is neglected in both optimization problems. All
the other parameters remain the same as in Case 2.1. In this theoretical scenario,
the CS and MS are again identical (Table 12). This result suggests that the physical
reason behind the necessity of condition A2 lies in the unavoidable consideration of
the KVL in meshed networks. As already noted for Case 2.2, it seems that condition
B1 is not necessary for the equivalence between the CS and MS.
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Table 12 Centralized and merchant planning solutions in 3-node system

Case 2.1 Case 2.2 Case 2.3 Case 2.4

CS MS CS MS CS MS CS MS

F1 (MW) 1963 2193 2678 2678 2044 2044 2044 1686

F2 (MW) 2887 2808 3991 3991 2089 2089 2089 2211

F3 (MW) 1387 1609 0 0 2156 2156 2156 1811

Congestion
revenue—Branch 1
(£/h)

6690 7511 9172 9172 7002 7002 7002 8057

Investment
cost—Branch 1
(£/h)

6723 7511 9172 9172 7002 7002 9285 8057

Congestion
revenue—Branch 2
(£/h)

8337 9615 13,667 13667 7154 7154 7154 9855

Investment
cost—Branch 2
(£/h)

9887 9615 13,667 13,667 7154 7154 9437 9855

Congestion
revenue—Branch 3
(£/h)

6333 5510 – – 7382 7382 7382 8485

Investment
cost—Branch 3
(£/h)

4750 5510 – – 7382 7382 9665 8485

Congestion
revenue—Total
(£/h)

21,360 22,636 22,839 22,839 21,538 21,538 21,538 26,397

Investment
cost—Total (£/h)

21,360 22,636 22,839 22,839 21,538 21,538 28,387 26,397

Case 2.4: The KVL is neglected as in Case 2.3 but the investment cost also includes
a fixed component T F

m = 2283 £/h,∀m. In contrast to Case 2.3, the CS and the MS
do not coincide. As discussed in Sect. 4.3, while the total congestion revenue covers
the total investment cost under the MS, the same does not hold under the CS due to
the existence of fixed costs. Like in Case 1.2, this result suggests that A1 is necessary
for the CS and MS to coincide.

4.6 Case Studies on IEEE 24-Node System

Although the case studies of Sects. 4.4 and 4.5 validate the theoretical analysis
of Sect. 4.3, demonstrating the criticality of conditions A1 and A2 for the equiv-
alence between the CS and MS, they are carried out on very simple 2-node and
3-node systems, respectively. In order to establish that these insights are still valid in
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larger, more realistic systems, the IEEE 24-node system is examined in this Section.
This system along with its relevant network, generation and demand data (Conejo
et al. 2010), is illustrated in Fig. 6. All lines represent existing branches that can
be expanded. The operational timescale of the planning problem includes a single
time period. Generation costs and demand benefits are assumed to be quadratic func-
tions of the power productions and consumptions, respectively. Three different cases
have been examined, with the respective CS and MS presented in Table 13. For
compactness reasons, branches with zero capacity additions in all three cases have
been omitted from Table 13.

Fig. 6 Topology and parameters of IEEE 24-node system
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Table 13 Centralized and merchant planning solutions in IEEE 24-node system

Case 3.1 Case 3.2 Case 3.3

CS MS CS MS CS MS

F1 (MW) 322.02 323.03 241.53 241.53 241.53 246.39

F3 (MW) 185.06 179.81 93.91 93.91 93.91 88.39

F11 (MW) 140.21 144.91 146.45 146.45 146.45 142.36

F23 (MW) 311.42 310.99 117.54 117.54 117.54 82.12

F26 (MW) 209.62 202.36 0 0 0 0

F28 (MW) 234.70 240.27 548.91 548.91 548.91 567.43

F34 (MW) 4.33 0 0 0 0 0

Congestion revenue (£/h) 3928 4108 2521 2521 2521 2682

Investment cost (£/h) 4135 4108 2521 2521 2771 2682

Case 3.1: The investment cost includes only a variable component (presented in
Fig. 6 for each branch), while fixed costs are neglected. As in Case 2.1, the CS and
MS are different (Table 13), suggesting that condition A2 (no network loops) and/or
condition B2 (zero existing capacity on every branch) is/are necessary condition(s)
for the CS and MS to coincide.

Case 3.2: In order to investigate which of the conditions A2 and B2 is critical for
the equivalence between the CS and MS, following the rationale of Case 2.3, we
consider a theoretical scenario where the KVL is neglected. As in Case 2.3, the CS
andMS are identical (Table 13). This result again supports the idea that condition A2
is necessary for the CS and MS to coincide. On the other hand, it also demonstrates
that condition B2 is not necessary for the CS and MS to coincide.

Case 3.3: The KVL is neglected as in Case 3.2 but the investment cost also includes
a fixed component T F

m = 50 £/h,∀m. In contrast to Case 3.2, the CS and the MS are
different. As in Cases 1.2 and 2.4, this suggests that condition A1 is necessary for
the CS and MS to coincide.

5 Conclusions and Future Work

Merchant transmission investment planning has recently emerged as a promising
alternative or complement to the traditional centralized planning paradigm and it is
considered as a further step toward the deregulation and liberalization of the elec-
tricity industry. However, its widespread application requires addressing two funda-
mental research questions: which entities are likely to undertake merchant transmis-
sion investments and whether this planning paradigm canmaximize social welfare as
the traditional centralized paradigm. Unfortunately, previously proposed approaches
to quantitatively model this new planning paradigm do not comprehensively capture
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the strategic behavior and decision-making interactions between multiple merchant
investors.

This Chapter has proposed a novel non-cooperative game-theoretic modeling
framework to capture these realistic aspects of merchant transmission investments
and provide insightful answers to the above research questions.More specifically, two
different models, both based on non-cooperative game theory, have been developed.

The first model adopts an equilibrium programming approach. The decision-
making problem of each merchant investing player is formulated as a bi-level
optimization problem, accounting for the impacts of its own actions on locational
marginal prices (LMP) as well as the actions of all competing players. This bi-
level problem has been formulated for different types of players that can potentially
participate in merchant investments (merchant transmission companies, generation
companies, and demand companies) and solved after converting it to a mathematical
program with equilibrium constraints (MPEC). An iterative diagonalization method
is employed to search for the likely outcome of the strategic interactions between
multiple players, i.e., Nash equilibria (NE) of the game.

Case studies on a simple 2-node system have provided the following answers to
the above research questions:

(i) Which entities are likely to undertake network investments under the merchant
planning paradigm?

Networks investments will be mostly undertaken by generation companies in areas
with low LMP and demand companies in areas with high LMP (higher-motivated
players), as apart from collecting congestion revenue they also increase their energy
surpluses. Merchant transmission companies, generation companies in areas with
high LMP and demand companies in areas with low LMP (lower-motivated players)
could also be motivated to invest by the collection of congestion revenue under
certain circumstances. Case studies have illustrated the interdependencies between
the different players’ decisions; in certain cases, the large network capacity desired
by higher-motivated players reduces the obtainable congestion revenue by lower-
motivated players and thus prevents the latter from investing in capacity.

(ii) Is the merchant planning paradigm able to achieve the same (maximum) social
welfare as the traditional centralized planning approach?

The merchant planning solution approaches the centralized one as the number of
competing players increases. The largest deviations from the centralized solution are
observed in the case where the set of participating players includes only merchant
transmission companies, as they procure significantly lower capacity in order to
increase their profits through higher LMP differentials.

However, because of its iterative nature, this first model cannot guarantee conver-
gence to existing NE, especially as the number of players and the size of the network
increase; as a result, the examined case studies are limited to a 2-node system with
up to 10 players. In other words, although this model provides insightful answers to
the first question, it cannot establish whether the merchant planning solution yields
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the same solution as centralized planning under the participation of a “sufficiently
large” number of competing investors, as it cannot deal with a large number of
players, especially in large networks.

In order to address this challenge and provide insightful answers to this second
research question, a second model has been developed, where the set of merchant
investors is approximated as a continuum. The proposed approximation makes the
impact of each infinitesimal player’s decisions on system quantities negligible,
allowing us to derive mathematical conditions for the existence of a NE solution
in an analytical fashion.

Based on this model, we have performed an analytical comparison of the
merchant planning solution under the participation of a “sufficiently large” number
of competing investors against the one obtained through the traditional centralized
paradigm, as well as a numerical comparison through case studies on a 2-node, a
3-node, and a 24-node system. These comparisons have demonstrated that merchant
planning can achieve the same (maximum) social welfare as the centralized planning
approach only when the following conditions are satisfied:

(a) fixed investment costs are neglected, and
(b) the network is radial and does not include any loops.

As these conditions do not generally hold in reality, our findings suggest that
even a fully competitive merchant transmission planning framework, involving the
participation of a very large number of competingmerchant investors, is not generally
capable of maximizing social welfare, as implied by previous work.

This conclusion implies that some sort of regulatory interventions will be required
to align the outcome of merchant transmission investment planning with social opti-
mality. However, these interventions need to remain at a minimum level, in line
with the vision of deregulation. The analytical design of such regulatory measures
constitutes a significant challenge for future research.

Furthermore, the twomodels of merchant planning developed in this Chapter—as
well as the rest of themodels in the relevant literature—assume afixed generationmix
and do not consider generation expansion decisions. In reality, however, transmission
and generation expansion decisions are interdependent. In this context, future work
aims at developing an integrated transmission and generation planning framework
and comparing the impacts of centralized and merchant transmission planning on
generation expansion decisions.
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