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Abstract. This work reviews recent molecular statistics (MS) numerical
experiments of cracked samples, and discusses the crack-tip region stress field of
ideal brittle materials. Continuum-based linear elastic fracture mechanics,
indeed, breaks down at extremely small scale, where the discrete nature of atoms
is considered. Surprisingly, recent results have shown that the concept of stress
intensity factor (SIF) is still valid. In this work, by means of MS simulations on
single-edge cracked samples of ideal brittle silicon, it is shown that the stress
intensity factor derived from the virial stress may be useful to describe the
fracture at extremely small dimensions and to quantify the breakdown of
continuum-based linear elastic fracture mechanics. However, it is still debated
whether a continuum-based concept such as the “stress” should be applied to a
system made of atoms.
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1 Introduction

With recent developments in miniaturization of electronics devices such as nano and
micro-electromechanical systems (NEMS/MEMS), issues usually addressed at the
macroscale, i.e. fatigue and fracture, have been brought into a completely new “scale”
[1, 2]. At the same time, developments in nanotechnology give nowadays a completely
new way at which the fatigue and fracture can be studied with a remarkable potential
impact in several fields of engineering [3—10]. At such small scales, where discrete
nature of atoms can’t be ignored, the continuum concepts largely used at the macro-
scale become questionable [11-13].

While methods based on energy have shown good potential to be extended from
continuum to discrete system [12, 14-18], it is still debated whether the concept of
“stress” should be applied to a system made of atoms [19, 20]. Stress is, indeed, a
continuum concept, originated from the study of strength and failure of solid, and
commonly defined as the quantity that represents the internal forces on a defined plane
of a continuous material. Thus, questions arise on the definition of “atomic stress”.
When investigating fracture at the atomic scale, the virial stress tensor is commonly
employed to derive mechanical stresses acting on atoms [20-22]. Setting aside the
debate on the validity of the virial stress as a representation of mechanical stress at
atomic scale, in the present work the focus is on the applicability of classic continuum
concepts in the presence of defects, such as the stress intensity factor (SIF). By
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reviewing recent molecular statistics (MS) analyses on single-edged cracked samples
loaded under mode I [23], and representative of ideal brittle fracture, it is demonstrated
that the virial stress shows the trend of inverse square root singularity and that com-
putation of the SIF according to Irwin’s concept is possible. Furthermore, the break-
down of continuum linear elastic fracture mechanics, recently defined by means of
energy concepts [11-13], is here quantified by using merely the stress fields.

It is concluded that the SIF from atomic stress may be useful in characterizing
fracture at atomic scale, provided that the virial stress is accepted as representative of
atomic mechanical stress. On the other hand, energy concepts should be anyway
preferred for future developments, since they can provide a direct equivalence between
continuum, discrete systems and among different scales.

2 Review of Recent Molecular Statistics Simulations
on Cracked Samples

Recently, fracture tests by means of MS simulations were conducted by using open-
source code LAMMPS [24]. While details can be found in [23], important aspects are
presented hereafter. The modified Stillinger-Weber (SW) interatomic potential [25] was
employed. The SW potential is representative of ideal brittle fracture, and often used
when studying single crystal silicon. The focus was on single-edge cracked sample,
loaded under mode I. Figure 1 depicts an example of the samples and orientation.
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Fig. 1. Cracked samples employed in the molecular statistics analyses and orientation [23]. The
thickness of the simulation cell is indicated as .

Several specimens where considered, scaling their size until few nanometers: the
width of the sample W varied from 198 nm to 9.8 nm, while the crack length a was
kept equal to W/3. The mechanical properties were given by the following material
constants: C;; = 201 GPa, Cy, = 51.4 GPa and C4y = 90.5 GPa. Along the direction
[111], an ideal material strength G15 of 35 GPa at critical strain - = 0.3 was obtained.
A stepwise increment of strain € is applied at the upper and lower layers of atoms
according to Fig. 1, and the strain is increased until final fracture. At fracture, the
critical displacement dc- (maximum displacement before failure) is obtained. The
mechanical stress is obtained dividing the virial stress (stress X volume quantity) by



Some Considerations on Stress Intensity Factor at Atomic Scale 321

the per-atom volume at ec = 0.3, i.e. 24.44 A3. This value is, indeed, a more reliable
estimation of the atomic volume in regions that are highly deformed, such as close to
the crack tip at failure conditions. Analyses were conducted at 0 K and fully included
the lattice trapping.

3 Results and Discussion

The crack tip stress fields of some selected considered geometries are presented in
Fig. 2a for the sake of clarity. The values of the atoms at the crack tip are plotted at
r=0.1 A for convenience, since as well known the log-log scale does not allow the
value of 0. The depicted stress is the mechanical atomic stress, i.e. virial stress divided
by the per-atom volume as explained in the previous section.
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Fig. 2. (a) Near crack-tip atomic stress distribution for selected geometries; atomistic stress is
derived from virial stress/per-atom volume. The stress values of the atoms at the crack tip are
plotted for 7 = 0.1 A rather than 0 A in order to summarize in a single log-log scale graph both
stress distribution and crack-tip values. (b) Critical stress intensity factors versus the variation of
the specimen width W.

The figure shows two very important results:

e The MS analyses do not predict the infinite stress at the crack-tip but rather a finite
value, i.e. the ideal material strength Gjs, regardless of the specimen size. This
indicates that the fracture, in the case of ideal brittle materials, is ultimately gov-
erned by atoms at crack tip.

e Even if the stress singularity is missing, near the crack tip region the stress still
varies with 1//°° as expected from continuum LEFM. Figure 2a depicts only
selected geometries for the sake of clarity, but same results are obtained for all the
considered samples.

The results allow the quantification of the SIF at failure Kj; (i.e. at critical dis-
placement dc), according to the classic Irwin’s definition [26, 27]:
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Kif = oyV2nr, (1)

where Gy is the atomistic mechanical stress, perpendicular to the crack plane; r is the
distance from the crack-tip along the crack plane. The results are presented in Fig. 2b
and compared with other experimental and numerical works by other authors [16, 17,
28]. Ki¢ ~ 0.97 MPa-m"? is constant for all the geometries, and it agrees well with the
fracture toughness of single crystal silicon, including bulk samples [29].
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Fig. 3. Normalized SIF at failure versus the ratio of singular stress field length Ax and fracture
process zone length Rgpz. Numerical values are reported in [23].

Finally, the comparison with continuum-based linear elastic solutions conducted in
[23] is summarized in Fig. 3. The stress intensity factors at failure are normalized vs
the K¢ of the largest sample W = 198.41 nm, and plotted versus the length of the
singular stress field Ax normalized by the fracture process zone Rppy. Ak is the
distance from the crack-tip at which the stress deviates more than 5% from the expected
1/t%3, while the Rppy is a constant value taken from the literature [12, 13]. When
continuum and atomistic simulations are overlapped, the continuum-based formulation
breaks down when the ratio between Ak and Rgpy is approximately 4-5, in agreement
with [12, 13]. The atomistic simulations, instead, show a clearly scale-independence,
confirming that ideal brittle fracture is ultimately governed by atomic bond breaking
[7, 17].

Concluding, the concept of SIF is still surprisingly valid if the atoms are modeled,
and static crack and ideal brittle material containing no other defects are considered.
This result also agrees well with conclusions made by other authors [30]. Provided that
the virial stress is affectively accepted as representative of atomic stress, crack tip
region stress field of molecular system may be described by continuum-based SIF
concept.
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