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Preface

This volume contains sixty-one six-page papers/two-page abstracts presented at the
“Third International Conference on Theoretical, Applied and Experimental
Mechanics,” (ICTAEM_3) held in Athens, Greece, June 14–17, 2020. The
papers/abstracts are arranged in three topics and two special symposia. The three
topics are: “Materials: Properties, Manufacturing, Modelling” with sixteen contri-
butions, “Fracture” with five contributions and “Miscellaneous (Computational
Mechanics, Dynamics, Nanomaterials, Plasticity, Wave Propagation)” with eleven
contributions. The two symposia are: “Symposium on Theoretical and
Experimental Approaches in Mechanics of Solids with Nonhomogeneities and
Defects,” by Roman Kushnir with twenty-four contributions and “Fracture
Nanomechanics, Fatigue and Fracture at Small Scales (experiments and simula-
tions)” by Pasquale Gallo with five contributions. The papers of the tracks have
been contributed from open call, while the papers of the two symposia have been
solicited by the organizers, to who we are greatly indebted.

ICTAEM_3 will focus in all aspects of theoretical, applied and experimental
mechanics including biomechanics, composite materials, computational mechanics,
constitutive modeling of materials, dynamics, elasticity, experimental mechanics,
fracture, mechanical properties of materials, micromechanics, nanomechanics,
plasticity, stress analysis, structures, wave propagation.

The attendees of ICTAEM_3 will have the opportunity to interact with the most
outstanding world leaders and get acquainted with the latest developments in the
area of mechanics. ICTAEM_3 will be a forum of university, industry and gov-
ernment interaction and exchange of ideas in an area of utmost scientific and
technological importance.

We are sure that besides the superb technical program, the attendees of
ICTAEM_3 will enjoy the city of Athens. It is considered as the ancient capital
of the world with a long fascinating history dating from the Neolithic Age, the city
of the goddess of wisdom Athena, a center for the arts, learning and philosophy,
home of Plato’s Academy and Aristotle’s Lyceum, the birthplace of democracy and
of Western civilization, of the most intellectual and artistic ideas, the cradle of
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democracy, the host city of the first modern-day Olympic Games in 1896, and the
Summer Olympics in 2004.

More than a hundred participants attended ICTAEM_3. The participants of
ICTAEM_3 came from 20 countries. Roughly speaking 14% came from Europe,
24% from the Far East, 7% from the Americas and 55% from other countries. We
are happy and proud to have welcomed in the historic city of Athens well-known
experts who came to discuss problems related to the analysis and prevention of
failure in structures. Presentation of technical papers alone is not enough for
effective scientific communication. It is the healthy exchange of ideas and scientific
knowledge, formal and informal discussions, together with the plenary and con-
tributed papers that make a fruitful and successful meeting. Informal discussions,
personal acquaintance and friendship play an important role.

We very sincerely thank the authors who have contributed to this volume, the
symposium/sessions organizers for their hard work and dedication and the referees
who reviewed the quality of the submitted contributions. The tireless effort of the
members of the organizing committee as well as of other numerous individuals, and
people behind the scenes is appreciated. We are deeply indebted to Dr. Stavros
Shiaeles for his hard work and dedication in the organization of the conference.
Finally, a special word of thanks goes to Dr. Maria Shiaeles for her continuous
collaboration and support.

Emmanuel GdoutosMarch 2020
Maria Konsta-Gdoutos
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High-Speed Mode-I Delamination

Tianyu Chen1, Christopher M. Harvey1(&) , Simon Wang1,2 ,
and Vadim V. Silberschmidt1

1 Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
c.m.harvey@lboro.ac.uk

2 Hebei University of Engineering, Handan 056038, China

Abstract. The analytical theory of mode-I delamination propagation in double
cantilever beams (DCBs) under high loading rates is developed by accounting
for structural vibration and wave dispersion, and by using Euler-Bernoulli beam
theory. The developed analytical theory is validated against experimental data
and against finite element method (FEM) simulations, showing excellent
agreement. It is shown that the developed analytical theory can accurately
calculate energy release rate (ERR) for both stationary and propagating
delamination, and that structural vibration can have a significant effect on ERR.
It is further shown how the theory can be used to post-process experimental
results from high-speed delamination tests to determine fracture toughness.
Among other examples, the work is therefore expected to be useful to engineers
and academic researchers to determine the initiation, arrest and propagation
fracture toughness of laminated materials against delamination. The developed
theory also provides useful benchmark solutions for the development of
numerical codes.

Keywords: Double cantilever beam � Dynamic energy release rate � Dynamic
fracture toughness

1 Introduction

Double cantilever beams (DCBs) have been widely used to determine the fracture
toughness of materials under mode I loading conditions. A standard method has been
established for mode-I interlaminar fracture toughness testing with DCBs [1], but it is
only applicable for quasi-static loading. Under dynamic loads, where inertia is sig-
nificant, there has been comparatively little research carried out. Moreover, what
studies there have been did not consider structural vibration and consequently provided
a ‘smoothed’ solution for energy release rate (ERR). Vibration, however, can be sig-
nificant under high loading rates, which causes ERR to oscillate with a spectrum of
frequencies and amplitudes.

For a stationary crack, the authors have presented an analytical solution for the
ERR of a DCB under constant high-rate opening [2], which is accurate for the first
vibration mode but not for high order vibration modes. Later, the authors developed the
analytical solution for the same case, but including higher order vibration modes, for
cyclic loading [3], and for cracks on elastic interfaces [4]. The improved representation

© Springer Nature Switzerland AG 2020
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of the uncracked region in the latter work captures the crack tip deformation more
accurately, and consequently, the ERR also. The elastic interface in that work is also
relevant for the study of crack process zones.

It is worth noting that Ref. [4] uses a global energy balance approach and shows
that the dispersive propagation of flexural waves must be considered in order to capture
contributions to the ERR from higher-order vibration modes. Qualitatively, this is
because not all the energy stored in the vibrating beam is immediately available to the
crack tip to drive propagation at a point in time since waves propagate with a finite
wave speed. Energy flow in and out of the crack tip region must be considered, which
means accounting for the dispersive propagation of flexural waves. By contrast, if the
conventional global energy balance approach is used, as in Refs. [5, 6], then when
vibration is included, the ERR diverges as higher order vibration modes are added [2].

Whereas the previous work has been for either been stationary cracks [2–6], or for
propagating cracks without vibration effects [5, 6], this article will present for the first
time the analytical theory for the ERR of a propagating crack with vibration effects at
high loading rates. Among other examples, the complete theory is expected to be useful
to engineers and academic researchers to determine the dynamic initiation and prop-
agation fracture toughness of laminated materials. It also provides useful benchmark
solutions for the development of numerical codes.

2 Analytical Theory for DCBs Under High Rates of Loading

Consider the DCB geometry shown in Fig. 1a, where v is the constant opening rate
applied from t ¼ 0, and vt is the opening displacement. The Euler-Bernoulli beam
assumption applies since h � a, where h is the thickness of one DCB arm, and a is the
crack length. Figure 1b shows the coordinate system and the effective boundary con-
ditions under which the crack tip is assumed to be clamped.

Fig. 1. (a) Symmetric double cantilever beam; (b) effective boundary condition

4 T. Chen et al.



2.1 ERR Solution for a Stationary Crack

According to Ref. [2], the deflection of the beam in Fig. 1b, which is effectively half a
DCB, under constant opening rate is

w x; tð Þ ¼ va2
ffiffiffiffiffiffi

qA
EI

r

X

1

i¼1

Ki

k3i
/i a� xð Þ sin xitð Þþ x3

2a3
� 3x
2a

þ 1
� �

vt ; ð1Þ

where for the ith mode, /i a� xð Þ is the mode shape, xi is the angular frequency, ki is
determined by the frequency equation of tanh kið Þ � tan kið Þ ¼ 0, and Ki is given as
Ki ¼ �1ð Þi

ffiffiffiffiffiffiffiffiffiffiffiffiffi

r2i þ 1
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

r2i � 1
p

with ri ¼ cosh kið Þ � cos kið Þ½ �= sinh kið Þ � sin kið Þ½ �.
According to Freund [7], the dynamic ERR, is

G ¼ M2 a; tð Þ
bEI

1� _a2

c20

� �

; ð2Þ

where c20 ¼ E=q. By combining Eqs. (1) and (2), the dynamic ERR for a stationary
crack (that is, _a ¼ 0) is

G ¼ EI
b

w 2ð Þ a; tð Þ
h i2

¼ 9EIv2t2
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ffiffiffiffiffiffiffiffiffiffiffi

qAEI
p

v2t
ba2

X

1

i¼1

Ki

ki
sin xitð Þþ 4qAv2

b

X

1

i¼1

Ki

ki
sin xitð Þ
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where b is the beam width, and A is the area of the beam’s cross-section.

2.2 ERR Solution for a Propagating Crack

Based on Eq. (2), and using the same technique as in Ref. [4] to account for the wave
dispersion, the analytical ERR solution for a propagating crack is obtained as

G ¼ 9EIv2t2

ba4
1� _a2

c20

� �

þ 12
ffiffiffiffiffiffiffiffiffiffiffi

qAEI
p

v2t
ba2

1� _a2

c20

� �

X

1

i¼1

Ki

ki
f 0i sin 1� _a

Cp
i

� �

xit

� �

; ð4Þ

where f 0i is a reduction factor for wave dispersion and CP
i is the phase speed of the ith

mode wave. The derivation of Eq. (4), with full details concerning each term, will be
published shortly in a full journal article by the authors.

2.3 Limiting Speed of Crack Propagation

In Eq. (4), the crack propagation speed _a should be no greater than c0 ¼
ffiffiffiffiffiffiffiffiffi

E=q
p

to
retain a positive ERR. Another constraint on _a is that it must be no greater than CP

1 , the
first mode wave phase speed, since the first mode wave modulates all the other waves
and carries the most vibrational energy. That is, if the crack propagates faster than _a,
the vibrational energy cannot be supplied to the crack tip to open the crack. This limit
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in 1D structures is the counterpart to Freund’s [7] limiting crack speed of CR (Rayleigh
wave speed) in a semi-infinite space. The ratio of these two limiting speeds is

Cp
1

CR
¼ k1

ffiffiffi

6
p 1þ m

0:862þ 1:14mð Þ ffiffiffiffiffiffiffiffiffiffiffi

1� m
p r ; ð5Þ

where r ¼ h=a is the aspect ratio of Euler-Bernoulli beam. Equation (5) shows limiting
speed in DCBs is not only determined by material properties but also by the geometry.
An examination of experimentally measured crack propagating speeds and the theo-
retical limiting crack speed predicted by Eq. (5) is given in Fig. 2.

3 Experimental and Finite Element Method Verification

There have been relatively few experimental studies of DCBs under high loading rates
[8]. Nevertheless, there is a series of experiments reported by Blackman et al. [6] at
high loading rates up to 15 ms−1. Considering their results for a loading rate of
10 ms−1, their crack length versus time results can be used to obtain the time-varying
crack propagation speed _a tð Þ, and to calculate ERR using Eq. (3) for the stationary
crack and Eq. (4) for the propagating crack. The results are presented in Fig. 3.

In Fig. 3, the fracture toughness for initiation and arrest are adopted from Ref. [9],
which numerically simulates the same tests from Blackman et al. [6]. It is seen that the
ERR calculated using the developed theory, presented in Sect. 2, can accurately predict
the fracture toughness for crack initiation under the dynamic regime. Moreover, the
ERR for crack propagation is always above the arrest fracture toughness except for
when crack arrest happens at around t ¼ 2:6 ms, as expected.

There were not sufficient data points from the experiments to accurately determine
the crack propagation speed, and so the developed theory was instead further verified
against FEM simulation results from Ref. [9]. The crack length versus time results from
the simulation were used to obtain the time-varying crack propagation speed, _a tð Þ, and
to calculate the ERR. Figure 4 compares the analytically predicted and the numerically
simulated. Excellent agreement is seen for this case of 10 ms−1 opening.

Fig. 2. Comparison of measured crack propagation speeds under various loading rates [6]:
(a) PEEK/carbon-fiber composite; (b) epoxy/carbon-fiber composite
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4 Conclusion

Analytical solutions for the dynamic ERR of a DCB resulting from high loading rates,
including vibration, are derived for both stationary and propagating cracks. These
solutions are verified against experimental results and FEM simulations. It is shown
that the developed theory can accurately predict ERR in comparison to numerical

Fig. 3. Dynamic ERR for 10 ms−1 opening rate using experiment data

Fig. 4. Dynamic ERR for 10 ms−1 opening rate using FEM data

High-Speed Mode-I Delamination 7



simulations; and can accurately determine the fracture toughness for crack initiation
and crack arrest in comparison to both experiments and numerical simulations.

To the best of the author’s knowledge, the theory presented here for the dynamic
ERR of stationary and propagating cracks, including vibration, has not been solved
before. These solutions are readily applicable to various engineering applications, and
in particular, are expected to be useful to engineers and academic researchers to
determine the initiation, arrest and propagation fracture toughness of laminated mate-
rials against delamination. The developed theory also provides useful benchmark
solutions for the development of numerical codes.
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Abstract. Polymethyl methacrylate (PMMA) is a quasi-brittle material and
dynamic behaviors usually present thermoplastic characteristic. But in some
cases, PMMA breaks with the complete brittle characteristic. The complex
behaviors need to be studied for a further understanding. A series of PMMA
specimens are designed to study the behaviors on a Spilt Hopkinson Pressure
Bar (SHPB) device. The complex behaviors are found to be dominated by the
impulsive energy and there exists a critical energy for the specimens to create
the complete brittle fracture.

Keywords: Thermoplastic deformation � Brittle fracture � Impulsive energy

1 Introduction

Dynamic fractures of brittle materials usually present very complex modes and various
theories are tried to explain the fracture mechanism from different points of view. The
fractures are thought to involve many factors including loads, material properties,
microstructures, geometries and so on. The concerning factors have been studied
broadly in published literatures, but it is still difficult to determine the factor that can
play a dominant role in fractures.

PMMA is generally recognized as a brittle material with the properties of light
weight, high strength and transparency. When compressed statically, cylindrical spec-
imen deforms in barrel shape like metal one and presents high ductility with the features
of elasto-plastic deformation. However, under SHPB impact loading the primary
deformation is characterized by fractures and the material presents strong sensitive
characteristics of dynamic behaviors. PMMA is composed of high molecule mass and
glass transition occurs at the lower temperature. Under impact loading, thermoplastic
deformations usually occur on fragment debris and affect the dynamic behaviors.

In order to study the dynamic fracture characteristics, a series of cylindrical PMMA
specimens are designed for SHPB experiments to test size effects on the fractures. The
specimens are assigned with two diameters of 8 mm and 15 mm. The lengths of 8, 10,
12 and 14 mm are set for the 8 mm diameter specimens with the aspect ratios (L/D) of
1, 1.25, 1.5 and 1.75, respectively. The 15 mm diameter specimens are designed with
the purpose to correlate size effects with the responses, the specimens are designated
with the aspect ratios of 1, 1.27, 1.53 and 1.8 that equal to the 8 mm diameter spec-
imens one by one. The specimen lengths are then determined as 15, 19, 23 and 27 mm.
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In the meantime, the 8 length specimens present a monotonic length sequence which
can be used to study length effects on dynamic fractures.

2 Size Effects on Dynamic Fractures

To simplify the investigation of size effects, SHPB device sets identical incident
loading to all the tested specimens. Under the identical loading, specimen size becomes
the only variable in SHPB experiments and dynamic responses can be studied con-
cerning the effects of specimen size. The experiment settings allow the size effects just
resulting from the size itself and correlate the fracture modes with the size effects.

Size effects on strengths of the specimens have been discussed and aspect ratio is
validated as an important parameter to affect the strengths [1]. This paper focuses on
dynamic fractures of the specimens. In the SHPB experiments, the 8 length specimens
break in essential different modes. Figure 1 shows the fracture mode of a 27 mm length
specimen that has the longest length with the largest volume in the 8 length specimens.
In the experiments, impact (or front) end contacting incident bar is colored in black and
the rear end is kept in original form to distinguish the fragment debris and make the
specimen recovered easily. The fracture shows that large debris comes from the two
ends of the specimen and the small and uniform debris primarily breaks from the
middle section. The largest debris shows the rear end remained in cylindrical shape
with little damages on the circumferential surface, while the impact end is broken into
the relatively larger black fragment debris. The fracture difference between the front
and rear ends may result from a slightly slowed propagation of stress wave to deliver
the stress late to the rear end resulting in the rear stress relatively smaller than the front
[2]. Moreover, the end debris is shown apparently larger than the debris from middle
section. The fracture modes indicate that transverse deformation is confined by the end
friction significantly even though grease is used to reduce the effect of friction. High
confinement increases debris size and reduces the amount of debris as the same effect
applied by high confinement pressure. The end debris shows a length range of 5–
10 mm indicating that the confinement effect has the action range of 5–10 mm. It is
worth mentioning that the rear end debris shows lots of adiabatic shear bands on the
fracture surface characterizing the significant thermoplastic deformations.

Fig. 1. Fracture of 25 mm specimen Fig. 2. Fracture of 19 mm specimen
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The 19 mm length specimen breaks with the similar modes as the 27 mm one, but
presents more characteristics of thermoplastic deformation. The rear end is broken in
conical shape that is usually observed in high pressure confinement as the transition of
brittle to ductile fracture occurs [3]. Figure 2 shows the rear end debris with the clear
adiabatic shear bands on the inclined surface. The surface is formed by a shear fracture
indicating that the confinement effect of friction is significant in created complex stress
state. The 5–10 mm lengths of the end debris verify the friction confinement to act on
the specimens within the length range. Moreover, in comparison with the 27 mm
specimen, the 19 mm one shows the reductions of debris sizes as the specimen length
decreases to lead to the rise of strain rate. The fractures present the characterized
sensitivity of strain rate.

With the further decrease of specimen length, the 15 mm length specimen shows a
different fracture mode in comparison with the 19 and 27 mm specimens. As shown in
Fig. 3, the specimen is broken completely with relatively uniform debris. In order to
minimize the confinement effect of friction, heavy grease is used on the end surfaces.
But the end debris still has the 5–10 mm lengths indicating that the friction confine-
ment is changed little for the short specimen. The fracture is primarily under the action
of complex stress state. Unlike the 19 and 27 mm specimens, fragment debris of the
15 mm one does not show significant thermoplastic deformations. The specimen
breaks with the reduced debris sizes showing the characteristic of brittle fracture. Here,
the different fracture modes of the specimens can only be attributed to the length
decrease.

Figure 4 shows the fracture of a 14 mm length specimen. The specimen just has
1 mm length difference with the 15 mm specimen. In Fig. 4, the black debris breaks
from the impact end with the characteristic of friction confinement effect. The debris
shows the lengths around 5 mm that is much less than the 15 mm specimen even
though the two specimens break with the similar characteristic of brittle fracture. The
debris difference may be concluded resulting from the effect of transverse size as the

Fig. 3. Fracture of 15 mm specimen
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two just have 1 mm length difference. If the transverse size is the right factor, aspect
ratio may be a more desirable geometric parameter to present the effect of transverse
size. The aspect ratio has shown the effects on strengths of the specimens [1]. The
14 mm length specimen has the identical aspect ratio with the 27 mm length specimen,
but they show essentially different fracture modes. The 14 mm specimen breaks with
brittle characteristic of uniform debris as the ends are broken into much smaller debris.
If the fracture modes are determined by transverse size, the aspect ratio should present a
little correlation with the fractures. There must exist other factor to dominate the
fractures.

In comparison with the previous specimens, the 8 mm specimen breaks with
smaller but more uniform debris as shown in Fig. 5. It can be concluded that under the
identical loading condition, with the decrease of specimen sizes the reduced debris
becomes more and more uniform and presents the strain rate sensitivity of fractures as
the strain rate increases with the specimen length decrease. Moreover, the 15 mm
length specimen indicates a transition from the thermoplastic to brittle fractures as the
specimens with the length of 15 mm or less than break with the brittle characteristic.

3 Discussion and Conclusion

The transition of fracture modes involves the size changes of both length and transverse
diameter, but aspect ratio representing the geometric property of specimen is unable to
show the correlation with the fracture modes. Under the identical loading condition, the
impulsive energy applying to any given specimen is constant. With the reduction of
sizes, specimen volume decreases synchronously and the impulsive energy accumu-
lates the energy much more than the required for breaking the specimen. Impulsive
energy appears to be the dominant factor to determine the fracture modes. In the
performed SHPB experiments, the identical impulsive energy is applied to the speci-
mens consistently. With the decrease of specimen volume, the impulsive energy
exceeds the required fracture energy more and more. The exceeding impulsive energy
breaks specimen in a much shorter time and brings the specimen a high deformation

Fig. 4. Fracture of 14 mm specimen Fig. 5. Fracture of 8 mm specimen
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strain rate to result in the more uniform fracture. In the case of the fracture, the
specimen does not have the time to perform thermoplastic deformation. For the PMMA
specimens, the 15 mm one presents the initiation of brittle fracture indicating that the
impulsive energy is the critical one to change thermoplastic fracture into brittle one.
Under the impulsive energy, the other small size specimens are all broken in brittle
fracture regardless of the effect of aspect ratios and with the decrease of specimen
volumes, the fracture becomes more uniform with smaller debris. Therefore, impulsive
energy is the dominant factor to determine the fracture modes of brittle material.
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Abstract. Additive manufacturing or 3D-printing of titanium alloys with a high
strength-to-weight ratio holds significant interest in the aerospace and biomed-
ical industries. The purpose of this investigation was to determine microstructure
and tensile deformation behavior of a 3D-printed Ti-6Al-4V alloy via selective
electron beam melting (SEBM). Plentiful multi-oriented a-lamellae were present
in the prior columnar b grains, which were oriented in the building direction
because of the presence of temperature gradients during 3D-printing. The pro-
cessing parameters selected in this study ensured superior strength and high
ductility by controlling the thickness of a-lamellae, with both surpassing the
values specified in the ASTM standard. The horizontally orientated 3D-printed
alloy demonstrated a certain extent of strain rate sensitivity which decreased
with increasing strain, suggesting that dislocation slip was a predominant
deformation mode, since the fine and abundant multi-oriented a-lamellae could
impede the formation of extension twinning. Fracture surface was observed to
be characterized by typical dimples and some entrapped gas pores.

Keywords: Selective electron beam melting � Ti-6Al-4V alloy � Tensile
properties

1 Introduction

Ti-6Al-4V alloy has been widely applied to various aircraft components and
biomedical industry due to their low density, high strength and excellent fracture
toughness [1]. However, the geometrical sophistication of many parts is often difficult
to access for the traditional subtractive manufacturing methods along with the inferior
machinability of titanium alloys [2].

Recently, additive manufacturing (AM), also known as 3D printing, has become an
increasingly popular manufacturing process technique providing a great degree of
design freedom and a huge potential for manufacturing optimized and customized
components with complicated shapes ideally [3]. Selective electron beam melting
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(SEBM) is one of the most popular AM processes due to the advantages such as the
vacuum working environment to avoid impurity elements and relatively slow cooling
rate to reduce the process-induced residual stresses [4].

However, studies on the deformation behavior of SEBM-manufactured Ti-6Al-4V
alloy are still very limited. Hence, further research is necessary and urgent to evaluate
the deformation characteristics of such a 3D-printed titanium alloy, so as to warrant its
safe and durable applications in the aerospace and medical industry.

2 Materials and Experimental Procedure

2.1 Additive Manufacturing Processing

Samples fabricated with pre-alloyed Ti-6Al-4V powders, with a chemical composition
(wt%) of 6.40 Al, 4.12 V and balance Ti, were processed using SEBM in a vacuum
atmosphere. The size of powders used had a size distribution from 45 to 105 µm which
meet the specified requirement (45–150 µm). The samples were additively manufac-
tured (or 3D-printed) using an Arcam Q20 system, which was operated at a beam
current of 35 mA, a layer thickness of 0.09 mm with a scan speed function of 24 and a
line offset of 0.22 mm. The electron beam scanning was set to rotate at an angle of 66°
for each layer to improve the bonding between layers with a more uniform distribution
of heat combined with a lessened residual stress. The horizontally positioned cylinders
with a size of Ф15 � 170 mm were firstly 3D-printed, as shown in Fig. 1. Those
cylinders were finally machined and polished into tensile specimens with a gauge
length of Ф6 � 32 in the end.

2.2 Experimental Procedure

Optical microscope (OM) and electron backscatter diffraction (EBSD) were used to
analyze the oriented microstructure with an observational surface parallel to the
building direction. The sample for the EBSD analysis was prepared first by mechanical
grinding, followed by electro-polishing in an electrolyte containing 6% perchloric acid,
34% n-butanol and 60% methanol at 0.8 A and 253 K for *70 s. Uniaxial tensile tests

Fig. 1. Schematic diagram of SEBM building strategy and sample positioning.
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were carried out under strain control at ambient temperature at varying strain rates from
1 � 10−4 s−1 to 1 � 10−2 s−1. Two samples were tested at a given strain rate to
determine the yield strength (YS), ultimate tensile strength (UTS) and ductility (%EL).
The fracture surfaces were examined using a scanning electron microscope (SEM).

3 Results and Discussion

3.1 Phase Constitution and Microstructure

Figure 2(a) shows the macrostructure of a SEBM-processed Ti-6Al-4V alloy. As seen
from the observational surface, columnar grains were basically oriented vertically along
the building direction with elongated shapes, which had a morphology of prior-b grains
present above the transus temperature of *950 °C. It is obvious that the highly-
oriented columnar morphology was created by the presence of high temperature gra-
dients in the fast heating and cooling process of 3D printing. Almost the entire high-
temperature prior-b phase with a body-centered cubic (bcc) crystal structure would
unavoidably transform into a phase with a hexagonal close-packed (hcp) crystal
structure during the subsequent cooling process (below the transus temperature).
Besides, several pores could also be observed, which was due to the trapped gas in the
powder bed during 3D printing.

Figure 2(b) shows the EBSD result of inverse pole figure (IPF) orientation
map. The black and white lines represent the high-angle (with a misorientation angle of
>15°) grain boundaries and the low-angle boundaries (with a misorientation angle in-
between 2° to 15°), respectively. The microstructure was characterized by plentiful
multi-oriented a-lamellae which were generated following the Burgers orientation
relationship (i.e., {110}b//(0001)a and <111>b//<11 − 20>a) during the solid-state
phase transformation of titanium alloy [5]. Due to the crystal symmetry, up to six
different a variants are possible to be present in each prior-b grain [6].

Fig. 2. (a) Optical micrograph and (b) EBSD IPF orientation map of SEBM-manufactured
Ti-6Al-4V alloy.
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3.2 Tensile Properties

Typical tensile engineering stress-strain curves of the horizontally orientated SEBM-
manufactured Ti-6Al-4V samples at varying strain rates are presented in Fig. 3(a). It
can be seen that the stress-strain curves shifted higher as strain rate increased. The
average value of the YS and UTS of the present SEBM-manufactured Ti-6Al-4V alloy
determined at different strain rates is shown in Table 1. The obtained YS (870–
961 MPa) and UTS (957–998 MPa) are 5–16% and 7–12%, respectively, higher than
the YS (825 MPa) and UTS (895 MPa) specified in the ASTM F2924 standard for the
additive manufactured Ti-6Al-4V alloy with powder bed fusion. The obtained ductility
of *13% is also higher than the specified value (6–10%) in this ASTM standard. The
hardening capacity (Hc) of a material proposed by Afrin et al. [7] can be expressed as
follows,

Hc ¼ rUTS � ry
� �

=ry ð1Þ

where rUTS and ry represent the UTS and YS, respectively. The hardening capacity
values obtained at different strain rates are also tabulated in Table 1, with an average
value of *0.07. Strain hardening exponent (n) can also be used to describe the plastic
deformation characteristics of a material, which could be evaluated via the following
Hollomon equation [8],

r ¼ Ken ð2Þ

where r is true stress, e is true strain, and K is strength coefficient. The experimental
data of r and e in the uniform deformation stage from the yield point to the ultimate
tensile point are chosen to evaluate the strain hardening exponent. The value of n in the
present 3D-printed alloy increased slightly with decreasing strain rate with an average
of *0.06. This is in agreement with that of traditional Ti-6Al-4V ELI alloy with a
n value of from *0.045 to *0.08 over a wide range of strain rates from 1 � 10−2 s−1

to 1 � 10−5 s−1.
Strain-rate sensitivity (SRS) is another important parameter reflecting the defor-

mation behavior of materials. The effect of strain rate on the flow stress of the SEBM-
manufactured Ti-6Al-4V alloy can be described using a power law [9],

r ¼ C _em ð3Þ

where r is flow stress, C is a constant and m is the SRS. A plot based on Eq. (3) at
certain true strain values is shown in Fig. 3(b). It can be observed that the m value or
the slope in Fig. 3(b) decreased as the true strain increased. It is known that the samples
which were prone to extension twinning exhibited an increasing trend of SRS with
increasing strain, whereas an opposite trend in the SRS was reported when twinning
was not a favorable mode of deformation [10]. This suggests that the slip of disloca-
tions was a predominant mode of deformation, rather than extension twinning in the
present 3D-printed Ti-6Al-4V alloy. It is likely as a result of the presence of fine and
abundant multi-oriented a-lamellae (Fig. 2(b)), which impede the formation of
extension twinning.

Tensile Behavior of a Titanium Alloy Additively Manufactured via SEBM 17



3.3 Fractography

Figure 4 shows a typical example of the fracture surface of the present SEBM-
manufactured Ti-6Al-4V alloy tested at a strain rate of 1 � 10−4 s−1. It can be observed
that the fracture morphology of this alloy appeared pretty ductile, characterized by the
presence of abundant dimples. In addition, a few circular pores also exist on the
fracture surface, which appeared during the processing of 3D-printing.

Table 1. Tensile properties of the horizontal SEBM-manufactured Ti-6Al-4V alloy determined
at different strain rates at room temperature.

Strain rate, s−1 ry, MPa rUTS, MPa Elongation, % Hc N

1 � 10−2 961 998 14 0.04 0.04
1 � 10−3 914 971 15 0.06 0.06
1 � 10−4 870 957 11 0.1 0.08

Fig. 3. (a) Typical engineering stress-strain curves of the present SEBM-manufactured
horizontal orientated Ti-6Al-4V alloy obtained at three strain rates; (b) strain-rate sensitivity
as a function of true strain.

Fig. 4. A typical SEM image of the fracture surface of the present SEBM-manufactured
horizontal orientated Ti-6Al-4V alloy tested at a strain rate of 1 � 10−4 s−1.
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4 Conclusions

Microstructure and tensile behavior of a horizontally oriented SEBM-manufactured Ti-
6Al-4V alloy were evaluated. The following conclusions can be drawn:

(1) The microstructure of as-built SEBM samples was observed to consist of pre-
dominantly oriented a-lamellar phase positioned inside the prior columnar b
grains along the building direction.

(2) The processing parameters selected in this study were suitable, leading to a
superior strength coupled with high ductility of the present 3D-printed alloy, with
both values exceeding the specified strength and ductility in the relevant ASTM
standard. The alloy demonstrated a certain extent of strain rate sensitivity which
decreased with increasing strain.

(3) Fracture surface examination showed a ductile mode of fracture in the tensile
tested specimens, as characterized by abundant dimples and some entrapped gas
pores.
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Abstract. Fiber Metal Laminates (FMLs) are hybrid composite materials
consisting of alternating metal layers bonded to fiber-reinforced prepreg layers.
ARALL, CARALL and GLARE belong to this new family of materials.
GLARE is the most successful FML up to now and is currently being used for
the construction of primary aerospace structures. In this study, the elastic
buckling response of rectangular GLARE FMLs subjected to shearing stresses is
investigated using the finite element method and eigenvalue buckling analysis.
Simply supported, clamped and mixed boundary conditions are considered.
Using validated FEM models, the buckling coefficient-aspect ratio diagrams of
seven GLARE grades are obtained along with the diagrams of three UD glass-
epoxy composites and monolithic 2024-T3 aluminum. The rule of mixtures is
evaluated and found to be a simple method to estimate approximately the elastic
buckling stress of the GLARE plates. An approximate formula is derived for the
estimation of the critical buckling coefficient of the GLARE plates using the
buckling coefficients of their constituents.

Keywords: Elastic buckling � Fiber-metal laminates � Rule of mixtures

1 Introduction

Fiber Metal Laminates (FMLs) are hybrid composite materials consisting of alternating
metallayers bonded to fiber-reinforced preimpregnated (prepreg) layers. These mate-
rials are developed to fulfill the desire of aircraft manufacturers and airliners for
reduction of direct operational costs and structural weight of aircrafts [1]. ARALL
(Aramid Reinforced ALuminum Laminates), CARALL (CArbon Reinforced ALumi-
num Laminates) and GLARE (GLAssREinforced) belong to this new family of
materials. GLARE is the most successful FML up to now and is currently being used
for the construction of aerospace structures, such as the fuselage of the Airbus A380 air
plane, the aircraft cargo floors of Boeing 777, aircraft engine cowlings and aircraft
stiffeners with a wide variety of shapes [2–4]. FMLs combine significant advantages of
metal and fiber-reinforced composites. Because of the intact bridging of fibers, in the
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wake of the crack, which restrain crack opening, FMLs demonstrate high fatigue
resistance [5]. They also have high fracture toughness [6], excellent impact resistance
[7], low density, excellent moisture, corrosion and fire resistance [8, 9], which make
them ideal for multipurpose aerospace applications.

The elastic buckling of thin plates has great practical importance and it is a classical
problem of the strength of materials. Plate buckling must always be considered during
the design of many engineering applications where stiffened thin-walled structures are
employed. For the purpose of buckling analysis, the wall plates among stiffeners could
be analyzed approximately as isolated rectangular plates. FMLs are mainly used for the
construction of stiffened thin-walled aerospace structures and, therefore, the buckling
strength of FML plates is very important [10, 11].

This study deals with the elastic buckling of rectangular FML plates subjected to
shearing stresses, the calculation of their buckling coefficients and the construction of
diagrams showing their variation as a function of the plate aspect ratio. More specif-
ically, the main objective of this study is the investigation of applicability of the rule of
mixtures for the calculation of the average critical buckling stress of the examined
GLARE plates. Furthermore, an approximation formula to predict the buckling coef-
ficients of FMLs is derived using the rule of mixtures for the buckling stresses.

2 Problem Definition and Finite Element Modeling
Procedure

A thin rectangular plate is considered, under pure shear loading consisting of alter-
nating layers of 2024-T3 aluminum and unidirectional (UD) glass-epoxy bonded to
form FML. The plate has length a, width b � a, as it is illustrated in Fig. 1 and a
relatively small thickness t. Since the plate is subjected to pure shear loading (Fig. 1)
and each opposite parallel edge is not allowed to move in the direction of Nxy, it will
buckle for a specific critical value of the applied load Nxy. The elastic buckling load will
be predicted using the finite element method. ANSYS software [12] is employed for

Fig. 1. Finite element mesh of a rectangular 600 � 200 mm plate (a/b = 3) along with the
applied shear loading.
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this purpose along with eigenvalue buckling analysis. From the FEM results the shear
buckling coefficient k will be determined for variable aspect ratio a/b and (k, a/b)
curves of plates consisting of different materials will be constructed.

In order to apply the rule of mixtures, three different material systems are con-
sidered, namely FMLs and their constituents, UD composites and monolithic alu-
minum. Also, three types of bc are considered, namely simply supported, clamped and
TSLC. For the FEM modeling we use plane rectangular 4-noded SHELL 181 elements,
which are suitable for modeling the thin layered plates studied in this article.
Each SHELL element has three translational and three rotational degrees of freedom
per node. The material behavior of 2024-T3 aluminum and UD glass-epoxy is idealized
using linear elastic material models with isotropic and orthotropic mechanical prop-
erties, respectively.

The convergence of the critical buckling load Nxy predicted from the eigenvalue
buckling analysis is always verified by comparison of results corresponding to fine and
very fine mesh density. Furthermore, the ply stress levels corresponding to the critical
value of Nxy are always below the linear elastic limits. Specifically, the von Mises
stresses in aluminum layers and the stress components in prepreg layers are well below
the proportional limit of aluminum and the composite ply strengths, respectively.

The shear buckling coefficient of aluminum plates is calculated by [13]:

k ¼ Nxyb2

p2D
ð1Þ

where D is the bending stiffness of the isotropic plate.
The shear buckling coefficient of the laminates is calculated by [14]:

k ¼ Nxyb2

p2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D11D22
p ð2Þ

where Dii(i = 1, 2) are the bending stiffnesses of the laminate.
The average critical buckling stress is calculated with the relation:

rxyc ¼ Nxy

t
ð3Þ

In order to validate our FEM procedure and the suitability of the applied simply
supported bc, we have initially compared the FEM results with corresponding theo-
retical results [13] for monolithic aluminum plates. A very good agreement between
our FEM results and the literature predictions has been observed. As a result, the
validity of the implemented FEM modeling and the applied bc for the simply supported
aluminum plates is ensured. As expected, the clamping of the plates is modeled by
imposing zero transverse rotations along their edges in addition to the applied simply
supported bc. The TSLC bc along the edges of the plates have been applied as follows:
the Transverse edges are Simply supported and the Longitudinal edges are Clamped.

For the validation of our FEM modeling of GLARE and composite laminates, we
have compared the obtained FEM results with appropriate literature results [14]. A very
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good agreement between our FEM results and the literature predictions has been also
observed for the analyzed UD composite laminates and the specially orthotropic
GLARE grades. Consequently, the FEM modeling of the GLARE and composite
laminates is validated.

3 Rule of Mixtures versus FEM Results

We have investigated the applicability of the classical rule of mixtures for the calcu-
lation of the average critical buckling stress rgxyc of seven different GLARE grades. In
ref. [15] other applications of the rule of mixtures can be found. Specifically, the stress
rgxyc is calculated using the formula:

rgxyc ¼ rcxyc 1�MVFð Þþ raxycMVF ð4Þ

Where rcxyc and raxyc are the average critical buckling stresses of composite and
aluminum plates, respectively, with the same dimensions, and MVF is the metal vol-
ume fraction of each plate. The composite plates also have the same fiber orientation
angles, fiber volume fraction and ply thickness with the composite plies of each
GLARE plate. In Fig. 2 the stresses calculated using Eq. (4) are compared with the
detailed FEM calculations for GLARE 3 and GLARE 5 respectively. A good agree-
ment between the accurate and the rule of mixtures (rgxyc, a/b) curves is found.
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Fig. 2. FEM versus rule of mixtures average critical buckling stresses of simply supported
GLARE plates with cross-ply fiber orientation under pure shear.
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Using Eqs. (1–3), the average critical buckling stresses of aluminum, composite
and GLARE plates can be calculated as a function of their buckling coefficient, and by
substitution in Eq. (4) a very useful relation is obtained:

kG ¼ kC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D11CD22C

D11GD22G

r

1�MVFð Þþ kA
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D11GD22G
p MVF ð5Þ

where DiiC are the bending stiffnesses of the composite plate, DiiG are the bending
stiffnesses of the GLARE plate, kC is the buckling coefficient of the composite plate,
and kA is the buckling coefficient of the aluminum plate.

Equation (5) can be used in order to estimate approximately the buckling coefficient
of a simply supported, clamped or TSLC GLARE plate when kC and kA are known. In
Fig. 3 the buckling coefficients calculated using Eq. (5) are compared with FEM cal-
culations for GLARE 3 plates with clamped, simply supported and mixed bc. A good
agreement between exact and Eq. (5) based (kG, a/b) curves is found. A good agreement
has also been found for the other considered GLARE plates of this study. Consequently,
the validity of Eq. (5) is demonstrated for the approximate calculation of kG.

4 Conclusions

This article deals with the elastic buckling of rectangular simply supported, clamped
and TSLC FMLs subjected to pure shear loading. ANSYS FEM software is employed
in combination with the eigenvalue analysis in order to predict the buckling coefficient
of the laminates. The implemented finite element models have been validated by
comparison with appropriate theoretical results concerning simply supported bc.
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Fig. 3. Exact versus approximate buckling coefficients of GLARE 3 plates under pure shear
with clamped, simply supported (ss) and mixed (TSLC) bc.

24 C. D. Kalfountzos et al.



It is found that the rule of mixtures can be applied in order to estimate approxi-
mately the critical buckling stresses of the GLARE plates when the buckling stresses of
plates having the same geometry and consisting of one constituent material, aluminum
or UD glass-epoxy, are known. The same fiber orientation angles, fiber volume fraction
and ply thickness with the composite plies of the GLARE plates are necessary in order
to apply the rule of mixtures.

Based on the verified validity of the rule of mixtures, an approximate formula is
derived for the estimation of the buckling coefficient of the GLARE plates when the
buckling coefficients of plates consisting of the constituent materials are known.
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Abstract. In this study, the carbon fiber reinforced plastics (CFRP) specimens
bonded adhesively in joggled lap configuration are tested for their bonding
characteristics. The acoustic emission (AE) technique is used as a characterizing
tool and peak amplitude is taken as the primary acoustic descriptor. The peak
amplitude distributed in the time domain of the test is clustered by using an
unsupervised pattern recognition algorithm (k-means++ algorithm) to differen-
tiate the different damage modes. Furthermore, the waveforms of the acoustic
signals recorded were studied using wavelet packet transform (WPT). The fre-
quency band associated with each damage mode is identified using the wavelet
packet transform. It is identified that the dominant damage mode responsible for
failure is the interfacial debonding and interlaminar crack growth through the
thickness of the adhesive layer. Overall, the acoustic emission technique proved
to be a powerful tool in evaluating the bonding characteristics of the tested
CFRP joggled lap specimens.

Keywords: Acoustic emission � CFRP � Bonding �Wavelet packet transform �
Pattern recognition

1 Introduction

The Carbon Fiber Reinforced Plastics (CFRP) has extensively been used in aerospace
structures, especially in crucial aerospace structures such as the structures joining lower
spar of the fuselage and bulkhead, fuselage and half-wing, etc. Thus, designing and
testing a proper joint structure at these crucial parts have become essential.

Acoustic Emission (AE) technique remains a powerful tool in characterizing
damage progression in CFRP structures. AE technique records the transient elastic
waves developed due to the stressing of a material under loading [1]. The corre-
sponding signals recorded by a transducer (e.g. PZT) are filtered, pre-amplified and
stored for further analysis. Since these generated elastic waves are very sensitive even
to the grain movement, microcracks or micro-matrix cracking, they are very efficient in
analyzing the various features of the damage progression.
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2 Materials and Methods

2.1 Materials

CFRP laminates used in this study comprise high-strength stitched carbon fibers
reinforced in epoxy resin and cured by autoclave method. The average resin percentage
in each laminate is 43% and the ply thickness is 0.244 mm. The adhesive used for
bonding the upper and lower laminates has a shear and peel strength of 25 MPa and
65 MPa, respectively. The upper adherend consists of 8 plies with a thickness of 2 mm
and the lower ply with 6 plies and 1.5 mm. The adhesive layer coated to join the upper
and lower laminate has a length of 26 mm and a thickness of 3.67 mm. The adhesive
was cured at a temperature of 100 °C to 150 °C for about 1 h.

2.2 Testing Methods

The testing was carried out as per ASTM D5868 standard at a crosshead displacement
rate of 13 mm/min in 100 kN INSTRON servo-hydraulic machine. To record the
acoustic activities during testing, two AE sensors, R30a with an operating frequency of
150 kHz to 450 kHz were fastened to the surface of the specimen. The sensors are
placed exactly 40 mm from the middle of the specimens. The recorded AE signals are
pre-amplified by 40 dB through 2/4/6 AST pre-amplifier. The waveforms are recorded
at a sampling rate of 1 MSPS.

2.3 Unsupervised Pattern Recognition Technique

In this research work, k-means++ unsupervised pattern recognition algorithm is used to
cluster the peak amplitude distribution for the entire load history. The k-means++ works
on the principle of selecting specific number of centroids; then it assigns the datapoints
to each cluster based on the minimum distance between each datapoint and the centroid.
Detailed step by step procedure of this technique can be found elsewhere [2]. The peak
amplitudes recorded during the testing of all three specimens were classified into three
clusters.

2.4 Wavelet Packet Transform

Wavelet Packet Transform (WPT) decomposes the recorded waveform into low and
high-frequency components, approximation and detail, respectively, while retaining the
orthogonality, smoothness and the localization properties of the parent wavelet. A de-
sired level of decomposition (i) can be assigned to the WPT technique and the total
number of WPT components are 2i. The frequency content of the WPT and the
decomposition are carried out in Wavelet Toolbox in MATLAB [3]. The decompo-
sition level for this study is set at i = 3.
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3 Results and Discussions

3.1 Mechanical Test Results

The mechanical test results are presented in Table 1. All the specimens have suffered
damage in two different stages and accordingly, the peak loads at those junctures are
termed as peak load at initial rupture and final rupture.

The mechanical results of all three specimens having same material and geometric
configurations show different peaks loads at initial and final rupture. JLS 1 specimen
significantly has carried more load before its initial rupture than JLS 2 and JLS 3
specimens. JLS 2, in particular, has a very poor strength both at the initial and final
rupture. The differences in these peak loads, despite their similar design configuration
is because these three specimens have two adherends each, bonded together using a
high-strength adhesive manually. The application of the adhesive, its surface area,
thickness, curing conditions could differ between the three specimens. This is the
reason why the three specimens have different peak loads at rupture.

3.2 Acoustic Emission Test Results

The peak amplitudes recorded during the test are clustered using k-means++ unsu-
pervised pattern recognition technique and are presented in Fig. 1. The peak amplitude
for all three JLS specimens, clustered into 3 groups, is presented and discussed.

The clustered peak amplitude data shows clearly the differences in damage pro-
gressions between the three specimens. In JLS 1 specimen, there is very few events in
cluster 1 (higher amplitude cluster) during the initial stages of loading. The peak
amplitude accumulates in cluster 1 only at the end of the test around 1.8 s. Similarly,
there are very few events in cluster 2 as well until 0.9 s duration. This clearly indicates
that no major damage occurred in the specimen until the material reaches 0.9 s. The
amplitudes in cluster 3 indicate low amplitude signals, which normally represent
microcracking, which is the only major damage mode in JLS 1, until 0.9 s. This
occurrence can be connected with the fact that JLS1 shows higher strength compared
with JLS 2 and JLS 3.

Table 1. Mechanical properties of specimens.

Specimen Peak load (kN)

Initial rupture Final rupture

JLS 1 6.02 4.09
JLS 2 2.67 3.89
JLS 3 3.86 5.57
Mean 4.18 4.52
Std. Dev. 1.70 0.92
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Looking at JLS 2, amplitude commenced to accumulate in cluster 1 and 2 at a very
early stages, indicating major damages in the specimen at a very early stages of
loading. This is the reason for the poor peak load even at the initial rupture. JLS 3,
having intermediate strength between JLS 1 and 2 has very few points in cluster 1 at the
initial stages of loading. However, events in cluster 2 can be found as early as 0.35 s
duration. Thus, major damage as in JLS 2 did not occur in JLS 3 specimens at an early
stage, nonetheless, the material suffered significant damage.

Thus, the clustered peak amplitude data of the AE clearly differentiate the damage
modes among the three specimens.

3.3 Wavelet Packet Transform Results

Different damage modes in a CFRP emit acoustic signals in different frequency spectra.
In that regard, three wavelets each from JLS 1, 2 and 3 specimens were taken for the
WPT analysis. One wavelet in each cluster of the three specimens has been taken
randomly for the analysis.

Under loading, an adhesively bonded CFRP transfers the load entirely through the
adhesive region. The thickness of the adherend does not affect the load in a
displacement-controlled condition [4]. Thus, the fiber breakage or fiber pullout is not

Fig. 1. Peak amplitude clustered by k-means++ algorithm for JLS 1, 2 and 3
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expected in the fractured specimens. This can be proved evidently also by the WPT
results.

In the first WPT results of JLS 1 specimens (Fig. 2(a)), the signal has a very low
energy and is centered around 200 kHz and 300 kHz frequency bands. However, in the
second and third wavelet, it is centered around 300 kHz and 375 kHz (Fig. 2(b) and
(c)). Particularly in the third wavelet, the frequency band remains the same, but it is
shifted to the right in time domain (Fig. 2(c)).

In the WPT results of specimen JLS 2, the first wavelet (Fig. 2(d)) has high energy
and the frequency band is at 200 kHz to 300 kHz. Unlike Fig. 2(a), this wavelet has
higher energy in that region, while comparing the density of the wavelet. In Fig. 2(e),
the frequency band has a low energy and is centered around 250 kHz and 375 kHz.
The last wavelet is entirely different from the others with two distinct frequency
spectrum the time domain (Fig. 2(f)). The first spectrum is at 450 kHz to 500 kHz
frequency and the second is shifted in the time domain to the right at 250 kHz and
375 kHz.

The WPT results of JLS 3 specimens are all centered at 250 kHz to 375 kHz, the
only difference is being the shift in the time domain (Fig. 2(g), (h) and (i)).

The frequency band between 200 kHz and 300 kHz represents the interfacial
debonding. Th frequency band 250 kHz to 375 kHz is mostly misinterpreted as fiber

Fig. 2. WPT results of JLS 1, 2 and 3 specimens
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breakage. However, recent studies prove that these bands could represent the inter-
laminar crack growth [5].

JLS 1 suffered a very slight interfacial debonding under the loading and most of the
damage suffered is due to the high frequency signals (250 kHz to 375 kHz). This is
why the energy of the 200 kHz to 300 kHz signal in Fig. 2(a) is very low. However,
the specimen JLS 2 suffered severe damage at a very early stage. This is indicated by
the Fig. 2(d) where the energy is high for the 200 kHz to 300 kHz signal. This means
that the specimen suffered the interfacial debonding at a very early stage and failed to
carry enough load before rupture. This is the reason why it has higher energies in the
frequency bands representing debonding and lower energies in the other frequency
domains.

In all the specimens, most of the signals are centered around the frequency band of
250 kHz to 375 kHz. This signifies that the load was carried through the adhesive layer
and the interfacial crack growth in the adhesive area are responsible for most of the
acoustic activities. Thus, it is safe to conclude that the major damage modes in JLS
specimens are interfacial debonding and crack growth.

4 Conclusions

The Joggled Lap Shear specimens are tested under tensile loading. The damage
characteristics are studied using AE technique. The k-means++ clustering technique is
used to cluster the peak amplitude data of AE to differentiate the damage modes in the
specimens. A wavelet from each cluster was taken for WPT analysis to identify the
major damage modes in the specimens. The frequency bands indicate that the major
damage modes are interfacial debonding and crack growth. The AE proves to be a
powerful tool in characterizing the damage modes in the CFRP specimens.
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Abstract. The presented work is dedicated to the evaluation of the mechanical
behaviour of the ferrite-pearlite carbon steel under a low concentration of dif-
fusible hydrogen in the bulk of the metal. Received standard stress-strain dia-
grams under different hydrogen concentration CH in the specimens have shown
on the existence of some specific value of the hydrogen concentration C�

H at
which the mechanism of hydrogen influence changes, namely: below this value
the enhanced plasticity (decreasing of the yield stress) takes places and above –
the hydrogen embrittlement occurs. This phenomenon was explained based on
the special tests of tensile specimens, which were preliminary charged by
hydrogen to concentration C�

H and then discharged to the concentration CH � 0.
It has been found that increasing the number of cycles of charging-discharging
leads to decreasing the value of yield stress. Thus, even a short-term presence of
the hydrogen in the material leads to irreversible changes in the structure of the
material, namely: the appearance of defects at the microlevel. This facilitates the
deforming ability of steel and reduces the value of the plasticity limit.

Keywords: Carbon steel � Hydrogen concentration � Enhanced plasticity

1 Introduction

Nowadays, this is an indisputable fact that hydrogen can demonstrate various effects on
the mechanical properties of structural metallic materials. Although, there is no com-
plete understanding of these effects and the concepts and approaches to the solution of
the most important problems of hydrogen materials science are quite contradictory [1].
Furthermore, prevail numbers of investigations in this field have a substantial disad-
vantage: the true level of hydrogen concentration in the metal was unknown and,
hence, the degree of its hydrogenation is taken into account indirectly. However, the
volume concentration of hydrogen in the metal and its local concentration in the zones
of high mechanical stresses are the critical parameters that define the strength and
fracture resistance of materials in given conditions [2, 3].

The presented work removes this disadvantage because the tests were carried out
under the known values of the volume concentration of hydrogen in the specimens. The
study is dedicated to the evaluation of the mechanical behaviour of the ferrite-pearlitic
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carbon steel under a low concentration of diffusible hydrogen in the bulk of the metal.
Here, received dependencies were analyzed as the functions of hydrogen concentration.

2 Experimental Procedure

The object of study was low alloyed pipeline steel (rY = 260 MPa and rU = 440 MPa)
with nominal chemical composition (in weight %): C = 0.17–0.24; Si = 0.17–0.37;
Mn = 0.35–0.65; S < 0.04; remainder Fe. This material consists of grains of ferrite-
pearlite, typical for all steel of this class. The standard cylindrical tensile specimens
with a diameter of 5 mm were manufactured from the real pipe.

The hydrogen charging of the specimens was made by the electrochemical method
under cathodic polarisation at some constant potential Ecath ¼ const:. With the aim to
simulate the hydrogen entry at real operating conditions of the buried pipeline, the
following procedure has been applied [4]. The special deoxygenated, near-neutral pH
NS4 solution, which is the model of underground water, was chosen as the electrolyte
for hydrogen charging of steel. The chemical composition of the NS4 solution is given
in Table 1. Taking into account the situation of a freely corroding system that exists for
the real pipeline, the potential of polarisation Ecath was slightly more negative than the
free corrosion potential Ecorr for given steel.

The hydrogen concentration in bulk of steel has been determined on the base of the
hydrogen discharging process under anodic polarisation with using modified hydrogen
electrochemical oxidation method proposed [4, 5].

For the realisation of experimental studies on the hydrogen charging of specimens
and determination of the hydrogen concentration in bulk of steel, the special testing
stand was developed [6]. This facility is based on the dynamic electrochemical labo-
ratory VoltaLab40 (Radiometer Analytical). As the preliminary stage of the study the
experimental dependence “hydrogen concentration CH in specimen – time of exposure
s” was received. These experimental data were described by power relation:

CH ¼ 0:128 � A � 10�6 � sm ppm½ �; ð1Þ

where A and m are some constants that depend on system “material – environment” and
testing conditions. Based on the formula (1) the specimens were hydrogen charged to
the assigned level of CH, before testing.

Table 1. Chemical composition of NS4 solution (gram/litre).

NaHCO3 KCl CaCl2 MgCl2.H2O

0.483 0.120 0.137 0.131
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3 Results and Discussion

Based on the received experimental curves ‘applied load – elongation of specimen’, the
dependencies ‘stress r – strain e’ were constructed for different values of the hydrogen
concentration CH in the specimens. Here it should be noted that calculation of stresses
r was made with taking into account the real values of cross-section area of specimens,
i.e. so-called ‘true’ stress-strain diagrams of were received. These diagrams served as
the basis for the determination of the true values of the yield stress rY as the function of
the hydrogen concentrations CH (Fig. 1).

As can be seen in Fig. 1, under increasing of the hydrogen concentration in metal,
the decreasing of the yield stress value rY was observed up to CH ffi 0:227 ppm. This
shows the facilitation of a plastic deforming of steel under a given range of CH in the
specimens. After exceeding the value CH ffi 0:227 ppm, the increase of the yield stress
values rY occurs that points to the decrease of plastic deformation under the tensile
loading of specimens.

After the tensile test, the fracture surfaces of specimens were examined by the
scanning electronic microscopy. The following specific features of the carbon steel
fracture on the dependence of the hydrogen concentrations CH in bulk of material were
observed. For non-hydrogenated specimens (CH ¼ 0) fracture surface has the signs of
the mixed mechanism of failure. Here, along with ‘dimple’ relief that showed on the
ductile mechanism of fracture, the relief of typical quasicleavage brittle fracture can be
found. With increasing of the hydrogen concentrations CH in material, the increasing of
the dimples density and disappearing of quasicleavage elements were found. It points
to the increase of the plastic deformation under the fracture process of steel. Such a
picture was observed up to the value of hydrogen concentration equal
CH ffi 0:227 ppm. After that, the further increase of the hydrogen concentration in
specimen leads to the appearance of some trace of quasicleavage relief on the fracture
surface, i.e. the fracture mechanism of steel becomes gradually mixed again.

These data give the basis for the following statement. For this carbon steel, there is
some characteristic value of the hydrogen concentration CH ¼ C�

H ffi 0:227 ppm in
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Fig. 1. Dependence of the yield stress rY on the volume concentration of hydrogen CH in the
specimens.
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bulk of material under which the mechanism of hydrogen influences changes, namely:
the strengthening (hydrogen embrittlement) occurs at CH �C�

H and the enhanced
plasticity (decreasing of the yield stress value) takes places at CH 	C�

H .
For a possible explanation of such phenomenon, a special series of the tests were

conducted. Before the tensile test, the specimens were preliminary hydrogen charged to
the level CH ¼ C�

H and then fully hydrogen discharged (CH � 0). This procedure was
repeated to obtain the specimens with the different number of cycles of hydrogen
charging-discharging NH , namely: 0, 2 and 5. Such specimens were tested under tensile
loading and the nominal and true stress-strain diagrams were constructed for the
specimens with the different values of NH (Fig. 2). It can be seen that the deformation e,
which corresponds to the fracture of the specimen, increases with increasing of NH .
This fact indicates the facilitation of material deforming depending on the value of the
parameter NH .

The stress-strain diagrams (Fig. 2) served as a base for determining the yield stress
values rY as the function of the parameter NH (Fig. 3). These results show the
monotonic decrease of a yield stress value rY with increasing the charging-discharging
cycles NH . Here, it also may be pointed out on the full coincidence between the data
received under conditions of the hydrogen charging-discharging of the specimens and
the case of presence of the hydrogen in the specimens (Fig. 1). Thus, it can be sug-
gested that even a short-term presence of the hydrogen in the steel leads to the irre-
versible changes in the material structure that causes the changes in the mechanical
behaviour of the material.

The fractographs of the specimens tested after the different number of cycles of
hydrogen charging-discharging NH showed (Fig. 4) the appearance of defects at the
microstructural level. At that, the defectiveness of material increases with increasing of
the number of hydrogen charging-discharging cycles NH (Fig. 5). This facilitates the
deforming ability of steel and reduces the value of the plasticity limit.

0

200

400

600

800

1000

σ,
 M

P
a

True diagrams

Nominal diagrams

0,00 0,10 0,20 0,30 ε

NH=0

NH=0

2

2

5

5

Fig. 2. Nominal and true stress-strain diagrams for specimens with the different number of
cycles of hydrogen charging-discharging NH.
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Fig. 3. Dependence of the true values of yield stress rY on the number of cycles of hydrogen
charging-discharging NH. The solid triangle refers to the data presented in Fig. 1.

Fig. 4. Fractographs of the specimens tested after the different number of cycles of hydrogen
charging-discharging NH: a – 0; b – 2; c – 5 (x 500). The area of observation was equal to
41300 lm2.
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Fig. 5. Number defects (a) and their total square (b) in steel after the tensile test as the function
of the number of cycles of hydrogen charging-discharging NH. The area of observation was equal
to 41300 lm2.
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If it may be assumed that the defectiveness of material is strongly related to the
dislocations activity, then the received tendencies can be explained by the interaction
between hydrogen and dislocations [7]. The hydrogen affects on the dislocations in two
ways: promotes their pinning (or dragging) or enhances of their mobility. Competition
between these two roles defines whether the resulting phenomenon is positive or
negative with the point of view of the fracture resistance of the material.

4 Conclusions

The fact of the yield stress reduction of carbon steel under the presence of the diffusible
hydrogen of low concentration has been found. Hydrogenation and de-hydrogenation
of the steel do not pass without a trace concerning its microstructure. Even a short-term
presence of the diffusible hydrogen of low concentration in the steel leads to the
irreversible changes in the material structure that causes the changes in the mechanical
behaviour of the material. The obtained results may be useful under the development of
technologies for processing steels of this class for the optimization of their service
characteristics.

References

1. Somerday, B., Sofronis, P.: Hydrogen-Materials Interaction. ASME Press, New York (2014)
2. Capelle, J., Dmytrakh, I., Gilgert, J., Pluvinage, G.: The effect of hydrogen concentration on

fracture of pipeline steels in presence of a notch. Eng. Fract. Mech. 78, 364–373 (2011)
3. Dmytrakh, I.M., Smiyan, O.D., Syrotyuk, A.M., Bilyy, O.L.: Relationship between fatigue

crack growth behaviour and local hydrogen concentration near crack tip in pipeline steel. Int.
J. Fatigue 50, 26–32 (2013)

4. Capelle, J., Dmytrakh, I., Pluvinage, G.: Comparative assessment of electrochemical
hydrogen absorption by pipeline steels with different strength. Corros. Sci. 52, 1554–1559
(2010)

5. Capelle, J., Dmytrakh, I., Gilgert, J., Pluvinage, G.: Sensitivity of pipelines with steel API
X52 to hydrogen embrittlement. Int. J. Hydrogen Energy 33, 7630–7641 (2008)

6. Dmytrakh, I.M., Leshchak, R.L., Syrotyuk, A.M.: Effect of hydrogen concentration on strain
behaviour of pipeline steel. Int. J. Hydrogen Energy 40, 4011–4018 (2015)

7. Murakami, Y., Kanezaki, T., Mine, Y.: Hydrogen effect against hydrogen embrittlement.
Metall. Mater. Trans. A 41, 2548–2562 (2010)

Experimental Study of Low Concentration Diffusible Hydrogen Effect 37



Effects of Temperature on Tensile
and Fracture Behavior of Dissimilar Metal

Welded Joint for Nuclear Safe-End

Lei Wang(&), Yang Liu, Xiu Song, and Jiahua Liu

Key Laboratory for Anisotropy and Texture of Materials, Northeastern
University, Shenyang 110819, People’s Republic of China

wanglei@mail.neu.edu.cn

Abstract. The effects of temperature on tensile and the fracture behavior of
dissimilar metal welded joint for nuclear safe-end were studied. The results
show that the strength, elongation and fracture toughness of DMWJ significantly
decrease with increasing temperature. At room temperature, more deformation
twins can make the deflection of the crack propagation direction, so the crack
propagation path is extended, and the alloy can absorb more energy during the
fracture process, so as to the toughness of the joint is enhanced. While at the
evaluated temperature, the second phase particles are more likely to be a crack
initiation, which makes the crack propagation easier. In addition, the dislocation
density is reduced, resulting in the decreased strength.

Keywords: Dissimilar metal welded joint � Temperature � Deformation �
Twining

1 Introduction

The nuclear safety end is located in primary water systems pressure boundary of
pressurized water reactors (PWRs) and it is usually connected by dissimilar metal
welded joints (DMWJs) so it has been regarded as the key part. The DMWJ is exposed
to high temperature and high pressure, as well as complex stress, so that it is the most
vulnerable components [1–5]. The safety of the joint can be influenced by the sig-
nificant microstructure heterogeneity of DMWJ, residual stress [6, 7], weld composi-
tion dilution [8], C diffusion [9–13] and others. It is necessary to study the tensile and
fracture behavior of the joint, in order to provide a theoretical basis for the safe
operation of nuclear power plants. Some literatures have reported the deformation
twins had important effect on the toughness of the alloy [14, 15]. However, little
attention has been paid to reveal the mechanism of the temperature effect on the tensile
deformation of DMWJ. Therefore, in the present study, tensile deformation behavior of
a DMWJ was investigated in a temperature range from room RT to 320 °C.
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2 Experimental Procedures

SA508-III-309L/308L-316L DMWJ for the PWRs was used as the experimental
material. The tensile and fracture toughness JQ (with a pre-fatigue crack) tests were
conducted from RT (about 23.5 °C) to 320 °C using a SANS CMT5105 universal
tensile testing system at a strain rate of 10−3 s−1, and the 25 mm extensometer was
employed. For optical microscopy (OM) and scanning electron microscopy
(SEM) examinations, the specimens were mechanically polished and etched. Thin foils
for transmission electron microscopy (TEM) were prepared from the deformed spec-
imen, polished by twin-jet electro polishing machine using an electrolyte consisting of
9% HClO4 and 91% ethanol at a temperature of −30 °C. TEM observation were carried
out by a JEOL JEM-2100F operating at 200 kV.

3 Results and Discussions

Table 1 shows the tensile properties of the joints. The yielding strength (YS), ultimate
strength (UTS) and the elongation (El) of the joint significantly decrease with
increasing tensile deformation temperature. Compared to the joint tested at RT, the YS,
UTS and El of that at 320 °C decreased by 63.60%, 28.60% and 49.40%, respectively.
Figure 1 shows the J-R curves of the joints at different temperatures, which the
specimen was bended with a cross head speed of 0.2 mm/min and the JQ is determined
by off-line of J = 8rY(Da). From Fig. 1, it can be seen that the JQ value of the joint
decreases with the increasing of temperature, 246.12 kJ/m2 at RT, 155.96 kJ/m2 at

320 °C, the JQ loss ratio reaches 36.63%.
The microstructures of the tested joints (near the fracture position) at RT and 320 °

C are shown in Fig. 2(a) and (b), respectively. It can be noticed that the grain has been

Table 1. Tensile properties of DMWJ at different temperatures

Temp (°C) YS (MPa) UTS (MPa) EI (%)

RT 332 561 27
150 306 460 17
240 251 427 15
320 121 400 13
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elongated along the tensile direction, which means the fracture positions of the joints
are consistent at different temperatures.

The fracture surface morphologies of the joints tested at different temperatures are
shown in Fig. 3. The fracture surfaces illustrate typical ductile fracture characteristics

Δa, /(mm)

J,
/(k

J/
m

2 ) 

Fig. 1. J-R curves of DMWJ at different temperatures
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Fig. 2. SEMmicrographs of longitudinal section of specimens tensile tested at (a) RT, (b) 320 °C
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Fig. 3. Fracture surface morphologies of joint tensile tested at: (a) RT, (b) 150 °C, (c) 240 °C,
(d) 320 °C
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with dimples at different temperatures. However, with increasing temperature, the
dimple size decreases, and the toughness of the joint decreases.

Figure 4 shows the back scattering morphologies of the fracture surface after
fracture toughness test at different temperatures. The main cracks expand from the left
to right. The gray porphyritic in backscattering is ferrite. It is clear that the secondary
cracks can be observed from the specimens at different temperatures except RT. It can
be seen that crack propagated with transcrystalline fracture, and some-times propagated
with second phase particle to another (Fig. 4(d)). That means the second phase particles
is the main crack source at high temperature. As well known, the dislocations will start
to move under a low stress, and then pile up around the second phase particles, when
the stress is large enough, the micro-voids will form along the interface between the

second phase particles and matrix by the stress concentration with dislocation pole
up. And finally the combination of microvoids became a cracking and lead fracture.

Figure 5 shows the dislocation configuration of the tensile tested joints from RT to
320 °C. After tensile testing at RT, the number of twins is higher, and a lot of dislo-
cation tangles can be observed in twins. While, both number of twins and dislocations
decrease obviously for the joint tested at 320 °C. Since the thermal vibration of atoms
increases with the increasing of testing temperature, more slip systems can be activated
at higher temperature, so that the dislocation density will be decreased. The joints can
also be coordinately deformed by twins because of relatively low stacking fault. But
with the increasing temperature, the number of twins decreases, so the elongation of the
joint will decrease.

It is well known that fracture toughness of a material is depended on the ability of
coordinated deformation at crack tip. If the plasticity of a material is very good, more
absorbed energy is needed for the crack tip enlarging, resulting in higher fracture
toughness. In addition, when deformation twining occurs, the stress concentration can
be released, so the plasticity of the joint increases. It has been reported that crack
growth direction is easy deflected by the deformation twining [16, 17]. On the other
hand, the dislocation slip can be hindered with the deformation twining during

10 m

(a) (b) (c) (d)

10 m10 m10 mCrack propagation μ μ μ μ

Fig. 4. Cross-section surface morphologies of joint fracture toughness tested at: (a) RT,
(b) 150 °C, (c) 240 °C, (d) 320 °C
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deformation, then dislocations pile up on the twin boundaries, and this leads to the
stress concentration. When a crack propagates to a deformation twin, the stress con-
centration occurs at the twin boundary. When the stress concentration is difficult to
release by the slip of dislocations at the twin boundaries at crack tip, crack will
propagate along the twin boundary, therefore the direction of crack propagation will be
changed. With such direction changing, the crack propagation route will become longer
and longer. So that, more absorb energy is needed for the fracture processing of a joint
at RT, comparing with those at elevated temperatures.

4 Conclusions

(1) The main crack source of a joint is the second phase particles. With the increasing
of testing temperature, the atom vibration increases, and more slip system can be
started to motion. It makes the decreasing of dislocation density, as well as the
strength of the joint. Because the stacking fault energy is low, the deformation can
be coordinated by twinning during tensile deformation at the lower temperatures.
With increasing of testing temperature, while a number of deformation twining
decreases, the elongation of the joint decreases.

(2) Cracks easy propagate along the twin boundary, thus the crack propagation
direction will be changed and the crack propagation route becomes longer. The

(a) (b)

(c) (d)

Fig. 5. Dislocation configuration of joint tensile tested at: (a) RT, (b)150 °C, (c) 240 °C,
(d) 320 °C
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fracture toughness of the joint is higher at RT than those at elevated temperatures,
because the longer the route is, the more the absorbed energy needs.
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Abstract. Information fusion technique has been widely applied to a variety of
subjects such as fault diagnosis and image identification. Bayes estimation is a
special type of information fusion technique applied to parameter estimation for
probability distribution of random variable. The present paper presents a new
type of information fusion technique for material strength distribution estimation
in the situation of small size sample. To precisely describe material strength,
three-parameter Weibull distribution is used. To find out a reasonable location
parameter in the situation that only a few experimental observations are avail-
able, the knowledge and information from different aspects are utilized. First, an
empirical shape parameter is chosen with reference to the strength distribution of
similar material. Then, a location parameter is assigned to make the estimated
material strength variation at a realistic level, by judging the rationality of the
location parameter through the strength probability distribution thus estimated.
At last, big data technique is applied to further verify the rationality of the
estimated material strength distribution by testing the relation between location
parameter and the minimum observation in a sample of particular size for a
special three-parameter Weibull distribution.

Keywords: Material strength � Weibull distribution � Big data � Monte Carlo
simulation

1 Introduction

To estimate material strength by means of experiment data, a large size sample of
strength data are usually required [1–4]. In the situation of small size of sample,
especially very small size of sample containing only a few observations, both distri-
bution type identification and distribution parameter estimation are difficult. Generally,
three-parameter Weibull distribution is suitable to describe material strength since its
flexibility, especially the robustness of its shape parameter to the same type of products.
Lots of experiences have demonstrated that the shape parameter of the Weibull material
strength of a particular type of material will not be much different.

Weibull distribution has been applied to a wide range of problems [5]. It has also
been employed for smaller sample sizes than any other statistical distribution [6].
However, the mostly applied is the two-parameter Weibull distribution [7–11].
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Contrasting to two-parameter Weibull distribution, three-parameter Weibull dis-
tribution has evident advantages. However, a relatively large size of sample is required
for three-parameter Weibull distribution fitting. As a typical example of small size of
sample, Nagatsuka proposed a least squares procedure for parameter estimation with
sample size from 7 to 20 [12]. Another study to describe material fatigue strength is
based on 14 observations [13].

To estimate material strength distribution in the situation of small size sample,
Yang et al. proposed a new Bayesian method based on the characteristics of the
product, using a modified Weibull distribution to describe the failure rate over entire
lifetime [14]. Abbasi et al. presented an approach of Artificial Neural Networks
(ANN) [15]. This paper focuses on new way to estimate the parameters of three-
parameter Weibull distributed material strength based on a few experiment data.

2 On the Shape Parameter of Material Strength Distribution

For a Weibull distributed material strength, the shape parameter can be determined
empirically, i.e. it can be taken from similar material. For the Weibull distribution of
metallic materials, a great amount of test data indicate a roughly range between 2.0 and
4.0. In the following ball bearing material strength estimation, the shape parameter is
taken as 3.0.

3 On the Location Parameter

A popular expression for the three-parameter Weibull probability density function is

f ðtÞ ¼
bðt � cÞb�1

gb
exp½�ðt � c

g
Þb� t� c

0 t\c

8><
>: ð1Þ

where, b, η and c stand for the shape parameter, scale parameter and location
parameter, respectively.

Three-parameter Weibull probability density function has excellent flexibility to fit
the material strengths. As to the classical statistics method, a difficulty is to estimate the
location parameter in the situation of small sample of observations. Alternatively, big
data technique and information fusion concept can help to find an appropriate proba-
bility density function including all its parameters to describe a random variable for
engineering application.

For engineering material, the possible minimum strength must be much greater than
zero, though the strength random variable may scatter on a quite large scale. If enough
experiment data are available about the strength of some kind of material, its proba-
bility density function, including all the parameters, can be estimated by classical
statistics method. When only a few observations, such as five, is available, relevant
knowledge and information have to be applied. Included are the probability density
function of similar material, especially the shape parameter of Weibull distribution, the
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degree of strength dispersion of similar material, etc. According to these knowledge
and information, some distribution parameter can be referred, or its reasonable range
can be figure out, at least.

For a Weibull distributed strength random variable, if s(1,n), s(2,n), …, s(n,n) are its
n observations arranged in ascending order, the location parameter will be close to s(1,n)
if n is large, especially in condition that the shape parameter is not very big.

By means of the median rank estimator of cumulative distribution function F̂ðsiÞ, a
sample size np can be figured out with which the minimal observation can be taken as
the estimator of the p � 100th percentile for a specific Weibull distribution. This
estimator is usually approximated as

F̂ðsiÞ � i� 0:3
nþ 0:4

ði ¼ 1; 2; . . .; nÞ ð2Þ

where, i is the ordinal number of the individual observations in ascending order; n is
the size of the sample.

To estimate the 0.00135 percentile directly from the observations (equivalent to the
lower bound of an interval of 6r for a Gauss distribution), the necessary sample size
n0.00135 can be resolved from Eq. 2 as n0.00135 = 518. It means that if there are 518
observations, then the s(1,n) can be approximately taken as the location parameter.

For the situation that the sample size is much less than 518, the observation s(1,n)
should be modified as the location parameter. To find a reasonable function to modify
the minimal observation, Monte Carlo simulation is applied. The principle is that, for a
given Weibull distribution, the possible differences between the location parameter c
and the minimal observation s(1,n) in an arbitrary sample of size n can be observed by
Monte Carlo sampling. Based on the Monte Carlo simulation, the upper envelope curve
of the simulated date points can be used to describe the relationship between the
possible maximal difference between s(1,n) and the location parameter. When this dif-
ference is known, the minimum observation s(1,n) can be modified to be taken as the
location parameter.

To perform the simulation to a given Weibull distribution W(c, η, b), the location
parameter and scale parameter have to be determined first. However, it can only be
roughly chosen at this moment if the observations available are quite limited (e.g. there
are only five observations). For a Weibull distribution with location parameter c and
scale parameter η, the value of the cumulative probability associated with s = c + η
equals to 1-e−1 = 0.632, i.e. F(c + η) = 0.632. For the situation of five strength
observations for a material, it is easy to know by Eq. 2 that F(s(4,5)) = 0.685, i.e. s(4,5)
will be greater than c + η (corresponding to a percentile of 0.632), while s(3,5) will be
less than c + η since F(s(3,5)) = 0.5. Meanwhile, F(s(5,5) − F(s(1,5)) = 0.741, which is
greater than the 2r interval of 0.683 for a Gauss distribution. Therefore,
s(1,5) − (s(5,5) − s(1,5)) can be approximately taken as the location parameter c, and
s(4,5) − c can be used as an approximate value of the scale parameter η. The rela-
tionship between these variates and parameters are shown in Fig. 1.
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Providing the five observations for a material strength are 1202, 1014, 773.3, 958.4
and 649, respectively, s(1,5) − (s(5,5) − s(1,5)) = 649 − (1202 − 649) = 96 can be taken
as the location parameter, and s(4) − c = 1014 − 96, i.e. 918 can be taken as the scale
parameter, i.e. a Weibull distribution W(96,918,3) is estimated. From the procedure
mentioned above, it is known that this is a conservative estimation.

On the other hand, the Weibull parameters can be solved in cumulation probability
equations. For a Weibull distribution,

PðsÞ ¼ 1� e�ðs�c
l Þb ð3Þ

Therefore,

lnð1� P1Þ
lnð1� P5Þ ¼

s1 � c
s5 � c

ð4Þ

According to Eq. 2, P1 = 0.130, P5 = 0.870 for the situation of a sample of 5
observation. For the five observations listed above, a Weibull distribution W(267.9,
735.6, 3) is estimated. This result is not so conservative as W(96,918,3).

4 Weibull Scale Parameter Estimation by ML Method

The scale parameter of a Weibull distribution can be estimated by means of maximum
likelihood method. When the shape parameter and location parameter are known, the
scale parameter can be easily estimated as

g ¼ ð
Xn
i¼1

ðsi � cÞb=nÞ1=b ð5Þ

For the situation of the five observations 1202, 1014, 773.3, 958.4 and 649, if the
location parameter equals to 96.0 and the shape parameter equals to 3.0, then the scale
parameter is estimated as 860.2; if the location parameter equals to 267.9, then the scale
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parameter is estimated as 699.3. If two-parameter Weibull distribution is assumed, the
scale parameter is estimated as 951.4. Actually, the five observations are a sample of
the Weibull distribution W(500, 500, 3) (Fig. 2).

The rationality of the estimation results can be verified by the dispersion of the
estimated distribution. Dispersion can be characterized by deviation, standard deviation
or variation coefficient. The mean, deviation and variation coefficient are, respectively

l ¼ cþ g C 1þ 1
b

� �
ð6Þ

r2 ¼ g2 C 1þ 2
b

� �
� C2 1þ 1

b

� �� �
ð7Þ

m ¼ r=l ð8Þ

Experiments show that for majority of metallic materials, the variation coefficient
will not be greater 0.1. For instance, if a Gaussian distributed random variable has a 6r
range of tmin*tmax, and tmax = 2tmin, then

m¼ðtmax � tminÞ=6
ðtmin þ tmaxÞ=2 ¼ ð2tmin � tminÞ=6

ðtmin þ 2tminÞ=2 � 0:111

Meanwhile, according to Weibull cumulative distribution function, the strength
associated with failure probability is

sP ¼ gð� lnð1� PÞÞ1=b þ c ð9Þ
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The lower and upper bounds of the 6r range (probability of 99.73%) are
respectively

t0:00135 ¼ gð� lnð0:99865ÞÞ1=b þ c

t0:99865 ¼ gð� lnð0:00135ÞÞ1=b þ c

The ratio of the upper bound to the lower bound, i.e. t0.00135/t0.99865 can also be
applied to judge the rationality of the estimation:

s0:99865=s0:00135 ¼ gð� lnð0:00135ÞÞ1=b þ c

gð� lnð0:99865ÞÞ1=b þ c
ð10Þ

For the above estimation results, the true situation is l = 946.49, r = 162.28,
m = 0.171, and the ratio = 2.59. The three-parameter Weibull estimation results are
l = 864.14, r = 279.18, m = 0.323, and the ratio = 8.93. The two-parameter Weibull
estimation results are l = 849.58, r = 308.78, m = 0.363, and the ratio = 16.93. To get
a reasonable estimation, let c = 400, and η is estimated as 578.93, then l = 916.98,
r = 187.98, m = 0.205, and the ratio = 3.20 (Fig. 3).

5 Monte Carlo Verification

In the following, the Weibull distributed life random variable with c = 400, η = 578.9,
and b = 3.0 is observed by Monte Carlo simulation.

According to the simulation result, for the Weibull probability density function
with the only information available is n observations with the minimum s 1;nð Þ, the
location parameter should be estimated as
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c ¼ sð1;nÞ þ 0:67g lgð n
518

Þ1=2 ð11Þ

Thus, for the situation of five observation 1202, 1014, 773.3, 958.4 and 649, the
location parameter can be estimated as 388.1 with the scale parameter of 578.9. It is not
far from the multi-attribution estimation result of 400.

6 Conclusions

Information fusion technique is applied to material strength probability distribution
estimation in the situation of small size of sample. Three-parameter Weibull distribu-
tion is used to describe material strength. To estimate a reasonable location parameter
and thus a reasonable scale parameter, the knowledge and information from similar
materials are utilized, included are an empirical shape parameter, a possibly large
dispersion degree, as well as the experiment data. At last, the location parameter
assigned is to make the estimated material strength variation at a realistic level.
Besides, big data technique is applied to further verify the rationality of the estimated
material strength distribution by testing the relation between location parameter and the
minimum observation in a sample of particular size.
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Abstract. Nanobainite and dispersed carbides were gained on surface layer of a
modified carburizing 23Cr2Ni2Si1Mo bainitic bearing steel based on carbur-
ization, tempering at high temperature, and succedent low-temperature
isothermal quenching. As compared with the conventional carburizing
20Cr2Ni4 martensitic bearing steel, the novel carburizing 23Cr2Ni2Si1Mo
nanobainitic bearing steel showed a much higher wear-resisting performance
and rolling contact fatigue performance. The excellent properties suggest that
the novel carburizing 23Cr2Ni2Si1Mo nanostructured bainitic steel is very
promising to manufacture heavy-duty bearing, especially for bearings that bear
impact load and need high wear-resisting performance and high rolling contact
fatigue performance during their service life.

Keywords: Performance � Carburization � Nanobainite � Bearing steel

1 Introduction

The high carbon martensitic microstructure of the traditional carburizing 20Cr2Ni4
bearing steel possesses high hardness, outstanding wear-resisting performance
(WRP) and rolling contact fatigue (RCF) resistibility. However, it has poor toughness,
high hydrogen embrittlement sensitivity and temper brittleness. The service life of high
carbon martensite bearing steel will be greatly reduced when the service condition is
bad or there is a big sudden impact load.

The nanobainite has much better toughness than the high carbon martensite [1, 2].
Meanwhile, the hardness and strength of nanobainite can match the high carbon
martensite [3, 4]. The WRP of a high-Si-Al nanobainite [5] was increased by 21–51%
over the tempered martensite, though the nanobainite had a lower hardness value than
the tempered martensite. The RCF life of a C-1.26wt% steel sample [6] with 21 vol.%
nanobainite was about 3.3 times longer than martensite sample. The prolonged RCF
life should owe to the nanobainite and the carbon-rich retained austenite.

In the present work, we have studied the microstructure and property of new
designed 23Cr2Ni2Si1Mo nanobainitic carburizing bearing steel, which are compared
with those of the conventional 20Cr2Ni4 martensitic carburizing bearing steel.

© Springer Nature Switzerland AG 2020
E. Gdoutos and M. Konsta-Gdoutos (Eds.): ICTAEM 2020, STIN 16, pp. 52–57, 2020.
https://doi.org/10.1007/978-3-030-47883-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47883-4_9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47883-4_9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47883-4_9&amp;domain=pdf
https://doi.org/10.1007/978-3-030-47883-4_9


2 Experimental Procedure

The experimental steels were named as 23Cr2Ni2Si1Mo and 20Cr2Ni4 in the paper.
The plate-like samples with dimensions of U43 mm � 6 mm and U52 mm � 8

mm were first machined, and then carburized. The carburizing process is the same as
that in [7]. After high-temperature tempering, the 23Cr2Ni2Si1Mo steel was held at
860 °C for 1 h and austempered at 200 °C for 8 h. And the 20Cr2Ni4 steel was held at
810 °C for 1 h and then quenched in oil at once. In the end, the two steels were moved
into a 200 °C furnace to temper.

The microstructure pictures were taken by a Hitachi-SU5000 SEM and a JEM-2010
TEM. The surfaces of samples were tested by a D/max-2500/PC XRD. The WRP of the
experimental steels after carburizing was tested by a MMU-5G wear test machine. The
test condition is dry sliding friction without lubrication at ambient temperature. The
load was 1000 N, while the rotation rate was 200 rpm. The surfaces of all samples
were ground and polished before the RCF test. The experiment was performed by using
a TLP-1 point contact testing machine. The Hertz stress of 4500 MPa and the spin rate
of 2040 rpm were chosen.

3 Results and Discussions

The carbon contents of the surfaces are *0.83 wt% for 23Cr2Ni2Si1Mo steel and
*0.81 wt% for 20Cr2Ni4 steel. And the same carburizing depth is about *2.8 mm.

Figure 1 shows the hardness distributions in carburized layer of the experimental
steels after heat treatments. Evidently, the hardness declines continuously from surface
to center for both steels, because of the carbon content keeps falling from surface to
center. The surface of the 23Cr2Ni2Si1Mo steel with nanobainite achieves a hardness
of 690 ± 8 HV, and its center with a low-carbon martensitic microstructure is 492 ± 6
HV. In contrast, the 20Cr2Ni4 steel has a hardness of 680 ± 10 HV in the surface with
a high-carbon martensitic microstructure and 431 ± 7 HV in the center with a low-
carbon martensitic microstructure. The hardness in surface of the two carburized steels
have little difference in spite of different microstructures are obtained in the surfaces.
The high hardness value obtained in the surface layer is helpful to improve the WRP
and RCF resistance.

Fig. 1. Hardness distribution in carburized layer after heat treatments.
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3.1 Microstructures of the Surfaces of the Experimental Steels After
Carburizing

The SEM pictures of the surface are shown in Fig. 2. One can see that the tiny carbides
were uniform distribution in matrix of the two steels. Figure 2(a) show that a dominant
needle-like bainite was acquired on surface of the 23Cr2Ni2Si1Mo steel. The obvious
network carbides, which located at the red arrows, were observed on the surface of the
20Cr2Ni4 steel from Fig. 2(b). The network carbides will increase the brittleness and
drop fatigue life. After a lot of observation and measurement statistics, the average area
fractions of the carbides in surfaces of the 23Cr2Ni2Si1Mo and the 20Cr2Ni4 were
evaluated to be 6.3% and 6.7% for each.

The mean diameters of carbides for 23Cr2Ni2Si1Mo and 20Cr2Ni4 were evaluated
to be 0.19 and 0.22 µm for each. The fine carbides embedded in matrix not only are
helpful to increase the WRP [8], but also could restrain the austenite grain coarsening.

Fig. 2. SEM images in surface of carburized 23Cr2Ni2Si1Mo (a) and 20Cr2Ni4 steel (b).

Fig. 3. TEM micrographs of the carburized surface: (a) 23Cr2Ni2Si1Mo (b) 20Cr2Ni4. Notes:
RA-retained austenite, C-carbides, BF-bainitic ferrite, and TM-twinning martensite.
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The typical TEM pictures are displayed in Fig. 3. The multiphase microstructures
composed of bainite plate, carbides, and retained austenite were acquired in the car-
burized 23Cr2Ni2Si1Mo steel. Twinning martensitie is distinct in surface of the car-
burized 20Cr2Ni4 steel, whose presence can not only aggravate the stress concentration
effect, but also decline the toughness and plasticity.

According to a large number of TEM pictures, the measured average thickness of
bainite plate (tBF) in the surface of carburized 23Cr2Ni2Si1Mo steel was about
71 ± 12 nm. This is a typical nanobainite.

From the XRD patterns, the volume fractions of retained austenite (Vc) in surface of
the 23Cr2Ni2Si1Mo and the 20Cr2Ni4 were confirmed to be *18.9% and *17.1%,
respectively. Retained austenite in surface is crucial for fatigue life of carburized steels.
On one hand, a part of the retained austenite of surface will occur martensitic trans-
formation by strain during RCF testing, which causes the surface hardness to be
increased further [9, 10]. On the other hand, volume expansion is inescapable when
retained austenite occurs martensitic transformation, thus, a compressive stress is
formed in surface [11]. Both the increased hardness and the compressive stress are
beneficial to improve the RCF resistance.

3.2 WRP and RCF Performance of the Surfaces After Carburizing

Figure 4 shows weight loss with wearing time on surface of the experimental steels.
Obviously, the weight loss of 20Cr2Ni4 steel after 120 min is greater than that of
23Cr2Ni2Si1Mo steel. The weight losses of the 20Cr2Ni4 steel show a linearly in-
creasing trend with the increasing wearing time. The difference values in accumulative
weight loss between the 20Cr2Ni4 steel and the 23Cr2Ni2Si1Mo steel become bigger
and bigger with the increasing wearing time, which reveals that the wear rate of the
23Cr2Ni2Si1Mo steel is less marked than that of the 20Cr2Ni4 steel. We can consider
the relative WRP of the 20Cr2Ni4 steel as one unit, thus the relative WRP of the
23Cr2Ni2Si1Mo steel could be denoted by using the ratio of weight loss for 20Cr2Ni4
steel to 23Cr2Ni2Si1Mo steel. From Fig. 4 the relative WRP of the 23Cr2Ni2Si1Mo
steel is calculated to be 1.61, implying that the WRP of 23Cr2Ni2Si1Mo is greater than
20Cr2Ni4 by 61%.

Fig. 4. Weight loss with wearing time on surface of the experimental steels.
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The wearing results show that although the initial hardness values of different
microstructures are almost the same, they show different WRP. The initial hardness of
the microstructure is only one factor affecting the WRP. Microstructure also has an
important effect on the WRP. The average thickness of bainite plate (tBF) in carburized
23Cr2Ni2Si1Mo surface was about 71 ± 12 nm, which was much thinner than the
martensite plate in carburized surface of 20Cr2Ni4. The surface microstructure
refinement of 23Cr2Ni2Si1Mo could directly enhance the plasticity, hardness and
strength and indirectly increase the WRP. In addition, the nanocrystals were easily to
produce on the nanobainite surface in the process of severe friction and wear [5, 12],
which can enhance the WRP further.

Figure 5 shows Weibull distribution curves of RCF life of the 23Cr2Ni2Si1Mo
steel and the 20Cr2Ni4 steel. Table 1 generalizes the Weibull fatigue lives. Apparently,
the RCF life of 23Cr2Ni2Si1Mo is much longer than that of 20Cr2Ni4 steel in spite of
the Vc and the hardness value of surface are nearly parallel for the two steels. The L10,
L50, and characteristic life of 23Cr2Ni2Si1Mo are 3.10, 3.47, and 3.54 times longer
than those of 20Cr2Ni4, respectively. The remarkable RCF performance of
23Cr2Ni2Si1Mo owes to the development of nanobainite in surface. Nanobainite could
prolong the RCF life by restraining the nucleation and propagation of micro crack [6].
Stress concentration effect on hard phase in the process of RCF could be relieved by the
nanobainite, which is relatively soft. Therefore, the micro crack nucleation becomes
difficult. Furthermore, the stress on micro crack tip could be relieved by nanobainite, as
a consequence it will demand more energy for the propagation of micro crack.

Fig. 5. Weibull distribution curves of RCF life of 23Cr2Ni2Si1Mo and 20Cr2Ni4 steel.

Table 1. RCF lives of 23Cr2Ni2Si1Mo and 20Cr2Ni4 steel.

Steel L10/(� 107) L50/(� 107) Vs/(� 107) B

23Cr2Ni2Si1Mo 1.3751 4.5339 5.7143 1.58
20Cr2Ni4 0.4439 1.3076 1.6136 1.74

L10 : rated life, L50 : median life, Vs : characteristic life, b :
Weibull slope.
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4 Conclusions

1. The microstructure, consisting of nanobainite with 71 ± 12 nm thickness bainitic
ferrite plates and dispersed carbides, with a hardness of 690 ± 8 HV was obtained
on surface layer of the modified carburizing 23Cr2Ni2Si1Mo bainitic bearing steel
based on carburization, tempering at high temperature, and succedent low-
temperature isothermal quenching.

2. The WRP and the characteristic life of RCF of the modified carburized
23Cr2Ni2Si1Mo nanobainitic bearing steel are about 61% and 254% greater than
those of the conventional carburized 20Cr2Ni4 martensitic bearing steel. The
excellent WRP and RCF performance of the nanobainitic steel owe to the ultrafine
microstructure.
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Abstract. This study reports a significant synergistic effect of using combined
networks of nanoscale fibers (CNTs) and micro scale fibers (PPs) on the key
mechanical properties of OPC mortars that define a uniquely tough and energy-
absorbing material. The flexural strength at the first crack, d, were firstly
investigated by conducting three point close loop bending tests on prismatic
specimens of mortars reinforced with 0.1 wt% CNTs and/or 0.73 wt% PPs. To
further assess the mechanical performance of the proposed nanocomposites after
the formation of the first-crack, the residual strength and the energy absorption
capability of the nanocomposite mortars are also investigated at three post-crack
stages, 3d, 5.5d and 10.5d, according to the ASTM C1018. The experimental
results showed that a combination of nano and micro scale fiber reinforcement
yields a composite with a significantly enhanced load-carrying capacity at the
elastic stage, as defined by the approximately 100% higher first crack strength.
The multi scale fiber reinforcement has also an exceptional impact on improving
the tensile strain-capacity of resultant composite after the formation of the first
crack. The observed 90% increased residual strength and post-crack toughness
of CNT-PP reinforced mortars indicate an improved ductility over the mortars
reinforced with microscale PP fibers alone.

Keywords: Mortar � Carbon nanotubes � Polypropylene � Residual strength �
Post-crack toughness

1 Introduction

Fiber reinforced concrete presents enhanced ductility overcoming the limited strain
capacity of the quasi brittle cementitious materials. The introduction of fibers at the
micro scale, such as polypropylene fibers, PPs, polyvinyl alcohol fibers, PVAs, and
polyethylene fibers, PEs, into the cementitious matrix results in post-elastic mechanical
property changes [1, 2]. Although, the micro scale fiber reinforcement’s ability to
bridge the microcracks and delay the formation of a through-specimen macrocrack, the
initiation of cracks at the nanoscale, which affects the fundamental mechanical response
of concrete cannot be prevented. The use of fibers at the nanoscale, such as carbon
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nanotubes CNTs, in cementitious matrices offers unprecedented improvements in the
mechanical properties of cement based materials and concrete [3, 4]. The effective
incorporation of individual CNTs and the formation of a complete nanoscale fiber
network into the cementitious matrix significantly improves the nanocomposite’s
flexural load carrying capacity; hence the proportionality of stress to strain before the
formation of the “first crack” [5]. As a result, nanoscale fiber reinforced composites
were successfully developed, exhibiting 100% increases in their “first crack” strength
and toughness, modulus of elasticity, energy absorption capability and fracture char-
acteristics [6].

While the effect of micro or nano scale fiber addition on the mechanical perfor-
mance of cementitious materials and concrete is thoroughly reported, there is a lack of
information about the synergistic effect of the simultaneous addition of nano and micro
scale on the load carrying capacity and energy absorption capability of hybrid cement
based composites at the “first crack” and the post-crack stages. The purpose of the
present study is to investigate the mechanical performance including (i) the “first crack”
strength and toughness; (ii) the residual strength; and (iii) the post-crack energy
absorption capability of mortars reinforced with an optimum network of CNTs and
PPs. Prismatic mortar specimens, reinforced with 0.1 wt% CNTs and/or 0.73 wt% PPs,
were subjected to a three point close loop bending test. The combination of CNTs and
PPs provide significantly enhanced mechanical performance at both the first-cracking
and post-cracking over the mortars reinforced with polypropylene fibers alone. The
hybrid CNT and PP reinforcement increases the first crack strength, +98%, and
improves the residual strength, +88%, and toughness, +55%, of micro scale fiber
mortar composites.

2 Experimental Work

2.1 Materials and Specimens

Mortar composites were produced by using OPC Type I (w/c = 0.485), standard sand
(s/c = 2.75), multiwalled carbon nanotubes (CNTs) and polypropylene staple fibers
(PPs). The nano and micro scale fibers present aspect ratios of 307 and 480, respec-
tively. The uniform dispersion of CNTs in aqueous suspensions was achieved by
applying ultrasonication energy and using a polycarboxylate based surfactant [7].
Mortar mixes containing (a) 0.73 wt% PPs; and (b) 0.1 wt% CNTs and 0.73 wt% PPs
were prepared following the ASTM C305, and was cast in 4 � 4 � 16 cm oiled molds
for three point bending experiments. Following demolding, the samples were cured in
lime-saturated water for 28 days.

2.2 Experimental Determination of First Crack Strength, Residual
Strength and Post-crack Toughness

Three-point bending tests were conducted on 40 � 40 � 160 mm prismatic speci-
mens. The tests were performed using a 25 kN MTS servo-hydraulic, closed-loop
testing machine under displacement control. The rate of displacement was kept as
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0.1 mm/min. A typical load-deflection response of a 28d mortar reinforced with
0.1 wt% CNTs and 0.73 wt% PPs is presented in Fig. 1. The first-crack strength and
toughness at the deflection d; and the residual strength and toughness at the post-crack
deflections 3d, 5.5d and 10.5d were evaluated by following the analysis described by
the ASTM C1018 [8] and the ACI report on Fiber Reinforced Concrete [9].

3 Results and Discussion

Flexural strength of the 28d mortars reinforced with 0.1 wt% CNTs and/or 0.73 wt%
PPs at the “first crack” deflection (d) and at deflections of 3.0, 5.5 and 10.5 times the
first-crack deflection are presented in Fig. 2. The nano and micro scale fiber reinforced
mortars exhibit 98% higher first crack strength over the PP reinforced mortars. From
the previous studies, it is already observed that mortars reinforced with 0.1 wt% CNTs
exhibit an increase first-crack strength, compared to the unreinforced matrix, due to an
due to an enhanced crack-bridging mechanism, resulting in a higher load transfer
efficiency between the nanotubes and the matrix. Interestingly, and despite the fact that
the geometrical characteristics of CNTs are in the scale of nanometers, their addition
has a great impact on the residual strength of nanocomposites compared to the singly
micro scale fiber reinforced mortars. The mortars reinforced with the nano and micro
scale fibers are able to sustain much higher loads after the formation of first crack,
exhibiting higher residual strengths. The simultaneous incorporation of CNTs and PPs
leads to higher flexural strength, up to 88%, at the three post-first crack stages, 3d, 5.5.d
and 10.5d.

To further examine the synergistic effect of nano and micro scale fibers on the
mechanical performance of mortar composites at the first-crack and post-crack stages,
the energy absorption capability, represented by the flexural toughness, at the deflec-
tions d, 3d, 5.5d and 10.5d are presented in Fig. 3. The hybrid mortars exhibit an
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improved energy absorption capability at all the stages after the formation of the first
crack. The flexural toughness of nanomodified mortars at the post-crack stages up to a
deflection of 3.0, 5.5 and 10.5 times the first-crack deflection is 88%, 90% and 93%
higher than the post-crack toughness of singly PP reinforced mortar. Recently it was
found that the incorporation of CNTs in the PP reinforced polymers leads to a higher
interfacial shear strength due to the better adhesion between the micro scale fiber and
the matrix [10]. The strengthen interfacial bonding between the fiber and the matrix
increases the demand of energy for crack propagation, improving the energy absorption
capacity of hybrid mortars.

4 Conclusions

In this study, it is demonstrated that a significantly higher load carrying capacity and
energy absorption capability, at the first and the post cracking area, can be attained by
incorporating combined reinforcement of nano and micro scale fibers into the
cementitious matrix. From the analysis of the three point bending load-deflection
curves, it is presented that the CNT and PP reinforced mortars exhibit extremely higher
first crack strength, +98%, compared to the singly PP reinforced mortars. The syner-
gistic CNT-PP reinforcing mechanism in mortars also leads to an even greater strength
and toughening behavior at the post-crack area. The enhanced bridging mechanism,
after the formation of the “first crack”, by the simultaneous use of nano and micro scale
fibers exceptionally improves the composites’ load carrying capacity and post-crack
energy absorption capability as reflected by the 88% and 55% higher residual strength
and post-crack flexural toughness, respectively.
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Abstract. The paper presents an experimental test of macrocrack propagation
in bones associated with a numerical strategy to determine from this test some
mechanical properties by inverse identification. A 3 point bending test is per-
formed on a notched segment of long human bone, and the load vs notch
opening displacement is measured. The compliance method is applied in the
context of a realistic FE simulation of the test. A first application of this
methodology is described and shows its feasibility and capabilities. The ultimate
objective of this research project is to develop a probabilistic modelling of the
macrocracking processes in human long bone tissues based on an experimental
database of mechanical parameters fed up by this methodology.

Keywords: Bone cracking � Experiment � Numerical model � Compliance
method

1 Introduction

Fracture modes of bone structures prediction is essential for both the comprehension
and the prevention of injuries and their surgical treatment. While many works on bone
properties and model developments are proposed in the literature [1], the ability to
predict more accurately their cracking behaviour remains a major scientific challenge.
The ultimate objective of this research project is to develop a probabilistic modelling of
the cracking processes in human long bone tissues, taking into account the effect of the
material structural heterogeneity on these processes. In that sense, the present work is
deeply inspired by other works originally developed for concrete structures [2–4].

Many natural or human-made materials exhibit hierarchical inner-structure on one
or more length scales [5]. This structure plays an essential role in their physical or
mechanical properties. It also has an essential part to play in their cracking processes,
especially for quasi-brittle materials. It is precisely the case for concrete or bone tissue
[6], which have particularly complex and heterogeneous inner-structures.

Stress concentrations drive cracking processes. If one excepts potential geometrical
singularities on the shape of a considered object of study, subjected to uniform loading
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conditions, the phenomenon of stress concentration can appear in its constitutive
material for two different reasons: because of material heterogeneity (in the sense of
differences in elastic properties – moduli – of the inner components of the material
itself), or because of internal discontinuities (flaws or initial micro-cracks) [3, 7].
Cracking processes can be conceptually separated into two distinct phenomena: crack
creation and crack propagation. Flaws and heterogeneity have a real impact on both
phenomena because they directly affect the strength and the toughness of the material.

Establishing a (statistical) link between heterogeneity/defects and material mechan-
ical properties to be used for the numerical modelling of cracking processes in human
bone requires the elaboration of a substantial database of experimental results involving
both mechanisms of crack initiation and propagation. The global strategy proposed for
establishing this link consists briefly in (1) the design of an experimental test involving
cracking processes in bones, (2) realistic numerical simulations of the test for the inverse
determination of model parameters, (3) the characterisation of the level of heterogeneity
of the material in the specimen.

Given the high complexity of this strategy, and as a first step of this research
program, the paper focuses mainly on the two first points. It presents, in a first section,
an experimental test of crack propagation in a notched piece of human femur subjected
to a three-point bending. In this test, only the cortical tissue is considered. The second
section presents the main steps of the inverse determination of both elastic modulus and
fracture energy (the most often used properties in modelling) from realistic numerical
simulations of the test. The final section will then be devoted to results, comments and
conclusions.

2 Experimental Test

Long human bones are considered here as “structural elements”. This point sets the
scale of study. Considering full bones leads to consider both cortical and trabecular
tissues. For simplicity, this study focuses only on the cortical bone. Cracking behaviour
of cancellous bone will be studied in future works.

In the sake of producing enough samples at this scale, mainly to feed statistical
post-treatment results, several samples (generally three) of about 6 cm length are
extracted from the diaphysis of femurs from human cadavers. Note that, if present on
the sample, the remaining cancellous bone is systematically removed.

At first, the work will mainly focus on pure mode I cracking, favouring thus local
tensile failures. Direct tension is particularly difficult to be applied experimentally
(even if the geometry of the specimen is perfectly regular), mostly because of the
control of the boundary conditions. Nevertheless, indirect tension can be obtained with
a bending test, more comfortable to perform, although it remains delicate because of
the geometrical irregularity of the specimens. As the ratio height (about 6 cm) over
length (about 3 cm) of the specimens is too small, and to overcome the critical effect of
the shear force, it is necessary to extend the sample by adding two prismatic extensions,
made of steel, at each end. The bone segment is then sandwiched between the two
extensions, and the bond is ensured by glueing. A particular procedure to prepare and

Experimental and Numerical Strategy 65



assemble the sandwiched components has been elaborated to guaranty their quite
perfect alignment and minimize any geometrical defects. This solution has the
advantage of better control of the boundary conditions on the machine.

The purpose of the test shown in Fig. 1(a) is to follow the evolution under loading
of a localized “structural” macro-crack. A notch (of 500 µm width) is made in the
central cross-section of the sample, right under the loading point. Its purpose is to
localize the crack initiation in this section of the specimen. The presence of the notch
that induces a stress concentration at its tip also leads to a stress level reduction at the
bone-extension bonds. Note, that this last point can facilitate the glueing solution.
A pre-dimensioning numerical simulation of the test (considering the bone as a perfect
cylinder of 3 cm of external diameter and 3 mm of thickness) has been carried out to
estimate the stress level at the bone-extension bonds according to the notch length: as a
result, the longer the notch is, the lower the tensile stress level is. An estimation of the
maximum tensile stress level of about 20–25 MPa was obtained for a notch length
equal to half the diameter of the bone. The glue has been chosen taking into account
this level of stress. Two types of glue have been eventually selected: a methacrylate and
an epoxy resin. Their respective characteristics ensure to bear the estimated stress level.
Glueing components is usually a complicated matter, and a particular attention has also
been paid to the defatting pre-treatment of the bone itself to avoid any incompatibility
with the glue.

The bending test, Fig. 1(a), is performed on a Landmark 370.10 hydraulic press
(MTS Systems corporation, MN, USA). The notch opening is measured with a non-
contacting linear proximity measuring system (Kaman KD2300). The sensor and its
target are maintained by two aluminium supports to avoid any electro-magnetic
interferences on the measurements. The supports are directly glued on the bone surface,
on each side of the notch allowing the sensor to bridge it. The load applied by the jack
is monitored by the notch-opening displacement measured. This solution has the
advantage to better control the test monitoring and to assess at each time the opening of

Fig. 1. Experimental setup (a) and an example of test results (b). On the curve, P1, P2 are
applied loads corresponding to the macrocrack propagations. P3 is an unloading point.
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the macro-crack. The test result is given in terms of load-notch opening displacement
curves. Figure 1(b) shows an example of result obtained on a piece of femur taken from
a cadaver of an 83 years old woman.

3 Numerical Simulations of the Experiment

The longitudinal modulus of elasticity and the fracture energy can be determined from
this test by an indirect determination procedure, and a “realistic” numerical simulation
of the test is performed for this purpose. The methodology is described as follow: the
3D-geometry of the tested bone is reconstructed from scans (obtained with a medical
scanner before the glueing operation) using specialized pieces of software (slicer-3D
version 4.8.1, Rhinoceros® Version 5.5.3, McNeel & Assoc. Edt.). The spatial position
of the bone relative to its metallic extensions is reproduced identically in Rhino3D by
using different tracking techniques based on photographic shots of the sample. Thus
oriented in space, the geometry of the bone can then be imported into a finite element
mesh generator. By adding the geometries representing the extensions, the sensor
supports and other additional parts used in the test as well as the notch itself, the
complete mesh of the test specimen can be generated (Fig. 2(a)). Boundary and loading
conditions can also be added.

3.1 Determination of the Longitudinal Modulus of Elasticity

The principle of the methodology is elementary. A simulation of the test is performed
in elasticity considering the value of the modulus as the unknown and searching it so
that the numerical response fits the experimental one.

3.2 Determination of the Fracture Energy

The methodology is here more complex, but its bases remain relatively classical [8, 9].
The compliance method is based on the Irwin–Kies relation:

GI ¼ P2

2B
dCd

da
ð1Þ

Where GI represents the fracture energy in mode I, P is the applied load, B is the width
of the cracked section, Cd ¼ d=P is the compliance (d being the displacement of the
loading point), and a is the crack length.

Equation (1) requires the determination of the width B and the compliance Cd as
functions of the crack length a. For the considered tested bone, whose geometry is
purely irregular, the relationship B að Þ is determined with a special feature of Rhino-
ceros®. The relationship Cd að Þ is obtained numerically with a series of elastic simu-
lations of the bending test taking into account the presence of an idealized crack of
varying length in the central section of the bone as depicted on Fig. 2(b). Note that the
displacement of the loading point d is not measured experimentally, and as a conse-
quence, the experimental compliance Cexp

d cannot be determined. This difficulty is
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overcome by considering besides the quantity Cx ¼ x=P (x being the notch opening),
which can be assessed experimentally. Numerically, this quantity can also be calculated
and expressed as a function of a, i.e. Cx að Þ.

Finally, knowing the experimental value of the quantity Cx, for a given load level
corresponding to the propagation of the crack in the material, the point corresponding
to Cexp

x on the numerical curve Cx að Þ gives the length a of the crack. The value of the
derivative d

da Cd að Þ and the one of B are then given by the numerical curves Cd að Þ and
B að Þ respectively (Fig. 2(c)). The corresponding value of GI is, therefore, calculated.

4 Results, Discussions and Conclusion

An experimental result is given in Fig. 1(a). The test led to the creation of a macro
crack starting from the notch and propagating quickly and vertically towards the
loading point. The curve gives the evolution of the applied load versus the notch
opening. This result clearly shows a relatively linear pre-peak behaviour with a slight
non-linearity of the curve in the peak vicinity. This non-linearity appears between
approximately 85% and 90% of the maximum load, corresponding to a micro-cracking
process established at the notch tip. However, remaining relatively small at the scale of
the overall curve this phenomenon must be indicative of a limited process. The post-
peak part of the curve has a saw-tooth shape indicating successive propagations and
blockages mechanisms of the macrocrack. The different reloading branches consist of a
linear part and a non-linear part near the local peak, significant of a limited evolution of
the microcracking at the macrocrack tip before propagation. Besides the tangents to the
linear parts of the curve pass almost through the origin of the reference system. This
latter point shows that there appears to be little or no permanent deformation. The post-
peak brittle failure of the specimen can be explained by two possible hypotheses. The
first is that of age because due to the evolution of the internal structure of the material
(osteoporosis, bone remodelling, …) toughness decreases with age [10, 11]. The
second hypothesis is that of the conservation conditions imposed to the specimen
before the test, which here probably led to an excessive drying of the specimen.

Fig. 2. Meshes for the application of the compliance method, and compliance curves
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The elastic modulus of the bone is assessed following the described methodology
and considering the material isotropic. This seemingly rough hypothesis has a minimal
consequence on the value obtained since the longitudinal behaviour is mainly mobi-
lized in the test. The value obtained is 11.2 GPa, and remains reasonable compared to
values found in the literature.

Due to the high brittleness of the test, the fracture energy can be determined by the
compliance method for only two points (marked as P1 and P2 on Fig. 1). Values
obtained are 0.25 N/mm2 and 1.06 N/mm2. These values, again consistent with the
literature on the subject, correspond to equivalent crack lengths of 0.86 mm and
13.6 mm, respectively.

Even if the quantity of post-peak information obtained remains modest, this first
test shows a possible methodology for determining mechanical properties relating to
the propagation of a macrocrack in a human cortical bone. Possible leads for
improvement are linked to (1) mastering bonding and (2) maintaining an acceptable
level of the bone humidity. Repeating these testing and post-treating procedures will
produce statistical data essential for the development of a probabilistic cracking model.
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Abstract. The electrostatic field and electropulsing were applied to the nickel-
base superalloy and the effect and mechanism of the external field on the
microstructure were investigated in the present study. The results showed that
the electrostatic field has significant effect on the vacancy movement and atomic
diffusion. As a consequence, a lot of twins can be obtained in the alloy by
electrostatic field treatment and both the precipitation and growth of the
strengthening phase changed. The plastic deformation resistance of the nickel-
based superalloy can be effectively reduced by the adding of pulse current as
well as the improvement of the plastic deformation ability. At the same time, the
activation energy of the recrystallization can also be reduced by the adding of
the pulse current, and the promotion of the nucleation and growth of the
recrystallization of the alloy.

Keywords: External field treatment � Superalloy � Microstructure �
Deformation behavior

1 Introduction

Recently, the combination of materials science and electromagnetism have been
developed into a new field, named Electromagnetic Processing of Materials (EPM) [1–
3]. The Electric field treatment (EFT) and electropulsing treatment (EPT), as a powerful
and controllable external field, have been paid highly attention in recent years [4–7].
Electric field is another important energy field except the temperature field and stress
field, and it shows many special coupling effects when it is combined with the other
fields. Properties of a material are said to be related with the microstructure and defects
(including vacancy, dislocation, grain boundary and so on) of the material. Therefore,
the improving properties of the material can be achieved by controlling the
microstructure and defects. In the present study, the microstructure evolution of the
nickel-base wrought superalloys after EFT and EPT were investigated. The mecha-
nisms of the effects were also discussed. The aim of present study is to provide the
bases for further application of electromagnetic technology on superalloys.
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2 Experimental Procedures

The chemical compositions of GH4169 and GH4199 alloys used in the present study
are listed in Table 1.

The plate type specimen for EFT with a dimension of 120 mm � 20 mm � 1 mm
was machined along the rolling direction of the bar by spark cutting. The specimens
were solution treated at 1200 °C for 8 min, followed by air cooling (AC), and then, the
aged at 500 °C to 900 °C in the specific electric field, respectively. The specimen was
connected to the anode of a direct current voltage power supply, and a stainless steel
plate was connected to the cathode. The normal aging treatment was also carried out for
comparing to EFT. The EPT of the alloy was carried out on MTS 810 material testing
system at 800 °C. The electrode of HPC-5 pulsed power was connected with the
specimens by the self-made insulation clamping. The temperature was controlled by the
high temperature testing chamber system to keep the specimen at 800 °C.

The microstructures were examined by an optical microscope (OLYMPUS GX71),
a laser scanning confocal microscope (OLYMPUS LEXT 3100) and a field emission
scanning electron microscope (JEOL 7001). The morphology of precipitation was
observed by a JEOL JEM-2100F transmission electron microscope. Positron annihi-
lation lifetime (PAL) and vacancy intensity percentage of specimens were measured by
positron annihilation spectroscopy. Radioactive 22NaCl source was adopted, and the
measurement was conducted for 4 h at room temperature.

3 Results and Discussions

Figure 1 shows microstructure evolution of GH4199 alloy with and without EFT.
With EFT, the annealing twins occurred, and with the increasing of treating time, the
number of annealing twins increased [8]. While the variation of the grain size and
morphology of precipitation with and without EFT was not obvious.

Figure 2 shows the grain boundary character distributions of the alloy with EFT for
different time [9]. It is clear that there are lots of annealing twins inside the grains in the
alloy with EFT. With the increasing of treatment time, the number of annealing twin
increases and the interface spacing of annealing twins decreases obviously.

It has been reported that the formation of twins during the growth of the grain
boundary can decrease the grain boundary energy and increase the fraction of coherent
interfaces [9]. While the interfaces with low energy such as twin boundary can inhibit

Table 1. Chemical compositions of GH4169 and GH4199 alloy (wt%)

GH4169 Fe Cr Nb Mo Ti Al Si C S Ni
19.25 18.78 4.96 3.09 1.00 0.65 0.082 0.04 0.003 Bal.

GH4199 Fe Cr W Mo Ti Al Si C S Ni
3.95 25.60 14.50 1.45 0.65 0.40 0.65 0.10 0.01 Bal.
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the depletion of alloying elements at high angle grain boundary and improve the
corrosion resistance of the alloys effectively [8]. During the formation and growth of
the annealing twins in the alloy with EFT, the redistribution of elements at the crossing
of the original high angle grain boundaries and annealing twin occurred. The
exhaustion of alloying elements can be locally improved and the number of such kind
of interface increases with the treatment time of EFT. The original high angle grain
boundaries will be replaced and some of continuously distributed original grain
boundaries will be partitioned [10]. And also, it has been found [11] that the direction
of dislocation slip has been changed by the boundaries of annealing twins during
deformation. The direction of microcrack propagation has also been changed on
crossing the boundaries of the annealing twins. It causes the increasing plastic defor-
mation work and delays fracture, these are considered as the reasons of the increasing
ductility of the alloy by EFT.

Figure 3 shows the stress-strain curves of GH4169 alloy tested at 800 °C with
different EPT current density. It can be noticed that there is a remarkable change in the
flow stress with the increasing of current density. The deformation resistance in the
elastic deformation range has no obvious change under the pulse current comparing
with that without the pulse current. However, both the elastic limit and the deformation
resistance in the plastic deformation range decreases significantly, thus the plastic
deformation ability increases. The strength decreases more than 20% and the plasticity
increases more than 100% under the pulse current with the current density of 1 kA/mm2

comparing with that without the pulse current. And the strength decreases more than
75%, and the plasticity increases 700%, with the current density of 4 kA/mm2 [11–13].

Fig. 1. Microstructure of specimens aged at 820 °C for 5 h: (a) without EFT, (b) with EFT
(4 kV/cm), (c) with EFT (4 kV/cm): TEM image and the corresponding SAED

Fig. 2. OIM-reconstructed grain boundaries of the alloy with EFT for: (a) 0 h, (b) 10 h, (c) 20 h
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In order to investigate the effect of the non-thermal effects on the recrystallization
behavior of GH4169 alloy, the temperature compensation and nitrogen cooling were
employed in the present study to ensure the same temperature of 650 °C of the alloy
under different EPT conditions.

Figure 4 shows the microstructure of the GH4169 alloy with different treat pro-
cesses. It can be seen that the microstructure of the alloy treated at 650 °C for 0.5 h
(a) is still the cold rolled microstructure. While under the EPT of 4 kA/mm2, 20 Hz and
30 ls at 650 °C for 0.5 h (b), the recrystallization characteristics and the precipitation
of d phase at the original high angle grain boundary can be found, the twin grain
boundary and the deformation band although the microstructure is still cold rolling

Fig. 3. Stress-strain curves of GH4169 alloy tensile test at 800 °C with different EPT current
densities

Fig. 4. Microstructures of GH4169 alloy: (a) at 650 °C for 0.5 h, (b) EPT (4 kA/mm2, 20 Hz,
30 ls), (c) EPT(4 kA/mm2, 30 Hz, 30 ls), (d) EPT(4 kA/mm2, 40 Hz, 30 ls)
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deformed microstructure. And as the EPT frequency increases, this trend gradually
increases. It can be seen that most of the deformed grains in the matrix had been
swallowed by a great deal of fine and uniform recrystallization grains when the pulse
frequency increases to 40 Hz.

Because the distribution of solute atoms in the alloy aged at different temperatures
is roughly similar, the distribution of solute atoms in the specimen with EFT is shown
as an example in Fig. 5. It is clear that the distribution of Nb, Ti, Al, and Mo atoms is
homogeneous in the matrix, but the obvious inhomogeneous distribution of Fe and Cr
atoms can be found, and the concentration peak, as shown in Fig. 5(b).

The vacancy formation energy, diffusion activation energy, or radius of Mo atom is
much higher than those of Fe and Cr atoms, so that it is difficult to diffuse even though
EFT is applied. The vacancy formation energy of Al atom is much lower than that of Fe
or Cr atom, and the diffusion activation energy of Al or Nb atom is within the data
range of Fe and Cr atoms.

4 Conclusions

(1) Under the EPT, the deformation resistance decreased and the elongation increased
significantly during tensile test at 800 °C. And this effect increased with the
increasing of EPT energy. Since the dislocation motion can be promoted by the
electroplastic effect of the EPT. The initial temperature of recrystallization can be
reduced by the electric effect of the pulse current and the dynamic recrystalllization
nucleation is promoted. Therefore the dynamic recrystallization would occur at
lower temperature. This is the main reason for the decreasing of deformation
resistance and the increasing of plasticity of the alloy under the EPT.

(2) EFT enhances the atomic vibration in the superalloy, and it leads to the increasing
of both quantity and average size of vacancies. The vacancy flow consisting of
monovacancies generates induced, and monovacancies transform to vacancy
clusters under the EFT during aging, which causes the coarsening of precipitins in

Fig. 5. The distribution of main atoms at various layers in GH4169 alloy with EFT at 800°C.

74 Y. Liu et al.



superallpy. Meanwhile, the short-distance diffusion of Al and Nb atoms is accel-
erated with EFT, resulting in the increasing of the diffusion coefficients of these
atoms, and which are about 1.6–5.0 times larger than those without EFT.
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Abstract. We propose to explore the dynamic speckle contrast imaging (DSCI)
modality for non-contact surface defect detection. In this approach, the object
under investigation is subjected to a continuous and monotonic loading.
A number of speckle images are recorded during the continuous deformation of
object surface. Speckle contrast analysis algorithm is applied to the stack of
images which utilizes the fact that the variations on the object surface is reflected
in significant changes in the speckle intensity variations. A simulation study was
performed with the speckle images and with specklegrams recorded in the
speckle interferometry and Shearographic setup. The results motivate the
applicability of the DSCI technique in surface defect detection.

Keywords: Non-contact defect detection � Dynamic speckle contrast imaging �
Correlation measure � Singular value decomposition

1 Introduction

Optical interferometric techniques such as electronic speckle pattern interferometry
(ESPI), holographic interferometry and shearography are commonly used for submi-
cron level deformation analysis applications [1, 2]. In these techniques, intensity of an
interference pattern, specklegram, is recorded which is generated due to the superpo-
sition of a light beam scattered from the object surface and an undisturbed reference
light beam. Both the light beams are derived from the same coherent laser source.
A sinusoidally varying intensity pattern, usually termed as fringe image, is obtained
from the subtraction of two specklegrams corresponding to the un-deformed and
deformed state of the object. The deformation of the object surface mainly changes the
phase of the scattered light beam. Consequently, fringe analysis for phase estimation
plays crucial role in the optical measurement techniques. Apart from quantitative
deformation analysis, shearography has found a wide range of applications in industry
due to its robustness against environment disturbances for defect detection. Although
these techniques have found to be useful in quantitative assessment of deformation
process, the major bottleneck of these techniques is the experimental stability
requirement which is difficult to meet outside laboratory environment.
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Dynamic speckle contrast imaging (DSCI) has been widely used in bio-imaging
applications mainly due to the simplicity involved in the experimental setup which
allows its use outside laboratory conditions [3]. In this technique, the object under
investigation is illuminated with a coherent laser light source. The speckle pattern
generated by the optically rough object surface is recorded using a CCD or CMOS
camera. In bio-imaging applications, the bio-activity within the object is the main
source of speckle intensity variations. Analysis of these dynamic speckle patterns
allows to obtain speckle contrast images. A number of numerical and graphic speckle
analysis techniques have been reported in the literature [4]. Speckle correlation tech-
nique has also been applied in material characterization [5, 6]. In this work, we propose
to explore speckle correlation for non-contact surface defect detection.

2 Dynamic Speckle Contrast Imaging

In the context of deformation analysis, when the object surface is subjected to external
loading, defective surface points undergo larger deformation compared to the nonde-
fective points. In ESPI and shearography, this fact results into the variation in the fringe
density which becomes a signature for the presence of defect. Note that only two
specklegrams are recorded one for the un-deformed and one for the final deformed state
of the object. In the paper, we propose a scheme wherein a number speckle images are
recorded while the object under investigation is subjected to continuously and
monotonically changing load. In this case, variations in the speckle intensities are
caused due to the object surface deformation. We propose to utilize these variations in
the speckle intensity for locating the surface defects.

Consider that K number of speckle images of size M�N are recorded during the
continuous loading of the object surface. Thus, we have an image stack I of size
M�N�K. In the present study, since we are interested in identification of defect
location, three graphical speckle contrast analysis techniques are discussed. Fujii [7]
and generalized difference (GD) [8] are two commonly used measures for segmentation
of object surfaces based on some local activity variations. These are computed as

Fujiiðm; nÞ ¼
XK

k¼1

Ikðm; nÞ � Ikþ 1ðm; nÞj j
Ikðm; nÞþ Ikþ 1ðm; nÞj j

GDðm; nÞ ¼
X

k

X

l

Ikðm; nÞ � Ikþ lðm; nÞj j

We propose a new algorithm for speckle contrast analysis using the singular value
decomposition (SVD). Each speckle image in the stack is divided into a number of
image patches each of size Mp �Np. The patch is converted into a vector of size
MpNp � 1. All the vectors associated with same patches in different speckle images are
appended together to obtain a matrix Ip of size MpNp �K. The SVD of Ip is computed
as
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Ip ¼ UpKpV
T
p ;

where, Up and Vp are left and right singular matrices of size MpNp �MpNp and K�K,
respectively. Kp is the diagonal matrix of singular values arranged in an ascending
order. Depending on the surface activity in a given image patch, the speckle intensity
variations change and so does the distribution of singular values in the SVD of Ip. We
define this change in singular values distribution over patches as spatio-temporal
speckle correlation (STC) measure as follows

STC ¼ 1� K1P
i Ki

where, K1 is the first (and highest) singular value and
P

i Ki represents sum of all
singular values. Speckles are more de-correlated at the location of defect as the
deformation will be higher compared to non-defective location. Accordingly, the first
singular value K1 corresponding to the image patch at defect will have lower magni-
tude compared to the same at non-defective location. The STC is computed at each
patch and the two dimensional correlation map of the size same as that of the speckle
image is computed using interpolation.

3 Results

A simulation study was performed to demonstrate the applicability of the DSCI
technique for defect detection. The speckle simulation was performed based on the
technique proposed in [9] with adjustable speckle size. We considered K ¼ 50 speckle
images generated with the phases corresponding to continuous object surface defor-
mation. One such speckle image is shown in Fig. 1(a). Apart from these speckle
images, the DSCI technique is also applied to simulated specklegrams corresponding to
ESPI and Shearography setup. For the purpose of illustration, the ESPI and Shearo-
graphic fringe images corresponding to the final surface deformation are shown in
Figs. 1(b) and (c), respectively. The speckle contrast images obtained using Fujii, GD
and STC methods are shown in second, third and fourth columns, respectively, in
Fig. (1). For the purpose of comparison, the speckle contrast images have been nor-
malized. It can be observed that the STC method provides high contrast images
compared to Fujii and GD methods with which the defect locations can be clearly
identified.
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A study on the effect of number of speckle images and speckle sizes on the speckle
contrast images is performed and the results are shown in Fig. 2. The first row shows
the speckle contrast images obtained using the proposed STC for increasing number of
speckle images (K) from left to right. It can be noted that the speckle contrast does not
vary significantly with K. The second row shows the speckle contrast images obtained
using the proposed STC with increasing speckle sizes from left to right. Expectedly, the
speckle contrast decreases with the increase in speckle size.

Fig. 1. (a) Speckle image in DSCI setup. Fringe images corresponding to surface deformation in
(b) ESPI and (c) Shearography setup. The speckle contrast images obtained using Fujii, GD and
STC methods are shown in second, third and fourth columns, respectively.
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4 Conclusion

The simulation results clearly indicate the applicability of DSCI technique for the
surface defect detection. The experimental setup in this technique is much easier
simpler compared to the interferometric techniques. The proposed STC algorithm
based on the singular value decomposition is found to provide higher contrast images
compared to the Fujii and GD methods. In fact, other speckle contrast algorithms have
also been compared with STC method. The STC seem to provide better contrast images
compared to most of them.
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Abstract. Wood is a material found in nature with distinct applications in
construction engineering. For the sake of greenhouse gas emissions, wood has
been widely used. Two essential factors, i.e. fiber orientation and density, of the
timber were adopted in the prediction model proposed in this paper to obtain the
modulus of elasticity (MOE) of the timber. Besides, a bending test was used to
verify the accuracy of the prediction model. Good agreement was found
between the results obtained from the prediction model and static bending test
along the longitudinal direction. Therefore, the proposed model presented in this
paper has an excellent feasibility of predicting the MOE of the timber to ensure
the reliability and safety of wood construction.

Keywords: Timber �Modulus of Elasticity � Tracheid effect � Fiber orientation

1 Introduction

Wood is one of the essential natural materials as a composite material found in nature
with diverse applications in civil, architectural, and constructional engineering [1].
However, modulus of elasticity (MOE) of the timber is dependent on the density, fiber
orientations, and position of knots, etc. Hence the values of MOE vary at each location
of the timber [2, 3]. Wood research in the Photomechanics Laboratory of National
Tsing Hua University (NTHU), Taiwan, Republic of China, started with an interna-
tional collaboration with Prof. Ying-Hei Chui, University of New Brunswick, Canada,
in 2010. In that collaboration, three dimensional (3D) digital image correlation
(DIC) technique was first used to measure the shrinkage of the timber in three direc-
tions on Jack pine [4]. From 2012 to 2019, a series of foundational research work from
micro- to macro-scale were performed to investigate the surface characteristics and
mechanical behavior of timber [5–13]. Based on the previous research outcomes, this
paper is focused on the establishment of a model to predict MOE of the timber by using
the density and fiber orientation.
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2 Material Species and the Specimen

The specimen of Japanese cedar (Cryptomeria Japonica) was obtained in Hsinchu
County of northern Taiwan. For the dimensional stability and moisture content
adjustment, the specimen was placed in the lab with temperature controlled at 25°C and
relative humidity controlled at 55% for more than one year before the experiment. The
dimension of the specimen with a knot is 558� 46� 17 mm3.

3 Prediction Model for the Modulus of Elasticity

A least-squares fit linear relationship with the coefficient of determination, i.e. R2 = 0.9,
between MOE and density of Japanese cedar was reported [12]. By following ASTM
D2395 [14], the density of the specimen was measured as 435 kg/m3. As listed in
Table 1, material properties, i.e. Young’s modulus (E), shear modulus (G) and Pois-
son’s ratio (m), of Japanese cedar were measured at density of 435 kg/m3.

By using the tracheid effect, a self-developed optical fiber orientation measurement
system was used to determine fiber orientations from the elliptic shape formed by the
laser scattering pattern projected to the surface of the timber [15]. The in-plane fiber
direction was measured by the angle between the major axis of the elliptic shape and
the global longitudinal axis of the specimen. The diving angle was determined by the
ratio of the minor to major axes of the laser scattering pattern. Measurement of fiber
orientations on four surfaces of the timber are needed to investigate the variation of
MOE at each location of the timber.

The proposed prediction model of MOE for the timber was based on the orthotropic
elasticity relating strains to stresses. The compliance matrix Sij (i, j = 1, …, 6) was
obtained by the fiber orientations transformed to the global longitudinal direction. The
effective local MOE in the longitudinal direction was obtained from the parameter S11
of the compliance matrix. By using the rule of mixtures, the global MOE was obtained
from all fiber orientations in four surfaces of each position along the longitudinal
direction.

By considering both density and fiber orientations, a prediction model was pro-
posed to obtain the MOE. A static bending test was used to verify the correctness of the
MOE calculated from the prediction model.

Table 1. Material properties of Japanese cedar at density of 435 kg/m3.

Density El Er Et Glr Grt Gtl vlr vrt vtl
435 kg/m3 10.2 0.31 0.39 0.78 0.23 0.73 0.41 0.84 0.61

1. Unit: GPa.
2. Subscripts: l: longitudinal, r: radial, t: transverse.
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4 Results and Discussions

It should be pointed out here that the linear relationship between MOE and density of
Japanese cedar reported in [12] was based on measurement results of the clear wood
with fiber orientations parallel to the longitudinal direction. However, the specimen
used in this paper has a knot in the middle, in addition, the fiber orientation is not
perfectly parallel to the longitudinal direction. Furthermore, fiber orientations in the
vicinity of the knot are random. Hence, the MOE value obtained from the relationship
between MOE and density reported in [12] is higher than that obtained from the static
bending test. By using the optical scanning system developed in this paper, real fiber
orientation can be obtained so that the position and the size of the knot can be
determined. The density value obtained from the linear relationship between MOE and
density of Japanese cedar reported in [12] can then be modified. Therefore, all
parameters of the compliance matrix will be re-calculated by using the modified
density. The modified S11 will be used to calculate the modified MOE in the longi-
tudinal direction.

5 Conclusions

A relationship between MOE and density was first adopted to calculate material
properties in the compliance matrix. With the consideration of the effect of knot on the
density and fiber orientation, an optical fiber scanning system was developed and used
in this paper to measure fiber orientations on surfaces of the timber. Parameters of the
compliance matrix were then modified to obtain the modified MOE. Results obtained
from the prediction model proposed in this paper and static bending test along longi-
tudinal direction are well matched. Based on the results obtained from this paper, it is
clear that the global MOE is strongly related to the density, fiber orientation, and
position as well as size of the knot. By using the proposed prediction model and the
optical scanning system, the value of MOE can be obtained nondestructively. The
reliability and safety of wooden structures can be ensured and greenhouse gas emis-
sions can be reduced.

References

1. Matthews, F.L., Rawlings, R.D.: Composite Materials: Engineering and Science. CRC Press,
Boca Rathon (1999)

2. Briggert, A., Olsson, A., Oscarsson, J.: Three-dimensional modelling of knots and pith
location in norway spruce boards using tracheid-effect scanning. Eur. J. Wood Wood Prod.
74(5), 725–739 (2016)

3. Kandler G., Lukacevic M., Füssl J.: From the knot morphology of individual timber boards
to the mechanical properties of glued laminated timber. In: World Conference on Timber
Engineering, WCTE 2016, 22–25 August 2016, Vienna, Austria (2016)

84 W.-C. Wang and T.-Y. Kuo



4. Peng, M., Ho, Y.C., Wang, W.C., Chui, Y.H., Gong, M.: Measurement of wood shrinkage in
jack pine using three dimensional digital image correlation (DIC). Holzforschung 66(5),
639–643 (2012)

5. Kuo T.Y., Wang W.C., Chu C.I., Chen J.H., Hung T.H., and Chang J. Y.: Buckling
measurement of cylindrical shells by digital image correlation method. In: ASME 2013
International Mechanical Engineering Congress and Exposition, San Diego, California, 15–
21 November 2013

6. Kuo, T.Y., Wang, W.C.: Experimental and numerical investigation of effects of fiber
orientation of wood stiffness. In: Emerging Challenges for Experimental Mechanics in
Energy and Environmental Applications, Proceedings of the 5th International Symposium on
Experimental Mechanics and 9th Symposium on Optics in Industry, ISEM-SOI, 17–21
August 2015, Guanajuato, Mexico, pp. 249–254 (2015)

7. Kuo, T.Y., Cheng, I.F., Wang, W.C.: Experimental Investigation on Macroscopic Fracture
Behavior of Wood Plates under Tensile Load Using Digital Image Correlation Method. In:
International Digital Imaging Correlation Society - Proceedings of the First Annual
Conference, Philadelphia, PA, 2017, pp. 247–250, 7–10 November 2016

8. Kuo, T.Y., Wang, W.C.: Determination of effective modulus of elasticity of wood from
proportion of latewood. In: World Conference on Timber Engineering, WCTE 2016, 22–25
August 2016, Vienna, Austria (2016)

9. Kuo, T.Y., Wang, W.C.: Experimental and numerical investigation of grain orientation of
timber with knot by using digital image analysis. In: ECCOMAS Thematic Conference on
Computational Methods in Wood Mechanics - from Material Properties to Timber
Structures, CompWood 2019, Vienna, Austria, 17–19 June 2017

10. Kuo, T.Y., Wang, W.C., Lin, C.H., Yang, T.H.: Experimental investigation of cross-
laminated timber shear wall under shear force by using digital image correlation method. In:
Proceedings of the First International Conference on Theoretical, Applied and Experimental
Mechanics, Paphos, Cyprus, pp. 95–97, 17–20 June 2018

11. Cheng Y.J., Kuo T.Y., Wang W.C.: Determination of global modulus of elasticity of timber
by using fiber orientation and proportion of latewood. In: International Conference on
Computational Methods in Wood Mechanics - from Material Properties to Timber
Structures. ECCOMAS Thematic Conference, CompWood 2019, Växjö, Sweden, 17–19
June 2019

12. Kuo, T.Y., Wang, W.C.: Determination of elastic properties of latewood and earlywood by
digital image analysis technique. Wood Sci. Technol. 53(3), 559–577 (2019)

13. Kuo, T.Y., Wang, W.C., Huang, H.S., Wang, J.S.: Determination of moduli of elasticity of
latewood and transition latewood of Japanese cedar by using digital image analysis. In:
International Conference on Computational Methods in Wood Mechanics - from Material
Properties to Timber Structures. ECCOMAS Thematic Conference, CompWood 2019,
Växjö, Sweden, 17–19 June 2019

14. ASTM D2395-17: Standard Test methods for density and specific gravity (relative density)
of wood and wood-based materials. In: ASTM International, West Conshohocken, PA
(2017)

15. Nyström, J.: Automatic measurement of fiber orientation in softwoods by using the tracheid
effect. Comput. Electron. Agri. 41(1), 91–99 (2003)

Experimental Investigation of the Elastic Modulus of Timber 85



Effect of pH on Microstructure and Properties
of Ultrasonic-Assisted Electroless Ni-P

Coatings

Jingjing Cao(&), Xiaoyu Wang, Yifan Zhao, and Guofang Kong

Hebei University of Engineering, Handan 056038, China
Caojingjing1105@163.com

Abstract. Ni-P coatings with various pH values (4.5*5.4) were fabricated on
Ti6Al4V titanium alloy by ultrasonic-assisted electroless deposition. The effect
of pH on the deposition rate and phosphorus content was studied, as well as pH
on the surface morphology, phase structure and microhardness of the deposited
Ni-P coatings. The results showed that the increasing pH enhanced the depo-
sition reaction, and ultrasonic cavitation and mass transfer effect improved the
catalytic activity of the substrate surface and the reaction system. So the
deposition rate was increased. But the higher pH decreased the stability of the
bath and precipitated NiHPO3, resulting in the decrease of deposition rate. With
the increase of pH, the phosphorus content decreased at first and then kept stable
(17 ± 0.45wt%),while the microhardness enhanced at first and then kept stable
(605 ± 2HV). The ultrasonic-assisted electroless Ni-P coatings had the typical
cauliflower-like morphology and microcrystalline structure characteristics.

Keywords: Ni-P coating � Ultrasonic-assisted � pH value

1 Introduction

The electroless coatings possess good corrosion resistance, high hardness, good elec-
trical conductivity and high tribological properties [1]. These excellent properties make
it popular in many engineering community, such as electronic components, aerospace,
petrochemical and others [2]. However, the autocatalytic electroless plating is a rela-
tively slower process. The stability of the plating solution will decreases and the
solution generate evaporation in the long time plating. So, it is vital to seek some
method to promoting the autocatalytic action or the deposition rate and decreasing the
deposition temperature. Many researchers studied the effect of ultrasonic assistance on
the microstructure and properties of electroless plating [3, 4]. They found the ultrasonic
assistance was beneficial to the increase of deposition rate and the improvement of
properties. But the ultrasonic can decrease the plating bath stability and even cause the
self-decomposition of plating solution [5]. During the electroless, various factors can
affect the autocatalytic reaction, including the main salt, reducing agents, complex
agents, temperature and pH value [6]. But the most important is pH that controls the
rate and direction of the deposition reaction. Thus, we proposed to fabricate Ni-P
coatings by ultrasonic-assisted electroless on titanium alloy substrate, and performed
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zinc double immersion and alkaline pre-plating Ni-P film to avoid the oxidation of
titanium substrate causing the decrease of adhesion strength between coatings and
substrate. And this work aims to study the effect of pH on the microstructure and
properties of electroless Ni-P coatings in case of the ultrasonic field.

2 Experimental Details

2.1 Specimen Preparation

The titanium alloy (Ti6Al4V) was used as the substrate, in the shape of sheet with
20 mm � 20 mm � 2 mm size. A /1.5 mm hole was cut at the center of the edge
with laser beam machining machine to make it easy to be hanged. The specimen was
grinded using SiC paper followed by ultrasonic cleaning in alcohol. The specimen was
first cleaned in alkaline solution to degrease. Then the specimen was etched to remove
oxide layers. Next, the zincating was conducted to obtain Zn films. The zincated
titanium alloy plate was dipped into alkaline Ni-P solution for pre-plating. And it was
worth noting that sufficient water washing was required after each step.

After pre-plating process, ultrasonic-assisted electroless plating was performed and
the pH was adjusted in the range of 4.5*5.4 ± 0.02. The schematic diagram of
ultrasonic-assisted electroless plating was shown in Fig. 1).
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Fig. 1. Schematic diagram of ultrasonic-assisted electroless Ni-P coatings.
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Abstract. To unlock the contribution of carbon nanotubes in potential appli-
cations it is necessary to take into consideration the degree of their dispersion. In
this work, a simple technique has been used for characterizing the degree of
CNT dispersion in mortar based on values of the capacitive reactance measured
using AC impedance spectroscopy. The relationship between capacitance values
and fracture toughness provides valuable information on the actual CNT dis-
tribution in the matrix.

Keywords: Fracture toughness � Capacitance � Carbon nanotubes � Mortars

1 Introduction

CNT distribution in a cementitious matrix is a key parameter affecting the mechanical
and electrical properties of the nanoreinforced cementitious materials and concrete
[1, 2]. Besides the resistive phase, a nanotube-mortar composite contains capacitive
characteristics, mainly due to the localized nanotube/mortar/nanotube, similar to that of
an electrical capacitor [3]. This study characterizes CNT dispersion using AC impe-
dance spectroscopy and fracture mechanics tests [3, 4]. It was observed that the
capacitive reactance of the nanoreinforced mortars can accurately evaluate the degree
of CNTs dispersion. The relationship among the capacitance measurements and frac-
ture toughness provides information on the actual CNT distribution in the matrix.

2 Results

CNTs were added in mortar mixtures at amounts of 0.08%, 0.1%, 0.2%, 0.3% and 0.5
wt% of cement. CNT dispersion was achieved by applying ultrasonic energy with the
use of a surfactant [4]. Figure 1 illustrates the capacitance and fracture toughness of
mortars as a function of the CNT amount. When the CNTs are added in the mixture at
amounts of 0.08% and 0.1 wt% an effective nanotube network is established in the
matrix and the capacitance is decreased. This indicates a continuous nanotube-nanotube
structure, in which the electrical charge cannot be stored. At the same time, 0.08% and
0.1 wt% CNT/mortars exhibit the highest improvements in fracture toughness, 70%
and 89%, respectively. The addition of CNTs at amounts higher than 0.1 wt% results in
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lower increases of the toughness and at the same time higher capacitance. This is
indicative of poor CNT dispersion, which consequently leads to a lower toughening
mechanism and a higher amount of energy stored in the nanoreinforced structure.

3 Conclusions

The degree of CNT dispersion was successfully evaluated through electrochemical
spectroscopy and fracture mechanics tests. The relation between the capacitive reac-
tance and fracture toughness of the nanoreinforced mortars provides accurate infor-
mation about the degree of nanotube dispersion. The addition of highly dispersed
CNTs leads in an effectively connected carbon nanotube network in the matrix. Mortars
reinforced with up to 0.1 wt% exhibit high fracture toughness values and decreasing
resistance and capacitance values. Addition of CNTs at higher amounts result in lower
toughness values and a relative increase in the ability of the nanotube network to store
electrical energy.
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Fig. 1. Fracture toughness and Capacitance of 28d mortars reinforced with CNTs at amounts of
0.08%, 0.1%, 0.2%, 0.3% and 0.5 wt%
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Abstract. The creep resistance of two discontinuously reinforced with 20 vol.%
alumina short-fibres magnesium composites were examined by performing a
comparison between the creep properties of these composites and their magne-
sium matrix alloys AZ 91 and QE 22. It was found that the magnesium AZ 91
composite exhibits an improved creep resistance arising mainly from an efficient
load transfer effect and the existence of a threshold stress, respectively. By
contrast, the beneficial effect of reinforcement and the improved creep resistance
of the QE 22 composite is significantly influenced by the creep loading
conditions.

Keywords: Magnesium composites � Creep resistance � Reinforcement

1 Introduction

The creep resistance of magnesium alloys is rather limited at elevated temperatures.
However, a marked improvement in the creep properties of magnesium monolithic
alloys can potentially be achieved through the production of composite materials,
where the matrices consist of conventional magnesium alloys which are strengthened
through the introduction of non-metallic fibres or particulates to form metal matrix
composites (MMCs) [1]. The most fundamental issue of the creep behaviour of these
composites is the determination of the mechanism(s) by which the creep life of the
composite is increased by reinforcing the creep matrix with less-creeping non-metallic
short-fibres or particulates. Once the mechanism is clarified, one can design new MMC
with higher creep resistance by tailoring constituent parameters of the matrix alloy and
short fibre phases.

This work reports the experimental results obtained in an investigation of the high
temperature creep behaviour of short-fibre reinforced AZ 91 and QE 22 matrix-based
composites and their monolithic alloys. The objective of the present research is a
further attempt to clarify the creep strengthening and creep resistance in short-fibre
reinforced magnesium alloys.
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2 Experimental

All the experimental materials used in this work were fabricated at the Technical
University of Clausthal, Germany. Short-fibre reinforced and unreinforced blocks of
the common AZ 91 alloy (Mg-9 wt%Al-1 wt%Zn-0.3 wt%Mn) and the high strength
silver-containing QE 22 alloy (Mg-2.5 wt%Ag-2.0 wt%Nd rich rare earths-0.6 wt%Zr)
were processed by squeeze casting [2]. The fibre preform consisted of planar randomly
distributed d-alumina short fibres (Saffil Al2O3 fibres *5 lm in diameter with varying
lengths up to an estimated maximum of *150 lm). The final fibre fraction after
squeeze casting in both composites was about 20vol.%. For convenience, the com-
posites are henceforth designated AZ 91 + Saffil and QE 22 + Saffil. All materials
were subjected to a T6 heat treatment [2].

Flat creep specimens with a 25 mm gauge length and 3 � 3.2 mm2 cross-section
were machined from the blocks so that the longitudinal specimen axes parallel to the
plane in which the long axes of the fibres were situated. Constant stress tensile creep
tests were carried out at temperatures from 423 K to 523 K and at applied stresses from
20 to 200 MPa. The creep elongations were measured using a linear variable differ-
ential transducer (W2K from Hottinger-Baldwin Co., Germany) and continuously
recorded digitally and computer-processed.

Metallographic and fractographic investigations were conducted after creep testing
using scanning electron microscope Lyra 3 TESCAN.

3 Creep Strengthening of the Composite

At present it is generally accepted that creep deformation in metal matrix composites is
controlled by flow in the matrix materials [2]. Creep strengthening of the magnesium
composites may occur by either direct or indirect mechanisms [1] as it is illustrated in
Fig. 1. Direct strengthening is due to a load transfer from the matrix to the rein-
forcements. Thus, load transfer is accompanied by a redistribution of stresses in the
matrix and this reduces the effective stress for creep. Indirect strengthening occurs
when the presence of the reinforcements or the process used to manufacture the
composite influence the matrix microstructure which could modify the creep resistance.
Potential microstructural effects include changes in the dislocation arrangements,
accelerated ageing, microstructural decomposition, a matrix chemical compositional
variation, and/or a reinforcement transformation. As a result, the microstructural
changes in the matrix of the composite can retard and/or inhibit dislocation motion and
lead to a threshold for creep that increases the creep resistance.
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4 Results and Discussion

4.1 Creep in Monolithic and Fibre-Reinforced AZ 91 and QE 22 Alloys

The most important creep data for the AZ 91 and QE 22 alloys and their composites at
a testing temperature of 473 K are shown in Fig. 2, where the minimum creep _em rate
_em and the time to fracture tf are plotted against the applied tensile stress r on a double
logarithmic scale. Inspection of the creep data in Fig. 2(a) leads to two observations.
First, the AZ 91 + Saffil composite exhibits an improved creep resistance (that means a
substantial decrease of the minimum creep rate _em), typically by >2 orders of magni-
tude in comparison with the monolithic alloy and, therefore, the trends of these plots
are different because the unreinforced alloy exhibits a decreasing value of the true stress
exponent of the creep rate n = (∂ln_em/∂lnr)T at the lower stresses, whereas the com-
posite exhibits a higher value of n with decreasing stress. Second, the creep resistance
of the QE 22 + Saffil composites is also somewhat better than that the unreinforced
alloy but at the low stresses (r � 100 MPa) only.

Figure 2(b) shows the variation of the time to fracture with the stress for the same
specimens tested in Fig. 2(a). The results for AZ 91 alloy and its composite demon-
strate the creep lifetimes of the composite are up to one order of magnitude longer than
that for the monolithic alloy at low stresses, although this difference decreases with
increasing applied stress so that ultimately there is very little difference at stresses
r > 100 MPa. By contrast, the creep life of the QE 22 + Saffil composite is markedly
shorter than that of the unreinforced alloy at stresses > 100 MPa.
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Fig. 1. A schematic illustration of the power law creep in conjunction with the effects of the
threshold stress and load transfer.
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In conclusion, it was found that the presence of reinforcement leads to a substantial
decrease in the overall ductility of the monolithic alloys. Thus, the values of the strain
to fracture ef in both composites were only �1–2%. By contrast, the strains to fracture
in the monolithic alloys were significantly higher, typically up to 15% in the AZ 91
alloy and up to 30% in the QE 22 alloy.

Despite the general similarity of the creep behaviour of both composites, the
presence of the same composition and amount of a short-fibre reinforcement in the
unreinforced AZ 91 and QE 22 alloys results in a significantly different improvement of
the creep resistance of composite by comparison with the matrix alloy. Thus, it will
only be appropriate here to analyse differences that can be inferred from a comparison
between the creep strengthening mechanisms of both composites and the unreinforced
alloys (Fig. 1).

4.2 Direct Strengthening Due to a Load Transfer

As already shown in Fig. 2(a), the presence of short fibre reinforcement could lead to a
reduced creep rate in both composites. Such effect can arise when significant load
transfer partitions the external load between the matrix and the reinforcement. In the
presence of load transfer, the creep data may be successfully reconciled by putting the
ratios of the minimum creep rates of the composite and the rates of the matrix alloy at
the same loading conditions, equal to a factor given by (1 – a)n, where a is a load
transfer coefficient having values lying within the range from 0 (no load transfer) to 1
(full-load transfer). Thus, the values of a inferred from the data for the unreinforced AZ
91 and its composite in Fig. 2(a) using n = 3 are within the range of 0.8 to 0.9. The
predicted values a are in reasonable agreement with the theoretical prediction according
to an analytical treatment based on a modified shear-lag model. Unfortunately, values
of the load transfer coefficient a, for the QE 22 composite cannot be rigorously
obtained due to insufficient creep data inferred from this study. The indicative

10 100
STRESS  σ  [MPa]

10-10

10- 9

10- 8

10 -7

10- 6

10- 5

10- 4

10- 3

10- 2

M
IN

IM
UM

 C
RE

EP
 R

AT
E 

 ε. m
 [s

-1
]

T = 473 K

200

Mg
QE 22
QE 22+Saffil
AZ 91 
AZ 91+Saffil

10 100
STRESS σ [MPa]  

10 0

10 1

10 2

10 3

10 4

10 5

10 6

10 7

10 8

TI
M

E 
TO

 F
RA

CT
UR

E 
 t f

 [s
] 

T = 473 K
Mg
QE 22
QE 22+Saffil
AZ 91 
AZ 91+Saffil

200

(a) (b)

Fig. 2. Stress dependences of (a) minimum creep rate and (b) time to fracture for the monolithic
magnesium alloys and their short-fibre composites.
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experimentally estimated values of a, for which the rate of the composite _ec\_em were
found to be 0.11 and 0.26 for 423 and 523 K, respectively.

4.3 Indirect Strengthening Due to a Threshold Stress r0

Having only a small number of experimental points it was appropriate to make use of
the procedure in which it is possible to estimate the magnitude of r0 by plotting the

data on linear axes as ð_eÞ1=n against r and linearly extrapolating the data to give the
threshold stresses at a zero strain rate. A plot of this type requires, a priori, a judicious
selection of the appropriate value of the true stress exponent, n. Figure 3 shows the
determination of the threshold stress for the unreinforced AZ 91 alloy (Fig. 3(a)) and its
composite (Fig. 3(b)) in double linear coordinates. Detailed inspection of the individual
plots shows that a true stress exponent of 3 yields the best linear fit – Fig. 3(b). The
finding of n = 3 provides support for adopting the suggestion that the AZ 91 composite
exhibits creep behaviour which is consistent with the behaviour anticipated for mag-
nesium solid solution alloys. Similar results for QE 22 alloy and its composite show
that, while no threshold stress was found in the case of monolithic QE 22 alloy, the
values of the threshold stress of the composite at 473 K and 523 K were estimated as
22 MPa and 18 MPa, respectively.

It was mentioned earlier, that indirect strengthening may be caused by the
microstructural changes in the material. In our previous studies [2] we found that the
threshold stress values are closely connected with the development of a continuous
precipitate morphology of Mg17(Al, Zn)12 particles. Further, it was observed that the
fibres in the QE 22 composite can act as nucleation centre in the precipitation process,
promoting precipitation of Al2Nd, Mg(Al)12Nd and Mg3Ag phases.
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alloy (no threshold stress), (b) AZ 91 composite.
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4.4 Matrix/Reinforcement Bonding

The creep behaviour of the composites may be substantially influenced by the
matrix/fibre interfaces. Weak matrix/reinforcement bonding may lead to inferior creep
properties of the composite. Thorough fractographic investigations of the AZ 91
composite did not reveal either substantial creep fibre cracking and breaking or any
substantial debonding at the interfaces between the fibres and the matrix due to
creep. By contrast, and intensive debonding was revealed at the fracture surfaces at the
QE 22 composite. Thus, in the limit of zero interface strength, where no stress can be
transmitted to the fibres, the composite may be weaker than the matrix alone. Detailed
fractographic investigation revealed enhanced precipitation of secondary phases at the
interfaces in the AZ 91 composite, which can favourably affect the strength of the
matrix/fibre interface and thus the creep behaviour of the composite (Fig. 4).

5 Conclusions

Creep strengthening in the composite arises mainly from the load transfer and the
existence of a threshold stress. The load transfer occurs by plastic deformation of the
matrix being limited by the intact bond of the fibre and enhanced precipitation of
secondary phases.

Acknowledgement. This research was carried out under the project CEITEC 2020 (LQ1601)
with financial support from the Ministry of Education, Youth and Sports of the Czech Republic
under the National Sustainability Programme II.

Fig. 4. Creep fracture surface: (a) good interface bonding due to an occurrence of precipitates at
the fibre surface (AZ 91 composite), (b) weak cohesion of the interface due to clean fibre surface
(QE 22 composite).
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Abstract. The strength of the adhesion joint under the combined vibrational-
pulsed loading is considered. Beam and membrane models on elastic foundation
is applied to simulate behavior of adhesion zone. The incubation time criterion is
used to determine the threshold parameters of a load required to adhesive zone
fracture. The solution of the differential equation describing the behavior of the
adhesive zone is obtained by the Fourier method. Different types of combination
of pulsed loading with high-frequency external fields are considered. It
demonstrates that background vibration fields of even low intensity at certain
frequencies can significantly reduce these critical values. The dependence of the
threshold value of the external pulse on the model parameters is shown. The
possible way to control to adhesive joint strength by background vibrational
fields is suggested.

Keywords: Adhesion zone � Incubation time criterion � Elastic foundation �
Vibrational field

1 Introduction

High-frequency harmonic fields has a significant impact on the strength properties of
materials. Microelectromechanical Systems (MEMS) is a promising area for applying
this effect. Previously, this effect has already been investigated on the model of the
adhesion zone based on the string approximation [1]. Winkler base and its modifica-
tions are the most widely used approach for describing the adhesion joint [2–4]. The
simplest one-dimensional model of beam and 2D-model of membrane on the elastic
foundation are considered. The influence of external harmonic fields on the strength of
these models is subject of the study.
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2 Incubation Time Criterion

The fracture criterion based on the concept of incubation time is used. This criterion is
originally formulated in terms of stress. On the contrary, equations describing the
behavior of the adhesive zone and boundary conditions are written using displace-
ments. The assumption about elastic behavior is therefore accepted. It makes possible
to rewrite the criterion in terms of displacements:

max
t2 0;tc½ �

1
s

Zt

t�s

u gð Þdg� uc; ð1Þ

where u tð Þ is displacement, uc is a limit elongation of the link under quasistatic loading,
s is fracture incubation time, tc is upper border of considered time period.

3 Adhesive Zone Models

3.1 Membrane Approximation

The adhesive zone of a circular membrane on an elastic base is considered. Only
resistance to tensile forces is taken into account. The model is described by the fol-
lowing equation:

@2u
@r2

þ 1
r
@u
@r

� 1
c2

@2u
@t2

� x2

c2
u ¼ �f r; tð Þ; ð2Þ

where r is distance from the center of the membrane, c is the wave velocity, x is the
characteristic of the elastic foundation of rigidity, f is the external force. Boundary
conditions correspond to fixed edge of the membrane and zero initial conditions is
considered:

u r; 0ð Þ ¼ @u
@t

r; 0ð Þ ¼ 0; u R; tð Þ ¼ 0: ð3Þ

The solution of the problem (2, 3) is obtained by Fourier method [5]:

u r; tð Þ ¼ Pn
k¼1

fk rð Þgk tð Þ:

u r; tð Þ ¼ 2c2

R2 �
Xn
k¼1

J0
a0k �r
R

� �
X kð Þ � J 00 a0mð Þ� �2 Z

t

0

ZR

0

f e; gð Þ � e � J0 aom � e
R

� �
de

 !

� sin X kð Þ t � gð Þð Þdg; ð4Þ

where J0 – is the zero-order Bessel function, a0m – are the zeroes of the zero Bessel

function, X kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � k2k þx2

q
, kk ¼ R � aok.
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Constant and Pulse Loading
Concentrated constant force P and a background vibration field of frequency m is
considered:

f r; tð Þ ¼ P H tð Þ d rð Þ
R2 � r þ c � sin mtð Þ

� �
;

where d(r) is the Dirac delta function, H(t) is the Heaviside function, c is a relative
intensity of the background vibration field.

Fracture is considered at center point. Threshold force amplitude at which
delamination of the adhesion zone occurs founded by Eq. (4) and fracture criterion (1).
The dependence of the threshold amplitude P versus the background field frequency m
at various relative intensities c for this type of loading is shown in Fig. 1. Based on
these results a significant decrease of the threshold amplitude is observed at certain
frequencies.

Another considered type of loading is combination of impulse of finite duration T
and background vibration field:

f r; tð Þ ¼ P H tð Þ � H t � Tð Þð Þ d rð Þ
R2 � r þ c � sin mtð Þ

� �
:

The critical force changewith increasing pulse duration is also investigated at a certain

frequency of the background field m ¼ X 1ð ÞþX 2ð Þ
2 . The results are presented on Fig. 2. The

plot demonstrates a decrease of the threshold amplitude with the increasing of the pulse
duration until T ¼ 0:1. Almost constant dependence is observed after this value.

Fig. 1. Dependence of the load threshold amplitude on the background field frequency, where
load function is the combination of constant force and infinite vibrational field
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3.2 Beam Approximation

Similar results are obtained for the model based on beam approximation. Bernoulli-
Euler beam on elastic foundation is considered. Tensile forces are neglected. In this
case, the adhesion zone will be described by following equation [6]:

@4w
@x4

þ 1
c2

@2w
@t2

þ x2

c2
w ¼ f x; tð Þ; ð5Þ

where x is the coordinate along axis of the beam, w is vertical deflection.
Zero initial conditions:

w x; 0ð Þ ¼ @w
@t

x; 0ð Þ ¼ 0: ð6Þ

Boundary conditions of 3 types are considered

• Hinged ends of the beam

w 0; tð Þ ¼ w l; tð Þ ¼ 0;
@2w
@x2

0; tð Þ ¼ @2w
@x2

l; tð Þ ¼ 0; ð7Þ

• Clamped ends of the beam

w 0; tð Þ ¼ w l; tð Þ ¼ 0;
@w
@x

0; tð Þ ¼ @w
@x

l; tð Þ ¼ 0; ð8Þ

Fig. 2. Dependence of the pulse load critical amplitude on its duration in the continuous
background vibrational field
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• Beam with free ends

@2w
@x2

0; tð Þ ¼ @2w
@x2

l; tð Þ ¼ 0;
@3w
@x3

0; tð Þ ¼ @3w
@x3

l; tð Þ ¼ 0: ð9Þ

The solution of the problem (5–9) is obtained as follows:

w x; tð Þ ¼ c2
Xn
k¼1

Uk xð Þ
Xk Ukk k2

Z t

0

Z l

0

f n; gð ÞUk nð ÞdnÞÞ
0
@

1
Asin Xk t � gð Þð Þdg; ð10Þ

where Xk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ c2k4k

q
; Ukk k2¼ Rl

0
Uk xð Þð Þ2dx, Uk and kk is solution of spectral

problem UIV � k4U ¼ 0 and expressions of these auxiliary parameters are given in the
Table 1.

Table 1. Auxiliary parameters for different types of boundary conditions.

kk Uk

Hinged beam pk=l sin kkx
Clamped beam Roots of ch klð Þ cos klð Þ ¼ 1 K4 kkxð Þ � K4 kk lð Þ

K3 kk lð ÞK3 kkxð Þ
Free ends Roots of ch klð Þ cos klð Þ ¼ 1 K2 kkxð Þ � K4 kk lð Þ

K3 kk lð ÞK1 kkxð Þ

Fig. 3. Dependence of the loading threshold amplitude on the background field frequency for
the clamped beam
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where Ki are the functions of Krylov:

K1 zð Þ ¼ ch zþ cos zð Þ=2 K2 zð Þ ¼ sh zþ sin zð Þ=2;
K3 zð Þ ¼ ch z� cos zð Þ=2 K4 zð Þ ¼ sh z� sin zð Þ=2:

Constant Load
External load of the following form is considered:

f x; tð Þ ¼ P H tð Þd x� l
2

� �
þ rsin mtð Þ

� �
: ð11Þ

The loading is similar to the previous one. Solution is obtained in the same way as in
the case of membrane. Figure 3 shows the dependence of vibrational frequency and
critical force amplitude at point x ¼ l=2: The graph demonstrates the same effect of the
threshold amplitude decrease as for membrane approximation.

4 Conclusion

The observed effect of reducing the threshold load at certain frequencies appears even
for harmonic fields of relatively small amplitude. In addition, the effect appeared for
both models considered (membrane and beam approximation). This phenomena could
be used in MEMS application with ultrasound as a control factor to shift volatile
regimes of nano electro-mechanical switches.
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Abstract. This paper investigates the fracture generation processing of the P91
steel during a small punch tensile test. P91 disc specimens, 8 mm in diameter
and 0.5 mm in thickness, were tested in a small punch test rig at 600 °C using a
constant displacement rate of 2 µm/s. Interrupted tests were performed to
investigate the crack generation and evolution of P91 in small punch tensile
tests. The disc-shaped specimens were deformed into domes of different depths
during the tests. Cross-sectional microstructure analysis revealed that thinning
and circumferential necking started to occur at the edge of contact before the
maximum load was reached, and then significant point necking occurred in the
circumferential necking area after the maximum load. The crack formed during
the tests aligns with the plastic flow of the specimen. Alignment of crack
propagation occurred in the plastic deformation direction, before achieving the
maximum small punch load.

Keywords: Small punch tensile test � P91 steel � Deformation regimes � Crack
generation � Fracture mechanism

1 Introduction

In the last decade, testing techniques using miniature samples have received ever-
increasing attention from the electricity generation industry for situations where the
amount of material used in the test is limited [1, 2]. The Small Punch Tensile Test
(SPTT) is widely used as a miniature specimen test method to characterise the tensile
mechanical properties for ductile metallic materials, with the specimen being a disc of
*8 mm diameter and *0.5 mm thickness [3]. The punch was applied to the disc at a
given constant displacement rate. The very small specimen size denotes that the SPTT
can be considered as a limited volume and non-destructive methodology to provide a
real evaluation of mechanical behaviours when compared with the conventional tensile
test [4–7]. Moreover, the SPTT specimen can be taken directly from in-service com-
ponents without significantly affecting their structural integrity [8], allowing the
mechanical behaviour to be examined using SPTT [9, 10]. In particular, the SPTT
exhibits unique advantages in characterising power plant steels, of which the high
temperature mechanical behaviour is crucial to the durability of pressure vessels.
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One of the power plant steels which is of great interest is the 9Cr-1Mo steel
(commercially known as P91). It is widely recognised that fracture in P91 steels occurs
through progressive nucleation, growth and eventual coalescence of voids. Meanwhile,
most studies are based on uniaxial tests, using standard specimens where necking
appears in a location that cannot be controlled. The understanding and prediction of
strain and damage interactions in P91 steels remain a challenging topic. At present, the
bi-axial loading state of SPTT appears to have the potential to examine the above
physical phenomena to reveal the deformation and fracture mechanisms. However,
work concerned on this aspect, especially in addressing the microscopic evidence with
the deformation and fracture mechanisms of SPTT, does not appear to have been
detailed until now.

Therefore, considering the significance of microstructure characteristics on the
degradation of P91 during SPTT, the aim of the work reported in this paper is to
investigate specifically the microstructural evolution of P91 during the SPTT, in an
attempt to reveal the deformation mechanisms in different regimes of the SPTT. The
results of a physical characterisation of the high-temperature deformation and fracture
process of the P91 steel via SPTT at 600 °C are presented and the deformation and
fracture mechanisms in different SPTT regimes are discussed.

2 Material and Experimental Procedure

The as-received P91 steel was machined into a cylinder shape with 8 mm in diameter
and was then sliced into disc SPTT specimens with a thickness slightly larger than
0.5 mm using wire electro-discharge machining. The specimens were then ground
down to a final thickness of 0.5 mm using 1200-grade silicon carbide papers.

A Tinius Olsen H5KS single column material testing machine was used to perform
the SPTTs. A 1.0 kN load cell, which has a loading accuracy of ±0.5% of the applied
load, is installed to measure the load transmitted to the specimen through a hemi-
spherical punch head. The displacement of the punch was recorded as the average
reading of two linear variable differential transformers, which have an accuracy of
±0.01 mm, a resolution of 1 µm and a speed resolution of 1 µm/min. A constant
displacement rate of 2 µm/s was applied to the punch when the specimen has failed or
when the displacement of the punch has reached the setting values (for interrupted
tests) and a backoff speed of 4 mm/s was applied.

3 Mechanical Behaviour

3.1 Load-Displacement Curves

A schematic diagram of the applied force, F, and displacement, u, of SPTT for a ductile
material is shown in Fig. 1a. According to Abendroth and Dymacek [11, 12], the F-u
curve obtained from the present tests can be divided into six stages, representing
different deformation regimes during SPTT. Thus, to investigate the physical nature of
the above deformation process and the fracture behaviour of the P91 steel at 600 °C, a
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series of interrupted SPTTs have been carried out. Firstly, two specimens are used to
perform the repeated SPTTs for the whole stroke until fracture. The load-displacement
curves obtained are shown in Fig. 1b.

To investigate the deformation mechanisms of P91 in SPTT, the key interrupted
displacements were determined based on Fig. 1a. The main objective of interrupted
SPTTs is to provide “In Situ” investigations into the evolution of deformation at each
stage of the SPTT until fracture. Seven interrupted SPTTs were conducted on the P91
steel at 600 °C in Fig. 1b. The interrupted displacements are set as 0.26, 0.60, 1.00,
1.25, 1.50, 1.65 and 1.74 mm respectively to represent the different deformation
regimes in Fig. 1a.

3.2 Physical Characterization of the Deformation Process

The cross-sectional microstructure of the above deformed P91 specimen is shown in
Fig. 2. The small deformation after a displacement of 0.26 mm in Fig. 2a exhibits the
dome shape is about to form due to the punch movement. It can be seen that the
thickness of the specimen remains the same without obvious material thinning in
Fig. 2a. The primary phase that can be seen is the prior austenitic phase in Fig. 2b. No
large voids have formed yet for a displacement of 0.26 mm. The dome shape becomes
more evident when the deformation of specimen increases. The alignment of the grains
is not found in Fig. 2b and 2d, but such evidence is seen at large punch displacements
in Fig. 2f and 2h. This indicates that the grain alignment will tend to occur when the
plastic deformation becomes dominant. The beginning of necking occurs, as shown in
Fig. 2e and g, due to the bending and stretching stress at the edge of contact between
the punch and specimen.

Figure 3 shows the cross-sectional microstructure of the P91 after achieving the
maximum load. The dome shape has developed further due to the increased punch
displacements. It is noticed that the necking and thinning at the edge of contact pro-
gress in these specimens, where the thickness of the specimen has been further reduced,
as shown in Fig. 3c due to the ongoing bending and stretching stresses under the bi-
axial loading state. Meanwhile, void nucleation and elongation are found to exist in
Fig. 3b. Due to the large plastic deformation in these punch displacements, the voids

Fig. 1. The schematic diagram of the SPTT load-displacement curve (a), the load-displacement
curves at interrupted displacements and whole stroke (b).
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have been deformed into elongated shapes of which the long axis is pointing in the
direction of the plastic flow. The phases also align with the plastic flow in Fig. 3b and
3d. Moreover, it is found from Fig. 3d that the austentic and martensitic phases have
been elongated along the plastic flow direction due to the extensive plastic deformation
at the edge of contact. A number of voids, approximately 3-5 µm across, are found in
Fig. 3d. The morphology of the voids has been further stretched and elongated.
Figure 3e and 3f depict the microstructure of the fracture point at the edge of contact. It
can be seen that the phases have also been elongated due to the large plastic

Fig. 2. The cross-sectional microstructure of the P91 specimen at interrupted displacements of
0.26 mm (a & b), 0.6 mm (c & d), 1.0 mm (e & f) and 1.25 mm (g & h).

Fig. 3. The cross-sectional microstructure of the P91 specimen at interrupted displacements of
1.5 mm (a & b), 1.65 mm (c & d) and 1.74 mm (e & f).
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deformation in Fig. 3f. Some discrete and ellipsoidal voids are found in this region,
especially close to the fracture site. Noting that significant material necking and
thinning have occurred during this stage, it is possible that the thinning of the specimen
at the edge of contact allows the coalescence of voids to occur, resulting in the fracture
of the specimen. Eventually, the tearing of the material occurs, producing the rough
fracture surface.

4 Deformation and Facture Mechanisms

Figure 4 gives the schematic diagram of deformation of P91 in SPTT at 600 °C at
different stages. The first stage, I, is related to the elastic deformation, which is not
shown in Fig. 4. Stage II represents the transition zone from elastic to plastic defor-
mation, in which at the beginning, the plastic deformation occurs in the local area
outside of the contact zone of punch and specimens. And then it will expand to the
materials in the gap between the punch and the die along the circle. Stage III represents
the homogeneous plastic deformation and the specimen thickness will reduce relatively
uniformly in the deformation zone (as shown Fig. 2a, c, e from punch displacement
approximately 0.26 mm to 1.0 mm). In stage III, the energy consumed is more than
40% of the total energy. The thickness of specimen will reduce at local circle band near
the punch contact area in stage IV (as shown in Fig. 2g), in which a circumferential
necking will occur and the energy consumed rate is 20.2%, in which a circumferential
necking will occur and the energy consumed rate is 20.2%. In stage V, the plastic
deformation will focus on a point until crack occurring in the local circle band hap-
pened in stage IV (as shown in Fig. 3a, c), in which the voids will have a nucleation,
growth, coalescence and creates a macroscale crack in the point necking area and the
energy consumed 29.4% or so. Finally, the crack will extend and the material will be
teared ductility until failure in state VI (as shown in Fig. 3e), in which the energy
consumed is only 4.1% of the total energy due to the connect area reducing down to
immediate failure.

Fig. 4. The schematic diagram of deformation regimes of P91 in SPTT at different stages.
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5 Conclusions

The interrupted small punch tensile tests of P91 were performed at 600 °C to inves-
tigate the deformation and fracture mechanisms of P91.

The dome shape of the SPTT specimen gradually develops when the punch dis-
placements increase from 0.26 to 1.74 mm. It is found that the voids are likely to form
after the maximum load is achieved, which indicates that the fracture of the P91
specimen is starting to occur. From the microstructure evolution, it is shown that
significant necking and thinning occur after the maximum load.
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Abstract. The residual life prediction based on damage accumulation models
for the BT3-1 titanium alloy are present. Mechanical properties were obtained at
temperature 370 °C. Life prediction was based on the Kachanov–Rabotnov
damage model for creep and the Duyi-Zhenlin model for fatigue. The contri-
bution of each type of loading to the generalized damage parameter was cal-
culated according to the law proposed by Skelton and Grandy. Damage
accumulation laws were integrated into ANSYS software. Cyclic loading with a
trapezoidal form cycle was simulated. The integrated model of damage accu-
mulation under creep-fatigue interaction allows obtaining a fatigue life of
structural elements. The model is recommended to be used for cases when the
scalar damage parameter is justified.

Keywords: Creep-fatigue interaction � Damage accumulation � Life prediction

1 Introduction

It is well known that the creep damage accumulation is different from damage caused
by cyclic loading. At the moment, there are many models allow to take into account the
damage accumulation, both during creep and cyclic loading independently.

The Hayhurst model [1] one of the most generalized models for the creep damage
accumulation. In order to describe the damage accumulation according to this model, it
is necessary to use six material constants. Moreover, the methods for determining these
constants are mainly indirect. In this regard, the Rabotnov-Kachanov model one of the
most popular due to the direct method of material constants.

One of the most perspective model for the fatigue damage accumulation prediction
is the Lemaitre model [2]. Using the tensor damage parameter in similar phenomeno-
logical models leads to considerable difficulties for material constants determination. In
the identical creep laws if the stress state is unchanged and scalar, vector, and tensor
parameters give almost identical results. It is correct not only for a “pure” complex stress
state, but for solving some boundary value problems In this regard, models with scalar
damage parameters can be considered as a simplified alternative [3–6].

The main problem of the residual life prediction under the creep-fatigue interaction
is the complex nature of their interaction [7–10]. In this direction the most common
approach is the statistical approximation of the experimental results by any functions.
The basic procedure for taking into account the creep-fatigue interaction isn’t
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introduced in any finite element software. Simple summation is used at most cases. In
this regard, there is a need to develop damage accumulation models taking into account
a complex nature of creep-fatigue interaction.

2 Damage Accumulation Model

According to [7] it is recommended to use the following expression to calculate the
total level of accumulated damage under creep-fatigue interaction:

Dx ¼ Dxcr

1� Dxf
þ Dxf

1� Dxcr
; ð1Þ

where Dxcr - creep damage increment, Dxf - fatigue damage increment. At the
beginning of each iteration, the level of accumulated damage from fatigue and creep is
determined independently. General integration is carried thru taking into account the
both contribution.

The creep damage is proposed to be established by the classical Kachanov-
Rabotnov power law. According to this model, the strain rate, taking into account the
accumulation of damage, is written as follows:

_ee ¼ B
re

1� xcr

� �n

: ð2Þ

where the creep damage accumulation rate is:

dxcr

dt
¼ D

re
1� xcr

� �m

: ð3Þ

B, n, D, m – material properties.
The creep damage increment can be obtained by integrating the expression (3):

Dxcr ¼ 1� �DrmDt � C3ð Þ mþ 1ð Þ½ � 1
mþ 1: ð4Þ

where C3 - integration constant which can be determined from the previous iteration.

C3 ¼ �ð1� x0Þmþ 1

mþ 1
� Drme t0: ð5Þ

It is well known that the creep damage accumulation is different from damage
caused by fatigue. Usually, the one of the main characteristic in models with a scalar
damage parameter is the number of cycles before fracture Nf at the stress amplitude ra.
In the simplest case of uniaxial tension-compression, the relationship between them is
follow:
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2Nf ¼ ra
r0f

 !1
b

; ð6Þ

where r0f and b are fatigue constants.
The damage parameter at constant stress amplitude is determined from [3]

xf ¼ �xfN�1

lnNf
ln 1� N

Nf

� �
: ð7Þ

where xfN�1 - the critical value of the damage parameter in the penultimate cycle and it
is associated with static toughness UT0 by the following relationship:

xfN�1 ¼ 1� r2a
2EUT0

: ð9Þ

where E - Young’s modulus.

3 Mechanical Properties and Finite Element Modeling

Mechanical properties were obtained during static, cyclic and creep tests (Table 1).

In order to predict the residual life at creep-fatigue interaction, the above models
were integrated into the ANSYS finite element method software as user programmable
features. The finite element model of the specimen geometry recommended by ASTM
E466 was used. The three-dimensional model of the specimen consists of two hundred
thousand of second order finite elements. In numerical simulation, the loading was
applied in the form of a trapezoidal loading cycle with different holding time (6, 60,
600 and 3600 s).

4 Results and Discussion

The stress-strain fields in cylindrical specimen were obtained by finite element method
with taking into account the accumulated damage on each loading cycle. It is assumed
that the failure is occur if the value of the generalized damage parameter exceeded 0.9
at any point in specimen volume.

Table 1. Mechanical properties of BT3-1 for 370 °C

E, MPa m B, (MPan.h)−1 n r02, MPa C, (MPan.h)−1 M

97553 0.3 1e−15 1.934 699 1e−10 3
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Figure 1 shows the numerical results of the fatigue life prediction at various
combinations of applied load levels and holding time within each loading cycle. It is
shown that the integrated damage accumulation model allows to cover the wide
spectrum of load parameters for creep-fatigue interaction.

The relative damage accumulation rate in each loading cycle can be considered as a
parameter characterizing the contribution of load type to the total damage. The
dependences of relative damage rate on the holding time for the penultimate loading
cycle are shown in Fig. 2. It is clear that the increasing load level leads to situation
when fatigue makes a greater contribution to the overall damage of the material.
Accordingly, the nominal stresses decreasing leads to increasing of creep contribution
to the damage.

Fig. 1. Relationship between the fatigue life and the time to failure

Fig. 2. Relationship between the holding time and the relative damage accumulation rate
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5 Conclusions

The model allows to take into account the nonlinear contribution of damage accu-
mulation caused by creep-fatigue interaction is integrated into the ANSYS software as
user programmable features. Integrated model of damage accumulation allow, to pre-
dict the macro damage initiation during the creep-fatigue interaction.
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and Damage Zones Behavior Under Mixed

Mode Loading
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Abstract. Fatigue crack paths for inclined cracks are studied through experi-
ments and computations under different mixed-mode loading. The experimental
study of fatigue crack growth in the aluminum and titanium alloys and two types
of the steels is performed on compact tension shear specimens. The cyclic
fracture process and damage zone concepts are introduced and used for
numerical analysis of the crack tip fields. The elastic K1, K2 and plastic KP stress
intensity factors are calculated by finite element method to characterize the
fracture resistance along the curvilinear trajectories in compact tension shear
specimens. The influence of mode-mixity and elastic-plastic material properties
on the behavior of three crack tip regions as a function of cyclic loading is
demonstrated.

Keywords: Crack path � Fracture process and damage zones � Mixed mode

1 Introduction

To date, several of models have been presented in the literature for the purpose of
analyzing the process of fatigue crack growth from the viewpoints of micromechanics,
fracture and damage mechanics. Many fracture mechanics models are based on a
critical distance local to the crack tip. It is considered a fundamental characteristic
parameter that distinguishes damage at the microscopic and macroscopic scale levels.
This characteristic distance is often identified with a fracture process zone or fracture
damage zone. A general assumption regarding the distance criterion under elastic–
plastic cyclic loading conditions is that a crack increment occurs when the fracture
resistance parameter (stress, strain, or energy) reaches a critical value at a characteristic
distance from the crack tip. It is well known that mixed-mode conditions appear when
the direction of the applied loading does not coincide with the orthogonal KI-KII-KIII

space. The main feature of the mixed-mode fracture is that the crack growth no longer
takes place in a self-similar manner and does not follow a universal trajectory. Various
fracture criteria and phenomenological approaches can predict the behavior of cracks in
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brittle and ductile materials loaded in combined modes. Even though many studies
have been carried out in the literature to determine fracture characteristics of ductile
materials under cyclic loading, it is important to investigate the local crack tip zones
behavior due to low cycle fatigue for quasi-brittle and moderate ductile materials under
mixed mode conditions.

2 Material Properties and Loading Conditions

Compact tension shear specimens (CTS, Fig. 1a) are made from P2M and 34X steels as
well as aluminum Al7050 and titanium Ti-6Al-4 V alloys and used for cyclic mixed-
mode fracture test with the loading direction variation from 90° (pure Mode I) to 0°
(pure Mode II) with respect to the initial crack plane. Main static and low-cyclic
mechanical properties of the tested materials are listed in Tables 1 and 2. The mixed-
mode parameters expressed through the elastic and plastic stress intensity factors (SIFs)
were varied by changing the load direction. Both Mode I and Mode II elastic SIFs K1

and K2 as well as general plastic SIF KP are evaluated along experimental crack path of
each tested material based on the series of numerical calculations. On the CTS was
realized the full range of mixed-mode cyclic fracture from tensile to shear loading.
Figure 1b represents experimental fatigue crack growth trajectories with initial pure
Mode II loading for tested steels, aluminum and titanium alloys.

Table 1. The static properties of materials.

Material E (GPa) r0 (MPa) rb (MPa) ru (MPa) N a

P2M steel 226.9 362.4 636.0 1190.0 4.13 4.141
34X steel 216.21 714.4 1040.0 1260.4 7.89 0.529
Al-7050 70.57 471.6 524.4 701.0 10.85 1.570
Ti-6Al-4 V 118.0 118.0 963.8 1289.6 12.59 1.225

Table 2. The cyclic properties of materials.

Material r0f B e0f c Kʹ nʹ

P2M steel 1785.0 −0.087 0.424 −0.58 1963.5 0.15
34X steel 1890.6 −0.087 0.381 −0.58 2079.6 0.15
Al-7050 1170.7 −0.095 0.35 −0.69 1128.6 0.11
Ti-6Al-4V 2153.6 −0.095 0.35 −0.69 2076.2 0.11
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Crack growth in the CTS specimen with the applied load angle b = 0° has its own
characteristics. Initially, the deformation mode corresponds to the pure shear with
ME = MP = 0. With an increase in the number of loading cycles N, the contribution of
mixed modes of deformation and fracture gradually increases. As follows from Fig. 1,
the crack path in an aluminum alloy Al7050 differs significantly from the experimental
trajectories for other materials under the same loading conditions.

3 Plastic, Cyclic Fracture Process and Damage Zones
Behavior

In front of a stable growing crack, we may distinguish three regions. The first outer
contour represents the reversed plastic zone where the current values of stresses and
deformations exceed the yield stress or strain of the material. The second region is
fatigue fracture process zone. The third small area exists immediately ahead of the
crack tip which is called the damage zone. For a strain-hardening material the elastic-
plastic boundary around the crack tip can be obtained using the equivalent von Mises
stress as a function of principal stress ratio k = r2/r1

re ¼ r1gi ð1Þ

where for plane stress gi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kþ k2

p
and plane strain gi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kþ k2 þ m m� 1ð Þ 1þ kð Þ2

q
.

Full-field 3D FE-analyses are carried out to determine stress-strain fields, elastic
and plastic SIFs along the curvilinear crack path in the CTS subjected to different
mixed mode loadings. Figure 2 shows that, for pure mode I (Fig. 2a) and pure mode II
(Fig. 2b) the plastic zones have a symmetrical shape while for mixed mode (Fig. 2c)
they is non-symmetrical with respect to the initial crack plane. The dimensions of the
plastic zones in Fig. 2 for titanium alloy are satisfied to the conditions of small-scale
yielding. Similar shapes of plasticity zones are observed for other tested materials.

Fig. 1. Experimental crack paths in CTS specimens at pure mode II.
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The variable critical distance is one of important parameter in modern fracture
mechanics, denoted to as the fracture process zone (FPZ) size. A general assumption
regarding the distance criterion under elastic–plastic cyclic loading is that a crack
increment occurs when the fracture resistance parameter (stress, strain, or energy)
reaches a critical value at a characteristic distance from the crack tip. The following
expression was proposed by Shlyannikov [1] for normalized fracture process zone size
based on the nonlinear crack-tip stress field and the main low cycle fatigue material
properties

�rf ¼ rn
r0

� �2
�S1 þ SPð Þ= 4

r0f e
0
f E

r20
2Nf
� � bþ cð Þ

� �
ð2Þ

�S1 ¼ 1þ mð Þ
2

a11Y
2
1 þ a12Y1Y2 þ a22Y

2
2

� �
; �SP ¼ an0

n0 þ 1ð Þ
p~rn

0 þ 1
e

In

Keqv

rn
ffiffiffiffiffiffi
pa

p
� �2

ð3Þ

where n′ is low cycle fatigue hardening exponent, e0f and r0f are the fatigue ductility and
strength coefficients, respectively, a is the crack length, ru is the ultimate true tensile
strength, r0 is the yield stress, rn is the nominal stress, ~re hð Þ is dimensionless
equivalent stress angular function, In is the governing parameter of the nonlinear crack
tip field [1], Nf is the number of cycles to failure, Y1 and Y2 are geometry dependent for
SIF correction factors. The equivalent elastic stress intensity factor (SIF) for mixed
mode fracture can be determined by using energy release rate criterion [2]

Keqv ¼ cos
h�

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2
1 1þ cos h�ð Þ � 4K1K2 sin h

� þK2
2 5� 3 cos h�ð Þ

q
ð4Þ

K1 ¼ rn
ffiffiffiffiffiffi
pa

p � Y1 a=wð Þ; K2 ¼ rn
ffiffiffiffiffiffi
pa

p � Y2 a=wð Þ ð5Þ

where, h* is the crack deviation angle, w is the cracked body width. The most general
criterion of mixed mode crack growth direction is obtained [3] on the basis of the
limiting state theory under multiaxial loading.

Fig. 2. Plastic zone under different mode mixity in CTS specimen for Ti6Al4 V.
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During low-cycle fatigue, the accumulation and growth of damage occurs in the
local fracture process zone that covers the crack tip. The size of the fracture process
zone is typically regarded as a distance-dependent parameter that physically represents
the increase in crack size during the basic cyclic fracture process. Figure 3 shows the
dependence of the both size and shape of the fracture process zone, according to
Eqs. (2–5), on the accumulated number of loading cycles for the pure mode (Fig. 3a),
pure mode II (Fig. 3b) and mixed mode (Fig. 3c, d) loading. It can be clearly observed
that the FPZ contour behavior is not constant-size and were dependent on the accu-
mulated loading cycles, mode mixity and both the static and low-cycle fatigue material
properties. Figure 3c presents the process of changing the FPZ in the 7050 aluminum
alloy according to the stages of cyclic loading, which are accompanied by corre-
sponding changes in the mixed modes of fracture. Figure 3d give a comparison of the
dimensions of the mixed-mode fatigue fracture process zone in the CTS specimen for
all tested materials having different crack paths at final the number of cycles of loading,
N/Nf = 1, as shown in Fig. 1b. Initially, owing to the same pure mode II plastic
deformation in the crack tip region in several first cycles, the size of the low-cycle
fatigue fracture process zone due to mode mixities is changed in different degree as a
function of the tested material main mechanical properties.

Fig. 3. Fracture process zone contour under (a) pure mode I, (b) pure mode II and (c, d) mixed
modes cyclic fracture.
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A fatigue damage evolution equation was proposed by the authors [4] through
connecting the damage variable with the static toughness exhausting during cyclic
loading. This equation has the following form

xN ¼ xN�1

lnNf
ln 1� N

Nf

� �
; ð6Þ

where xN−1 denotes the critical value of the damage variable, that is expressed by

xN�1 ¼ 1� Dr2

2Eru
ð7Þ

An amplitude of cyclic stress at the crack tip can be determined by applying the
singular HRR-type stress field

Dr ¼ �KP�r
�1

n0 þ 1
c ~r hð Þ ð8Þ

where KP is the plastic stress intensity factor and rc is the critical distance. The damage
variable xN indicate in Eq. (6) the measure of fatigue damage with xN = 0 denoting the
undamaged state and xn = 1 the fully damaged state.

Figure 4 presents a comparison of the predicted values of the fatigue fracture
damage evolution for pure mode I (Fig. 4a) and mixed modes (Fig. 4b) according to
Eqs. (6–8) for all considered structural metallic materials. It may be seen that the mode
mixity changed significantly the processes of fatigue damage accumulation only in the
range N/Nf < 0.5.

In this work, an expression for the low cycle fatigue fracture process is derived; this
includes static and cyclic material properties, as well as mixed mode fracture param-
eters. The elastic–plastic crack tip singularity fields are employed. The main finding,

Fig. 4. Damage distributions as a function of accumulated number of loading cycles (a-pure
mode I, b-mixed mode).
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based on the numerical and experimental results, is that the effect of mixed mode
fracture during low-cycle fatigue crack growth in considered steels, aluminum and
titanium alloys leads to the conclusion that under pure mode I, pure mode II and mixed
mode loading conditions and shape and size of the plastic, fracture process and damage
zones do not coincide with each other and have a hierarchical structure.
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Abstract. A new resonance structure with flexible support under electrostatic
fringing field excitation is designed. This structure can be used in sensor. In this
paper, the nonlinear frequency responses of the movable beam in resonance
structure are analyzed by the Method of Multiple Scales. The effects of electrode
thickness, slit gap and initial displacement on the vibration of the movable beam
are investigated in detail. The key results are as follows. A smaller electrode
thickness and slit gap can lead to a larger change of the actuated frequency, and
they can also lead to a larger vibration amplitude. The initial displacement has
an influence on the frequency response, but this influence is not obvious, since
the electrostatic force is small when the initial displacement is not large. This
resonance structure can avoid superposition of input signal and output signal.
Thus, the signal-to-noise ratio and the accuracy of the sensor can be improved.

Keywords: Electrostatic MEMS � Parametric resonance � Fringing field
excitation � Flexible support � Nonlinear response

1 Introduction

The sensing mechanisms or actuation mechanisms for Micro Electro Mechanical
Systems (MEMS) mainly include electro-thermal mechanism [1, 2], piezoelectric
mechanism [3, 4] and electrostatic mechanism [5–10]. Among them, the last one is the
most popular because of its fast speed, low power consumption, ease of fabrication and
small size. In electrostatic MEMS, the gap between movable structure and stationary
electrodes can be changed, once the electric field is applied on the surface of the
movable structure. The electrical stiffness acts in conjunction with the mechanical
stiffness. By modulating the applied voltage, the overall stiffness of the structure can be
controlled. The electric force is non-linearly related to the gap distance between
movable structure and stationary electrodes. Thus, it can drive the system into para-
metric resonance if the voltage is large enough to overcome non-conservative forces
and the driving frequency is inside an instability tongue (usually at twice the natural
frequency). This parametric excitation system is excited by changing the parameters of
the system instead of applying a direct force in the direction of desired motion [11].
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More attractive than other nonlinear system, parametric excitation system, in which
resonance occurs at twice the natural frequency, can avoid superposition of input signal
and output signal.

In this paper, a new resonance structure with flexible support is designed; an
analytical investigation of the parametric vibration actuated by fringing electrostatic
fields is provided; the nonlinear behaviors are analyzed.

2 Problem Formulation

A new resonance structure with flexible support is designed. This structure includes
movable beam, support beam and electrode, as shown in Fig. 1. In Fig. 1, lb wb and tb
denote the length, width and thickness of the movable beam respectively; lb0 wb0 and
tb0 denote the length, width and thickness of the support beam respectively; ws and ts
denote the width and thickness of the stationary electrode respectively; dg is the slit gap
between the movable beam and stationary electrode in the width direction; dg0 is the slit
gap between the support beam and stationary electrode in the width direction; d is the
initial displacement of the movable beam measured from the stationary electrode in the
thickness direction. In order to study the vibration behaviors of the beam, the geometric
parameters of the structure are taken as lb = 5 mm, wb = 0.4 mm, tb = 0.01 mm,
lb0 = 1 mm, wb0 = 0.4 mm, tb0 = 0.01 mm, ws = 0.5 mm, ts = 0.3 mm, dg = 0.1 mm
and dg0 = 0.5 mm. The range of the initial displacement is less than half of the elec-
trode thickness in this structure.

Make u(x, t) denote the deflection of the movable beam. According to the elastic
beam theory, the governing equation and the boundary conditions of the beam are

EI
@4uðx; tÞ

@x4
þ qwbtb

@2uðx; tÞ
@t2

¼ qa þ qe ð1Þ

EI � @
2uð0; tÞ
@x2

¼ kr � @uð0; tÞ
@x

; EI � @
3uð0; tÞ
@x3

¼ �kt � u 0; tð Þ; @
2uðlb; tÞ
@x2

¼ 0;
@3uðlb; tÞ

@x3
¼ 0:

ð2Þ

Fig. 1. Schematic illustration of resonance structure (a) 3D view (b) section view
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In this paper, the coefficients in the above equations are as following. The Young’s
modulus is E = 108GPa. The inertial moment of the movable beam cross section is
I ¼ wb � t3b=12. The mass density of the beam is q = 8500 kg/m3. qa represents the
aerodynamic force per unit length, which is qa = − 0.5 � qa � wb � ca � (∂u/∂t)�
|∂u/∂t|, and the drag coefficient is set as ca = 5, qa is the density of the air. qe represents
the excitation force per unit length. The electrostatic force is generated on the basis
of the fringing fields. The distributed electrostatic force is qe ¼ fe � v2e . fe is elec-
trostatic force on the movable beam per unit length per square voltage, which is set
as fe = r1 �d � r3 � d3, and r1, r3 are fitting parameters. Thus, the relationship
between electrostatic force and deflection is fe = ep � (1 + ep1 � u + ep2 � u2 +
ep3 � u3), in which ep = r1 � d + r3 � d3, ep1 = (r1 + 3�r3 � d2)/ep, ep2 = 3 �
r3� d/ep, ep3 = r3/ep. ve is a combined DC/AC voltage actuating the micro-beam, i.e.,
ve (t) = vDC + vAC � cos(xe � t). In the boundary conditions, kr = 2 � E�I0/lb0 and
kt = −2 � 3 � E � I0/lb0

3 are the rotational and translational stiffness of the flexible
boundary respectively, in which I0 = wb0 � tb0

3 /12 is the inertial moment of the support
beam cross section.

The Galerkin discretization method is used, and the steady-state solution of the
non-dimensional governing equation is written by U(X, T) = U(X) � H(T), and the
mode function U(X) for movable beam is U(X) = n1 � cos(kr � X) + n2 �
sin(kr � X) + n3 � ch(kr � X) + n4 � sh(kr � X), Substituting this mode function
into the non-dimensional boundary conditions yields

�kr �KR kr �KR

KT �k3r KT k3r
�coskr �sinkr chkr shkr
sin kr �coskr shkr chkr

2
664

3
775

n1
n2
n3
n4

2
664

3
775¼ 0 ð3Þ

For a nontrivial solution, the determinant of the matrix on the left side must be zero,
thus the value kr is given. Then, the equation of the boundary condition is solved to
find n1, n2, n3 and n4. Thus, the mode function can be obtained.

Multiplying the non-dimensional governing equation by the mode function, and
integrating the resultant equation from X = 0 to 1. The displacement splits into a static
displacement and a dynamic displacement, i.e. H(T) = H0p + #p (T), and we obtain
static equation and dynamic equation.

S0 þ S1H0p þ S2H
2
0p þ S3H

3
0p¼0 ð4Þ

#00
p þK1#p þK2#

2
p þK3#

3
p þ aa#

0
p #0

p

��� ��� ¼
FE1 cosWeT þFE2 cos 2WeTð Þ
þ KE1P1#p þKE1P2#

2
p þKE1P3#

3
p

� �
cosWeT

þ KE2P1#p þKE2P2#
2
p þKE2P3#

3
p

� �
cos 2WeT

2
6664

3
7775

ð5Þ
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The Method of Multiple Scales is used to investigate the response of the resonator
with small vibration amplitude. We obtain steady-state response as following

W2
e aa
p

� �2

a20 KEP
2
1 þ

3K3

2e
a20 �

W2
e

2e2
þ 2K1

e2
� 15K2

3

16W2
e
a40

� �2

KEP2
2 ¼KEP2

2 KEP
2
1 ð6Þ

tan 2b0 ¼
W2

e aa
p

� �
a0KEP1

� �
=

3K3

2e
a20 �

W2
e

2e2
þ 2K1

e2
� 15K2

3

16W2
e
a40

� �
KEP2

� �
ð7Þ

3 Dynamic Analysis

Based on the steady-state response equation, the thickness of electrode is set as
ts = 0.20 mm and ts = 0.30 mm, the slit gap between the movable beam and stationary
electrode in the width direction is set as dg = 0.06 mm, dg = 0.08 mm and dg = 0.10
mm, the frequency response curves are shown in Fig. 2 to analyze the effect of elec-
trode thickness and slit gap. As shown in Fig. 2, a smaller electrode thickness and slit
gap can lead to a larger change of the actuated frequency, and they can also lead to a
larger vibration amplitude. What’s more, as shown in Fig. 2, the resonance occurs at
twice the natural frequency, which can avoid superposition of input signal and output
signal; the range of the actuated frequency is related small, which can serve and
improve the signal-to-noise ratio. These advantages can improve the accuracy of the
sensor.

The system parameters are set as ts = 0.30 mm and dg = 0.10 mm. The dynamic
equation is solved by using the MMS and the Fourth - Order Runge - Kutta Method
(RK4). Figure 3 shows the effects of the initial displacement on the frequency response
when lb0 = 0.01 mm. As shown in the figure, the results of the MMS and the RK4 are
in a good agreement when the amplitude is small; the error between the results of the

Fig. 2. Frequency response curves showing the effect of electrode thickness and slit gap
(a) ts = 0.20 mm (b) ts = 0.30 mm
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MMS and the RK4 increases, when the vibration amplitude increases. The initial
displacement has an influence on the frequency response, but this influence is not
obvious, since the electrostatic force is small when the initial displacement is not large.

4 Conclusions

This paper investigates a new resonance structure with flexible support. This resonator
is a parametric excitation system, which resonance occurs at twice the natural fre-
quency. The nonlinear behaviors of the movable beam are analyzed by using the MMS
to get the frequency response equation. The effects of electrode thickness, slit gap and
initial displacement on the vibration of the movable beam are focused. A smaller
electrode thickness and slit gap can lead to a larger change of the actuated frequency,
and they can also lead to a larger vibration amplitude. The initial displacement has an
influence on the frequency response, but this influence is not obvious, since the
electrostatic force is small when the initial displacement is not large. This resonance
structure can avoid superposition of input signal and output signal. Thus, the signal-to-
noise ratio and the accuracy of the sensor can be improved.
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Abstract. Measurement of the nonlinear elastic properties of materials repre-
sents a great interest in engineering and materials science. Changes of these
properties are often related to mechanical damage and applied stresses, which
are paramount for maintaining integrity and safety of structures. Current ultra-
sonic techniques typically utilise bulk, Lamb, or Rayleigh waves to measure
material nonlinearities, however, spatial and velocity dispersion make this a very
difficult task, and the use of several (empirical) correction factors is usually
required. In this work we suggest using the fundamental edge wave mode – a
natural analogue of the classical Rayleigh wave propagating in a finite thickness
plate – for the purpose of measuring elastic nonlinearities. Edge waves naturally
avoid spatial dispersion as they are guided by the apex of a plate, thus avoiding
the need for correction factors. Additionally, the fundamental edge wave mode
can propagate long distances without significant attenuation under certain
conditions. The outcomes of this study demonstrate that the measurement of
material nonlinearities is achievable using the fundamental edge wave mode.
A linear trend between the nonlinearity parameter and propagation distance is
experimentally observed, which is predicated by theoretical studies. Therefore,
potential applications of the fundamental edge wave mode are very promising
for the evaluation of mechanical damage and measurement of applied or residual
stresses.

Keywords: Harmonic generation � Edge waves � Feature guided waves

1 Introduction

Material nonlinearities can be acquired through mechanical processes such as fatigue,
creep, thermal stress, and physical damage [1]. Measurement of the nonlinear prop-
erties can therefore provide an insight into the health of the material and structure [2],
which explains the growing interest in incorporating nonlinear methods for Structural
Health Monitoring (SHM). Typically, bulk, Lamb, or Rayleigh waves are used to
measure material nonlinearity through the growth of higher-order harmonics [3, 4],
however, these wave modes are subject to spatial dispersion, multimodal generation,
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and velocity dispersion, meaning the matching conditions required for cumulative
second harmonic generation are only achievable for certain frequency-thickness
products [5]. Using such wave modes therefore requires the application of numerous
correction factors [6]. Consequently, there is a growing interest in alternative methods
or wave modes which may be used to measure material nonlinearity more directly.

One promising candidate is the fundamental edge wave mode, ES0, which is a
natural analogue of the Rayleigh wave propagating in a finite thickness plate [7].
Similarly to Rayleigh waves, edge waves are surface waves, but are guided by the apex
of a plate-structure. From a mathematical standpoint, the main difference between
Rayleigh and edge waves is the latter must additionally satisfy traction-free boundary
conditions on the side surfaces of the plate, whereas the former propagates under either
plane stress or plane strain conditions. The inclusion of the plate side faces in the
mathematical formulation naturally results in the absence of spatial dispersion, which
presents a major problem facing measurements conducted using Lamb and Rayleigh
waves. In addition, edge waves are weakly velocity dispersive, which allows
approximate internal resonance conditions to be satisfied over a wide frequency range –
a requirement for cumulative harmonic growth and measurement of material
nonlinearity.

Although edge waves are not spatially dispersive, they are energy dispersive, and
gradually decay through conversion to other wave modes, namely the S0 Lamb wave
mode. This amplitude decay is negligible for low frequency-thickness values
(x2h=c2\6), however, theoretical studies indicate that at higher frequencies and
Poisson’s ratios the decay is more significant [8]. The problem of multimodal gener-
ation can also be reduced by exciting at a relatively low frequency-thickness product,
see Fig. 1, and by utilising the wedge excitation method, which has been used in a
previous study to excite the fundamental edge wave mode [9].
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Fig. 1. Dispersion curves showing edge, shear, and Lamb wave modes. Solid lines depict the
fundamental modes (ES0, S0, and SH0) and dotted lines represent higher-order modes.
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Edge waves were first documented by Shaw in 1956 [10], and later described by
Gazis and Mindlin in 1960 [11]. In the following decades several theoretical studies
were published which focused on the mathematical formulation of edge waves, higher-
order modes, and the velocity dispersion characteristics [7, 8]. However, there have
been relatively few studies which experimentally investigate the properties of edge
waves for practical purposes. One recent study conducted by Wilde et al. [7] showed
that edge waves may be generated using a bonded piezoelectric transducer, although
this produced a complicated wave field due to generation of other wave modes such as
the fundamental shear-horizontal and fundamental Lamb. This work was extended by
the current authors who demonstrated edge wave excitation using the wedge method,
which is more commonly applied to Lamb and Rayleigh waves, and produces a cleaner
edge wave packet [9].

The purpose of this paper is therefore to demonstrate the excitation of ES0 mode
using the wedge method, and to investigate cumulative harmonic generation at low
frequency-thickness values. It is believed that the results of this study will be of interest
for researchers and engineers working in SHM and NDT fields.

2 Mechanics of Higher-Harmonic Generation

The excitation of harmonics in an ultrasonic signal occurs as a result of the adoption of
nonlinear equations of elasticity. A perturbation technique can be applied to solve these
equations, where the resultant relationship for a weakly nonlinear one-dimensional
wave is:

A2

A2
1
¼ b0x ¼ j2

8
bx ð1Þ

where A1 and A2 are the amplitudes of the fundamental and second harmonic
respectively, x is the distance from the excitation source, j is the wavenumber, b0 is the
relative nonlinearity parameter, and b is the acoustic nonlinearity parameter, which is a
material property related to the second- and third-order elastic constants. Similar
relationships can be derived for higher-order harmonics [12]. It is widely accepted that
Eq. (1) holds true for other types of waves when some correction factor is applied [6].
Therefore, through measurement of the fundamental and second harmonic of a prop-
agating elastic wave, it is possible to determine the relative or acoustic nonlinearity
parameters, which are an indicator of damage as mentioned in the Introduction.

Measurement of the harmonic amplitudes is typically achieved using a fast Fourier
transform (FFT) to decompose the displacement signal produced by the wave into its
frequency components. The amplitudes of the fundamental and higher-harmonic com-
ponents are then extracted, and the relative nonlinearity parameter can be determined if
the displacement signal is recorded at a number of propagation distances, x. Typically,
corrections related to the source, spatial dispersion, and attenuation must be applied to
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reveal the linear relationship between A2=A2
1 and b0, however, the favourable charac-

teristics of edge waves (no spatial dispersion and minimal attenuation at low frequency-
thicknesses) allows direct measurements without requiring correction factors. This
represents a significant advantage over current ultrasonic techniques which use bulk,
Lamb, and Rayleigh waves.

3 Experimental Methodology

Excitation of the ES0 mode was achieved using the wedge method, which has been
well documented for the generation of many types of guided waves [13, 14]. The
wedge was constructed from an ultra-high molecular weight polyethylene plastic called
‘Polystone’ by manufacturer ‘Dotmar’. The wedge angle of 52� was chosen to facilitate
conversion of the longitudinal wave to the edge wave mode due to Snell’s law. The
wedge assembly was coupled to a 5083-H116 aluminium plate with dimensions
700 mm � 500 mm and thickness 5 mm using motor oil.

A longitudinal wave of frequency f = 300 kHz was excited using an Ultran GC350-
D13 contact transducer. The 15 cycle square-windowed excitation signal was generated
using an AFG3012B arbitrary function generator and amplified to approximately
�150Vpp using a Khron-Hite 7500 amplifier. Measurement of the out-of-plane dis-
placement was achieved using a Polytec PSV-400-M2-20 scanning laser vibrometer in
1D mode, which was directed perpendicularly along the centre line of the aluminium
plate. The out-of-plane displacement was recorded at 7 locations equispaced between
350 mm and 500 mm from the front of the wedge, and 10 trials were recorded at each
point. A schematic of the experimental setup is shown above in Fig. 2.

PC & DAQ Function 
Generator

Amplifier
Laser 

Vibrometer

Edge Wave Wedge & 
Transducer

Measurements Aluminium

Fig. 2. Signal flow schematic of experimental setup.
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4 Results

A typical out-of-plane displacement signal recorded by the laser vibrometer is shown
above in Fig. 3(a). The region of the signal corresponding to the edge wave is clearly
identified, and verification that the signal corresponds to the fundamental edge wave
mode was achieved through measurement of the wave speed. A reflection from the
plate end is also visible. A Hann-window is applied to the portion of the signal
corresponding to the edge wave before performing an FFT, the results of which are
presented in Fig. 3(b). There is a clear peak at the second harmonic frequency
(600 kHz), as well as peaks which correspond to the third and fourth harmonics,
indicating that harmonic generation does indeed occur for edge waves under approx-
imate internal resonance conditions. Although beyond the scope of this paper, the
presence of the two higher-order harmonics is promising for future research and could
allow measurement of nonlinearities with the third- or fourth-order harmonics.

Figure 4 shows the relationship between the relative nonlinearity parameter, b0, and
propagation distance, x. The data gathered is well represented by a linear trendline,
which is supported by the high R-squared value of 0.87 and theoretically predicted by
Eq. (1). Although the fundamental edge wave mode is weakly dispersive, the lin-
earisation error for the current experiment amounts to approximately 10% at the fur-
thest measurement point, and therefore Eq. (1) can be applied. It is difficult to compare
the rate of accumulation of the second harmonic found in this study against other
studies which were based on Rayleigh or Lamb waves due to various correction and
conversion factors, however, the corresponding experimental values of b0 are of the
same order of magnitude.
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Fig. 3. a) Typical time domain signal showing the edge wave and a reflection from the plate
end, and b) FFT of the edge wave signal after applying a Hann-window.

Measurement of Elastic Nonlinearities 137



5 Conclusion

The outcomes of this study demonstrate the potential of the ES0 mode for measurement
of material nonlinearities. A linear growth of the relative nonlinearity parameter with
propagation distance was observed as predicated by both theoretical and experimental
studies. Though it is difficult to compare the current results to those which use Rayleigh
and Lamb waves, the experimental values of b0 are of the same order. It is important to
highlight that the measurements using the ES0 mode can be achieved without applying
empirical or numerically obtained correction factors. Finally, it is believed that the
fundamental edge wave mode is the most promising candidate for ultrasonic mea-
surements of elastic nonlinearities. The applications of this work therefore have great
potential for use in the evaluation of mechanical damage and applied or residual
stresses.
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Abstract. In the present work is considered an axisymmetric time-dependent
waves of an infinite cylindrical body. The body material is taken to be isotropic
and electro magneto elastic. Piezoelectric effects are not taken into account. The
deformation process is described by a system of equation with respect to radial
and angular components of deformation of the body points in cylindrical
coordinate system. In additional, it takes into account the effect of current
density, surface charges, electric and magnetic fields. All parameters and ratios
are reduced to dimensionless form. To solve the problem, are used the Fourier
transformation of angles and the Laplace transformation of time. Then, the
resulting expressions expansion in series in terms of a small parameter. The
small parameter characterizes the relationship between mechanic and electro-
magnetic fields. To move into the space of the originals using the inverse
Laplace transformation via residue theorem.

Keywords: Electromagnetoelasticity � Axisymmetric waves � Residue
theorem � Coupled problems � Time-dependent axisymmetric problems �
Green’s functions

1 Problem Statement

1.1 Basic Equations

Consider the unsteady oscillations of a continuous cylinder of infinite length with a
radius R. The material of a cylindrical body is considered electro magneto elastic and
isotropic. Piezoelectric effects will not be taken into account. The flat deformed state of
the continuous medium will be investigated, therefore all the required functions of the
problem will depend on three parameters: s – time, r – radial coordinate and h – angular
coordinate. The interaction of mechanical and electromagnetic fields is described by the
following system of equations [1–7]:
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– equations of motion respect to displacement
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– Ohm’s law

jr ¼ Er þH0 _uh þ qe0 _ur=c; jh ¼ Eh � H0 _ur þ qe0 _uh=c; ð4Þ

– Lorentz force

Fer ¼ qe0Er þ qeE0r þ c j0hHþ jhH0ð Þ;Feh ¼ qe0Eh þ qeE0h � c j0rHþ jrH0ð Þ; ð5Þ

– Physical relationships of electromagnetism

Dr ¼ Er; D# ¼ E#; B ¼ H: ð6Þ

Here ur; uh – components of the displacement vector; Fer;Feh – components of the
Lorentz force; Er;Eh – components of electric field; H;B – components of magnetic
field; jr; jh – components of current density; qe – volume charge density; Dr;Dh –

components of electric displacement field. All of these parameters are unknown and
depend on three variables: s, r and h. H0, qe0, E0r, E0h, j0r and j0h are the parameters of
the initial electromagnetic field and do not depend on time.

The above equations are dimensionless. In order to make these equations dimen-
sionless, the following substitutions were applied (the “-” sign indicates a dimensional
parameter):
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r ¼ �r
R ; s ¼ c1t

R ; uk ¼ �uk
R ; H ¼ �Hlec1

cE�
;B ¼ �Bc1

cE�
; qe ¼ 4p�qeR

eE�
;

Ek ¼ �Ek
E�
; Dk ¼ �Dk

eE�
; jk ¼ �jk

rE�
; Fek ¼ �FekR

kþ 2l ; ge ¼ c1
ce
;

a ¼ eE2
�

4p kþ 2lð Þ ; c ¼ ceR
c1

¼ 4prR
ec1

; c21 ¼ kþ 2l
q ; c22 ¼ l

q ;

g ¼ c2
c1
; ce ¼ 4pr

e ; c2e ¼ c2
lee

;

where c1 and c2 - propagation velocities of tension-compression waves and shear
waves; E� - characteristic level of electric field; k and l – Lame’s parameters; e and le -
dielectric and magnetic permeability coefficients; k ¼ r; h; c - light speed in vacuum; r
- conductivity coefficients.

1.2 Initial and Boundary Conditions

It is assumed that at the initial moment of time, there are no perturbation in the solid
body.

As conditions on the boundary of a cylindrical body, the following are assumed:

ur s; r; hð Þjr¼1¼ Ur s; hð Þ; uh s; r; hð Þjr¼1¼ 0:

At the point at r ¼ 0, disturbances in a cylindrical body are considered limited:

ur s; r; hð Þjr¼0¼ O 1ð Þ; uh s; r; hð Þjr¼0¼ O 1ð Þ:

The system of Eqs. (3)–(6) can be reduced to a system of equations of two
equations:

g2
e
€Er þ c _Er

� � ¼ N11 Erð ÞþN12 E#ð Þ � g2
e qe0€ur þ cH0€uhð Þ;

g2
e
€E# þ c _E#

� � ¼ N21 Erð ÞþN22 E#ð Þþg2
e cH0€ur � qe0€uhð Þ;

N11 ¼ 1
r2

@2

@#2 ; N12 ¼ � 1
r
@
@#

@
@r þ 1

r

� �
;

N21 ¼ � 1
r
@
@#

@
@r � 1

r

� �
; N22 ¼ @

@r
1
r
@ rð Þ
@r

h i
:

ð7Þ

2 Solution Methods

To solve the problem of the field of displacement and the electric field are expressed
through the vector and scalar potentials:

u ¼ graduþ rotw;

E ¼ gradue þ rotwe;

divw ¼ 0; divwe ¼ 0;

ð8Þ
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where u and ue - scalar potentials, w and we - vector potentials.
The Lorentz force vector can also be represented via scalar and vector potentials:

Fe ¼ gradUþ rotW; ð9Þ

where

DU ¼ divFe ¼ 1
r
@ rFerð Þ

@r
þ 1

r
@Feh

@h
;DW ¼ �rotFe ¼ � 1

r
@ rFehð Þ

@r
þ 1

r
@Fer

@h
:

In order to fulfill the axisymmetric conditions, it is necessary that the defining
parameters of the problem, as well as the vector and scalar potentials correspond to the
following equations:

ur ¼ ur s; r; hð Þ; uh ¼ uh s; r; hð Þ; uz � 0;Fez � 0;Er ¼ Er r; h; tð Þ;
Eh ¼ Eh r; h; tð Þ;Ez ¼ E0z � 0;E0r ¼ E0r r; hð Þ; E0h ¼ E0h r; #ð Þ;
u ¼ u r; h; tð Þ;ue ¼ ue r; h; tð Þ;Fer ¼ Fer r; h; tð Þ; Eh ¼ Eh r; h; tð Þ;
wr ¼ wh � 0;wer ¼ weh � 0;wz ¼ w ¼ w r; h; tð Þ;wez ¼ we ¼ we r; h; tð Þ;
Hr ¼ H0r ¼ Hh ¼ H0h � 0; Hz ¼ H r; h; tð Þ; H0z ¼ H0 r; #ð Þ:

By substituting (8) and (9) into systems (1), (2) and (7), we obtain a system of
equations for u; w and ue;we.

First, the unknown functions are decomposed into a complex Fourier series:

u s; r; hð Þ ¼
Xþ1

n¼�1
uF
n s; rð Þeih; w s; r; hð Þ ¼

Xþ1

n¼�1
wF
n s; rð Þeih;

ue s; r; hð Þ ¼
Xþ1

n¼�1
uF
en s; rð Þeih; we s; r; hð Þ ¼

Xþ1

n¼�1
wF
en s; rð Þeih;

then, the Laplace transforms in time are applied to the obtained coefficients
uF
n s; rð Þ … wF

en s; rð Þ (s - conversion parameter):

uF
n s; rð Þ!L uFL

n s; rð Þ;
:
:
wF
en s; rð Þ!L wFL

en s; rð Þ:

The resulting coefficients uFL
n s; rð Þ. . .wFL

en s; rð Þ are expanded in a power series for a
small parameter a:
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uFL
n ¼

X1

m¼0

uFL
nma

m; . . .; wFL
en ¼

X1

m¼0

wFL
enma

m:

After that we get a new recurrent system of differential equations for the coefficient
of expansion uFL

nm … wFL
nm.

And finally in order to move obtained uFL
nm … wFL

nm parameters into the space of the
originals it is using the inverse Laplace transformation via residue theorem.
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Abstract. Accumulation of fatigue damage in high and low cycle regimes is
largely associated with nucleation and development of irreversible plastic
deformations and voids. The effect of these microstructural changes on con-
ventional (second-order) elastic constants is typically very small, which makes
experimental evaluation of the progressive fatigue damage accumulation diffi-
cult and the classical damage theories inapplicable. It was demonstrated in the
past that the third-order elastic constants are sensitive to fatigue damage and
these material constants can be evaluated using various ultrasonic techniques.
The ultimate aim of this study is to develop micro-mechanical models, which
link the micro-porosity and micro-plastic deformations, to the effective third-
order elastic constants of the material. These models could provide a foundation
for the evaluation of early fatigue damage, i.e. the damage prior formation of a
micro-defect (crack), as well as the remaining fatigue life of structures.

Keywords: Fatigue damage � Third-Order Elastic Constants � Finite elasticity

1 Introduction

Inspired by Eshelby, micromechanics literature abounds with studies of dilatations,
inhomogeneities, and inclusions, which are relevant to analysis of many problems of
mechanics and material science involving plasticity, thermal expansion and phase
transformations [1]. Unfortunately, in the case of finite deformations the analysis is
usually prohibitively difficult. The finite deformation analysis requires solutions to the
nonlinear equations of equilibrium, which are scarce. The lowest order of nonlinear
response of an elastic body is represented by the third order elastic constants (TOECs),
which can be formally obtained from the series expansion of strain energy density with
respect to the strain components [2].

The TOECs of a material have both an intrinsic and an acquired nature. The intrinsic
TOECs, which are related to the anharmonic forces in crystals, play an important role in
predictions of mechanical behaviour, the ideal strength and ductility in metals and in the
explanation of anharmonic properties of solids such as the thermal expansion. The
acquired TOECs are often related to various dislocation, micro-plasticity and phase
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transformation phenomena as well as to accumulation of mechanical damage such as
fatigue and radiation damage [3].

Material nonlinearities and TOECs were investigated extensively with ultrasonic
techniques in the early 1960s. Over the past two decades, however, the focus has
shifted to ultrasonic guided waves, which can be used in non-destructive techniques as
well as in on-line damage monitoring systems. Monitoring of accumulated mechanical
damage is currently considered as a significant engineering problem, specifically for
structures subjected to fatigue. In the absence of manufacturing defects the accumu-
lation of micro-damage (or the early damage stage) normally precedes the crack
nucleation and propagation stages. Depending on the material, its microstructure and
the presence of pre-existing defects, the early damage stage can occupy from 10% to up
to 90% of the total fatigue life in high-cycle fatigue (HCF) regime, and it fully dom-
inates in the ultra-high cycle fatigue (UHCF) regime (up to 109 cycles and beyond) [4].

Previous studies have found that fatigue damage in metals and advanced engineering
alloys in LCF and HCF regimes increases with applied cycles in a cumulative manner,
and material degradation is largely associated with the accumulation of irreversible
micro-plastic deformations and nucleation and growth of voids, respectively. Classical
damage mechanics links the conventional (or second-order) elastic constants to fatigue
damage [5]. However, the conventional elastic constants (e.g. shear and bulk moduli)
and the damage parameter(s)/function(s) are not very sensitive to microstructural
damage until the final stages of the fatigue life, particularly in the HCF and UHCF
regimes. This has been well documented in past experimental studies, e.g. [6, 7] and has
recently been confirmed by direct numerical computations using grain-size models [8].
Therefore, it is difficult to validate the damage mechanics models in the early stages of
the fatigue life, or quantify the cumulative microstructural damage experimentally based
on measurements of the conventional (second-order) elastic constants. At the same time,
many recent studies have demonstrated that the change of nonlinear (or third-order)
elastic constants is usually much stronger than the change of conventional elastic
constants, particularly at the initial (or early) stages of the fatigue life. As discussed
above these changes can be detected using various ultrasonic techniques, which are
under development since 1960s.

The ultimate aim of this work is to develop micro-mechanical models, which
describe the change of the effective third-order elastic constants (TOECs) with accu-
mulation of micro-plastic deformations, as well as nucleation and growth of micro-
voids. Previous analytical studies [9–11] have investigated the effective properties of
nonlinear elastic material in the theory of micromechanics, but have not combined their
research with a model of damage accumulation. The development of such models could
provide a theoretical foundation for the development of new early-damage assessment
techniques as well as mode adequate fatigue life evaluation procedures.

2 Theoretical Framework

Consider a material body undergoing deformation with material points X mapped to
spatial points x, so that x ¼ v Xð Þ. The deformation gradient is
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F ¼ Grad v: ð1Þ

For a hyperelastic and isotropic material, a strain energy density function exists,
and may be represented as a function of the principal invariants of the material strain
tensor. In Murnaghan’s form [2], the strain energy density function including terms up
to third-order is

W I1; I2; I3ð Þ ¼ 1
2

kþ 2lð ÞI21 � 2lI2 þ 1
3

lþ 2mð ÞI31 � 2mI1I2 þ nI3 ð2Þ

where I1, I2, I3 are the principal invariants of the material strain tensor,

E ¼ 1
2

FTF� I
� �

the second-order elastic constants are k and l, and the TOECs of the material are l, m,
and n. The nominal stress tensor for compressible materials is

S ¼ @W=@F ð3Þ

and the equilibrium condition expressed in the referential coordinates, neglecting body
forces, is

Div S ¼ 0: ð4Þ

The governing equations of elasticity presented above are nonlinear, and most often
solved using numerical methods. Exact, closed form solutions have been derived only
under highly restrictive boundary conditions, or using specific forms of the strain
energy density function. However, provided that the displacements and rotations be
sufficiently small, second-order corrections to the linear elasticity solution may be
derived using a perturbation approach [12].

Consider the expansion of the deformation

v Xð Þ � X ¼ ku1 þ k2u2

where k is a small parameter, the vector u1 corresponds to the solution for the
displacement vector in the linear theory of elasticity, and the vector u2 is the second-
order correction to the linear solution. Substitution of the above expansion into the
governing equations of elasticity and the boundary conditions yields a hierarchy of
systems of equations, each corresponding to a linear elasticity problem. Each system of
equations features a body force and surface tractions dependent on the solution to the
lower-order systems of equations.

Applying the perturbation approach to the problem of a medium containing voids
allows the derivation of the effective elastic constants of the material. If the medium is
assumed to consist of a dilute distribution of spherical voids at a volume concertation
of c � 1, the relevant problem for prediction of effective properties is a spherical shell
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containing an isolated void at the centre, with outer radius such that the volume
concentration of voids is c.

Three loading cases are considered: pure dilatation, simple extension, and simple
tension. In each loading case, the linear solution u1 is constructed in the standard
manner using spherical harmonic functions; the second-order correction is constructed
using spherical harmonic functions, a displacement potential, and a Galerkin vector.
After solving the second-order elasticity problem for each of the three loading con-
ditions, the total strain energy stored in the medium with voids is calculated and
equated to the strain energy stored in an equivalent, homogeneous medium [11, 13],

Z
W I1; I2; I3ð ÞdV ¼ Z

WH I1; I2; I3ð ÞdVH ð5Þ

where WH is the strain energy function of the effective homogeneous medium, and
I1;H , I2;H , I3;H are the principal invariants of the material strain tensor for the homo-
geneous medium.

The equivalent homogeneous medium has elastic properties which coincide with
the effective properties of the porous medium, and is subjected to identical surface
loading conditions. By considering three separate loading cases, all three TOEC of an
isotropic hyperelastic material may be calculated and related to the volume concen-
tration of voids.

3 Selected Results

The derivations and final expressions for the effective third order elastic constants of a
medium containing a dilute distribution of micro-voids are extremely lengthy and
cumbersome, which prevents the presentation of explicit expressions in this short

-500

-400

-300

-200

-100

0

100

0 0.1 0.2 0.3 0.4 0.5

Ef
fe

ct
iv

e 
el

as
tic

 c
on

st
an

t (
G

Pa
)

Volume concentration of voids

Fig. 1. Change in effective elastic constants for 6061-T6 aluminium due to a dilute distribution
of micro-voids.
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paper. For the purposes of illustration, the change in the effective elastic constants as
the volume concentration of micro-voids increases is presented in Fig. 1, for the elastic
constants of 6061-T6 aluminium reported in [14], k ¼ 54:308GPa, l ¼ 27:174GPa,
l ¼ �281:5GPa, m ¼ �339:0GPa, n ¼ �416:0GPa.

The five (two second-order and three third-order) effective elastic constants are
shown in Fig. 1. The plots are truncated at c ¼ 0:5, due to the assumption of a dilute
distribution of voids. It is seen that, for 6061-T6 aluminium, the TOECs feature a much
higher sensitivity to the volume fraction of micro-voids. These constants have been
derived from consideration of three different load cases: pure dilatation, simple
extension, and simple tension.

4 Conclusion

A micro-mechanical model for the evaluation of effective conventional and third-order
constants has been developed for an isotropic material with a dilute distribution of
voids, which can be related to early low-cycle fatigue damage. The numerical calcu-
lations for aluminum support previously published experimental results claiming that
the non-linear elastic constants (TOECs) are more sensitive to fatigue damage than the
conventional (second-order) constants. Future work will be focused on the validation of
theoretical results by conducting ultrasonic measurements of the change of TOECs in
LCF regime. Similar models will be developed for micro-plastic deformations to
describe the similar changes in HCF regime.
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Abstract. Springback is an unavoidable problem in sheet metal forming. When
the amount of sheet springback exceeds the allowable range, it becomes a
forming defect. In the process of hydraulic bulging, the fluid medium acts on the
surface of the sheet uniformly instead of the rigid mold, so that the material is
simultaneously stressed, which makes the deformation law of the material dif-
ferent from that of the sheet in the traditional rigid bulging. In this paper, the
research on the springback of 5A02 aluminum alloy is carried out by taking the
active hydroforming process of a typical shallow drawn rotatory body arc sur-
face part as the research object. The theoretical analysis method is used to take
the thickness normal stress into the theoretical calculation of the springback
amount, and a theoretical springback amount calculation model of the three-
dimensional state of stress. Numerical simulations are carried out under different
loading paths with hydraulic pressure of 1, 2, 3, 10, 20 and 30 MPa. The
influence and law of springback of the parts under different loading paths and
different hydraulic conditions are also obtained.

Keywords: Springback � Hydraulic bulging � Theoretical analysis �
Three-dimensional state of stress � Numerical simulation

1 Introduction

Springback has been a focus of attention in the field of sheet metal forming manu-
facturing. Scholars have carried out a large number of fruitful studies on sheet
springback since the last century [1–4]. Research on the springback of ordinary steels
such as carbon steel, stainless steel, and automotive steel has accumulated a wealth of
experimental data and mature research methods. As for the springback research of
aluminum alloys and other light alloy materials, it is just in its infancy, especially
aluminum alloy materials for advanced manufacturing. The prediction accuracy of the
springback numerical simulation depends largely on the mechanical properties of the
aluminum alloy sheet. Among them, anisotropy and Bauschinger effect are two
important aspects, which directly affect the accuracy of springback prediction. The
anisotropy of the material is closely related to the selected yield criterion, while the
Bauschinger effect is directly related to the plastic hardening model. Therefore, the
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coupling relationship between the yield criterion and the plastic hardening model is of
great significance for springback prediction.

In this paper, the springback research is carried out with the active hydroforming
process of a typical shallow drawn rotatory body arc surface part. Considering the
influence of key process parameters on the springback during hydroforming, such as
the hydraulic pressure loading path, two types of high-pressure and low-pressure
loading have been performed. Among them, numerical simulation of hydraulic bulging
in 6 cases of high pressure of 10, 20, 30 MPa and low pressure of 1, 2, 3 MPa
respectively. Finally, the results of the numerical simulation can be used to verify the
accuracy of the springback theoretical analysis Equation for the hydraulic bulging
process to predict the springback trend of sheet metal under different hydraulic pressure
paths.

2 Theoretical Analysis of Springback in Hydraulic Bulging
Process

Taking the contour of the meridian passing through the rotating body as the research
object, the deformation of the metal sheet during the hydraulic bulging process can be
regarded as the traditional bending deformation. In order to facilitate the study of
springback in the process of hydraulic bulging, the model is simplified. Based on the
calculation process of the classic bending springback theory, the thickness normal
stress is introduced into it. The simplified sheet bending model with thickness normal
stress is shown in Fig. 1.

Here Ri—Inner edge radius of the sheet, Ro—Outer edge radius of the sheet, q—
Neutral layer radius, r—Micro-unit radius.

Fig. 1. The theoretical diagram of sheet metal bending process
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During the bending deformation of the sheet, the bending moment effect occurs
inside the sheet under the action of external force, which causes the sheet to change
from elastic deformation to plastic deformation. When the external force is unloaded, a
part of the sheet recovers elastically [5].

We choose a micro-unit and name it ABCD, assuming the material has ideal
plasticity, according to the Mises yield criterion [6, 7]

Outside the neutral layer: rq [ rh [ rt, the rq and rt have opposite signs, we can
know that

rq þ rt ¼ brs ð1Þ

And inside the neutral layer: rt [ rh [ rq, the rq and rt have the same signs, so
we can get

rq � rt = brs ð2Þ

The width of the micro-unit ABCD is a unit length. At any moment of bending
deformation, the micro-unit should be in a state of force equilibrium. The stress rh in
the width direction has no effect on the equilibrium of the micro-unit in this plane. In
addition, in order to maintain its tangential balance, the tangential stress rq on both
sides of the micro-unit should be equal. Because the micro-unit must satisfy the
equilibrium condition of the force, the algebraic sum of the forces on the micro-unit in
the radial direction must be zero. Therefore, we can list the equilibrium equation of the
micro-unit ABCD according to the equilibrium conditions:

rt � r � da� rt þ drtð Þ � rþ drð Þ � da� rq � dr � da ¼ 0 ð3Þ

Among them, rt � r � da is the force on the AB arc surface, rt þ drtð Þ � rþ drð Þ � da
is the force on the AB arc surface, and rq � dr � da is the resultant force on the AC and
BD surfaces.

Further simplification and derivation

rt ¼ �brs � ln rþ c ð4Þ

Outside the neutral layer, when r ¼ Ro, rt ¼ rN . Among them, rN is the reaction
force of the die to the sheet. So we can get the value of the constant c:
c ¼ rN þ brs � lnRo.

From (1) and (4) we can know:

rq ¼ brs � ln rþ brs � rN � brs � lnRo ð5Þ

As for the inner side of the neutral layer, when r ¼ Ri, rt ¼ P. P is the hydraulic
pressure. So we can get the value of the constant c: c ¼ P� brs � lnRi.
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Then

rq = brs � ln rþ brs þP� brs � lnRi ð6Þ

The radius of the neutral layer before unloading is q, which increases to q0 after
unloading. If we use Dk to represent the amount of curvature reduction, then
Dk ¼ 1

q - 1
q0
.

It is assumed that the load bending moment of the sheet in plastic bending
deformation is M, and the moment of inertia of the section is J. Using the formula
about elastic bending in “Materials Mechanics”, it can be known that after the bending
moment is removed, the springback Dk of the sheet is:

Dk ¼ M
EJ

ð7Þ

Here J ¼ Bt3
12 . B is the sheet width, and we take its size as 1. The sheet is compacted

in the middle of the mold, and there is no external force, so the load bending moment
M is generated by the tangential stress rq inside the sheet. With the neutral layer as the
boundary, it can be divided into the bending moment caused by the inner tangential
stress and the outer tangential stress, that is:

M ¼ Mi þMo ð8Þ

Here Mi is the bending moment caused by the inner tangential stress, and Mo is the
bending moment caused by the outer tangential stress.

Mi ¼
Z q

Ri

rq � r � b � dr ¼
Z q

Ri

brs � ln rþ brs þP� brs � lnRið Þ � r � dr ð9Þ

Mo ¼
Z Ro

q
rq � r � b � dr ¼

Z Ro

q
brs � ln rþ brs � rN � brs � lnRoð Þ � r � dr ð10Þ

Finally, the equation of sheet springback amount in the hydraulic bulging process
considering the thickness normal stress is obtained, as shown in Eq. (11).

Dk ¼ 12
Et3

�
Z q

Ri

brs � ln rþ brs þP� brs � lnRið Þ � r � dr
�

þ
Z Ro

q
brs � ln rþ brs � rN � brs � lnRoð Þ � r � dr

� ð11Þ
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3 Finite Element Simulation Analysis of Hydraulic Bulging

The software Dynaform is used to simulate the hydraulic bulging process. In the
process of hydraulic bulging, the pressure value and loading rate of the fluid medium
affect the deformation behavior of the sheet forming process. Therefore, in this section,
the simulation scheme studies of the hydraulic pressure of 1, 2, 3, 10, 20, and 30 MPa
are performed. The loading path of the hydraulic pressure is shown in Fig. 2.

In the process of sheet hydraulic bulging, the central area is the first to undergo
plastic deformation due to the bending moment effect and then expands to other areas.
With the increase of the hydraulic pressure, the deformation of the vertex area grad-
ually increases until the mold is fully fitted (20 MPa has been fully fitted), and the
reaction force of die on the sheet is also greater. The maximum bulging height H, the
curvature radius q, and the wall thickness d of the bulging apex are measured and
calculated, as shown in Table 1.

Fig. 2. Hydraulic pressure loading path

Table 1. Relevant data obtained from numerical simulation of hydraulic bulging

P (MPa) H (mm) d (mm) q (mm) rN (MPa)

1 10.2 0.983 194.116 5.5
2 13.4 0.970 146.500 9.5
3 16.8 0.944 112.986 13.3
10 19.2 0.938 98.725 40.0
20 20.0 0.937 98.820 80.0
30 20.0 0.940 98.817 120.0
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The wall thickness data of the parts under different hydraulic loading paths are
measured. The 13 measurement points are located on the symmetry plane of the center
of the part and are evenly distributed. The simulation curve of the wall thickness
distribution is shown in Fig. 3.

4 Conclusion

Based on 5A02 aluminum alloy, this paper uses the theoretical analysis method to
derive the theoretical calculation model of springback amount considering thickness
normal stress. In the later stage, q value and rN value obtained by numerical simulation
and experiment can be substituted into Eq. (11) for comparison and verification.
Numerical simulations are carried out under hydraulic loading paths with hydraulic
pressures of 1, 2, 3, 10, 20, 30 Mpa. Studies have shown that due to strain strength-
ening or strain rate strengthening, the increase in deformation resistance in the region
with the largest amount of deformation is also the largest, thereby making the defor-
mation more dispersed. Macroscopically, the deformation is more uniform, so the wall
thickness distribution will be more uniform.
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Abstract. The ring compression test is a conventional test for identifying the
friction law for metal forming applications. This test is very widely used but has
a significant disadvantage. In particular, if the friction stress is high, then a
sticking region occurs over a part of the friction surface. In this case, the
interpretation of experimental results is difficult because the friction law at
sliding is not valid over the sticking region. If the friction stress is very high,
then this region occupies the entire friction surface. In this case, the process
becomes insensitive to the friction factor at sliding at all. In order to overcome
this difficulty and keep the conventional procedure for identifying the friction
law, it is proposed to carry out the compression test between fat and conical dies.
The geometry of the conical die should be chosen such that no sticking region
occurs on the friction surface.

Keywords: Friction � Sticking � Metal forming

1 Introduction

The most popular friction law in metal forming applications is Tresca’s law, which
postulates that the friction stress is equal to a portion of the local shear yield stress. The
friction factor involved in this law should be found from experiment. A typical test for
this purpose is the ring compression test. The test must be supplemented with a the-
oretical analysis. The latter is often based on upper bound solutions. Several upper
bound solutions for axisymmetric ring forging have been found in [1]. Solutions based
on the velocity field proposed in [2] have been derived in [3, 4]. Other upper bound
solutions for axisymmetric ring forging have been given in [5–8]. The solutions above
are based on kinematically admissible velocity fields with no rigid regions. On the
other hand, conventional friction laws used in conjunction with rigid perfectly plastic
models demand the existence of such a region in certain cases. For example, in the case
of axisymmetric ring forging a rigid region must appear if the friction stress changes its
direction. The existence of a rigid zone can affect the interpretation of theoretical
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solutions. For example, the definition for the neutral radius accepted in [2] is not valid
in this case.

To overcome the difficulty above, it is proposed to use the compression test
between flat and conical dies. In this case, the geometry of the conical die can be
chosen such that no sticking region occurs independently of the friction stress.

2 Conventional Ring Compression Test

A schematic diagram of the conventional ring compression test is shown in Fig. 1.

The interpretation of this test requires a theoretical solution. It is usually assumed
that the regime of sliding occurs over the entire friction surface. This means that the
friction law in the form

sf ¼ mk ð1Þ

is valid over the entire friction surface. In (1) sf is the friction stress, m is the friction
factor and k is the shear yield stress. However, in reality, a sticking region usually
occurs over a portion of the friction surface (Fig. 1). In this case, the friction law (1) is
valid over region AB whereas the friction stress is not controlled by the friction law at
sliding over region AC. Therefore, the interpretation above is not valid. Moreover, the
region of sticking may occupy the entire friction surface. In this case, the solution
becomes insensitive to the value of m at all. In the case of constraint forging, it has been
found in [9] that the upper bound solution is not affected by the friction law if m[mcr.
The value of mcr depends on geometric parameters.

Fig. 1. Schematic diagram of the conventional ring compression test.

On the Friction Test for Metal Forming Applications 159



3 New Ring Compression Test

In the present paper, it is proposed to use the ring compression test between flat and
conical dies (Fig. 2).

In general, the geometric parameters can be chosen such that no sticking region
occurs on the friction surface between the conical die and specimen. Then, the pro-
cedure similar to that used in conjunction with the conventional ring compression test
can be applied to evaluate the friction factor involved in (1). Several tests have been
carried out to show the efficiency of the method proposed (Fig. 3).

Fig. 2. Schematic diagram of the new ring compression test.

Fig. 3. Conical dies used in the new ring compression test (cone angle: 8° 30′, 15° and 30°)
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4 Conclusions

A disadvantage of the conventional ring compression test for identifying the friction
law (1) is that a rigid region usually occurs over a part of the friction surface. This
region may occupy the entire friction surface if the friction stress is high enough. It is
proposed to use the compression between flat and conical dies (Fig. 2) to overcome the
difficulty above. Several tests have been carried out to confirm the efficiency of the new
test.
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Abstract. A formulation of a boundary value problem to find natural fre-
quencies of an inhomogeneous beam in the framework of the linear theory of
elasticity is represented. The main attention in the article is paid to the analysis
of transverse vibrations of beams with a variable cross-section. A system of two
connected ordinary differential equations with variable coefficients is obtained in
the framework of the linear theory of elasticity, by using semidiscrete approx-
imations and a projection approach. Various bilateral energy quality estimates
for approximate solutions that follow from the method of integro-differential
relations are proposed. In the final part of the paper the advantages of the
variational technique in problems of free vibrations of inhomogeneous beams
are discussed based on a numerical example.

Keywords: Dynamics � Beams � Variable cross-section

1 Statement of the Problem

Consider an isotropic plate occupied in the plane Ox1x2 some area symmetric with the
axis Ox1:

V ¼ x : �L=2\x1\L=2; �hðx1Þ\x2\hðx1Þf g with x ¼ ðx1; x2Þ:
It is considered that the stress-strain state of the plate is described by two-dimensional
equations of the linear theory of elasticity and, also external plate boundaries are free of
loading. Similar problems are considered in [1] and [2].

By using symmetry properties of the plate shape the low dimensional polynomial
approximations of the unknown displacements u and stress r functions with respect to
one of the coordinates x2 describing the lateral vibrations can be given as

r11 ¼
XM
j¼0

x_
2jþ 1

r2jþ 1
11 ðx1Þ; r12 ¼

XM
j¼0

x_
2j
r2j12ðx1Þ; r22 ¼

XM
j¼0

x_
2jþ 1

r2jþ 1
22 ðx1Þ;

u1 ¼
XM
j¼0

x_
2jþ 1

u2jþ 1
1 ðx1Þ; u2 ¼

XM
j¼0

x_
2j
u2j2 ðx1Þ; x_ ¼ x2=hðx1Þ:
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In a projection approach, it is required that the displacements and stresses provide zero
values to the integral projections of the constitutive vector and tensor on the selected
tensor fields. These conditions give the possibility to construct different systems of
ordinary differential equations with variable coefficients to study spectral properties of
the beam.

Figure 1 shows the behavior of the first three eigenfrequencies versus the number
of degrees of freedom Nd for two different mathematical models, describing the natural
motion of a beam with variable cross section. The solid lines correspond to the
eigenfrequencies that are obtained from the proposed equations with M ¼ 1 and the
dashed lines show the frequencies obtained from the classical beam equation

qðxÞ @
2v

@t2
þ @2

@t2
EJðxÞ @

2v
@x2

� �
¼ 0:

Here v is the transverse displacements of the beam center line points, q is the linear
density of the material.

This work is financially supported in part by the State Program № AAAA-A17-
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Fig. 1. Convergence of the eigenfrequencies.
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Abstract. The main part of the paper is devoted to the formulations of the
boundary value problem to finding natural frequencies of an inhomogeneous
beam in the framework of the Euler-Bernoulli hypotheses. Three different for-
mulations of the beam equation in displacements, momentums, and bending
moments are discussed. Next, the possibilities to constructing various bilateral
energy quality estimates for approximate solutions that follow from the method
of integro-differential relations are investigated. In the final part, based on a
numerical model example, the advantages of the variational technique in
problems of free vibrations of inhomogeneous beams are discussed.

Keywords: Dynamics � Beams � Variable cross-section

1 Beam Equations

Consider a thin beam with a length L, which is described by an equation under the
Euler-Bernoulli hypotheses. It is supposed that the cross section of the beam is a
rectangle with the width b ¼ const and the height h ¼ hðxÞ, which can be varied along
its length. The beam lateral motions in the framework of this model can be represented
by a linear partial differential equation

qðxÞytt þ EJðxÞyxxð Þxx¼ qðxÞ x 2 ð0; LÞ: ð1Þ

Here, y is the function described lateral displacements of the beam midline, qðxÞ is a
linear density of the beam material, E is Young’s modulus, qðxÞ is the external dis-
tributed load, JðxÞ is a cross sectional moment of inertia. Similar problems are con-
sidered in [1] and [2].

Let us introduce new variables pðt; xÞ and mðt; xÞ that characterize the beam
dynamics and, at the same time, have a clear physical meaning. The function pðt; xÞ is
the linear momentum density and mðt; xÞ is the bending moment in a cross section of
the beam. Introduce miscellaneous functions g and n

g ¼ qy� p ¼ 0; n ¼ EJyxx � m ¼ 0 ð2Þ

By using relations (2) Eq. (1) can be respectively expressed through momentum and
moment functions
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ptt þ EJ
p
q

� �
xx

� �
xx

¼ 0; mtt þEJ
mxx � q

q

� �
xx
¼ 0: ð3Þ

It can be seen that these equations differ from each other and this is primarily due to the
fact that the variable functions of bending stiffness EJðxÞ and linear density qðxÞ enter
differentiation with respect to time t and spatial coordinate x in different way,
respectively. However, one should not assume that these equations lead to different
results, since they are obtained from a unique generating system of equations. But they
can have different convergence rates when a numerical solution is finding.

Figure 1 shows the behavior of the accuracy of the first eigenfrequencies x1 versus
the to the parameter h0, hðxÞ ¼ ð�12h0 þ 1:2Þx2 þ h0Þ obtained for three beam for-
mulations discussed in this paper (black curve correspond to the statement in dis-
placements, red – momentums, blue – moments). The value h0 ¼ 0:1 reflects the beam
with constant height. It is seen that better accuracy is obtained for moment formulation
and difference in accuracies reach several orders.
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Abstract. Residual stresses can be induced by fabrication processes and ser-
vice conditions that lead to non-uniform deformations. In the standard test
method for residual stress analysis by x-ray diffraction (EN 15305), the vali-
dation is done by using reference specimens with known normal residual stress.
However, the method also stablishes restrictions to the values of both normal
and shear stresses, although the latter can be negligible with respect to the
former. Consequently, it would be interesting to have a reference specimen with
known shear residual stresses for independent validation. In the present work,
torsion tests have been performed in a steel sample with the aim of producing
shear residual stresses. Residual stresses were simulated by FEM modelling and
measured by X-ray diffraction.

Keywords: Residual shear stresses � X-ray diffraction � Finite element method

1 Motivation

The analysis of residual stresses has an important role in the study of materials science
or manufacturing processes. There are several methods to calculate the residual
stresses, one of the most extended techniques being the X-ray diffraction. The standard
EN 15305 [1] establishes certain criteria for reference specimens to validate the
method. Most reference specimens are prepared by shoot peening [2], which produces
residual compressive stresses at the surface. These kind of reference specimens have
bee qualified by means of round robin tests [3].

With shot peening, a homogenous compressive residual stress can be generated in
metallic materials in a controlled way, where shear stresses are negligible. However,
the standard imposes restrictions for both normal and shear stresses which could be
difficult to fulfill a reference specimen with known normal residual stresses. In sum-
mary, the standard limits the value of shear stresses in reference specimens although
there are no such specimens with known residual shear stresses.

The main idea of the present work is to develop an experimental procedure to create
reference specimens with known shear residual stresses. Torsional loads have been
applied to pearlitic steel sample to induce this kind of stresses The residual stresses will
to be measured by X-ray diffraction and the results will be compared with numerical
simulations to study the residual stress distribution in the sample.
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2 Experimental and Numerical Methods

Round bars of pearlitic steel have been loaded under torsion up to a given value of
shear strain (see Fig. 1a). After unloading the bars, their surface shear residual stresses
will be measured by X-ray diffraction, and compared with the numerical predictions
obtained with the commercial FEM code ABAQUS (see Fig. 1b).
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Fig. 1. a) Torsion test; b) Shear residual stresses obtained by FEM simulation.
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Abstract. Negative Poisson’s ratio of polymeric foam can be obtained by using
the thermal transformation method to convert cell shape from convex to reen-
trant ones. In this work, the large-deformation finite element analysis is per-
formed to quantify the magnitudes of compression and temperature for
subsequent heat treatment to reduce elastic recovery, such that the reentrant
shape can be maintained when the compression is removed. The amount of
compression and temperature for heat treatment that can produce NPR foam can
be used as a guide for experimental investigations, instead of trial-and-error
methods to determine manufacturing parameters.

Keywords: Elastoplastic analysis � Finite element method � Auxetic foam �
Negative Poisson’s ratio

1 Introduction

Classical elasticity allows the Poisson’s ratio (PR) of materials in three dimensions be
in the range between -1 and 0.5. Through design of material microstructures, effective
Poisson’s ratio of polymeric foam can be negative when its cell shape is reentrant [1].
Recently, numerical investigations of the negative Poisson’s ratio (NPR) properties in
the 2D star-shaped lattice have been reported [2–4]. A method to convert the initially
convex cell shape, which gives rise to positive Poisson’s ratio, to the concave, i.e.
reentrant, one is through the thermal transformation technique [1]. The thermal
transformation method requires triaxial compression of the foam first and subsequent
heat treatment while the compression is maintained. Permanent deformation due to
plasticity and release of stress under heat treatment are responsible for minimizing
elastic recovery when the compression load is removed. For metallic foam, sequential
compression along three orthogonal directions on a cube is sufficient. In this work, we
numerically model the deformation processes of the foam changing from positive to
negative PR by finite element analysis with the elastic-perfectly-plastic material model
and of the Mises flow rule.
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2 Results and Discussion

Starting from the conventional cell shape, as shown in Fig. 1 at time t = 0, we adopt
large-deformation plasticity theory to model the deformation of the unit cell under
hydrostatic compression in two dimensions. The color bar indicates the Mises stress in
units of MPa. The boundary conditions of the left and bottom edges are of the roller
type. Uniform compressive stress is applied on the top and right edges. As time
progresses, the snapshots of deformation at time t = 1, 1.5, 2 s are shown in Fig. 1. The
reentrant cell shape can be clearly observed. The stress in the skeleton is removed by
heat treatment, so that the reentrant shape is maintained. Elastic analysis of the reen-
trant unit cell reveals the effective Poisson’s ratio is about -0.3.
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Abstract. The contribution outlines the modeling of the thermo-mechanical
behavior of a curved surface slider employed as a device for passive seismic
isolation of buildings and structures. The Lagrange formalism is employed to
derive the equation of motion of the slider on the spherical surface of the lower
sliding pad. Besides the equations of motion, accurate modeling requires the
formulation of the response of the friction interface. Previous studies have
shown the dependence of the friction coefficient on the sliding velocity.
Reportedly, the rise in temperature during sliding also affects the magnitude of
the friction coefficient. The model is being developed in order to be further
integrated into a finite element model of a base-isolated structure.

Keywords: Seismic isolation � Friction-Pendulum system � Analytical model

1 Introduction

Bearing devices for passive seismic isolation are increasingly used for buildings,
bridges, and other types of structures. By dissipating energy, seismic isolation reduces
the demands of the superstructure in terms of ductility and load-carrying capacity.

Among other types of devices, the most frequently used are high-damping rubber
bearings, lead-core rubber bearings, and friction-pendulum systems. The latter type is
the object of the research.

The simplest version of the friction-pendulum isolator (sometimes also referred to
as a curved surface slider) consists of a slider and two sliding pads- upper and lower.
Generally, contact surfaces have a spherical form.

2 Equations of Motion

The equations of motion are derived from the Lagrangian of the slider constrained to
move on the spherical surface of the inferior sliding pad of the bearing device [1]. The
resulting system of differential equations of motion is solved numerically. Mechanical
behavior of the bearing device, subjected to strong ground motion, is investigated (see
Fig. 1). The analysis assumes a constant value of the friction coefficient and an
effective unilateral response of the sliding interface.
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3 Response of the Sliding Interface

A model proposed by [2] is used to model the frictional behavior at the slider/spherical
surface interface. The analytical model includes empirical relationships defined to take
into account the influence of the normal pressure acting on the interface [3], as well as
of the temperature rise during sliding [4, 5].

The outlined model is developed in order to be implemented into a finite element
analysis of a base-isolated structure. Thus, in a more general context, the analytical
model is employed in the assessment of the robustness of base-isolated structures.
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Abstract. Analytical prediction of the reliability of pipelines under ultra-low-
cycle loading demands the consideration of the several interrelated damaging
factors, those determine the limit state of specific structure. For that in this work
it was developed the complex numerical technique for finite-element assessment
of damage accumulation and limit state of welded pipelines with corrosion-
erosion metal loss. The ductile mechanism of subcritical damage was considered
as the main one that assumes certain material softening due to voids nucleation
and accumulation up to limit state. Additionally, it was necessary to take into
account the material hardening and softening in plastic strain that was described
by isotropic and kinematic mixed hardening laws. This complex approach
allowed revealing the major physical-mechanical mechanisms of structure fail-
ure depending on the type of external loading, size of the local metal loss and the
features of welding on the limit state of typical pipeline element.

Keywords: Pipeline � Corrosion-erosion metal loss � Limit state � Welding �
Isotropic hardening � Kinematic hardening � Ductile fracture

1 Introduction

Numerical assessment of residual strength of pipeline elements (PE) with revealed
corrosion-erosion metal losses is the typical problem for expert analysis of reliability of
various industrial systems. The common approach for solving this problem is the
determination of the limit state of specific structure under rated loading. As the most of
pipelines are welded ones the influence of residual state of stresses and strains should
be taken into account if the metal loss belongs to welding area. This problem is studied
well for static loading (e.g. by internal pressure) whereas for cyclic loading complexity
of physical-mechanical processes, those cause the subcritical damage and failure,
demands sufficient conservativeness of corresponding analytical techniques. Ultra-low-
cycle fatigue is notable for the sufficient plastic flow of material which demands taking
into account the material hardening and softening as well as nucleation and accumu-
lation of distributed voids of ductile fracture of certain volume concentration f. Pres-
ence of welded joint and local geometry anomalies of structure (operational defects of
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corrosion-erosion metal loss) leads to peculiar state of stresses and strains of PE under
internal pressure and/or bending moment that influences on the susceptibility of
specific welded structure to fracture.

Within the limits of this work it is proposed the complex numerical technique for
finite-element prediction of damage accumulation and limit state of welded pipelines
with corrosion-erosion metal losses under ultra-low-cycle loading.

2 Numerical Procedure for Prediction of Limit State
of Welded Pipeline with Corrosion-Erosion Metal Loss
Under Ultra-Low-Cycle Loading

2.1 Main Assumptions and Material Model

Ultimate limit state of corroded (eroded) PE depends on a number of physical-
mechanical processes initiated by operational and technological influence. In case of
large cyclic strain loading (e.g. earthquake, landslide, inaccurate overloading, buckling,
etc.) limit state of pipeline is determined by the evolution of plastic strains and cor-
responding accumulation of subcritical damage up to nucleation of macroflaw. Local
corrosion-erosion metal losses and corresponding stress concentrations lead to a certain
decrease of bearing capacity of pressurized PE. Their admissibility is determined by
relevant standard specifications for design operational loads, but ultra-low-cycle
loading considers exceptional conditions of pipeline operation that complicates expert
analysis of their compliance with design demands. The main complexity consists in
nonlinear response of material to cyclic plastic deformation and evolution of its
properties. Thus, along with characteristic strain hardening, two possible mechanisms
of material softening could be assigned [1]: Bauschinger effect due to change of the
direction of plastic deformation, and the accumulation of porosity ductile damage
which is caused by plastic strain and lead to the reduction of true cross-section of the
structure. As the typical technological and main pipelines are the welded ones, the
presence of assembly girth welds causes the spatial inhomogeneity of stress-strain state
and complex interaction of operational and residual stresses. This also should be taken
into account, especially in case of close location of the metal loss and weld.

2.2 Finite-Element Description of Physical-Mechanical Processes
in Ultra-Low-Cycle Loading of Welded Pipeline with Local
Corrosion-Erosion Metal Loss

The physical phenomena, those determine the ultimate limit state of typical welded PE
with local geometry anomaly, are spatially nonuniform and the conventional approach
for their description is the finite-element (FE) modeling. For considered problem the
defective pipeline of diameter D and wall thickness t was modeled within the limits of
the cylindrical set of coordinates (r, b, z), local metal loss was approximated as semi-
elliptical wall thinning of the size of 2 s, 2u and a (see Fig. 1). In welding and further
low-cycle loading of PE by internal pressure P and bending moment M the current and
limit state of stresses and strains is determined by several mechanisms of deformation,
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those corresponds to respective summand of total strain tensor eij (i, j = r, b, z) namely:
elastic eeij, plastic epij, thermal dijeT and ductile damage dij(f/3).

Elastic strains correlate with current stresses as follows:

eeij ¼
rij � dijrm

2G
þ dijðKrm þuÞ ð1Þ

where rm= (rrr+ rbb+ rzz)/3; K ¼ ð1� 2mÞ=E, G ¼ 0:5E=ð1þ mÞ, E is Young mod-
ulus, m is Poison’s ratio, u is volumetric changes (thermal or caused by structural
changes).

The increment of plastic strains for a specific FE linearly depends on the scalar
function K and deviator component of the stress tensor, namely:

depij ¼ dKðrij � dijrmÞ ð2Þ

In turn, the specific value of the function K depends on the stress state in the
considered area of the structure, as well as on the shape of the yield surface U [2].

For numerical prediction of porosity nucleation in material of welded pipeline with
local metal loss the strain-based criterion was used [3], further growth of voids depends
on stress triaxiality (ratio of the hydrostatic rm to equivalent req stress) and the intensity
of the plastic strain epi according to Rice-Tracey law [4].

Thus, the increment of strain tensor components could be presented as follows [5]:

deij ¼ deeij þ depij þ dij deT þ df =3ð Þ ð3Þ

Equation (3) in differential form has the next expression:

Deij ¼ W rij � dijrm
� �þ dij Krm þDeT þDf =3ð Þ � 1

2G
rij � dijrm
� �� þ Krmð Þ� ð4Þ

Fig. 1. Scheme of welded pipeline element with defect of semi-elliptic shape in cylindrical
coordinate system (r, b, z).
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where symbol “*” refers to the variable of the previous tracing step, W is the state
function of the material, which is determined by plastic flow surface U, that was
considered according to Gurson-Tvergaard-Needleman model [6]:

U ¼ req

rY

� �2

� q3f
0ð Þ2 þ 2q1f 0 cosh q2

3rm

2rY

� �
ð5Þ

where q1, q2, q3 are constants, f’ is equivalent concentration of voids, rY is yield stress.
The solvable system of equations in the variables of the vector of displacement

increments DUi in FE nodes at each step of tracing and W-iterations was determined by
the minimization of the functional L (Lagrangian variational principle), i.e. [2]

@L
@DUi

¼ 0; ð6Þ

where L ¼ � 1
2

P
V

rij þ Jij
� �

DeijVm;n;r þ
P
SP

FiDUiDS
m;n;r
P ,

P
V

is the sum operator by

internal FEs,
P
SP

is the sum operator on surface FEs on which the components of the

force vector Fi are specified.
It was considered that limit state of specific structure is reached in case of fulfilling

the one of three conditions of numerical criterion of brittle-ductile fracture [2]:

W� 1
2G � ef� epið Þ�

1:5rY epi ;f
0ð Þ ;

f
0 � 1

q1
exp � 3q2rm

2rY

� �
;

r1
1�2f =3 [ SK ;

ð7Þ

where SK is the microcleavage stress, ef is the critical strain (Mackenzie rule).
The mixed hardening rule was used for prediction of material properties evolution

under ultra-low-cycle fatigue loading. It combines the linear kinematic hardening rule
in Von Mises form [7] and isotropic hardening effect for taking into account the of
yield surface transformation due to plastic deformation and accumulation of ductile:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2

rij � dijrm � �X
� �

rij � dijrm � �X
� �r

� r0Y f 0ð Þ 1þ ep=e0ð Þ½ �m � 0 ð8Þ

where �X is shift tensor of kinematic hardening, r0Y f 0ð Þ is material state according to (5),
m, e0 are material constants.

3 Results and Discussion

Residual state of stresses and strains in the weld region, kinematic hardening and
ductile damage have an influence on limit state of eroded PE under ultra-low-cycle
loading with internal pressure and bending moment. One of the fundamental problems,
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that could be solved with the described above FE approach, is the determination of
influence of this interrelated phenomena on bearing capacity of specific welded
structure. As a case of study it was considered the PE of D � t = 315 � 10 mm size
made of 316L stainless steel (E = 193 GPa, m = 0.3, rY = 170 MPa). Individual ero-
sion metal loss of semi-elliptical shape on inner surface of the pipe (2s � 2u � a =
40 � 20 � 5 mm). Examples of equivalent stresses distributions over cross-section of
the pipe after welding and under operational conditions are given in Fig. 2.

Figure 3a shows the dependencies of local stresses rbb on strains ebb near the
internal defect of erosion thinning with and without taking into account the ductile
damage of material caused both with internal pressure P = 10 MPa and cycling
bending moment M from −85 to 85 kN∙m (that corresponds to the range of maximum
axial stress from −120 to 120 MPa). As it could be seen, accumulation of porosity in
plastic deformation of pipe steel leads to the total shifting of stress-strain hysteresis
loops to higher strains because of porous material softening and decrease of the
structure bearing cross-section.

Intensity of ductile damage accumulation in ultra-low-cycle loading (i.e. growth
rate of porosity volume concentration f per number of cycles N) has three main stages:
plastic deformation before nucleation of ductile damage; nucleation of porosity and
redistribution of the fields of strains and stresses; stable growth plastic strains and
porosity volume concentration up to limiting state according (7). First two stages
correspond to the static loading and take place on the first cycles whereas the third one
is connected with fatigue fracture of plastically deformed material. Figure 3b shows the
results of numerical assessment of ductile damage accumulation for considered
example of eroded PE in stable growth stage. As it could be seen, ductile porosity
concentration f increases quasilinearly starting the second cycle of loading with
bending moment under the same internal pressure P. That means, that growth rate of
f mostly depends on applied range of cycling load, but not the plastic (or total) strain
path.

Fig. 2. Numerically assessed distributions of equivalent stresses req in the pipeline (D � t =
315 � 10 mm, 316L stainless steel): (a) – residual state in the region of girth weld; (b) – with
internal erosion defect (2s � 2u � a=40 � 20 � 5 mm) under operational pressure 8.0 MPa.
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Abstract. We study unsteady vibrations of a isotropic Kirchhoff plate con-
sidering mass transfer. In the general case, the plate is subjected to tensile and
shear forces as well as bending moments and torque. Densities of diffusion
fluxes are also defined. For the problem formulation, we use the coupled elastic
diffusion continuum model in a rectangular Cartesian coordinate system. Fur-
ther, the unsteady model of an elastodiffusive Kirchhoff plate is obtained using
the d’Alembert variational principle. The solution is sought in integral form. To
find the Green’s functions, we use the Laplace integral transform and Fourier
series expansion.

Keywords: Elastic diffusion � Coupled problem � Unsteady problem � Integral
transformation � Multicomponent continuum � Kirchhoff plate � Green’s
function

1 Problem Formulation

We consider the unsteady vibrations problem of a rectangular isotropic N - component
Kirchhoff plate under action of mechanical and diffusion perturbations. Figure 1 shows
the orientation of Cartesian axes as well as how the forces and the moments are applied.

When moment density and transverse load density are absent, the transverse
vibrations equation of the plate has the form (the dots denote the time derivative) [1]:

D€w� 12
h2

€w ¼ DDwþ
XN
q¼1

aqDHq; _Hq ¼ DqDHq þKqDDw: ð1Þ

All quantities in (1) are dimensionless. We accepted the following notation:

xi ¼ x�i
l
; w ¼ w�

l
; s ¼ Ct

l
; k ¼ k�

k� þ 2l�
; l ¼ k�

k� þ 2l�
; lm ¼ l�m

l
;

aq ¼
a�q

k� þ 2l�
; Dq ¼

D�
q

Cl
; Kq ¼

m qð ÞD�
qa

�
qn

qð Þ
0

qRT0Cl
; C2 ¼ k� þ 2l�

q
; h ¼ h�

l
;
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where t is time; x�i are Cartesian coordinates; w� is a plate transversal displacement; l is
the characteristic linear size of the problem (in this case, the plate diagonal, which has
dimensions l�1 � l�2 and thickness h�); Hq are concentration increments for the q-th

medium component of an N-component continuum; n qð Þ
0 are initial concentrations; k�

and l� are Lame coefficients; q is density; a�q are coefficients characterizing the
medium volumetric changes due to diffusion; D�

q are the self-diffusion coefficients; R is

the universal gas constant; T0 is the initial temperature; m qð Þ is the molar mass.
The Eq. (1) are supplemented by the boundary conditions. In the case of pure

bending under the action of bending moments M lð Þ
k , boundary conditions has the form:

@2w
@x21

þ k @2w
@x22

þ PN
q¼1

aqHq

 !�����
x1¼0

¼ f111 x2; sð Þ;

@2w
@x21

þ k @2w
@x22

þ PN
q¼1

aqHq

 !�����
x1¼l1

¼ f112 x2; sð Þ;

k @2w
@x21

þ @2w
@x22

þ PN
q¼1

aqHq

 !�����
x2¼0

¼ f121 x1; sð Þ;

k @2w
@x21

þ @2w
@x22

þ PN
q¼1

aqHq

 !�����
x2¼l2

¼ f122 x1; sð Þ;

ð2Þ

wjx1¼0 ¼ f211 x2; sð Þ; wjx1¼l1¼ f212 x2; sð Þ; wjx2¼0 ¼ f221 x1; sð Þ; wjx2¼l2¼ f222 x1; sð Þ;

Hq

��
x1¼0 ¼ fqþ 2;11 x2; sð Þ; Hq

��
x1¼l1

¼ fqþ 2;12 x2; sð Þ;
Hq

��
x2¼0¼ fqþ 2;21 x1; sð Þ; Hq

��
x2¼l2

¼ fqþ 2;22 x1; sð Þ;

Fig. 1. Forces and moments acting upon the plate.
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f111 x2; sð Þ ¼ � 12
h3

M 1ð Þ
1 x2; sð Þ; f112 x2; sð Þ ¼ � 12

h3
M 1ð Þ

2 x2; sð Þ;

f121 x1; sð Þ ¼ � 12
h3

M 2ð Þ
1 x1; sð Þ; f122 x1; sð Þ ¼ � 12

h3
M 2ð Þ

2 x1; sð Þ:

The initial conditions are assumed to be zero.

2 Solution Method

The solutions of the problem (1), (2) are sought in integral form

w x1; x2; sð Þ ¼

¼
XNþ 2

k¼1

Zl2
0

G1k1 x1; x2; f; sð Þ � fk11 f; sð ÞþG1k1 l1 � x1; x2; f; sð Þ � fk12 f; sð Þ½ �df

þ
XN þ 2

k¼1

Zl1
0

G1k2 x1; x2; n; sð Þ � fk21 n; sð ÞþG1k2 x1; l2 � x2; n; sð Þ � fk22 n; sð Þ½ �dn;

Hq x1; x2; sð Þ ¼

¼
XNþ 2

k¼1

Zl2
0

Gqþ 1;k1 x1; x2; f; sð Þ � fk11 f; sð ÞþGqþ 1;k1 l1 � x1; x2; f; sð Þ � fk12 f; sð Þ� �
df

þ
XNþ 2

k¼1

Zl1
0

Gqþ 1;k2 x1; x2; n; sð Þ � fk21 n; sð ÞþGqþ 1;k2 x1; l2 � x2; n; sð Þ � fk22 n; sð Þ� �
dn;

where Gikl are the surface Green’s functions, which satisfy the equations:

D€G1kl � 12
h2

€G1kl ¼ DDG1kl þ
XN
q¼1

aqDGqþ 1;kl; _Gqþ 1;kl ¼ DqDGqþ 1;kl þKqDDG1kl;

ð3Þ

and the following boundary conditions:
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@2G1kl
@x21

þ k @2G1kl
@x22

þ PN
q¼1

aqGqþ 1;kl

 !�����
x1¼0

¼ d1kd1ld sð Þd x2 � fð Þ;

k @2G1kl
@x21

þ @2G1kl
@x22

þ PN
q¼1

aqGqþ 1;kl

 !�����
x2¼0

¼ d1kd2ld sð Þd x1 � nð Þ;

@2G1kl
@x21

þ k @2G1kl
@x22

þ PN
q¼1

aqGqþ 1;kl

 !�����
x1¼l1

¼ 0;

k @2G1kl
@x21

þ @2G1kl
@x22

þ PN
q¼1

aqGqþ 1;kl

 !�����
x2¼l2

¼ 0;

G1kljx1¼0 ¼ d2kd1ld sð Þd x2 � kð Þ; G1kljx2¼0 ¼ d2kd2ld sð Þd x1 � kð Þ;
Gqþ 1;kl

��
x1¼0 ¼ dqþ 2;kd1ld sð Þd x2 � kð Þ; Gqþ 1;kl

��
x2¼0 ¼ dqþ 2;kd2ld sð Þd x1 � kð Þ;

G1kljx1¼l1¼ 0; G1kljx2¼l2¼ 0; Gqþ 1;kl
��
x1¼l1

¼ 0; Gqþ 1;kl
��
x2¼l2

¼ 0:

ð4Þ

To find the Green functions Gikl, the expanding into double trigonometric Fourier
series in spatial coordinate and the Laplace transform in time are use. As a result,
problem (3), (4) is reduced to the following system of linear algebraic equations (s is
Laplace transform parameter):

k1 mnm; sð ÞGLss
1kl kn; lm; n; f; sð Þ �

XN
q¼1

aqm
2
nmG

Lss
qþ 1;kl kn; lm; n; f; sð Þ

¼ F1kl kn; lm; n; f; sð Þ;
� Kqm

4
nmG

Lss
1kl kn; lm; n; f; sð Þþ kqþ 1 mnm; sð ÞGLss

qþ 1;kl kn; lm; n; f; sð Þ
¼ Fqþ 1;kl kn; lm; n; f; sð Þ;

ð5Þ

where kn ¼ pn=l1, lm ¼ pm=l2 . Other quantities are defined as:

k1 mnm; sð Þ ¼ s2 m2nm þ 12
h2

� �
þ m4nm; kqþ 1 mnm; sð Þ ¼ sþDqm

2
nm; m

2
nm ¼ k2n þ l2m;

F1kl kn; lm; n; f; sð Þ ¼ � 4kn
l1l2

d1l d1k � d2k k2n þ 2� kð Þl2m þ s2
� �� �

sin lmf

� 4lm
l1l2

d2l d1k � d2k l2m þ 2� kð Þk2n þ s2
� �� �

sin knn;

ð6Þ
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Fqþ 1;kl kn; lm; n; f; sð Þ ¼ � 4
l1l2

Kqknd2kd1l k
2
n þ 2� kð Þl2m

� �
sin lmf

� 4
l1l2

Kqlmd2kd2l 2� kð Þk2n þ l2m
� �

sin knn

þ 4
l1l2

Kqd1k þDqdqþ 2;k � Kq

XN
j¼1

ajdjþ 2;k

" #
lmd2l sin knnþ knd1l sin lmfð Þ;

GLss
ikl kn; lm; n; f; sð Þ ¼ 4

l1l2

Zl1
0

Zl2
0

GL
ikl x1; x2; n; f; sð Þ sinknx1 sin lmx2dx2dx1;

GL
ikl x1; x2; n; f; sð Þ ¼

X1
n¼1

X1
m¼1

GLss
ikl kn; lm; n; f; sð Þ sin knx1 sin lmx2

ð7Þ

The solution of the system (5) has the form q; p ¼ 1;N; l ¼ 1; 2
	 


GLss
1kl kn; lm; n; f; sð Þ ¼ P1kl kn;lm;n;f;sð Þ

P mnm;sð Þ ;

GLs
qþ 1;1l kn; lm; n; f; sð Þ ¼ 4Kq

l1l2
d1lkn sin lmfþ d2llm sin knnð Þ

kqþ 1 mnm;sð Þ þ Pqþ 2;1l kn;lm;n;f;sð Þ
Qq mnm;sð Þ ;

GLs
qþ 1;2l kn; lm; n; f; sð Þ ¼ � 4

l1l2

Kqknd1l k
2
n þ 2� kð Þl2m

� �
sin lmf

kqþ 1 mnm; sð Þ

� 4
l1l2

Kqlmd2l 2� kð Þk2n þ l2m
� �

sin knn
kqþ 1 mnm; sð Þ þ Pqþ 2;2l kn; lm; n; f; sð Þ

Qq mnm; sð Þ
GLs

qþ 1;pþ 2;l kn; lm; n; f; sð Þ ¼ 4Kq

l1l2

d1lkn Dqdqp � Kqap
	 


sin lmf
kqþ 1 mnm; sð Þ

þ 4Kq

l1l2

d2llm Dqdqp � Kqap
	 


sin knn
kqþ 1 mnm; sð Þ þ Pqþ 2;pþ 2;l kn;lm; n; f; sð Þ

Qq mnm; sð Þ ;

ð8Þ

where

P mnm; sð Þ ¼ k1P� m6nm
XN
j¼1

ajKjPj; Qq mnm; sð Þ ¼ kq mnm; sð ÞP mnm; sð Þ:

P11l kn; lm; n; f; sð Þ ¼ � 4
l1l2

P� m2nm
XN
j¼1

ajKjPj

 !
knd1l sin lmfþ lmd2l sin knnð Þ;

P12l kn; lm; n; f; sð Þ

¼ 4kn
l1l2

d1l k2n þ 2� kð Þl2m þ s2
� �

P� m2nm
XN
j¼1

ajKj k
2
n þ 2� kð Þl2m

� �
Pj

( )
sin lmf

þ 4lm
l1l2

d2l l2m þ 2� kð Þk2n þ s2
� �

P� m2nm
XN
j¼1

ajKj l
2
m þ 2� kð Þk2n

� �
Pj

( )
sin knn;
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P1;qþ 2;l kn; lm; n; f; sð Þ ¼ 4aqm2nm
l1l2

DqPq �
PN
j¼1

ajKjPj

 !
knd1l sin lmfþ lmd2l sin knnð Þ;

Pqþ 1;kl kn; lm; n; f; sð Þ ¼ Kqm4nmP1kl kn; lm; n; f; sð Þ;
P mnm; sð Þ ¼ QN

j¼1
kjþ 1 mnm; sð Þ; Pj mnm; sð Þ ¼ QN

r¼1;r 6¼j
krþ 1 mnm; sð Þ:

Since Prkl kn; lm; n; f; sð Þ are rational functions of the transformation parameter s, the
originals in equalities (8) are calculated on the base of residues and the tables of
operational calculus.

This work was funded by the subsidy from RFBR (Project №20-08-00589 A).
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A Dynamic Contact Problem of Torsion
that Reduces to the Singular Integral Equation

with Two Fixed Singularities

V. Popov(&) and O. Kyrylova
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Abstract. An elastic cylinder of finite length, one of the ends of which is
perfectly coupled to the surface of the elastic half-space is considered. A round
rigid plate of the same radius is coupled to the other end of the cylinder, and is
loaded the torsion moment that is harmonic depend of time. The surface of the
half-space outside the contact area with the cylinder and the side surface of the
cylinder are been unload. The formulated boundary problem is reduced to a
singular integral equation for a function related to stresses in the contact area of
the cylinder and half-space. Since the kernel of this integral equation contains
fixed singularities, a numerical method for solving this equation the is main
result. After solving the integral equation, approximate formulas for calculating
the contact stresses.

Keywords: Torsion oscillation � Contact problem � Singular integral equation

1 Introduction

At nowadays, one of the effective methods for solving the boundary value problems of
the mechanics of a deformable body is to reduce them to solving integral equations,
most often singular ones. Since the exact solution of these equations is rarely possible,
the actual problem is the creation of numerical methods for their solution. The presence
in the singular part of kernels with fixed singularities makes it difficult to solve r
integral equations. In the monograph [1], as well as in articles [2–4] where exact
solutions of singular integral equations are found, it is proved that the presence of fixed
singularities affects the asymptotic behavior of the solution near the ends of the inte-
gration segments. Despite this, in many cases the real asymptotic of the unknown
functions is either not taken into account Therefore, the convergence of these numerical
methods is quite slow. Articles [5–8] show that the methods based on the use of special
quadrature formulas for singular integrals and taking into account the real asymptotic
of the solution are most effective in the sense of convergence. Such method for an
integral equation with two fixed singularities, to which the contact problem of torsional
vibrations of a cylinder on an elastic half space reduces is proposed in this article.

© Springer Nature Switzerland AG 2020
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2 Statement of the Problem and Its Reduction to a Singular
Integral Equation

Let an elastic cylinder 0� r\r0; 0� z\a; 0�u\2p
locate on the elastic half-space 0� r\þ1;
�1\z� 0; 0� u\2 p (Fig. 1) and coupled to it.
A round rigid plate of the same radius as the cylinder and
the thickness d is connected to the upper end of the
cylinder. A torsion moment Me�ix t, harmoniously
dependent on time, is exerted to the plate. The factor e�ix t

that determines the dependence on time is omitted farther.
Under such conditions, an axisymmetric torsional defor-
mation is realized in the cylinder and half-space and only
angular displacements wj r; zð Þ; j ¼ 1; 2 is nonzero. They
are determined from the equations

@2wj

@r2
þ 1

r
@wj

@r
� w2

j

r2
þ @2wj

@z2
þ j22jwj ¼ 0; j22j ¼

q2j x
2

G2
j

; j ¼ 1; 2;

ð1Þ

where w1 r; zð Þ is displacement in cylinder, w2 r; zð Þ is displacement in half space,
q1; G1 are shear modulus and density of the cylinder, q2; G2 are shear modulus and
density of the half space. In the area of contact between the cylinder and the half-space,
the following equations are satisfied:

s 1ð Þ
u z r; þ0ð Þ ¼ q rð Þ; s 2ð Þ

u z r;�0ð Þ ¼ q rð Þ; 0� r\r0 ð2Þ

where q rð Þ is unknown stresses in the contact area. Also in the contact area, the
condition of continuity of displacements is fulfilled

w1 r; þ0ð Þ ¼ w2 r;�0ð Þ; 0� r\r0: ð3Þ

The surface of the half-space outside the contact area is considered unloaded

s 2ð Þ
zu r;�0ð Þ ¼ 0; r[ r0: ð4Þ

On the upper end of the cylinder, the conditions of couple to the plate is satisfied

w1 r; að Þ ¼ h0r; 0� r� r0: ð5Þ

where h0 is unknown plate rotation angle, It is determined from the equation

�x2j0h0 ¼ M �MR; j0 ¼ p r40dq0=2 ð6Þ

Fig. 1. The elastic cylinder
coupled with half space
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where j0 is the moment of inertia of the plate, MR is the moment of the reaction forces.
There q0 is density of the plate. The lateral surface of the cylinder is not loaded:

s 1ð Þ
ru r0; zð Þ ¼ 0; 0\z\a: ð7Þ

Angular displacement in a cylinder is the solution of the boundary value problem
(1), (2), (5), (7) and it equal

w1 r; zð Þ ¼ �
Zr0
0

g
q gð Þ
G1

F1 g; r; zð Þdgþ h0r
cos j21z
cos a j21

: ð8Þ

F1 g; r; zð Þ ¼ 2
a

X1
k¼1

g1k g; rð Þþ K2 qk1r0ð Þ
I2 qk1r0ð Þ I1 qk1gð ÞI1 qk1rð Þ

�
� cos kkz;

�

g1k g; rð Þ ¼ I1 qk1rð ÞK1 qk1gð Þ; r\g;
I1 qk1gð ÞK1 qk1rð Þ; r[g;

�
kk ¼ p 2k � 1ð Þ

2a
; qk1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2k � g2

21

q
:

Angular displacement in half-space is the solution of boundary value problem (1),
(2) (4), and it equal to

w2 g; rð Þ ¼
Zr0
0

g
q gð Þ
G2

Zþ1

0

b eq2 bð Þz

q2 bð Þ J1 b rð ÞJ1 bgð Þdb dg; q2 bð Þa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � j222

q
ð9Þ

Now it is necessary to find the unknown contact stresses q rð Þ for the final deter-
mination of the displacement in the cylinder and the half-space For this purpose, the
integral equation was obtained by substitution (8), (9) in (3). This integral equation can
be transformed into a second-kind integral equation [9] for a new unknown function.
This function is related to contact stresses by the next formulas

u xð Þ ¼
Zr0
x

g
q gð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � x2

p dg; q gð Þ ¼ � 2
p

@

@g

Zr0
g

u xð Þdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � g2

p : ð10Þ

As a result of the transformations detailed in [9] and the extraction of the singular
component, this equation takes the following form:

1þ cð Þg fð Þþ 1
p

Z1

�1

g sð Þ 1
2� s� f

þ 1
2þ sþ f

�
� 15

4
ln 2þ sþ fð Þ

� 15
4
ln 2þ sþ fð ÞþR s; fð Þ

�
ds ¼ 2h0f

cos c j0ð Þ ; �1\f\1:

ð11Þ
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When deriving Eq. (11) the next notation was taken: x ¼ r0s; y ¼ r0f ,
u r0sð Þ ¼ r0G1g sð Þ; c ¼ a=r0; j0 ¼ j21r0; c ¼ G1=G2.

3 The Numerical Solution of Integral Equation

For construction an efficient numerical method of solving Eq. (11), we need to find out
the asymptotic of the unknown function g sð Þ for s ! �1. This defines the following
form of solution:

g sð Þ ¼ 1� s2
� �r

w sð Þ; r ¼ 1
p
arcsin

1
cþ 1

; ð12Þ

where w sð Þ is a function that satisfies the Holder conditions.
Quadrature formulas for singular integrals are based on the approximation of the

function by the following interpolation polynomial:

w sð Þ � Wn sð Þ ¼
Xn
m¼1

wm
Pr;r
n sð Þ

Pr;r
n smð Þ½ �0 s� smð Þ; ð13Þ

where wm ¼ w smð Þ, Pr;r
n sð Þ are Jacobi polynomials and sm are roots of these poly-

nomials. As a result, we obtain the quadrature formulas by the method described in
detail in the article [5]

Z1

�1

1� s2ð Þrw sð Þ
2� s� f

ds ¼
Xn
m¼1

wm
Arr
m Prr

n ðsmÞ
� 	0 þ ð�1Þnþ 1Bn

1�1
2

� �
Prr
n ðsmÞ

� �0ð2� sm � 1Þ ; ð14Þ

BnðYÞ ¼ C 1þ rþ nð Þ
2�2rn!

Xþ1

j¼0

CnjY
rþ j

"
þ

Xþ1

j¼0

BnjY
j

#
;

Cnj ¼ ð�1Þ jC �r� nð ÞC 1þrþ nþ jð Þ
j!C 1þrþ nþ jð Þ ;Bnj ¼ ð�1Þ jC r� jð ÞC 1þ nþ jð Þ

j!C 1þ 2rþ n� jð Þ ;

where Arr
m are coefficients of the Gauss – Jacobi quadrature formula [10].

Similar formulas for integrals with a logarithmic singularity are obtained by the
same method [5]:

Z1

�1

ð1� s2ÞrwðsÞlnð2� s� fÞds: ¼
Xn
m¼1

Arr
m wm

Xn�1

j¼0

Prr
j ðsmÞ

ð�1Þ jr2
j

hj
1� f
2


 �
: ð15Þ

The functions hj Yð Þ are represented by series similar to these in formula (17).
Then in Eq. (11) the quadrature formulas (15), (17) are applied to the singular

integrals, and to the regular ones the Gauss - Jacobi quadrature formulas [12] and as
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collocation points are taken f ¼ sk; k ¼ 1; 2; . . .; n. The result of these actions is a
system of linear algebraic equations for wm;m ¼ 1; 2; . . .; n. To the resulting system it
is necessary to add the equation of motion of the plate (6). After solving the system,
from formulas (10), (12), (13) we obtain formulas for the approximate calculation of
the contact stresses.

sðfÞ ¼ qðr0fÞ
G1

¼ fð1� f2Þr�1
2
Xn
m¼1

WmA
rr
m WmðfÞ ð16Þ

Here functions WmðfÞ are represented through hypergeometric functions very
cumbersomely.

4 Results of Numerical Analysis and Conclusions

The cylinder of radius r0 ¼ 0,2 m of aluminum coupled to a cast iron base is con-
sidered, as an example. The plate adhered to the upper end of the cylinder is steel and
has a thickness of d ¼ 0,02 m. The plate is loaded by the moment with amplitude of
M ¼ 1000 n � m. The frequency of oscillation changes so that the dimensionless wave
number j0 ¼ j2r0 ¼ x r0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q1=G1

p
is in the range 0� j0 � 10 (Fig. 2).

The calculations showed that to obtain the values of contact stresses and the angle
of rotation with a relative error of less than for the numerical solution of the integral
Eq. (11) in the formula (13), it suffices to use 10–15 interpolation points.

Using formula (18), the influence of the frequency and the ratio of the dimensions
of the cylinder on the values of contact stresses is studied. The results of these studies
are shown in the figures. The graphs in these figures correspond to the following values
of the ratio of the height of the cylinder to its radius 1−c ¼ 1; 2−c ¼ 2; 3−c ¼ 3;
4−c ¼ 4: The following conclusions can be drawn based on the analysis of the results

a) 0 0κ = b) 0 2κ =

Fig. 2. The contact stresses for other values of frequency and relative height of cylinder
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of the calculations. The proposed method for numerically solving a singular integral
equation with a fixed singularity with a small volume of calculations allows us to
obtain results with high accuracy. This is explained by the fact that the solution takes
into account the real asymptotic of unknown functions, and use special quadrature
formulas are derived for singular integrals. At torsion of a cylinder which is coupled
with an elastic foundation, the highest values of contact stress are observed under static
loading j0 ¼ 0. In the same case, with an increase in the relative length of the cylinder,
the absolute values of the contact stress increase. Monotonic increase in the absolute
values of contact stresses is observed when approaching the boundary of the contact
region in the considered frequency range 0� j0 � 10.
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Abstract. The problems of constructing analytical solutions of non-stationary
dynamic problems for layered composites in the case when all the layers are
linearly viscoelastic, but their hereditary properties are determined by only one
kernel, the same for all layers, are considered. In this case, the Poisson’s ratio of
the material of each layer becomes time-independent. A special case is con-
sidered when all the layers are linearly elastic. The perturbation propagation
region is assumed to be limited. The integral Laplace transform in time is
applied, followed by inversion. Sufficient conditions, under which all the poles
of the solution in the transforms are simple, are formulated. The question of the
location of these poles is considered. An example is given of constructing an
analytical solution to a two-dimensional non-stationary dynamic problem for a
cylindrical body consisting of elastic or viscoelastic layers under the above
assumption. The results of a study of two-dimensional transient wave processes
in a layered cylindrical elastic body, based on the corresponding analytical
solution, are presented.

Keywords: Dynamics of layered composites � Piecewise homogeneous
bodies � Wave processes

1 Introduction

In the study of transient wave processes in layered solids, one of the important
directions is to conduct research based on analytical solutions of the corresponding
initial-boundary-value problems. Known analytical results in this area for the case
when the layers are linearly viscoelastic can be found, for example, in [1–7]. At the
same time, many unexplored issues remain within the framework of this topic. This
primarily concerns the study of the influence of the properties of the material on non-
one-dimensional transient wave processes in bodies with an arbitrary number of
interfaces between homogeneous components. Known analytical solutions often turn
out to be valid only in a limited range of time changes, or with significant restrictions
on the material properties of homogeneous components (layers), or the solution is
difficult to analyze. Earlier, the author of this paper examined theoretical issues related
to the construction of solutions to non-stationary dynamic problems for composites
with an arbitrary number of homogeneous linear viscoelastic layers by the Laplace
transform method with subsequent inversion [8]. At the interfaces between the layers, it
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was assumed that the continuity conditions for the displacement and stress vectors were
fulfilled, and the disturbance propagation region was considered limited. Statements
about important properties of solutions in images were formulated and proved, which
facilitate the construction of originals. These statements reveal the connection between
the branch points and the poles of the solution of the problem in images with the
spectrum of the corresponding problem of free vibrations of the piecewise-
homogeneous body under consideration. This work is devoted to non-stationary
dynamic problems for layered composites in the case when all the layers are linearly
viscoelastic, but their hereditary properties are determined by only one kernel, the same
for all the layers. Moreover, the Poisson’s ratio of the material of each layer does not
depend on time. A special case when all layers are linearly elastic is considered.

2 Mathematical Formulation of the Problem

Let us consider the non-stationary dynamic problem for a layered composite occupying
a domain X with a boundary R and consisting of N homogeneous isotropic linear-
viscoelastic components (layers): X ¼ X1 [X2 [ . . .[XN (Xi and Xj do not intersect
at internal points if i 6¼ j). On the contact surfaces between these components the
conditions of continuity of displacement and stresses vectors are satisfied. Consider the
case when volumetric and shear relaxations kernels of the material of every component

are identical: TðnÞ
v � T ðnÞ

s ðtÞ � TðtÞ; n ¼ 1; 2; . . .;N. In this case Poisson’s ratio in

every component is time-independent: mðnÞ � mðnÞ0 ðconstÞ. For each component of the
body we write the equations of dynamics (n ¼ 1; 2; . . .;N):

ð1� T̂Þ L̂ðnÞuðnÞ ðx; tÞþ fðnÞðx; tÞ ¼ qn €u
ðnÞðx; tÞ ð1Þ

and the constitutive relations

~rðnÞðx; tÞ ¼ ð1� T̂Þ l̂ðnÞ uðnÞðx; tÞ; xðx1; x2; x3Þ 2 Xn ð2Þ

For components with numbers 1 � m � N, having the common points with a
boundary R ¼ R1 [R2, we present the boundary conditions

~rðmÞðx; tÞn ¼ pðmÞðx; tÞ; x 2 R1

uðmÞðx; tÞ ¼ qðmÞðx; tÞ; x 2 R2; t[ 0
ð3Þ

On the contact surface of adjacent components with numbers p and q let us write
down the relationships

uðpÞðx; tÞ ¼ uðqÞðx; tÞ; ~rðpÞðx; tÞ n ¼ ~rðqÞðx; tÞn; x 2 Rpq ð4Þ
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For each component, we set the initial conditions

uðnÞðx; 0Þ ¼ bðnÞ1 ðxÞ; _uðnÞðx; 0Þ ¼ bðnÞ2 ðxÞ; x 2 Xn ð5Þ

Here L̂ðnÞ and l̂ðnÞ are differential operators, T̂ is integral operator:

L̂ðnÞuðnÞ ðx; tÞ ¼ ðkðnÞ0 þ lðnÞ0 Þgrad div uðnÞðx; tÞþ lðnÞ0 DuðnÞðx; tÞ; ð6Þ

l̂ðnÞuðnÞðx; tÞ ¼ 2lðnÞ0 def uðnÞðx; tÞþ kðnÞ0 div uðnÞðx; tÞ ~I;

T̂nðtÞ ¼
Z t

0

Tðt � sÞnðsÞ dsT̂nðtÞ;
ð7Þ

A dot above a letter means a time derivative; ~rðnÞ is the stress tensor; uðnÞ, pðmÞ, qðmÞ

fðnÞ, bðnÞ1 , bðnÞ2 are the vectors of displacements, the vectors of boundary actions, the
volume forces, and the initial displacements and velocities related to the layer with the
corresponding number; qn is density; n is the unit outward normal to the corresponding

boundary; D is the Laplace operator; ~I is the unit tensor; kðnÞ0 ; lðnÞ0 are Lame elastic
constants. It is assumed that the area of disturbance is bounded, the displacement of the
body as a rigid whole is excluded, and the creep of the material is limited.

3 The Theoretical Results

To equations and relations (1)–(4) the Laplace transform in time is applied. Taking into
account (6), (7) and the initial conditions (5), we obtain the problem for the transforms.
Sufficient conditions under which all the poles of the solution in the transforms
UðnÞðx; sÞ are simple are formulated (s is the complex parameter of the Laplace
transform, UðnÞðx; sÞ is the transforms of variables uðnÞðx; tÞ). The question of the
location of these poles is considered.

The case when the initial conditions are zero and the volume forces are absent:

bðnÞ1 � 0; bðnÞ2 � 0; fðnÞðx; tÞ � 0; ð8Þ

vectors of external influences are represented in the form:

pðmÞðx; tÞ ¼ pðmÞ0 ðxÞuðtÞ; qðmÞðx; tÞ ¼ qðmÞ0 ðxÞwðtÞ ð9Þ

and the hereditary properties of the layers are characterized by a kernel:

TðtÞ � ae�bt; 0\a\b=2; ð10Þ

is considered separately.
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It is shown that if uðtÞ ¼ h ðtÞ, wðtÞ ¼ h ðtÞ, where h ðtÞ is the Heaviside function,
then the poles of the transforms UðnÞðx; sÞ will obviously be simple. They are located to
the left of the imaginary axis (except s ¼ 0) and are easily found. If, under these
conditions, all homogeneous layers of the body are linearly elastic (TðtÞ � 0), then all
the poles of the transforms UðnÞðx; sÞ, being simple, are located on the imaginary axis.

Here, it is assumed that the disturbance propagation region is limited, therefore,
according to the general statement proved in [8], under the assumptions made, the
branch points of the transforms UðnÞðx; sÞ are absent.

This greatly simplifies the construction of the original uðnÞðx; tÞ using the theory of
residues, which, under the assumptions made, are not difficult to find.

We note that, having built a solution for the case uðtÞ ¼ h ðtÞ, wðtÞ ¼ h ðtÞ, it is
possible to obtain solutions using other uðtÞ; wðtÞ as well.

4 An Example of Applying Theoretical Results

Let us consider the process of two-dimensional non-stationarywave propagation in cross-
section of a hollow infinite cylinder R0\R\RN ,�p\h� p (R; h – polar coordinates in
the plane of the cross section). The cylinder consists of N homogeneous coaxial layers.
On the contact surfaces between these layers R ¼ Rm,m ¼ 1; 2; . . .;N � 1 the conditions
of continuity of displacement and stresses vectors are satisfied. We consider the material

of layers to be linearly elastic or viscoelastic with the condition TðnÞ
v � T ðnÞ

s ðtÞ � TðtÞ
when the hereditary kernel has the form (10). Cylinder surface R ¼ R0 is free. Its external
surface R ¼ RN is subjected to the constant along the cylinder element radial load
fRðh; tÞn, fRðh; tÞ ¼ PðtÞH ðhÞ (n is the unit outward normal), starting from time point
t ¼ 0. Here the function H ðhÞ has such a form that the load is self-balanced.

The solution of this problem for the case of elastic layers was constructed in the
work [9]. In this paper, for the case when all layers are elastic, the solution is slightly
modified and made more convenient for numerical implementation. In addition, a
solution is constructed for the case when all the layers are viscoelastic. Fourier series
expansion in h and time Laplace transform with the following inversion were applied.
In the represented work we have carried out research of transient wave processes for an
elastic layered cylinder with different initial data. In particular, cases where the
physicomechanical properties of the layers differ quite significantly are considered. For
example, shear moduli differ by two orders of magnitude.

5 Conclusions

Non-stationary dynamic problems of class (1)–(7) are considered for layered com-
posites in the case when the region of propagation of perturbations is bounded. At the
same time, all the layers are linearly viscoelastic and their hereditary properties are
determined by only one kernel, the same for all the layers. It is shown that in the case of
a two-parametrical exponential kernel (10) the solution of a non-stationary dynamic
problem for viscoelastic layered composite will not be hard to obtain if a solution of the
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corresponding problem for elastic layered composite is already known. In the above
stated example of a two-dimensional non-stationary dynamic problem, the solution
remains correct for the entire period of time changing.
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Abstract. The metal transformable-volume structure (TVS) for aerospace
purposes, which consist of corrugated conical sections, was investigated. The
design scheme of the TVS with a minimum mass should provide stability to the
action of inertial loads in operating conditions in space orbit. The influence of
the main geometric parameters of TVS made of stainless steel on the bearing
capacity are determined. The effect of corrugation of the conical sections on
natural frequency of TVS was considered. The results of calculating estimation
of stress-strain state of the TVS under specified for space orbital station inertial
loads were showed.

Keywords: Transformable-volume structures � Stainless steel � Load-carrying
shells � Foldable shells � Deployable structures � Inflatable structures � Surfaces
of zero total curvature

Light multi-cone TVSs with a large transformation coefficient are promising for use in
space apparatus engineering as load-bearing elements for the distancing of an equip-
ment to several meters from the base orbital station. The advantages of multi-cone TVS
in comparison with other transformable structures of equal mass and length are, first of
all, significantly higher compactness and the ability to compensate for large load values
without loss of stability [1].

1 Features of the Formation of Geometry TVS

In the manufacture of multi-cone TVS the truncated conical section is shaped to a
compact state using the proposed in E.O.Paton Electric Welding Institute the method of
successive mirror image of surface sections Q1 … Qn with respect to equidistant
parallel planes c1 … cn (see Fig. 2a), in which the transformation is close to isometric
and occurs with the minimum possible stretching and compression of the middle
surface of a thin shell. The sequence of transformed sections of the surface Q1…Qn

when using sheet metals takes the form (Fig. 2b), which is explained by restrictions on
the minimum allowable bending radius of the material. This restriction is one of the
main factors determining the fold step b, the number of annular folds n for a given cone
angle a, generatrix length S and the compactness KT of the shell of a multi-cone TVS:

© Springer Nature Switzerland AG 2020
E. Gdoutos and M. Konsta-Gdoutos (Eds.): ICTAEM 2020, STIN 16, pp. 198–203, 2020.
https://doi.org/10.1007/978-3-030-47883-4_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47883-4_37&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47883-4_37&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47883-4_37&amp;domain=pdf
https://doi.org/10.1007/978-3-030-47883-4_37


KT ¼ 2� n ¼ 2� S� sin a
b

; ð1Þ

at the same time, n increases with decreasing thickness of the material of the conical
section, and sections with a smaller thickness at a constant KT have a lower height HK.

2 Determination of the Influence of TVS Geometric
Parameters on the Bearing Capacity

TVS consists of a certain number of tapered sections hermetically welded together, the
geometric parameters of which are determined by the technical requirements for the
design. In the process of investigating the influence of TVS parameters on the bearing
capacity, such parameters as the diameter, number of cones, and also the thickness and
degree of flatness of the corrugation of the metal shell were varied, while its physical
and mechanical characteristics were unchanged. The main characteristic characterizing
the rigidity of the structure was the first form of natural vibrations, which was deter-
mined by numerical calculation methods. The equation for determining the values of
the own oscillations has the form [2]:

�x2 M½ � þ K½ �� �
uf g ¼ 0; ð2Þ

where [M] is the mass matrix, [K] is the stiffness matrix, {u} is the eigenvector.

2.1 Natural Frequencies of Smooth Conical Sections

The investigation was conducted on finite element models TVS 3000 mm long, con-
sisting of a different number of smooth conical shell elements (from 25 to 68), a
diameter of 426 mm to 1000 mm and a wall thickness in the range of 0.15…0.4 mm
Material - AISI321 stainless steel. The model consisted of smooth conical elements,
which eliminates the influence of the degree of corrugation of the surface on the results
of a investigation of the influence of the main geometric parameters of TVS (Fig. 3).

The results obtained (Fig. 4) within the investigated range of TVS parameters
showed that the natural frequency of TVS vibrations increases with increasing wall
thickness (T) and diameter of conical elements (D), as well as reducing their
number (N).

Nevertheless, an increase in the wall thickness and the diameter of the conical
elements to increase the rigidity of the TVS leads to an increase in the mass of the shell,
the limitation of which is critically important in the design of aerospace structures. In
addition, an increase in thickness leads to a sharp increase in the force of forming and
internal pressure for subsequent disclosure, i.e. to increase the complexity, the required
reliability and weight and size characteristics of auxiliary technological equipment.

According to results Fig. 4c, we can conclude that the number of conjugation
sections of conical sections (especially, smaller diameter) that have the smallest relative
rigidity and in which the strains during the oscillations are maximal contributes to the
change in the natural frequency of vibrations of the TVS. Thus, one of the solutions to
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increase the frequency can be a change in the possible limits of the geometric
parameters of the conical sections with their constant thickness, in particular, a slight
decrease in the taper angle and an increase in the height of the section. The limits for
decreasing the angle a require experimental confirmation, since a concomitant increase
in the crease depth a (see Fig. 4) can significantly worsen the quality of the TVS
disclosure.

2.2 Natural Frequencies of Corrugated Conical Elements

After the TVS is disclosure by internal excess pressure, the conical sections acquire
concentric annular features corresponding to the vertices of the folds in which the front
surfaces of the metal shell undergo plastic deformation. The initial generatrix of a
smooth conical shell after folding and subsequent disclosure has a wave-like profile,
which can be approximately described by a sinusoidal function. Each of the profiles is
described by a function of the form

y ¼ c� sin px� tð Þ; ð3Þ

where c = 1..2, p = 0.25 and t = 1.57. The degree of corrugation of the TVS surface is
determined primarily by the parameter c, the amplitude of the sinusoidal shape of the
corrugation. The surface flatness increases with decreasing parameter c.

To take into account the influence of the degree of corrugation of the TVS surface
on the results of the investigation, FE models consisting of conical elements whose
surface had a wavy profile were used (Fig. 1a). The results of numerical solutions
(Fig. 5) have shown a significant decrease in the natural frequency (f = 2,8…5,1 Hz)
of oscillations of a TVS with a wave-like profile compared with a flat design
(f = 7,8 Hz). According to Fig. 5b, with an increase in the depth of the corrugation, a
decrease in the frequency of natural vibrations is observed. This is due to an increase in
the mass of the structure and a decrease in its stiffness.

Reduction the degree of corrugation can reduce the mass of TVS, but requires more
internal pressure to disclosure of structure. Thus, a rational way to optimizing the TVS
design scheme is to reduce the number of conical sections while reducing their taper in
the approaching a more rigid cylindrical structure.

Fig. 1. The geometric scheme of TVS in the folded (a) decomposed (b) state.
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2.3 TVS Stress Strain State Determination

According to [3], one of the main loads acting on equipment installed inside and
outside the ISS modules is inertial loads, which are specified in the form of angular and
linear accelerations: aX = 12 m/s2, aY = 12 m/s2, aZ = 9 m/s2, eX = 1.4 rad/s2, eY =
1.4 rad/s2, eZ = 0.4 rad/s2, where the Z axis corresponds to the axial direction of the
structure, and the X and Y axes correspond to orthogonal radial directions. [4].
Additionally, as a payload for one of the design cases, a load of 3 kg was secured at the
top of the TVS.

As a criterion for the strength of TVS, the condition

r0:2 � reqv ð4Þ

where r0.2 = 205 MPa is the yield strength of the material; reqv – equivalent stresses.
The results of calculating the stress-strain state of the TVS (f = 5,1 Hz) under

specified inertial loads showed that the maximum equivalent stresses do not exceed
148 MPa, stress concentrators are located in the area of welded joints at the junction of
small diameters and adjacent corrugated folds with a predominance of axial tensile
stresses. For the loading with 3 kg payload rather substantially higher equivalent
stresses up to 200 MPa and maximum displacement 27 mm (Fig. 6) were obtained.

Besides the optimization of geometric parameters the bearing capacity of TVS
would be increased by the introduction of additional structural elements (stiffeners).

Fig. 2. Theoretical scheme of transformation of the middle surface of a truncated conical shell
(a), a sequence of transformed sections of the surface Q1 … Qn when using sheet metals (b)

Fig. 3. TVS geometric model for numerical analysis
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Fig. 4. The dependence of the natural frequencies of vibration of the TVS (L = 3000 mm) on
the thickness (a) of the structural material, the diameter of the conical section (b), the number of
cones (c), the elastic modulus of the material (d)

Fig. 5. Natural frequency of TVS: corrugated and flat surface depending on the thickness of the
material (a), corrugated surface depending on the depth of the corrugation (b)
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3 Conclusions

• an increase in the bearing capacity of TVS due to an increase in diameter and wall
thickness is advisable but within the mass-dimension requirements of the structure;

• the approximation of TVS to a cylindrical shape by reducing the number of conical
elements is an effective way to increase the load-bearing capacity of the structure,
but it has strict technological limitations in the manufacturing;

• the corrugation of a conical surface greatly reduces rigidity of TVS, thus the load-
bearing capacity of the structure can be significantly increased by reduction the
degree of corrugation of the conical sections.
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Abstract. Two mixed non-axisymmetric problems on an absolutely rigid cir-
cular interphase inclusion in a piecewise-homogeneous trans-versal-isotropic
space are considered. One face of inclusion is in conditions of smooth contact,
and on the other, conditions of full adhesion to the medium are realized or there
is no contact with the medium. Using exact solutions to these problems, the
influence of the boundary conditions on the stress concentration in the neigh-
borhood of the inclusion is analyzed. In particular, it has been established that
under mixed conditions the stresses have a power-law singularity, the indices of
which depend on the elastic constant transversally isotropic half-spaces. In the
case of detachment, the power-law singularity is amplified by oscillatory
multiplier.

Keywords: Interphase circular inclusion � Singular integral equations �
Piecewise-homogeneous transversely isotropic space

1 Formulation of the Problem

Let an absolutely rigid interfacial inclusion occupying a circular region X ¼
f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� ag; in the plane z ¼ 0 of connection of two different transversally iso-

tropic half-spaces. An arbitrary load is applied to the inclusion, the action of which
leads to the resultant force P ¼ ðP1;P2;P3Þ and the main moment M ¼ ðM1;M2;M3Þ.
The positions of the inclusion faces will be described by the functions

f�6 ¼ f06 þ#�
0 ðx; yÞ; f�k ¼ f0k ; k ¼ 4; 5; ðx; yÞ 2 X

f04 ¼ d1 � u3x3; f
0
5 ¼ d2 þu3x1; f

0
6 ¼ d3 þu2x2 þu1x2;

fn�k g8k¼1 ¼ fr3ðx; y;�0Þ; r4ðx; y;�0Þ; r5ðx; y;�0Þ; u1ðx; y;�0Þ;
u2ðx1; x2;�0Þ; u3ðx1; x2;�0Þg;

r ¼ frkg6k¼1 ¼ frx;ry; rz; syz; sxz; sxyg; u ¼ fukg3k¼1 ¼ fu; v;wg;

ð1Þ
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#�
0 ðx; yÞ functions, that describe the inclusion form, respectively, when z ¼ �0;

dk;uk; k ¼ 1; 2; 3� translational displacements and turning angles of the inclusion
around the corresponding axes.

The mixed conditions for the interaction of the inclusion with the medium (task A)
is considered: the upper face is linked to the upper half-space z ¼ þ 0, the lower side is
in smooth contact with another half-space z ¼ �0. The following functions will be
known in the area:

v�6 ðx; yÞ ¼ #�ðx; yÞþ ð1� 1Þf06; #� ¼ #þ
0 � #�

0 ;

nþ
4 ðx; yÞ ¼ f04; n

þ
5 ðx; yÞ ¼ f05; n

�
2 ðx; yÞ ¼ n�3 ðx; yÞ ¼ 0; ðx; yÞ 2 X

v�k ¼ hfkðx; yÞi� ¼ fþk ðx; yÞ � f�k ðx; yÞ; k ¼ 1; 8; ðx; yÞ 2 X

ð2Þ

The case of a delaminated inclusion is also considered (task B): one inclusion face
is linked to the upper half-space z ¼ þ 0, and there is no inclusion contact with the
lower half-space z ¼ �0. The following functions will be known in this area:

nþ
6 ðx; yÞ ¼ #þ

0 ðx; yÞþ f06; n
þ
4 ðx; yÞ ¼ f04; n

þ
5 ðx; yÞ ¼ f05

n�j ðx; yÞ ¼ f�4�jðx; yÞ; j ¼ 1; 2; 3; ðx; yÞ 2 X;
ð3Þ

were f�j ðx; yÞ� load applied to the lower half-space z ¼ �0.
Using the approach described in [1–8], both problems are reduced to systems of

two-dimensional singular integral equations. For task A, relatively unknown

h1; s ¼ h3 þ ih2; u ¼ h4 þ ih5; fhkðx; yÞg6k¼1 ¼ fv�1 ; nþ
2 ; nþ

3 ; nþ
4 ; nþ

5 g ð4Þ

this system has the form

ðqþ
22 � 2Þsþ 2q21DK h1½ � þ q�22DK0 �s½ � þ qþ

23D�DK u½ � þ q�23D
2K �u½ � ¼ g1;

ðqþ
22 � 2Þ�sþ 2q21 �DK h1½ � þ q�22 �DK0 s½ � þ qþ

23
�DDK �u½ � þ q�23 �D

2K �u½ � ¼ �g1;

ðqþ
33 þ 2Þu� 2q31 �K0 h1½ � þ qþ

32K s½ � þ q�32DK #�s½ � � q�33DK0 �u½ � ¼ g2;

ðqþ
33 þ 2Þu� 2q31 �K0 h1½ � þ qþ

32K s½ � þ q�32DK x�s½ � � q�33DK0 �u½ � ¼ g2;

ð5Þ

were

K v�j
h i

¼ 1
2p

ZZ
X

v�j t; sð Þ
r0

dtds; K0 v�j
h i

¼ 1
2p

ZZ
X

v�j t; sð Þ
#

dtds:

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� tÞ2 þðy� sÞ2

q
; # ¼ x� tð Þþ i y� sð Þ:
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For the task B, relatively unknown functions

h1; s ¼ h3 þ ih2; u ¼ h4 þ ih5; h6; fhkðx; yÞgk¼1;6 ¼ fv�k ðx; yÞgk¼1;6 ð6Þ

the task is reduced to a system of six two-dimensional SIE:

ðq11 � 1Þh1 þ q13
2

ðD �uþ �DuÞ � q12
2

ð�DK s½ � þDK �s½ �Þ � q14D �DK h6½ � ¼ h�1;

ðq
þ
22

2
� 1Þs� q24 D h6 þ q21DK h1½ � þ q�22

2
DK0 �s½ � � qþ

23

2
D �DK u½ � � q�23

2
D2 K �u½ � ¼ s�;

ðq
þ
22

2
� 1Þ�s� q24D h6 þ q21 �DK h1½ � þ q�22

2
�DK0 �s½ � � qþ

23

2
�DDK �u½ � � q�23

2
�D2K u½ � ¼ �s�;

ðq
þ
33

2
� 1Þu� q31 �K0 h1½ � þ qþ

32

2
K s½ � þ q�32

2
DK #�s½ � þ q�33

2
DK0 �u½ � þ q34DK h6½ � ¼ u�;

ðq
þ
33

2
� 1Þu� q31 �K0 h1½ � þ qþ

32

2
K s½ � þ q�32

2
DK #�s½ � þ q�33

2
DK0 �u½ � þ q34DK h6½ � ¼ u�;

ð7Þ

For determine of unknown functions dx; dy; d7;ux;uy;uz are use force and moment
equilibrium equations

ZZ
X

vkdxdy ¼ P4�k; k ¼ 1; 2; 3;
ZZ
X

x

y

 !
v1dxdy ¼

M2

M1

 !
;

ZZ
X

ðxv2 � yv3Þdxdy ¼ M3:

ð8Þ

2 The Solution of the SIE

Following the works [1–11], after the transition to polar coordinates ðq;u; zÞ, the
solution of problems is constructed in the form

v�j q;uð Þ ¼
X1
n¼�1

Vj;�
n qð Þeinu;Vj;�

n qð Þ ¼ 1
2p

Zp

�p

v�j q;uð Þe�inudu; j ¼ 1; 3; 5;

v1ðr;uÞ ¼ h1ðq cos u; q sin uÞ; v2ðr;uÞ ¼ e�iusðq cos u;q sin uÞ;
v3ðr;uÞ ¼ e�iuuðq cos u; q sinuÞ; v4ðr;uÞ ¼ h6ðq cos u; q sin uÞ:

ð9Þ

Regarding functions Vj;�
n qð Þ, we obtain systems of integral equations with Weber-

Sonin kernels, The solution of which [1–11] made it possible to obtain explicit
asymptotic representations for stresses, for the task A:
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rzjz¼0’ k11ðq� aÞ�1
2�a0 þ k12ðq� aÞ�1

2 þ k13ðq� aÞ�1
2þ a0 ; q ! aþ 0;

sz q
��
z¼0’ k21ðq� aÞ�a0�1

2 þ k22ðq� aÞ�1
2 þ k23ðq� aÞa0�1

2þ ;

szu
��
z¼0’ k31ðq� aÞ�~a0�1

2 þ k32ðq� aÞ�1
2 þ k33ðq� aÞ~a0�1

2:

ð10Þ

For the task B:

rz
sz q

 !�����
z¼0

’ 1ffiffiffiffiffiffiffi
q�a

p
P
�
ðq� aÞ�a0

k�11
k�21

 !
cosðb0 ln q�a

2a Þþ
k�12
k�22

 !
sinðb0 ln q�a

2a Þ
" #

þ k10
k20

 !( )

szu
��
z¼0’ 1ffiffiffiffiffiffiffi

q�a
p k31ðq� aÞ�~a0 þ k33ðq� aÞ~a0 þ k32

n o
:

ð11Þ

The expressions for translational displacements for task A have the form

dz ¼ cz
P3

a
;uz ¼ sz

M3

a3
; dx þ idy ¼ cx

P1 þ iP2

a
þ cy

M2 þ iM1

a2
;

uy þ iux ¼ sx
P1 þ iP2

a2
þ sy

M2 þ iM1

a3

ð12Þ

For task B expressions take place.

dx
dy

� �
¼ cxy

a

P1

P2

� �
þ c0xya

P0
1

P0
2

 !
þ cmxy

a2
M2

M1

 !
; dz ¼ cz

P3

a
� c0z aP

0
3;

ux

uy

 !
¼ smxy

a

M1

M2

� �
� sxy

a2
P2

P1

 !
� s0xy

P0
1

P0
2

 !
; uz ¼ sz

M3

a3
:

ð13Þ

Tables 1 (task A) and 2 (task B) are given the values of bielastic constants a0 and
~a0 for some combinations of materials and opposite combinations: Ceramics A
(BaTiO3) (material m1), Ceramics B (BaTiO3+5%CaTiO3) (material m2), Yttrium
(material m3), Magnesium (material m4), Beryl (material m5), Cobalt (material m6).
From tables it is visible that the replacement of half-spaces significantly affects the
behavior of stresses in the neighborhood of the inclusion. This effect is especially
noticeable if the elastic characteristics of half-spaces are significantly different and less
noticeable in the opposite case.

So, the asymptotic representations for the stresses in the neighborhood of the
inclusion have three terms and depend on the bielastic constants a0 and ~a0 satisfying
the conditions 0\a0\1=2; 0\~a0\1=2: For a homogeneous space a0 ¼ ~a0 ¼ 1=4;
b ¼ 0: The presence of delamination, which leads to the appearance of oscillations at
the neighborhood of the inclusion, q ! a, has a significant effect on the concentration
of stresses.
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Abstract. A general approach to the analysis of thermoelastic response of
solids exhibiting spatial or thermal variation in their material properties is
addressed in this study. The approach is based on the idea of the direct inte-
gration method, which allows for the construction of analytical solutions to the
relevant thermoelasticity problems in explicit functional form satisfying the
thermal and force boundary conditions on the entire surface of a solid.

Keywords: Nonhomogeneous solids � Thermoelasticity � Explicit solutions

1 Introduction

Construction and improvement of structural elements of nowadays technique along
with the development and implementation of new materials with advanced properties
necessitate the fundamental analysis of heat- and mass-transfer along with the stress-
strain state in multi-phase materials under the simultaneous action of different physical
fields with account for wide ranges of the operating and constructional features
(e.g., the material anisotropy and non homogeneity, the distributions of fibers and
capillaries, thermo sensitivity of the phase components, stratification, etc.), as well as
the interaction of the structural elements of different geometry. The exhaustive analysis
of the impact caused by mentioned factors on the thermal and mechanical behavior of
the structure members allows for controlling the technological processes for composite
materials in order to achieve the required operational performance of the objective
work pieces. This is vital, in particular, for the development of technologies involved
into the fabrication of functionally-graded materials (FGM), whose phase-property
profiles can be controlled on the design stage so that the composed materials can have
predicted thermal conductivity, deformability and durability under extreme operation
conditions. This feature makes FGM to be a perfect choice for various implementations
when designing elements of electronic and space techniques, hypersonic aviation,
protective systems of nuclear and chemical energetic, technical and engineering
hardware of wide-range application. The foresaid makes it clear that the problem on the
establishment of by-the-target-values optimal criteria for the implementation of FGM in
view of achieving required regimes of the operational performance of the nowadays
machinery, devices, and structures becomes extremely important.
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This paper briefly introduces a general approach developed for the thermoelastic
analysis of nonhomogeneous and thermosensitive (FGM) solids with arbitrary
dependence of the material properties on the spatial coordinates or non-uniform dis-
tribution of the transient temperature. The approach is based on implementation of the
direct integration method developed for the solution of governing equations of the
relevant thermoelasticity problems [1], which is adopted for the case of nonhomoge-
neous solids with concern to the establishing the fundamental relationships between the
stress-tensor, strain-tensor, and displacement-vector components, as well as the integral
equilibrium and compatibility conditions. In the final count, this method implies the
reduction of the original problems to solution of second-kind integral equations with
corresponding boundary and integral conditions [2].

2 Analysis of Thermal Stresses in Nonhomogeneous Solids

2.1 The Idea of the Method

The algorithm of the direct integration method, whose idea was originated from the
solution of specific optimization problems [3], implies the following principal stages [1]:

• Select one or several of the stress-tensor components (or their combinations, e.g.,
the total stress, the difference of normal stresses, etc.) to be the key functions;

• Basing on integration of the equilibrium equations, derive the relations expressing
the stress-tensor components through the key functions;

• By making use of these relations and the original boundary conditions, derive local
boundary conditions and integral equilibrium conditions for the key functions;

• By making use of the compatibility equations in terms of stresses along with the
relations obtained in the second stage, derive the governing equations for the key
functions;

• Using the derived integral and boundary conditions for the key stresses, calculate
the key stresses from the governing equations;

• Finally, calculate all the stresses from the relations obtained in the second stage.

In order to illustrate the ability of this method, consider its application to solving
one-, two-, and three-dimensional problems of thermoelasticity for a radially-non
homogeneous cylinder.

Consider a long cylinder C related to the dimensionless cylindrical-polar coordinate
system ðr; h; zÞ with inner and outer radii ri and ro ¼ 1, respectively. If ri ¼ 0, then the
cylinder can be regarded as a solid one. Let the material properties of the cylinder be
arbitrary functions of the radial coordinate r. The inner and outer surfaces of the
cylinder are exposed to steady-state thermal and force loadings.

2.2 A One-Dimensional Problem

First, assume the applied loadings to be uniform with respect to the angular and axial
coordinates h and z. In this case, the elastic equilibrium of the cylinder is governed by
the following equations
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d
dr

ðr2rrrÞ ¼ rr; r
dehh
dr

¼ err � ehh ð1Þ

where the total stress r is given by the formula

r ¼ rrr þrhh ð2Þ

and the normal stress-tensor, rrr;rhh, and strain-tensor, err; ehh, components are related
through the following constitutive equations

Eerr ¼ ð1� m2Þrrr � mð1þ mÞrhh þ að1þ mÞET ;
Eehh ¼ ð1� m2Þrhh � mð1þ mÞrrr þ að1þ mÞET : ð3Þ

Here, E ¼ EðrÞ is the Young modulus, m ¼ mðrÞ is the Poisson ratio, a ¼ aðrÞ is the
linear thermal expansion coefficient, and T ¼ TðrÞ is the temperature field in the
cylinder C due to the applied thermal loadings on the inner and outer lateral surfaces.

The Eqs. (1)–(3) are to be solved under the following boundary conditions

rrrðriÞ ¼ �pi; rrrð1Þ ¼ �p1 ð4Þ

for the radial stresses.
In order to solve the boundary value problem (1)–(4), we select the total stress r to

be the key function and, by making use of Eqs. (1)1 and (2) in view of the boundary
conditions (4), express the normal stresses as

rrrðrÞ ¼ �pi
ri
r

� �2
þ 1

r2

Zr

ri

grðgÞdg; rhhðrÞ ¼ rðrÞþ pi
ri
r

� �2
� 1
r2

Zr

ri

grðgÞdg:

ð5Þ

The first formula of (5) along with the second condition (4) yield

Z1

ri

rrðrÞdr ¼ pir
2
i � p1: ð6Þ

Putting Eqs. (2) and (3) into Eq. (1)2 yields the compatibility equation

d
dr

1� mðrÞ
GðrÞ rðrÞþ 2aðrÞEðrÞTðrÞð Þ

� �
¼ rrr

d
dr

1
GðqÞ

� �
; ð7Þ

where 2GðrÞ ¼ EðrÞ=ð1þ mðrÞÞ. In view of formula (5)1, Eq. (7) can be given as
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rðrÞ ¼ f ðrÞþ
Zr

ri

rðnÞKðr; nÞdn; ð8Þ

where

f ðrÞ ¼ 2AGðrÞ�aðrÞEðrÞTðrÞ
1�mðrÞ � pir2i

GðrÞ
1�mðrÞ

Rr
ri

1
g2

d
dg

1
GðgÞ

� �
dg;

Kðr; nÞ ¼ nGðrÞ
1�mðrÞ

Rr
n

1
g2

d
dg

1
GðgÞ

� �
dg;

and A is a constant of integration, which can be determined from condition (6).
Equation (8) can be solved by making use of an appropriate analytical, semi-

analytical or numerical method [4] in order to determine the total stress r. After the key
function is found, the remaining stress-tensor components can be computed by means
of the formulae (5).

2.3 A Two-Dimensional Problem

Assume the external loadings of the cylinder C to be irrespective of the axial coordinate
z. In this case, we arrive at the state of plane strain, which implies the elastic equi-
librium to be governed by the following set of equations

1
r
@
@r r2rrrð Þþ @rrh

@h ¼ r; 1
r
@
@r r2rrhð Þþ @rhh

@h ¼ 0;
@2ðrer hÞ
@r@h ¼ @2err

@h2
þ @

@r r2 @ehh
@r

� �� r @er
@r

ð9Þ

under the constitutive equations

Eerr ¼ rrr � mðrhh þrzzÞþ aET ; Eehh ¼ rhh � mðrrr þrzzÞþ aET ;
Eezz ¼ rzz � mðrhh þrrrÞþ aET ; Gerh ¼ rrh:

ð10Þ

Here, the total stress is given by formula (2). The boundary conditions are imposed
in the form

rrrðri; hÞ ¼ �pi; rrrð1; hÞ ¼ �p1; rrhðri; hÞ ¼ qi; rrhð1; hÞ ¼ q1: ð11Þ

In order to solve the problem (9)–(11), we represent Eqs. (9)1 and (9)2, in view of
formula (2), in the form

Drrr ¼ @ðr2rÞ
@r

þ r
@2r

@h2
; Drhh ¼ r

@2ðr2rÞ
@r2

; Drrh ¼ �r
@2ðrrÞ
@r@h

; ð12Þ

and Eq. (9)3 as
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D
1� mðrÞ
GðrÞ rþ 2aðrÞð1þ mðrÞÞT

� �
¼ rrr

d2

dr2
1

GðrÞ
� �

þ rhh

r
d
dr

1
GðrÞ

� �
; ð13Þ

where D ¼ @
@r r @

@r r
2

� �þ r @2

@h2
and D ¼ 1

r
@
@r r @

@r

� �þ 1
r2

@2

@h2
.

By determining the normal stresses from Eqs. (12)1,2 and putting the results into
Eq. (13), we can arrive at an integral equation similar to Eq. (8), which can be solved
in the same manner [1].

2.4 An Axisymmetric Problem

Assume the external loadings to be irrespective of the angular coordinate h that refers
to the case of axial symmetry. The problem is governed by the equilibrium and
compatibility equations

@ðrrrrÞ
@r þ r @rrz

@z ¼ rhh;
@
@r rrrzð Þþ r @rzz

@z ¼ 0;
r@ehh
@r ¼ err � ehh;

r@2ehh
@z2 � @erz

@z þ @ezz
@r ¼ 0

ð14Þ

under the constitutive ones given by Eq. (10). For the simplicity sake impose ri ¼ 0
and the thermal loading to be absent. The force loadings are represented by the
conditions

rrrð1; zÞ ¼ �pðzÞ; rrzð1; zÞ ¼ qðzÞ: ð15Þ

The total stress in this case is to given by the formula

r ¼ rrr þrhh þrzz: ð16Þ

Making use of Eqs. (10) and (16) allows for representing Eqs. (14)3,4 in terms of
stresses as

r @
@r

rhh�mðrÞ rrr þrzzð Þ
EðrÞ

� �
þ rhh�rrrr

2GðrÞ ¼ 0;

r @2

@z2
rhh�mðrÞ rrr þrzzð Þ

EðrÞ
� �

� 1
GðrÞ

@rrz
@z þ @

@r
rzz�mðrÞ rrr þrhhð Þ

EðrÞ
� �

¼ 0:
ð17Þ

Having applied the integral Fourier transform with respect to coordinate z to
Eqs. (14)–(17), expressing the shearing stress from Eqs. (14)1,2 and putting them into
Eqs. (17)1,2, the latter ones can be given, after some algebra, as

�rrzðrÞ ¼ AI1ðsrÞþ
Rr
0

K11ðr; nÞ�rrzðnÞþK12ðr; nÞ�rðnÞð Þdn;

�rðrÞ ¼ B EðrÞI0ðsrÞ
1�mðrÞ þ Rr

0
K21ðr; nÞ�rrzðnÞþK22ðr; nÞ�rðnÞð Þdn;

ð18Þ

where the overline denotes a function in the Fourier mapping domain, A and B are
constants of integration, which can be determined from the conditions (15), and
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K11ðr; nÞ ¼ d
dn nv11ðr; nÞ d

dn ln 1
GðnÞ

� �� �� �
þ s2n2

Rr
n

v11ðr;gÞ
g

d
dg ln 1

GðgÞ
� �� �

dg;

K12ðr; nÞ ¼ 2is
EðnÞ

d
dn nGðnÞv11ðr; nÞð Þþ isn

Rr
n

v11ðr;gÞ
g

d
dg ln 1

GðgÞ
� �� �

dg;

K22ðr; nÞ ¼ s nEðrÞ
1�mðrÞ

R q
n

v01ðr;gÞ
g

d
dg

1
2GðgÞ

� �
dg;

K21ðr; nÞ ¼ iEðrÞ
1�mðrÞ snv00ðr; nÞ � v01ðr; nÞð Þ d

dn
1

2GðnÞ
� ��

� s2n2

2

Rr
n

v01ðr;gÞ
g

d
dg

1
GðgÞ

� �
dg

!
; vnmðr; nÞ ¼ InðsrÞKmðsnÞ � ð�1ÞnþmKnðsrÞImðsnÞ:

Having found the key stresses �rrz and �rðrÞ from Eq. (18), the remaining stresses
can be restored by making use of the relations derived from Eqs. (14)1,2 [5].
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Abstract. In the framework of plane deformation, a piecewise homogeneous
isotropic elastic body with interfacial shear cracks near the corner point of the
interface is considered. The exact solution of the corresponding problem of the
theory of elasticity for a wedge-shaped body is constructed by the Wiener-Hopf
method. Based on the constructed solution, the behavior of stresses near the
corner point is investigated.

Keywords: Interface of media � Corner point � Interfacial shear crack �
Wiener – Hopf method

Modern structures made from composite materials often contain elements in which the
surface between the layers of the composite is not smooth. Such elements are modeled
by a piecewise-homogeneous body with a media interface in the form of the sides of
the angle, the corner point of which can be a stress concentrator and can be dangerous
from the point of view of the origin of interfacial cracks in it. Therefore, studies of the
stress state of piecewise homogeneous bodies weakened by interfacial cracks. born at a
corner point of the interface is a topical problem in the mechanics of a deformable
solid.

Below, using the Wiener – Hopf method, an exact solution of the plane static
problem of the theory of elasticity for a piecewise-homogeneous isotropic elastic body
with small-scale interfacial shear cracks at the corner point of the interface is con-
structed. Based on the constructed solution, the stress state of the body at the corner
point is investigated.

1 Formulation of the Problem

Under the conditions of plane deformation, within the framework of the static sym-
metric problem, we consider a piecewise homogeneous body with a media interface in
the form of sides of the angle, which is composed of isotropic elastic parts with
Young’s moduli E1; E2 (E1 [ E2) and Poisson’s ratios v1; v2 (see Fig. 1).
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In accordance with the general provisions on the behavior of stresses at the corner
points of elastic bodies, the corner point of the interface is a stress concentrator with a
power-law singularity. In this case, the following representations take place for stresses
in the vicinity of the corner point:

srh r; 0ð Þ ¼ Cg1 a; e0; v1; v2ð Þrk0 þ o rk0
� �

;

rh r; 0ð Þ ¼ Cg2 a; e0; v1; v2ð Þrk0 þ o rk0
� �

; e0 ¼ E1

E2

r ! 0ð Þ;

where

g1 ¼ k0g11 sin k0a � g12 sinðk0 þ 2Þa;

g11 ¼ ð1� eÞk20 sin2 2a cosðk0 þ 2Þa� ð1� �1 � 2eÞk0 sin 2a cosðk0 þ 2Þa cos k0ðp� aÞ
� sin½k0ðp� aÞ � 2a� þ ½2� ð1� �2Þe�k0 sin 2a cos k0a cosðk0 þ 2Þa cos k0ðp� aÞ

� sin½k0ðp� aÞ � 2a� þ ð1þ�1Þk0 sin 2a sinðk0 þ 2Þa cos k0ðp� aÞ cos½k0ðp� aÞ � 2a�
þ ð1þ�1Þð1� �2Þ cos k0a sin2ðk0 þ 2Þa cos k0ðp� aÞ cos½k0ðp� aÞ � 2a� � ð1þ�2Þk0

� sin 2a cos k0a sin k0 þ 2ð Þa cos k0 þ 2ð Það1þ�1Þð1� �2Þ � cos k0a sinðk0 þ 2Þa
� cosðk0 þ 2Þa cos k0ðp� aÞ sin½k0ðp� aÞ � 2a�;

g12 ¼ ð1� eÞð1� �2 þ k0Þk20 sin2 2a cos k0a� ð1� �1 � 2eÞk0ð1� �2 þ k0Þ sin 2a cos k0a

� cos k0ðp� aÞ sin½k0ðp� aÞ � 2a� þ ½2� ð1� �2Þe�k0ð1� �2 þ k0Þ sin 2a cos2 k0a

� sinðk0 þ 2Þa� 2½1� �1 � ð1� �2Þe�ð1� �2 þ k0Þ cos2 k0a sinðk0 þ 2Þa cos k0ðp� aÞ
� sin½k0ðp� aÞ � 2a� þ ð1þ�1Þk20 sin 2a sin k0a cos k0ðp� aÞ cos½k0ðp� aÞ � 2a�

þ ð1þ�1Þð1� �2Þk0 sin k0a cos k0a sinðk0 þ 2Þa cos k0ðp� aÞ cos½k0ðp� aÞ � 2a�
� ð1þ�2Þk20 sin 2a sin k0a cos k0a cosðk0 þ 2Þaþð1� �1Þð1þ�2Þk0 sin k0a cos k0a

� cosðk0 þ 2Þa cos k0ðp� aÞ sin½k0ðp� aÞ � 2a�;

Fig. 1. Piece-homogeneous isotropic body
with the interface of media in the form the
sides of angle

Fig. 2. Piece-homogeneous isotropic body
with small-scale interior interfacial shear
cracks
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e ¼ 1þ v2
1þ v1

e0;�1;2 ¼ 3� 4v1;2

The degree of stress singularity is the unique root of the characteristic equation in
the interval (−1; 0):

Dð�k � 1Þ ¼ 0; DðzÞ ¼ d0ðzÞ þ d1ðzÞe þ d2ðzÞe2;

d0ðzÞ ¼ ðsin 2zaþ z sin 2aÞ½�1 sin 2zðp� aÞ þ z sin 2a�;

d1ðzÞ ¼ ð1þ�1Þð1þ�2Þ sin2 zp � ðsin 2zaþ z sin 2aÞ½�1 sin 2zðp� aÞ þ z sin 2a�
� ½sin 2zðp� aÞ � z sin 2a�ð�2 sin 2za � z sin 2aÞ;

d2ðzÞ ¼ ½sin 2zðp� aÞ � z sin 2a�ð�2 sin 2za � z sin 2aÞ

Constant C, which is included in these representations, is determined by the
solution of each specific problem of the theory of elasticity, which is depicted in Fig. 1.
The constant C, which depends on the external load, can be regarded as the stress
intensity factor at the corner point of the interface.

If C\ 0 (it is shown that this condition must be fulfilled) and a 2
ða1; p=2Þ [ ða2; pÞ then, according to the information about the function and the for-
mula given above, rhðr; 0Þ ! �1 when r ! 0; therefore, at the interface between the
media at the corner point, normal stresses are compressive. In this case, due to the high
concentration of stresses at the corner point, it is possible to initiate interfacial shear
cracks with completely contacting faces extending from this point, the length of which
is much less than the sizes of the body (see Fig. 2). The larger the ratio of Young’s
moduli e0 ¼ E1=E2 [ 1, the wider the range of angle a values at which such cracks
should be expected to form.

Taking into account the smallness of the cracks, we arrive at the plane static
symmetric problem of the theory of elasticity for a piecewise homogeneous isotropic
plane with a media interface in the form of sides of an angle containing cuts of finite
length starting from the corner point and located on this boundary (see Fig. 3).

Fig. 3. Piece-homogeneous isotropic plane with interior interfacial shear cracks
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At infinity, the asymptotic behavior of the stress field is given, which is a solution
to a similar problem without cuts (problem K), a homogeneous problem of the theory
of elasticity for a piecewise homogeneous plane with a media interface in the form of
the sides of the angle, which is generated by the unique root k0 of its characteristic
equation on the interval ð�1; 0Þ.

An arbitrary constant C included in the indicated solution is considered given. It
characterizes the intensity of the external field and should be determined from the
solution of the external problem.

Taking into account the symmetry, we write the boundary conditions of the
problem (Fig. 3) as follows:

h ¼ p � a; srh ¼ 0; uh ¼ 0; h ¼ 0; rhh i ¼ srhh i ¼ 0; urh i ¼ 0; ð1Þ

h ¼ 0; r\ l; srh ¼ 0; h ¼ 0; r [ l; urh i ¼ 0; ð2Þ

h ¼ 0; r ! 1; srh ¼ Cg1r
k0 þ o 1=rð Þ ð�a � h � p � aÞ: ð3Þ

The solution of the formulated problem of the theory of elasticity (Fig. 3) is the
sum of the solutions of the following two problems. The first (problem 1) differs from it
in that instead of the first of conditions (2) we have

h ¼ 0; r\ l; srh ¼ �Cg1r
k0 ; ð4Þ

and at infinity, the stresses fade as o 1=rð Þ (in (3) the first term is absent). The second
problem is problem K. Since the solution to the second problem is known, it is enough
to construct a solution to the first. To construct an exact solution to problem 1, we will
use the Wiener – Hopf method [1] in combination with the Mellin integral transform
apparatus [2].

2 Solution of the Wiener – Hopf Equation

Applying the Mellin transforms with the complex parameter p to the equilibrium
equations, the compatibility conditions for the strains, Hooke’s law, conditions (1) and
taking into account the second of conditions (2) and condition (4), we obtain the
Wiener – Hopf functional equation

Uþ pð Þþ s
pþ k0 þ 1

¼ ActgppG pð ÞU� pð Þ ð5Þ

A ¼ 1þ�1ð Þ 1þ�1 þ 1þ�2ð Þe½ �
2 �1 þ 1þ�1�2ð Þeþ�2e2½ � ; G pð Þ ¼ G1 pð Þ

G2 pð Þ

G1 pð Þ ¼ �1 þ 1þ�1�2ð Þeþ�2e
2� �

a0 pð Þþ a1 pð Þe½ � sin pp;
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G2 pð Þ ¼ 1þ�1 þ 1þ�2ð Þe½ � b0 pð Þþ b1 pð Þeþ b2 pð Þe2� �
cos pp;

a0ðpÞ ¼ ð1þ�1Þ½cos 2pðp� aÞ � cos 2a�ðsin 2pa þ p sin 2aÞ;

a1ðpÞ ¼ ð1þ�2Þðcos 2pa� cos 2aÞ½sin 2pðp� aÞ � p sin 2a�;

b0ðpÞ ¼ ðsin 2paþ p sin 2aÞ½�1 sin 2pðp� aÞþ p sin 2a�;

b1ðpÞ ¼ ð1þ�1Þð1þ�2Þ sin2 pp� ðsin 2paþ p sin 2aÞ½�1 sin 2pðp� aÞþ p sin 2a�
� ½sin 2pðp� aÞ � p sin 2a�ð�2 sin 2pa� p sin 2aÞ;

b2ðpÞ ¼ ½sin 2pðp� aÞ � p sin 2a�ð�2 sin 2pa� p sin 2aÞ; s ¼ �Cg1lk0 ;

Uþ ðpÞ¼
R1
1

srhðql;0Þqpdq;U�ðpÞ¼ E1

4 1�v2
1ð Þ
R1
0

@ur
@rh ij r¼ ql

h¼ 0
qpdq

ð�e1 \Rep\ e2Þ:

The factorization of the equation coefficient on the imagine axis carried out by its
splitting into two functions: the function which factorizes using gamma-functions [3]
and the function which factorizes according Gakhov’s formula [4]. The solution of
Eq. (5) is the follows.

Uþ pð Þ ¼ sKþ pð ÞGþ pð Þ
pþ k0 þ 1

1
Kþ �k0 � 1ð ÞGþ �k0 � 1ð Þ�

�
1

Kþ pð ÞGþ
1 pð Þ

�
ðRep\0Þ;

U� pð Þ ¼ spG� pð Þ
AKþ �k0 � 1ð ÞGþ �k0 � 1ð Þ pþ k0 þ 1ð ÞK� pð Þ Rep[ 0ð Þ ð6Þ

exp
1
2pi

Zþ i1

�i1

lnG zð Þ
z� p

dz

2
4

3
5 ¼ Gþ pð Þ; Rep\ 0

G� pð Þ; Re p [ 0

(
; K� pð Þ ¼ C 1 � pð Þ

C 1=2 � pð Þ

3 Investigation of the Behavior of Stresses in the Vicinity
of a Corner Point

Based on the solution (6) of the Wiener – Hopf Eq. (5), expressions for Mellin stress
transformants are obtained. As a result of applying Mellin’s inversion formulas to these
expressions, the stress in problem 1 is found. The following formula holds:

rh r; hð Þ ¼ rk1S hð ÞC1 þ o rk1
� �

; ð7Þ
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C1 ¼ g1Cðk0 þ 3=2ÞCðk1 þ 2ÞGþ
1 ð�k1 � 1Þ

ðk1 � k0ÞsCðk0 þ 2ÞCðk1 þ 3=2ÞGþ
1 ð�k0 � 1ÞCl

k0�k1 ; ð8Þ

s ¼ 1þ�1ð Þ ½cos 2 k1 þ 1ð Þ p� að Þ � cos 2a�½2a cos 2 k1 þ 1ð Þaþ sin 2a�f
� 2 p� að Þ½sin 2 k1 þ 1ð Þaþ k1 þ 1ð Þ sin 2a� sin 2 k1 þ 1ð Þ p� að Þg

þ 1þ�2ð Þ ½2 p� að Þ cos 2 k1 þ 1ð Þ p� að Þ � sin 2a�½cos 2 k1 þ 1ð Þa� cos 2a�f
� 2a½sin 2 k1 þ 1ð Þ p� að Þ � k1 þ 1ð Þ sin 2a� sin 2 k1 þ 1ð Þage;

where SðhÞ is known function.
Formula (7) gives the main term of the expansion of the normal stress rhðr; hÞ in

the asymptotic series for r ! 0 for material 1 (0\h\p� a). Similar representations
take place for rhðr; hÞ when �a\ h\ 0, as well as for srhðr; hÞ and rrðr; hÞ.

In expression (7) k1 is the unique root of the following equation in the interval
ð�1; 0Þ

ð1þ�1Þ cos 2ðkþ 1Þðp� aÞ � cos 2a½ � sin 2ðkþ 1Þaþðkþ 1Þ sin 2a½ �
þ ð1þ�2Þ cos 2ðkþ 1Þa� cos 2a½ � sin 2ðkþ 1Þðp� aÞ � ðkþ 1Þ sin 2a½ �e ¼ 0:

ð8Þ

It follows from (7) that the corner point O is a special point of the boundary-value
problem of the elasticity theory under consideration (Fig. 3). It is a stress concentrator.
As the point of the region approaches the point O, stress goes to infinity. The degree of
singularity of stresses depends on the angle, the ratio of the Young’s modulus, and the
Poisson’s coefficients. This degree r is the unique one in the interval ð�1; 0Þ of roots of
a certain transcendental equation (Eq. (8)).

As the angle a increases from zero to p=2 the stress concentration near the corner
point decreases, and with increasing it from p=2 up to p – increases.

If the angle a tends to zero or to p, the degree of the singularity of stresses tends to
�1. If the angle a tends to p=2, then the degree of the singularity of stresses tends to
zero. If the angle a is acute, then as the ratio of Young’s modulus e0 ¼ E1=E2 [ 1
increases, the stress concentration near the angular point decreases, and if the angle
obtuse – increases.
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Abstract. We study the associated non-stationary longitudinal vibrations of an
infinite electromagnetoelastic rod. It is assumed that the material of the rod is a
homogeneous isotropic conductor. In this case, the initial electromagnetic field,
the Lorentz force, Maxwell’s equations and the generalized Ohm’s law are taken
into account. Assuming that the desired functions depend only on the longitu-
dinal coordinate, using the corresponding relations for the shells, a closed
system of equations of motion is obtained. The desired functions are assumed to
be bounded, and the initial conditions to be zero. The Fourier transform in the
coordinate and the Laplace transform in time, as well as the small parameter
method characterizing the relationship of mechanical and electromagnetic fields,
are used to solve this problem. The solution is presented in integral form with
the cores in the form of Green functions for which images and originals are
constructed. An example of calculation is given.

Keywords: Non-stationary electromagnetoelasticity � Infinite rod �
Longitudinal vibrations � Green’s function � Laplace and Fourier transforms

1 Problem Statement

In a rectangular Cartesian coordinate system Oxyz we consider non-stationary longi-
tudinal movements of a straight-line homogeneous isotropic infinite electromagne-
toelastic rod with an Ox axis under zero initial conditions and the absence of an initial
electric field. The equations of the corresponding process are written in the space of
Laplace transforms [2] in time (additional superscript «L» indicates image; s - corre-
sponding parameter) as a special case of the general equations for a thin shell con-
structed in [1]:
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s2uL ¼ @2uL

@x2
þ f

@wL
3

@x
� acH0 H0u

L þ eL3
� �þ qL�1;

s2wL
3 ¼ g�2 @

2wL
3

@x2
� r�2 f

@uL

@x
þwL

3

� �
þ a

H2
0cs

sþ c
@wL

3

@x
� swL

3

� �
þmL

� ;
ð1Þ

@hL2
@x

¼ g2
e sþ cð ÞeL3 þ csH0u

L
� �

;
@eL3
@x

¼ shL2 þ
cs

sþ c
H0w

L
3 : ð2Þ

where u - longitudinal movement; w3 - compression (deformation in the Oz direction);
e3 и h2 - changes in electric and magnetic fields on the axis of the rod, respectively, in
the directions Oz and Oy; H0 - surface charge, the intensity of the initial magnetic field,
respectively, in the direction; q�1 и m� - external linear load and moment in the Oxy
plane.

Assuming that the required functions are limited.
Hereinafter, the following dimensionless quantities are used (for the same style, the

dimension parameters are indicated by a prime symbol):

x ¼ x0

L
; s ¼ c1t

L
; u ¼ u0

L
; q�1 ¼ q0�1L

kþ 2lð Þh ;

m� ¼ m0
�L

2

kþ 2lð ÞI ; I ¼ h3

12
; r2 ¼ I

L2h
;

g ¼ c1
c2

; f ¼ k
kþ 2l

¼ 1� 2
g2 ; c

2
1 ¼ kþ 2l

q
; c22 ¼ l

q
;

e3 ¼ e03
E�

; h2 ¼ h02lec1
cE�

;H0 ¼ H0
0lec1
cE�

;ge ¼ c1
ce
;

a ¼ eeE2
�

4p kþ 2lð Þ ; c ¼ 4prL
eec1

; c2e ¼ c2

leεe
;

here t - time; L и E� - some characteristic linear dimension and the electric field
intensity; k; l - Lame elastic constants; h - cross section height; q - material density; r,
ee и le - conductivity, dielectric and magnetic permeability coefficients.

2 The Solution in the Image Space

To construct a solution to the system of Eq. (1), (2), we additionally apply the Fourier
transform [2] along the x coordinate (additional superscript «F» indicates image; q -
corresponding parameter):

k21 þ acH2
0s

� �
uFL þ iqfwFL

3 þ acH0e
FL
3 ¼ qFL�1 ;

k22 þ g2r�2� �
sþ cð Þ þ aH2

0g
2cs iqþ sð Þ� �

wFL
3 � iqfg2r�2 sþ cð ÞuFL ¼ g2 sþ cð ÞmL

� ;

g2
ecsH0u

FL þ g2
e sþ cð ÞeFL3 þ iqhFL ¼ 0; csH0w

FL
3 þ iq sþ cð ÞeFL3 þ s2eh

FL ¼ 0;
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Here

k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ s2

p
; k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þg2s2

p
; se ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s sþ cð Þ

p
; Re

ffiffi�p
[ 0

Eliminating functions eFL3 and hFL from this system of equations, we obtain a
system of linear algebraic equations

a11 q; sð ÞuFL þ a12 q; sð ÞwFL
3 ¼ sþ cð Þk2e qFL�1 ;

a21 q; sð ÞuFL þ a22 q; sð ÞwFL
3 ¼ g2 sþ cð ÞmFL

� ;

where

a11 q; sð Þ ¼ a11 q; sð Þ ¼ sþ cð Þ k21k
2
e þ acsH2

0 q2 þg2
es

2
e � cg2

es
� �� �

;

a12 q; sð Þ ¼ iq f sþ cð Þk2e þ ac2H2
0s

� �
; a21 q; sð Þ ¼ �ir�2fg2 sþ cð Þq;

a22 q; sð Þ ¼ sþ cð Þ k22 þg2r�2� �þ ag2H2
0cs iqþ sð Þ:

Its solution is written as follows:

uFL ¼ GFL
uq q; sð ÞqFL�1 þGFL

um q; sð ÞmFL
� ;

wFL
3 ¼ GFL

w3q
q; sð ÞqFL�1 þGFL

w3m
q; sð ÞmFL

� :
ð3Þ

where

GFL
uq q; sð Þ ¼ s þ cð Þk2ea22 q; sð Þ

D q; sð Þ ; GFL
um q; sð Þ ¼ �g2 s þ cð Þa12 q; sð Þ

D q; sð Þ ;

GFL
w3q

q; sð Þ ¼ � s þ cð Þk2e a21 q; sð Þ
D q; sð Þ ; GFL

w3m
q; sð Þ ¼ g2 s þ cð Þa11 q; sð Þ

D q; sð Þ ;

D q; sð Þ ¼ a11 q; sð Þa22 q; sð Þ � a12 q; sð Þa21 q; sð Þ:

Here GFL
uq q; sð Þ, GFL

um q; sð Þ, GFL
w3q

q; sð Þ and GFL
w3m

q; sð Þ - images of influence
functions.

Similarly, we can represent functions eFL3 and hFL2 .

3 Originals of the Influence Functions and Solutions

The originals of the Laplace transform are quite simple, since the images of the
influence functions are rational functions of the parameter s. However, the analytic
inversion of the Fourier transform is impossible. An attempt at numerical inversion
does not lead to a satisfactory result due to the presence of rapidly oscillating functions.

Therefore, a simplified model is used in which the compression of the rod is
neglected. For this, it suffices to set wFL

3 ¼ 0 in (3) and exclude mFL
� . We obtain the

following result
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uFL ¼ CFL
uq q; sð ÞqFL�1 ;CFL

uq q; sð Þ ¼ k2e
k21k

2
e þ acsH2

0 q2 þg2
es

2
� � ; ð4Þ

where CFL
uq q; sð Þ - image of the influence function for a simplified model.

In this case, the above-mentioned difficulties remain. Therefore, we use the method
of a small parameter, for which we take the coupling coefficient of the mechanical and
electromagnetic fields a.

Limiting the linear approximation, we obtain

CFL
uq q; sð Þ ¼ CFL

uq0 q; sð Þ þ CFL
uq1 q; sð Þa;

where

CFL
uq0 q; sð Þ ¼ 1

k21
; CFL

uq1 q; sð Þ ¼ �cH2
0

q2 þg2
es

2
� �

s

k41k
2
e

:

Originals are found using transformation properties and tables [2–4]:

Cuq x; sð Þ ¼ Cuq0 x; sð Þþ aCuq1 x; sð Þ;
Cuq0 x; sð Þ ¼ 1

2
H s� xj jð Þ; Cuq1 x; sð Þ ¼ �cH2

0 fuq x; sð Þþ fuq3 x; sð Þ� �
;

ð5Þ

where

fuq x; sð Þ ¼ 1
4 1� g2

e

� � 2 s� xj jð Þece s� xj jð Þ � 1þg2
e

ce
ece s� xj jð Þ � 1
h i	 


H s� xj jð Þ;

fuq3 x; sð Þ ¼ cesþ
2ge 1� g2

e

� � eces � e�cs=2I0
c
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � g2

ex
2

q� �
H s� ge xj jð Þ; ce ¼ g2

ec
1� g2

e
:

Here Im xð Þ - modified Bessel function of the first kind of order m[5], H sð Þ -
Heaviside function.

Note that the function Cuq0 x; sð Þ corresponds to a purely elastic solution.
The original of movement according to (4) is written as follows (asterisks symbol

indicate convolutions in time and coordinate):

u x; sð Þ ¼ Cuq x; sð Þ � �q�1 x; sð Þ

4 Examples for the Calculation

As an example, consider an aluminum rod, the material of which is characterized by the
following values [6]:
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g ¼ 2; 04; f ¼ 0; 519; ge ¼ 0; 111 � 10�4; c ¼ 5; 06; a ¼ 0; 0806:

It is accepted here E� ¼ 100B=M and L¼ 1 M. We also assume that H0 ¼ 1 and
the rod has a square cross section with the following geometric parameters:

h ¼ 0; 05 M; r2 ¼ h2

12L2
¼ 0; 208 � 10�3

In Fig. 1 and 2 show the dependences of the Cuq1 x; sð Þ function obtained using
(5) on the coordinate and time, respectively, for different values of s and x.

In Fig. 3 and 4 show similar dependences for the influence function Cuq x; sð Þ.

Fig. 1. The dependences of Cuq1 on x Fig. 2. The dependences of Cuq1 on s

Fig. 3. The dependences of Cuq on x Fig. 4. The dependences of Cuq on s
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Note that, as follows from (5), for the material under consideration the fuq3 x; sð Þ
function has the order of a small coefficient ge, then for s[ge xj j the contribution of
this term to the Cuq1 function is insignificant. Taking into account the connectivity of
the process gives a difference from the elastic solution of the order of a, which in these
calculations corresponds to approximately eight percent.

5 Conclusion

An approach to the study of coupled non-stationary longitudinal vibrations of an
electromagnetoelastic rod is proposed. A small correction introduced by taking into
account the connectivity is explained by the parameters of the material under
consideration.

Similarly, the problems of longitudinal vibrations of a semi-infinite and final rod, as
well as transverse vibrations, can be solved.
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Abstract. The non-classical problems of the fracture of materials loaded along
the cracks they contain are analyzed. Two fracture mechanisms are considered,
namely, the fracture of materials with initial (residual) stresses acting in parallel
to the surfaces of cracks location and the fracture of the bodies compressed
along cracks. In the study of such problems, a new combined approach devel-
oped in the framework of the three-dimensional linearized mechanics of
deformable bodies is used. The results of the investigation of two- and three-
dimensional problems for typical configurations of parallel coaxial Mode I and
Mode II cracks are presented. The effect of residual stresses on stress intensity
factors is analyzed for highly elastic materials and composites. The compressive
strength for bodies with interacting cracks located in parallel planes under
compression is calculated using the approach mentioned. The crack length
(diameter), mechanical properties of materials and the mutual position of cracks
were found to influence the critical fracture parameters.

Keywords: Non-classical problems of fracture mechanics � Residual stresses �
Compression along cracks � Parallel coaxial cracks � Highly elastic materials �
Composites

1 Introduction

Initial (or residual, technological) stresses are nearly always present in actual structural
materials and elements as a result of technological processes of their production,
joining, mechanical and thermal surface treatment, exploitation, producing a consid-
erable effect on the fracture processes in bodies with cracks. The non-classical nature of
the problems on fracture of pre-stressed materials, when initial (residual) stresses are
directed in parallel to the surfaces of cracks location, is accounted for by the fact that
the solutions of respective problems of linear elasticity theory show that these initial
stresses are not involved in the expressions for stress intensity factors, J-integral and
crack opening displacements. As a result, the stress components directed along cracks
cannot be taken into consideration in Griffith–Irwin and Cherepanov–Rice classical
models and fracture criteria, critical crack opening displacements or their generaliza-
tions [1]. At the same time, this is contrary to the data of numerous experimental
studies, which reveal the effect of the load component directed along cracks on fracture
parameters under both static and cyclic loads. In [2] an approach based on the three-
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dimensional linearized mechanics of deformable bodies to solving the problems of the
fracture of bodies with residual stresses was proposed and fracture criteria for the
abovementioned problems were formulated.

The non-classical nature of fracture mechanics problems on body compression
along cracks is related to the fact that under uniform compression strictly along the
planes of cracks location in an isotropic and orthotropic material, a uniform stress-
strain state emerges, which leads to the absence of singularities at crack tips in cor-
responding solutions. Hence, it is also impossible to directly apply the classical criteria
of fracture, since in linear fracture mechanics both the stress intensity factors and crack
opening displacements are equal to zero in this situation. In the problem at issue the
most likely mechanism of the onset (start) of the fracture process, by analogy with the
problem on the compression of structural elements along the symmetry axes, is the
local loss of equilibrium stability of the material that surrounds cracks. In [3] it was
proposed to determine the critical compressive loads that correspond to local buckling
of the material near cracks by solving eigenvalue problems in the framework of the
three-dimensional linearized theory of the stability of deformable bodies.

As follows from the above, the common point in investigating these two fracture
mechanics problems on loading along cracks is the employment of related mathe-
matical apparatuses within the three-dimensional linearized mechanics of deformable
bodies. For both classes of problems the linearized equilibrium equations and consti-
tutive stress-strain relations are identical, as are, within corresponding design diagrams,
the considered configurations of bodies and defect location patterns. But a significant
difference in the formulation and solution of problems on the fracture of the bodies
compressed along the arrays of cracks located in parallel planes and problems on the
fracture of materials with residual stresses acting along cracks, is that in the former case
we end up investigating eigenvalue problems with zero boundary conditions on crack
faces, while in the latter we examine boundary problems with non-zero boundary
conditions on crack faces. Taking into account those considerations, a combined
approach to the investigation of the problems on the fracture mechanics of cracked
materials compressed along cracks and the problems on the fracture of bodies with
residual stresses was proposed in [4, 5]. In this approach, critical loading parameters in
the problems on the bodies compressed along the cracks they contain can be deter-
mined via the solution of corresponding non-homogenous problems of the fracture
mechanics of materials with residual stresses, as the values of compressive residual
loads which, when achieved, lead to a dramatic “resonance-like” change in stresses and
displacements near crack contours. This situation can be interpreted relying on the
following physical considerations. Consider a body with initial stresses acting along a
single inner crack. When the initial compressive stresses achieve the values that cor-
respond to the surface instability of the half-space, a neutral equilibrium state emerges
in the vicinity of the crack tip. In this situation, a minor increase in the external load is
sufficient to break the neutral equilibrium and launch the fracture process characterized
with a local loss of material’s stability in the vicinity of the crack.

Below we demonstrate the employment of this combined approach by investigating
2D and 3D problems on the fracture of bodies containing interacting cracks (two
parallel coaxial cracks or a periodic array of coaxial parallel cracks). In the investi-
gation of composite materials it is assumed that crack sizes are significantly larger than
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those of the structural elements of composites (i.e. macrocracks are considered);
besides, we only analyze fracture processes in which the composite does not demon-
strate properties of the piecewise-uniform medium (like fracture on the media interface
etc.). Under such assumptions, we use the continuum composite model with the
abovementioned characteristics of an orthotropic body (in the case of 2D problems) or
a transversely isotropic body (in the case of 3D problems).

2 Problems Formulations

Let us consider 3D problems (the procedure of solving 2D problems is similar). We use
the Cartesian coordinates yj; j ¼ 1; 3 of the initial state induced by the initial stresses S0ij
that are the components of a symmetric stress tensor per unit area of the non-deformed
configuration. Let the initial stresses (or compressive forces) act strictly in the crack
planes y3 ¼ const resulting in the following homogeneous initial stress-strain state:

S033 ¼ 0; S011 ¼ S022 ¼ const 6¼ 0; u0j ¼ k�1
j kj � 1
� �

yj; k1 ¼ k2 6¼ k3; j ¼ 1; 3; ð1Þ

where uoj are the components of the displacement vector in the initial configuration and
kj ¼ const are coefficients of elongations (or contractions) along the coordinate axes
caused by the initial tensile (or compressive) stresses S0ij. We also denote by Q0

ij the
components of the asymmetric stress tensor per unit area in the initial configuration,
and by uj – the associated components of the displacement vector.

General solutions of the linearized equilibrium equations expressed in terms of
harmonic potential functions have the following form in circular cylindrical coordinates
ðr; h; y3Þ derived from the Cartesian coordinates [6]:

ur ¼ @ u1 þu2ð Þ
@r

; u3 ¼ m1ffiffiffiffiffi
n1

p @u1

@z1
þ m2ffiffiffiffiffi

n2
p @u2

@z2
;

Q0
3r ¼ C44

d1ffiffiffiffiffi
n1

p @2u1

@r@z1
þ d2ffiffiffiffiffi

n2
p @2u2

@r@z2

� �
; Q0

33 ¼ C44 d1l1
@2u1

@z21
þ d2l2

@2u2

@z22

� �
;

ð2Þ

where values C44, ni, mi, di and li depend on material’s properties and residual stresses.
Below we formulate boundary conditions on the faces of cracks and on the body
boundary for different types of problems. E.g., in the case of an unbounded body
containing a periodic array of parallel coaxial Mode I penny-shaped cracks of the same
radii a located in parallel planes, y3 ¼ const: r\a; 0� h\2p; y3 ¼ 2hn; n ¼ 0;f
�1;�2; . . .g the boundary conditions take the forms

u3 ¼ 0 ðy3 ¼ 0; r[ aÞ; Q0
33 ¼ �rðrÞ ðy3 ¼ 0; r\aÞ;

Q0
3r ¼ 0; ðy3 ¼ 0; 0� r\1Þ; u3 ¼ 0;Q0

3r ¼ 0; ðy3 ¼ h; 0� r\1Þ: ð3Þ
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(Note that additional loads on the crack faces must be zero in problems on the
fracture of cracked materials compressed along cracks).

3 Fredholm Integral Equations. Stress Intensity Factors

By applying Bessel integral transformation (Fourier transformation for plane problems)
to the harmonic potential functions in (2), we reduce the above problems first to the
systems of dual integral equations and then to Fredholm integral equations of the
second kind, which can be effectively analyzed numerically. E.g., by solving the
problem for the body containing a periodic array of parallel coaxial Mode I cracks we
obtain the resolving system of Fredholm integral equation in dimensionless form

f ðnÞ � 1
p

Z1

0

f ðgÞKðn; gÞdg ¼ 2
p

k1
kC44d1l1

n
Zp=2

0

rðn sin hÞ sin hdh; 0� n; g� 1;

K n; gð Þ ¼ R n� gð Þ � R nþ gð Þ; RðzÞ ¼ 1
k

k1
b1

Rew 1þ iz
2b1

� �
� k2
b2

Rew 1þ iz
2b2

� �� �
:

ð4Þ

In (4) the following notation has been introduced:

n � a�1x, g � a�1t, k1 ¼ l1 n1ð Þ�1=2, k2 ¼ l2 n1ð Þ�1=2, k ¼ k1 � k2 bk ¼ n�1=2
k ha�1,

k ¼ 1; 2.
As is customary in LEFM [1], we define stress intensity factors as the coefficients

of the singularities in the distributions of the stress components in the neighbourhood
of the crack tips. By solving Fredholm integral Eq. (4), we can obtain the represen-
tations of potential functions u1 and u2, and then from (2) we can determine the
distribution of the components of the stress tensor Q0

ijðr; y3Þ. Analyzing the values of
these components in the crack plane beyond the crack, we can derive the following
expressions for the stress intensity factors (SIFs)

KI ¼ �C44d1l1
k
k1

ffiffiffiffiffiffi
pa

p
f ð1Þ;KII ¼ 0; KIII ¼ 0; ð5Þ

where function f should be found by solving (4). It can be seen from (5) that the value
of KI depends on the initial stresses, cracks radii a and distance h between the cracks
because f , as it follows from (4), also depends on these parameters.

In the similar way, we can obtain the expressions of SIFs for the periodic array of
parallel co-axial Mode II and Mode III cracks in an unbounded body as well as for two
parallel coaxial Mode I, Mode II and Mode III cracks in an infinite body [4–6].
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4 Numerical Results

We present the results obtained for the cracks subjected to uniform stresses on their
faces. Consider a highly elastic material with Bartenev–Khazanovich potential [6]. For
3D problems the dependences of the ratio of SIFs KI=K

1
I (where K1

I is the SIF for a
single isolated Mode I crack in an unbounded body) on dimensionless half-distance
between cracks b ¼ h=a are shown in Fig. 1 for the values of initial stress parameters
k1 ¼ 1:2 (tensile initial stresses), k1 ¼ 0:8 (compressive initial stresses), k1 ¼ 1:0 (no
initial stresses). These data show that the interaction of cracks in an unbounded body
with a periodic array of coaxial Mode I cracks (the solid lines), as in the case of two
parallel coaxial Mode I cracks (the dashed lines), leads to a decrease of KI values as
compared to K1

I . On the other hand, when the separation distance between cracks
increases, their mutual influence quickly weakens and the respective values of SIFs
tend to the values obtained for a single isolated crack in an unbounded material. For the
distances between cracks which exceed 8 crack radii, the interaction between them can
be neglected in practical calculations, since in that case the difference between the
values of KI and K1

I is less than 5% for all considered values of parameter k1.

Figure 2 presents results for a laminated two-component composite material with
isotropic layers for the values of the ratio of elastic moduli of the layers Eð1Þ	Eð2Þ ¼ 3,

Poisson’s ratios of the layers mð1Þ ¼ mð2Þ ¼ 0:3, and the volume concentration of the
first layer c1 ¼ 0:3. This figure shows the ratio KII

	
K1
II (where K1

II is the SIF for a
Mode II crack in an unbounded material) versus parameter of initial stress k1 for the
periodic array of parallel coaxial Mode II cracks for different values of b. As can be
seen, the curves in Fig. 2 have vertical asymptotes representing the resonant behavior
of the SIFs when the initial compressive stresses are so high as to cause local buckling
of the material near the cracks. According to the combined approach described in the
Introduction, this phenomenon allows us to determine the critical loads for a material
compressed along a periodic array of parallel coaxial cracks. Figure 3 shows the critical

Fig. 1. Dependence of SIF ratio on dimension-
less distance between cracks for elastic material
with Bartenev–Khazanovich potential

Fig. 2. Dependence of SIF ratio on the
parameter of initial stresses for a laminated
(layered) composite material
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dimensionless compressive stress �r ¼ S011=E (the stress divided by the effective elastic
modulus of the laminated composite) obtained this way versus the ratio of the elastic
moduli of the layers Eð1Þ	Eð2Þ for b ¼ 0:5. The results are presented for the periodic
array of cracks (solid line), as well as for two parallel cracks (dashed line).

For a highly elastic material with Treloar potential [6], Fig. 4 illustrates the effect of
the cracks interaction on the values of relative critical contraction parameter e1 ¼
1� k1 in the 2D problem (the condition of plane strain state is assumed) for an
unbounded body containing a periodic array of parallel coaxial cracks under com-
pression along cracks. It can be seen that at small distances between cracks b their
mutual influence results in a significant reduction of the critical compression parameter
e1. At the same time, with the increased distance between cracks the values of relative
critical contraction parameter e1 tend to e�1 ¼ 0:456, which for Treloar potential cor-
responds to the critical contraction parameter for a single crack in an infinite body.

5 Conclusions

The results obtained allow the following conclusions: (1) for all the problems con-
sidered the stress intensity factors are substantially dependent on the initial (residual)
stresses; (2) the values of the stress intensity factors change abruptly (the “resonance-
like” effect) when the initial contraction ratio k1 tends to the value with which there is a
local loss of stability in the crack vicinity. According to the combined approach used
here this effect enables one to determine critical loading parameters in problems on
bodies compressed along cracks; (3) the geometrical parameters of the problems and
materials’ properties produce a significant effect both on the values of SIFs and on the
critical compression parameters.

Fig. 3. Dependence of the critical dimension-
less compressive stress on the ratio of elastic
moduli of layers for the laminated composite

Fig. 4. Dependence of the relative critical
contraction parameter on dimensionless dis-
tance between cracks for the material with
Treloar potential
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Abstract. On the basis of a modified dc-model of crack, the safe loading of an
orthotropic plate with periodic system of collinear cracks is studied. The plate
material is satisfying the strength condition in general form. The relations for the
determination of major parameters of the crack model (the size of process zones,
stresses in these zones, and the crack-tip opening displacements) are deduced.
The mechanism of fracture of the plate containing a periodic system of collinear
cracks is investigated. The influence of the degree of anisotropy and geometric
parameters of the problem on the formation of the process zones and limiting
state of the elastic orthotropic plate is revealed. The region of safe loading of an
orthotropic viscoelastic plate with cracks is determined. The influence of the
rheological parameters of the material on the region of safe loading is analyzed.

Keywords: Periodic system of collinear cracks � Critical loading � Safe
loading � Orthotropic materials

1 Limiting State of an Orthotropic Plate with Periodic
System of Collinear Cracks

Consider a thin orthotropic plate with periodic system of collinear cracks of length 2l
located along the axis of orthotropy which coincides with the Ox-axis. The centers of
the cracks are located at the points xn ¼ 2nD(xn ¼ 0; �1; �2; . . ., y ¼ 0). The plate is
stretched by a homogeneous load applied at infinity

ry ¼ p[ 0; rx ¼ 0; sxy ¼ 0; z ! 1; z ¼ xþ iyð Þ;

Replace the process zones formed under the action of the load near the crack tips by
additional cuts of length d on the continuations of the cracks whose lips are subjected
to the action of stresses r0x ; r

0
y . Assume that the limiting state of the material in the

process zones is described by a strength criterion

F r1; r2;Cið Þ ¼ 0; ð1Þ

where r1; r2 are the principal stresses and Ci are constants of the material. For the
numerical analysis and conclusions the Mises–Hill condition of strength is used [1].
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In view of the symmetry of the problem, the directions x and y are principal.
Therefore, the stresses r0x ; r

0
y satisfy the condition of strength (1) in the process zone.

These stresses are found from the solution of the system of two Eqs. [1]:

r0x ¼ b r0y � p
� �

; F r0x ; r
0
y ;Ci

� �
¼ 0 ð2Þ

b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
E1=E2

p
; E1;E2 - are the elasticity moduli of the material in directions 1 and 2.

The crack opening displacement d x; l; Lð Þ at a point x from the segments
x� xnj j � L; y ¼ 0 is given by the formula [2]:

d xð Þ ¼ � 2T0r0y l

p
arc sinð~xÞ
arc sin ~l

� � F ~x
~l
; q

� �
þ 2

sin q

arc sin ~l
� �
Zsec q

~x=~l

arc sin t~l
� �

t2 � 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2 cos2 q

p dt

8>><
>>:

9>>=
>>;
;

ð3Þ

where F x; rð Þ ¼ ln
1þ x cos2 rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2 cos2 r

p
sin r

� �
x� 1ð Þ

1� x cos2 rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2 cos2 r

p
sin r

� �
xþ 1ð Þ

;

T0 ¼ 1ffiffiffiffiffiffiffiffiffiffi
E1E2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffi
E1

E2

r
� m12

� �
þ E1

G12

s
; ~x ¼ sin

p x
2D

; ~l ¼ sin
p l
2D

; q ¼ p p
2r0y

;

It is clear that the integral in relation (3) is computed in the finite form as D ! 1,
which corresponds to the case of a single crack [1].

The size of process zone is determined by the ratio [2]

d
l
¼ 2

p
D
l
arc sin

sin~l
cos q

	 

ð4Þ

In accordance with the dc - criterion, a crack starts when d lð Þ ¼ dc. Then, basing on
(3), the field of ultimate loads p� can be defined by [2]

r0y p�ð Þ
~l

arc sin ~l
� �
Z~L=~l

1

F t; q�ð Þ dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2 ~l

� �2q ¼ 2r0y p 1ð Þ
�

� �
ln sec

p p 1ð Þ
�

2r0y p 1ð Þ
�

� � ; ð5Þ

where q� ¼ p p�
2r0y p�ð Þ, p

1ð Þ
� - the limiting load in the case of a plate with a single crack. The

change p 1ð Þ
� from 0 to r02 corresponds to a change in the crack length from infinity to

zero.
It should be noted that the boundary condition of the plane, weakened by the

system of cracks, is not always determined by the fracture criteria of type (5). If the
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external load is such that the condition d ¼ D� l is fulfilled, then the fusion of the
areas for the elimination of neighboring cracks occurs, which can also be considered as
a condition of the boundary state. Taking into account equality (4), this condition will
be written as:

D
l
¼ p

2 arcsin cos q dð Þð Þ ; q dð Þ ¼ p p dð Þ
�

2r0y p dð Þ
�

� � ; ð6Þ

The relation (6) determines the load p dð Þ
� at which the areas of process zones of

neighboring cracks occur. The dependence of this load on the dimensionless distance
between cracks D=l is constructed (Fig. 1). Increasing the degree of anisotropy of the
material reduces the level of the maximum allowable load at which the merge of
process zones occurs, but in general, the effect of the degree of anisotropy on this
process is small.

Thus, the boundary condition of the plate with the periodic system of collinear
cracks is determined by the set of conditions (5) and (6):

p� ¼ min p dð Þ
� ; p�

� �
; ð7Þ

The dependence of the critical load on the dimensionless distance between the cracks
D=l obtained on the basis of the relations (5) and (6) for b ¼ 0:3 was constructed
(Fig. 2). It is obvious that for arbitrary crack lengths and the distance between them,
there is such a “critical” level of load when there is a partial destruction of the entire
intersection along the line of location of the cracks. This “critical” load is higher, the
smaller the length of the cracks.

0 5 10 15 20
0,0
0,1
0,2

0,6

0,7

0,8

0,9

1,0

p/ 02

D/l

Fig. 1. Dependence of the load p dð Þ
� =r02

on the dimensionless distance between
the cracks D=l: solid line - b ¼ 0; 3;
dashed line - b ¼ 0; 5; dash-dotted line -
b ¼ 0; 9

Fig. 2. Dependence of the load p�=r02
on the dimensionless distance between

the cracks D=l: p 1ð Þ
� =r02 = 0,1 (1); 0,5

(2); 0,7 (3); 4 – load when the process
zones are joined
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2 Safe Loading of a Viscoelastic Orthotropic Plate,
Weakened by a Periodic System of Collinear Cracks

Consider a thin orthotropic plate of viscoelastic material, weakened by a periodic
system of collinear cracks, located along one of the orthotropy axes. Assume that the
deformation properties of a material are described by linear relationships up to
destruction. During the destruction of such materials areas of destruction formed at the
tops of cracks, inside which there is a destruction of a less durable binder and a part of
high-strength fittings.

We will replace these zones with additional cuts of length d tð Þ on the continuation
of cracks, on the banks of which there is a uniformly distributed self-equilibrium stress.
Since these stresses are determined on the basis of the condition (1), which is constant
in time, they also do not depend on time and can be determined at the time t ¼ 0 from
the solution of the corresponding problem of the theory of elasticity, that is, the stresses
in the process zones are determined by a system of Eqs. (2).

Thus, it is necessary to investigate the stress-strain state of an orthotropic vis-
coelastic plate with a periodic system of collinear incisions x� xnj j � L tð Þ; y ¼ 0 along
the axis of orthotropy Ox, under the action of a uniformly distributed load independent
of time ry ¼ p[ 0; rx ¼ 0; sxy ¼ 0; xþ iyj j ! 1.

As is known [3, 4], the Volterra principle can be applied to the problem, according
to which the viscoelastic opening of the shore of the crack can be written as:

d x; tð Þ ¼ T�d0 x; tð Þ; ð8Þ

where d0 x; tð Þ - function of power and geometric parameters, T�- the function of
integral operators whose form is determined from the solution of the corresponding
problem of the theory of elasticity. For this problem we have [3]:

T� ¼ 1ffiffiffiffiffiffiffiffiffiffi
E�
1E

�
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffi
E�
1

E�
2

s
� m�12

 !
þ E�

1

G�
12

vuut ; ð9Þ

d0 x; tð Þ ¼ 2r0y l tð Þ
p

~l tð Þ
arc sin ~l tð Þ� �

Z~L=~l tð Þ

~x=~l tð Þ

F s; qð Þ dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2 ~l tð Þ� �2q ð10Þ

It has been experimentally shown that for some orthotropic viscoelastic materials it
is possible to disregard the creep along the orthotropic axes and take into account only
creep at displacement, that is, to put [3]:

E�
1 � E0

1 ¼ const; E�
2 � E0

2 ¼ const; m�12 � m012 ¼ const;
1
G�

12
¼ 1

G0
12

1þ kR� cð Þ½ �;

ð11Þ
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where E0
1 ;E

0
2 ; m

0
12;G

0
12 - instantaneous values of relevant characteristics, R�- resovent

integral operator of the form R�f ¼ Rt
0
R t � sð Þf sð Þds.

Using the method of integral continued fractions, the operator (9) can be repre-
sented as a linear combination of resolvent integral operators [3]:

T� ¼ T0 1þ
XN
i¼1

AiR
� cið Þ

" #
ð12Þ

with the kernel T t � sð Þ ¼PN
i¼1

AiR t � s; cið Þ, R t � s; cið Þ - kernels of operators R� cið Þ.
If the criterion of fracture is to choose a criterion for the critical crack opening, we

obtain the equation for determining the moment of the beginning of the slow crack
development t� (or the duration of the incubation period of the crack development in
the viscoelastic body) if the external load is constant over time in the form [3]:

Zt�
0

T hð Þdh ¼ dc
d l0ð Þ � 1; ð13Þ

where d xð Þ ¼ T0d0 xð Þ - elastic opening of the crack at the point x.
For bodies with limited creep, there are “safe” loads, for which the value d l0; tð Þ

can’t reach the critical value dc, and the development of the crack does not happen. In
the general case, the safe load field is determined from the ratio [3]:

dc
d l; pS; qSð Þ ¼

T1
T0

; T1 ¼ T� � 1jt¼1; ð14Þ

If, as the kernel of an integral operator, we choose the fractional-exponential
function of Yu.M. Rabotnov [3], then from (4) we obtain:

T1 ¼ 1ffiffiffiffiffiffiffiffiffiffi
E0
1E

0
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffi
E0
1

E0
2

s
� m012

 !
þ E0

1

G1
12

vuut

¼ 1ffiffiffiffiffiffiffiffiffiffi
E0
1E

0
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffi
E0
1

E0
2

s
� m012

 !
þ E0

1

G1
12

1þ k
cj j

� �vuut : ð15Þ

where, c – the rheological parameters of the material.
Then, on the basis of (5), (10) and (14), we obtain an equation for determining a

safe load pS:
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r0y pSð Þ
~l

arcsin ~l
� �
Z~L=~l

1

F s; qSð Þ dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2 ~l

� �2q ¼ 2
T0
T1

r0y p 1ð Þ
�

� �
ln sec

p p 1ð Þ
�

2r0y p 1ð Þ
�

� � : ð16Þ

The value p 1ð Þ
� uniquely determines the length of the crack l0 and, consequently,

Eq. (16) determines the safe load pS for a given initial crack length. Instantaneous
fracture of the plate with the system of cracks occurs at a critical load p�, which is

determined by the relation (5). In addition, there is some load p dð Þ
� on which there is an

instantaneous partial destruction of the material on the line of location of the cracks.
This load is determined from the equation:

cos
p pðdÞ�

2r0y pðdÞ�
� � ¼ sin

p l0
2D

: ð17Þ

Thus, the development of a crack in a viscoelastic body will occur only in the
region of load change, which is limited by curves, which are determined by the rela-
tions (5), (16) and (17).

Numerical results are obtained for a material with the following characteristics [3]
E0
1 ¼ 1; 553 � 109Pa, E0

2 ¼ 2; 315 � 109Pa, G0
12 ¼ 0; 3086 � 109Pa, m012 ¼ 0; 08,

a ¼ 0; 85, k ¼ 0; 275 sec1�a, c ¼ �0; 181 sec1�a. Figure 3 show the dependence of
the “safe” load (16) on the dimensionless distance between the cracks D=l for

p 1ð Þ
� =r02 = 0,1 (curves 1); p 1ð Þ

� =r02 = 0,5 (curves 2); 3−p 1ð Þ
� =r02 = 0,7 (curves 3); curve

4 show loading when the process zones are joined; dashed line – critical loading
p�=r02. The dependence of the safe load on the rheological parameters of the material
are shown on Fig. 4 and Fig. 5 for D=l ¼ 3; 0.

Fig. 3. Dependence of the
safe load pS=r02 on the
dimensionless distance
between the cracks D=l

Fig. 4. Dependence of the
safe load pS=r02 on the rhe-
ological parameter c

Fig. 5. Dependence of the
safe load pS=r02 on the rhe-
ological parameter k
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It can be noted that the change in the rheological parameters of the material k and c
significantly affects the area of safe load: the decrease k or increase cj j in other per-
manent characteristics leads to an increase in the level of safe loading. The parameter a
does not affect the level of safe load, since it is not part of the ratio (15). Thus, by
changing the rheological parameters of the material, it is possible to achieve a decrease
in the area of loading, in which the development of cracks occurs.

3 Conclusions

The proposed modification of the Leonov-Panasyuk-Dagdale crack model to the case
of orthotropic materials allows to effectively solve problems of the destruction of
orthotropic bodies with cracks, the material of which satisfies the condition of the
strength of the general form. With this model, the boundary state of the orthotropic
plate, relaxed by the periodic system of collinear cracks, the material of which is elastic
or viscoelastic, is investigated. The mechanism of fracture of the plate with cracks and
the influence on the boundary and safe loading of the properties of the material have
been investigated.
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Abstract. The paper presents boundary element models of anisotropic ther-
moelastic medium containing partially debonded shell-like rigid inclusions,
which possess high rates of heat conduction. Boundary integral equations are
derived, which account for partial debonding of a shell-like inclusion at one of
its faces. Special attention is paid to full debonding of a rigid shell at two faces
simultaneously (bilateral debonding). Obtained equations are implemented in a
fast and accurate boundary element approach.

Keywords: Boundary element method � Anisotropic � Thermoelastic � Stress
intensity factor

1 Introduction

Structural materials, including composite and anisotropic ones, generally contain dif-
ferent natural or artificial inhomogeneities, which influence field distribution and can
even initiate fracture processes. In particular, composite materials consisting of fibre,
ribbon-like or plate-like filament are widely used in modern mechanical and airspace
engineering due to their high performance. However, the non-homogeneous structure
of such materials produces redistribution of mechanical and thermal field. In this case
partial debonding of a filament can cause high stress concentration, which influence
safety and structural integrity. Another example of stress concentrator are anchors in
rock mechanics, which are in general, partially bonded, which significantly influences
stress distribution. Therefore, these raises interest to the problems for solids with
partially debonded inhomogeneities.

The problems on debonding of spatial thin rigid inclusions dates back to Selvadurai
et al. [1], who considered rigid disc inclusion with circular debonded region. Since then
the interest to problems of partially debonded inclusions has only raised. In particular,
recently Shahmohamadi et al. [2] considered a frictionless contact of a rigid disk with
crack faces, Nategh et al. [3] considered bonded contact of a rigid disk with a penny-
shaped crack. Nevertheless, the studies of debonded inclusions are limited to analytic
or semi-analytic methods, which constrains the shape of inclusion and a debonded
region to simple geometries, i.e. planar circular or elliptic domains.
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Therefore, this study is concerned with the development of numerical boundary
element approach, which can hold problems of partially debonded 3D rigid shell-like
inclusions of arbitrary smooth shape. It is natural continuation of recent studies on
cracks [4] and perfectly bonded inclusions [5] in anisotropic thermoelastic medium.

2 Modelling of Partially Debonded Rigid Shell-Like
Inclusions

2.1 Boundary Integral Equations of Anisotropic Thermoelasticity

Consider linear thermoelastic anisotropic solid B in the reference coordinate system
Ox1x2x3, which contains internal smooth opened surface C of field discontinuity.
According to [4, 5] the boundary integral equations of steady-state heat conduction and
thermoelasticity of anisotropic solids are as follows

1
2

X
h x0ð Þ ¼

ZZ
S

H� x; x0ð Þ
X

hn xð ÞdS xð Þ � CPV
ZZ
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H� x; x0ð ÞDh xð ÞdS xð Þ
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ZZZ
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where x0 2 S; S ¼ C[ @B; and
P

h ¼ Dh ¼ h,
P

hn ¼ Dhn ¼ hn,
P

ui ¼ Dui ¼ ui,P
ti ¼ Dti ¼ ti on @B;

P
f ¼ f þ þ f�; Df ¼ f þ � f�; hn ¼ hini;

P
hn ¼ hþ

i

nþ
i þ h�i n

�
i ¼ hþ

i � h�i
� �

nþ
i ; nþ xð Þ ¼ �n� xð Þ are unit outwards normal vectors to

the faces Cþ and C� of the mathematical cut C; ti ¼ rijnj is a stress vector; rij is a
stress tensor; fi is a body force vector; hi is a heat flux; hn ¼ hini; fh is a distributed heat
source density; ui is a displacement vector; h is a temperature change with respect to
the reference temperature. CPV stands for the Cauchy Principal Value of the integral
and HFP stands for the Hadamard Finite Part of the integral. The indices vary from 1 to
3. Here and further the Einstein summation convention is used. A comma at subscript
denotes differentiation with respect to a coordinate indexed after the comma, i.e.
ui;j ¼ @ui

�
@xj. The kernels of Eqs. (1)–(4) are listed in [4, 5].

2.2 Inclusion Model and Boundary Conditions

Integral Eqs. (1)–(4) are derived from the extended Somigliana identity for thermoe-
lastic material [4] and relate given and unknown boundary conditions at the boundary
@B of the solid B; e.g. when the traction vector is given on @B the sought function is
displacement vector and vice versa. Consequent usage of extended Somigliana identity
allow determination of the stress field in the entire solid B. When cracks or shell-like
inclusions are considered, the sought functions are field discontinuities Dh,

P
hn, Dui,P

ti at the surface C. The same functions are convenient to use as sought functions in
the problems of partially debonded inclusions. Therefore, boundary conditions should
be rewritten through Df and

P
f .

Prior to consideration of the boundary conditions at the discontinuity surface C
consider the model of a rigid perfectly conducting non-deformable inclusion, which is
derived in [5]:

hincl xð Þ ¼ h0; �
ZZ
S

hincln xð ÞdS xð Þ � H0 ¼ 0 ð5Þ

uincli xð Þ ¼ u0i þ eijmx
0
j xm;

�
ZZ
S

tincli xð ÞdS xð Þ � P0
i ¼ 0; �

ZZ
S

eijmxjt
incl
m xð ÞdS xð Þ �M0

i ¼ 0; ð6Þ

where h0 is a temperature of the inclusion; H0 is the constant heat (actually heat
generation rate) applied to the inclusion; u0i is a rigid displacement of the inclusion and
x0

j is its rigid rotation about the origin; eijm is the permutation tensor; S is a surface of

the inclusion; P0
i and M0

i are resultants of forces and couples applied to the inclusion,
respectively.
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Now consider the following types of the boundary conditions at the discontinuity
surface:

a. perfect thermal and mechanical contact at Sa � C;
b. partial debonding at Sb � Cþ ;
c. partial debonding at Sc � C�;
d. bilateral debonding at Sd � C.

Also assume that Sa [ Sb [ Sc [ Sd ¼ C and Si \ Sj ¼ 0 for i 6¼ j, i.e. the domains of
different type of boundary conditions do not intersect.

Accounting for inclusion models (5), (6), these boundary conditions can be written
in terms of temperature, heat flux, displacement and traction on the faces Cþ and C� of
the cut as follows,

hþ xð Þ ¼ h� xð Þ ¼ h0; uþ
i xð Þ ¼ u�i xð Þ ¼ u0i þ eijmx

0
j xm; 8x 2 Sa; ð7Þ
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0
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hþ xð Þ ¼ h0; h�n xð Þ ¼ 0; uþ
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0
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hþ
n xð Þ ¼ h�n xð Þ ¼ 0; tþi xð Þ ¼ t�i xð Þ ¼ 0; 8x 2 Sd; ð10Þ

In this case inclusion equilibrium equations do not depend on the type of boundary
conditions and can be written through the sought functions on the cut as
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f þDf
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2

X
f � Df

� �
ð12Þ

boundary conditions (7)–(10) on the cut C can be rewritten through the sought dis-
continuity functions as

1
2

X
h xð Þ ¼ h0; Dh xð Þ ¼ 0;

1
2

X
ui xð Þ ¼ u0i þ eijmx

0
j xm; Dui xð Þ ¼ 0; 8x 2 Sa;

ð13Þ
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Dhn xð Þ ¼
X

hn xð Þ ¼ 0; Dti xð Þ ¼
X

ti xð Þ ¼ 0; 8x 2 Sd ð16Þ

Boundary conditions (13)–(16) are readily substituted into Eqs. (1)–(4) to obtain
the system of boundary integral equations for the sought discontinuity functions Dh,P

hn, Dui,
P

ti at the surface C, which model debonded shell-like inclusion. To reduce
the number of equations one can use only Eqs. (1) and (3) with boundary conditions
(13) (Type a) and Eqs. (2) and (4) with boundary conditions (16) (Type d).

3 Boundary Element Approach

At the first step (preprocessing) of the boundary element solution of derived boundary
integral equations for a particular problem the surface @B of the solid along with the
discontinuity surface C (which model partially debonded inclusion) is meshed with
quadrilateral quadratic discontinuous boundary elements. The local curvilinear coor-
dinate system Ong is associated with each boundary element, moreover, �1� n� 1,
�1� g� 1. The collocation points are placed at nodes n ¼ �2=3; 0; 2=3ð Þ;
g ¼ �2=3; 0; 2=3ð Þ. Therefore, there are 9 collocation points associated with each
boundary element.

Boundary conditions along with unknown boundary and discontinuity functions are
interpolated within the collocation points at each boundary element CN as

bN n; gð Þ ¼
X3
i¼1

X3
j¼1

bi;jN/i nð Þ/j gð Þ; ð17Þ

where b ¼ h;Dh; hn;
P

hn; ui;Dui; ti;
P

tið ÞT, and the discontinuous shape functions
are given as [4]
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2
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2
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; /3 nð Þ ¼ n

9
8
nþ 3

4

� �
ð18Þ

If the side of the boundary element models the inclusion front, which is perfectly
bonded, special shape functions are used for heat flux and traction to capture the square
root singularity arising at its front [5]

246 H. Sulym et al.



/R
i nð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
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 !
: ð19Þ

Constants UR
ij are determined from the system of equations /i nj

� � ¼ dij, where
nj ¼ �2=3; 0; 2=3ð Þ.

Substituting (17) along with appropriate boundary conditions (13)–(16) into the
boundary integral Eqs. (1)–(4) one obtains the system of linear algebraic equations for
unknown nodal values of the boundary and discontinuity functions.

Evaluation of kernels, regular, singular and hypersingular integrals is the same as
in the case of cracks and perfectly bonded inclusions and is discussed in details in
Refs [4, 5].

4 Discussion and Further Studies

Obtained boundary element approach was programmed to object-oriented C ++ code,
which was used in calculation of solids with debonded non-deformable shell-like
inclusions. Verification was made through comparison of the numerical results with
analytic solution of Selvdurai et al. [1]. Good agreement was observed.

Further studies are assumed to be concerned with smooth or frictional contact
conditions on the surfaces of the inclusion, since it is essential to account for these
conditions in the cases of non-planar shapes of inclusions.
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Abstract. The problem of a plane monoharmonic sound wave passage through
a thin composite rectangular plate hinged in the opening of an absolutely stiff
dividing wall has been considered on the basis of two-dimensional in spatial
coordinates motion equations. These equations have been constructed by the
reduction of three-dimensional equations on the basis of the discrete layered
model of a multilayer plate deformation at small displacements and deforma-
tions with account of the internal damping of layers according to the Kelvin–
Voight model. Behavior of acoustic media has been described by the classical
wave equations based on the model of an ideal compressible fluid. The exact
analytical solutions of the formulated problem have been constructed. The
dependence of sound insulation properties and parameters of the stress-strain
state of a composite plate reinforced with carbon fiber textile on the incident
sound wave frequency was studied. It is shown that under high-frequency
acoustic impact, the deformation mechanics of the structures made of fiber
reinforced composite must be described by refined equations of motion as they
have a high degree of accuracy and intensionality since the formation of the
stress-strain state in them is almost three-dimensional with components of the
same order.

Keywords: Multilayer plate � Discrete layered model � Internal friction of the
material � Kelvin–Voigt model � Acoustic medium � Sound wave � Analytical
solution

1 Introduction

The sound waves passage through thin plates, including composite ones, has been
studied in numerous scientific works [1–5 et al.]. However, in these works the simplest
relations of plate theory are used to describe the plate deformation mechanics. As a
rule, these models are based on the introduction of a number of well-known simplifying
hypotheses and the assumption that only the tangential components of the stress tensor
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are formed in the plate during the sound wave passage. In order to further develop the
results obtained earlier [6] and to study the influence of the incident sound wave
frequency on the parameters of a dynamic stress-strain state forming in a plate, we use
the developed earlier [6] discrete layered model to formulate the considered problem of
sound waves passage through multilayer thin plates. This model makes it possible to
obtain solutions that are practically approaching a solution based on the equations of
the three-dimensional elasticity theory.

2 Statement of the Problem and the Construction of its
Solution

Let us consider a multilayer rectangular plate having dimensions a, b and consisting of
M ¼ N � 1 layers of thickness h k½ � (here k ¼ 1;M is the layer number). For dis-

placement components U k½ �
i i ¼ 1; 2ð Þ and U k½ �

3 approximations

U k½ �
i ¼ u kþ 1ð Þ

i

2
þ z k½ �

h k½ �
u kþ 1ð Þ
i � u kð Þ

i

� �
; U k½ �

3 ¼ w kþ 1ð Þ

2
þ z k½ �

h k½ �
w kþ 1ð Þ � w kð Þ
� �

:

are accepted within the thickness of each layer (�h k½ �
�
2� h k½ �

�
2).

We assume that the plate is placed in the opening of an absolutely stiff dividing
wall separating two adjacent spaces V1 and V2. This plate is overrun by a flat harmonic
wave of pressure p� and frequency x. As a result of it interaction with the plate,
acoustic waves are excited in the half-spaces V1 and V2 around the plate, which are
reflected in the first medium and are radiated in the second medium. To determine the
pressures p�; p1 applied to the boundary plane of the 1st layer of the plate and the
pressure p2 applied to the boundary plane of the Nth layer of the plate, it is necessary to
find solutions of the wave equations

U�;zz � c�2
1

€U� ¼ 0; Us;xx þUs;yy þUs;zz � c�2
s

€Us ¼ 0; s ¼ 1; 2 ð1Þ

written in the potentials U�;U1 and U2 of velocities. Here, c1 and c2 are sound
velocities. The pressure p�; ps and the velocity components v�z ; v

s
x; v

s
y; v

s
z in the spaces V1

and V2 are determined in terms of the functions U� and Us:

p� ¼ �q1 _U�; ps ¼ �qs _Us; v�z ¼ U�;z; vsx ¼ Us;x; vsy ¼ Us;y; vsz ¼ Us;z

where qs are the densities of acoustic media in the spaces.
Solutions to the equations of plate motion and Eqs. (1) have to satisfy the kinematic

conjugation conditions

_wð1Þ ¼ v�z þ v1z
� ���

z¼0; _wðNÞ ¼ v2z
��
z¼0; ð2Þ

where _wð1Þ and _wðNÞ are the deflections of the boundary planes of the 1st and ½N � 1�th
layers, respectively.
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The process of dynamic deformation of a plate is described by the equations of the
multilayer plate theory taking into account transverse shear and transverse compression
in each layer obtained in [6]. The internal friction of the material in each layer of the
plate is taken into account according to the Kelvin–Voigt hysteresis model. For such a

model, the stresses r k½ �
aa; r k½ �

ab; a 6¼ b; a ¼ 1; 3; b ¼ 1; 3 and strains e k½ �
a ; c k½ �

ab arising in
the plate can be connected by the relationships (da and dab are logarithmic decrements
of vibrations under axial and shear deformations, respectively; s is time):

r k½ �
aa ¼ ~g k½ �

a1e
k½ �
1 þ ~g k½ �

a2e
k½ �
2 þ ~g k½ �

a3e
k½ �
3 ; r k½ �

ab ¼ ~G k½ �
abc

k½ �
ab;

where

~E k½ �
a ¼ E k½ �

a 1þ d k½ �
a

px
@

@s

 !
; ~G k½ �

ab ¼ G k½ �
ab 1þ d k½ �

ab

px
@

@s

 !
; ~g k½ �

11 ¼
~E k½ �
1 1� m k½ �

23m
k½ �
32

� �
D k½ � ;

[ ]
[ ] [ ] [ ] [ ]( )

[ ]
1 21 23 31

12 ; 1, 2,3,
k k k k

k
k

E
g

+
=

Δ

ν ν ν [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
12 21 23 32 31 13 12 23 3121k k k k k k k k k kΔ = − − − −ν ν ν ν ν ν ν ν ν . 

The components of the displacements u kð Þ
1 ; u kð Þ

2 and w kð Þ of the points of first and
last layers’ front planes as well as the points of the conjugation planes of inner layers
are accepted as unknowns. For the case of hinged support of the plate in the opening of
an absolutely stiff dividing wall under the action of a monoharmonic sound pressure on
it, for these functions we take the representations

u kð Þ
1 ¼ eixs

X
m;n¼1;3;...

~u kð Þ
1mn cos kmx � sin kny; u kð Þ

2 ¼ eixs
X

m;n¼1;3;...

~u kð Þ
2mn sin kmx � cos kny;

w kð Þ ¼ eixs
X

m;n¼1;3;...

~w kð Þ
mn sin kmx � sin kny; km¼ mp=a; kn ¼ np=b;

:

ð3Þ

In view of the conditions of (2) and representations (3), for solutions of two latter
Eqs. (1) representations have to be in the form

Us ¼ eixs
X

m;n¼1;3;...

~U
mn
s zð Þ sin kmx sin kny: ð4Þ

Based on the accepted representations (3)–(4), the analytical solution to the for-
mulated problem is found. This solution should be considered as exect for
N ! 1; M ! 1. The solution found allows us to calculate the sound transmission
loss R0

p ¼ �20 lg ~p2jz¼0

�
~p� þ ~p1ð Þjz¼0

�� �� of the plate and determine the amplitude values
of all stress-strain state parameters. Let us note that at ~p� ¼ 0 the formulated problem
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becomes homogeneous. Its solution determines the eigenfrequencies and the corre-
sponding eigenmodes of vibration for the hingedly supported composite plate, taking
into account the internal energy dissipation in the plate material and its aerodynamic
interaction with surrounding acoustic media.

3 Calculation Results and Their Analysis

On the basis of the solutions found, studies of a rectangular composite plate of thickness
t ¼ 3 mm, length a ¼ 480 mm and width b ¼ 560 mm, made of carbon fiber textile
Porcher 3692 and a binder EDT-69NM were carried out. Such material under dynamic
deformation processes has the following mechanical characteristics and logarithmic
decrements of vibrations [7]: E1;d ¼ E2;d ¼ 40 GPa, E3;d ¼ 5:9 GPa, G12;d ¼ G13;d ¼
G23;d ¼ 4 GPa, m12 ¼ 0:163; m13 ¼ m23 ¼ 0:3; q ¼ 1500 kg/m3, d1 ¼ d2 ¼ d3 ¼ 0:012,
d12 ¼ d13 ¼ d23 ¼ 0:03. The plate is surrounded on both sides by air characterized by
the parameters q1 ¼ q2 ¼ q ¼ 1:225 kg/m3, c1 ¼ c2 ¼ c ¼ 340 m/s.

Table 1 represents the results of the calculation of the real parts of eigenfrequencies
fmn ¼ xr

mn

�
2pð Þ (here xr

mn is the real part of the circular frequency) for the hingedly
supported composite plate taking into account the internal energy dissipation. Fur-
thermore, the parameters nmn characterizing the imaginary parts of the complex
vibration frequencies determined by the formula nmn ¼ xi

mn

�
xr

mn (x
i
mn is the imaginary

part of the circular frequency) are also presented in the table. Let us note that the results
are given for a plate in vacuum, i.e. excluding interaction with acoustic media. Such
results, as was shown in [8], practically do not differ from the results obtained by taking
into account the influence of acoustic media, if the behavior of the media is described
on the basis of three-dimensional wave equations.

To establish the effect of the incident sound wave frequency on the sound trans-
mission loss and the characteristics of stress-strain state of the plate, computational
experiments were also carried out. The data in Fig. 1a illustrates dependence of the

Table 1. Real parts of eigenfrequencies fmn and the parameters nmn of the composite plate.

No of tone fmn, Hz nmn M n

1 44,4 0,0023 1 1
2 105,81 0,00219 1 2
3 133,314 0,00209 2 1
4 177,465 0,00231 2 2
5 217,008 0,00207 1 3
6 273,609 0,00229 2 3
7 286,483 0,002 3 1
8 321,336 0,00219 3 2
9 374,493 0,00201 1 4
10 398,778 0,00232 3 3
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sound transmission loss R0
p values in the center of the plate at frequency f ¼ x= 2pð Þ.

Moreover, Fig. 1b and 1c on a logarithmic scale along the axis ~r show the dependence
of the maximum amplitude values of the normal stresses ~r11 (line 1 in Fig. 1b and 1c),
~r33 (line 2 in Fig. 1b) and tangential stresses ~r13 (line 3 in Fig. 1c) on the frequency f .
As is seen, there are frequencies f R of sound wave at which significant drop in sound
transmission loss R0

p as well as significant splashes of stresses ~r11 and ~r13 arise. By

comparing such frequencies f R obtained through analysis of Fig. 1 with the data rep-
resented in the Table 1 we can see that in case of a plane sound wave action, the plate
exhibits forced vibrations only with resonant frequencies corresponding to the eigen-
modes with odd numbers of harmonics m and n in each direction. Along this, the
harmonics with even number at least in one direction, do not objectify.

It is important to note that at low frequencies of the sound wave, the main in the
plate are the tangential components of the stress tensor (~r33 values are by three orders
of magnitude less than ~r11 values) and the description of the dynamic stress-strain state

a

b c

Fig. 1. Dependences of sound transmission loss R0
p (a) and stresses ~r11, ~r33 and ~r13 (b, c) on

frequency.
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of the plate by classical two-dimensional equations of plate theory is quite acceptable.
However, at high frequencies, stresses ~r33 formed in the plate are of the same mag-
nitude as stresses ~r11 (~r33 values is 25� 30% of ~r11 values). Furthermore, stresses ~r33
can even exceed the ~r11 values in narrow frequency ranges in the spectrum of medium
and high frequencies. Consequently, a correct description of the plate deformation
mechanics at high frequencies setting the problem of the class in question is possible
only on the basis of refined equations with the necessary allowance for transverse
compression. This is especially important studying the acoustic effects on thin-walled
structural elements made of fibrous reinforced composite materials. Such materials, as a
rule, have elastic and strength characteristics in the transverse direction on several
orders of magnitude less than similar characteristics in the tangential directions. It also
should be noted that the obtained dependences ~r13 ¼ ~r13 fð Þ and ~r11 ¼ ~r11 fð Þ have the
same character of change (Fig. 1c). The analysis of the calculation results showed that
the maximum ~r13 values of shear stresses are an order of magnitude less than the
maximum ~r11 values of stresses.
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Abstract. The paper discusses the classical methods of surface damping of
bending vibrations in thin-walled structures. Furthermore, the perspective inte-
gral version of a damping coating has been proposed. Such coating consists of
two layers of material with pronounced viscoelastic properties with a thin
reinforcing layer of high modulus material between them. Dynamic tests of
cantilevered duralumin specimens under the damped bending vibrations were
carried out using the created experimental setup. The purpose of these tests is to
compare the effectiveness of the known and proposed methods of surface
vibration damping. The influence of aerodynamic drag forces on the vibration
damping of specimens is noted. A refined finite element model of an elongated
plate with an integral layer damping is constructed on the basis of the four-layer
finite element. This model allows taking into account the effect of transverse
compression of damping layers under high-frequency deformation. The analysis
of the stress-strain state of the damping layers of a simply supported elongated
plate under resonance vibrations in several lower eigenmodes has been carried
out. The analysis showed a significant increase in the transverse compression
stresses of the damping layers with frequency increasing.

Keywords: Plate � Damping coating � Experiment � Logarithmic decrement of
vibrations � Finite element model

1 Introduction

Traditional structural materials (metals and metal alloys) are characterized by large
values of elastic and strength parameters, but, as a rule, they have low damping
properties. In this connection, various types of coatings made of viscoelastic materials
[1–3] are used to reduce the vibration activity and dynamic stress of thin-walled
structures. The relevance of the problem and the constant attention of researchers to it
are reflected in the fundamental monograph [4]. In this monograph authors discuss the
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effect on damping of various physical factors such as temperature, vibration frequen-
cies, layer thicknesses, loading level, etc. The results of these studies formed the basis
of the American standard for an experimental method of material damping properties
measurement [5].

According to [4], surface damping devices are divided into two classical methods
depending on the dominant deformations in the damping layer. The first method is the
free-layer damping. In accordance with this method, the damping layer of the vis-
coelastic material is fixedly connected to the damped thin-walled structure. In this case
the bending under transverse vibrations causes cyclic tensile-compression deformations
in the damping layer. However, this damping method has a very low efficiency [4], as
the damping forces are maximum only in the areas of greatest curvature of the damping
layer. The second method is constraining damping layer. In accordance with this
method the layer of damping material is additionally covered with a thin reinforcing
layer which under cyclic bending of the structure mainly experiences transverse shear
deformations. In this case, the maximum damping forces arise only in the areas of the
maximum shift of the damping layer. Therefore this method does not allow you to
effectively damp vibrations throughout the design area.

In view of this, the integral damping coating consisting of two viscoelastic layers
with thin reinforcing layer of high modulus material between them (Fig. 1a) seems
more effective. In case of bending vibrations of a thin-walled structure the lower layer
of the damping coating undergo a shear and acts as a constraining layer damping, and
the upper layer undergo tensile-compression deformations and acts as a free damping
layer (Fig. 1b). This allows you to integrate the area of active vibration damping,
practically getting rid of the ballast coating areas for any form of bending vibrations in
a wide range of operating frequencies. So, for the simply supported beam under second
bending vibrations mode the active damping regions (marked in dark on the figure)
cover almost the entire surface of the damped structure (Fig. 1c). Moreover, the outer
layer protects the thin reinforcing layer from buckling and delamination in the phase of
cyclic compression of bending vibrations, as such destruction is possible in the rein-
forcing layer in case of the use of constraining layer damping method. In turn, the
presence of a thin reinforcing layer having an insignificant mass and bending stiffness
practically does not increase the weight characteristics of the damping coating and does
not reduce the possibility of the proposed method using for damping of curved surfaces
structures.

(a) (b)                                      (c)

Fig. 1. The physical picture of surface vibration damping of the structure with an integral
damping coating. (a) shows an undeformed state; (b) shows an deformed condition; (c) illustrates
active damping areas.
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2 Experimental Studies

Dynamic tests of cantilevered duralumin specimens under the damped bending
vibrations were carried out using the created experimental setup [6]. The purpose of
these tests is to compare the effectiveness of the known and proposed methods of
surface vibration damping. Some calculation results for specimens with lengths of 500
(a), 300 (b) and 200 (c) mm are shown in Fig. 2 as relations between the logarithmic
decrements of vibration d(A) and the vibration amplitude A of specimens’ free ends.
Here, line 1 correspond to basic specimens without a damping coating; line 2 corre-
spond to specimens with a free layer damping; line 3 correspond to specimens with
constraining layer damping; line 4 correspond to specimens with integral layer
damping. In order to more contrastly evaluate the effectiveness of the studied damping
coatings, they were applied on both sides of the basic specimens. An oil-resistant
rubber with a low static elastic modulus E � 5.3 MPa and manufactured in the form of
plates 2H-1-MBS-S (GOST 7338-90) with a thickness of 1.8 mm and a density of
q = 1345 kg/m3 was used as a damping material. The damping properties of rubber are
characterized by logarithmic decrements of vibration d � 1.2.

The above results indicate that in all the cases considered, the effectiveness of the
proposed integral method of vibration damping is higher than the most effective of the
previously known methods by an average of 20% even under conditions of the lowest
modes of vibration. We should note that, in addition to the damping properties of the
material, dependence d(A) can be significantly affected by the air drag [6]. For dura-
lumin basic specimens the aerodynamic component of damping is approximately 85–
90% of the total (experimental) logarithmic decrements of vibration [7]. For specimens
with a damping coating this effect becomes significantly less. The calculations showed
that for specimens with a free layer damping the aerodynamic component of the
damping does not exceed 12% of the total logarithmic decrements of vibration (at the
maximum amplitude of oscillations). Moreover, for specimens with a constraining and
integral layer damping this component becomes even significantly smaller.

Fig. 2. Relation d Að Þ. Explanations in the text.
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3 Refined Finite Element Model of an Elongated Plate
with Integral Layer Damping

Under static and low-frequency deformations of a plate with an integral damping
coating, one can adopt the classical model in which the constraining layer is in a state
of homogeneous transverse shear and the free layer is in a state of inhomogeneous
tension-compression. However, in case of resonant vibrations at higher frequencies, the
stress-strain state of the damping layers can be qualitatively different due to the
influence of inertia forces on it. This leads to the necessity of taking into account all
components of the stress state when determining the energy dissipation in damping
layers. To analyze the stress-strain state of the marked layers under cyclic deformation
in a wide frequency range, a refined finite element model of an elongated plate with an
integral layer damping is constructed. This model is based on the developed four-layer
compound finite element (Fig. 3) and uses the following models to describe the
mechanics of layer deformation: the plate undergo a tension-compression and bending;
both damping layers are in a plane stress state; the reinforcing layer undergo a tension-
compression only. Independent nodal parameters of the element are displacements
ui;wi (i ¼ 1; 2; . . .; 6) as well as rotation angles /1; /4 of the cross sections of layer 1.
They can be represented by a vector rðeÞ ¼ u1 w1 u1 u2 w2 u3 w3 u4 w4 u4 u5 w5f
u6 w6g.

The elastic and damping properties under cyclic deformation of the damping layer
material are taken into account by the physical dependence

r ¼ DeþDg _e ð1Þ

representing a generalization of the well-known Kelvin-Voigt model under tension-
compression of the material in the case of a complex stress state. Vectors r, e contain
components of the stress and strain states; D, Dg are the stiffness matrix and the matrix

Fig. 3. The finite element of the elongated plate with integral layer damping.
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of viscous damping of the material, respectively. For an isotropic viscoelastic material
in a plane stress state, the matrices D and Dg will be as follows:

D ¼
E
�ð1� m2Þ Em

�ð1� m2Þ 0
Em

�ð1� m2Þ E
�ð1� m2Þ 0

0 0 G

2
4

3
5; Dg

¼ 1
px

Ede
�ð1� m2Þ Edem

�ð1� m2Þ 0
Edem

�ð1� m2Þ Ede
�ð1� m2Þ 0

0 0 Gdc

2
4

3
5

Here E, G, de, dc are the dynamic moduli of elasticity and the logarithmic decrements
of vibrations of the material, respectively, under tension-compression and shear, x is
the deformation frequency, m is the Poisson’s ratio.

In the dynamic analysis of structures based on the FEM, usually, the task is to
synthesize elastic, damping and inertial forces, which requires stiffness matrices KðeÞ,
damping matrices CðeÞ and mass matrices MðeÞ constituting the finite element structure.
To construct the matrices KðeÞ и CðeÞ we used dependence (1) and geometric relations
which connect deformations e with the vector of nodal displacements rðeÞ of the finite
element. To construct the matrix MðeÞ, we supposed that the kinetic energy of an
element is determined only by the velocities _w.

For numerical experiments, we chose an elongated simply supported plate with an
integral damping coating. Geometrical parameters of the plate are following: length
L = 200 mm; width b = 20 mm; thickness h1 = 1 mm. The thickness of the damping
layers are h2 = h4 = 1.8 mm. The reinforcing layer has a thickness h3 = 0.1 mm. The
plate material is aluminum alloy D16AT with a dynamic elastic modulus E = 5.54 �
104 MPa and density q = 2700 kg/m3. The material of the damping layers is technical
rubber. Dynamic elasticity moduli of rubber under tension-compression and shear are
E = 20.1 MPa, G = 2.6 MPa. Density of rubber is q = 1345 kg/m3, logarithmic
decrement of vibrations under tensile-compression and shear are de = 1.2, dc = 1.1,
respectively. The reinforcing layer is made of unidirectional fiber composite based on
carbon tape ELUR-P and binder HT-118 (dynamic elastic modulus E = 10.5 �
104 MPa, density q = 1200 kg/m3). The plate is divided into 100 finite elements of the
same length.

We studied stress-strain state of damping layers under resonance vibrations of a
plate by several lower eigenmodes with an amplitude of the normal coordinate
q0 ¼ 0:01. Figure 4 and 5 illustrates the amplitudes of the normal and shear stresses
rx;rz and sxz in the middle surface of the constraining and free damping layers,
respectively, under resonance vibrations of the plate by the first, fifth, and seventh
modes. The frequencies corresponding to these modes were as follows: f1 = 69.43 Hz;
f5 = 856.43 Hz; f7 = 1588.66 Hz.
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An analysis of the obtained stresses shows that the transverse shear stresses sxz
dominate (Fig. 4a) in the constraining damping layer when the plate vibrates in the first
(main) mode as well as only normal stresses rx mainly act (Fig. 5a) in the free damping
layer. As the shape number and, correspondingly, the frequency f increase, stresses
rx;rz increasing appear against the background of stresses sxz in the constraining
damping layer. Thus, on the seventh mode (Fig. 4c) stress rx is approximately 65% of
the sxz value and stress rz even slightly exceeds the shear stress sxz. With increasing
frequency f in the free damping layer (Fig. 5) in addition to stress rx two other stresses
rz and sxz appear, of which the stress rz is the most significant.
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Abstract. This work studies the problem of a thermomagnetoelectroelastic
anisotropic bimaterial with imperfect high temperature-conducting coherent
interface, which components contain thin inclusions. Using the extended Stroh
formalism and complex variable calculus the Somigliana type integral formulae
and corresponding boundary integral equations for the anisotropic thermo-
magnetoelectroelastic bimaterial with high temperature-conducting coherent
interface are obtained. These integral equations are introduced into the modified
boundary element approach. The numerical analysis of new problems is held
and results are presented.

Keywords: Bimaterial � Thermomagnetoelectroelasticity � Thin inclusion �
Boundary element method � Coherent imperfect interface

1 Introduction

Modern advanced high-tech industries, especially precision mechanics, are increasingly
using multifield (thermomagnetoelectoelastic) materials in the manufacture of various
devices. The latter are smart composites based on the mechanical combination of pyro-
electric (ferroelectric) and magnetostrictive (piezomagnetic) materials. When creating
such materials, a thin intermediate layer is usually formed that affects the stress and
temperature fields. The influence of this layer is reduced to the conditions of imperfect
thermal and magneto-electro-mechanical contact of the bimaterial components. In gen-
eral, in the scientific literature [1, 2] there are two types of imperfect thermal conditions
and two types imperfect mechanical conditions of contact of a thin layer with themedium.

Thus, there arises the scientific problem of development integral mathematical
models and methods of analysis of bimaterial thermomagnetoelectroelastic solids,
which can contain both defects of structure and purposefully introduced thin layers that
change the properties of these bodies.
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E. Gdoutos and M. Konsta-Gdoutos (Eds.): ICTAEM 2020, STIN 16, pp. 261–267, 2020.
https://doi.org/10.1007/978-3-030-47883-4_47

http://orcid.org/0000-0002-5703-6894
http://orcid.org/0000-0002-1732-0719
http://orcid.org/0000-0003-2223-8645
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47883-4_47&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47883-4_47&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47883-4_47&amp;domain=pdf
https://doi.org/10.1007/978-3-030-47883-4_47


At present, methods of analyzing the interaction of mechanical, electrical and
magnetic fields in anisotropic smart materials are intensively being developed.

An effective method for solving such problems is an approach based on methods of
the complex variable function theory and the Stroh formalism. Thus, in [3], the
Somigliana type boundary integral equations along with the explicit closed form of
expressions for the kernels were obtained and for the boundary element analysis of the
anisotropic thermoelectroelastic bimaterial with holes, cracks and thin inclusions. This
approach was also applied in [4] for a bimaterial solid with a Kapitsa type interface.
The paper [5] obtained a two-dimensional Green’s function for anisotropic bimaterials
with imperfect thermal and spring-type mechanical contact.

In this work a mathematical model of a thermomagnetoelectroelastic bimaterial
solid with high temperature conductive coherent interface, which parts can contain thin
deformable inclusions, is developed.

The boundary integral equations of the formulated problem are constructed in a
closed form. The boundary element method for their fast and accurate numerical
solution is developed.

2 Governing Equations of Thermomagnetoelectroelasticity

In a fixed rectangular system of coordinates Ox1x2x3 the balance equations for stress,
electric displacement, magnetic induction and heat flux, and constitutive laws in
absence of volumetric loading can be written in the following compact form

~rij;j þ~fi � ~Cijkm~uk;jm þ~fi ¼ 0; hi;i � fh ¼ 0; ð1Þ

~rij ¼ ~Cijkm~uk;m � ~bijh; hi ¼ �kijh;j: ð2Þ

The nomenclature is the same as in Refs. [3, 4].
According to the extended Stroh formalism, the general homogeneous solution of

Eqs. (1) and (2) can be expressed in terms of complex analytic functions as follows

h ¼ 2Re g0 ztð Þf g; # ¼ 2kt Im g0 ztð Þf g ð3Þ

~u ¼ 2Re½Afðz�Þþ cgðztÞ�; ~u ¼ 2Re½Bfðz�Þþ dgðztÞ�; ð4Þ

f z�ð Þ ¼ F1 z1ð Þ;F2 z2ð Þ;F3 z3ð Þ;F4 z4ð Þ;F5 z5ð Þ½ �T: ð5Þ

where # is a heat flux function; h is a change in temperature compared with actual; ~u is
an extended displacement vector; ~u is an extended stress function; g ztð Þ and Fa zað Þ are
complex analytic functions with respect to their arguments.
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Based on Eqs. (3), (4) one can derive the following relation between the function
g ztð Þ and temperature and heat flux function:

g0 ztð Þ ¼ 1
2

hþ i
#

kt

� �
: ð6Þ

3 Problem Statement

Consider an anisotropic bimaterial medium consisting of two thermomagnetoelec-
troelastic anisotropic half-spaces x1 [ 0 and x2\0 (which in terms of 2D problem are
modeled as two half-planes S1 ðx1 [ 0Þ and S2 ðx2\0Þ as depicted in Fig. 1), and
which are connected along the boundary x2 ¼ 0. On the boundary, the conditions of
imperfect thermal contact are satisfied, and can be written as follows:

#ð1Þ x1; x2ð Þ��x2¼0 ¼ # x1ð Þþ l0h;1 x1ð Þ; 8x2 ¼ 0;

#ð2Þ x1; x2ð Þ��x2¼0 ¼ # x1ð Þ; ð7Þ

hð1Þ x1; x2ð Þ
���
x2¼0

¼ hð2Þ x1; x2ð Þ
���
x2¼0

¼ h x1ð Þ; ð8Þ

where l0 is constant thermal conductivity of the interface.

Fig. 1. The sketch of the problem
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Also, the conditions of perfect mechanical contact of bimaterial components at the
interface are as follows:

~uð1Þ x1; x2ð Þ��x2¼0 ¼ ~uð2Þ x1; x2ð Þ��x2¼0 ¼ ~u x1ð Þ; 8 x2 ¼ 0 ð9Þ

~uð1Þ x1; x2ð Þ
���
x2¼0

¼ ~uð2Þ x1; x2ð Þ��x2¼0 ¼ ~u x1ð Þ; 8 x2 ¼ 0: ð10Þ

Here, indices (1) and (2) are used to denote the magnitudes of the fields acting in
half-spaces S1 and S2 respectively. It is considered that each of the half-spaces contains

a system of smooth closed contours C1 ¼
S

i C
ð1Þ
i and C2 ¼

S
i C

ð2Þ
i on which we can

set different thermal or mechanical and electric conditions.
To derive integral formulas of Stroh complex potentials, the Cauchy integral for-

mula is used [5]:

1
2pi

Z
@S

/ sð Þds
s� z

¼ / zð Þ 8z 2 S;
0 8z 62 S:

�
ð11Þ

It relates values of an arbitrary analytic function / sð Þ at the boundary @S of the
domain S with its value /ðzÞ inside this domain. Here s; z 2 C are complex variables,
which define the position of the source and field points, respectively. Herewith, if the
domain S is infinite it is assumed that the function /ðsÞ vanishes at z ! 1.

Thus, the expressions for complex temperature functions g0i zðiÞt
� �

can be written as

follows:

g01 zð1Þt

� �
¼ 1

2pi

Z
C

g01 sð1Þt

� �
dsð1Þt

sð1Þt � zð1Þt

þ 1
2pi

Zþ1

�1

g01 xð1Þt

� �
dxð1Þ1

xð1Þ1 � zð1Þt

; 8 Im zð1Þt

� �
[ 0; ð12Þ

g02 zð2Þt

� �
¼ 1

2pi

Z
C

g02 sð2Þt

� �
dsð2Þt

sð2Þt � zð2Þt

þ 1
2pi

Zþ1

�1

g02 xð2Þt

� �
dxð2Þ1

xð2Þ1 � zð2Þt

; 8 Im zð2Þt

� �
\0 ð13Þ

Similarly, the expressions for the vectors of Stroh complex potentials fðiÞ zðiÞ�
� �

can

be written. The procedure of obtaining boundary integral equations of the problem is in
elimination of integral over the interface, which is done using complex variable
calculus.
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4 Numerical Examples

Using the obtained Somigliana type integral formulae incorporated with the boundary
element approach [4] consider several problems for a thermoelectroelastic bimaterial
with imperfect thermal and perfect electromechanical contact of its components. The
considered material contains internal thin inclusion. Only 20 three-node boundary
elements, including two special tip elements, were used to mesh the inclusion.

Consider a thermoelastic anisotropic bimaterial consisting of two half-planes. It
contains a rectilinear isotropic thermally insulated deformable permeable inclusion of
length 2a. It is not subject to thermal deformation and it does not undergo thermal
expansion. It is located in half-plane x2\0 at a distance d parallel to the interface. The
thickness of inclusion is h ¼ 0:01a. The relative rigidity of inclusion is k ¼ Gi=C11,
where Gi is inclusion shear modulus and C11 is material 2 elastic moduli. Half-plane
x2 [ 0 contains two heat sources of equal intensity. They are located at a distance d0 to
the boundary.

Figure 2 and Fig. 3 show the relationship between the generalized stress intensity
factors (SIF) and the parameter of thermal conductivity of the interface l0; ðl�0 ¼ ak11Þ
when the relative rigidity is k ¼ 10�10. Figure 2 illustrates the case when bimaterial
components are made of different materials. Namely, component x2 [ 0 is made of
BaTiO3 and component is x2\0 made of CdSe.

Figure 3 illustrates the case when bimaterial components are made of BaTiO3, and
have the same properties.

Fig. 2. The relationship between SIF K21=K0(a), K11=K0(b) and l0=l
�
0
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5 Conclusions

This paper extends the possibilities of an approach, methods of the theory of function of
complex variable and Stroh formalism, to obtain integral formulas and equations for
structurally heterogeneous bimaterial solids with imperfect thermal contact of its
components.

A mathematical model of a thermomagnetoelectroelastic bimaterial solid with a
high thermal conductivity interface and perfect electro-magneto-mechanical contact of
components, which in turn can contain thin deformable inclusions, is developed. In
closed form, the boundary integral equations of the formulated problem are con-
structed, as well as the boundary element method, which makes it possible to solve it
effectively(accurate and fast).

All this makes it possible to solve with high precision the problems of thermo-
magnetoelectroelasticity for bimaterial solids with high-temperature conductivity
interface containing thin ribbon-like deformable inclusions or cracks that have not yet
been achieved using traditional numerical approaches, including boundary or finite
element methods.
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Abstract. The axisymmetrical problems of fracture of bodies with near-surface
penny-shaped cracks and two parallel penny-shaped cracks under compressive
loads directed along cracks are considered. In the situation examined the start of
the process of material fracture is determined by the local loss of stability of the
equilibrium of the material surrounding cracks. There are two approaches that
are used to investigate such problems, namely, so-called “beam approximation”
based on applied theories of mechanics of thin-walled structures and the
approach in the framework of the rigorous three-dimensional linearized theory
of stability of deformable bodies. According to the second approach we reduce
the problems to systems of integral Fredholm equations and then to system of
algebraic linear equations with use the Bubnov-Galerkin method and numeri-
cally analytic technique. As an example we present the numerical calculation for
a composite material. The values of critical loads corresponding to the start of
fracture are obtained for small and large distance between the cracks (or between
the crack and the body surface).

Keywords: Composite materials � Compression along cracks � Near-surface
cracks � Parallel coaxial cracks

1 Compression Along Cracks

Fracture of material at compression along cracks is one of the nonclassical problems of
fracture mechanics. In this case, the classical approaches of fracture mechanics such as
Griffiths-Irwin approach do not work. In this situation, destruction process is identified as
the moment of local stability loss of the equilibrium of a part of material in the vicinity of
cracks. Currently, there are two general approaches used to investigate such problems [1].
The first of them is based on the use of approximate design diagrams and approximate
theories of mechanics of thin-walled structures [2]. Within the framework of this
approach, has the greatest application the “beam approximation”, when the part between
the crack and the free surface (between the cracks) is replaced by a thin-walled element:
beam, plate or shell, which are investigated in the framework of the applied theory of
stability of thin systems. However, this method has significant drawbacks: it is necessary
to carry out separate investigations to determine the possibilities of its application
depending on the distance between the cracks, but even having determined this distance,
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there remains the question of choosing the conditions for fixing of thin-walled element.
The second approach is based on the basic relationships and methods of rigorous three-
dimensional linearized theory of stability of deformable bodies for finite and small sub-
critical strains [3]. In [4] using the second approach the conditions of applicability of the
“beam approximation” was found for isotropic elastic materials containing near-surface
cracks. It is interesting to find such conditions for composite materials.

1.1 Problem Formulation

We considered two geometric schemes of cracks disposition in composites: a half-
space with penny-shaped crack of radius a which is situated in the plane x3 ¼ 0 with
center on Ox3 (Fig. 1a) and unbounded body with two parallel penny-shaped cracks of
radius a which are situated in the plane x3 ¼ 0 and x3 ¼ �2h with center on Ox3
(Fig. 1b). The initial stresses that operated along cracks correspond to biaxial uniform
compression.

Within the limits of the second approach the both problems were reduced to the
solution of system of integral Fredholm equations with a side condition [5]

f ðnÞþ 1
pk

Z1

0

M1ðn; gÞf ðgÞdgþ 1
pk

Z1

0

N1ðn; gÞgðgÞdg ¼ 0;

gðnÞþ 1
pk

Z1

0

M2ðn; gÞgðgÞdgþ 1
pk

Z1

0

N2ðn; gÞf ðgÞdgþ ~C1 ¼ 0;

Z1

0

gðnÞdn ¼ 0 ð0� n� 1; 0� g� 1Þ;

f ðnÞ � uðanÞ; gðnÞ � wðanÞ:

ð1Þ

r

x3

h

a

a) half-space with a near-surface crack

rx3

2h

a

b) material with two parallel cracks

Fig. 1. Compression of cracked bodies along cracks
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1.2 Exploratory Procedure

We used the procedure based on the Bubnov-Galerkin method to solve integral
Eqs. (1) and search of critical shortening and stress correspond to start of the fracture
process. Power functions were used as a system of coordinate functions.

For further calculations we use the numerical analytical procedure proposed in [4].
This procedure allows to obtain results for elastic materials. The procedure allows to
calculate analytically the integrals for the chosen system of coordinate functions using
a package of symbolic computations. It is allowed to achieve at the further numerical
calculations higher exactitude of evaluations at the expense of a numerical integration
lapse exclusion. The recurrence relations were used to accelerate of integrals solutions.

Using the method offered in [4], Fredholm integral Eqs. (1) for both problems was
transformed to systems of the equations with corresponding factors F1ji, G1ji and
variables Fi, Gi, ~C1, i; j 2 ½0;N�.

XN

i¼0

FiF1ji þ
XN

i¼0

GiG1ji ¼ 0;

XN

i¼0

FiF2ji þ
XN

i¼0

GiG2ji þ ~C1 ¼ 0; ð2Þ

XN

i¼0

1
iþ 1

Gi ¼ 0; 0� j�N:

1.3 Results

Table 1. Critical compressive stress for small dimensionless distance between a crack and free
surface in half-space with penny-shaped crack.

b Critical compressive stress (r011=E) A

1 � 10−2 −1.268 � 10−4 −1.268
1 � 10−3 −1.290 � 10−6 −1.290
1 � 10−4 −1.287 � 10−8 −1.287
1 � 10−5 −1.285 � 10−10 −1.285
1 � 10−6 −1.1284 � 10−12 −1.284
1 � 10−9 −1.284 � 10−18 −1.284

270 M. Dovzhyk et al.



As an example, we considered a laminate composite with isotropic layers. In macro-
volumes such composite may be considered as transversely-isotropic medium. In the
case considered, cracks are located in plane x3 ¼ const, parallel to interface boundary
of layers. Dependence of critical dimensionless compressive stress r011=E on ratio of
the dimensionless distance between a crack and free surface b ¼ h=a are given in
Figs. 2, Table 1 and Table 2 (for m ¼ m1 ¼ m2, fiber concentration c1 is 0.7 and fiber
aspect ratio is 10).

For both problems the critical values of r011=E at b ! 1 go asymptotically to
values 0.0965, which are equal to respective critical values at surface instability of half-
space.

For a thin plate critical stress can be found as rcr ¼ Acrb
2. For small dimensionless

distance between the crack and the free surface the values of coefficient A are presented
in Table 1 and Table 2. At both case b ¼ h=a. For near-surface crack h is three
distance between crack and free surface – plate thickness in the “beam approximation”.
For material with two cracks h is the half-distance between cracks – half of plate
thickness in the “beam approximation”. For a thin plate we can found critical stress as

Table 2. Critical compressive stress for small dimensionless distance between cracks in material
with two parallel cracks.

b Critical compressive stress (r011=E) A A�

1 � 10−2 −5.01367 � 10−4 −5.01367 −1,25342
1 � 10−3 −5.16309 � 10−6 −5.16309 −1,29077
1 � 10−4 −5.15527 � 10−8 −5.15527 −1,28882
1 � 10−5 −5.14160 � 10−10 −5.14160 −1,28540
1 � 10−6 −5.13770 � 10−12 −5.13770 −1,28443
1 � 10−9 −5.13672 � 10−18 −5.13672 −1,28418

a)

a) a half-space with near-surface crack b) a body with two parallel cracks
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Fig. 2. Dependence of critical dimensionless compressive stress on ratio of the dimensionless
distance between the crack and free surface of composite
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rcr ¼ A�
crt

2=a2, where t is thickness of plate. At the case of near-surface crack
A�
cr ¼ Acr, for material with two parallel crack A�

cr ¼ Acr=4 (A� in Table 2). Values of A
for half-space with near-surface crack are given in Table 1 and values of A� for material
with two parallel crack at b ! 0 go to same value −1.284.

Critical compressive stress was obtained for composite materials for large and small
distances between the crack and free surface (between cracks). Analysis of the results
allows to determine the conditions of applicability of the “beam approximation”. Beam
approximation good work for small distance between the crack and the free surface
(when b\ 0:01 computing error less than 1%) and bad work in else case (when
b[ 0:1 computing error more than 5%).
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Abstract. In last years in the railroad territory of 1520 mm accidents have
often occurred due to the destruction (failure) of the casting elements of three-
element freight car bogie. The quality and durability of load-bearing elements,
which is traditionally produced by casting technology, is insufficient. The
development of new welded designs of the load-bearing elements were carried
out on the basis of wide use of mathematical modeling to determine the stress-
strain state of the welded elements under the action of regulated loads and to
make the assessment of strength according to Ukrainian standards and current
world approaches. The accelerated fatigue tests on prototypes were carried out,
which showed that the service life of the welded structure of the side frame is ten
times longer than the service life of the cast structure, and its survivability is
longer in several times.

Keywords: Railway freight car bogie � Low alloy steel � Side frame � Welded
joints � Fatigue � Test � Service life

In recent years, on the area of 1520 mm gauge railways the accidents involving the
destruction of the casting elements of three-element bogie of freight car has often had.
The quality and durability of bogie elements such as the side frame and the beams
traditionally made by casting technology are of insufficient level, so it is advisable to
look for an alternative - the possibility of using welding technology in the manufacture
of these parts to improve the characteristics of fatigue resistance [1].

In the E.O. Paton Electric Welding Institute of the NAS of Ukraine a work on the
development of a new all-welded design of the side frame of a three-element bogie of a
freight car was carried out on the basis of widespread use of mathematical modeling to
determine the stress-strain state of the welded elements of the bogie under the influence
of regular loads and the assessment of (fatigue) strength according to current standards
[2] and modern approaches [3].

Calculation of the fatigue resistance of the developed welded structure of side
frame of the bogie in accordance with the Standard [2] considering the coefficients of
fatigue resistance for different evaluation zones (base metal and welds) taking into
account the distribution of the coefficient of vertical dynamics over the operating speed
ranges (range of operating speeds) taking into account the additional load spectrum
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from the longitudinal compressive forces through the clutch, showed that the developed
welded structure is workable with variable loading and rear frees the requirements of
Standard [2] with the coefficient of fatigue resistance [n] = 2, both under the condition
of not exceeding the calculated stresses of the magnitudes of the allowed stress
amplitudes and under the condition of damage accumulation.

The fatigue resistance of the structure is estimated by the formula:

n ¼ ra;N
ra;3

� n½ �; ð1Þ

where ra,N is the endurance limit (in amplitude) for a symmetric loading cycle on the
base N0 = 107 cycles; ra,e - the calculated value of the amplitude of the dynamic stress
of the conditional symmetric cycle, equivalent to the damaging effect of the real mode
of operational stresses for the life of the part; [n] - the permissible minimum value of
the fatigue resistance factor is taken in accordance with the Standard [2] for the new
structure element of bogie - [n] = 2,0.

The endurance limit (in amplitude) for a symmetrical load cycle is determined by [2]:

ra;N ¼ r�1

Kr
1� zpvr
� �

; ð2Þ

where r�1 is the average endurance limit of a smooth standard specimen; zp is a
quantile of the distribution ra,N as a random variable; vr is the coefficient of variation
of the endurance limit; Kr - the average value of the reduction factor of the endurance
limit of a part relative to the endurance limit of a smooth standard pattern.

The calculated value of the dynamic stress amplitude of the conditional symmetric
cycle, equivalent to the damaging effect of the real mode of operational stresses over
the life of the structure element, is calculated taking into account the distribution of the
vertical dynamics coefficient over the 10 speed ranges [2]:

ra;e ¼ max rað Þ �
ffiffiffiffiffiffiffiffi
Tpfe
N0

m

r X10
i¼1

PðviÞkmi ; ð3Þ

where m is the slope of the fatigue strength curve in the amplitudes; Tp - the total time
of dynamic load over the estimated life of the element; fe - the effective frequency of
the process of changing dynamic loads for the trimmed parts fe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4c=mk

p
, where c is

the vertical rigidity of the spring kit under the gross weight of the car; mk - weight of
the loaded car body; N0 is the base number of cycles of dynamical stresses; i - a speed
range counter; P(vi) - the fraction of time in operation in the i-th speed range, vi - the
average value of the speed in the i-th range; ki - the coefficient of vertical dynamics in
the i-th speed range; max(ra) - the maximum stress amplitude during a symmetrical
load cycle.
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From the formulas given above, the maximum permissible stress amplitude of the
fatigue resistance criterion would be expressed as follows:

max rað Þ½ � ¼ ra;N

n½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tpf30
N0

P10
i¼1

PðmiÞkmim

s : ð4Þ

In the case of a welded structure of the side frame, the values of fatigue strength (stress
amplitudes) are calculated for the several evaluation zones according to the fatigue
resistance criterion. To assess the fatigue strength of the side frame the loads were
applied corresponding to the mode of normal movement of the car in the train:

– vertical force reduced by the gross weight of the car body;
– transverse component of longitudinal quasi-static force.

The amplitudes of loads are determined by the coefficient of vertical dynamics in the
range of speeds till the specified 120 km/h. The coefficient of vertical dynamics is
assumed to be the same for the straight and curve sections of the rail path.

Additionally, the assessment of fatigue strength of the welded structure of the bogie
side frame in accordance with Recommendations of the International Institute of
Welding (IIW) [3] was carried out. The assessment is based on the fatigue fracture
(macro crack) observation in different zones of the structure (zones of welded joints),
taking into account the specified stress spectrum of load during long-term operation [2].
Results of assessment showed that the developed welded design of the side frame has a
sufficient level of fatigue resistance with a safety factor cM = 1,1–1,4.

The Recommendations of IIW summarize a large amount of experimental research
for typical welded joints, which allowed for each type of joint and load direction to
formulate a methodology for determining the fatigue strength at regular loading in the
form:

Dr½ � ¼ FAT � f1ðRÞ � f2ðNÞ � f3ð@Þ � f4ðTÞ
cM

; ð5Þ

where FAT – fatigue class or fatigue strength of classified welded joint at 2 ∙ 106 cycles
of regular loading (constant parameters of load cycle) at f1 = f2 = f3 = f4 = cM = 1, cM
– safety factor. There is a table of FAT values for different classified welded joints [3].

Fatigue enhancement factor f1(R) depends on the stress ratio in a particular stress
cycle and the level and direction of residual stresses. For stress relieved welded
components with negligible residual stresses (<0,2rT), rT – Yield Stress (for low alloy
steel 09Г2C rT � 390 MPa):

f1(R) = 1,6 for R < –1,0;
f1(R) = –0,4R + 1,2 for –1,0 � R � 0,5;
f1(R) = 1,0 for R > 0,5.
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For complex two- or three-dimensional components, components with global residual
stresses, thick walled components like a welded side frame of railcar bogie f1(R) = 1,0
and no enhancement is considered.

In the range of 104 < N < 108 cycles the factor f2(N) (Fig. 1) is defined by
equation:

f2ðNÞ ¼ C
N

� �1
m

;

where N – the number of cycles to failure, C = 2∙106, m = 3 for 104 < N < 107 cycles
and C = 5,8∙106, m = 5 for 107 < N < 108 cycles.

The influence of plate thickness on fatigue strength should be taken into account in
cases where plates thicker than 25 mm. For weld joints of side frame with thickness of
elements till 25 mm the correction factor can be taken equal f3(d) = 1,0.

The reduction factor f4(T) is taken in consideration at elevated operation temper-
atures T. For T < 100 °C can be taken f4(T) = 1,0.

The safety factor is recommended to take in the range cM = 1…1,4 [3]. In most
cases for normal fabrication quality and regular inspection in service, cM = 1 might be
adequate. Safety factor value cM = 1,4 corresponds to the consequence of failure – loss
of human life.

The load spectrum for the calculation of fatigue resistance is determined by the
coefficient of vertical dynamics and the probability of movement in the range of speeds
up to the maximum design (120 km/h).

Therefore, for the welded joints of the side frame the dependence (5) for deter-
mining the fatigue strength at regular loading can be represented as:

Dr½ � ¼ FAT
cM

C
N

� �1
m

: ð6Þ

Fig. 1. Fatigue resistance S-N curves [3] for different classes FAT of welded joints (material –
steel) for normal nominal stress at N < 109 cycles
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Accordingly, the ultimate durability [N] at regular loading with a stress range Dr is
expressed as follows

N½ � ¼ C � FAT
Dr � cM

� �m

: ð7Þ

At variable amplitude loading (stress spectrum), linear damage calculation by
“Palmgren-Miner” summation is appropriate.

Table 1 summarizes the allowable amplitudes of the stresses (fatigue strength) in
accordance with the National Standard [2] and IIW Recommendations [3] in the dif-
ferent zones of the side frame welded structure, taking into account the specified [2]
stress spectrum of load at 107 cycles during long-term operation. Comparison shows
insufficient conservatism of the Standard in assessment of fatigue strength of welded
joints.

Also in Table 1 the calculated static stresses in the different zones of the side frame
due to acting of maximum design operational load 23,5 tf are presented. In the most
loaded areas of the side frame welded structure to provide the enough level of fatigue
resistance it is advisable to apply additional improvement of residual stress conditions

Table 1. Fatigue strength (stress amplitudes) in accordance with the current Standard and IIW
Recommendations, and calculated static stresses in different zones of the welded side frame

Zone of the side frame
structure

Standard [2] IIW
Recommendations
[3]

Calculation

Reduction
factor of
endurance
limit Kr

Fatigue
strength
(in amplitude)
max(ra), MPa

Fatigue strength
(in amplitude) [ra],
MPa
cM = 1/1,4

Maximum
principal
stresses
ra, MPa

1 Base material of bottom
belt in R55 of axle box
pedestal

1,5 150 – 81

2 Longitudinal fillet weld
joint of sidewall and coil
springs support plate

3,0 78 40/50 56

3 Transverse fillet weld joint
of axle box support

3,0 78 40/50 37

4 Longitudinal fillet weld
joint of sidewall and
bottom belt in R55 of axle
box pedestal

3,0 78 40/50 53

5 Transverse butt weld joint
of sidewall

4,7 51 44/56 33
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(stress relieving thermal treatment, hammer-peening) in the transition zone of the
longitudinal welds (pos.2 and 4).

The prototypes of welded side frames were manufactured and accelerated fatigue
testing were carried out (Fig. 2) with a cycle stress amplitude increased in 2 times.
After N = 8.8 million cycles of vertical loading (amplitude Pai = 245 kN = 25 tf,
constant average cycle load Pm = 363 kN = 37 tf), a macro crack formed on the side
wall of the frame between the lower belt and the support plate of the springs. The
prototypes of the welded side frame showed a high value of durability, which is ten
times greater than the design life of the cast structure of the side frame with an axial
load of 23.5 tons. After N = 13 million cycles the failure along the transverse weld
joint of the sidewall occurred (Fig. 2).

A prototype of the welded side frame demonstrated a high value of the relative
survivability (Ni-Ni_cr)/Ni = 0,32, and in absolute value survivability of welded
structure exceeds several times the service life of the cast structure of the side frame
(Fig. 3).

Fig. 2. Distribution of maximum principal stresses in the structure of welded side frame under
the action of maximum design operational load 23,5 tf

Fig. 3. Prototype of side frame during accelerated fatigue test (a) and failure in the weld zone (b)
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1 Conclusions

1. Welded structures of load-bearing elements of freight rail cars bogie designed
within the requirements of the National Standard may not have sufficient durability,
because the exist Standard are not sufficiently conservative. The design of new
welded structures must be carried out in accordance with the current Recommen-
dations of the International Welding Institute for fatigue design of welded joints and
components.

2. The results of the accelerated tests of the prototypes of the developed side frame
welded structure of a three-element rail freight car bogie with an axial load of 23,5
ts showed a significant increase in service life and survivability, higher in tens time
in comparison with a side frame of cast design at operational cyclic loads.
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Abstract. Additive manufacturing technology are developing fast these days.
Economical profit of manufacturing parts with complex geometry which have
either hollow section or complex three-dimensional curvature, using 3D printers
are higher than using standard manufacturing methods. Which means that 3D
printer could be an alternative to traditional ways of manufacturing. This
technology used in aerospace and medicine right now, and have a future in other
industries. Currently the technology of wire electron xBeam 3D Metal Printer of
parts with complex geometry from titanium alloy has been developing in
Ukraine. Using of mathematical modeling for optimization of the technology
parameters is very promising.

Keywords: Additive technology � Mathematical modelling � Microstructure �
Residual stresses and deformations � Thermal fields

1 Introduction

Additive manufacturing is becoming an alternative to traditional manufacturing
methods for titanium parts and structural components these days, in aerospace and
medicine industries first of all. Additive technology makes manufacturing of parts with
complex three-dimensional surface curvature or limited edition parts with nonstandard
dimensions much cheaper and easier. Using of filler wire makes additive manufacturing
process much faster, electron beam heating sources are efficient in vacuum condition
that also is advisable for preventing titanium alloy from oxidation. But using of wire in
the manufacturing process leads to a high level of residual stresses and distortions in
structure element. Samples, made on 3D printer, could be seen on Fig. 1 [1]. Opti-
mization of additive manufacturing process, using mathematical modeling and FEM
analysis, makes sense these days.

2 Microstructure

Mechanical properties of titanium alloy Ti-6Al-4V depends on its microstructure: grain
size [2, 3] and percentage of a″ phase in a + b structure [4]. Grain size defined by
cooling rate during polymorphic transformation [5]: the higher cooling rate, the less
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grain size (Eq. 1) [2]. Percentage of martensitic a″ phase also defined by cooling rate:
when cooling rate is 410 °C/s and higher – fully a″ structure formed; in interval from
20°C/s to 410°C/s – a″ + a+b structure formed, and percentage of a″ phase linearly
decreases, with decreasing of cooling rate from 410 °C/s to 20 °C/s; when cooling rate
is 20 °C/s and less – a + b structure formed [4].

Mechanical properties of material, such as yield strength and elongation, defined by
grain size and percentage of a″ phase in titanium alloy Ti-6Al-4V. Yield strength of
material defined, mostly, by grain size: increasing of cooling rates, which means
decreasing of grain size, leads to growth of yield strength [3, 6]; but, as it mentioned
above, too high cooling rates leads to a″ phase formation, which reduces yield strength
a little bit (Eq. 2) [4]. Though, impact of a″ phase percentage, on strength character-
istics much less, than grain size. Elongation of material mostly defined by quantity of
martensitic a″ phase in titanium alloy: increasing of a″ phase percentage in alloy from
0% to 100% leads to linear decreasing of elongation from 11% to 2% (Eq. 3) [4].

dgrain ¼ 8220 � V�0;58
cooling; lm where Vcooling � 6 �C=s

2500; lm where Vcooling\6 �C=s

�
ð1Þ

ry ¼ 905þ 8; 757 � 106 � d�1;724
grain � 100 � ma0 ;MPa ð2Þ

d ¼ �9 � ma0 þ 11;% ð3Þ

3 Mathematical Model

3.1 Mathematical Model for Temperature Fields

Finite element model of printed samples with small and large substrate was created, to
calculate thermal fields during layer surfacing of a sample, using heat equation (Eq. 4)
and heat sink boundary conditions (Eq. 5).

Fig. 1. Samples, formed by xBeam 3D metal printer technology, with small (a) and large
(b) substrates.
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cc Tð Þ � @T
@t

¼ r k Tð Þ � rT½ � ð4Þ

�k Tð Þ � @T
@n

¼ aT � T � Toutð Þ; heat transfer with machining attachment
e � rSF � T4 � T4

out

� �� q; thermal radiation from surfaces

�
ð5Þ

Also, was created the thermo elastic plastic FE analysis model to calculate residual
stresses and distortions after finish of forming and complete cooling of a sample.

3.2 Comparing of 2D and 3D Thermal Field Models

Two dimensional thermal field model can be used for assumption of the fast moving
heat source, which allows to reduce time of calculation sufficiently. Calculation’s
accuracy is, from one side, increasing because of smaller mesh size, but from other side
decreasing, because 2D thermal field model don’t consider terminal effects on the
beginning and end of surfaced layer. Results of 2D and 3D solution for typical example
of titanium alloy Ti-6Al-4V sample forming (electron beam power 4,5 kW, wire
diameter 1,6 mm, cladding speed 14 mm/s, dimensions of substrate 8 � 30 � 70 mm,
wall width 3,2 mm), are compared on Fig. 2.

Fig. 2. Comparing of 3D (a, b) and 2D (c, d) thermal field models on example of 5th (a, c), and
25th (b, d) layer surfacing.
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3.3 Results for Residual Stresses and Distortions

Residual stresses and displacements in printed structure elements could limit usage of
additive technology. After surfacing of 25 layers and complete cooling of a sample,
residual deflection on a 70 mm long sample with large substrate are less than 0,4 mm,
when its height 21 mm; and for sample with small substrate - are more than 3 mm,
when its height 16 mm (Fig. 3a, b). Longitudinal component has the highest level of
residual stresses. For large substrate sample, maximum residual tensile stress reach’s
480 MPa, and for small substrate sample – 280 MPa (Fig. 3c, d). Because of small
substrate sample has less transverse stiffness than the large substrate one, residual
stresses in it is less almost in two times, but residual deflection almost in ten times
more, which can lead to culling this kind of samples.

4 Optimization of Technology, Varying Time Dt
and Temperature

Because of irregular heat sink from each formed layer, which related to cladding first
layers on a cold substrate, and last ones – on heated metal, high cooling rates received
on first layers, and as a result – small grain size with big percentage of a″ phase; and on
the last layers received low cooling rates and large grain size (about 2500 µm). Which
causes low plasticity of material on first layers, and low strength characteristics on last
layers.

Delay time Dt between cladding of each layer is one of factors to change for getting
efficient technology parameters. Heat sink on last layers, comes on stationary mode
with increasing of time Dt, on example of sample with large substrate. So, grain size
and yield strength distribution becomes more regular on the last layers, with increasing

Fig. 3. Residual deflections (a, b) and longitudinal stresses (c, d) of samples with large (a, c) and
small (b, d) substrate.
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of Dt (Fig. 4a, b). Considering, that Dt = 24 s mode will be optimal, because Dt = 60 s
mode leads to higher level of residual stresses and deformations.

Substrate preheat is also one of process parameters to change, for getting optimal
microstructure. Increasing of preheat temperature until 600 °C, with combination of
delay timeDt = 24 s, leads to stationary heat sinkmode onfirst layers, whichmeansmore
regularly distribution of a″ phase, grain size, and elongation of material (Fig. 4c, d).

Comparing of Residual Stresses and Distortions for Different Technology
Parameters. In Table 1 shown modeled residual stresses and deflections of samples
with large and small substrates, with using different delay time Dt between layer
cladding. Results shows that too long delay time Dt affects on residual deflection
negatively.

Fig. 4. Relation between grain size (a, c), yield strength (b), elongation (d) and layer number for
different delay time Dt (a, b) and preheat temperature (c, d).
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5 Comparing with Experiment

Grain size was compared on a samples with large substrate, using initial technology
parameters, i.e. without extra delay time (Dt = 0 s) and without substrate preheat. In
result of experiment, macrosection analysis gives grain size 200–300 µm on first
layers, and 400–600 µm on middle layers (Fig. 5a) [1]. Modeled grain size on first
layers is 150–250 µm and 400–700 µm on middle layers (Fig. 5b).

Also, residual deflection of manufactured sample with small substrate was com-
pared with modeled deflection. Modeled residual deflection of sample with small
substrate equals to 1,5 mm (Fig. 5d) and shows adequately correlation with deflection
of manufactured sample – about 2 mm (Fig. 5c).

Table 1. Residual stresses and deflections of samples, made with different delay time Dt.

Delay
time
Dt, s

Residual
deflection,
mm

Residual stresses, MPa
Mises Longitudinal Transverse On

height

Small
substrate

5 3.07 302 258/−166 83/−115 87/−102
24 3.81 622 472/−245 98/−142 91/−94
60 4.11 844 642/−410 149/−222 117/−98

Large
substrate

5 0.39 778 483/−325 350/−189 175/−180
24 0.43 875 505/−364 360/−286 193/−183
60 0.48 872 423/−411 420/−288 190/−160

Fig. 5. Macrosection of manufactured sample (a), modeled grain size (b), residual deflection of
manufactured sample (c) and modeled residual deflection (d).
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Abstract. A spatial non-stationary contact problem with moving boundaries of
the interaction region for a thin elastic cylindrical shell and an absolutely rigid
indenter bounded by a smooth convex surface is considered. A closed mathe-
matical formulation is given and a system of resolving equations is constructed.
The system of resolving equations is based on the spatial-temporal integral
equation resulting from the principle of superposition and contact conditions.
The core of this equation is the transient function for the cylindrical shell. To a
closed system of resolving equations, it is supplemented by a kinematic relation
for determining the moving boundary of the contact area and the equation of
motion of the indenter as an absolutely rigid body. An algorithm for solving the
spatial non-stationary contact problem for an infinitely long cylindrical shell and
absolutely rigid indenter in the case of a normal impact on the side surface of the
shell is constructed and implemented. Examples of calculations are given.

Keywords: Spatial non-stationary contact problems � Cylindrical shell �
Superposition method � Fourier series � Integral transforms � Transient
functions � Numerical-analytical algorithms

1 Problem Formulation

At the initial instant of time, an absolutely rigid indenter, moving with a given initial
velocity V0, comes into contact with the lateral surface of the infinitely long thin elastic
circular cylindrical shell. The indenter is bounded with a smooth convex surface, the
vector of its initial velocity is directed normal to the side surface of the shell (Fig. 1).

The equations of motion of the model S.P. Timoshenko in displacements recorded
in the main orthogonal coordinates associated with the directions of the main curva-
tures of the middle surface are used to describe the motion of the shell [1, 2]:

@2W
@s2

¼ LW þP;

L¼ Lij
� �

5�5; W ¼ u; v;w; va; vz
� �T

; P ¼ 0; 0; p; 0; 0ð ÞT;
ð1Þ
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L11 ¼ @2

@a2
þg2 @2

@z2
� k2

� �
; L12 ¼ 1� g2� � @2

@a@z
; L13 ¼ 1þ kg2� � @

@a
;

L14 ¼ �c2
@2

@a2
þg2k2; L15 ¼ �c2 1� 2g2� � @2

@a@z
; L21 ¼ L12; L22 ¼ @2

@z2
þg2 @2

@a2
;

L23 ¼ 1� 2g2� � @

@z
; L24 ¼ �c2g2 @2

@a@z
; L25 ¼ �c2g2 @2

@a2
; L31 ¼ �L13;

L32 ¼ �L23; L33 ¼ g2k2
@2

@a2
þ @2

@z2

� �
� 1; L34 ¼ g2k2

@

@a
; L35 ¼ g2k2

@

@z
;

L41 ¼ c�2L14; L42 ¼ c�2L24; L43 ¼ �c�2L34; L44 ¼ @2

@a2
þg2 @2

@z2
� k2c�2

� �
;

L45 ¼ L12; L51 ¼ c�2L15; L52 ¼ c�2L25; L53 ¼ �c�2L35;

L54 ¼ L12; L55 ¼ @2

@z2
þg2 @2

@a2
� k2c�2

� �
:

u, v – tangential displacements of the shell in the direction of the coordinate lines a
(angular coordinate) and z (longitudinal coordinate) respectively, w – normal dis-
placement of the shell va, vz – angles of rotation of the normal fiber, p – normal
pressure, s – dimensionless time, L – matrix-operator, k2 ¼ 5=6 – shear coefficient.

Here and further all functions, variables, and parameters are reduced to a dimen-
sionless form using a system of dimensionless quantities (primed variables correspond
to dimensional ones):

u ¼ u0

R
; v ¼ v0

R
;w ¼ w0

R
; uc ¼ u0c

R
; z ¼ z0

R
; s ¼ c1t

R
;g2 ¼ c22

c21
; c21 ¼

kþ 2l
q

;

Fig. 1. Problem formulation.
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c22 ¼
l
q
; c2 ¼ h2

12R2 ; p ¼ p0R
h kþ 2lð Þ ;V0 ¼ V 0

0

c1
;mu ¼ m0

uc
2
1

R2h kþ 2lð Þ :

q – density of the shell material, k; l – Lame parameters of the shell material, R and h –
radius and thickness of the shell, uc – displacement of the center of mass of the
indenter, c1 and c2 – speed of the tension-compression waves and shear waves in the
shell material, mu – the mass of the indenter, t – dimensional time.

The equation of motion of the striker as an absolutely rigid body has the following
form:

mu€uc sð Þ ¼ P sð Þ ¼
ZZ
X sð Þ

p n; f; sð Þdndf; uc 0ð Þ ¼ 0; _uc 0ð Þ ¼ V0: ð2Þ

P – the resulting force of contact pressure p, X sð Þ – the contact area, the boundary of
which depends on time.

We assume that the contact between the shell and the striker occurs under condi-
tions of free slippage.

Let P1 and P2 be the surfaces bounding the shell and the striker at the moment of
time s[ 0. With respect to an inertial Cartesian rectangular coordinate system whose
axis coincides with the axis of the shell, they are given by the equations

Pk : x ¼ fk y; z; sð Þ; y; zð Þ 2 Xk; k ¼ 1; 2;

where Xk – projections of surfaces P1 and P2 on a plane Oyz.
Then the true contact area is defined by the following conditions:

P� : D y; z; sð Þ ¼ f1 y; z; sð Þ � f2 y; z; sð Þ ¼ 0; p y; z; sð Þ\0; y; zð Þ 2 Xk; ð3Þ

where D – is the gap between the boundary surfaces P1 and P2.
The equations that implicitly define the boundary @P� of the contact area follow

from (3):

@P� : D y; z; sð Þ ¼ 0; p y; z; sð Þ ¼ 0

In the linearized formulation of the problem, the true contact area P� is replaced by
a fictitious area X sð Þ belonging to the plane that is a common tangent to the surfaces
P1 and P2 at the initial time of contact interaction (Fig. 2).

Suppose that the position of the surface bounding the striker at the current time s is
given by an explicit equation in the coordinate system Oxyz:

x ¼ f y; zð Þþ uc sð Þ: ð4Þ
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The boundary @X sð Þ of the area X sð Þ is determined from the condition of inter-
section of the surface bounding the striker with the plane P:

@X sð Þ : f y; zð Þþ uc sð Þ ¼ 1: ð5Þ

Taking into account (4), the contact conditions of the indenter and the shell have
the form

f y; zð Þþ uc sð Þ ¼ w a; z; sð Þ; p a; z; sð Þ\0; y; z 2 X sð Þ; y ¼ sin a: ð6Þ

At the initial time, the shell is in an unreformed state, which corresponds to zero
initial conditions

ujs¼0 ¼ vjs¼0 ¼ wjs¼0 ¼ vajs¼0 ¼ vz
��
s¼0 ¼ _ujs¼0 ¼ _vjs¼0 ¼ _wjs¼0 ¼ _vajs¼0 ¼ _vz

��
s¼0

¼ 0:

ð7Þ

Equations and relations (1), (2), (4)–(7) are a closed mathematical formulation of
the non-stationary contact problem with movable boundaries for a cylindrical shell and
an absolutely rigid indenter.

2 Calculation Examples

To solve the system of resolving equations, we use a numerical-analytical algorithm
based on the method of mechanical quadratures [3–6].

As an example, consider the non-stationary contact interaction of a circular
cylindrical shell (R ¼ 1, h ¼ 0:025), with an absolutely rigid indenter bounded by a
surface that has the shape of rotating paraboloid: f y; zð Þ ¼ y2 þ z2 þ 1: As the shell
material, we use steel with the following parameters: g ¼ 0:53, c ¼ 1:3� 10�6.

In Fig. 3a–3c shows the dependence of the movement of the center of mass of the
striker on time (Fig. 3a), the radius of the contact area from time (Fig. 3b) and the

Fig. 2. Contact area.
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resulting contact force from time (Fig. 3c). Here, the solid curves correspond to
V0 ¼ 0:01, dashed V0 ¼ 0:05, dash-dotted – V0 ¼ 0:1.

In Fig. 4a–4c shows the distribution of contact pressure in the angular coordinate a
at the time s ¼ 0:3. Figure 4a corresponds to the coordinate value z ¼ 0, 4b – z ¼ 0:15,
4c – z ¼ 0:3. Solid curves correspond to V0 ¼ 0:01, dashed V0 ¼ 0:05, dash-dotted –

V0 ¼ 0:1.

Figure 5a and 5b represent distributions of normal displacements along the angular
coordinate (Fig. 5a) and along the longitudinal coordinate (Fig. 5b). Here, the results
correspond to the time s ¼ 0:6 and the initial speed V0 ¼ 0:1. In Fig. 5a, the solid
curves correspond to z ¼ 0, dashed z ¼ 0:15, dash-dotted – z ¼ 0:3. Solid curves in
Fig. 5b correspond to a ¼ 0, dashed a ¼ 0:15, dash-dotted – a ¼ 0:3.

Fig. 3. Dependences of the movement of the center of mass of the indenter, the radius of the
contact area and the resulting contact force on time.

Fig. 4. Distribution of contact pressure by angular coordinate at a time.

Fig. 5. The distribution of normal displacements along the angular and longitudinal coordinates.
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Shear Buckling Mode and Failure of Sandwich
Specimen Facing Layer Under Four-Point

Bending
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Abstract. The geometrically and physically nonlinear problem of four-point
bending of a sandwich specimen with a transversally flexible core and facing
layers from fiber reinforced plastic, characterized by a nonlinear relationship
between transverse shear stresses and the corresponding shear strains, is for-
mulated. The statement of the problem is given taking into account the contact
interaction of the facing layers with the support and loading rollers, a numerical
method for solving it is developed based on the finite sum method (method of
integrating matrices). Equations based on the refined kinematic model of S.
P. Tymoshenko taking into account the transverse compression of the facing
layers and the equations of elasticity theory for the core, simplified in the
framework of the model of the transversally flexible layuer. The latter allow
integration along the transverse coordinate when introducing as unknown
transverse shear stresses in the core, constant in thickness. An investigation of
the prebuckling and postbuckling behavior of the specimen was carried out,
based on the method of continuing the solution with respect to the parameter,
when the transverse shear strain in the loaded facing layer was chosen as the
parameter. It was shown that during tests for four-point bending of specimens of
the class under consideration, their failure can be due to the implementation of
transverse-shear buckling modes of the facing layer in the vicinity of the loading
roller.

Keywords: Sandwich specimen � Transversely soft core � Facing layer � Fiber
reinforced plastic � Four-point bending � Integration matrices method � Iterative
process � Geometrically and physically nonlinearity � Parameter continuing
method � Shear buckling mode � Postbuckling behaviour

1 Introduction

The most rational use of fiber reinforced plastics (FRP) is possible in structural ele-
ments of a sandwich structure. Their facing (loaded) layers made of FRP have, as a
rule, low transverse shear stiffness. If compressive stresses are formed in them during
loading, then one of the mechanisms of their failure is the transverse-shear buckling
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E. Gdoutos and M. Konsta-Gdoutos (Eds.): ICTAEM 2020, STIN 16, pp. 293–300, 2020.
https://doi.org/10.1007/978-3-030-47883-4_52

http://orcid.org/0000-0003-4070-2579
http://orcid.org/0000-0002-6619-5651
http://orcid.org/0000-0002-9942-6786
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47883-4_52&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47883-4_52&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47883-4_52&amp;domain=pdf
https://doi.org/10.1007/978-3-030-47883-4_52


mode. In the mechanics of composites, theoretical studies of this buckling mode, which
is realized in standard specimens under compression, were carried out in different
approximations in many works [1, 2, etc.]. In accordance with the results of these
works, in order to identify the described buckling mode, which can also be realized in
sandwich structures with facing layers of fibrous composites, the construction of the
corresponding theory requires taking into account the transverse shear strains in the
facing layers. Such refined geometrically and physically nonlinear equations of the
theory of sandwich plates and shells with facing hard layers of fibrous composites and a
medium transversely flexible layer were constructed in [3].

Tests of specimens for four-point bending according to the scheme shown in Fig. 1
are one of the types of experimental studies of sandwich structural elements with facing
rigid layers of fibrous composites.

These tests are carried out, as a rule, in order to determine the value of the ultimate
compressive stress that is formed in the bottom facing layer within the area L of the
working length a of the specimen, upon reaching which the specified layer is failure. It
can be assumed that one of the causes of such failure is the buckling of the compressed
facing layer in one of the possible modes, the classification of which is given in [4, 5].
As will be shown below, using the equations constructed in [3], it is possible to identify
both bending and bending-shear and purely shear buckling modes of the lower facing
layer of the specimen under compression under its four-point bending according to the
diagram in Fig. 1.

2 Statement of the Problem

In accordance with [3], a refined kinematic model of S.P. Tymoshenko Uz kð Þ ¼
u kð Þe1 þw kð Þmþ z kð Þ c kð Þe1 þu kð Þm

� �
was adopted to describe the mechanics of the

deformation of facing layers at small and medium bends of the plate, and for the core a

Fig. 1. Installing diagram of sandwich speci-
men on four-point bending test

-0.1 -0.05 0 0.05 0.1
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Fig. 2. Relationship of shear modulus from
shear strain
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model of a transverse flexible layer was used. After integrating the simplified equations
of theory of elasticity, written for the core along the transverse coordinate z, and
introducing an unknown function q into consideration, the equilibrium equations
corresponding to the accepted model and the kinematic condition for the interface of
the facing layers with the core were derived in [3]. With four-point bending of the plate
in a cylindrical shape, they have the form (d 1ð Þ ¼ �d 2ð Þ ¼ 1)

T11
kð Þ;x þ d kð Þq ¼ 0; T13

kð Þ � T11
kð Þw

kð Þ
;x þ hq=2

� �
;x
þ d kð Þr033 þX3

kð Þ ¼ 0;

M11
kð Þ;x � T13

kð Þ þ tq=2 ¼ 0; M13
kð Þ þ d kð Þhtq=4

� �
;x
�T33

kð Þ þ r033t=2� d kð ÞX3
kð Þt=2 ¼ 0;

u 2ð Þ � u 1ð Þ � ðc 1ð Þ þ c 2ð ÞÞt=2þ w 1ð Þ
;x þw 2ð Þ

;x

� �
h=2þ u 1ð Þ

;x � u 2ð Þ
;x

� �
ht=4

� hq=G0
13 þ q;xxh

3=ð12E0
3Þ ¼ 0;

ð1Þ

where, with the linearly elastic behavior of the material of the facing layer in the x; z

directions and the physically nonlinear dependence between the shear stresses r kð Þ
13 and

the corresponding shear strain 2e kð Þ
13 , the internal forces and moments introduced into

the analysis and the desired functions u kð Þ;w kð Þ; c kð Þ, u kð Þ are related by the dependences

T11
kð Þ ¼ B1 u kð Þ

;x þðw kð Þ
;x Þ2=2þ m31u

kð Þ
� �

; T33
kð Þ ¼ B3 m13ðu kð Þ

;x þðw kð Þ
;x Þ2=2Þþu kð Þ

� �
;

T13
kð Þ ¼ B13ðw kð Þ

;x þ c kð ÞÞ; r033 ¼ w 2ð Þ � w 1ð Þ � tðu 1ð Þ þu 2ð ÞÞ=2
� �

E0
3=h;

M11
kð Þ ¼ D1c

kð Þ
;x ; M13

kð Þ ¼ D13u
kð Þ
;x ; B1 ¼ E1t=ð1� m13m31Þ; B3 ¼ E3t=ð1� m13m31Þ;

B13 ¼ G13t; D1 ¼ B1t
2=12; D13 ¼ B13t

2=12:

For Eqs. (1) for x ¼ �l; l we formulate the boundary conditions for free edges (2l –
plate length)

T11
kð ÞðxÞ ¼ 0; M11

kð ÞðxÞ ¼ 0; M13
kð Þ þ d kð Þqht=4

� �
ðxÞ ¼ 0; qðxÞ ¼ 0;

T13
kð Þ � T11

kð Þw
kð Þ
;x þ hq=2

� �
ðxÞ ¼ 0;

ð2Þ

for x ¼ 0 – symmetry conditions with respect to the central section, and for x ¼ a=2 –

condition in the form of equal to zero of transverse displacement of the upper facing
layer in the center of the support roller:

uðkÞð0Þ ¼ 0; cðkÞð0Þ ¼ 0; M13
kð Þ þ d kð Þhtq=4

� �
ð0Þ ¼ 0; qð0Þ ¼ 0;

T13
kð Þ � T11

kð Þw
kð Þ
;x þ hq=2

� �
ð0Þ ¼ 0; wð2Þða=2Þþuð2Þða=2Þt=2 ¼ 0:

ð3Þ
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To simulate external loading (see Fig. 1), the distributed load X3
ð1Þ applied to the

bottom layer at the contact area of the loading roller with the facing layer and it is
specified by a cosine function with an amplitude value p. To simulate the contact
interaction between the support and the top facings layer in the support section
x ¼ a=2, the condition was set in the form of the last equation of system (3), and the
unknown reaction X3

ð2Þ from the support roller was approximated by the cosine function

with an amplitude value pz, that can be determined from the solution of the problem.
For an approximate solution of the formulated boundary value problem (1)–(3), the

finite sum method (the method of integrating matrices) was used [6, 7]. In accordance
with this method, we reduce the initial differential equations to Volterra-type integral
equations of the second kind with additional relations for determining unknown inte-
gration constants. Such a reduction is carried out by integrating Eqs. (1) and satisfying
conditions (2)–(3). Note that the initial boundary-value problem has the form of a
second-order differential problem, while integral equations will contain only deriva-
tives of the desired functions. In [7], a method of collocation by Gaussian nodes and a
method for constructing integrating matrices were proposed, and in [8, 9] a constructive
application of the method of integrating matrices in version [7] for problems of the
theory of plates and shells was described in detail. Therefore, we restrict ourselves to
the final discrete statement of the problem in the operator form, which is obtained by
replacing the integral operators in the problem with integrating matrices:

AðUÞ ¼ A1UþA2ðUÞ ¼ F, where U ¼ ðwð1Þ
;x ;wð2Þ

;x ; uð1Þ;x ; uð2Þ;x ; q;x;w
ð1Þ
l ;wð2Þ

l ;uð1Þ
l ;

uð2Þ
l ; qa;1; pzÞ 2 H�5

h � R�6, A1 – linear, A2 – nonlinear operators; the vector function F

of the right-hand sides depends only on the transverse load function X3
ð1ÞðpÞ applied to

the bottom facing layer.
Experimental investigations were carried out in [10, 11] to determine the shear

modulus of fibrous composite materials used for facing layers of a sandwich plate. As a

result of the studies, averaged experimental dependences r13 ¼ G13ð2eðkÞ13 Þ2eðkÞ13 of shear
stresses on shear strains were obtained, on the basis of which the dependences of the
secant shear modulus on the corresponding shear strains were constructed (see Fig. 2).
The last dependences in the used mathematical model of deformation are included as
terms, which are taken into account in the form of a physically nonlinear dependence

G13ð2eðkÞ13 Þ ¼ G13ðw kð Þ
;x þ c kð ÞÞ during piecewise linear interpolation of the experimental

dependence G13ðw kð Þ
;x þ c kð ÞÞ obtained in [11].

The described numerical method for solving the formulated nonlinear problem is
implemented on the basis of a modified Newton’s iterative process

A0
ðnÞðUðnÞÞ ðUðnþ 1Þ � UðnÞÞ þ ðAðnÞ

1 þAðnÞ
2 ÞUðnÞ ¼ F: ð4Þ

The nonlinear dependence of the transverse shear modulus G13 on the shear strain

2eðkÞ13 ¼ w kð Þ
;x þ c kð Þ, obtained by the experimental method in [11], is included in the

problem as the dependence of the operators A0
ðnÞ, A

ðnÞ
1 , AðnÞ

2 on UðnÞ, where Uð0Þ – is the

given initial approximation, i.e. at each n-th iterative step, it is necessary to re-calculate
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the stiffness matrix depending on the n-th approximation of the solution

ðUðnÞ; ð2eðkÞ13 ÞðnÞÞ; A0
ðnÞðUðnÞÞDU is the differential of the operator AðnÞ at the point UðnÞ.

Calculations according to the iteration process (4) were carried out until the norms of
the residual and the difference between the iterations remained greater than the spec-
ified accuracy.

In the calculations, the elastic characteristics of the facing layers are taken to be
E1 ¼ 103 GPa, E3 ¼ 5; 9 GPa, m13 ¼ 0; 3; transversely flexible core – E0

3 ¼ 80 MPa,
G0

13 ¼ 30 MPa, and geometric parameters equal to t ¼ 0; 3 cm, h ¼ 1 cm, L ¼ 7
cm, a ¼ 25 cm, 2l ¼ 27 cm. To describe the desired functions having large gradients
on very short regions (in particular, in the loading roller zone), the region was
decomposed using piecewise Lagrangian interpolation to construct integrating matri-
ces. To this end, we divide the region ½0; l� into three segments e1 ¼ ½0; L=2�,
e2 ¼ ½L=2; L=2þR�, e3 ¼ ½L=2þR; l�, introduce a global grid xh ¼ fxi :
0\x1\x2\. . .xN\lg on the segment ½0; l� as follows: on each segment e1, e2, e3 we
introduce independent Gaussian nodes associated with the roots of the Legendre
polynomial; the number of nodes on these segments were taken equal N1 ¼ 40,
N2 ¼ 81, N3 ¼ 130 respectively.

3 Results of Numerical Experiments

By tabulating the parameter of the amplitude value p of the transverse load X 1ð Þ
3 , an

analysis was made of the sequence of equilibrium states (solutions of the problem) at
various loading levels, including the maximum values of deflections and shear strains
of the bottom loaded facing layer. It is worth noting that the “load-deflection” rela-
tionship is linear in nature, therefore it is not of particular interest. Figure 3 shows the
dependence of the load on the maximum modulus of the shear strain, where,

P ¼ b
Rl
�l

X3
ð1Þ, b ¼ 2:5 cm, eð1Þ13

���
��� ¼ max

i¼1;...N
jeð1Þ13 ðxiÞj.

Note that in Fig. 3 dashed line represents the solution of a geometrically nonlinear
problem without taking into account physical nonlinearity, the solid line represents the
solution of a geometrically and physically nonlinear problem.

In the vicinity of some load value P ¼ P� indicated in Fig. 3 by triangle, the
iterative process ceases to converge. To search for the unstable equilibrium positions
indicated in Fig. 3 by a dashed line, the parameter continuation method was imple-
mented (see, for example, [8, 9], which describes in detail the constructive imple-
mentation of the parameter continuation method [12]), which is one of the versions of
the modified globally incremental Lagrange theory (the problem regarding increments,
in contrast to the classical incremental Lagrange theory, is solved in a nonlinear
formulation).
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The shear strains at the point n was used as loading parameter in the method, where
n – the point at which the shear strains reach the maximum value in absolute value. The
Fig. 4a shows the distribution along the length of the specimen of the transverse shear
strains of the bottom facing layer at various load values P; Fig. 4b shows a plot of
Fig. 4a on an enlarged scale, indicating the corresponding values P of the applied force
for each of the solutions shown in the form of shear strains. The load values P in
Fig. 4b are also marked with black round markers in the diagram “load – transverse
shear strain” (see Fig. 3).

Figure 5 shows the distribution of the transverse shear modulus along the length of
the bottom compressed facing layer, corresponding to the shear strain at the point
indicated in Fig. 3 by triangle marker, at P ¼ P�.

It should be noted that the maximum modulus values of the transverse shear strains
and shear stresses, as well as the minimum absolute values of the transverse shear
moduli, are reached at the edge of the loading roller (see Fig. 4, 5, 6). It can be seen
that in its vicinity localized zones of concentration of shear stresses and corresponding
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shear strains are formed, and, consequently, a sharp drop in the values of secant shear
moduli. Figure 6 shows the increments of the transverse shear strains of the bottom
facing layer in the postbuckling region, which were obtained as a solution to the
problem with respect to the increment functions using the parameter continuation
method. The analysis showed that they characterize the buckling by the transverse-
shear mode, which is realized when the transverse shear stresses in the facing layer
reach a certain limiting value. This buckling mode is similar to the transverse-shear
mode [10], which is realized in the specimen of fiber reinforced plastic at three-point
bending and is the cause of their failure during testing.
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Abstract. A variant of the plasticity model is proposed that allows describing
the kinetics of plastic deformation of materials under different modes of low-
cycle loads. In the model, the radius of the flow surface is represented as a
function depending on temperature and accumulated plastic deformation, and the
coordinates of the center are described by two Armstrong-Frederick-Kada-
shevich-type evolutionary equations, the first of which additionally introduces
corrective material functions. Changes in plastic deformations in the model are
determined based on the associated flow law. Receiving material functions of the
model and testing it was carried out on the basis of the results of experimental
study of the deformation of a cylindrical sample under soft cyclic loading with
maximum control and minimum effort in the cycle. The experiments were carried
out on the Amsler HA 100 servo-hydraulic fatigue testing machine. Comparative
analysis of the results of numerical simulation and experiment shows that the
proposed model allows us to describe the main effects of plastic deformation of
the material under consideration under soft asymmetric loads (displacement of
the plastic hysteresis loop and reduction of its width) quite well.

Keywords: Plasticity � Soft loading � Low-cycle deformation � Yield surface

1 Introduction

Currently, there are a number of mathematical models proposed to describe the pro-
cesses of plastic deformation under low-cycle loads. In [1], it was found that the
variants of the models proposed in [2, 3] do not allow us to correctly describe the
quantitative dependence of the displacement and change in the loop width on the
number of cycles under soft cyclic loads. In [1], it is also shown that for these types of
loads, the models [4–6] satisfactorily describe the laws of displacement of the plastic
deformation loop, but there is practically no information about the possibility of
describing the kinetics of the plastic hysteresis loop width within these models, which
actually determine the cyclic component of the fracture energy.

A variant of the plasticity model with combined hardening is considered below to
describe the main effects of deformation under soft, hard, symmetric and asymmetric
low-cycle loads, which is a development of the model variant [3], supplemented with
refined relations for describing kinematic hardening [1, 4, 6].
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2 Constitutive Equations of the Plasticity Model

In the proposed version of the model, the radius of the yield surface Cp is represented
as a function depending on the temperature T and the accumulated plastic deformation
characterized by parameter kp - plastic strain path length:

Cp ¼ CpðT; kpÞ; ð1Þ

kp ¼ �kp þDkp; Dkp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

Depij De
p
ij

� �r
: ð2Þ

The components of the qij tensor are the functional of the plastic deformation process:

qij ¼ qij þD�qij; ð3Þ

where Dqij is the change in qij at the elementary step of changing external influences,
which is the sum of two types of back-stress described by evolutionary equations of the
Armstrong-Frederic-Kadashevich type [7, 8]:

Dqij ¼
X2
m¼1

Dqmij ; ð4Þ

Dq1ij ¼ G1
1 � Depij � G1

2 � q1ij � Dkp þ gpT � q1ij DTh i; ð5Þ

Dq2ij ¼ G2
1 � Depij � G2

2 � q2ij � Dkp þ gpT � q2ij DTh i: ð6Þ

In ratios (3):

DTh i ¼ DT at DT � 0; DTh i ¼ 0 at DT\0; ð7Þ

G1
1 ¼ G0

1 � ð1� n1ðT ; kpÞÞ; G1
2 ¼ G0

2 � ð1� n2ðT ; epuÞÞ: ð8Þ

In the above ratios (5), (6) and (8): G0
1ðTÞ; G0

2ðTÞ; G2
1ðTÞ; G2

2ðTÞ; gpTðTÞ – temper-
ature – dependent T material functions; n1ðT ; kpÞ; n2ðT ; epuÞ – corrective material
functions (epu – intensity of plastic deformations).

3 Results of the Experiment and Numerical Simulation

Obtaining the material parameters of the model and checking its operability was carried
out on the basis of the results of an experimental study of the deformation of a sample
made of material of the 12Kh18N10T type with a cylindrical working part, under soft
cyclic loading with control of the maximum and minimum values of forces in the cycle.

302 V. Gorokhov et al.



In Fig. 1 and Fig. 2 shows graphs of the dependence of the displacement of the
loop DlðnÞ ¼ lðnÞ � lð50Þ (Fig. 1) and the magnitude of the total deformations of the
loop in the hðnÞ cycle (Fig. 2) versus the number of cycles n. The results of numerical
simulation are shown by solid lines in the figure, and the experimental results by dots.

Fig. 1. Loop offset depending on the number of loading cycles. Solid line - numerical modeling,
points – experiment.

Fig. 2. The range of total deformations in the cycle depending on the number of loading cycles.
Solid line - numerical modeling, points – experiment.
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4 Conclusion

A variant of the plasticity model is proposed that allows describing the kinetics of
plastic deformation of materials under soft modes of low-cycle loading. A good
agreement between the results of numerical simulation of plastic deformation of
stainless steel and experimental data is demonstrated.
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Abstract. The issue of evaluating strength and service life is discussed as
applied to structures performance of which is characterized by multi-parametric
nonstationary thermal-mechanical effects. The major degradation mechanisms of
structural materials are considered. In the framework of mechanics of damaged
media, a mathematical model describing the processes of viscoplastic defor-
mation and damage accumulation due to creep is developed. The results of
numerical simulation of the carrying capacity of a power plant reactor vessel in
the event of a hypothetical emergency are presented. A number of characteristic
features accompanying the deformation and failure processes connected with the
time and place of macrocrack nucleation, the stress-strain state history and
damage degree are given. By comparing numerical and experimental results we
can conclude that the proposed constitutive relations of MDM adequately
describe degradation of the initial strength properties of the material in terms of
creep and long-term strength.

Keywords: Long-term strength � Modeling � Constitutive relations �
Mechanics of damaged media

1 Introduction

To guarantee safe exploitation of critical engineering facilities and to prolong their
standard service life, it is necessary to monitor damage growth rates in the most
hazardous zones of structural elements and predict the development of such processes
up to the limit state [1].

The currently available methods for evaluating service life of structural elements do
not account for actual processes taking place in materials. Elastic analysis used in the
standard approach does not enable us to consider actual characteristics of viscoplastic
deformation, on which the service life of structural elements depends [1].

In this connection, it becomes vital to develop new methods for evaluating service
life of structural elements based on equations of thermal viscoplasticity, equations of
damage accumulation and failure criteria with their comprehensive substantiation by
conducting the related full-scale and numerical experiments on laboratory specimens
and numerically analyzing the deformation and failure processes of structural elements
under service conditions [1–6].

The most effective tool for these purposes is mathematical modeling of degradation
processes of structural materials, using modern models and methods of mechanics of
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damaged media and fracture mechanics. Obtained by modeling, the values of damage
degree of the material in accessible zones must be updated with the help of modern
physical methods using periodic non-destructive control [7].

In the framework of MDM, a mathematical model has been developed that
describes the processes of damage accumulation in structural materials due to degra-
dation mechanisms, determined by growing creep strains under multiaxial stress and
arbitrarily complex regimes of thermal-mechanical loading.

2 Technique and Numerical Results

The main assumptions of the introduced version of MDM are as follows:

– the material is initially isotropic and free of damage (only the anisotropy caused by
deformation processes is accounted for, whereas damage-induced anisotropy of
material elastic properties is not taken into account);

– the components of strain tensors and strain rates are the sum of momentary and time
components;

– the evolution of equipotential creep surfaces is described by the change of its radius
and displacement of its center;

– the volume change of the body element is elastic;
– small deformation processes are considered;
– the only structural parameter characterizing the material damage degree at the

macro-level is scalar parameter – damage degree;
– the accumulated damage degree affecting the deformation process of the material is

taken into account by introducing effective stresses.

The relation between tensor components of stresses and elastic strains is established
on the basis of the equations of thermal elasticity.

To describe creep processes, a family of equipotential creep surfaces (surfaces with
a constant creep strain rate) is introduced in the stress space, which has a common
center and different radii defined by a current stressed state [8–10].

Tensor components of creep strain rates are defined on the basis of the associated
flow law and gradientality principle.

At the stage of the development of defects scattered over the volume, the damage
degree effect on the material physical mechanical properties is observed. In the first
approximation, this effect can be taken into account based on the concept of a
degrading continuum, by introducing effective stresses [2, 7, 11].

The rate of damage accumulation during creep is determined by the evolutionary
equation accounting for the volumetric stressed state, the level of accumulated damage,
accumulated relative damage energy, spent on the nucleation of defects and the rate of
change of damage energy [3, 5, 6, 12].

The condition when damage degree reaches its critical value is taken as the criterion
of termination of the growth phase of scattered macrodefects.

The results of numerically analyzing the carrying capacity of a NPP reactor vessel
made of 15X2NMFA steel in the event of a hypothetical emergency for the long-term
strength mechanism are presented.
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The calculation scheme is represented by an axisymmetric structure of a reactor
vessel, consisting of a cylindrical wall and an elliptic bottom. An emergency was
simulated by applying internal hydrostatic pressure, varying from zero at a height of h
= 1,5 m from the bottom lowest point and modeling the force effect of meltdown,
internal pressure and temperature, varying in the limits of the considered part of the
reactor vessel within 184° to 1510 °C.

The reliability of the developed MDM model was numerically assessed prior to
emergency simulation and material parameters of 15X2NMFA steel were determined
within the temperature range of 20 °C to 1200 °C.

The problem of evaluating long-term strength of a NPP reactor vessel under
thermal dynamical loading was numerically solved in two steps.

At the first step, the stage when the pressure and temperature increase up to their
maximal values during a short period was analyzed. At the second step, the pressure
and temperature were kept constant.

A number of calculations were carried out which differ in the value of internal
pressure.

The numerical analyses proved that, for all the versions of the computations from
the viewpoint of long-term strength, the second stage (with the constant pressure and
temperature) accompanied by the intensive development of creep strains and growth of
defects is the most important.

The maximum allowable pressure that doesn’t give rise to macrocrack nucleation
has been defined.

The obtained numerical results on determining the maximum allowable pressure
agrees with the results presented in [13].

3 Conclusion

The numerical computations conducted and their comparison with the available
experimental data make it possible to make the conclusion about the adequacy of the
constitutive relations of MDM in modeling degradation of materials according to the
long-term strength mechanism and the possibility of effectively using the developed
constitutive relations of MDM for evaluating long-term strength of materials and
structures.

The mathematical model of MDM has been developed, that describes the processes
of inelastic deformation and damage accumulation in structural materials (metals and
their alloys) during the degradation of initial strength properties of materials according
to the long-term strength mechanism.

Using the numerical modeling method and comparing the obtained results with
experimental data, the reliability of the constitutive relations of MDM for creep has
been assessed. This made it possible to make the conclusions about the reliability of the
developed modeling representations and the accuracy of the developed method for
determining the material parameters included into these relations.

The results of numerically analyzing the carrying capacity of a NPP reactor vessel
in the event of a hypothetical accident are presented proving the validity of the carrying
capacity failure of such facilities.
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Abstract. A technique for numerical analysis of nonlinear dynamic deforma-
tion and progressive failure of multi-layered metal-plastic shells of revolution is
developed with account for their strain-rate dependent strength characteristics.
The geometric dependencies are formulated on the basis of quadratic version of
the nonlinear theory of elasticity. The relationship between stress and strain
tensors in a composite macrolayer is based of Hooke’s law for an orthotropic
body combined with the theory of effective modules. The process of progressive
layer-by-layer failure is described in the framework of the degradation model of
stiffness characteristics. The strain rate dependent stiffness and strength char-
acteristics are accounted for. An energetically consistent system of equations of
motion is constructed using the principle of possible displacements. A numerical
method for solving the problem is based on an explicit variational-difference
scheme. The proposed technique was verified on the problem of unsteady
deformation of a cylindrical shell subjected to pulse pressure.

Keywords: Composite materials � Shells of revolution � Strength � Failure �
Numerical methods � Explosive loading

Due to their effective energy absorption, increased crack-resistance and non-splintering
character of possible failure, composite materials are widely used in constructing
protective structures subjected to intense pulse loadings. In this connection, experi-
mental and theoretical studies of strain rate effect of composite materials on their
strength and stiffness characteristics appear to be highly topical since the material of
structural elements subjected to pulse loading exhibits stress-strain behavior with a high
degree of variability over time. In a number of experimental and theoretical works [1–
3], the strain rate dependence of elastic and strength characteristics of composite
materials is noted. However, the determination of the parameters characterizing the
properties of composite materials at high strain rates is associated with certain diffi-
culties due to the necessity to measure the effect of dynamic pressure on a specimen as
a function of time.

The paper presents analytical results of the strain rate effect on dynamic behavior
and progressive failure of shells of revolution made of hybrid metal-plastic materials.
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We considered both homogeneous glass-fiber-reinforced plastic shells formed by
double alternating winding of spiral and annular layers with a thickness ratio of 1:1,
and inhomogeneous ones fabricated by spiral cross winding of unidirectional glass-
fiber-reinforced plastic (according to the scheme of reinforced homogeneous shells) on
a steel cylindrical mandrel made of mild steel.

Since the shells of revolution made from composite materials are inhomogeneous,
have low shear stiffness and, in some cases, are rather thick, thus, in order to describe
their stress-strain state, it is necessary to use nonclassical shell theories [4].

Geometrical dependencies are constructed using the relations of the simplest
quadratic version of the nonlinear elasticity theory [4].

The stress-strain tensors in a homogeneous composite macrolayer are related by
Hooke’s law for an orthotropic body in combination with the theory of effective moduli
[4]. The process of progressive layer-by-layer damage of layered shells of revolution is
described in the framework of the model of degradation of their stiffness characteristics
[5]. And furthermore, the strain-rate dependent strength characteristics of composite
materials are taken into account. In particular, for unidirectional fiberglass, the material
stiffness and strength characteristics can be described by the regression function [3]

F _eð Þ ¼ aþ b _ec ð1Þ

where F and _e are strength characteristics and strain rate; a, b, c are experimentally
determined material constants. The constitutive relations in the isotropic steel layer of
the shell are formulated on the basis of the differential theory of plasticity with linear
hardening [4].

In order to derive the equations of motion of an inhomogeneous shell of revolution,
the principle of virtual displacements is used [6].

The equations derived are universal enough, because they allow one to describe
nonlinear nonstationary deformation processes and to estimate the limiting deforma-
bility and dynamic strength of two-layered metal-plastic shells of revolution, and their
geometrical and structural parameters changing over a wide range.

The numerical method for solving the problem formulated was based on the
explicit variational-difference scheme [4, 7]. The calculations were carried out on a
“Lobachevsky” supercomputer.

A numerical analysis of the effect of the strain rate on the dynamic strength of two-
layered metal-plastic cylindrical shells was considered on the problem of their defor-
mation under the action of a pressure pulse caused by a blast in a center of a shell of an
explosion charge (EC), which describes the pressure profile in the incident shock wave
by an empirical relation [8]. The physicomechanical characteristics of unidirectional
glass-fiber-reinforced plastic shells were determined from the results of quasistatic tests
on ring and plane unidirectional specimens by standard techniques for identifying the
corresponding stiffness and strength characteristics [9]. The strain rate dependence of
the strength characteristics of glass-fiber-reinforced plastics is described by function (1).

The results obtained attest that the account of strain rate dependence of strength
characteristics for all the reinforcement schemes considered lead to a qualitative dif-
ference in the character and size of failure zones of the binder and fibers and to a

310 L. Igumnov et al.



significant increase in the load-carrying capacity of the shells compared with the cal-
culations of constant strength characteristics.

Calculation models allowing one to analyze the processes of progressive failure of
pulse-loaded metal-plastic cylindrical shells of revolution both with account of the
strain rate dependence of their strength characteristics (dynamic model) and with
constant characteristics (static model) have been proposed.

A comparative analysis of calculation results with experimental data testifies their
better agreement in dynamic model. For various reinforcement schemes of composite
macrolayer, the qualitative differences in character and size of failure zones calculated
by both the methods were revealed.

The results obtained can be used in the design and evaluation of the dynamic
strength of load-carrying elements.

This work was supported by a grant from the Government of the Russian Feder-
ation (contract No. 14.Y26.31.0031).
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Abstract. The unsteady influence of an external load on the base, which is an
elastic half-space with a membrane-type coating is investigated. The load acting
on the “half-space-membrane” system is directed normally to the surface of the
membrane and is a function that depends on the coordinate and time.
A system of resolving equations is built. Its basic equation follows from the

boundary condition, which corresponds to the equality of normal displacements
on the surface of the half-space to the deflections of the membrane. The normal
displacements of half-space and deflections of the membrane are connected with
contact pressure and stresses by integral relations based on the principle of
superposition. The basic equation is supplemented by initial conditions to a
closed system of resolving equations.
To solve the system of resolving equations, a numerical-analytical algorithm

based on the method of quadratures is used.
The results of calculations for the external load specified by various functions

are presented.

Keywords: Membrane � Elastic half-space � Transient load � Numerical-
analytical algorithm

1 Problem Formulation

The transient impact of normal pressure pðs; xÞ on the elastic half-space with a
membrane-type coating is considered.

We assume that the half-space is occupied by a homogeneous isotropic linearly
elastic medium with constants k; l and density. A rectangular Cartesian coordinate
system Oxyz is introduced. In it, the coordinate plane z ¼ 0 coincides with the unde-
formable free surface of the half-space, and the axis Oz is directed deep into the half-
space.

Mathematical model of the problem contains [1–4]
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– equations of motion of an elastic medium in displacement potentials u and w

€u ¼ Du; g2€w ¼ Dw; D¼ @2

@x2
þ @2

@z2
ð1Þ

– relation between elastic displacement potentials and nonzero components of the
displacement vectors u (along the axis Ox), w (along the axis Oz)

u ¼ @/
@x

� @w
@z

; w ¼ @/
@z

þ @w
@x

; ð2Þ

– relation between the components of the displacement vectors and the stress tensor
rij

r11 ¼ @u
@x

þ j
@w
@z

; r22 ¼ j
@u
@x

þ @w
@z

� �
; r33 ¼ j

@u
@x

þ @w
@z

;

r13 ¼ 1� j
2

@u
@z

þ @w
@x

� � ð3Þ

– membrane motion equation (v – deflection, a – the speed of the waves of tension-
compression in the membrane)

€v s; xð Þ ¼ a2
@2v
@x2

þ pþ r330; r330 ¼ r33jz¼0 ð4Þ

– initial conditions

vjs¼0¼ _vjs¼0¼ wjs¼0¼ _w
��
s¼0¼ ujs¼0¼ _ujs¼0¼ 0 ð5Þ

– boundary adhesion-free conditions between the membrane and the surface of the
half-space

r13jz¼0¼ 0; v ¼ wjz¼0 ð6Þ

All variables and parameters are presented in a dimensionless form (the prime
indicates the dimensional values):
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s ¼ c1t
L

; v ¼ v0

L
; u ¼ u0

L
;w ¼ w0

L
; x ¼ x0

L
; z ¼ z0

L
; p ¼ p0L

c21qm
; a ¼ a0

c1
; c21 ¼

kþ 2l
qp

c22 ¼
l
qp

; g2 ¼ c21
c22

; u ¼ u0

L2
; w ¼ w0

L2
; rij ¼ r0ij

kþ 2l
; j ¼ k

kþ 2l

ð7Þ

Here t - dimensional time, qm; qp - density of the membrane and the half-space
material, c1; c2 - speed of the tension-compression waves and shear waves in half-
space material, L - the characteristic linear parameter.

2 Method of Solution of Problem

The resolving equation is based on the principle of superposition and follows from the
boundary condition (6)

Gm � p ¼ r330 � ðGp � GmÞ: ð8Þ

Here Gm; Gp - transient function for a for a membrane and half-space, respectively
[2–4].

The left side of Eq. (8) can be represented as follows:

Gm � p ¼ 1
2

Zs

0

dt
Zxþ s�t

x�sþ t

pdn ð9Þ

This integral for a given function is calculated analytically.
To solve Eq. (8), a numerical-analytical algorithm based on the quadrature method

is used. For the hyperbolic type of equations of motion of the half-space and the
membrane an explicit integration scheme is used. The space-time domain is covered
with a grid with a constant step in time and coordinate. The grid functions correspond
to the required functions. A discrete analogue is constructed for the equation. More-
over, the kernel of convolution has the form

Gpðx; sÞ ¼ Grðx; sÞþGsðx; sÞ½ �Hðs� xj jÞ: ð10Þ

Here Gr; Gs - the regular and singular components of the transient function for half-
space, Hðs; xÞ - Heaviside function. The integrals from the first component are cal-
culated using Gauss method, the integrals from the second are calculated using the
weighting method and are understood in the meaning of a regularized value.
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Abstract. This work reviews recent molecular statistics (MS) numerical
experiments of cracked samples, and discusses the crack-tip region stress field of
ideal brittle materials. Continuum-based linear elastic fracture mechanics,
indeed, breaks down at extremely small scale, where the discrete nature of atoms
is considered. Surprisingly, recent results have shown that the concept of stress
intensity factor (SIF) is still valid. In this work, by means of MS simulations on
single-edge cracked samples of ideal brittle silicon, it is shown that the stress
intensity factor derived from the virial stress may be useful to describe the
fracture at extremely small dimensions and to quantify the breakdown of
continuum-based linear elastic fracture mechanics. However, it is still debated
whether a continuum-based concept such as the “stress” should be applied to a
system made of atoms.

Keywords: Virial stress � Atom � Crack � Stress intensity factor

1 Introduction

With recent developments in miniaturization of electronics devices such as nano and
micro-electromechanical systems (NEMS/MEMS), issues usually addressed at the
macroscale, i.e. fatigue and fracture, have been brought into a completely new “scale”
[1, 2]. At the same time, developments in nanotechnology give nowadays a completely
new way at which the fatigue and fracture can be studied with a remarkable potential
impact in several fields of engineering [3–10]. At such small scales, where discrete
nature of atoms can’t be ignored, the continuum concepts largely used at the macro-
scale become questionable [11–13].

While methods based on energy have shown good potential to be extended from
continuum to discrete system [12, 14–18], it is still debated whether the concept of
“stress” should be applied to a system made of atoms [19, 20]. Stress is, indeed, a
continuum concept, originated from the study of strength and failure of solid, and
commonly defined as the quantity that represents the internal forces on a defined plane
of a continuous material. Thus, questions arise on the definition of “atomic stress”.
When investigating fracture at the atomic scale, the virial stress tensor is commonly
employed to derive mechanical stresses acting on atoms [20–22]. Setting aside the
debate on the validity of the virial stress as a representation of mechanical stress at
atomic scale, in the present work the focus is on the applicability of classic continuum
concepts in the presence of defects, such as the stress intensity factor (SIF). By
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reviewing recent molecular statistics (MS) analyses on single-edged cracked samples
loaded under mode I [23], and representative of ideal brittle fracture, it is demonstrated
that the virial stress shows the trend of inverse square root singularity and that com-
putation of the SIF according to Irwin’s concept is possible. Furthermore, the break-
down of continuum linear elastic fracture mechanics, recently defined by means of
energy concepts [11–13], is here quantified by using merely the stress fields.

It is concluded that the SIF from atomic stress may be useful in characterizing
fracture at atomic scale, provided that the virial stress is accepted as representative of
atomic mechanical stress. On the other hand, energy concepts should be anyway
preferred for future developments, since they can provide a direct equivalence between
continuum, discrete systems and among different scales.

2 Review of Recent Molecular Statistics Simulations
on Cracked Samples

Recently, fracture tests by means of MS simulations were conducted by using open-
source code LAMMPS [24]. While details can be found in [23], important aspects are
presented hereafter. The modified Stillinger-Weber (SW) interatomic potential [25] was
employed. The SW potential is representative of ideal brittle fracture, and often used
when studying single crystal silicon. The focus was on single-edge cracked sample,
loaded under mode I. Figure 1 depicts an example of the samples and orientation.

Several specimens where considered, scaling their size until few nanometers: the
width of the sample W varied from 198 nm to 9.8 nm, while the crack length a was
kept equal to W/3. The mechanical properties were given by the following material
constants: C11 = 201 GPa, C12 = 51.4 GPa and C44 = 90.5 GPa. Along the direction
[111], an ideal material strength rIS of 35 GPa at critical strain eC = 0.3 was obtained.
A stepwise increment of strain e is applied at the upper and lower layers of atoms
according to Fig. 1, and the strain is increased until final fracture. At fracture, the
critical displacement dC (maximum displacement before failure) is obtained. The
mechanical stress is obtained dividing the virial stress (stress � volume quantity) by

Fig. 1. Cracked samples employed in the molecular statistics analyses and orientation [23]. The
thickness of the simulation cell is indicated as t.
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the per-atom volume at eC = 0.3, i.e. 24.44 Å3. This value is, indeed, a more reliable
estimation of the atomic volume in regions that are highly deformed, such as close to
the crack tip at failure conditions. Analyses were conducted at 0 K and fully included
the lattice trapping.

3 Results and Discussion

The crack tip stress fields of some selected considered geometries are presented in
Fig. 2a for the sake of clarity. The values of the atoms at the crack tip are plotted at
r = 0.1 Å for convenience, since as well known the log-log scale does not allow the
value of 0. The depicted stress is the mechanical atomic stress, i.e. virial stress divided
by the per-atom volume as explained in the previous section.

The figure shows two very important results:

• The MS analyses do not predict the infinite stress at the crack-tip but rather a finite
value, i.e. the ideal material strength rIS, regardless of the specimen size. This
indicates that the fracture, in the case of ideal brittle materials, is ultimately gov-
erned by atoms at crack tip.

• Even if the stress singularity is missing, near the crack tip region the stress still
varies with 1/r0.5 as expected from continuum LEFM. Figure 2a depicts only
selected geometries for the sake of clarity, but same results are obtained for all the
considered samples.

The results allow the quantification of the SIF at failure KIf (i.e. at critical dis-
placement dC), according to the classic Irwin’s definition [26, 27]:

Fig. 2. (a) Near crack-tip atomic stress distribution for selected geometries; atomistic stress is
derived from virial stress/per-atom volume. The stress values of the atoms at the crack tip are
plotted for r = 0.1 Å rather than 0 Å in order to summarize in a single log-log scale graph both
stress distribution and crack-tip values. (b) Critical stress intensity factors versus the variation of
the specimen width W.
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KIf ¼ rV
ffiffiffiffiffiffiffiffi

2pr
p

; ð1Þ

where rV is the atomistic mechanical stress, perpendicular to the crack plane; r is the
distance from the crack-tip along the crack plane. The results are presented in Fig. 2b
and compared with other experimental and numerical works by other authors [16, 17,
28]. KIf � 0.97 MPa�m0.5 is constant for all the geometries, and it agrees well with the
fracture toughness of single crystal silicon, including bulk samples [29].

Finally, the comparison with continuum-based linear elastic solutions conducted in
[23] is summarized in Fig. 3. The stress intensity factors at failure are normalized vs
the KIf of the largest sample W = 198.41 nm, and plotted versus the length of the
singular stress field KK normalized by the fracture process zone RFPZ. KK is the
distance from the crack-tip at which the stress deviates more than 5% from the expected
1/r0.5, while the RFPZ is a constant value taken from the literature [12, 13]. When
continuum and atomistic simulations are overlapped, the continuum-based formulation
breaks down when the ratio between KK and RFPZ is approximately 4-5, in agreement
with [12, 13]. The atomistic simulations, instead, show a clearly scale-independence,
confirming that ideal brittle fracture is ultimately governed by atomic bond breaking
[7, 17].

Concluding, the concept of SIF is still surprisingly valid if the atoms are modeled,
and static crack and ideal brittle material containing no other defects are considered.
This result also agrees well with conclusions made by other authors [30]. Provided that
the virial stress is affectively accepted as representative of atomic stress, crack tip
region stress field of molecular system may be described by continuum-based SIF
concept.

Fig. 3. Normalized SIF at failure versus the ratio of singular stress field length KK and fracture
process zone length RFPZ. Numerical values are reported in [23].
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Abstract. The mechanism of the drastic decrease in the lifetime of Ni-base
superalloy, Alloy 617 under creep-fatigue loading at elevated temperatures was
clarified by using EBSD (Electron Back-Scatter Diffraction) analysis. The
degradation process was monitored by using an intermittent creep-fatigue test
and EBSD analysis. The change of the crystallinity of grains and grain
boundaries was quantitatively analyzed by using the image quality (IQ) value
obtained from the EBSD analysis. The IQ value indicated the density of defects
such as vacancies, dislocations, local strain, and so on. The decrease in the IQ
value corresponded to the decrease in the crystallinity of the observed area. The
accumulation of fine voids was found to be accelerated under the creep-fatigue
loading, and it caused the drastic decrease of not only the IQ value, but also the
strength of the grain boundaries. Intergranular cracking started to occur when
the crystallinity of grain boundaries decreased to the critical value due to the
degradation of the crystallinity caused by the local accumulation of dislocations
and voids around the grain boundaries.

Keywords: Creep-fatigue damage � Ni-base superalloy � Intergranular
cracking. EBSD analysis � EBSD analysis

1 Introduction

Ni-base superalloys are strong candidate for the various components used in advanced
thermal and chemical plants and jet engines, such as pressure vessels, pipes, turbine
blades, and so on, because of their high strength at elevated temperatures higher than
700 °C. In order to minimize the emission of CO2 during their operations, it is very
important to improve their thermal efficiency by elevating their operating temperatures.
In the case of thermal power plants, the frequent random change of output is required to
compensate the unexpected changes of the outputs of renewable energies, comparing
with the constant output of the conventional plants. Thus, the creep-fatigue loads are
applied to the components used in the advanced plants at the elevated temperatures.

© Springer Nature Switzerland AG 2020
E. Gdoutos and M. Konsta-Gdoutos (Eds.): ICTAEM 2020, STIN 16, pp. 325–331, 2020.
https://doi.org/10.1007/978-3-030-47883-4_58

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47883-4_58&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47883-4_58&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47883-4_58&amp;domain=pdf
https://doi.org/10.1007/978-3-030-47883-4_58


It was reported that the effective lifetime of Ni-base superalloys dropped down
drastically under the creep-fatigue loading at elevated temperatures [1–3]. The main
reason for the drastic decrease was attributed to the change of the crack propagation
path from conventional transgranular to intergranular. The mechanism of the change,
however, is not clarified yet. Therefore, in this study, the degradation process of the
strength of grain boundaries in Alloy 617, one of the representatives of Ni-base
superalloy, was investigated in detail by using an intermittent creep-fatigue test and
EBSD analysis. The degradation of the local crystallinity of grains and grain bound-
aries was continuously monitored in the same area.

2 Experimental Methods

Table 1 shows the chemical composition of Alloy 617 used in this study. This alloy
consists of two phases, c phase (Ni) and c’ phase (Ni3Al). The alloy was heat-treated by
solution annealing at 1150 °C for 1.12 h after hot rolling. After that a small specimenwas
cut into the dumbbell shape as shown in Fig. 1. This size was good for the continuous
observation of the change of its crystallinity by EBSD in SEM. The intermittent creep-
fatigue test was applied to the specimen at 800 °C in an inert gas of Ar. The test conditions
were as follows: The maximum applied stress was 100 MPa, and the stress ration was
0.03. The loading rate was 100 N/s and the holding time at the maximum stress was
10 min. The test was frequently stopped at certain plastic strains because all the fractured
specimen showed the almost the same normalized-time dependency of plastic strain.

Table 1. Chemical composition of Alloy 617 (wt%).

C S Cr Ni Mn Si Mo
0.06 <0.002 21.98 54.71 0.03 0.06 8.8
Ti Cu Fe P Al Co B
0.4 0.02 0.8 <0.002 1.14 11.69 0.001

Fig. 1. Outlook of the test equipment and the shape of a test specimen.
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The crystallinity of a grain and a grain boundary was quantitatively measured by
using IQ value obtained from EBSD analysis. This value indicates the average
sharpness of Kikuchi pattern obtained from the observed area. Since the clarity of the
pattern is determined by the uniformity of the diffracted beams based on Bragg’s law, it
indicates the width of the fluctuation of the measured local atomic plane distance, and
therefore, the density of various defects such as vacancies, dislocations, impurities,
local strain, and so on which cause the variation of local lattice constant. It was
confirmed that this value is effective for evaluating the quality of grains and grain
boundaries in the observed area [4, 5]. In addition, it shows the strong relationship with
the strength of a grain and a grain boundary [6].

The strength of a grain and a grain boundary was measured by using a micro tensile
test method [7, 8], which consisted of a scanning electron microscope (Hitachi, SU-70),
with focused ion beam (Hitachi, FB2200) as shown in Fig. 2. A bicrystal sample was
cut from the tested specimen by considering the local IQ value of the two grains and the
grain boundary in the sample.

3 Degradation of the Crystallinity of Alloy 617

The change of the surface morphology of the specimen observed in the same area
during the creep-fatigue test is shown in Fig. 3. Initially, its surface was flat and no
specific defects were observed on the surface. When the testing time t reached t/
tf = 12%, where tf is the rapture time, fine white dots started to appear along grain
boundaries as shown in Fig. 3(b). These white dots were confirmed to be fine voids.
When the normalized time t/tf reached 48%, some grain boundaries perpendicular to the
uniaxial loading direction started to crack as shown in Fig. 3(c). Therefore, the main
degradation mechanism of Alloy 617 during the creep-fatigue test was the accumu-
lation of vacancies along grain boundaries.

(a) IPF map                        (b) IQ map                          (c) Micro tensile test 

Fig. 2. Micro tensile test of a bicrystal specimen.
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The degradation process was observed by using IQ value as shown in Fig. 4. The
red color area is the area with high IQ value, in other word, high crystallinity, and the
blue color indicates the low crystallinity. Initially, all the grains showed high crys-
tallinity as shown in Fig. 4(a). The crsytallinity near grain boundaries started to
degrade at t/tf = 12% as shown in Fig. 4(b). The reason for the degradation was the
accumulation of vacancies (fine voids). In addition, the accumulation of dislocations
around grain boundaries was confirmed by KAM (Kernel Average Misorientation)
value obtained from EBSD analysis. Thus, the vacancies were emitted from the heavily
accumulated dislocations around the grain boundaries. Figure 4(c) shows the distri-
bution of IQ value in the same area. Since plastic deformation proceeded, the shape of
grains was deformed heavily comparing with that observed in Fig. 4(b). The crys-
tallinity around grain boundaries were further degraded and a lot of intergranular cracks
appeared. Most cracked grain boundaries were perpendicular to the uniaxial loading
direction. Thus, the strength of these cracked grain boundaries was lower than that of
uncracked grains.

Figure 5 shows the degradation of the stress-strain curve of the typical bicrystal
structures cut from the specimen in Fig. 4(c). One bicrystal structure consisted of a
grain boundary with relatively high IQ value of about 5080. This sample was fractured
in the lower grain in the bicrystal structure. Clear plastic deformation of this sample
was observed as shown in the figure (orange dotted line) and the tensile strength of this

(a) t/tf = 0%                             (b) t/tf = 12%                               (c) t/tf = 48% 

Fig. 3. Change of the surface morphology of the specimen during the creep-fatigue test.

(a) t/tf = 0%                       (b) t/tf = 12%                       (c) t/tf = 48%

9000

Fig. 4. Change of the distribution of IQ value on the surface of the specimen during the creep-
fatigue test.
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sample was about 650 MPa. Thus, the strength of the grain boundary of this sample
was higher than this value. The other bicrystal sample consisted of the grain boundary
with IQ value of about 3100. Intergranular fracture occurred in this sample clearly, and
the strength of the grain boundary was about 400 MPa (black dots in Fig. 5). The lower
IQ value of a grain boundary indicates the higher density of defects, in this sample,
vacancies (fine voids). Therefore, this result clearly validated that there was a strong
relationship between the crsytallinity and the strength of a grain boundary. The
accumulation of vacancies in and around a grain boundary degrades the strength of the
grain boundary. Therefore, the accumulation of fine voids during the creep-fatigue
voids around grain boundaries degraded their strength drastically, and thus, caused
intergranular cracking.

Figure 6 summarizes the IQ-value dependence of the strength of a grain boundary
and the critical resolved stress of a grain measured by the micro tensile test. There was
clear relationship between the IQ value and each strength. The strength of a grain
boundary decreased monotonically with IQ value because of the decrease in the density
of atomic bonding in the grain boundary due to the accumulation of fine voids. On the

Fig. 5. Change of the distribution of IQ value on the surface of the specimen during the creep-
fatigue test.
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Fig. 6. Change of the distribution of IQ value on the surface of the specimen during the creep-
fatigue test.
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other hand, the critical resolved shear stress of a grain decreased monotonically with IQ
value because a grain with higher IQ value consists of lower density of defects, in other
words, pinning centers for the movement of dislocations. As a result, there should be a
critical IQ value at which the fracture mode of a bicrystal sample change from ductile
transgranular cracking to brittle intergranular one. Thus, intergranular cracking in Alloy
617 was dominated by the degradation of IQ value of grain boundaries.

Summary
The initial creep-fatigue damage of Ni-base superalloy, Alloy 617, at elevated tem-
perature was analyzed continuously by suing an intermittent creep-fatigue test and
EBSD analysis of a small dumbbell-shape specimen. It was found that the accumu-
lation of fine voids started to appear in the early stage of the testing time of about 12%.
The accumulation degraded the effective strength if grain boundaries. Once the crys-
tallinity of a grain boundary reached a critical value, intergranular cracking started to
occur. Thus, the initial intergranular cracking of the alloy was dominated by the
acceleration of the accumulation of vacancies around grain boundaries under creep-
fatigue loading.
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1 Extended Abstract

Aiming to understand the fracture mechanism accompanying the small fatigue crack
propagation in polycrystalline metallic materials like steels the full-field strain mea-
surement using digital image correlation (DIC) method was performed. The developed
experimental approach was applied to study the small fatigue crack behavior in body-
centered Fe-Cr ferritic stainless steel with the relatively large grain size of about
350 µm. The high spatial measurement accuracy of the strain field analysis was per-
formed using the unique patterning technique with a characteristic speckle size of
approximately 10 µm. The experimental procedure is described in detail by Malitckii
et al. [1]. The developed experimental procedure combines the full-field strain mea-
surement, electron backscatter diffraction (EBSD) and fracture surface analysis in order
to reveal the crack growth rate, path and mechanics for microstructurally small crack in
high-cycle fatigue range. Figure 1 shows the schematic representation of the small
fatigue crack growth mechanism.

DIC analysis evidences the periodic appearance of the pairs of highly tensioned and
compressed strain localization areas within the grains forming simultaneously with the
fatigue crack propagation (see insert of Fig. 1). Such a behavior manifests the presence
of shear deformation that was found to be highly localized, while the macroscopic
deformation is small. Cumulative analysis of the strain field and crack growth rate
reveals that the observed shear strain localization areas are formed subsequently ahead
of the crack tip and control apparently the small fatigue crack growth rate. The fatigue
crack growth rate is affected by the accumulated shear strain deformation areas rather
than by microstructural features such as grain boundaries.

The relationship between the accumulation of the shear deformation areas and grain
orientation i.e. Schmid factor was studied in the first three grains, where the intermittent
appearance of the shear localization zones ahead of the crack tip was observed. Schmid
factor of the grains was found to be inversely proportional to the strain intensity factor
calculated as quotient between cumulative maximum shear strain and deformation area.
The shear localization at the grain boundary was found to be smaller compared to that
within the grains. Worth to note, however, the small fatigue crack propagates across the
grain boundary of low misorientation angle of about 15o–20o.
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The small fatigue crack growth rate decreases shortly while the crack tip approa-
ches the localized deformation area. The crack retardation is accompanied by the
change of the crack growth mechanism from multiple-slip (Stage II) to single-slip
(Stage I). The cumulative maximum shear strain increases slightly with crack traversing
from the first to the following grain, but the increase is controlled, apparently, by the
change in stress conditions due to the reduction of the cross-section area of the
specimen rather than by the orientation of the grains.
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Fig. 1. The behavior of a small fatigue crack growth in a bcc ferritic steel (ASTM UNS S43940
ferritic stainless steel). Fatigue crack growth by Stage II multiple-slip mechanism is shown by the
black line and fatigue crack growth by Stage I single-slip mechanism by the green line,
respectively. After crack tip approaches the shear strain localization area the Stage II fatigue
crack growth mechanism (a) changes intermittently to Stage I (b, c) forming a faceted profile. The
intermittent change of the crack growth mechanism accompanied by fatigue crack growth rate
retardation is shown schematically on the crack growth rate diagram. The insert at the right
bottom corner shows strain field of linear deformations Exx and Eyy (a) and maximum shear
deformation (b) calculated by DIC method during a fatigue test of the ferritic stainless steel
specimen [2].
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Abstract. This paper aims to propose a unified criterion for brittle fracture of
general (blunt) notches and ideal (sharp) cracks. A new fracture parameter, i.e.,
atomic energy release rate (ERR), for which the atomic discrete nature is fully
taken into account, is defined based on the concept of atomic fracture mechanics
(AFM). The results show that the proposed atomic ERR criterion works well for
a nano-sized notch even when the notched sample becomes extremely small.
Compared with an ideal crack, it is found that the magnitude of the critical
atomic ERR at fracture is in good agreement with that of an ideal crack. Hence,
brittle fracture of both a notch and a crack can be described by using a unique
fracture parameter, providing a unified description at the atomic level.

Keywords: Brittle fracture � Criterion � Atomic level

1 Introduction

Brittle fracture, a catastrophic failure pattern, has been always happening in a wide
range of engineering materials. Generally, there are mainly two kinds of defects which
can easily bring about fracture, i.e., sharp cracks and blunt notches. Due to the absence
of singular stress field at the notch root, brittle fracture of a blunt notch is generally
distinguished from a crack case on the basis of the continuum fracture mechanics [1].

In this paper, fracture experiments in silico are carried out by means of Molecular
Statics (MS) simulations. The atomic ERR Gatomic is proposed by considering the
discrete nature of brittle fracture at the atomic level. It is found that Gatomic criterion is
able to describe brittle fracture of a notch. Finally, a unification of brittle fracture for
different kinds of defects is provided.

2 Results and Discussion

Figure 1a illustrates the geometry and loading condition for the nano-sized notched
sample. As shown in Fig. 1a, the notch is orientated along the 111ð Þ cleavage plane
with the �110½ � front. The sample height H is relatively large enough compared with
widthW to eliminate the boundary effect. The notch length a is one third ofW . A series
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of W (= 3.86, 19.85, 33.15, 46.46, 66.42 and 79.73 nm) are adopted. Tension tests are
carried out by means of MS simulations with bond-order potential of the modified
Stillinger-Weber (SW) form [2, 3].

The conventional ERR criterion has been one of the most widely accepted criteria
for brittle fracture on the basis of Griffth theory, which is expressed as [4, 5]

G ¼ � dP Að Þ
dA

¼ � lim
DA!0

P AþDAð Þ �P Að Þ
DA

ð1Þ

where P Að Þ is the strain energy of a continuum system with a crack cross-section A.
However, G criterion cannot apply to a blunt notch, because the conventional G
criterion requires the existence of a finite crack.

On the basis of AFM, in this study we propose a new of definition for the atomic
ERR Gatomic with consideration of atomic discreteness, i.e., [6, 7]

Gatomic ¼ �DPatomic Að Þ
DA

¼ �Patomic AþDAð Þ �Patomic Að Þ
DA

ð2Þ

Fig. 1. Geometry and loading condition of the nano-sized sample with a blunt notch (a) and a
sharp crack (b), respectively; (c) Critical atomic ERR GC

atomic as a function of sample size W for
notched and cracked samples.
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where DA is the finite change of the new surface by the single bond breaking at the
notch root. Figure 1c shows the critical atomic ERR GC

atomic, when fracture occurs, as a
function of sample size W . As the sample shrinks down, GC

atomic remains at a constant
level. Therefore, Gatomic criterion is effective to describe brittle fracture of a blunt notch
despite the sample size.

Moreover, considering the nature of brittle fracture, an atomic event of bond
breaking, the results for nano-sized cracks (see Fig. 1b) are also provided in Fig. 1c as
a comparison. It is found that the magnitudes of GC

atomic for blunt notches are in good
agreement with those for sharp cracks. This indicates that the brittle fracture of a blunt
notch and a sharp crack can be unified at the atomic level by the proposed Gatomic

criterion.

3 Conclusions

In this study, we have proposed a new atomic ERR by considering the atomic dis-
creteness of brittle fracture. The atomic ERR criterion works well for describing the
brittle fracture of a blunt notch despite the extremely small sample size. A unification
for notches and cracks is finally provided with an in-depth understanding of brittle
fracture at the atomic level.

Acknowledgments. This study is supported by the Grant-in-Aid for Specially Promoted
Research (Grant number 25000012) and Scientific Research(s) (Grant number 18H05241) from
the Japan Society of Promotion of Science (JSPS), and China Postdoctoral Science Foundation
(Grant number 2019M661267).

References

1. Ritchie, R.O.: The conflicts between strength and toughness. Nat. Mater. 10, 817–822 (2011)
2. Stillinger, F.H., Weber, T.A.: Computer simulation of local order in condensed phases of

silicon. Phys. Rev. B 31, 5262–5271 (1985)
3. Holland, D., Marder, M.: Ideal brittle fracture of silicon studied with molecular dynamics.

Phys. Rev. Lett. 80, 746–749 (1998)
4. Griffith, A.A.: The phenomena of rupture and flow in solids. Phil. Trans. Roy. Soc. Lond.

A 221, 163–198 (1920)
5. Orowan, E.: Fracture and strength of solids. Rep. Prog. Phys. 12, 185–232 (1949)
6. Shimada, T., Ouchi, K., Chihara, Y., Kitamura, T.: Breakdown of continuum fracture

mechanics at the nanoscale. Sci. Rep. 5, 8596 (2015)
7. Huang, K., Shimada, T., Ozaki, N., Hagiwara, Y., Sumigawa, T., Guo, L., Kitamura, T.: A

unified and universal Griffith-based criterion for brittle fracture. Int. J. Solids Struct. 128,
67–72 (2017)

336 K. Huang et al.



Fatigue of Micro/Nano Metals

Takayuki Kitamura1(&), Takashi Sumigawa1, and Kai Huang1,2

1 Kyoto University, Kyoto 615-8540, Japan
Kitamura@kues.kyoto-u.ac.jp

2 Harbin Institute of Technology, Harbin 150001, China

Abstract. As materials with nanoscale dimensions are used in various indus-
trial applications such as semiconductors, sensors, and micro- or nano-
electromechanical-systems, the investigations on their mechanical behavior
have been attracting many engineers/researchers. Especially, the knowledge on
fracture mechanics/mechanism in the nanometer scale becomes important in
terms of the reliability of small devices. Of course, this contributes an essential
understanding of the strength of macro-components as well. The fatigue
behavior is one of the key issues in terms of reliability.
Extensive experimental works have been conducted on the crack initiation

mechanism in the fatigue of bulk metals. These have reported that the dislo-
cation structures induce specific slips on the surface known as persistent slip
bands (PSBs), which brings about a crack on the surface. However, the size of
under-structure is in micron-scale independent of specimen size. As small metals
in the micron- or nanometer-scale cannot have enough space to form the
understructure, the cracking mechanism must be different from the one of bulk
counterparts. My team has investigated the fatigue behavior of micro- and nano-
metals in this decade [1–11]. In this talk, we present the characteristic fatigue
damage/failure process and mechanics of small metals. Especially, we introduce
our novel experimental methodology of TEM/SEM in situ observations for the
investigation.
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