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�Introduction

Chemotherapy and radiation treatments for cancer 
or other conditions, such as autoimmune diseases 
and myeloablative conditioning prior to bone mar-
row transplantation, can cause permanent infertil-
ity. Cancer survivors report that fertility status has 
an important impact on their quality of life [1]. 
Therefore, the American Society for Clinical 
Oncology [2], the American Society for 
Reproductive Medicine [3], and the International 
Society for Fertility Preservation [4] recommend 
that all patients be counseled about the reproduc-
tive risks associated with treatment of their primary 
disease as well as options to preserve fertility. Adult 
patients have the options to cryopreserve eggs, 

sperm, or embryos prior to treatment that can be 
used in the future to achieve pregnancy using estab-
lished assisted reproductive technologies [5–7]. 
Those options are not available to all adult patients 
(e.g., women who cannot undergo ovarian stimula-
tion) or to prepubertal patients who are not yet 
making mature eggs or sperm. This is an important 
human health concern because most children will 
survive their cancer and still have their entire repro-
ductive life in front of them [8]. Studies show that 
adult survivors of childhood cancers desire to have 
children [9–13]. For those reasons, centers around 
the world are actively cryopreserving gonadal tis-
sues for patients in anticipation that those tissues 
can be matured in the future to produce eggs or 
sperm and offspring [14–34].
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Gonadal tissue cryopreservation has been con-
sidered experimental and typically is performed at 
academic institutions with appropriate regulatory 
approval for human subject’s research. The earli-
est documented cases of ovarian cortical tissue 
cryopreservation appear to be in the mid- to late 
1990s in young adult women who could not 
undergo ovarian stimulation for oocyte or embryo 
cryopreservation [35–37]. The first reports of 
autologous transplantations of those tissues back 
into the patient survivors were in 2004 in Belgium 
[35] and 2005 in Israel [37]. Now more than 130 
live births have been reported after orthotopic 
transplantation of frozen and thawed ovarian cor-
tical tissues [38]. Those live birth outcomes 
prompted the practice committee of the American 
Society for Reproductive Medicine (ASRM) to 
recommend that ovarian tissue banking is an 
acceptable fertility preservation technique and 
should no longer be considered experimental 
[39]. The guidance did not distinguish between 
adult patient and prepubertal patients although 
there is only one published report of a live birth 
from cryopreserved peripubertal ovarian tissue 
(14 years old) [40] and one from cryopreserved 
prepubertal ovarian tissue (9 years old) [41]. Most 
patients who cryopreserved ovarian cortical tis-
sues during childhood (prepuberty) are still 
young, and it will take many years to accumulate 
live birth outcomes for childhood cancer survi-
vors. The ASRM acknowledged the limited data 
from childhood cancer survivors but argued that 
ovarian tissue cryopreservation is the only fertility 
preservation option available to prepubertal girls. 
Removing the experimental label from ovarian 
cortical tissue freezing could have important 
implications for access to care because several 
states in the United States have recently passed 
laws mandating insurance coverage for standard 
fertility preservation techniques [42].

In contrast to ovarian tissues, there are no docu-
mented live births from frozen and thawed imma-
ture testicular tissues, and testicular tissue freezing 
for prepubertal patients is still considered experi-
mental [39]. Our Fertility Preservation Program in 
Pittsburgh (https://fertilitypreservationpittsburgh.
org/) and its coordinated centers have cryopre-
served testicular tissues for 371 patients since 2011 

[29, 43] (STUDY19020220, STUDY19070264) 
with diagnoses including leukemia/lymphoma, 
CNS cancers (e.g., glioblastomas), sarcomas, non-
malignant diseases requiring bone marrow trans-
plantation (e.g., sickle cell disease, β-thalassemia), 
and gender dysphoria (Fig. 1). Immature testicular 
tissues have been cryopreserved and stored for 
more than 1000 patients worldwide, based on pub-
lished reports [30], and the actual number of cases 
is certainly much higher. Therefore, the research 
and medical communities are obligated to respon-
sibly developing next-generation reproductive 
technologies that can be used in the future to mature 
those tissues and produce fertilization competent 
sperm. This chapter will briefly describe spermato-
gonial stem cells (SSCs) and spermatogenic lin-
eage development, review research progress 
developing SSC-based therapies, and discuss the 
potential for application of those therapies in the 
human fertility clinic in the near future, as well as 
implications for access to advanced reproductive 
health care.

�Spermatogonial Stem Cells 
and Spermatogenic Lineage 
Development

Spermatogonial stem cells are the adult tissue 
stem cells in the testes that balance self-renewing 
and differentiating divisions to maintain the SSC 
pool and support continuous sperm production 
throughout the postpubertal life of men [44–47]. 
In humans, spermatogonial stem cell activity is 
thought to reside in the populations of Adark and 
Apale spermatogonia that are located on the base-
ment membrane of seminiferous tubules (Fig. 2a, 
b) and are present from the time of birth through 
adulthood [48, 49]. Undifferentiated Adark and Apale  
spermatogonia may undergo 1–2 transit-amplify-
ing mitotic divisions before giving rise to differen-
tiating type B spermatogonia, which divide once 
to produce primary spermatocytes that lift off the 
basement membrane and enter the adluminal com-
partment of the seminiferous tubules [47, 50]. Two 
subsequent meiotic divisions give rise to second-
ary spermatocytes and haploid round spermatids, 
which undergo spermiogenesis to produce termi-
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nally differentiated sperm (Fig.  2b) [50]. 
Spermatogenesis occurs in the seminiferous 
tubules of the testes that are connected at both ends 
to a common collecting reservoir, the rete testis 
(Fig.  2a). Since spermatogenesis is a stem cell-
based process and occurs in a plumbed system of 
tubules, reservoirs, and ducts that can be easily 
accessed for infusion of therapeutics, it is particu-
larly amenable to stem cell transplant therapies.

For male patients, there are several stem cell-
based therapies in the research pipeline that may 
be used in the future to produce sperm from 
immature testicular tissues [51]. Those technolo-
gies include spermatogonial stem cell (SSC) 
transplantation [52–58], de novo testicular mor-
phogenesis [59, 60], testicular tissue grafting/
xenografting [61–67], and testicular tissue organ 
culture [68–71]. One day it may even be possible 
to produce transplantable germline stem cells or 
sperm from adult somatic cells (e.g., skin or blood 
cells) in a process called in vitro gametogenesis 
(IVG). For IVG, somatic cells are reprogrammed 
into induced pluripotent stem cells (iPSCs) that 
are differentiated into primordial germ cell-like 

cells (PGCLCs) that can be transplanted for 
in vivo differentiation or differentiated to sperm 
in vitro [72–74]. The path to the clinic for in vitro 
germ cells or in vitro gametogenesis techniques is 
long because those techniques have not been 
independently replicated in any species except 
mouse. In contrast, autologous SSC transplanta-
tion and testicular tissue grafting are mature tech-
nologies that have been replicated in numerous 
animal species and may be ready for translation to 
the human fertility clinic today. The next two sec-
tions describe the historical development of those 
two technologies and the state of readiness for 
translation to the human fertility clinic.

�Spermatogonial Stem Cell 
Transplantation

�History

SSC transplantation was first described over 
25 years ago in mice by Brinster and colleagues 
[75, 76] who demonstrated that donor SSCs 

Other cancer 2.8%

Other 0.6%

Gender Dysphoria 2.3%

Blood disorders 18.6%
e.g. Sickle cell disease
e.g. Beta-Thalassemia

Immune disorders 6.4%
e.g. SCID

Syndrome 3.8%
e.g. Wiskott-Aldrich Syndrome

Testicular development 2.3%

BMT,
non-cancer,

28.8%

Sarcomas 19.4%

CNS Cancers 21.1%

Leukemia or
Lymphoma 22.2%

Testicular Cancer or Lesion 0.6%

Fig. 1  Diagnoses for testicular tissue cryopreservation. 
The Fertility Preservation Program in the UPMC Magee-
Womens Hospital has cryopreserved testicular tissues for 

371 patients from January 2011 through March 2021. 
Indications for testicular tissue cryopreservation and per-
cent of total cases are indicated in the pie chart
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could regenerate spermatogenesis and produce 
donor-derived offspring after transplantation 
into the testes of mouse recipients that were ren-
dered infertile by chemotherapy treatment. SSC 
transplantation is a robust technology that has 
now been replicated in rats, pigs, goats, bulls, 
sheep, dogs, and monkeys with donor-derived 
embryos or offspring produced in mice, rats, 
goats, sheep, and monkeys [52, 54, 56–58, 77–
83]. SSCs from donors of all ages, newborn to 
adult, are competent to regenerate spermatogen-
esis [54, 84], and SSCs can be cryopreserved 
and retain spermatogenic function upon thawing 
and transplantation [58, 85, 86]. Wu and col-
leagues reported that mouse SSCs were compe-
tent to regenerate spermatogenesis and produce 
offspring after 14  years of cryostorage [87]. 
Thus, it appears feasible that a testicular tissue 
biopsy (containing SSCs) could be obtained 
from a prepubertal boy prior to gonadotoxic 
therapy, frozen, thawed at a later date, and trans-

planted back into his testes to regenerate 
spermatogenesis.

Radford and colleagues reported the first SSC 
transplantation in human patients in 1999 [88] and 
in 2003 [89]. Briefly, testicular cell suspensions 
(including SSCs) were cryopreserved for a total of 
12 patients with Hodgkin’s disease. Seven of those 
patients returned to have their frozen and thawed 
testis cells transplanted back into their testes. The 
outcomes of those transplants were not reported, 
but the study provides insights into the motivation 
of men who were willing to undergo an early-stage 
experimental procedure for the possibility of hav-
ing a biologically related child. Homologous spe-
cies SSC transplantation had only been performed 
in mice and rats when Radford and colleagues 
reported the first autologous human SSC trans-
plantations in 1999. The technique has now been 
replicated in numerous mammalian species, dem-
onstrating safety and feasibility that supports 
application in the human clinic.
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Fig. 2  Anatomy of the testis and spermatogenic lineage 
development. Spermatogenesis occurs in the seminiferous 
tubules of the testis that are each connected to the rete 
testis space, a structure that can be accessed for infusion 
of stem cells and other therapeutics (a). Undifferentiated 
stem and progenitor spermatogonia (type Adark and Apale) 
and differentiating type B spermatogonia are located on 

the basement membrane of the seminiferous tubules. Type 
B spermatogonia give rise to primary spermatocytes that 
lift off of the basement membrane and enter the adluminal 
compartment of the testis. Two subsequent meiotic divi-
sions give rise to secondary spermatocytes and haploid 
round spermatids. Spermiogenesis produced terminally 
differentiated sperm (b)
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�Methodology

In mice, SSC transplantation is a surgical proce-
dure. Testes are accessed through a mid-
abdominal incision and oriented under a 
dissecting microscope to visualize the efferent 
ducts that connect the rete testis space to the 
head of the epididymis. A pulled glass capillary 
pipet is passed along the efferent ducts until the 
tip of the pipet emerges into the rete testis space, 
which can be visualized on the surface of the 
mouse testis [90]. By infusing a cell suspension 
or other therapeutic into the rete testis space, it is 
possible to fill all seminiferous tubules of the tes-
tis at the same time.

The rete testis space in monkeys and humans 
is located in the center of the testis, and there-
fore, it cannot be targeted by visual inspection of 
the surface of the testis. However, the rete testis 
space is echo-dense and can be visualized by 
ultrasound. Schlatt and colleagues pioneered the 
method of ultrasound-guided rete testis injection 
into dissected bovine, monkey, and human testes 
as well as in  vivo injection into cynomolgus 
monkey testes in 1999 [91]. This method has 
now been used to infuse testis cell suspensions to 
the seminiferous tubules of several large animal 
species with regeneration of spermatogenesis 
and in some cases embryos or offspring [56–58, 
79–82]. Unlike the approach used for SSC trans-
plantation in rodents, ultrasound-guided rete tes-
tis injection in larger mammals does not require 
surgery. A hypodermic needle is simply inserted 
through the base of the scrotum and through the 
testicular parenchyma until the needle emerges 
into the rete testis space. The injection needle 
and the rete testis space are both echo-dense and 
visible on ultrasound (Fig. 3a–c). Infusion into 
the rete testis space fills all seminiferous tubules 
at the same time because all seminiferous tubules 
are connected to the rete testis (Fig. 3c). In our 
experience and others, about 250–500  μL of 
fluid or cell suspension can be injected into the 
seminiferous tubules of prepubertal rhesus 
macaques, and 500–1000 μL can be injected into 
the seminiferous tubules of adult rhesus 
macaques [58, 83, 92]. It is important not to 
overfill the tubules because this can impede 

blood flow and cause ischemia to the testis. We 
believe the ultrasound-guided rete testis injec-
tion can also be applied in humans because the 
rete testis can be easily visualized by ultrasound 
inspection of human testes (Fig. 3d, e).

�Other Considerations

The tissue biopsies from young patients are usu-
ally small and may not contain enough SSCs to 
produce robust spermatogenesis after transplan-
tation. Thus, it may be necessary to expand SSC 
numbers in culture before transplantation. SSC 
culture has been firmly established in rodents 
[93–98], including development of conditions 
that do not require supporting feeder cells [99, 
100], which may be an important consideration 
for clinical application. SSC culture has been 
extended to rats, hamsters, and rabbits [95, 101, 
102], but extension to larger animal species has 
been a challenge, perhaps due to species-specific 
differences in factors that regulate SSCs [103–
105]. Many laboratories have described proto-
cols for human SSCs culture [14, 15, 106–121], 
but definitive evidence of long-term SSC expan-
sion in higher primates is lacking, and no meth-
ods have been independently replicated among 
laboratories [114, 122, 123]. In the absence of a 
robust method to expand human SSCs in culture, 
the best recourse may be to transplant the cells to 
their native environment in the seminiferous 
tubules of the testis with the proper structural 
support and niche factors that support human 
SSC proliferation, self-renewal, and 
differentiation.

In mice, the efficiency of SSC engraftment 
and regeneration of spermatogenesis are better 
in 5–8-day-old mouse pups than in adult recipi-
ents [54]. Mice do not have a prolonged prepu-
bertal period like humans. The spermatogonial 
stem cells or prospermatogonia migrate to the 
basement membrane of seminiferous tubules 
within a few days after birth and initiate sper-
matogenesis [124–126]. Therefore, testis devel-
opment in a teenage boy may be similar to a 
5–8-day-old mouse pup where the testis is grow-
ing under the influence of gonadotropic hor-
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mones and there is a burst of Sertoli cell 
proliferation [127, 128], which is likely accom-
panied by an expansion of SSC niches. The rete 
testes of teenage boys should be accessible for 
SSC transplantation (Fig. 3d, e).

�Testicular Tissue Grafting

�History

Testicular tissue grafting and xenografting are 
established technologies in which pieces of 
immature testicular tissues, containing seminif-
erous tubules with SSCs, are grafted ectopically 

under the skin. The objective of this technique is 
not to regenerate normal spermatogenesis in the 
recipient seminiferous tubules. The objective is 
to promote the maturation of the grafted imma-
ture testicular tissues pieces and produce sperm 
that can be recovered for fertilization by intracy-
toplasmic sperm injection. Immature testicular 
tissues from mice, pigs, goats, rabbits, hamsters, 
dogs, cats, horses, cattle, and monkeys have 
been grafted under the back skin of immunodefi-
cient nude mice and matured to produce sperm 
[66, 129]. Graft-derived sperm were competent 
to fertilize oocytes in mice, pigs, goats, and 
monkeys [62, 65, 130] with production of off-
spring in mice, pigs, and monkeys [61, 67, 130]. 

a b c

d e

Fig. 3  Spermatogonial stem cell transplantation by 
ultrasound-guided rete testis injection. All seminiferous 
tubules of the testis are connected to the rete testis space, 
which is echo-dense and visible by ultrasound. Images of 
rhesus macaque testes are shown in (a–c). A 25-gauge, 
1.5 in. hypodermic needle (also visible on ultrasound) is 
inserted through the base of the scrotum and testicular 
parenchyma until the needle emerges into the rete testis 
space (b). Microbubbles are added to the donor testis cell 
suspension to allow tracking of injection progress. 

Infusion fills the rete testis space and then simultaneously 
fills all seminiferous tubules (c). The anatomy of human 
testes is similar to rhesus macaques. The ultrasound imag-
ing clearly identifies the rete testis space in the testes of 
16-years old and 17-years old patients, suggesting that the 
same ultrasound-guided rete testis injection approach 
should work in human patients (d, e). (Portions of this 
picture are reprinted with permission from Hermann 
et al., Cell Stem Cell 2012)

K. Tran et al.
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Therefore, it is theoretically possible to graft 
immature testicular tissue from a childhood can-
cer survivor into an animal host to produce 
sperm that can be used to achieve pregnancy 
with established assisted reproductive technolo-
gies. This approach may be particularly applica-
ble in patients with leukemia or testicular cancer 
for whom it may be unsafe to transplant their tis-
sues back into their own bodies or for transgen-
der females who do not want to experience male 
puberty that would be required to mature testicu-
lar tissues. However, the possibility that viruses 
or other xenobiotics could be transmitted from 
the animal host to the patient needs to be care-
fully considered [131–133].

Homologous species immature testicular tis-
sue grafting was pioneered in mice with the pro-
duction of complete spermatogenesis and 
offspring [61–63]. Several groups have reported 
homologous and/or autologous testicular tissue 
grafting in nonhuman primates to establish 
safety and feasibility that may support transla-
tion to the human clinic [66, 134–136]. Luetjens 
and colleagues investigated graft success from 
immature tissues versus adult testicular tissues 
transplanted ectopically under the back skin of 
hemi-castrated monkeys (i.e., normal hormonal 
milieu). Adult tissues degenerated while imma-
ture tissues survived with spermatogenesis 
arrested at the level of spermatogonia. A second 
experiment compared graft location at ectopic 
(back skin) versus orthotopic (scrotum) sites in 
young, castrated recipients and whether cryo-
preservation affected graft outcomes. In that 
experiment, none of the cryopreserved grafts 
survived. Ectopic fresh grafts survived with 
spermatogenesis arrested in meiosis, while 
orthotopic fresh grafts developed complete sper-
matogenesis. In that experiment, cryopreserved 
grafts were only transplanted under the back 
skin, not in the scrotum, so it is not clear whether 
it was the cryopreservation, the ectopic graft site, 
or both that contributed to graft demise [135]. 
This question was answered in part by 
Jahnukainen and colleagues who transplanted 
cryopreserved prepubertal and pubertal testicu-
lar tissues to the orthotopic location in the scro-
tum. Similar to the results with adult tissues, 

pubertal grafts that already contained sperm at 
the time of grafting could not be recovered 
5 months later. Prepubertal, cryopreserved grafts 
transplanted to the scrotum of castrated autolo-
gous recipients could be recovered. The graft 
recovery rate was low (5%), and complete sper-
matogenesis was observed in only 13% and 17% 
of seminiferous tubules in the two surviving 
grafts. Both studies transplanted small pieces 
(~0.5–1 mm3) of testicular tissue to the graft site 
(4–6 pieces per graft site). Sperm function was 
not tested by fertilization or with production of 
offspring in either study [135, 137].

�Methodology and Outcomes

We recently repeated those experiments with 
slight modifications in a rhesus macaque model 
of cancer survivorship. Prepubertal animals 
with immature testicular tissues were hemi-cas-
trated. The immature testicular tissue was cut 
into small pieces that were somewhat larger 
than previous studies (9–20 μm3, Fig.  4a) and 
cryopreserved by controlled slow rate freezing 
in a medium containing 5% DMSO and 5% 
serum, as previously described [21]. Five to 
7  months after hemi-castration, the remaining 
testis was removed and cut into small pieces 
(9–20 μm3), some of which were designated for 
fresh tissue grafting. Immediately after removal 
of the second testis, fresh and previously cryo-
preserved tissues from the same animal were 
autologously grafted under the back skin (three 
sites fresh, three sites cryopreserved) or under 
the scrotal skin (one side fresh, one side cryo-
preserved) by individually suturing four pieces 
of testicular tissue to the subcutaneous aspect 
of a skin flap (Fig.  4b). This experimental 
design was repeated in five individual animals 
for a total of 40 graft sites (30 under the back 
skin and ten under the scrotal skin). Testicular 
tissues were recovered from 39 of the 40 graft 
sites; one graft was lost when the recipient ani-
mal opened the incision after surgery. 
Testosterone levels rose to the normal range for 
peripubertal rhesus macaques within 
6–8  months after grafting. Testosterone could 

Transplant Therapies for Male Infertility



578

only be from grafted tissues because recipient 
animals were castrated. Grafts grew continu-
ously throughout the duration of the experiment 
(8–12 months) and were not impacted by graft 

location (Fig. 4c), cryopreservation, or addition 
of Matrigel to the graft site. Testicular tissues 
that were immature at the time of grafting 
(Fig.  4d) exhibited complete spermatogenesis 

a

c

d e

b

Fig. 4  Testicular tissue grafting. Testicular tissues are 
collected by wedge resection biopsy. In the fertility pres-
ervation laboratory, biopsied tissues are cut into small 
pieces measuring 2–5  mm in diameter (estimated 
9–20  mm3) and cryopreserved by controlled slow rate 
freezing (a). After thawing, testicular tissue pieces are 
individually sutured to the underside of a skin flap (b). 
Grafted tissues grew continuously under the back skin or 

scrotal skin for 8–12 months after grafting (c). Testicular 
tissues were immature at the time of grafting, containing 
only undifferentiated Adark and Apale spermatogonia in the 
seminiferous tubules (d). When grafts were collected 
8–12  months after transplantation, 70% of tubules con-
tained complete spermatogenesis with fertilization com-
petent sperm (e). (Images reprinted with permission from 
Fayomi et al., SCIENCE 2019)

K. Tran et al.
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with spermatids or sperm in >70% of seminif-
erous tubules at the time of recovery (Fig. 4e). 
Sperm were recovered by manual dissection or 
enzymatic digestion and used to fertilize rhesus 
oocytes by ICSI in collaboration with the 
assisted reproductive technology core at the 
Oregon National Primate Research Center. A 
healthy graft-derived baby (Grady) was born on 
April 18, 2018 [66]. We speculated about fac-
tors that may explain the improved graft recov-
ery and extent of spermatogenesis. First, the 
concentration of DMSO cryoprotectant in our 
study (5%, 0.7  M) was lower than previous 
studies (10%, 1.4 M). Second, testicular tissue 
pieces were larger in our study (9–20 μm3) than 
previous studies (0.5–1  mm3), which may 
increase the local concentration of autocrine or 
paracrine factors. Third, the larger pieces 
allowed us to individually suture each piece of 
tissue to the capillary-rich underside of the skin 
flap rather than depositing a slurry of small 
pieces into a subcutaneous pocket.

�Other Consideration

Similar to SSC transplantation, testicular tissue 
grafting and xenografting are established tech-
nologies that have been replicated in numerous 
mammalian species, including production of 
fertilization competent sperm and offspring in 
nonhuman primates [66, 67, 129]. In most spe-
cies, cryopreserved grafts retained potential to 
regenerate complete spermatogenesis, an 
important consideration for adult survivors of 
childhood cancers. Immature testicular tissue 
grafting will not regenerate normal spermato-
genesis in the endogenous tetses or natural fer-
tility but can produce fertilization competent 
sperm that can be used to achieve pregnancy by 
intracytoplasmic sperm injection. In almost 
every report of immature testicular tissue graft-
ing or xenografting, recipient animals were cas-
trated, in theory to eliminate negative feedback 
from the endogenous testes on the hypothala-
mus and pituitary. Of course, our patient survi-
vors will not be castrated, so it will be important 

to demonstrate in future studies that graft devel-
opment can occur in patients with intact testes.

�Concluding Remarks

Testicular tissues have already been cryopre-
served for over 1000 patients worldwide [30], 
and some of those patients may be ready to use 
those tissues for reproduction. Spermatogonial 
stem cell transplantation and testicular tissue 
grafting are mature technologies that have been 
replicated in numerous labs and across numer-
ous mammalian species over the past two 
decades. Translation to nonhuman primates pro-
vided critical safety and feasibility data that may 
justify translation to the human fertility clinic. 
Specifically, the demonstrations that cryopre-
served, prepubertal testicular cells or tissues 
could produce spermatogenesis highlight the 
potential application in adolescent or adult survi-
vors of childhood cancers or bone marrow trans-
plantation for benign diseases. Autologous 
transplantation approaches may not be appropri-
ate for leukemia or testicular cancer patients 
where there is a risk of reintroducing malignant 
cells to a patient survivor. For those patients 
methods to screen and/or remove malignant cells 
may be required [138]. Alternatively, it may be 
possible to mature testicular tissues ex vivo [69, 
139]. However, the majority (>60%) of our 
patients who cryopreserved testicular tissues had 
solid tumors (sarcomas, neuroblastomas) that do 
not metastasize to the testes or nonmalignant 
diseases (e.g., sickle cell disease, β-thalassemia) 
(Fig. 1). Those patients may be ideal candidates 
for first autologous testicular cell or tissue trans-
plantation trials.

There are no human live births from frozen/
thawed immature testicular tissues or cells, and 
therefore, testicular tissue cryopreservation 
remains experimental in the United States. In 
contrast, ASRM recommended that the 
experimental label could be removed from 
ovarian tissue cryopreservation [39] based on 
reports of over 130 births after transplantation 
of frozen and thawed ovarian tissues [38]. This 

Transplant Therapies for Male Infertility



580

helps reduce a significant barrier in access to 
fertility preservation care because it opens the 
door for some patients to get insurance cover-
age. It is important to note however that ovar-
ian tissues have been cryopreserved for both 
prepubertal and adult patients and most docu-
mented births are from women who were 
already adult at the time of ovarian tissue cryo-
preservation [35]. Immature testicular tissue 
cryopreservation has been used almost exclu-
sively in prepubertal patients. That means it 
could be years before the first males return to 
use their cryopreserved testicular tissues. How 
many more years and how many births will be 
required to remove the experimental label from 
testicular tissue cryopreservation? 
Furthermore, if a man produces sperm and/or 
offspring after autologous transplantation of 
spermatogonial stem cells, how will we know 
whether sperm were from transplanted or 
endogenous cells? That question can be 
addressed in part with the testicular tissue 
grafting option because those tissues can be 
removed and dissected to release sperm that 
are unequivocally from the frozen and thawed 
immature testicular tissues. Live births from 
those tissues will still be many years away 
because most of those patients are still young. 
The Danish experience may be instructive. In 
1990, the Danish Minister of Health concluded 
that there were no restrictions in freezing ovar-
ian tissues or testicular tissues if only autolo-
gous transplantation was considered. This 
ruling placed gonadal tissue cryopreservation 
in the context of normal medical practice. 
Perhaps this perspective along with published 
reports indicating few adverse outcomes asso-
ciated with testicular tissue biopsies and cryo-
preservation could be adequate to justify 
removing the experimental label from testicu-
lar tissue cryopreservation [19, 22, 29, 30], one 
author’s opinion.
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