
Chapter 28
Optimum Scale Selection for 3D Point Cloud
Classification through Distance Correlation

Manuel Oviedo de la Fuente, Carlos Cabo, Celestino Ordóñez and Javier
Roca-Pardiñas

Abstract Multiple scale machine learning algorithms using handcrafted features are
among the most efficient methods for 3D point cloud supervised classification and
segmentation. Despite their proven good performance, there are still some aspects
that are not fully solved, determining optimum scales being one of them. In this work,
we analyze the usefulness of functional distance correlation to address this problem.
Specifically, we propose to adjust functions to the distance correlation between each
of the features, at different scales, and the labels of the points, and select as optimum
scales those corresponding to the global maximum of said functions. The method,
which to the best of our knowledge has been proposed in this context for the first
time, was applied to a benchmark dataset and the results analyzed and compared
with those obtained using other methods for scale selection.

28.1 Introduction

In recent decades there has been an explosion of sensors and techniques to obtain
spatial data representing real objects by means of 3D point clouds. Laser scanners,
either static, mobile, portable or airborne, as well as cameras and computer vision
algorithms, especially the Structure-from-Motion (SfM) algorithm [13], are currently
the main sources of this kind of data. From the beginning, it was quite evident
that there was a need to develop algorithms for the automatic extraction of useful
information from the point clouds; a need that increasedwith the progressive capacity
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of the sensors to measure larger point clouds each time. Among these algorithms,
those based on the application of machine learning techniques have proven to be very
efficient [10, 4], and, accordingly, their use is very extended nowadays. Moreover,
their efficiency increaseswhen the features (covariates) of themodel are not extracted
at a single scale but at several scales. In practice, this means that feature extraction
is carried out considering different sizes of the neighborhood (scale) around each
point (or voxel, when the point clouds is simplified by means of voxelization). In
this way, the extracted features for a point (voxel) at different scales capture different
characteristics of the objects around that point, and this helps in the classification
procedure. Unfortunately, the selection of the scales is often carried out heuristically,
taking into account the density of the point cloud, the kind of objects to be classified,
the noise of the data, etc. On other ocassions, the procedure simply consists in
selecting a number of scales at regular intervals. These procedures are quite objective,
and have some drawbacks [7]. For that reason, it is important to carry out research
into more objective scale selection methods, as an adequate selection has a positive
influence on the results of the classification. Previous works have addressed this
problem from different perspectives. One of them is to find the scale for which the
labelling of the current point is the most similar to the labellings of its neighbors at
the same scale [4]. Another approach [15] estimates the optimum scales taking into
account the local structure of the covariance matrix and the Shanon entropy [11].
In this work, we propose a different approach that assumes that the optimum scales
should correspond to the local maximum of the functions obtained calculating the
distance correlation between each of the features at a number of scales (i.e. 100) and
the values of the labels.

28.2 Methodology

28.2.1 Feature Extraction

A key aspect of machine learning applied to point cloud segmentation and classifi-
cation is to define and determine the features (input variables) to be introduced in
the mathematical models. The multi-scale strategy is based on the fact that a region
around a point can look like a 1D, 2D or 3D object depending on the size of the
region [2]. The input variables (features) included in the supervised classification
algorithms are algebraic expressions involving the eigenvalues of the eigendecom-
position of the local covariance matrix 𝚺: Σ = 1

𝑁

∑𝑁
𝑖=1 (p𝑖 − p̄)𝑇 (p𝑖 − p̄) = VΛVT,

where p𝑖 = (𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖) is a point of the point cloud, 𝜆1 > 𝜆2 > 𝜆3 are the eigen-
values, V a matrix whose columns are the corresponding eigenvectors, and 𝑁 the
number of points inside a sphere of center p𝑖 and radius 𝑅. That is, the eigenvalues,
and consequently the features extracted from the point cloud, depend on the values
of the scale (radius of the sphere).

The relationship between the values of the eigenvalues 𝜆1, 𝜆2, 𝜆3 at a point is
related to the local geometry at that point [5]: a linear 1D structure when 𝜆1 ≥
𝜆2, 𝜆3; a planar 2D structure when 𝜆1, 𝜆2 ≥ 𝜆3 and a volumetric 3D structure when
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𝜆1 ≈ 𝜆2 ≈ 𝜆3. Specifically, the features extracted for each point at each scale are:
Linearity 𝐿 = (𝜆1 − 𝜆2) /𝜆1, Planarity 𝑃 = (𝜆2 − 𝜆3) /𝜆1, Sphericity 𝑆 = 𝜆3/𝜆1,
Horizontality 𝐻 = 𝑎𝑐𝑜𝑠(v3 · z)/‖v3‖ and Z range 𝑍 = 𝑍𝑚𝑎𝑥 − 𝑍𝑚𝑖𝑛, which are very
common in the literature [15]. Calculation of Z range for each point is not limited to
a sphere but to a vertical cylinder of a specific section (scale) around that point. In
order to avoid the negative effect of outliers, Z coordinates are limited to an interval
between the 5th and 95th percentiles.

28.2.2 Optimum Scale Estimation from Distance Correlation Functions

Distance correlation [12] is a measure of the degree of correlation, linear or non-
linear, between two variables of arbitrary finite dimensions. When the data are
ordered and close enough, it is possible to approximate distance correlation values
for functions, and analyze them using methods for functional data. Particularly,
we are interested in determining the global maximum of the distance correlation
function, as it is supposed to be the point that captures the most relevant information
concerning the relationship between the variables. A similar approach was used by
the authors for variable selection in regression and classification problems [1, 6, 9].
𝑋 ∈ R𝑝 and 𝑌 ∈ R𝑞 being two random vectors, distance correlation between 𝑋 and
𝑌 is defined as

R2 (𝑋,𝑌 ) =
⎧⎪⎪⎨⎪⎪⎩

V2 (𝑋,𝑌 )√
V2 (𝑋 )V2 (𝑌 )

, V2 (𝑋)V2 (𝑌 ) > 0

0, V2 (𝑋)V2 (𝑌 ) = 0
(28.1)

whereV2 (𝑋,𝑌 ) = | | 𝑓𝑋,𝑌− 𝑓𝑋 𝑓𝑌 | |2 = 1
𝑐𝑝𝑐𝑞

∫
R𝑝+𝑞

| 𝑓𝑋,𝑌 (𝑡 ,𝑠)− 𝑓𝑋 (𝑡) 𝑓𝑌 (𝑠) |2
|𝑡 |1+𝑝 |𝑠 |1+𝑞 is the distance

covariance, a measure of the distance between 𝑓𝑋,𝑌 , the joint characteristic function
of random vectors 𝑋 and 𝑌 , and the product 𝑓𝑋 𝑓𝑌 of the characteristics functions
of 𝑋 and 𝑌 , respectively. For their part, 𝑐𝑝 and 𝑐𝑞 are constants depending on the
dimensions 𝑝 and 𝑞, respectively.

Distance correlation has some advantages over other correlation coefficients,
such as the Pearson correlation coefficient. First, it measures non-linear dependence.
Second, 𝑋 and𝑌 do not need to be one dimensional variables. Third,R(𝑋,𝑌 ) = 0 ⇔
𝑋,𝑌 are independent, that is, independence is a necessary and sufficient condition
for the nullity of distance correlation.

Once the correlation distance has been determined for each feature at different
scales 𝑘 ∈ R, we adjust a function 𝑚 : 𝑘 → R(𝑋,𝑌 ), and determine the values
of 𝑘 corresponding to global maximum of this function. Then, different supervised
classification algorithms are applied using the features at those scales, and the results
compared with those obtained when features are calculated at a specific number of
scales at constant intervals or following an exponential function.



216 Manuel Oviedo de la Fuente, Carlos Cabo, Celestino Ordóñez and Javier Roca-Pardiñas

28.3 Experimental Results

28.3.1 Dataset

In order to evaluate the performance of the proposed methodology, we apply it to the
Oakland 3D point cloud dataset [8], a benchmark dataset that has been previously
used in different studies concerning point cloud segmentation and classification.
The 3D point cloud was collected around the CMU campus in Oakland - Pittsburgh
(USA) using a Mobile Laser Scanner (MLS), that consists of two-dimensional laser
scanners, an Inertial Measurement Unit (IMU), and a Global Navigation Satellite
system (GNSS), all of them calibrated and mounted on the Nablab 11 vehicle.
Figure 28.1 shows a small part of the point cloud, where six labels have been
marked.

Fig. 28.1 Small area of the
Oakland point cloud dataset.
Each point has been assigned
a label.

28.3.2 Neighborhood Selection

Consider a sample data {X𝑖 ,G𝑖}𝑛𝑖=1 where X =
(
𝑋1, ..., 𝑋 𝐽=5

)
, represents the vec-

tor of features (linearity, planarity, sphericity, horizontality and Z range), and
G = (𝐺1, .., 𝐺𝑚=5) the vector of classes (cars, buildings, canopy, ground and
poles). For each sample 𝑖, each feature is evaluated at a regular grid of 𝑁 = 100
scales measured in centimetres: 𝑋 𝑗𝑖 =

(
𝑋
𝑗
𝑖 (𝑡1), 𝑋

𝑗
𝑖 (𝑡2), . . . , 𝑋

𝑗
𝑖 (𝑡𝑁 )
)
. Figure 28.2

shows a sample of 𝑛 = 150 curves for each features registered in the interval
𝑘 ∈ [𝑡1 = 50, 𝑡100 = 300] and the corresponding functional mean, both colored by
class label. Note the different performance of the features for the different classes and
scales. For instance, horizontality takes high values for the ground, and it is uniform
at different scales. However, this feature shows abrupt jumps at certain scales for the
poles, that could correspond to edge effects. As expected, linearity takes high values
for the poles and low values for the buildings.

Figure 28.3 shows the distance correlation functions for 100 repetitions of random
samples of size 𝑛 = 750 (150 per class), corresponding to each of the features
extracted. A histogram of the global maximum of distance correlation curves for
those repetitions is depicted at the bottom of the figure. As can be appreciated, most
of the maxima (impact points) correspond to low scales, except for the Z range
variable (5th - 95th range of z axis).
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Fig. 28.2 A sample of features curves: poles (green), ground (blue), vegetation (red), buildings
(magenta), and vehicles (cyan). Functional means for each class are represented as wider lines.

Our aim is to estimate an optimum neighborhood (scale) for each feature by
means of distance correlation (DC), taking into account its advantage with respect
to the Pearson coefficient. On the one hand, we calculated the distance correlation
between the dependent variable (the label for each curve) and each of the features,
see Figure 28.3. On the other hand, we calculated the distance correlation between
the labels and two independent variables, horizontality and Z range, given that these
features are more correlated with the dependent variable. In addition, DC between
the dependent variable and the five features was also calculated. It is evident that DC
functions are not very different for the five features analysed, and it is also evident
that maximum values are reached at low scales, except for the range of z. In addition,
it can also be appreciated that DC for horizontality and Z range are significantly

Fig. 28.3 Distance correlation functions between the group class and the features curves (top) and
histogram with the scale for the global maximum on each function (bottom).
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Table 28.1 Metrics of the classification using logistic regression (LR) and random forest classifier
(RF) for different scenarios of 𝑘.

Precision % Recall % F1 %
Model 𝑘 Poles Grou. Veg. Build. Cars Poles Grou. Veg. Build. Cars Poles Grou. Veg. Build. Cars
LR 50 70 96 74 88 76 74 99 72 77 82 72 98 73 82 78
LR 100 63 96 70 74 80 78 98 49 78 80 70 98 57 76 80
LR 175 51 96 66 64 75 63 93 32 78 82 57 95 43 70 78
LR 237 37 97 57 53 60 49 90 30 79 43 42 93 39 63 49
LR 300 28 95 49 49 46 34 88 32 80 25 31 91 39 61 31
LR 𝑘𝜆 61 97 70 74 77 73 96 50 78 80 66 97 75 75 52
LR 𝑘𝑚𝑑𝑐2 72 97 75 87 77 77 99 72 77 82 75 98 73 82 79
LR 𝑘𝑚𝑑𝑐5 74 97 75 88 78 76 99 71 79 87 75 98 73 83 82
RF 50 74 97 76 76 77 74 99 73 79 76 74 98 74 77 76
RF 112 76 99 78 71 85 80 96 74 79 77 78 98 76 78 81
RF 175 58 96 66 66 81 67 91 53 73 79 62 94 59 69 80
RF 237 52 96 57 67 76 63 89 45 68 79 57 92 50 67 77
RF 300 51 96 52 58 75 51 86 43 61 89 51 90 47 59 81
RF 𝑘𝜆 70 98 73 80 83 74 95 68 77 78 72 96 70 73 80
RF 𝑘𝑚𝑑𝑐2 76 98 78 74 82 77 98 77 80 77 76 98 77 77 78
RF 𝑘𝑚𝑑𝑐5 76 99 78 75 84 75 99 80 78 78 75 99 78 76 81

higher than for the other three features, which suggests that DC might be used not
only to estimate the optimum scales but also to select the most important features to
be included in the classification models.

In order to contrast the performance of this approach, we followed the proposal of
[15] computing the optimal scale 𝑘𝜆, corresponding to the minimum of the Shannon
entropy E𝜆, which depends on the normalized eigenvalues 𝑒𝑖 , 𝑖 = 1, ..., 3, of the local
covariance matrix Σ: 𝐸𝜆 = −𝑒1𝑙𝑛(𝑒1) − 𝑒2𝑙𝑛(𝑒2) − 𝑒3𝑙𝑛(𝑒3) (2).

28.3.3 Classification

The scale corresponding to the most frequent values providing a global maximum
(impact points) was used as input variable for two classification algorithms, multi-
nomial logistic regression classifier (LR) and random forest classifier (RF) [14],
in two scenarios: (a) 𝑘𝑚𝑑𝑐2 : only the features with the highest distance correlation
values (horizontality and Z range) were included in the model and (b) 𝑘𝑚𝑑𝑐5 : all
the features (linearity, planarity, sphericity, horizontality and Z range) were used to
train the models. Additionally, we used the following values of the scale 𝑘: (c) 𝑘𝜆,
obtained according to equation (2), (d) 𝑘𝑠𝑒𝑞 , linearly spaced scales corresponding to
the following values of 𝑘 in centimetres (cm): 50, 112, 175, 237, 300 and (e) 𝑘𝑒𝑥𝑝 ,
exponential spaced scales, that corresponds to 𝑘 = 1, 3, 7, 20, 55, 300 cm. This last
option arises from the fact that the global maximums of DC correspond to low scales.

Training data (150 per class) and test data (500 per class) were sampled from
different areas of the point cloud, in order to ensure their independence. Table 28.1
shows the results of the classification for the test sample, in terms of precision, recall
and F1-score, for each of the scales, using a logistic regression (LR) and random
forest classifier (RF).
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The metrics for the classification have quite different values depending on the
category, see Table 28.1. Thus, the best results were obtained for ground class, fol-
lowed by cars. Lower values were obtained for poles, vegetation and buildings. The
results are very similar when the set of the five features (𝑘𝑚𝑑𝑐5 ), or just the two with
the highest values of distance correlation (horizontality and Z range), are included
in the model (𝑘𝑚𝑑𝑐2 ). In general, the models that use the scales corresponding to
maximum distance correlation outperform the others, including that corresponding
to the minimum of the Shannon entropy (𝑘𝜆), that did not turn out to be particularly
good. Table 28.2 shows a decrease of the accuracy classification with the scale in
both classifiers. So, it is better to calculate the scales using exponential function
𝑘𝑒𝑥𝑝 than using a linear function 𝑘𝑠𝑒𝑞 . This approach limits the number of scales to
be calculated, thus reducing computing time.

Table 28.2 Total accuracy in % of the classification using logistic regression (LR) and random
forest (RF) classifiers for sequential 𝑘𝑠𝑒𝑞 , exponential 𝑘𝑒𝑥𝑝 , 𝑘𝜆, 𝑘𝑚𝑑𝑐2 and 𝑘𝑚𝑑𝑐5 scales.

𝑘𝑠𝑒𝑞 50 100 150 200 250 300
Model 𝑘𝑒𝑥𝑝 50 60 70 100 190 300 𝑘𝜆 𝑘𝑚𝑑𝑐2 𝑘𝑚𝑑𝑐5
LR 81 81 81 79 72 68 67 56 51 74 81 83
RF 80 81 82 81 75 72 71 66 65 78 81 81

28.4 Conclusions

Selecting optimum scales for supervised classification of 3D point clouds is relevant
not only to improve the results but also to understand the effect of the features
involved in the classification when the local neighborhood changes. We assume as
hypothesis of our study that calculating the maximum of the distance correlation
functions between the features (input variables) and the classes (output variable) can
help to determine the optimumscale for classification and to select themost important
variables at that scale. This hypothesis was tested on a benchmark 3D point cloud
from an urban environment, and the analysis of the results indicates that our approach
outperforms other common methods for scale selection, in particular one that uses
specific scales at regular intervals and another that calculates the optimum scale using
Shannon’s information. Moreover, the analysis of the distance correlation functions
for the different features provides information about the importance of these features
in the classification. The best results were obtained when the five features, calculated
at the optimum scale, were included in the classification model, but similar results
were obtained when only the two features with the highest values of the correlation
distance were considered. Accordingly, distance correlation function could be used
as a filter for feature selection regardless of the classification algorithm. For future
work, we plan to analyse a multi-scale analysis using significant structures of the
features curves [3, 6].

Acknowledgements M. Oviedo acknowledges support fromMTM2016-76969-P project (Spanish
Ministry of Science, Innovation and Universities and the European Regional Development Fund).
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