
Chapter 17
Functional Two-sample Tests Based on
Empirical Characteristic Functionals

Zdeněk Hlávka and Daniel Hlubinka

Abstract Two-sample tests for functional data based on empirical characteristic func-
tionals are proposed. The test statistic is of Cramér–von Mises type with integration
over a preselected family of probability measures, say 𝑄, leading a computationaly
feasible and powerful test statistic. The choice of the probability measure 𝑄 is dis-
cussed and the empirical size and power of the resulting two-sample functional tests
are investigated in a small simulation study.

17.1 Introduction

Functional data analysis already became a standard [11, 6, 7, 9] with many tools
obtained as a generalization of a corresponding multivariate method. In this contri-
bution, we investigate the general functional two-sample problem and propose a new
two-sample functional test statistic based on empirical characteristic functionals.

Assuming two functional random samples, say 𝑋1, . . . , 𝑋𝑛 and 𝑌1, . . . , 𝑌𝑚, the
problem of testing the null hypothesis of equality of the respective mean functions,
i.e.,

𝐻0 : 𝑚𝑋 (.) = 𝑚𝑌 (.)

has already been extensively investigated, see [3] for an overview. Slightly different
hypothesis is studied in [8], namely

𝐻0 : ∀𝑡 𝑋 (𝑡) =L 𝑌 (𝑡)
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testing simultaneously the distribution of all projections where =L denotes the
equality in distribution.

In the following, instead of comparing only the mean functions or testing the
distributions of projections, we are interested in testing a more general null hypothesis
of equality of entire functional distributions:

H0 : 𝜙𝑋 = 𝜙𝑌 (17.1)

where 𝜙𝑋 and 𝜙𝑌 denotes, respectively, the characteristic functional (CF) of the
𝑋 and 𝑌 sample. The definition and properties of CF and empirical CF (ECF)
are summarized in Section 17.2. A two-sample test statistic based on a distance
between two ECFs is proposed in Section 17.3. Finally, a small simulation study in
Section 17.4 investigates small sample properties of the ECF-based two-sample test.

17.2 Empirical Characteristic Functional

In what follows, we consider functional random variables with values in the space
of continuous functions or in the space of measurable square integrable functions,
i.e., 𝑋 : Ω → C[0, 1] or 𝑋 : Ω → L2 [0, 1], where the domain is as usually (and
wlog) chosen to be [0, 1].

The CF of 𝑋 is 𝜙𝑋 (𝑢) = E exp (𝑖〈𝑢, 𝑋〉) for 𝑢 ∈ C∗[0, 1] or 𝑢 ∈ L∗
2 [0, 1], the

dual space of C[0, 1] or L2 [0, 1], respectively. Due to the properties of CF, it is
sufficient to consider just 𝑢 ∈ L∗

2 [0, 1] = L2 [0, 1] for both options in which case
〈𝑢, 𝑋〉 =

∫ 1
0 𝑢(𝑡)𝑋 (𝑡)d𝑡.

The ECF of a functional random sample 𝑋1, . . . , 𝑋𝑛 is

𝜙𝑋 (𝑢) =
1
𝑛

𝑛∑
𝑘=1

exp
(
𝑖〈𝑢, 𝑋𝑘〉

)
.

The functional data are not observed continuously in most cases. We may consider
all 𝑋𝑖’s to be observed on a regular grid of points 𝑡 𝑗 = 𝑗/𝑁 , 𝑗 = 0, 1, . . . , 𝑁 since
the generalisation to different observation points is straightforward. The ECF is then

𝜙𝑋 (𝑢) =
1
𝑛

𝑛∑
𝑘=1

exp
(
𝑖〈𝑢, 𝑋𝑘〉𝑑

)
,

where 〈𝑢, 𝑋〉𝑑 =
∑𝑁
𝑖=1 𝑢(𝑡𝑖)𝑋 (𝑡𝑖) (𝑡𝑖 − 𝑡𝑖−1) = 1

𝑁

∑𝑁
𝑖=1 𝑢(𝑡𝑖)𝑋 (𝑡𝑖).

17.3 Cramér–von Mises Type of Statistics

Our Cramér–von Mises two-sample test is based on two random samples 𝑋1, . . . , 𝑋𝑛
and 𝑌1, . . . , 𝑌𝑚 with the test statistic
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L2 [0,1]

|𝜙𝑋 (𝑢) − 𝜙𝑌 (𝑢) |2d𝑄(𝑢), (17.2)

where 𝑄 is some probability measure on the space L2 [0, 1] discussed later. The
squared distance |𝜙𝑋 (𝑢) − 𝜙𝑌 (𝑢) |2 of the ECFs may be rewritten as(

1
𝑛

𝑛∑
𝑘=1

cos〈𝑢, 𝑋𝑘〉𝑑 −
1
𝑚

𝑚∑
ℓ=1

cos〈𝑢,𝑌ℓ〉𝑑

)2

+

(
1
𝑛

𝑛∑
𝑘=1

sin〈𝑢, 𝑋𝑘〉𝑑 −
1
𝑚

𝑚∑
ℓ=1

sin〈𝑢,𝑌ℓ〉𝑑

)2

(17.3)
and we obtain after some calculation and using the trigonometric identity the final
form

1
𝑛2

𝑛∑
𝑘, 𝑗=1

cos〈𝑢, 𝑋𝑘 − 𝑋 𝑗〉𝑑+
1
𝑚2

𝑚∑
ℓ, 𝑗=1

cos〈𝑢,𝑌ℓ − 𝑌 𝑗〉𝑑−
2
𝑚𝑛

𝑛∑
𝑘=1

𝑚∑
ℓ=1

cos〈𝑢, 𝑋𝑘 − 𝑌ℓ〉𝑑 .

(17.4)

17.3.1 Choice of 𝑸

The measure𝑄 is some probability measure on the spaceL2 [0, 1]. We propose to use
a special form of this measure, namely some special form of a Gaussian measure.
Hence, we consider a random function 𝑈 with all finite-dimensional distribution
being multivariate normal distribution. Since the data are observed on a discrete grid
of 𝑁 points, it is sufficient to consider a random vector 𝑈𝑁 =

(
𝑈 (𝑡1), . . . ,𝑈 (𝑡𝑁 )

)
following zero mean 𝑁-dimensional normal distribution with the variance matrix
𝑽 = (𝑣𝑖, 𝑗 )𝑁𝑖, 𝑗=1. For a fixed discretely observed function 𝑥, we have

〈𝑈, 𝑥〉𝑑 =
1
𝑁

𝑁∑
𝑖=1

𝑈 (𝑡𝑖)𝑥(𝑡𝑖) ∼ N ���0, 1
𝑁2

𝑁∑
𝑗 ,𝑘=1

𝑥(𝑡𝑖)𝑥(𝑡 𝑗 )𝑣𝑖, 𝑗

�� = N

(
0, 𝜎2 (𝑥)

)
,

where 𝜎2 (𝑥) = 1
𝑁 2 𝑥

𝑇𝑽𝑥 and E𝑄 cos〈𝑈, 𝑥〉𝑑 becomes

E𝑄 cos

(
1
𝑁

𝑁∑
𝑖=1

𝑈 (𝑡𝑖)𝑥(𝑡𝑖)

)
= exp

(
−

1
2
𝜎2 (𝑥)

)
(17.5)

and the test statistic (17.2) based on the two samples 𝑋1, . . . , 𝑋𝑛 and 𝑌1, . . . , 𝑌𝑚
becomes
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𝑇 =
1
𝑛2

𝑛∑
𝑘, 𝑗=1

exp
(
−

1
2𝑁2 (𝑋𝑘 − 𝑋 𝑗 )𝑇𝑽 (𝑋𝑘 − 𝑋 𝑗 )

)
+

1
𝑚2

𝑚∑
𝑘, 𝑗=1

exp
(
−

1
2𝑁2 (𝑌𝑘 − 𝑌 𝑗 )𝑇𝑽 (𝑌𝑘 − 𝑌 𝑗 )

)
−

2
𝑛𝑚

𝑛∑
𝑘=1

𝑚∑
𝑗=1

exp
(
−

1
2𝑁2 (𝑋𝑘 − 𝑌 𝑗 )𝑇𝑽 (𝑋𝑘 − 𝑌 𝑗 )

)
.

(17.6)

The null hypothesis will be rejected for large values of the test statistic 𝑇 , i.e., for

𝑇 ≥ 𝑐(𝛼), (17.7)

where 𝑐(𝛼) denotes critical value such that 𝑃(𝑇 ≥ 𝑐(𝛼) |H0) = 𝛼. In the following,
the critical value will be approximated by the permutation principle [2].

17.3.2 The Matrix 𝑽

The performance of the test largely depends on the matrix 𝑽 introduced in Sec-
tion 17.3.1. We propose several possibilities and our test is then compared with other
two-sample tests in a small simulation study.

The most simple choice is to set 𝑽 = I𝑁 but the following possibilities should
have better power.
Variance matrix of a Gaussian process: This proposal follows classical “random
projection” approach. It is considered that𝑈 is a Gaussian process, usually a Wiener
process and 𝑽 = Σ𝑊 is the variance matrix of the process observed at 𝑗/𝑁, 𝑗 =
1, 2, . . . , 𝑁 .
The observations: We consider 𝑛 + 𝑚 iid 𝑍ℓ ∼ N(0, 1), and

𝑈 =
1

√
𝑛 + 𝑚

⎡⎢⎢⎢⎢⎣
𝑛∑
𝑗=1

𝑍 𝑗𝑋 𝑗 +
𝑚∑
𝑘=1

𝑍𝑘+𝑛𝑌𝑘

⎤⎥⎥⎥⎥⎦ .
Then

𝑧𝑞,𝑟 =
1

𝑁2 (𝑛 + 𝑚)

⎡⎢⎢⎢⎢⎣
𝑛∑
𝑗=1

𝑋 𝑗 (𝑡𝑞)𝑋 𝑗 (𝑡𝑟 ) +
𝑚∑
𝑘=1

𝑌𝑘 (𝑡𝑞)𝑌𝑘 (𝑡𝑟 )
⎤⎥⎥⎥⎥⎦

and we can set 𝑽 = 𝒁 = (𝑧𝑞,𝑟 )𝑞,𝑟=1,...,𝑁 .
Sample covariance matrix: By centering the (functional) observations, we actually
obtain 𝑽 = Σ̂, where Σ̂ denotes the sample variance matrix of the observed 𝑁-
dimensional random vectors (approximating the functional observations).

Notice that the quadratic forms in exponential functions in (17.6) look similarly to
Hotelling’s𝑇2 test statistic, where the matrix𝑽 is chosen as the inverse of the sample
covariance matrix. Therefore, further possible choices of the matrix 𝑽 could be the
inverse of the matrix Σ̂ or Σ𝑊 . Note that the inverse of Σ̂ generally does not exist



17 Functional Two-sample Tests Based on Empirical Characteristic Functionals 127

but, depending on the number of observations, first 𝑑 eigenvectors and eigenvalues
can be used to calculate a simple approximation. Interestingly, the eigenvectors (or
eigenfunctions) tend to recover the direction (in the functional space) that separates
the two sets of functional observations, see also the discussion in [5].
Eigenvectors and eigenvalues: Denote by𝜆1 ≥ 𝜆2 ≥ . . . the ordered eigenvalues, and
by 𝑒1, 𝑒2, . . . the corresponding orthogonal eigenfunctions of the covariance operator
of the combined dataset. Consider 𝑑 ≥ 1 and iid random variables 𝑍ℓ ∼ N(0, 1),
and define

𝑈 =
𝑑∑
ℓ=1

1
√
𝜆ℓ

𝑒ℓ𝑍ℓ .

The theoretical eigenfunctions and eigenvalues are replaced by eigenvectors 𝑒ℓ and
eigenvalues 𝜆̂ℓ of the empirical variance matrix Σ̂ in practical applications. Then for
some 1 ≤ 𝑑 ≤ min(𝑚 + 𝑛, 𝑁) define

𝑒𝑞,𝑟 =
𝑑∑
ℓ=1

1
𝜆̂ℓ

𝑒ℓ (𝑡𝑞)𝑒ℓ (𝑡𝑟 ).

In the following, we denote the resulting matrix𝑽 = (𝑒)𝑞,𝑟=1,...,𝑁 = Σ̂−1
𝑑 . The choice

of 𝑑 is discussed later.

17.4 Simulation and Comparison

We start by investigating the empirical power against the ’location shift’ alternative.
Following [4, Section 5], we generate two functional samples

𝑋𝑖 (𝑡) = 𝜇𝑥 (𝑡) + 𝜀𝑥,𝑖 (𝑡) (17.8)

and
𝑌𝑖 (𝑡) = 𝜇𝑦 (𝑡) + 𝜀𝑦,𝑖 (𝑡),

where the mean functions are 𝜇𝑥 (𝑡) = (1, 2.3, 3.4, 1.5) (1, 𝑡, 𝑡2, 𝑡3)� and 𝜇𝑦 (𝑡) =
𝜇𝑥 (𝑡) + 2𝛿(1, 2, 3, 4) (1, 𝑡, 𝑡2, 𝑡3)�/

√
30 so that the parameter 𝛿 controls the differ-

ence between 𝜇𝑥 (𝑡) and 𝜇𝑦 (𝑡). The subject-effect functions 𝜀.,𝑖 (𝑡) are defined as
a random linear combination of 11 orthonormal basis vectors 𝜓𝑤 (𝑡) (such that
𝜓1 (𝑡) = 1, 𝜓2𝜔 (𝑡) =

√
2 sin(2𝜋𝜔𝑡), 𝜓2𝜔+1(𝑡) =

√
2 cos(2𝜋𝜔𝑡), for 𝜔 = 1, . . . , 5)

with coefficients 𝑏.,𝑖,𝑤 ∼ 𝑁 (0, 1.5𝜌𝑤 ), for 𝑤 = 1, . . . , 11.
In this section, we set 𝜌 = 0.5. The choice 𝛿 = 0 means that the null hypothesis is

satisfied and we investigate the empirical size. An example of two data sets generated
under the alternative, with 𝛿 = 0.5, is plotted in Figure 17.1. Note that these two
samples were generated in the same way as samples 2 and 3 in [4, Section 5.2].

We compare empirical sizes and powers of the proposed two-sample ECF-based
test (ECF) with various variance matrices 𝑽, described in Section 17.3.2, to tests
implemented in R library fdANOVA [4]. Many of these tests are based on the usual
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Fig. 17.1 Random samples -1, . . . , -10 (solid lines) and .1, . . . , .10 (dashed lines) generated
according to the algorithm described in Section 17.4 with X = 0.5 and d = 0.5.

univariate (pointwise) F-statistics, say �= (C) for C ∈ (0, 1), that are combined into a
single test statistic:

GPF: globalizing pointwise F test, )GPF =
∫
�= (C)3C,

Fmaxb: maximizing pointwise F test, )Fmaxb = max �= (C),

Another approach is based on testing : projections of the original functions by
combining p-values [1] that are based on:

ANOVA: ANOVA F-test statistic,
ATS: ANOVA-type statistic,
WTPS: Wald type permutation statistic.

Similarly to the choice of the random process (and matrix \) in Section 17.3.2, the
projections are generated either as Gaussian white noise (G) or Brownian motion
(B). A detailed description of the function fanova.tests() in R library fdANOVA
is given in [4].

In the first two columns of Table 17.1, we can see that the empirical size of all
tests is close to the nominal level U = 5% both for = = < = 10 and = = < = 20
observations.

For = = < = 10, the empirical power is smallest for ECF tests with \ = Σ−1
,

(7.8%) and\ = ` (27.6%). The empirical power of most tests lies between 47% and
60%. Somewhat higher power, almost 70%, has been obtained for Fmaxb and ECF
tests with \ = Σ̂−1

6 . Using 3 = 8 eigenvectors, the highest empirical power (90.5%)
is observed for the ECF test with \ = Σ̂−1

8 .

0.0 0.2 0.4 0.6 0.8 1.0

−2
0

2
4

6
8

10
12

δ = 0.5
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𝛿 = 0 𝛿 = 0.5
method test/𝑽 𝑛 = 10 𝑛 = 20 𝑛 = 10 𝑛 = 20
GPF 6.1 6.2 58.0 88.4
FMAXB 6.1 3.6 69.8 98.0

ANOVA 3.5 3.3 51.1 90.1
P-Gauss ATS 5.0 4.9 54.2 89.6

WTPS 3.8 3.6 47.8 90.5
ANOVA 2.7 3.4 54.7 87.7

P-BM ATS 3.4 3.5 55.5 87.0
WTPS 2.6 3.1 47.5 88.0
I 4.7 4.0 53.9 89.3
Σ𝑊 4.4 4.8 57.5 87.8
Σ−1
𝑊 5.8 4.8 7.8 11.8

𝒁 4.8 4.9 27.6 52.1ECF
Σ̂ 4.5 5.6 43.2 76.6
Σ̂−1

2 4.2 5.7 47.6 79.4
Σ̂−1

6 5.2 5.9 67.6 95.2
Σ̂−1

8 4.2 4.9 90.5 99.9

Table 17.1 Empirical size (𝛿 = 0) and empirical power (𝛿 = 0.5) (in %) of two-sample functional
tests, nominal level 𝛼 = 0.05, 𝜌 = 0.5, 𝑁 = 50 gridpoints, equally sized samples (𝑛 = 𝑚), 1000
simulations with 1000 permutations. Bold font denotes the highest observed empirical power.

Results for 𝑛 = 𝑚 = 20 are similar but observed differences are smaller because
the power of most tests is close to 90%.

F-statistic ECF
𝑛 = 10 𝑛 = 20 𝑽 𝑛 = 10 𝑛 = 20

GPF 7.6 5.4 I 6.3 9.2
FMAXB 6.9 6.2 Σ𝑊 22.4 54.1

ANOVA 4.7 4.4 Σ−1
𝑊 8.5 14.8

P-Gauss ATS 4.9 3.3 𝒁 28.6 59.1
WTPS 4.9 4.5 Σ̂ 53.2 89.5
ANOVA 3.5 3.1 Σ̂−1

2 6.4 4.9
P-BM ATS 3.6 3.9 Σ̂−1

6 9.8 7.0
WTPS 3.1 3.0 Σ̂−1

8 10.0 10.6

Table 17.2 Empirical power (𝜎𝑦 = 2) (in %) of two-sample functional tests, nominal level
𝛼 = 0.05, 𝜌 = 0.5, 𝑁 = 50 gridpoints, equally sized samples (𝑛 = 𝑚), 1000 simulations with 1000
permutations. Bold font denotes the highest observed empirical power.

The study of the empirical power against the ‘change-of-scale’ alternative is
summarized in Table 17.2; the random functions 𝑋𝑖 (𝑡) are still generated according
to (17.8) while the second sample is changed to

𝑌 𝜎𝑖 (𝑡) = 𝜇𝑦 (𝑡) + 𝜎𝑦𝜀𝑦,𝑖 (𝑡),

with 𝛿 = 0 (implying that 𝜇𝑥 (.) = 𝜇𝑦 (.)) and with additional parameter 𝜎𝑦 > 0
controlling the variance. As may be expected, the empirical power of the F-statistic-
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based tests shown in Table 17.2 is very close to the nominal test level. The best
power is obtained for the ECF-based test with 𝑽 = Σ̂, the sample covariance matrix.
On the other hand, the ECF-based tests using 𝑽 based on the inversion of (some)
covariance matrix do not perform very well.

We conclude that the ECF test with the matrix 𝑽 approximating the inverse
covariance matrix leads to the best results against the ‘location shift’ alternative
while the ECF test with 𝑽 = Σ̂ leads to the best results against the ‘change-of-
scale’ alternative. Interestingly, the ECF test outperforms the F-statistic-based tests
implemented in library fdANOVA even against the ‘location shift’ alternative.
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