
Chapter 15
Goodness-of-fit Tests for Functional Linear
Models Based on Integrated Projections

Eduardo García-Portugués, Javier Álvarez-Liébana,
Gonzalo Álvarez-Pérez and Wenceslao González-Manteiga

Abstract Functional linear models are one of the most fundamental tools to assess
the relation between two random variables of a functional or scalar nature. This
contribution proposes a goodness-of-fit test for the functional linear model with
functional response that neatly adapts to functional/scalar responses/predictors. In
particular, the new goodness-of-fit test extends a previous proposal for scalar re-
sponse. The test statistic is based on a convenient regularized estimator, is easy to
compute, and is calibrated through an efficient bootstrap resampling. A graphical
diagnostic tool, useful to visualize the deviations from the model, is introduced and
illustrated with a novel data application. The R package goffda implements the
proposed methods and allows for the reproducibility of the data application.

15.1 Functional Linear Models

15.1.1 Formulation

Given two separable Hilbert spaces H1 and H2, we consider the regression setting
with centered H2-valued response Y and centered H1-valued predictor X:
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Y = 𝑚(X) + E, (15.1)

where 𝑚 : X ∈ H1 ↦→ E [Y|X = X] ∈ H2 is the regression operator and the
H2-valued error E is such that E [E|X] = 0. When H1 = 𝐿2 ( [𝑎, 𝑏]) and H2 =
𝐿2 ( [𝑐, 𝑑]), the Functional Linear Model with Functional Response (FLMFR; see,
e.g., [15, Chapter 16]) is the most well-known parametric instance of (15.1). If the
regression operator is assumed to be Hilbert–Schmidt, 𝑚 is parametrizable as

𝑚𝛽 (X) =
∫ 𝑏
𝑎

𝛽(𝑠, ·)X(𝑠) d𝑠 =: 〈〈𝛽,X〉〉, (15.2)

for 𝛽 ∈ H1 ⊗H2 = 𝐿2 ( [𝑎, 𝑏] × [𝑐, 𝑑]) a square-integrable kernel. The present work
considers this framework and is concerned with the goodness-of-fit of the family of
H2-valued and H1-conditioned linear models

L := {〈〈𝛽, ·〉〉 : 𝛽 ∈ H1 ⊗ H2} . (15.3)

Any X ∈ H1 and Y, E ∈ H2 can be represented in terms of orthonormal bases
{Ψ 𝑗 }∞

𝑗=1 and {Φ𝑘 }∞
𝑘=1 as X =

∑∞
𝑗=1 𝑥 𝑗Ψ 𝑗 , Y =

∑∞
𝑘=1 𝑦𝑘Φ𝑘 , and E =

∑∞
𝑘=1 𝑒𝑘Φ𝑘 ,

where 𝑥 𝑗 = 〈X,Ψ 𝑗〉H1 , 𝑦𝑘 = 〈Y,Φ𝑘〉H2 , and 𝑒𝑘 = 〈E,Φ𝑘〉H2 , ∀ 𝑗 , 𝑘 ≥ 1. Also,
𝛽 ∈ H1 ⊗ H2 can be expressed as

𝛽 =
∞∑
𝑗=1

∞∑
𝑘=1

𝑏 𝑗𝑘 (Ψ 𝑗 ⊗ Φ𝑘 ), 𝑏 𝑗𝑘 =
〈
𝛽,Ψ 𝑗 ⊗ Φ𝑘
〉
H1⊗H2

, ∀ 𝑗 , 𝑘 ≥ 1.

Therefore, the population version of the FLMFR based on (15.2) can be expressed as

𝑦𝑘 =
∞∑
𝑗=1

𝑏 𝑗𝑘𝑥 𝑗 + 𝑒𝑘 , 𝑘 ≥ 1. (15.4)

15.1.2 Model Estimation

The projection of (15.4) into the truncated bases {Ψ 𝑗 }𝑝𝑗=1 and {Φ𝑘 }𝑞𝑘=1 opens the way
for the estimation of 𝛽 given a centered sample {(X𝑖 ,Y𝑖)}𝑛𝑖=1. Indeed, the truncated
sample version of (15.4) is expressed as

Y𝑞 = X𝑝B𝑝,𝑞 + E𝑞 , (15.5)

where Y𝑞 and E𝑞 are 𝑛 × 𝑞 matrices with the respective coefficients of {Y𝑖}𝑛𝑖=1 and
{E𝑖}𝑛𝑖=1 on {Φ𝑘 }𝑞𝑘=1, X𝑝 is the 𝑛 × 𝑝 matrix of coefficients of {X𝑖}𝑛𝑖=1 on {Ψ 𝑗 }𝑝𝑗=1,
and B𝑝,𝑞 is the 𝑝 × 𝑞 matrix of coefficients of 𝛽 on {Ψ 𝑗 ⊗ Φ𝑘 }𝑝,𝑞𝑗,𝑘=1.
Several estimators for 𝛽 have been proposed; see, e.g., [16, 13, 5, 1, 14]. A popular

estimation paradigm is Functional Principal Components Regression (FPCR; [15]),
which considers the (empirical) Functional Principal Components (FPC) {Ψ̂ 𝑗 }𝑝𝑗=1
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and {Φ̂𝑘 }𝑞𝑘=1 as a plug-in for {Ψ 𝑗 }𝑝𝑗=1 and {Φ𝑘 }𝑞𝑘=1 underneath (15.5). Estimation

by FPCR yields B̂𝑝,𝑞 = argminB𝑝,𝑞
44Y𝑞 − X𝑝B𝑝,𝑞

442 =
(
X′
𝑝X𝑝
)−1X′

𝑝Y𝑞 , with
𝑗 = 1, . . . , 𝑝 and 𝑘 = 1, . . . , 𝑞. The estimator B̂𝑝,𝑞 depends on (𝑝, 𝑞) and an
automatic data-driven selection of (𝑝, 𝑞) is of most practical interest. However,
cross-validatory procedures are computationally expensive, especially since two
tuning parameters must be optimized. A simple alternative for selecting 𝑞 is to
guarantee a certain proportion of explained variance (say, 0.99) for {Y𝑖}𝑛𝑖=1. The
more critical selection of 𝑝 can be done by first ensuring a certain proportion of
explained variance (say, 0.99) and then performing a LASSO-regularized FPCR
regression (FPCR-L1 henceforth):

B̂(𝜆)
𝑝,𝑞 = argmin

B𝑝,𝑞

⎧⎪⎨⎪⎩ 12𝑛
𝑛∑
𝑖=1

44(Y𝑞 ) 𝑖 − (X𝑝B𝑝,𝑞 ) 𝑖442 + 𝜆

𝑝∑
𝑗=1

444(B𝑝,𝑞 ) 𝑗444⎫⎪⎬⎪⎭ ,
where the notation (A)𝑖 stands for the 𝑖-th row of the matrix A. This regularization
applies a row-wise penalty that enables variable selection for a given 𝜆, which can
be efficiently selected by cross-validation and its one standard error variant [9].
However, FPCR-L1 lacks an explicit expression for the hat matrix (in contrast with

FPCR), an important handicap for the bootstrap algorithm outlined in Section 15.2.3.
To combine the flexible variable selection of FPCR-L1 with the analytical form of
FPCR, we propose the FPCR-L1S estimator, which firstly implements FPCR-L1 for
variable selection and then performs FPCR on the selected predictors. It returns the
hat matrix H(𝜆)

C = X̃ �̃�
(
X̃′
�̃�X̃ �̃�
)−1X̃′

�̃� , where X̃ �̃� is the matrix of the coefficients of
the 𝑝 LASSO-selected predictors (not necessarily sorted).

Simulations [11, Section 2.4] report that FPCR-L1S outperforms FPCR.

15.2 Proposed Goodness-of-fit Tests

15.2.1 Test Statistic Genesis

Our aim is to test whether the regression operator belongs to the class of linear
operators described in (15.3), that is, to test

H0 : 𝑚 ∈ L vs. H1 : 𝑚 ∉ L.

To do so, we use the following lemma to characterize H0 in terms of the one-
dimensional projections of Y and X. The lemma requires from analogues of the
Euclidean (𝑝 − 1)-sphere S𝑝−1 := {x ∈ R𝑝 : ‖x‖ = 1}: the (𝑝 − 1)-sphere of H1 for
{Ψ 𝑗 }∞

𝑗=1, S
𝑝−1
H1 , {Ψ 𝑗 }∞𝑗=1

:= {
∑𝑝
𝑗=1 𝑥 𝑗Ψ 𝑗 ∈ H1 : ‖x‖ = 1} and, analogously, S𝑞−1

H2 , {Φ𝑘 }∞𝑘=1
.

Lemma 1 (H0 characterization on finite-dimensional directions; [11]) Let X
and Y be H1- and H2-valued random variables, respectively, 𝛽 ∈ H1 ⊗ H2, and let
{Ψ 𝑗 }∞

𝑗=1 and {Φ𝑘 }∞
𝑘=1 be bases ofH1 andH2, respectively. Then, the next statements

are equivalent:
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i. H0 holds, that is, 𝑚 (X) = 〈〈X, 𝛽〉〉, ∀X ∈ H1.
ii. E
[〈

Y−〈〈X, 𝛽〉〉, 𝛾 (𝑞)
Y
〉
H2
�{〈

X,𝛾 (𝑝)
X

〉
H1

≤𝑢
} ] = 0, for almost every 𝑢 ∈ R,∀𝛾 (𝑝)

X ∈

S
𝑝−1
H1 , {Ψ 𝑗 }∞𝑗=1

, ∀𝛾 (𝑞)
Y ∈ S𝑞−1

H2 , {Φ𝑘 }∞𝑘=1
, and for all 𝑝, 𝑞 ≥ 1.

The reader is referred to [11] for the proof of the lemma.
We use the above characterization to detect deviations from H0. We do so by

means of the (𝑝, 𝑞)-truncated empirical version of the doubly-projected integrated
regression function in statement ii, that is, the residual marked empirical process

𝑅𝑛,𝑝,𝑞
(
𝑢, 𝛾 (𝑝)

X , 𝛾 (𝑞)
Y
)
=

1
√
𝑛

𝑛∑
𝑖=1

〈
Ê (𝑞)
𝑖 , 𝛾 (𝑞)

Y
〉
H2
�{〈

X(𝑝)
𝑖 ,𝛾

(𝑝)
X

〉
H1

≤𝑢
} , 𝑢 ∈ R,

(15.6)
with residual marks

〈
Ê (𝑞)
𝑖 , 𝛾 (𝑞)

Y
〉
H2

= ê′
𝑖,𝑞h𝑞 and jumps

〈
X(𝑝)
𝑖 , 𝛾 (𝑝)

X
〉
H1

= x′
𝑖, 𝑝g𝑝 ,

where ê′
𝑖,𝑞 represents the 𝑖-th row of the 𝑛 × 𝑞 matrix of residual coefficients Ê𝑞

on {Φ𝑘 }𝑞𝑘=1, x𝑖, 𝑝 are the first 𝑝 coefficients of X𝑖 on {Ψ 𝑗 }𝑝𝑗=1, and g𝑝 ∈ S𝑝−1 and
h𝑞 ∈ S𝑞−1 are the coefficients of 𝛾 (𝑝)

X and 𝛾 (𝑞)
Y , respectively.

To measure the proximity of (15.6) to zero (and hence to H0), and following
the ideas of [7] and [12], we consider a Cramér–von Mises norm on Π (𝑝,𝑞) =
S
𝑞−1
H2 , {Φ𝑘 }∞𝑘=1

× S𝑝−1
H1 , {Ψ 𝑗 }∞𝑗=1

× R, yielding the so-called Projected Cramér–von Mises
(PCvM) statistic:

PCvM𝑛,𝑝,𝑞 =
∫
S𝑞−1×S𝑝−1×R

[
𝑅𝑛,𝑝,𝑞
(
𝑢, g𝑝 , h𝑞
) ]2

𝐹𝑛,g𝑝 (d𝑢) dg𝑝 dh𝑞 ,

where 𝐹𝑛,g𝑝 is the empirical cumulative distribution function of {x′
𝑖, 𝑝g𝑝}𝑛𝑖=1.

From the developments in [11], we get an easily computable form of the statistic:

PCvM𝑛,𝑝,𝑞 =
1
𝑛2

2𝜋𝑝/2+𝑞/2−1

𝑞Γ(𝑝/2)Γ(𝑞/2)
Tr
[
Ê′
𝑞A•Ê𝑞
]
, (15.7)

where Tr(·) denotes the trace operator and A• is a certain 𝑛 × 𝑛 symmetric matrix
that only depends on {x𝑖, 𝑝}𝑝𝑖=1.

15.2.2 Statistic Interpretation and Particular Cases

The statistic (15.7) can be regarded as a weighted quadratic norm:

PCvM𝑛,𝑝,𝑞 =
1
𝑛2

2𝜋𝑝/2+𝑞/2−1

𝑞Γ(𝑝/2)Γ(𝑞/2)

𝑞∑
𝑘=1

44(𝑒1,𝑘 , . . . , 𝑒𝑛,𝑘 )44A•
,

where Ê (𝑞)
𝑖 =
∑𝑞
𝑘=1 𝑒𝑖,𝑘Φ𝑘 , 𝑖 = 1, . . . , 𝑛, and ‖v‖A• := (v′A•v)1/2 is a norm in

R𝑛 induced by A•. Therefore, the statistic aggregates across the dimensions of the
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truncated response theA•-weighted norms of the coefficients of the functional errors
on {Φ𝑘 }𝑞𝑘=1. The basis of such interpretation is the next lemma (proof given in [11]).

Lemma 2 ([11]) Assume that the functional sample {X𝑖}𝑛𝑖=1 has pairwise distinct
coefficients {x𝑖, 𝑝}𝑛𝑖=1 on an arbitrary 𝑝-truncated basis {Ψ 𝑗 }𝑝𝑗=1 ofH1. Then, for any
sample size 𝑛 ≥ 1, the 𝑛 × 𝑛 matrix A• is positive definite.

The general framework of the FLMFR seamless adapts to scalar response or
predictor. So do the estimation methods discussed in Section 15.1.2 and the statistic
(15.7). Indeed, in the case of scalar response (see, e.g., [2] and [4]), H2 = R
is identifiable with the subspace of 𝐿2 ( [𝑐, 𝑑]) of constant functions with basis
{(𝑑 − 𝑐)−1/2} and 𝛽(·, ★) ≡ 𝛽(·) ∈ 𝐿2 ( [𝑎, 𝑏]) is a univariate function. The statistic
PCvM𝑛,𝑝,1 precisely corresponds to the PCvM statistic for the functional linear
model with scalar response given in [12]. In the case of scalar predictor (see [3]),
𝛽(·, ★) ≡ 𝛽(★) ∈ 𝐿2 ( [𝑐, 𝑑]) and PCvM𝑛,1,𝑞 results in a test statistic specific for
such model.

15.2.3 Bootstrap Calibration and Graphical Tool

The calibration of the statistic (15.7) is done through awild bootstrap on the residuals.
We sketch next the main steps of such resampling, referring to Algorithm 1 in [11]
for the specifics and its adaptation to the 𝛽-specified case.

1. Compute the statistic PCvM𝑛, �̃�,𝑞 from the residuals ê𝑖,𝑞 = Y𝑖,𝑞 − X𝑖, �̃�B̂(𝜆) ,C
�̃�,𝑞 ,

𝑖 = 1, . . . , 𝑛, associated to the FPCR-L1S estimate B̂(𝜆) ,C
�̃�,𝑞 (which selects 𝑝).

2. For 𝑏 = 1, . . . , 𝐵:

a. Perturb the residuals as e∗𝑏
𝑖,𝑞 := 𝑉∗𝑏

𝑖 ê𝑖,𝑞 , 𝑖 = 1, . . . , 𝑛, where {𝑉∗𝑏
𝑖 }𝑛𝑖=1 are

independent zero-mean and unit-variance random variables.
b. Using {e∗𝑏

𝑖,𝑞}
𝑛
𝑖=1, simulate {Y∗𝑏

𝑖,𝑞}
𝑛
𝑖=1 from the multivariate linear model.

c. Fit the multivariate model from {(X𝑖, �̃� ,Y∗𝑏
𝑖,𝑞)}

𝑛
𝑖=1 and obtain B̂∗𝑏

�̃�,𝑞 .
d. Compute the bootstrapped statistic PCvM∗𝑏

𝑛, �̃�,𝑞 from the bootstrap residuals
ê∗𝑏
𝑖,𝑞 := Y∗𝑏

𝑖,𝑞 − X𝑖, �̃�B̂∗𝑏
�̃�,𝑞 , 𝑖 = 1, . . . , 𝑛.

3. Estimate the 𝑝-value by Monte Carlo as #{PCvM𝑛, �̃�,𝑞 ≤ PCvM∗𝑏
𝑛, �̃�,𝑞}/𝐵.

The bootstrap procedure yields as a by-product a graphical diagnostic tool of the
goodness-of-fit of the FLMFR that helps visualizing the possible deviations from
H0. The tool compares the empirical process on which the PCvM statistic is applied,

𝑅𝑛,𝑝,𝑞
(
𝑢, g𝑝 , h𝑞
)
=

1
√
𝑛

𝑛∑
𝑖=1

ê′
𝑖,𝑞h𝑞�{x′

𝑖,𝑝g𝑝≤𝑢
} ,

with 𝐺 samples of its bootstrapped version:
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𝑅∗𝑏
𝑛,𝑝,𝑞

(
𝑢, g𝑝 , h𝑞
)
=

1
√
𝑛

𝑛∑
𝑖=1

(ê∗𝑏
𝑖,𝑞)

′h𝑞�{x′
𝑖,𝑝g𝑝≤𝑢
} , 𝑏 = 1, . . . , 𝐺.

The graphical tool employs the FPC bases {Ψ̂ 𝑗 }𝑝𝑗=1 and {Φ̂𝑘 }𝑞𝑘=1 and considers g𝑝
and h𝑞 as the canonical vectors in R𝑝 and R𝑞 , respectively. This allows to visualize
the deviations from H0 when “it is projected” in the first FPC of {X𝑖}𝑛𝑖=1 and the
first FPC of {Y𝑖}𝑛𝑖=1 (or any other combination thereof). Figure 15.2 shows and
explains two outputs of this diagnostic tool, for the situations in which H0 is and is
not rejected.

15.3 Application: AEMET Temperatures Dataset

The aemet_temp dataset in the goffda [10] package contains daily temperatures of
𝑛 = 73 weather stations from the Meteorological State Agency of Spain (AEMET)
during the time span 1974–2013. The dataset is split in two 20-year periods, 1974–
1993 and 1994–2013, and the daily temperatures on eachweather station are averaged
for both periods. This results in two functional samples for the average temperatures
across Spain on 1974–1993 (predictor X) and 1994–2013 (response Y). Both sam-
ples were smoothed with local linear estimators using cross-validated bandwidths to
ease visualization. Figure 15.1 (left) shows the samples of X and Y.

The PCvM test based on 𝑝 = 4 (selected by FPCR-L1S with 𝜆 chosen by one
standard error cross-validation) and 𝑞 = 3 (selected such that the proportion of
explained variance is 0.99) yielded a 𝑝-value equal to 0.4155 using 𝐵 = 104 bootstrap
replicates. Therefore, the FLMFR is not rejected. The estimated 𝛽, shown in Figure
15.1 (right), reveals a temperature increment on the latter period with respect to
the former, a conclusion supported by the predominance of positive values on the 𝛽
surface and the positiveness of almost all the temperature curves. The diagnostic tool
in Figure 15.2 (left) shows no remarkable deviations of the residual marked empirical
process from H0. The PCvM test rejects emphatically the simple hypotheses H0 :
𝛽 = 0 and H0 : 𝛽(𝑠, 𝑡) = �{𝑠=𝑡 } (stationary-temperature hypothesis; right panel in
Figure 15.2), thus corroborating a significant change in the temperatures between
both periods. The diagnostic tool for the latter hypothesis reveals that the non-
stationarity is due to the relations between the second FPC of {X𝑖}𝑛𝑖=1 and {Y𝑖}𝑛𝑖=1,
both related with the variation shape of the temperature curves along the year.

15.4 Software: goffda R Package

The R package goffda [10] implements all the methods described and allows for
replication of the data application. The implementation of the critical parts of the
goodness-of-fit tests, such as the computation of the A• matrix and the computation
of the PCvM statistic, are implemented in C++ (through Rcpp [6]) for the sake of
efficiency. The goffda package relies on the fdata class from the fda.usc [8]
package, so it is fully compatible with the latter.
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Fig. 15.1 Left: Temperatures of 73 AEMET weather stations for the periods 1974–1983 (X) and
1994–2013 (Y), along with their means. Right: FPCR-L1S estimator V̂ for the FLMFR.

Fig. 15.2 Graphical tool of the PCvM test. The black curve represents the observed process
'=,?,@

(
D, e 9 , e:

)
for its projections on the 9-th FPC of {X8 }=8=1 and the :-th FPC of {Y8 }=8=1,

9 , : = 1, 2. The grey curves stand for the bootstrapped processes underH0, i.e., '∗1=,?,@
(
D, e 9 , e:

)
,

1 = 1, . . . , 100. The left 2 × 2 panel shows the diagnostic output for H0 : < ∈ L in the AEMET
temperatures dataset. The non-rejection ofH0 is manifested in the centrality of the observed process
within the bootstrapped ones. The right 2× 2 panel shows the diagnostic for H0 : V (B, C) = 1{B=C} ,
with rejection of H0 evidenced by the outlyingness of '=,?,@ (D, e2, e2) .

The main functions of goffda are: flm_est (several estimation methods for
the FLMFR); Adot (efficient implementation of the A• matrix); flm_stat (com-
putation of (15.7)); flm_test (implementation of the test with its bootstrap re-
sampling). flm_est and flm_test deal seamlessly with either functional/scalar
responses/predictors.
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