
Contributions to Statistics

Germán Aneiros
Ivana Horová
Marie Hušková
Philippe Vieu   Editors

Functional and 
High-Dimensional 
Statistics and 
Related Fields



Contributions to Statistics



The series Contributions to Statistics contains publications in theoretical and
applied statistics, including for example applications in medical statistics,
biometrics, econometrics and computational statistics. These publications are
primarily monographs and multiple author works containing new research results,
but conference and congress reports are also considered.
Apart from the contribution to scientific progress presented, it is a notable
characteristic of the series that publishing time is very short, permitting authors and
editors to present their results without delay.

More information about this series at http://www.springer.com/series/2912

http://www.springer.com/series/2912


123

Germán Aneiros • Ivana Horová
Marie Hušková • Philippe Vieu 

Statistics and Related Fields

 

Editors

Functional
and High-Dimensional



ISSN 1431-1968 

Contributions to Statistics 

ISBN 978-3-030-47755-4  ISBN 978-3-030-47756-1 (eBook) 

https://doi.org/10.1007/978-3-030-47756-1 
 

Mathematics Subject Classification (2020): 62-07, 62G05, 62G09, 62G20, 62F12, 62F15, 62F40, 62H25 

 
© Springer Nature Switzerland AG 2020 

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of 

the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 

storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology 

now known or hereafter developed. 
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 

does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 

protective laws and regulations and therefore free for general use. 
The publisher, the authors and the editors are safe to assume that the advice and information in this book 

are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the 

editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 

claims in published maps and institutional affiliations. 

 
This Springer imprint is published by the registered company Springer Nature Switzerland AG 

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland 

Editors 

Germán Aneiros 

Department of Mathematics 

University of A Coruña 

A Coruña, Spain 

 

Philippe Vieu 

Toulouse Mathematics Institute 

Paul Sabatier University - Toulouse III 

Toulouse, France 

Marie Hušková 

Department of Probability  

and Mathematical Statistics 

Charles University 

Prague, Czech Republic 

Ivana Horová 

Department of Mathematics

Masaryk University 

Brno, Czech Republic  

and Statistics 

https://doi.org/10.1007/978-3-030-47756-1


Preface

During the last twelve years, the International Workshop on Functional and Op-
eratorial Statistics has become a prominent platform for exchange of ideas and
communication in the growing community of researchers in functional data analy-
sis. Following the success of the previous meetings held in Toulouse (France, 2008),
Santander (Spain, 2011), Stresa (Italy, 2014) and A Coruña (Spain, 2017), the 5th
IWFOS takes place at Masaryk University in Brno, Czech Republic. The workshop
was originally planned for June 2020 but due to the rapidly evolving coronavirus
pandemic it has been postponed. Nevertheless, this collection of peer-reviewed short
papers is published as planned. It reflects the diversity of theoretical, methodological
and applied advances in functional data analysis and its intersection with other areas
of statistics, such as high-dimensional data analysis and nonparametric statistics, as
well as the diversity of the community itself.

We would like to thank all the authors presenting their work at the workshop.
We are particularly grateful to invited speakers Gérard Biau (Sorbonne Univer-
sité, France), Eduardo García Portugués (Universidad Carlos III de Madrid, Spain),
Lajos Horváth (University of Utah, USA), Roberto Imbuzeiro (Instituto Nacional
de Matemática Pura e Aplicada, Brazil), Dominik Liebl (Rheinische Friedrich-
Wilhelms-Universität Bonn, Germany), Regina Y. Liu (Rutgers School of Arts
and Sciences, USA), Stanislav Nagy (Charles University, Prague, Czech Repub-
lic), Piercesare Secchi (Politecnico di Milano, Italy) and Yoav Zemel (University of
Cambridge, United Kingdom) .

We especially appreciate the effort of the members of the Scientific Committee,
namely John Aston (Cambridge, UK), Ricardo Cao (A Coruña, Spain), Antonio
Cuevas (Madrid, Spain), Aurore Delaigle (Melbourne, Australia), Manuel Febrero
(Santiago de Compostela, Spain), Ricardo Fraiman (Montevideo, Uruguay), Aldo
Goia (Novara, Italy), Daniel Hlubinka (Prague, Czech Republic), Siegfried Hör-
mann (Graz, Austria), David Kraus (Brno, Czech Republic), Sara Lopez-Pintado
(New York, USA), Steve Marron (Chapel Hill, USA), Alexander Meister (Rostock,
Germany), Victor Panaretos (Lausanne, Switzerland), Greg Rice (Waterloo, Canada)

v



vi

and Simone Vantini (Milan, Italy), and other experts during the preparation of the
scientific program and the review process.

We are grateful to the following academic and private institutions and organi-
zations for their support: Faculty of Science, Masaryk University, Brno, Faculty
of Mathematics and Physics, Charles University, Prague, Union of Czech Math-
ematicians and Physicists, Brno branch, Institut de Mathématiques de Toulouse,
Autocont, Prefa Brno, Kiwi.com, Trilobyte Statistical Software, SC&C Partner and
Home Credit.

The preparation of IWFOS is possible thanks to the members of the Organizing
Committee, in particular, Enea Bongiorno, Marie Budíková, Jitka Forejtová Zhořová,
Jan Koláček, Zdeněk Pospíšil, Lenka Přibylová, Petr Vitík and Jan Vondra. The
preparation of the proceedings went smoothly thanks to the dedicated work of
Ondřej Pokora, Jiří Zelinka and David Kraus from the Organizing Committee, and
Veronika Rosteck and Gerlinde Schuster of Springer.

Brno, March 2020 Germán Aneiros
Ivana Horová

Marie Hušková
Philippe Vieu
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Chapter 1
An introduction to the (postponed) 5th edition of
the International Workshop on Functional and
Operatorial Statistics

Germán Aneiros, Ivana Horová, Marie Hušková and Philippe Vieu

Abstract This volume is composed by a set of short papers corresponding to some of
the contributions that were sent to be presented at the fifth edition of the International
Workshop on Functional and Operatorial Statistics (IWFOS). This fifth edition was
to be held in June 2020 in Brno (Czech Republic), but had to be postponed as a
consequence of the health crisis caused by the COVID-19 pandemic. The aim of this
introduction is to make a fast presentation of these contributions by putting them
into the recent trends in Functional Data Analysis and related fields.

1.1 IWFOS and Functional Data Analysis

The meetings IWFOS has played a major role along the last twelve years to promote
Functional Data Analysis (FDA) ideas. The first edition took place in Toulouse,
France (June 2008), at a moment when FDA ideas were not so much developed as
they can be nowadays. Then this meeting took place each three years (Santander,
Spain, 2011; Stresa, Italy, 2014; A Coruña, Spain, 2017), and each issue was the
opportunity for active researchers in the field to share their recent advances and
to start new collaborations. During these twelve years, all the leaders in research
on FDA have participate in some way in these events (either as member of the
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Programs Committee or as contributor, or both of them). The fifth edition of IWFOS
was to be held in June 2020 in Brno (Czech Republic), but had to be postponed as a
consequence of the health crisis caused by the COVID-19 pandemic. As can be noted
from the short papers included in this volume (which had been accepted for such
fifth edition), the IWFOS planned for 2020 maintained the high quality standards of
the other four past editions.

From a methodological point of view, one can say that FDA’s ideas have been
of influence on almost all the fields of Statistics, including: linear, semiparametric
and nonparametric modelling, as well as regression, clustering and classification
problems, or independent, time series and spatial datasets, ... Also, from an applied
point of view, FDA’s ideas have been used to analyse scopes of real data coming from
most of applied scientific fields, including medicine, econometrics, environmetrics,
physics, spectrometry, and many other ones ... This wide degree of interest of FDA’s
ideas is attested by the recent bibliographical studies (see for instance, [3], [4], [6],
[7], [5], [1], [2], ...).

Since the third edition in 2014, and because of the wide set of links existing
between FDA and High-Dimensional Statistics (HDS), the topics of IWFOS meetings
have been extended to HDS (see [4] and [1]). The (postponed) 2020’s edition had
followed this opening strategy, that has been nicely appreciated by the participants
of past editions, and extended it as well to HDS as to other related fields.

1.2 Presentation of the various chapters

This volume contains contributions on several topics in functional and high-
dimensional Statistics and related fields, including:

- Classification: see Chapter 28 for a proposal, based on distance correlation, for
selecting optimum scales for supervised classification of 3D point clouds.

- Confidence bands: see Chapter 21, which focuses on a new approach, based on
random field theory, for constructing simultaneous confidence bands in the case
of the function-on-scalar linear regression model.

- Density estimation: see Chapter 11 for a proposal of a nonparametric method
for density estimation over two-dimensional domains.

- Depth: see Chapter 25, where the depth in finite-dimensional spaces is intro-
duced, and it is outlined particular difficulties one faces when attempting to
generalize depths to the situation of functional or other infinite-dimensional
data.

- Diagnostic tests: see Chapter 10, where a diagnostic test is constructed by using a
novel procedure that allows to indicate if one functional data precedes to another
one.

- Dimension reduction: see Chapter 6 for a reconstitution, based on PCA, of a
cyclostationary random function; and Chapter 19 for FPCA combined with the
survival Cox regression model.
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- Estimation on manifolds: see Chapter 7 for some asymptotic properties related
to an estimator of the level sets of a density; and Chapter 16 for stringing via
manifold learning.

- High- and infinite-dimensional Statistics: see Chapter 26 for an algorithm to
select impact points in a new sparse semiparametric functional model.

- Inference on functional data: see Chapter 18 for discussion related to some results
(very useful in econometrics) on functional data whose mean and covariance
are expanded in certain particular basis.

- Networks: see Chapter 13 for an approach to extend network analytical tools to
the functional data setting; and Chapter 20 for robust neural networks.

- Operatorial Statistics: see Chapter 24 for distances between covariance operators
associated with functional random processes.

- Prediction: see Chapter 12 for an algorithm to generate nonparametric prediction
bands for a functional-on-scalar linear regression model.

- Regression: see Chapter 8, where the behaviour of a cross-validation approach
to select the pseudo-metric is studied by means a simulation study; Chapter 22
for estimation of the functional single index regression model with responses
missing at random for strong mixing time series data; and Chapter 29 for rates of
convergence and asymptotic distribution of estimators in generalized functional
partially linear single-index models.

- Robustness: see Chapter 30 for functional outlier detection.
- Sequential learning: see Chapter 4, where a novel signature approach is dis-

cussed, focusing in its use in machine learning.
- Small-ball probability: see Chapter 5 for an overview on asymptotic results

related to a factorization of the small-ball probability, as well as illustrations of
new results.

- Smoothing: see Chapter 14 for a proposal to retrieve functional data from the
corresponding observed discretized valued, considering a factor model on the
measurement error term.

- Spatial data: see Chapter 2 for an application of space-time regression; Chapter
3 for a simulation study related to spatial regression with partial differential
equation regularization; and Chapter 23 for an overview, including application,
on object oriented spatial Statistics focused on the problem of kriging prediction.

- Testing: see Chapter 9, where a test procedure for checking the validity of the
single functional index model is introduced and its performance is analyzed
by means of Monte Carlo experiments; Chapter 15 for a goodness-of-fit test
for the functional linear model with functional response, the corresponding
statistics being calibrated through a wild bootstrap on the residuals; Chapter
17 for two-sample tests based on empirical characteristic functionals; Chapter
27 for local inference controlling the false discovery rate; and Chapter 32 for
adjusted p-values based on envelope tests.

- Topological object data analysis: see Chapter 31, where it is presented method-
ology to study distributions on object spaces.
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Finally, it is worth being noted that some of these chapters include, in addition
to methodology and/or asymptotics and/or simulation studies and/or overviews on
some topic, interesting applications to real data, concerning the areas of:

- Automobile engineering: see Chapter 20.
- Criminology: see Chapter 20.
- Drawing recognition: see Chapter 4.
- Econometrics: see Chapters 20 and 21.
- Environmetrics: see Chapters 12, 13, 15, 23 and 27.
- Medicine: see Chapters 19, 31 and 32.
- Mobile phone: see Chapter 2.
- Spectrometrics: see Chapter 26.
- Urban environment: see Chapter 28.
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Chapter 2
Analysis of Telecom Italia Mobile Phone Data by
Space-time Regression with Differential
Regularization

Eleonora Arnone, Mara S. Bernardi, Laura M. Sangalli and Piercesare Secchi

Abstract We apply spatio-temporal regression with partial differential equation
regularization to the Telecom Italia mobile phone data. The technique proposed
allows to include specific information on the phenomenon under study through a
definition of the non-stationary anisotropy characterizing the spatial regularization
based on the texture of the domain on which the data are observed.

2.1 Space-Time Regression with Differential Regularization

The analysis of functional data with spatial dependence has been of great interest
in the last years and various methods have been recently proposed to deal with this
kind of data [10]. In this work, we consider spatial regression methods with Partial
Differential Equation (PDE) regularization [12, 13, 4, 5]. In particular, we consider
the Space-Time regression with PDE penalization method (ST-PDE) introduced in
[7] and extend it to deal with observations featuring complex spatial dependency.

ST-PDE is a penalized regression method that models separately the spatial and
the temporal regularization by considering two roughness penalties, which account
separately for the regularity of the field in space and in time by using a tensor
product, following the approach used also by [1, 3, 9]; while, in the generalization
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of the technique proposed by [2], a single roughness penalty is used to jointly model
the spatial and temporal dimensions. Therefore, in the ST-PDE model, the field is
estimated minimizing a functional composed by three parts: a data-fitting part, a
penalization for the spatial regularity, and a penalization for the temporal regularity.
In [7], the spatial penalization involves a simple differential operator that imposes
smoothness to the solution. Instead, in this work, we consider a spatial penalization
involving a more general PDE, that allows to impose non-stationary anisotropy to the
solution, thus modeling more complex spatial dependencies. Moreover, the PDE can
model problem-specific knowledge on the phenomenon under study. For example, if
the PDE governing the physical phenomenon generating the data is available, it can
be exploited in the spatial regularization term of the ST-PDE functional, thus driving
the estimation towards a physically sound solution. In the context of the analysis of
mobile phone data, where no physical knowledge on the phenomenon under study is
available, we use the PDE to include in the model information about the texture of the
spatial domain; in particular, we here characterize the PDE using the road network,
which highly influences the data. This application highlights the high flexibility of
the definition of spatial dependence imposed by the ST-PDE model.

Section 2.2 describes the Telecom Italia mobile phone data. Section 2.3 presents
the model and how the texture of the domain can be used to estimate the non-
stationary anisotropy characterizing the regularization.

2.2 Telecom Italia Mobile Phone Data

We consider the Telecom Italia database, provided by Convenzione di Ricerca
DiAP–Politecnico di Milano and Telecom Italia. This dataset concerns the usage
of mobile phone data in the metropolitan area of Milan. It collects the measurements
of the Erlang, a dimensionless unit calculated by adding up the length of all the calls
made by mobile phones within a region of the spatial domain in a time interval,
and dividing the sum by the length of the time interval. In the case of the Telecom
Italia database, Erlang data are collected over time intervals of 15 minutes from
Wednesday, March 18th 2009, 00:15 to Tuesday, March 31st 2009, 23:45 on a uni-
form lattice of 97×109 sites with dimension 232m×309m covering the metropolitan
area of Milan. In Figure 2.1, the top panel shows the map of the metropolitan area
of Milan on which the data are observed, the central panel shows the Erlang data for
a fixed time instant, the bottom panel shows the data in a fixed spatial location.

Since the Erlang is a measurement of the average number of active mobile phones,
these data can be considered as an approximation of the number of people present
in the considered sites during the sampling time windows. Therefore, the goal of
the analysis of these data is the study of the population distribution and dynamics.
Indeed, this dataset has been used in the context of the Green Move Project, an
interdisciplinary research project financed by Regione Lombardia and focused on
the development of a vehicle sharing system. Some works on this dataset are [8, 14,
17, 11, 15].

The data can be interpreted as a sampling of temporal curves with spatial depen-
dencies; equivalently, they can also be interpreted as a sampling of spatial surfaces
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Fig. 2.1 Telecom Italia mobile phone data. Top panel: the metropolitan area of Milan, the spatial
domain of the dataset. Central panel: data for a fixed time instant (white corresponds to missing
data). Bottom panel: evolution in time of the data for a fixed spatial location.
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with temporal dependencies. In both interpretations, the data are functional in nature
and using the functional data analysis framework allows us to properly characterize
the complex dependencies and extract meaningful results.

Furthermore, the data are integrals over both time and space of the quantity of
interest, since each Erlang datum is a cumulative measurement over a 15-minutes
time interval and a 232m×309m site. Therefore, the analysis should properly take
into account the fact that the data are areal in space and integral in time.

Moreover, as Figure 2.1 shows, the spatial distribution of the data is strongly
influenced by the characteristics of the urban area considered. Therefore, it is of
paramount importance to take into consideration the spatial dependence driven
by physical phenomenon generating the data, i.e. the population dynamics in the
metropolitan area of Milan, and to adapt the estimation technique to properly take
into account the characteristics of the specific urban configuration under study.

Next section deals with the characterization of the spatial dependence of the data
through the definition of a penalization term involving a non-stationary anisotropic
diffusion operator which represents the structure of the underlying spatial domain.

2.3 ST-PDE Model and Estimating the Non-stationary
Anisotropy

In the ST-PDE functional, the classical square 𝐿2-norm of the second derivative is
employed for the temporal penalty, while we need a term which allows us to model
non-stationary anisotropy for the spatial penalty. This is obtained by penalizing the
misfit from a diffusion PDE −div(𝐾 (p)∇ 𝑓 ) = 0, where 𝐾 (p) is a function defined
on the spatial domain, taking values in the space of symmetric and positive definite
2 × 2-matrices. When 𝐾 is a constant function equal to the identity matrix all over
the spatial domain, the smoothing is isotropic in space (which is the case considered
in [7]); otherwise, the smoothing is anisotropic. If, moreover, 𝐾 is non-constant as a
function of the spatial location p, the smoothing is non-stationary. In our work, we
exploit the texture of the spatial domain to estimate the symmetric tensor 𝐾 (p).

We can observe, from Figure 2.1, that the number of active phones presents
localized strongly anisotropic features in correspondence of the main roads. Thus,
we want to use the information about the morphology of the road network of the
city to include non-stationary anisotropy in the ST-PDE model. The motivation for
our choice is that, when we deal with cars moving on highways, we know that it is
more probable that these cars will stay in the highway then that they will exit. Thus,
for the spatial locations corresponding to main roads, we want to impose anisotropic
smoothing that smooths more in the direction tangential to the road, and less in the
other directions.

We use data form Regione Lombardia about the road network of the metropolitan
area of Milan (see Figure 2.2, left panel), in order to estimate 𝐾 (p) from the city
texture. In particular, we select the main roads and highways (see Figure 2.2, right
panel) and exploit the orientation of the roads to identify the direction of the major
axis of 𝐾 (p), i.e. the eigenvector corresponding to the larger eigenvalue. Indeed, for
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each spatial location p, the direction of the major axis of 𝐾 (p) can be defined by
looking at the road map at a small scale that allows to consider one road at a time.
Where no roads are present, the isotropic diffusion operator is used.

The intensity of the anisotropy can be set either exploiting prior knowledge on the
phenomenon (for example, the speed limits of the roads) or extracting information
from the data using an approach similar to [6], which proposes to estimate the
anisotropy directly from the data.

The use of the ST-PDE model with a spatial regularization involving a non-
stationary and anisotropic diffusion differential operator carrying information about
the road network is particularly useful in the analysis of Telecom Italia mobile
phone data, since this technique is able to suitably capture the non-trivial spatial
dependencies of the observed data.

Fig. 2.2 Road network in the metropolitan area of Milan. Left panel: a view of the area from Google
maps which includes main roads, secondary roads, highways and railways. Right panel: main roads
and highways from www.geoportale.regione.lombardia.it used to estimate 𝐾 (p) .
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Chapter 3
Some Numerical Test on the Convergence Rates
of Regression with Differential Regularization

Eleonora Arnone, Alois Kneip, Fabio Nobile and Laura M. Sangalli

Abstract We numerically study the bias and the mean square error of the estimator
in Spatial Regression with Partial Differential Equation (SR-PDE) regularization.
SR-PDE is a novel smoothing technique for data distributed over two-dimensional
domains, which allows to incorporate prior information formalized in term of a partial
differential equation. This technique also enables an accurate estimation when the
shape of the domain is complex and it strongly influences the phenomenon under
study.

3.1 Introduction

Spatial functional statistic is a field of research of strong interest in recent years, due
to the fact that spatially dependent functional data are increasingly available in many
applied fields, such as biology, life science, environmental science and engineering
(see [7, 17] for a review on the recent proposed methods).

In this work, we numerically investigate the asymptotic properties of the estimator
in Spatial Regression with Partial Differential Equation regularization (SR-PDE)
introduced in [18, 20, 3]. SR-PDE is a penalized regression method, that includes
the penalty term the misfit from a linear Partial Differential Equation (PDE). This
allow a great flexibility of the method. In particular, the PDE in the regularizing
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term enables the modelling of anisotropy and non-stationarity of the phenomenon
under study. Moreover, thanks to the use of the finite element method, it allows to
consider domain of complex shape, such as domains with strong concavities, that
affect the phenomenon under study, and to impose boundary conditions. Smoothing
is a fundamental step in most analyses involving functional data [19, 10, 14]. In this
respect, the considered SR-PDE method provides a versatile tool for the smoothing
of functional data observed over two-dimensional domains.

Other regularized least-square smoothers have been proposed that can deal with
complex domains, such as bivariate splines over triangulations [15, 11, 8, 16],
soap film smoothing [24], and low-rank thin-plate spline approximations [23, 21].
All these methods have isotropic regularizing terms. Among the methods mentioned
above, the only one that can comply with boundary conditions is soap film smoothing.
The asymptotic properties of bivariate splines over triangulations are investigated in
[16]. To the best of our knowledge, no results on large sample properties is available
for any of the other methods.

The study of the asymptotic properties of classical penalized regression estimators
is a well established literature that dates back to the 80s (see, e.g., [9] and references
therein). The arguments used to prove the study the bias and the MSE of thin-plate-
splines and of smoothing splines [4, 5, 6, 12, 13], however, exploit the existence
of an explicit closed form of the Green functions of the differential operator in the
regularizing term. Due to the more complex penalty considered by SR-PDE, and
moreover, due to the presence of boundary conditions which enable to deal with
domains of complex shape, a closed form for the Green functions of the differential
operator in the regularizing term is not available for SR-PDE. In addition, as already
mentioned, the estimation problem is solved by means of finite elements, with a
mixed formulation. This is very convenient from a computational point of view,
but makes the analysis of the asymptotic properties much more involved. In [2] a
first attempt to study the bias of the infinite dimensional estimator with respect to
the smoothing parameter is presented, while the finite element estimator is studied
letting the discretization becomes more and more fine, but fixing the number of
observations.

In this work, instead, we want to study the asymptotic behaviour of the estimator
when the number of observations increases to infinity. Next section presents the
estimator, while the last section reports some simulation studies that investigate the
rates for the bias and the mean square error of the estimator.

3.2 Spatial Regression with PDE Penalization

Let Ω ⊂ R2 a bounded domain, with boundary 𝜕Ω ∈ 𝐶2 or polygonal. Consider 𝑛
observations 𝑧𝑖 ∈ R, for 𝑖 = 1, . . . , 𝑛, located at points p𝑖 = (𝑥𝑖 , 𝑦𝑖) ∈ Ω. Assume
that:

𝑧𝑖 = 𝑓0 (p𝑖) + 𝜀𝑖

where 𝑓0 : Ω → R is the field we wish to estimate, and 𝜀𝑖 are independent errors
with zero mean and finite variance 𝜎2.
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Denote by 𝐻2 (Ω) the Sobolev space of functions in 𝐿2 (Ω) with derivatives up to
the 2-th order in 𝐿2 (Ω), and let𝑉𝛼 the space 𝐻2 with Dirichlet or Neuman boundary
conditions, that is

𝑉𝛼 = 𝑉dir
𝛼 = { 𝑓 ∈ 𝐻2 (Ω) : 𝑓 = 𝛼 on 𝜕Ω}

or
𝑉𝛼 = 𝑉neu

𝛼 = { 𝑓 ∈ 𝐻2 (Ω) :
𝜕 𝑓

𝜕𝜈
= 𝛼 on 𝜕Ω}

where 𝜈 denotes the normal versor to the boundary 𝜕Ω, and 𝛼 is the value imposed
on the boundary. SR-PDE solves the following estimation problem:

𝑓 = argmin
𝑓 ∈𝑉𝛼

1
𝑛

𝑛∑
𝑖=1

( 𝑓 (p𝑖) − 𝑧𝑖)2 + 𝜆𝑛

∫
Ω

(𝐿 𝑓 − 𝑢)2 (3.1)

where
𝐿 (p) 𝑓 = −div(K(p)∇ 𝑓 ) + b(p) · ∇ 𝑓 + 𝑐(p) 𝑓

is a second order linear elliptic operator and the PDE 𝐿 𝑓 = 𝑢 partially describes
the phenomenon under study. The smoothing parameter 𝜆𝑛 > 0 controls the relative
weight of the two terms in the functional in (3.1): a data fidelity term, given by
the sum of square errors, and a model fidelity term, the differential regularization,
defined as the 𝐿2 (Ω)-norm of the misfit with respect to the PDE. We explicitly
highlight the dependence of the smoothing parameter with respect to 𝑛, since as the
number of data locations increases less regularization is needed. We thus expect to
let 𝜆𝑛 go to zero as 𝑛 goes to infinity.

Ω

Discretized domainOriginal domain

Finite Element basis

Approximated function

Fig. 3.1 The discretization process. Starting from the original domain (top, left), a polygonal
approximation is given and a triangulation is defined (top, right). The linear finite element basis
(bottom, right) is introduced over the triangulation and a piecewise linear approximation (bottom,
left) of the function of interest is computed.



14 Eleonora Arnone, Alois Kneip, Fabio Nobile and Laura M. Sangalli

The SR-PDE estimator defined in (3.1) cannot be computed analytically, we
thus have to compute an approximated solution. Figure 3.1 shows the discretization
process. We first introduce a triangulation of the domainΩ and then we define a finite
element basis over the triangulation. Each finite element basis is a piecewise linear
function over the triangulation, which take value one at a node of the triangulation
and zero at all the other nodes. We approximate (3.1) in the finite element space,
and in particular we obtain an approximate solution of the problem solving a linear
system. For an accurate description of the discretization see [3].

In this work we restrict our attention to the special case in which the finite element
basis is linear (i.e. each basis is a piecewise linear function) and the triangulation is
such that the vertices of the triangles are in correspondence of the data locations p𝑖 .
This is a standard setting in many applications.

3.3 Numerical Study of Asymptotic Properties

As shown in [22], the best rate of convergence for general penalized regression
estimators over a 2-dimensional domain is

MSE ∼ 𝑛− 𝑝
𝑝+1

and is achieved choosing
𝜆𝑛 ∼ 𝑛− 𝑝

2(𝑝+1)

where 𝑝 is the number of existing derivatives of the function 𝑓0 that we want to
estimate. Since the estimator of SR-PDE is searched in the space 𝐻2 (Ω), in our
simulations we set 𝑝 = 2 and let 𝜆𝑛 decrease as 𝑛−1/3. We thus expect to observe a
rate of convergence for the bias of the estimator of order 𝑛−1/3 and for the MSE of
order 𝑛−2/3.

We consider four different simulation settings that are characterized by different
boundary conditions (b.c.): Dirichlet exact b.c., Dirichlet wrong b.c., Neuman exact
b.c. and Neuman wrong b.c.. In this way, we can also explore the effect of different
boundary conditions on the rate of decay of the error. Exact b.c. corresponds to a
complete knowledge of 𝛼, that is of the phenomenon at the boundary, while wrong
b.c. corresponds to no-knowledge of the behaviour at the boundary. The error is
computed in the discrete norm on the data locations. We use the same spatial domain
and the same test function considered in the first chapter of [1], where the convergence
is studied in the case of exact Dirichlet boundary conditions.

Figures 3.2 and 3.3 show the bias of the SR-PDE estimator with respect to the
number of observations 𝑛 in case of Dirichlet and Neuman boundary conditions
respectively. To compute the bias the method is applied to the exact data, without
adding any noise at the evaluations. We can observe that both in the Dirichlet and
Neuman case the expected rate of convergence is achieved in case of exact boundary
conditions. The rate on decay of the bias is strongly influenced by wrong Dirichlet
boundary conditions, as we can observe from Figure 3.2 the error is practically non
decrising for large values of 𝑛. Wrong Neuman boundary conditions still affect the
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rate of decay of the bias, however, as we can observe from Figure 3.3, the bias is still
decreasing for large values of 𝑛.

0.01

0.10

1.00

1e+03 1e+04 1e+05
number of locations

bi
as

Exact b.c.

Wrong b.c.

n^−1/3

Dirichlet b.c.: bias vs n

Fig. 3.2 Test functions without noise; exact and wrong Dirichlet boundary conditions. Convergence
rates of the bias of the finite element estimator with respect to the number of observations 𝑛, with
𝜆𝑛 = 𝑛−2/3.
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Fig. 3.3 Test functions without noise; exact and wrong Neuman boundary conditions. Convergence
rates of the bias of the finite element estimator with respect to the number of observations 𝑛, with
𝜆𝑛 = 𝑛−2/3.
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Figures 3.4 and 3.5 show the MSE of the SR-PDE estimator with respect to the
number of observations 𝑛 in case of Dirichlet and Neuman boundary conditions
respectively. To compute the MSE a gaussian incorrelated noise is added to the
exact data. As for the bias, we observe that wrong Dirichlet boundary conditions
strongly affect the performance of the estimator. The expected rate is achieved in the
exact Dirichlet and in the wrong Neuman case. In the exact Neuman case the rate
of convergence seems to be faster than expected, this may be due to the fact that,
even if the estimator is searched in the space 𝐻2 (Ω), the true 𝑓0 has more than two
derivatives.

number of locations

M
SE

Exact b.c.

Wrong b.c.

Dirichlet b.c.: MSE vs n

Fig. 3.4 Data with noise; exact and wrong Dirichlet boundary conditions. Convergence rates of the
MSE of the finite element estimator with respect to the number of observations 𝑛, with 𝜆𝑛 = 𝑛−2/3.

3.4 Future Directions

We have numerically investigated the rate of decay of the bias and the MSE of the
SR-PDE estimator, showing that the optimal rate of convergence can be achieved
when Dirichlet or Neuman exact boundary conditions are enforced. We also have
shown that wrong Neuman boundary conditions affect the rate of decay of the error,
that however continue to decay for large values of 𝑛. The empirical results displayed
in this work support the consistency of SR-PDE estimator. We are currently working
on proving the consistency theoretically.

We have here considered a standard choice of the discretization of the domain,
with a finite element basis for each data location. However, the SR-PDE does not
impose this restriction. An interesting future development is the study of the rate of
convergence when the finite element basis is not constrained to the data locations, in
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0.100
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Neuman b.c.: MSE vs n

Fig. 3.5 Data with noise; exact and wrong Neuman boundary conditions. Convergence rates of the
MSE of the finite element estimator with respect to the number of observations 𝑛, with 𝜆𝑛 = 𝑛−2/3.

order to have a finer or coarser triangulation of the domain, that may not directly be
linked to the number of observations.
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Chapter 4
Learning with Signatures

Gérard Biau and Adeline Fermanian

Abstract Sequential and temporal data arise in many fields of research, such as
quantitative finance, medicine, or computer vision. The present article is concerned
with a novel approach for sequential learning, called the signature method and rooted
in rough path theory. Its basic principle is to represent multidimensional paths, i.e.,
functions from [0, 1] to R𝑑 , by a graded feature set of their iterated integrals, called
the signature. This approach relies critically on an embedding principle, which
consists in representing discretely sampled data as continuous paths. After a survey
of basic principles of signatures, we investigate the influence of embeddings on
prediction accuracy with an in-depth study of recent and challenging datasets. We
show that a specific embedding, called lead-lag, is systematically better, whatever
the dataset or algorithm used.

4.1 Introduction

Sequential or temporal data occur in many fields of research, due to an increase in
storage capacity and to the rise of machine learning techniques. Sequential data are
characterized by the fact that each sample consists of an ordered array of values.
Although the ordering often corresponds to time, it is not always the case. For
example, text documents or DNA sequences have an intrinsic ordering, and can,
therefore, be considered as sequential. Besides, when time is involved, several values
can be recorded simultaneously, giving rise to an ordered array of vectors, which
is, in the field of time series, often referred to as multidimensional time series. To
name only a few domains, market evolution is described by financial time series,
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and physiological variables (e.g., electrocardiograms, electroencephalograms...) are
recorded simultaneously in medicine, yielding multidimensional time series. We can
also mention smartphone and GPS sensors data, or character recognition problems,
where data has both a spatial and temporal aspect. These high-dimensional datasets
open up new theoretical and practical challenges, as both statistical models and
algorithms need to be adapted to their sequential nature.

Our goal in the present article is to discuss a novel approach for sequential
learning, called the signature method, and coming from rough path theory. Its main
idea is to summarize temporal (or functional) inputs by the graded feature set of
their iterated integrals, the signature. Note that, in rough path theory, functions are
referred to as paths, to insist on their geometrical aspects. Indeed, the importance
of iterated integrals had been noticed by geometers in the 60s, as presented in the
seminal work of [2]. It has been rediscovered by [10] in the context of stochastic
analysis and controlled differential equations, and is at the heart of rough path theory.
This theory, of which [11] and [5] give a recent account, focuses on developing a
new notion of paths to make sense of evolving irregular systems. In this context,
it has been shown that the signature provides an accurate summary of a path and
allows to obtain arbitrarily good linear approximations of continuous functions of
paths. Therefore, assuming we want to learn an output 𝑌 ∈ R, which depends on a
random path 𝑋 : [0, 1] → R𝑑 , rough path theory suggests that the signature is a
relevant feature set to describe 𝑋 .

As can be expected, the signature has recently received the attention of the
machine learning community and has achieved a series of successful applications.
To cite some of them, [14] have achieved state-of-the-art results for handwriting
recognition with a recurrent neural network combined with signature features. [7]
have used the same approach for character recognition, and [8] have coupled Lasso
with signature features for financial data streams classification. [1] have investigated
its use for the detection of bipolar disorders, and [15] for human action recognition.
For a gentle introduction to the signature method in machine learning, we refer the
reader to [3].

However, despite many promising empirical successes, a lot of questions remain
open, both practical and theoretical. In particular, to compute the signature, it is
necessary to embed discretely sampled data points into paths. While authors use
different approaches, this embedding is only mentioned in some articles, and rarely
discussed. Thus, our purpose in this paper is to take a step forward in understanding
how signature features should be constructed for machine learning tasks, with a
special focus on the embedding step.

Our document is organized as follows. First, in Section 4.2, we give a brief ex-
position of the signature definition and properties. Then, we compare the predictive
performance of different embeddings in Section 4.3. We emphasize that the em-
bedding is as a crucial step as the algorithm choice since it can drastically change
accuracy results. Moreover, we point out that one embedding, called lead-lag, per-
forms systematically better than others, and this consistently over different datasets
and learning algorithms.



4 Learning with Signatures 21

4.2 Signature Definition and First Properties

We introduce in this section the notion of signature and review some of its important
properties. The reader is referred to [11] or [5] for a more involved mathematical
treatment with proofs. Throughout the article, our basic objects are paths, that is
functions from [0, 1] to R𝑑 , where 𝑑 ∈ N∗. The main assumption is that these paths
are of bounded variation, i.e., they have finite length.

Definition 1 Let

𝑋 : [0, 1] −→ R𝑑

𝑡 ↦−→ (𝑋1
𝑡 , . . . , 𝑋

𝑑
𝑡 ).

The total variation of 𝑋 is defined by

‖𝑋 ‖1−𝑣𝑎𝑟 = sup
𝐷

∑
𝑡𝑖 ∈𝐷

‖𝑋𝑡𝑖 − 𝑋𝑡𝑖−1 ‖,

where the supremum is taken over all finite partitions

𝐷 =
{
(𝑡0, . . . , 𝑡𝑘 ) | 𝑘 ≥ 1, 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑘−1 < 𝑡𝑘 = 1

}
of [0, 1], and ‖ · ‖ denotes the Euclidean norm on R𝑑 . The path 𝑋 is said to be of
bounded variation if its total variation is finite.

The assumption of bounded variation allows to define Riemann-Stieljes integrals
along paths. From now on, we assume that the integral of a continuous path 𝑌 :
[0, 1] → R𝑑 against a path of bounded variation 𝑋 : [0, 1] → R𝑑 is well-defined on
any [𝑠, 𝑡] ⊂ [0, 1], and denoted by

∫ 𝑡
𝑠

𝑌𝑢𝑑𝑋𝑢 =
�����
∫ 𝑡
𝑠
𝑌1
𝑢 𝑑𝑋

1
𝑢

...∫ 𝑡
𝑠
𝑌 𝑑𝑢 𝑑𝑋

𝑑
𝑢


���� ∈ R
𝑑 ,

where 𝑋 = (𝑋1, . . . , 𝑋𝑑) and 𝑌 = (𝑌1, . . . , 𝑌 𝑑). We are now in a position to define
the signature.

Definition 2 Let 𝑋 : [0, 1] → R𝑑 be a path of bounded variation, 𝐼 = (𝑖1, . . . , 𝑖𝑘 ) ⊂
{1, . . . , 𝑑}𝑘 , 𝑘 ∈ N∗, be a multi-index of length 𝑘 , and [𝑠, 𝑡] ⊂ [0, 1] be an interval.
The signature coefficient of 𝑋 corresponding to the multi-index 𝐼 on [𝑠, 𝑡] is defined
by

𝑆𝐼 (𝑋)[𝑠,𝑡 ] =
∫

· · ·
∫

𝑠≤𝑢1< · · ·<𝑢𝑘 ≤𝑡

𝑑𝑋 𝑖1𝑢1 . . . 𝑑𝑋
𝑖𝑘
𝑢𝑘 . (4.1)

𝑆𝐼 (𝑋)[𝑠,𝑡 ] is then said to be a signature coefficient of order 𝑘 .

The signature of 𝑋 is the sequence containing all signature coefficients, i.e.,
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𝑆(𝑋)[𝑠,𝑡 ] =
(
1, 𝑆 (1) (𝑋)[𝑠,𝑡 ] , . . . , 𝑆 (𝑑) (𝑋)[𝑠,𝑡 ] , 𝑆 (1,1) (𝑋)[𝑠,𝑡 ] , 𝑆 (1,2) (𝑋)[𝑠,𝑡 ] , . . .

)
.

The signature of 𝑋 truncated at order 𝐾 , denoted by 𝑆𝐾 (𝑋), is the sequence con-
taining all signature coefficients of order lower than or equal to 𝐾 , that is

𝑆𝐾 (𝑋)[𝑠,𝑡 ] =
(
1, 𝑆 (1) (𝑋)[𝑠,𝑡 ] , 𝑆 (2) (𝑋)[𝑠,𝑡 ] , . . . , 𝑆

𝐾︷������︸︸������︷
(𝑑, . . . , 𝑑) (𝑋)[𝑠,𝑡 ]

)
.

For simplicity, when [𝑠, 𝑡] = [0, 1], we omit the interval in the notations, and, e.g.,
write 𝑆𝐾 (𝑋) instead of 𝑆𝐾 (𝑋)[0,1] . We note that, for a path in R𝑑 , there are 𝑑𝑘

coefficients of order 𝑘 . The signature truncated at order 𝐾 is therefore a vector of
dimension

𝐾∑
𝑘=0

𝑑𝑘 =
𝑑𝐾+1 − 1
𝑑 − 1

if 𝑑 ≠ 1,

and 𝐾 + 1 if 𝑑 = 1. Unless otherwise stated, we assume that 𝑑 ≠ 1, as this is in
practice usually the case. Thus, the size of 𝑆𝐾 (𝑋) increases exponentially with 𝐾 ,
and polynomially with 𝑑. Finally, it should be noted that, due to the ordering in the
integration domain in (4.1), signature coefficients are not symmetric. For example,
𝑆 (1,2) (𝑋) is a priori not equal to 𝑆 (2,1) (𝑋).

A crucial feature of the signature is that it encodes geometric properties of the
path. Indeed, it is clear that coefficients of order 2 correspond to some areas outlined
by the path, as shown in Figure 4.1. For higher orders of truncation, the signature
contains information about the joint evolution of tuples of coordinates. Furthermore,
the signature possesses several properties that make it a good statistical summary of
paths, as shown in the next three propositions.

Proposition 1 Let 𝑋 : [0, 1] → R𝑑 be a path of bounded variation, and𝜓 : [0, 1] →
[0, 1] be a non-decreasing surjection. Then, if 𝑋𝑡 = 𝑋𝜓 (𝑡) is the reparametrization
of 𝑋 under 𝜓,

𝑆(𝑋) = 𝑆(𝑋).

In other words, the signature of a path is the same up to any reasonable time
change. There is, therefore, no information about the path travel time in signature
coefficients, which may be a useful feature in some applications. Nevertheless, when
relevant for the problem at hand, it is possible to include this information by adding
the time parametrization as a coordinate of the path. A second important property is
a condition ensuring uniqueness of signatures.

Proposition 2 If 𝑋 has at least one monotonous coordinate, then 𝑆(𝑋) determines
𝑋 uniquely.

It should be noticed that having a monotonous coordinate is a sufficient condition,
but a necessary one can be found in the monograph by [9], together with a proof of
the proposition. The principal significance of this result is that it provides a practical
procedure to guarantee signature uniqueness: it is sufficient to add a monotonous
coordinate to the path 𝑋 . For example, the time embedding mentioned above will
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Fig. 4.1 Geometric interpretation of signature coefficients.

satisfy this condition. The next proposition reveals that the signature linearizes
functions of 𝑋 .

Proposition 3 Let 𝐷 be a compact subset of the space of bounded variation paths
from [0, 1] to R𝑑 that are not tree-like equivalent. Let 𝑓 : 𝐷 → R be continuous.
Then, for every 𝜖 > 0, there exists 𝑁 ∈ N∗, 𝑤 ∈ R𝑁 , such that, for any 𝑋 ∈ 𝐷,�� 𝑓 (𝑋) − 〈𝑤, 𝑆(𝑋)〉

�� ≤ 𝜖,

where 〈·, ·〉 denotes the Euclidean scalar product on R𝑁 .

The notion of tree-like equivalence is closely related to the uniqueness of paths—the
reader is referred to [9] for a definition. Proposition 3 is then a consequence of the
Stone-Weierstrass theorem.

4.3 Embeddings

Now that we have presented the signature and its properties, we focus on its use
in machine learning. In this context, we place ourselves in a statistical framework,
and assume that our goal is to understand the relationship between a random input
path 𝑋 : [0, 1] → R𝑑 and a random output 𝑌 ∈ R. In a classical setting, we would
be given a sample of independent and identically distributed (i.i.d.) observations
{(𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛)}, drawn from (𝑋,𝑌 ). However, in applications, we only
observe a realization 𝑋𝑖 sampled at a discrete set of times 0 ≤ 𝑡1 < · · · < 𝑡𝑝𝑖 ≤ 1,
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𝑝𝑖 ∈ N∗. Therefore, we are given an i.i.d. sample {(x1, 𝑌1), . . . , (xn, 𝑌𝑛)}, where xi
takes the form of a matrix, i.e.,

xi =
����
𝑥1
𝑖,1 . . . 𝑥1

𝑖, 𝑝𝑖
...

...
𝑥𝑑𝑖,1 . . . 𝑥𝑑𝑖, 𝑝𝑖


��� ∈ R𝑑×𝑝𝑖 . (4.2)

In this notation, 𝑥𝑘𝑖, 𝑗 denotes the 𝑘th coordinate of the 𝑖th sample observed at time
𝑡 𝑗 . If 𝑑 = 1, we are in a classical setting of time series, where each observation is
sampled in a finite number of points. However, 𝑑 may here differ from 1, so we find
ourselves in a more general situation where we want to learn from multidimensional
time series. Moreover, it is worth noting the dependence of the number of sampled
points 𝑝𝑖 on 𝑖. In other words, each observation may have a different length. The
signature dimension being independent of the number of sampled points, repre-
senting time series by their signature naturally handles inputs of various lengths,
whereas traditional methods often require them to be normalized to a fixed length.
To sum up, the signature method is appropriate for learning with discretely sampled
multidimensional time series, possibly of different lengths.

To use signature features, one needs to embed the observations xi into paths of
bounded variation 𝑋𝑖 : [0, 1] → R𝑑 . Therefore, we need to choose an interpolation
method, but, to ensure some properties such as signature uniqueness (see Proposition
2), we may also create new coordinates to the path and in this way increase the
dimension of the embedding space. We refer the reader to [4] for a detailed description
of the different embeddings that we use in the present article.

Our empirical study is based on three datasets of various nature. We present
here the results on the Quick, Draw! dataset but similar results are obtained on two
other datasets, described in [4]. The Quick, Draw! dataset has been made available
by Google [6], and consists of drawing trajectories. It is made up of 50 million
drawings, each drawing being a sequence of time-stamped pen stroke trajectories,
divided into 340 categories. Some samples are shown in Figure 4.2.

We present in Figure 4.3 the results of our study on embedding performance,
obtained with the following approach. Starting from the raw data, we first embed
it into a continuous path, then compute its truncated signature, and use this vector
as input for a learning algorithm. We want our findings to be independent of the
data and the underlying statistical model so we use a range of different algorithms.
The classification metric to assess prediction quality is the accuracy score. Then, to
compare the quality of different embeddings, we plot the accuracy score against the
log number of features, which yields one curve per embedding, where each point
corresponds to a different truncation order. We then check whether one embedding
curve is above the others, which would mean that, at equal input size, this embedding
is better for learning.

A first striking fact is that some embeddings, namely the time and lead-lag, seem
consistently better, whatever the algorithm used. It suggests that this performance is
due to intrinsic theoretical properties of signatures and embeddings, not to domain-
specific characteristics. The linear and rectilinear embeddings (red and pink curves),
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Fig. 4.2 9 samples from the Quick, Draw! dataset. Each color corresponds to a different pen stroke.

Fig. 4.3 Quick, Draw! dataset: prediction accuracy on the test set, for different algorithms and
embeddings.

which are often used in the literature, appear to give the worst results. This bad
performance can be explained by the fact that there is no guarantee that the signature
characterizes paths when using the linear or rectilinear embeddings. Therefore, two
different paths can have the same signature, without necessarily corresponding to
the same class.

To conclude, the take-home message is that using the lead-lag embedding seems
to be the best choice, regardless of the data and algorithm used. It does not cost
anything computationally and can drastically improve prediction accuracy. Moreover,
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the linear and stroke paths yield surprisingly poor results, despite their frequent use
in the literature.
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Chapter 5
About the Complexity Function in Small-ball
Probability Factorization

Enea G. Bongiorno, Aldo Goia and Philippe Vieu

Abstract The Small-Ball Probability (SmBP) of a process valued in a semi-metric
space is considered. Assume that it factorizes in two terms that play the role of a sur-
rogate density and of a volumetric term, respectively. This work presents some recent
developments concerning the study of the volumetric term that detains information
about the complexity of the underlying process. In particular, once some estimators
and their asymptotics are presented, a goodness-of-fit multiple testing procedure is
implemented in order to detect the complexity family the process belongs to.

5.1 Introduction

Functional statistics has received a lot of attention in the recent years reaching a
good maturity level that has produced a series of interesting monographs; see, as an
instance [10, 13, 15, 19]. An interesting issue in functional statistics is to evaluate
the complexity extent of the probability law of a random process given a sample
of discretized trajectories. So far, different approaches can be found in literature;
they share the idea of measuring some (fractal) dimension of the process such as
correlation or Hausdorff dimension: as an instance, see [1, 8, 14], and more recently
[4, 5, 6, 7].

In some way, all the introduced methodologies are based on the concept of small
ball probability: given a random element 𝑋 valued in a suitable semimetric space F
and denoting by 𝐵 (𝜒, ℎ) the ball centered at 𝜒 ∈ F with radius ℎ > 0, the small
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ball probability of 𝑋 is P (𝑋 ∈ 𝐵 (𝜒, ℎ)) when ℎ tends to zero. In many situations it
is convenient to suppose that

P (𝑋 ∈ 𝐵 (𝜒, ℎ)) ∼ 𝜓 (𝜒) 𝜙 (ℎ) as ℎ → 0, (5.1)

where, to ensure the identifiability of the decomposition, a normalising restriction is
necessary, such as for instance

E [𝜓(𝑋)] = 1. (5.2)

Factorization (5.1) is not a forcing assumption; indeed it holds true under appropriate
hypotheses (see, for instance, [3, 18]). The convenience in assuming (5.1) is, at least,
twofold. Firstly, the function 𝜓 (𝜒) can be interpreted as a surrogate density of the
functional random element 𝑋 and exploited in different frameworks; the interested
reader can appreciate its potential by looking, as an instance, at [2, 9, 11] where the
surrogate density is estimated in different ways and employed to define a notion of
mode or for classification purposes. Secondly, the function 𝜙 (ℎ) plays the role of
the volumetric term and can be used to evaluate the complexity of the probability
law of the process 𝑋 (see [5]). To fix the ideas, note that for some special families of
processes it is possible to specify the complexity function 𝜙(ℎ) in a parametric form
by means of some complexity index 𝜃 ∈ R𝑝 (𝑝 being a positive integer). For example,
if the process has a fractal structure (see [10, Definition 13.1]) then 𝜙𝜃 (ℎ) = 𝑐𝜃ℎ

𝜃 ,
for a constant term 𝑐𝜃 and 𝜃 > 0. Another notable example comes from infinite
dimensional Gaussian processes (see [18]), for which 𝜙𝜃 (ℎ) = 𝐶1ℎ

𝛼 exp
{
−𝐶2/ℎ𝛽
}

with 𝜃 = (𝛼, 𝛽) ∈ [0,∞) × (0,∞) and positive constants 𝐶1, 𝐶2. In other words, the
form of the volumetric term provides information related to the complexity of the
probability law of the process and the parameter 𝜃 can be interpreted as a measure
of its complexity.

This paper summarizes some recent efforts [4, 5, 6, 9] in studying the complexity
factor 𝜙 and complexity parameter 𝜃 and illustrates some new results (see [7]). In
particular, Section 5.2 furnishes a couple of nonparametric estimators of 𝜙 and illus-
trates their asymptotic properties: (uniform) consistency and asymptotic normality.
In Section 5.3, it is assumed that 𝜙 is parametrically specified, and then an estimator
of the complexity parameter 𝜃 is presented together with its asymptotic properties
(weak consistency and normality). Finally, in Section 5.4 a goodness-of-fit test, based
on a multiple testing procedure, for the complexity term 𝜙 is illustrated.

5.2 Nonparametric Estimators of the Complexity Factor

In the literature the estimation problem of the complexity factor 𝜙(ℎ) has been
already treated. More in detail, given a sample of 𝑛 discretized curves 𝑋1, . . . , 𝑋𝑛
drawn from 𝑋 , and ℎ > 0 sufficiently close to zero, the simplest estimator is the
empirical one

𝜙emp (ℎ) =
1

𝑛 (𝑛 − 1)

𝑛∑
𝑗=1

∑
𝑖≠ 𝑗

1𝐵(𝑋 𝑗 ,ℎ) (𝑋𝑖) (5.3)
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proposed in [6], where 1𝐴(𝑥) is the characteristic function of the set 𝐴.
Previously, a kernel based estimator was proposed in [9] as a by-product of the

estimation of the surrogate-density 𝜓. It was slightly modified (averaging over the
sample) in [5] to avoid the dependence on the point at which the SmBP factorization
is estimated as it should be according to assumption (5.1). Its final form is as follows:

𝜙kNN (ℎ) =
𝑛∑
𝑗=1

{ ∑𝑛
𝑖=1 𝑘𝑖, 𝑗

𝑘𝑛 (𝑛 − 1)

∑
𝑖≠ 𝑗

1𝐵(𝑋 𝑗 ,ℎ) (𝑋𝑖)

}
, (5.4)

where 𝑘 < 𝑛 is a positive integer, 𝑘𝑖, 𝑗 = #
{
𝑙 ≠ 𝑖 : 𝑋𝑙 ∈ 𝐵

(
𝑋𝑖 , 𝐻𝑛,𝑘 (𝑋 𝑗 )

)}
and

𝐻𝑛,𝑘 (𝑋 𝑗 ) = min
{
ℎ ∈ R+,
∑𝑛
𝑖=1 1𝐵(𝑋 𝑗 ,ℎ) (𝑋𝑖) = 𝑘

}
.

Before looking at the theoretical properties of these two estimators, it is worth
to notice that from a practical point of view, because the asymptotic factorization
(5.1) holds for small ℎ, too large values must be avoided since they may increase
the estimation error. At the same time, also too small values of ℎ must be discarded
since, for small sample sizes, they force 𝜙 to be null: indeed the ball 𝐵

(
𝑋 𝑗 , ℎ
)

could
contain no sample points other than 𝑋 𝑗 . In other words, in practice a suitable range
of values H = [ℎ𝑚, ℎ𝑀 ] for ℎ should be identified (have a look at [5, 6] for some
data driven ideas on this issue).

5.2.1 Some Asymptotics

From a theoretical point of view, the above estimators have good asymptotic proper-
ties. In particular, assume that

(A.1) for any ℎ > 0, P(𝑋 ∈ 𝐵(𝜒, ℎ)) > 0;
(A.2) the model defined by (5.1) and (5.2) holds;
(A.3) 𝜙 is increasing on a neighbourhood of zero, strictly positive and tends to zero

as ℎ goes to zero;
(A.4) 𝜓 is bounded and 𝜓 (𝜒) > 0.

Thus, estimators (5.3) and (5.4) satisfies the following proposition.

Proposition 1 Under (A.1)–(A.4),

• (see [9, Corollary 5.1]) the estimator 𝜙kNN (ℎ) converges in probability to 𝜙(ℎ)
as 𝑛 → ∞.

• (see [6, Proposition 1]) the estimator 𝜙emp (ℎ) is asymptotically unbiased with
variance

Var
(
𝜙emp (ℎ)
)
=

4(𝑛 − 2)
𝑛(𝑛 − 1)

𝜎2
1 (ℎ) +

2
𝑛(𝑛 − 2)

𝜎2
2 (ℎ) (5.5)

where 𝜎2
1 (ℎ) = Var

(
E
[
1{𝑋1 ∈𝐵 (𝑋2 ,ℎ) }

�� 𝑋2
] )

and 𝜎2
2 (ℎ) = Var

(
1{𝑋1 ∈𝐵 (𝑋2 ,ℎ) }

)
are positive and finite. Moreover, its standardized version converges in law to a
standard Gaussian distribution as 𝑛 → ∞.



30 Enea G. Bongiorno, Aldo Goia and Philippe Vieu

The proof of the latter proposition is strictly related to the fact that both 𝜙kNN (ℎ)
and 𝜙emp (ℎ) can be seen as two-order U-statistics and classical asymptotic results
can be applied (see [16, 17]). More theoretical details are given in [9, 6].

The next proposition provides the uniform (in H ) consistency of a large class of
nonparametric estimators of 𝜙 that, as particular cases, includes also (5.3) and (5.4).

Proposition 2 (See [7, Proposition 1]) Assume (A.1)–(A.4). Let 𝜙 be an estimator
of 𝜙 such that 𝜙(ℎ) → 𝜙(ℎ) for any ℎ ∈ H and such that 𝜙(·) is an increasing
function on H . If 𝜙 is continuous and increasing on H , then 𝜙 is convergent to 𝜙 in
probability, uniformly on H .

The proof of the latter is based on the fact that 𝜙 is uniform continuous on H and
that 𝜙 is pointwise consistent for 𝜙 over H ; the interested reader can find the details
in [7].

5.3 Parametric Estimation of the Complexity Factor

Assume that 𝜙 is specified by some parametric relation of the form

𝜙 ∈ {𝜙𝜃 , 𝜃 ∈ Θ ⊂ R𝑝}. (5.6)

Some examples of processes for which a parametric form of 𝜙 is available, are
the fractal and the infinite dimensional Gaussian processes (see the Introduction).
In these cases, estimating 𝜃 can provide the complexity degree of the underlying
process. An estimate 𝜃𝑛 of 𝜃 is defined as the minimizer, over a suitable compact
subsetΘ ofR𝑝 , of a dissimilarity measure between the target 𝜙𝜃 and a nonparametric
estimator 𝜙 (see Section 5.2). In particular, in [7] the authors consider the centered
cosine dissimilarity between 𝑔(𝜙𝜃 ) and 𝑔(𝜙) computed on the observed values and
defined by

Δ (𝜙, 𝜙𝜃 ) = 1 −
〈𝑔(𝜙𝜃 ), 𝑔(𝜙)〉2

‖𝑔(𝜙𝜃 )‖2‖𝑔(𝜙)‖2
, (5.7)

where 𝑔 : (0,∞) → R is a suitable continuous function that pointwisely transforms
𝜙(ℎ) in 𝑔(𝜙(ℎ)) for all ℎ ∈ H , while 〈·, ·〉 and ‖ · ‖ denote the usual inner product
and the associated norm, respectively, of the Hilbert space L2

H of square integrable
real functions defined on H . If 𝜙𝜃 and 𝜙 are both bounded away from zero on H ,
then 𝜙𝜃 (·), 𝜙(·), 𝑔(𝜙𝜃 (·)) and 𝑔(𝜙(·)) are in L2

H and (5.7) is well-posed. In practice,
possible working choices of 𝑔 are the identity function in the fractal case, and the
logarithm for many Gaussian processes (see [5]). Hence, an estimator 𝜃𝑛 of 𝜃 is:

𝜃𝑛 = arg min
𝜃 ∈Θ

Δ (𝜙, 𝜙𝜃 ). (5.8)

5.3.1 Some Asymptotics

Some new asymptotic properties of (5.8) have been derived in the [7] where it has
been proved that 𝜃𝑛 is a weakly

√
𝑛–consistent estimator of 𝜃 and asymptotically
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Gaussian distributed.
In particular, consider the following assumptions

(B.1) the model defined by (5.1), (5.2) and (5.6) holds;
(B.2) 𝑔 is Hölder continuous (i.e. there exist 𝐶 < ∞, 𝛽 > 0, such that for all

𝑦1, 𝑦2 ∈ R, |𝑔(𝑦1) − 𝑔(𝑦2) | ≤ 𝐶 |𝑦1 − 𝑦2 |𝛽);
(B.3) for each 𝜃 ∈ Θ, the function 𝜙𝜃 (·) is continuous and increasing on H ;
(B.4) 𝜙 is a nonparametric estimator of 𝜙 being pointwise (with respect to ℎ ∈ H )

consistent and increasing in H (𝜙kNN and 𝜙emp satisfy these properties).

The following consistency result holds true for the estimator 𝜃𝑛.

Proposition 3 (See [7, Theorem 1]) Under assumptions (B.1)–(B.4), the estimator
𝜃𝑛 converges in probability to the true value 𝜃0 of the parameter 𝜃, as the sample
size 𝑛 goes to infinity.

An idea of the proof of the latter proposition, whose details are in [7], is as follows.
Firstly, one has to show that 𝛿𝑛 (𝜃) = Δ (𝜙, 𝜙𝜃 ) converges uniformly on Θ towards
𝛿 (𝜃) = Δ
(
𝜙𝜃0 , 𝜙𝜃
)
which is, as a function of 𝜃, uniformly continuous on the compact

set Θ ⊂ R𝑝 . Secondly, one has to prove that 𝛿(𝜃𝑛) → 𝛿(𝜃0) to guarantee that 𝜃𝑛
converges in probability to 𝜃0.

Once the consistency of 𝜃𝑛 is obtained, it is interesting to study its asymptotic
distribution which is given in the next proposition at the cost of some additional
regularity conditions for 𝑔 and 𝛿(𝜃).

Proposition 4 (See [7, Theorem 2]) Assume (B.1)–(B.4) and consider 𝜃𝑛 as in (5.8)
where 𝜙 is the empirical estimator (5.3). Suppose that 𝑔 is C2 (0, +∞) (i.e. twice
derivable with continuous derivatives over (0, +∞)) with non-null first derivative, 𝛿
is C2 (Θ) and strictly convex over Θ, then as 𝑛 → +∞

√
𝑛 (𝜃𝑛 − 𝜃0) ∼ N (0, Γ)

where Γ is a suitable covariance matrix depending on 𝜙𝜃0 , 𝑔 and their derivatives.

The proof of the latter proposition is mainly based on a Taylor expansion of 𝛿(𝜃)
(that explains the required additional regularity conditions) and on the properties of
𝜙 seen as a U-statistic; the interested reader can found more details in [7].

5.4 Testing the Complexity of a Process

The results illustrated above lead to a goodness-of-fit test to compare the complexity
function 𝜙 of observed functional data with a target model 𝜙0. Such a test was firstly
introduced in [6] to which the interested reader can refer for further details.
In particular, consider the following hypothesis

𝐻0 : 𝜙 (ℎ) = 𝜙0 (ℎ) for all ℎ ∈ H
𝐻1 : ∃ℎ : 𝜙 (ℎ) ≠ 𝜙0 (ℎ) .
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Operatively, the authors have implemented a multiple test by considering 𝑚 values
ℎ1, . . . , ℎ𝑚 ∈ H , 𝑚 marginal null hypotheses 𝐻𝑘0 : 𝜙(ℎ𝑘 ) = 𝜙0 (ℎ𝑘 ), 𝑘 = 1, . . . , 𝑚
and test statistics

𝐷2
𝑘 =

(𝜙emp (ℎ𝑘 ) − 𝜙0 (ℎ𝑘 ))2

Var(𝜙emp (ℎ𝑘 ))
, 𝑘 = 1, . . . , 𝑚, (5.9)

which are asymptotically distributed as a chi-square with one degree of freedom
(see [6, Proposition 2]). Thus, the asymptotic 𝑝-value associated to 𝐻𝑘0 is 𝑝𝑘 =
1 − C2

1 (𝑑2
𝑘 ) where C2

1 is the pdf of the r.v. 𝜒2 (1) and 𝑑2
𝑘 is an observed value of

the test statistic. Finally, the decision rule of the multiple test is based on the Holm-
Bonferroni correction (see [12]): order 𝑝-values 𝑝 (1) ≤ · · · ≤ 𝑝 (𝑚) and reject 𝐻0 if
𝑝 (𝑘) ≤ 𝛼/(𝑚 + 1 − 𝑘) for at least one 𝑘 .

In order to operationalize the above test some issues should be addressed in
advance. Firstly, a direct calculation for the variance Var(𝜙emp (ℎ𝑘 )), appearing in
the denominator of (5.9), is hard to obtain and a resampling technique can be
implemented to get an estimate (in [6] a Jackknife estimator is computed). Secondly,
in general, the exact expression for 𝜙0 (ℎ) is rarely available and it can be estimated
from an artificial sample generated according to the benchmark model which is
supposed to be true. Consequently, the new test statistics become

𝐷2
𝑘 =

(
𝜙emp (ℎ𝑘 ) − 𝜙0 (ℎ𝑘 )

)2
𝑉𝑛,𝑘 +𝑉0,𝑘

, 𝑘 = 1, . . . , 𝑚

with𝑉𝑛,𝑘 and𝑉0,𝑘 being some resampling estimators (e.g. the Jackknife ones) of the
variances of 𝜙emp and 𝜙0 evaluated at ℎ𝑘 . With these choices, the test statistics 𝐷2

𝑘
are still asymptotically distributed as a chi-square with one degree of freedom and
then the multiple test can be implemented as described above.

Finally, as shown in [6], such a test has provided good performances on finite
sample size experiments, under various scenarios, through Monte Carlo simulations.
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Chapter 6
Principal Components Analysis of a
Cyclostationary Random Function

Alain Boudou and Sylvie Viguier-Pla

Abstract Principal Components Analysis is a well-known method for reduction of
dimension in Data Analysis. Considering a cyclostationary random function, we use
appropriate transformations, based on spectral properties, in order to get a stationary
random function, and then to process to a principal components analysis in the
frequency domain. Then, a cyclostationary function is reconstituted as a summary
of the initial cyclostationary function. Applications on simulated data illustrate the
method.

6.1 Introduction

Cyclostationarity is a property which reveals some hidden periodicities in the energy
flow of a signal. It is encountered in various phenomena, as in circular mechanisms,
vibration and acoustic measurements (see Antoni [1] for a large class of exam-
ples). The approach of cyclostationary properties of time series may be applied for
detection, motion analysis, monitoring, ... (see, for example, Lamraoui et al. [5],
Zakaria [7]).

Many papers deal with cyclostationary signals, aiming at detecting a given phe-
nomenum, or to estimate their shape. Most of them work in time domain, since the
regularity of the shape is easy to write. Even if the registered signals are multidimen-
sional, the studies often use univariate modeling, as in the examples cited above. As
far as we know, there are very few studies considering multivariate cyclostationary
functions (Bouleux et al. [4]).
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Our work aims to consider the multivariate context, where the reduction of dimen-
sion is useful, in order to split the signal into main trend and particular skills, and in
order to reduce the space occupied by the signal. Since time processes are particular
functions, and since the set of time indexes can be replaced by other indices sets, we
can classify this work in the field of the multidimensional functional analysis.

A multidimensional series (𝑋𝑛)𝑛∈Z is said to be stationary when 𝐸𝑋𝑛
𝑡𝑋𝑚 =

𝐸𝑋𝑛−𝑚
𝑡𝑋0, for any pair (𝑛, 𝑚) of elements of Z. In the particular case where the

spectrum of (𝑋𝑛)𝑛∈Z is concentrated on a finite number of elements of [−𝜋; 𝜋[, it
can be writen 𝑋𝑛 =

∑
𝑗∈𝐽 𝑒

𝑖𝜆 𝑗𝑛𝑍 𝑗 , where the 𝑍 𝑗 ’s are such that 𝐸𝑍 𝑗 𝑡𝑍 ′
𝑗 = 0, when

𝑗 ≠ 𝑗 ′, and 𝜆 𝑗 ∈ [−𝜋; 𝜋[.
The Principal Components Analysis (PCA) of (𝑋𝑛)𝑛∈Z in the frequency domain

consists in performing the PCA of each of the random vectors 𝑍 𝑗 . This PCA gives
best results, in terms of percent of retrieved variance, than PCA of the vectors 𝑋𝑛.

When a series (𝑋𝑛)𝑛∈Z is 𝑝−cyclostationary, that is when cov (𝑋𝑛, 𝑋𝑚) =

cov (𝑋𝑛+𝑝 , 𝑋𝑚+𝑝), the 𝑝−multidimensional series (𝑌𝑛)𝑛∈Z, where 𝑌𝑛 =
����

𝑋𝑛𝑝
...

𝑋𝑛𝑝+𝑝−1


���,
is such that 𝐸 (𝑌 𝑡𝑛𝑌𝑚) = 𝐸 (𝑌𝑛−𝑚𝑡𝑌0), and we can perform its PCA in the frequency
domain. This is what we propose to expose in this text, for a Δ−cyclostationary
random function (𝑋𝑡 )𝑡 ∈R, that is when cov (𝑋𝑡 , 𝑋𝑡′ ) = cov (𝑋𝑡+Δ , 𝑋𝑡′+Δ ). For this,
using the previous model, to the Hilbert space C𝑝 , we substitute 𝐿2 ( [0;Δ [). More
precisally, instead of performing PCA in the frequency domain of the series of
vectors ((𝑋𝑛𝑝+𝑘 )𝑘=0,..., 𝑝−1)𝑛∈Z, we perform the PCA of the series of functions
((𝑋𝑛Δ+𝑡 )𝑡 ∈[0;Δ [)𝑛∈Z.

6.2 Prerequisites and Notation

We denote by B the Borel 𝜎−field of Π = [−𝜋; 𝜋[. All the C−Hilbert spaces (in
particular 𝐻 and 𝐻 ′) of this text are supposed to be separable. We use the complex
field because we need the Fourier transform. Our reference probability space is
(Ω,A, 𝑃). We define a probability measure 𝜂 on 𝜉, 𝜎−field of the subsets of [0; 1[.

For any probability space (𝐹, F , 𝜇), L2
𝐻 (𝐹, F , 𝜇) stands for the set of measurable

applications which square norm is 𝜇−integrable, from 𝐹 in 𝐻, and 𝐿2
𝐻 (𝐹, F , 𝜇)

stands for the set of the cosets of elements of L2
𝐻 (𝐹, F , 𝜇). The index 𝐻 is omited

when 𝐻 = C. For any C−Hilbert spaces 𝐻 and 𝐻 ′, we denote by 𝜎2 (𝐻, 𝐻 ′) the set,
which is also a Hilbert space, of the Hilbert-Schmidt operators from 𝐻 into 𝐻 ′.

Definition 1
A random measure (r.m.) 𝑍 , taking values in the C−Hilbert space 𝐻, is a vector

measure defined on B such that, for any pair (𝐴, 𝐵) of disjoint elements of B,
< 𝑍𝐴, 𝑍𝐵 >= 0.

Let us remark that the qualification “random” takes sense when 𝐻 = 𝐿2 (Ω,A, 𝑃).
Proposition 1 If 𝑍 is a r.m. taking values in the C−Hilbert space 𝐻, then the

application 𝜇𝑍 : 𝐴 ∈ B ↦→ ‖𝑍𝐴‖2 ∈ R+ is a bounded measure.
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We can now define the integral with respect to the r.m. as follows.
Proposition 2 There exists an isometry, and only one, from 𝐿2 (Π,B, 𝜇𝑍 ) onto

vect{𝑍𝐴; 𝐴 ∈ B}, such that 𝑍𝐴 is the image of 1𝐴, for any 𝐴 of B.
The image of an element 𝜑 of 𝐿2 (Π,B, 𝜇𝑍 ) by this isometry is denoted

∫
𝜑d𝑍 ,

and is named stochastic integral of 𝜑 with respect to the r.m. 𝑍 .
Let us now examine the notion of stationary series of elements of 𝐻.
Definition 2
A stationary series (𝑋𝑛)𝑛∈Z of elements of 𝐻, is a family such that < 𝑋𝑛, 𝑋𝑚 >=<

𝑋𝑛−𝑚, 𝑋0 >, for any pair (𝑛, 𝑚) of elements of Z.
Of course, when𝐻 = 𝐿2 (Ω,A, 𝑃), and when 𝐸𝑋𝑛 = 0, we get the usual definition

of the stationarity, because cov (𝑋𝑛, 𝑋𝑚) =< 𝑋𝑛, 𝑋𝑚 >.
There is a biunivoque relation between stationary series and r.m..
Proposition 3 With any stationary series (𝑋𝑛)𝑛∈Z, of elements of 𝐻, we can

associate a r.m. 𝑍 , and only one, taking values in 𝐻, such that 𝑋𝑛 =
∫

e𝑖.𝑛d𝑍 , for
any 𝑛 of Z.

When 𝑈 is a unitary operator (u.o.) of 𝐻, we have the following property.
Proposition 4 For any 𝑋 of 𝐻, (𝑈𝑛𝑋)𝑛∈Z is a stationary series.

6.3 Principal Components Analysis in the Frequency Domain

This kind of analysis has first been studied by D. Brillinger [2]. His works have been
completed and generalized by Boudou and Dauxois [3]. The aim of this analysis
is to summarize a multidimensional stationary series by a series of lower dimen-
sion. Processing in the frequency domain enables to get rid of the problem of time
dependence.

If 𝑋 and 𝑌 are respectively elements of 𝐿2
𝐻 (A) and of 𝐿2

𝐻 ′ (A), the application
𝑌 ⊗ 𝑋 : 𝜔 ∈ Ω ↦→ 𝑌 (𝜔) ⊗ 𝑋 (𝜔) ∈ 𝜎2 (𝐻 ′, 𝐻) is measurable and of 𝑃−integrable
norm. So the operator

∫
𝑌 ⊗ 𝑋d𝑃 is an Hilbert-Schmidt operator from 𝐻 ′ into 𝐻.

Definition 1
A series (𝑋𝑛)𝑛∈Z of elements of 𝐿2

𝐻 (A) is 𝐻−stationary when, for any pair (𝑛, 𝑚)
of elements of Z, we have

∫
𝑋𝑚 ⊗ 𝑋𝑛d𝑃 =

∫
𝑋0 ⊗ 𝑋𝑛−𝑚d𝑃.

Let us remark that the 𝐻−stationarity implies the stationarity, but the converse is
false.

Definition 2
Two series (𝑋𝑛)𝑛∈Z and (𝑋 ′

𝑛)𝑛∈Z, respectively 𝐻−stationary and 𝐻 ′−stationary,
are stationarily correlated when, for any pair (𝑛, 𝑚) of elements of Z, we have∫
𝑋𝑚 ⊗ 𝑋 ′

𝑛d𝑃 =
∫
𝑋0 ⊗ 𝑋 ′

𝑛−𝑚d𝑃.
Let then (𝑋𝑛)𝑛∈Z be a 𝐻−stationary series. Our aim is to summarize it into

a C𝑝−stationary series (𝑋 ′
𝑛)𝑛∈Z, which we want to be stationarily correlated with

(𝑋𝑛)𝑛∈Z. In order to quantify the quality of the 𝑝−dimensional summary which is
(𝑋 ′
𝑛)𝑛∈Z, we will consider the series (𝑋 ′′

𝑛 )𝑛∈Z = (𝑃vect{𝐾◦𝑋 ′
𝑛;(𝑛,𝐾 ) ∈Z×𝜎2 (C𝑝 ,𝐻 ) }𝑋𝑛)𝑛∈Z,
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where 𝑃vect{𝐾◦𝑋 ′
𝑛;(𝑛,𝐾 ) ∈Z×𝜎2 (C𝑝 ,𝐻 ) } is the projector from 𝐿2

𝐻 (A) onto vect{𝐾 ◦
𝑋 ′
𝑛; (𝑛, 𝐾) ∈ Z × 𝜎2 (C𝑝 , 𝐻)}. The series (𝑋 ′′

𝑛 )𝑛∈Z is 𝐻−stationary and stationarily
correlated with (𝑋𝑛)𝑛∈Z, so the quantity ‖𝑋𝑛 − 𝑋 ′′

𝑛 ‖ = ‖𝑋0 − 𝑋 ′′
0 ‖ measures the

quality of the summary.
Definition 3
The PCA in the frequency domain of a 𝐻−stationary series (𝑋𝑛)𝑛∈Z is the search

of a C𝑝−stationary series (𝑋 ′
𝑛)𝑛∈Z, stationarily correlated with (𝑋𝑛)𝑛∈Z, such that

‖𝑋0 − 𝑃vect{𝐾◦𝑋 ′
𝑛;(𝑛,𝐾 ) ∈Z×𝜎2 (C𝑝 ,𝐻 ) }𝑋0‖ is the smallest one.

For a same number of steps of PCA, this analysis produces smaller errors than
the PCA of the random vectors 𝑋𝑛. As the 𝐻−stationary series (𝑋𝑛)𝑛∈Z is stationary,
there exists a r.m. 𝑍 , taking values in 𝐿2

𝐻 (A), such that 𝑋𝑛 =
∫

e𝑖.𝑛d𝑍 , for any 𝑛 of
Z. This r.m. is fundamental for the process of the PCA.

If {𝑍 𝑗 ; 𝑗 ∈ 𝐽} is a finite family of elements of 𝐿2
𝐻 (A) such that

∫
𝑍 𝑗 ⊗𝑍 𝑗′d𝑃 = 0,

for any pair ( 𝑗 , 𝑗 ′) of distinct elements of 𝐽, and if {𝜆 𝑗 ; 𝑗 ∈ 𝐽} is a family of distinct
elements of Π, then (

∑
𝑗∈𝐽 e𝑖𝜆 𝑗𝑛𝑍 𝑗 )𝑛∈Z is a 𝐻−stationary series, of associated r.m.

𝑍 =
∑
𝑗∈𝐽 𝛿𝜆 𝑗 𝑍 𝑗 , where 𝛿𝜆 𝑗 is the Dirac measure concentrated on 𝜆 𝑗 . The PCA

in the frequency domain is processed by the PCA of each of the vectors 𝑍 𝑗 . This
explains the name of PCA in the frequency domain.

6.4 Relation between the Spaces 𝑳2
𝑳2(A) (𝝃) and 𝑳2

𝑳2(𝝃) (A)

Most of the results that we will recall here can be found in Schaeffer [6].
For any (𝑦, ℎ) of 𝐿2 (A) × 𝐿2 (𝜉), we name 𝑦ℎ (resp. ℎ𝑦) the application 𝜔 ∈

Ω ↦→ 𝑦(𝜔)ℎ ∈ 𝐿2 (𝜉) (resp. 𝑡 ∈ [0; 1[↦→ ℎ(𝑡)𝑦 ∈ 𝐿2 (A)). The following property
comes from the fact that vect{𝑦ℎ; (𝑦, ℎ) ∈ 𝐿2 (A) × 𝐿2 (𝜉)} = 𝐿2

𝐿2 ( 𝜉 ) (A), that
vect{ℎ𝑦; (𝑦, ℎ) ∈ 𝐿2 (A) × 𝐿2 (𝜉)} = 𝐿2

𝐿2 (A) (𝜉), and that < 𝑦ℎ, 𝑦′ℎ′ >=< ℎ𝑦, 𝑦′ >,
for any pair ((𝑦, ℎ), (𝑦′, ℎ′)) of elements of 𝐿2 (A) × 𝐿2 (𝜉).

Proposition 1 There exists an isometry I, and only one, from 𝐿2
𝐿2 (A) (𝜉) on

𝐿2
𝐿2 ( 𝜉 ) (A), such that I(ℎ𝑦) = 𝑦ℎ, for any (𝑦, ℎ) of 𝐿2 (A) × 𝐿2 (𝜉).

The spaces 𝐿2
𝐿2 (A) (𝜉) and 𝐿2

𝐿2 ( 𝜉 ) (A) are isometric.

Proposition 2 i) If 𝑋 is an element of 𝐿2
𝐿2 ( 𝜉 ) (A), then the application 𝑋 : 𝑦 ∈

𝐿2 (A) ↦→
∫
𝑦𝑋d𝑃 ∈ 𝐿2 (𝜉) is an Hilbert-Schmidt operator.

ii) The application 𝑋 ∈ 𝐿2
𝐿2 ( 𝜉 ) (A) ↦→ 𝑋 ∈ 𝜎2 (𝐿2 (A), 𝐿2 (𝜉)) is an isometry.

So a series (𝑋𝑛)𝑛∈Z of elements of 𝐿2
𝐿2 ( 𝜉 ) (A) is 𝐿2 (𝜉)−stationary as soon as

𝑋𝑛𝑋𝑚
∗
=�𝑋𝑛−𝑚 �̃�0

∗ (since 𝑋𝑛𝑋𝑚
∗
=
∫
𝑋𝑚 ⊗ 𝑋𝑛d𝑃 =

∫
𝑋0 ⊗ 𝑋𝑛−𝑚d𝑃 =�𝑋𝑛−𝑚 �̃�0

∗),
for any pair (𝑛, 𝑚) of elements of Z.

Exchanging the roles of (Ω,A, 𝑃) and ( [0; 1[, 𝜉, 𝜂), we also have the following
results.
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Proposition 3 i) If 𝑌 is an element of 𝐿2
𝐿2 (A) (𝜉), then the application 𝑌 : ℎ ∈

𝐿2 (𝜉) ↦→
∫
ℎ𝑌d𝜂 ∈ 𝐿2 (𝜉) is an Hilbert-Schmidt operator;

ii) the application 𝑌 ∈ 𝐿2
𝐿2 (A) (𝜉) ↦→ 𝑌 ∈ 𝜎2 (𝐿2 (𝜉), 𝐿2 (A)) is an isometry.

Let us denote by 𝛾 (resp. Γ) the involutive antilinear bijection 𝑦 ∈ 𝐿2 (A) ↦→
𝑦 ∈ 𝐿2 (A) (resp. ℎ ∈ 𝐿2 (𝜉) ↦→ ℎ ∈ 𝐿2 (𝜉)). For any (ℎ, 𝑦) of 𝐿2 (A) × 𝐿2 (𝜉), we
have 𝛾 ◦ ℎ̃𝑦 ◦ Γ = 𝛾 ◦ (Γℎ ⊗ 𝑦) ◦ Γ = ℎ ⊗ 𝛾𝑦 = �̃�ℎ

∗
. This can be generalized in the

following way.
Proposition 4 For any 𝑌 of 𝐿2

𝐿2 (A) (𝜉), we have 𝛾 ◦ 𝑌 ◦ Γ = Ĩ𝑌
∗
.

This last property implies the following one.
Proposition 5 For any pair (𝑌,𝑌 ′) of elements of 𝐿2

𝐿2 (A) (𝜉), we have Ĩ𝑌 ◦Ĩ𝑌 ′∗ =

Γ ◦ 𝑌 ∗ ◦ 𝑌 ′ ◦ Γ.
With this last property, we will be able to prove the 𝐿2 (𝜉)−stationarity of a series,

in Section 6.6.

6.5 Cyclostationarity

Usually, a cyclostationary random function (r.f.) is a family {𝑋𝑡 ; 𝑡 ∈ R} of elements
of 𝐿2 (A) such that cov(𝑋𝑡 , 𝑋𝑡′ ) = cov(𝑋𝑡+Δ , 𝑋𝑡′+Δ ), Δ being an element of R∗

+. In
order to simplify notation, we will assume that Δ = 1, without lost of generality, as
we always can come back to the general case by a linear transformation.

Definition 1
A cyclostationary random function is a family {𝑋𝑡 ; 𝑡 ∈ R} of elements of

𝐿2 (Ω,A, 𝑃) such that
i) the application 𝑡 ∈ [0; 1[↦→ 𝑋𝑡 ∈ 𝐿2 (A) is measurable and of 𝜂−integrable
square norm;
ii) < 𝑋𝑡 , 𝑋𝑡′ >=< 𝑋𝑡+1, 𝑋𝑡′+1 >, for any pair (𝑡, 𝑡 ′)of elements of R.

Point i) of this definition is very little restrictive, with respect to the usual defini-
tion. It is satisfied as soon as the 𝜎−field 𝜉 is the trace of BR on [0; 1[, and as the
application 𝑡 ∈ R ↦→ 𝑋𝑡 ∈ 𝐿2 (A) is continuous.

If (𝑋𝑡 )𝑡 ∈R is a stationary continuous r.f., that is when 𝑡 ∈ R ↦→ 𝑋𝑡 ∈ 𝐿2 (A) is
continuous and when < 𝑋𝑡 , 𝑋𝑡′ >=< 𝑋𝑡−𝑡′ , 𝑋0 >, for any (𝑡, 𝑡 ′) of R2, then it is also
a cyclostationary r.f..

6.6 Definition of a 𝑳2(𝝃)−stationary Series from a
Cyclostationary r. f.

Let then (𝑋𝑡 )𝑡 ∈R be a cyclostationary r.f..
Proposition 1 There exists a u.o. 𝑉 of 𝐿2 (A) such that 𝑉𝑋𝑡 = 𝑋𝑡+1, for any 𝑡 of

R.
So we can prove that (𝑉𝑛𝑋𝑡 )𝑛∈Z = (𝑋𝑡+𝑛)𝑛∈Z, for any 𝑡 of [0; 1[. We can then

enunciate the following.
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Proposition 2 i) for any 𝑛 of Z, the application 𝑡 ∈ [0; 1[↦→ 𝑋𝑡+𝑛 ∈ 𝐿2 (A) is a
representative of an element 𝑌𝑛 of 𝐿2

𝐿2 (A) (𝜉);
ii) the series (𝑌𝑛)𝑛∈Z of elements of 𝐿2

𝐿2 (A) (𝜉) is stationary;
iii) (I𝑌𝑛)𝑛∈Z is a 𝐿2 (𝜉)−stationary series of elements of 𝐿2

𝐿2 ( 𝜉 ) (A).
Let us give some elements for a proof of this property.
We consider the application 𝑉 which transforms the coset of the element 𝑋 of

L2
𝐿2 (A) (𝜉) into the coset of 𝑉 ◦ 𝑋 . The operator 𝑉 is a u.o. of 𝐿2

𝐿2 (A) (𝜉) such that
𝑉𝑛𝑌0 = 𝑌𝑛. Indeed, 𝑉𝑛𝑌0 is the coset of the application 𝑉𝑛 ◦ (𝑡 ∈ [0; 1[↦→ 𝑋𝑡 ∈
𝐿2 (A)), so of (𝑡 ∈ [0; 1[↦→ 𝑉𝑛𝑋𝑡 ∈ 𝐿2 (A)), or evenmore of 𝑡 ∈ [0; 1[↦→ 𝑋𝑡+𝑛 ∈
𝐿2 (A). Points i) and ii) are then proved. We can prove that 𝑌𝑛 = 𝑉𝑛 ◦ 𝑌0. The last
point comes from Proposition 6.4.5: for any pair (𝑛, 𝑚) of elements of Z,

Ĩ𝑌𝑛Ĩ𝑌𝑚
∗
= Γ ◦ 𝑌𝑛

∗
𝑌𝑚 ◦ Γ = Γ ◦ 𝑌0

∗ ◦𝑉−𝑛 ◦𝑉𝑚 ◦ 𝑌0 ◦ Γ = I𝑌𝑛−𝑚Ĩ𝑌0
∗
.

We can now define the series associated with a cyclostationary r.f..
Definition 1
The series (I𝑌𝑛)𝑛∈Z is named 𝐿2 (𝜉)−stationary series deduced from the cyclo-

stationary r.f. (𝑋𝑡 )𝑡 ∈R.
Of course, it is possible to process a PCA in the frequency domain of the

𝐿2 (𝜉)−stationary series (I𝑌𝑛)𝑛∈Z.
The 𝑝 first steps will give a C𝑝−stationary series (𝑋 ′

𝑛)𝑛∈Z. As for the recon-
struction of the series, it will give a 𝐿2 (𝜉)−stationary series (𝑋 ′′

𝑛 )𝑛∈Z, stationarily
correlated with (I𝑌𝑛)𝑛∈Z. Then it is possible to define a cyclostationary r.f. (X𝑡 )𝑡 ∈R
for which the deduced 𝐿2 (𝜉)−stationary series is (𝑋 ′′

𝑛 )𝑛∈Z. So we can write∫
‖X𝑡+𝑛 − 𝑋𝑡+𝑛‖2d𝜂(𝑡) = ‖𝑋 ′′

𝑛 − I𝑌𝑛‖2 = ‖𝑋 ′′
0 − I𝑌0‖2,

for any 𝑛 of Z.
The cyclostationary r.f. (X𝑡 )𝑡 ∈R is a reconstitution of the data.
Let us remark that, as a stationary continuous r.f. is a cyclostationary r.f., we can

process to such a PCA for it.
Let us now examine the respective r.m.’s associated with the stationary series

(I𝑌𝑛)𝑛∈Z and (𝑌𝑛)𝑛∈Z. We denote by 𝑍𝑌 the r.m. associated with this last, and, for
any 𝑡 of [0; 1[, by 𝑍𝑡 the r.m. associated with (𝑋𝑡+𝑛)𝑛∈Z, which is stationary, as
(𝑋𝑡+𝑛)𝑛∈Z = (𝑉𝑛𝑋𝑡 )𝑛∈Z. So we have the following property.

Proposition 3 For any 𝐴 of B, 𝑍𝑌 𝐴 is the coset of the application 𝑡 ∈ [0; 1[↦→
𝑍𝑡 𝐴 ∈ 𝐿2 (A).

As for the r.m. associated with the 𝐿2 (𝜉)−stationary series (I𝑌𝑛)𝑛∈Z, which is
important for PCA is the frequency domain, it is I ◦ 𝑍𝑌 .

All these results can be generalized to other types of cyclostationary functions
(𝑋𝑔)𝑔∈𝐺 , where 𝐺 is a locally compact abelian group.

6.7 Simulation of a Cyclostationary r. f. and PCA

Let us examine the analysis that we just have recommended, for a simulated cy-
clostationary function. For graphical representation facilities, we chose a simula-
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tion which gives a real valued cyclostationary function. For this, let us consider
Ω = {𝜔1, . . . , 𝜔𝑘 }, 𝑘 > 1, and 𝑃({𝜔 𝑗 }) = 1

𝑘 . All the matrix expressions will be
relatively to the orthonormal basis {𝑦1, . . . , 𝑦𝑘 }, where 𝑦 𝑗 =

√
𝑘1{𝜔 𝑗 }.

Let 𝑉 be a u.o. of 𝐿2 (A), of matrix 𝐵 (where 𝐵 = 𝐵), and { 𝑓1, . . . , 𝑓𝑘 } be a
family of elements of 𝐿2 ( [0; 1[) ( 𝑓 𝑗 = 𝑓 𝑗 ).

Then we build a cyclostationary function {𝑋𝑡 , 𝑡 ∈ R} as follows:
𝑋𝑡 = 𝑉 [𝑡 ] (
∑𝑘
𝑗=1 𝑓 𝑗 (𝑡 − [𝑡])𝑦 𝑗 ) =

∑𝑘
𝑗=1 𝑓 𝑗 (𝑡 − [𝑡])𝑉 [𝑡 ] 𝑦 𝑗 ,

where [𝑡] stands for the integer part of 𝑡.
The matrix expression of what precedes is

1
√
𝑘

����
𝑋𝑡 (𝜔1)

...
𝑋𝑡 (𝜔𝑘 )


��� =
𝑘∑
𝑗=1

𝑓 𝑗 (𝑡 − [𝑡]) (𝐵 [𝑡 ] ). 𝑗 .

So we can get the trajectories 𝑋𝑡 (𝜔𝑙) =
∑𝑘
𝑗=1 𝑓 𝑗 (𝑡 − [𝑡]) (𝐵 [𝑡 ] )𝑙 𝑗 .

Figure 6.1 shows some trajectories when 𝑘 = 10 and 𝑓 𝑗 (𝑡) = 𝑡 𝑗 .

Fig. 6.1 Trajectories 1, 5 and 10 of the simulated cyclostationary function 𝑋𝑡
.

If 𝑉 =
∑
𝑙∈𝐿 𝑒

𝑖𝜇𝑙𝑃𝑙 is the spectral decomposition of 𝑉 , then the deduced
𝐿2 (𝜉)−stationary series (I𝑌𝑛)𝑛∈Z is such that I𝑌𝑛 =

∑
𝑙∈𝐿 𝑒

𝑖𝜇𝑙𝑛𝑍𝑙 , where 𝑍𝑙 =∑𝑘
𝑗=1 (𝑃𝑙𝑦 𝑗 ) 𝑓 𝑗 .
The matrix associated with 𝑍∗

𝑙 𝑍𝑙 is 𝑀𝑙𝑇𝑀𝑙 , where 𝑀𝑙 is the matrix associated
with the 𝑃𝑙 projector, and 𝑇 is such that 𝑇𝑢𝑣 =< 𝑓𝑢 , 𝑓𝑣 >𝐿2 ( [0;1[) .

The first 𝑞 steps of the PCA of (I𝑌𝑛)𝑛∈Z give the following reconstitution:

1
√
𝑘

����
X𝑡 (𝜔1)

...
X𝑡 (𝜔𝑘 )


��� =
𝑘∑
𝑗=1

∑
𝑙∈𝐿

𝑘∑
𝑢=1

(𝑡𝑀𝑙
𝑞∑
𝑣=1

𝑈𝑙𝑣
𝑡𝑈𝑙𝑣 )𝑢 𝑗 𝑓𝑢 (𝑡 − [𝑡]) (𝐵 [𝑡 ] ). 𝑗 ,

where 𝑈𝑙𝑣 is the 𝑣𝑡ℎ normed eigenvector of the matrix 𝑀𝑙𝑇𝑀𝑙 .
Figure 6.2 shows the reconstituted trajectories of Figure 6.1 when 𝑞 = 1.
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Fig. 6.2 One-dimensional reconstituted trajectories 1, 5 and 10 of the simulated cyclostationary
function 𝑋𝑡

.

For this simulation, the sum of squares of the errors are respectively equal to 77.6,
5.1 and 0 when 𝑞 = 1, 𝑞 = 2 and 𝑞 = 3. The choice of 𝐵 such that at least one of
the eigenvalue is triple and the other eigenvalues are of multiplicity less or equal to
three makes a perfect reconstitution for 𝑞 = 3. When all the eigenvalues are single,
the first step of the PCA reconstitutes the all cyclostationary function.
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Chapter 7
Level Set and Density Estimation on Manifolds

Alejandro Cholaquidis, Ricardo Fraiman and Leonardo Moreno

Abstract Given an iid sample of a distribution supported on a smooth manifold
𝑀 ⊂ R𝑑 , which is assumed to be absolutely continuous w.r.t the Hausdorff measure
inherited from the ambient space, we tackle the problem of the estimation of the level
sets of the density 𝑓 . A consistent estimator in both Hausdorff distance and distance
in measure is proposed. The estimator is the level set of the kernel-based estimator of
the density 𝑓 . We prove that the kernel-based density estimator converges uniformly
to the unknown density 𝑓 , the consistency of the level set and the consistency of the
boundary of the level set estimator. The performance of our proposal is illustrated
through some simulated examples.

7.1 Introduction

The estimation of level sets 𝐿 𝑓 (𝜆) = {𝑥 : 𝑓 (𝑥) ≥ 𝜆}, where 𝑓 is an unknown density
function on R𝑑 and 𝜆 > 0 is a given constant, has been previously considered by
several authors; see, for instance, [14], [22], [8], [18] [25], [27] for consistency
results and rates of convergence, while the asymptotic distribution was derived in
[5]. Some relevant applications are mode estimation [19], [22], clustering ([9], [10])
or detection of abnormal behaviour in a system ([12], [2], [1]).

However, this problem is less developed when the underlying density has its
support on a Riemannian manifold. The statistical analysis of several problems when
data takes values on a Riemannian manifold has received much attention in the last
few years. One of the reasons is that at present, we are interested in the statistical
analysis of more complex objects and structures. References on the subject are
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numerous. We refer to [17], [3], and [21] and the references therein for an overview.
In the following, we address the problem of level set estimation in this setup.

This problem requires us to first tackle the estimation of the underlying density,
a problem that has been addressed in the manifold framework, for instance, in [15]
for a manifold without boundary. This manuscript aims to extend previous result to
the case of manifolds with boundary and to obtain as a by-product the consistency
(w.r.t the Hausdorff distance and the distance in measure) of the natural level set
estimators, which are the level set of the density estimator. We also prove that the
boundary of the level set of the density estimator is consistent in Hausdorff distance.
Let us introduce more formally our problem.

Given a 𝑑 ′-dimensional Riemannian manifold 𝑀 ⊂ R𝑑 , where 𝑑 ′ ≤ 𝑑 and 𝑑 ′ is
assumed to be known, the aim is to estimate the level sets

𝐿 𝑓 (𝜆) = {𝑥 ∈ 𝑀 : 𝑓 (𝑥) ≥ 𝜆}

of the density 𝑓 of a random vector 𝑋 with support 𝑀 from an iid sample 𝑋1, . . . , 𝑋𝑛
with distribution 𝑓 . First, we will consider the case where𝜆 is such that 𝐿 𝑓 (𝜆)∩𝜕𝑀 =
∅, where 𝜕𝑀 denotes the boundary of 𝑀 . Next, we will tackle the problem where
𝐿 𝑓 (𝜆) ∩ 𝜕𝑀 ≠ ∅. To do so, we will use the plug-in estimator �̂� 𝑓𝑛,ℎ (𝜆) = {𝑥 :
𝑓𝑛,ℎ (𝑥) ≥ 𝜆}, where 𝑓𝑛,ℎ is a kernel-based estimator with bandwidth ℎ = ℎ𝑛 → 0.
In the following, we assume that 𝜆 is fixed.

In Section 7.3, we prove that the kernel-based density estimator converge uni-
formly to the unknown density 𝑓 . The consistency of the level sets in the Hausdorff
distance and in measure is addressed in Section 7.4. Consistency in the Hausdorff
metric of level sets under 𝑟–convexity is shown in Section 7.5, while in Section 7.6,
we provide some simulation results.

7.2 Notation and Geometric Framework

If 𝐵 ⊂ R𝑑 is a Borel set, we denote by |𝐵| its Lebesgue measure and by 𝐵 its closure.
Given a set 𝐴 on a topological space, the interior of 𝐴 with respect to the underling
topology is denoted by �̊�. The 𝑘-dimensional closed ball of radius 𝜀 centred at 𝑥
will be denoted by B𝑘 (𝑥, 𝜀) ⊂ R𝑑 (when 𝑘 = 𝑑 the index will be omitted), and its
Lebesgue measure is denoted by 𝜎𝑘 = |B𝑘 (𝑥, 1) |.

In the following, 𝑀 ⊂ R𝑑 is a compact 𝑑 ′-dimensional manifold of class C2

(also called a 𝑑 ′-regular surface of class C2). We consider the Riemannian metric
on 𝑀 inherited from R𝑑 . We denote by 𝜌(𝑥, 𝑦) the geodesic distance between 𝑥, 𝑦
and given a set 𝐴 ⊂ 𝑀 , we denote 𝐵𝜌 (𝐴, 𝑟) = {𝑥 ∈ 𝑀 : 𝑑 (𝑥, 𝐴) < 𝑟}. When
𝑀 has a boundary, as a manifold, it is be denoted by 𝜕𝑀 . We denote for 𝛿 > 0,
𝑀𝛿 : {𝑥 ∈ 𝑀 : 𝜌(𝑥, 𝜕𝑀) ≥ 𝛿} When 𝑀 is orientable, it has a unique associated
volume form 𝜔 such that 𝜔(𝑒1, . . . , 𝑒𝑑′ ) = 1 for all oriented orthonormal bases
𝑒1, . . . , 𝑒𝑑′ of 𝑇𝑥𝑀 . Then, if 𝑔 : 𝑀 → R is a density function, we can define a new
measure 𝜇(𝐵) =

∫
𝐵
𝑔𝑑𝜔, where 𝐵 ⊂ 𝑀 is a Borel set. Since we are only interested

in measures, which can be defined even if the manifold is not orientable, although in
a slightly less intuitive way, the orientability hypothesis is dropped in the following.
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Given a point 𝑥 ∈ 𝑀 , 𝑏𝑥 is the geodesic distance from 𝑥 to the boundary 𝜕𝑀 of 𝑀 ,
or is ∞ if 𝜕𝑀 = ∅. Given 𝑥 ∈ 𝑀 and 𝑓 : 𝑀 → R we denote by 𝑑𝑥 𝑓 the differential
of 𝑓 at 𝑥.

Recall that given two non-empty compact sets 𝐴,𝐶 ⊂ R𝑑 , the Hausdorff distance
between 𝐴 and 𝐶 is defined as

𝑑𝐻 (𝐴,𝐶) = max
{

max
𝑎∈𝐴

𝜌(𝑎, 𝐶), max
𝑐∈𝐶

𝜌(𝑐, 𝐴)
}
, where 𝜌(𝑎, 𝐶) = inf

𝑐∈𝐶
𝜌(𝑎, 𝑐).

(7.1)
Given two Borel sets 𝐴, 𝐵 ⊂ 𝑀 , the distance in measure between them is 𝑑𝜇 (𝐴, 𝐵) =
𝜇(𝐴 \ 𝐵) + 𝜇(𝐵 \ 𝐴).

7.3 Density Estimation

The aim of this section is to prove that the kernel-based density estimator proposed in
[4], denoted by 𝑓ℎ,𝑛, converges uniformly to the density 𝑓 . For simplicity, we assume
that 𝐾 is the gaussian kernel, i.e, 𝐾 (‖𝑥‖) = 𝜋−𝑑′/2 exp(−‖𝑥‖2). Let ℎ = ℎ𝑛 → 0;
then,

𝑓ℎ,𝑛 (𝑥) =
1

𝑛𝑚0 (𝑥)ℎ𝑑′

𝑛∑
𝑖=1

𝐾
( ‖𝑥 − 𝑋𝑖 ‖

ℎ

)
where 𝑚0 (𝑥) = 𝜋−1/2

∫ 𝑏𝑥/ℎ
−∞

exp(−𝑧2)𝑑𝑧,

(7.2)
𝑏𝑥 is the geodesic distance from 𝑥 to 𝜕𝑀 or is ∞ if 𝜕𝑀 = ∅. Equation (5) in [4]

states that the bias of 𝑓ℎ,𝑛 (𝑥) is

𝐸 ( 𝑓ℎ,𝑛 (𝑥))− 𝑓 (𝑥) = ℎ𝑚1 (𝑥)〈𝜂𝑥 ,∇ 𝑓 (𝑥)〉+O𝑥 (ℎ2) where 𝑚1 (𝑥) =
1

2
√
𝜋

exp(−𝑏2
𝑥/ℎ2).

(7.3)
First, we will tackle the case where the level 𝜆 is such that 𝐿 𝑓 (𝜆) ∩ 𝜕𝑀 ≠ ∅. In

this case, if 𝑥 ∈ 𝐿 𝑓 , then 𝑚0 (𝑥) → 1, so we will replace the estimator (7.2) by

𝑓ℎ,𝑛 (𝑥) =
1

𝑛ℎ𝑑′

𝑛∑
𝑖=1

𝐾
( ‖𝑥 − 𝑋𝑖 ‖

ℎ

)
.

7.3.1 First Case

Theorem 1 Let 𝑀 be a C2 compact 𝑑 ′-dimensional submanifold of R𝑑 . Let 𝑋 be a
random vector with support 𝑀 whose density 𝑓 is assumed to be C2. Let ℎ → 0 and
𝛽𝑛 → ∞ such that 𝛽𝑛ℎ2 → 0, 𝑛ℎ𝑑′/(𝛽2

𝑛 log(𝑛)) → ∞; then,

𝛽𝑛 sup
𝑥∈𝑀0

| 𝑓ℎ,𝑛 (𝑥) − 𝑓 (𝑥) | → 0 𝑎.𝑠.

for any closed subset 𝑀0 ⊂ 𝑀 such that inf𝑥∈𝑀0 𝜌(𝑥, 𝜕𝑀) > 0.
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The following results are more general, so the theorem allows the compact set 𝑀0
to depend on 𝑛. It is proven in the same manner as Theorem 1,

Theorem 2 Let 𝑀 be a C2 compact 𝑑 ′-dimensional submanifold of R𝑑 . Let 𝑋 be a
random vector with support 𝑀 whose density 𝑓 is assumed to be C2. Let ℎ → 0 and
𝛽𝑛 → ∞, such that 𝛽𝑛ℎ2 → 0, 𝑛ℎ𝑑′/(𝛽2

𝑛 log(𝑛)) → ∞; then,

𝛽𝑛 sup
𝑥∈𝑀𝑛

| 𝑓ℎ,𝑛 (𝑥) − 𝑓 (𝑥) | → 0 𝑎.𝑠.

for any sequence of closed subsets 𝑀𝑛 ⊂ 𝑀 such that inf𝑥∈𝑀𝑛 𝜌(𝑥, 𝜕𝑀)/ℎ → ∞.

7.4 Level Set Estimation

The estimation of the level sets of the density in Hausdorff distance and in measure
when it does not meet the boundary of the manifold (in case it has) is proven in the
following result.

Theorem 3 Let 𝑀 and 𝑓 in the hypotheses of Theorem 2. Assume that the level 𝜆 > 0
fulfills that for all 𝑥 such that 𝑓 (𝑥) = 𝜆, there exists 𝑎𝑛, 𝑏𝑛 → 𝑥 such that 𝑓 (𝑎𝑛) > 𝜆
and 𝑓 (𝑏𝑛) < 𝜆 and the boundary 𝜕{ 𝑓 ≥ 𝜆} is non-empty. Then, with probability
one,

1 𝑑𝐻 (𝜕𝐿 𝑓𝑛,ℎ (𝜆), 𝜕𝐿 𝑓 (𝜆)) → 0;
2 𝑑𝐻 (𝐿 𝑓𝑛,ℎ (𝜆), 𝐿 𝑓 (𝜆)) → 0;
3 If, moreover, 𝑑𝑥 𝑓 ≠ 0 for all 𝑥 such that 𝑓 (𝑥) = 𝜆, 𝑑𝜇 (𝐿 𝑓𝑛,ℎ (𝜆), 𝐿 𝑓 (𝜆)) → 0.

Theorem 4 Let 𝑀 and 𝑓 be as in the hypotheses of Theorem 2. Assume that the level
𝜆 > 0 fulfills that for all 𝑥 with 𝑓 (𝑥) = 𝜆, there exists 𝑎 𝑗 → 𝑥, 𝑎 𝑗 ∈ �̊� , such that
𝑓 (𝑎 𝑗 ) > 𝜆 for all 𝑗 . Then,

𝑑𝐻
(
𝐿 𝑓𝑛,ℎ (𝜆), 𝐿 𝑓 (𝜆)

)
→ 0, 𝑎.𝑠., as 𝑛 → ∞.

7.5 Manifold Level Set Estimation under r-convexity

In a Euclidean space, a set 𝐴 is said to be 𝑟-convex (for some 𝑟 > 0) if 𝐴 = 𝐶𝑟 (𝐴),
where 𝐶𝑟 (𝐴) is the 𝑟-convex hull of 𝐴, i.e. the intersection of the complements
of all open balls of radii 𝑟 that does not meet 𝐴. It is a natural generalization of
convexity (the half spaces are replaced by balls), and it has been widely studied in
set estimation literature (see, for instance, [27, 26] [23] and [20]). Additionally, as
is pointed out in [23], this concept “is closely related to the notion of alpha-shapes
that arises in the literature of computational geometry"; see [13]. Departing from
the idea of 𝑟-convexity, several generalizations have been given (see, for instance,
[6]). If the underlying space is not a Euclidean space but rather is any Riemannian
manifold 𝑀 endowed with the geodesic distance 𝜌, the natural generalization is to
replace the Euclidean balls with geodesic balls. According to this idea, given 𝑟 > 0,
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we will say that a set 𝐴 ⊂ 𝑀 is 𝑟-convex if it is equal to its 𝑟-convex hull in 𝑀 , i.e.
the intersection of the complement of all open geodesic balls of radii 𝑟 that does not
meet 𝐴.

Theorem 5 Under the hypotheses of Theorem 4, assume also that the level set 𝐿 𝑓 (𝜆)
is 𝑟-convex and 𝐿 𝑓𝑛,ℎ (𝜆) is 𝑟-convex a.s., for some 𝑟 > 0. Then,

𝑑𝐻
(
𝐶𝑟 ({𝑋𝑖 : 𝑓ℎ,𝑛 (𝑋𝑖) > 𝜆}), 𝐶𝑟 ({𝑋𝑖 : 𝑓 (𝑋𝑖) > 𝜆})

)
→ 0, 𝑎.𝑠.

and
𝑑𝐻
(
𝐶𝑟 ({𝑋𝑖 : 𝑓ℎ,𝑛 (𝑋𝑖) > 𝜆}), 𝐿 𝑓 (𝜆)

)
→ 0 𝑎.𝑠.

7.6 Simulation Results

To assess the performance of our proposal, we will perform a simulation example
with two scenarios. In the first one, we consider a distribution on the positive cone
of covariance matrices, which is a three dimensional manifold when endowed with
a Riemannian structure given below. In the second one, we will consider the torus
with the metric inherited from 𝑅3. In this case, we consider two distributions, the
first one being unimodal and the last one being a mixture of distributions.

7.6.1 Positive-definite Matrices

Let us denote by (P𝑑 , 𝑔) the set of positive-definite 𝑑×𝑑-covariance matrices. Given
two matrices 𝐴, 𝐵 ∈ P𝑑 , the geodesic curve joining 𝐴 and 𝐵 is

𝛾(𝑠) = 𝐴1/2 (𝐴−1/2𝐵𝐴−1/2)𝑠𝐴1/2 for all 𝑠 ∈ [0, 1] .

The geodesic distance is given by 𝑑𝑔 (𝐴, 𝐵) = ‖ ln(𝐴−1/2𝐵𝐴−1/2)‖, where ‖ · ‖ is the
Hilbert–Schmidt norm.

We consider, for 𝑑 = 2, the Wishart distribution W2 (Σ, 𝑚) on P2 with parameters
𝑚 = 10 and Σ = (1/2)𝐼2. An easy way to obtain a matrix 𝑆 with this distribution is
to define 𝑆 = 𝑋1𝑋

′
1 + · · · + 𝑋𝑚𝑋

′
𝑚, where 𝑋1, . . . , 𝑋𝑚 is an iid random sample of a

multivariate Gaussian distribution with mean 0 and covariance matrix Σ.
As is well known, (P2, 𝑔) can be represented as a cone in R3. In Figure 7.1, we show
the projections of a sample of size 1000, drawn from a Wishart distribution with
𝑚 = 10 and Σ = (1/4)𝐼, together with the convex hull of the 𝜆 level set 𝐿W(𝜆) (in
blue) and the convex hull of the level set estimator 𝐿Ŵ𝑛,ℎ

(𝜆) (in red) for 𝜆 = 0.06
and ℎ = 0.1. The estimator was obtained with a sample of size 𝑛 = 10000. The
Hausdorff distance between the level sets in R3 is 0.56. In Table 7.1, we report the
mean over 500 replications of the Hausdorff distance (𝑑𝐻 ) between both sets for
different sample sizes 𝑛 ∈ {1000, 5000, 10000, 20000}.
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= ℎ 3�
1000 0.20 0.732
5000 0.15 0.6

10000 0.10 0.56
20000 0.05 0.4

Table 7.1 Hausdorff distance between the true level set !W (_) and the estimator !Ŵ=,ℎ
(_) for

_ = 0.5 and different values of ℎ.

Fig. 7.1 Projections of a sample of size 1000 drawn from a Wishart distribution with < = 10 and
Σ = (1/4) � , together with the convex hull of the _ level set (in blue) and the convex hull of the
level set estimator (in red), for _ = 0.06 and ℎ = 0.1.

7.6.2 The Torus

In the torus T2 = (1 × (1, we consider the multivariate von Mises distribution,
denoted byMVM(`, ^,Δ). The density at \ ∈ T is given by

5 (\; `, ^,Δ) = 1
/ (^,Δ) exp{^>2(\) + B(\)ΔB(\)/2},

where ` ∈ T2 (this parameter is called mean), ^ ≥ 0 ∈ R3 (concentration
parameter), Δ = (_8, 9 ) is a symmetric matrix on R3×3 with null diagonal entries
(_8,8 = 0 for all 8 ∈ {1, . . . , 3}), and / (^,Δ) is a normalization constant. The
functions 28 and B8 are defined by 28 (\) = cos(\8 − `8) and B8 (\) = sin(\8 − `8) for
all 8 ∈ {1, . . . , 3}. In Figure 7.2 (left panel), we show (in yellow) a sample of size
2000 from aMVM1 (`1, ^1,Δ1) distribution with

`1 = (c/2, 0), ^1 = (20, 20), Δ1 =

(
0 1
1 0

)
. (7.4)

In the right panel of Figure 7.2, we show (in yellow) a sample of size 2000 from a
mixture law given by

0.4MVM1 (`2, ^1,Δ1) + 0.6MVM2 (`3, ^1,Δ1), (7.5)
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where 𝜇2 = (𝜋/2, 0) y 𝜇3 = (𝜋/2, 𝜋/4) . In all cases, we consider 𝜆 = 0.8 and
bandwidth ℎ = 0.2. The boundary of the theoretical level set is shown in red, while
the boundary of the estimator is shown in magenta.

The Hausdorff distances between the theoretical curve and the estimated one are
0.066 and 0.107.

Fig. 7.2 Left panel: a sample of size 2000 from a MVM1 (𝜇1, 𝜅1, Δ1) distribution with 𝜇1, 𝜅1
and Δ1 given in (7.4). Right panel: a sample of size 2000 from the mixture law given in (7.5). In
both cases, the data are shown in yellow, whereas the boundary of the true level sets is shown (in
red) together with the estimated boundary (in magenta).

7.6.3 The Sphere

Finally, we considered the sphere 𝑆2 ⊂ R3 endowed with the Riemannian metric
inherited from R3. The sample is drawn from a the mixture of two von Mises–Fisher
distributions given by

𝑓 (𝑥, 𝜇, 𝜅) = 𝐶 (𝑥)𝑒𝜅𝜇
�𝑥I𝑆2 (𝑥),

where 𝜅 ≥ 0 and 𝜇 ∈ 𝑆2 are the concentration and directional mean parameters,
respectively. 𝐶 (𝑥) is the normalizing constant; see [17].

The mixture is given by,

0.5 𝑓 (·, (−1,−1/4, 0), 40) + 0.5 𝑓 (·, (−1, 1/4, 0), 40) . (7.6)

In Figure 7.3, we show (left panel) a sample of size 𝑛 = 500 on 𝑆2, together
with the estimated level set (in red ) and the true level set (in blue). In the right
panel, we show the stereographic projections of the sample and the estimators.
The Hausdorff distance between the theoretical curve and the estimated (on the
stereographic projections) curve is 0.018.
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Fig. 7.3 Left panel: A sample of size 500 from the mixture of two von Mises–Fisher distributions
given in equation (7.6). Right panel: the stereographic projections of the sample and the level sets.
In both cases, the estimator is shown in red, while the true underlying level set is shown in blue.
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Chapter 8
Pseudo-metrics as Interesting Tool in
Nonparametric Functional Regression

Laurent Delsol and Aldo Goia

Abstract The choice of the pseudo-metric in functional nonparametric regression is
a crucial issue, since it has a direct impact on the kind of model one considers and on
the efficiency of the estimation procedure. In this work a cross-validation approach
to select the optimal pseudo-metric is illustrated and operationalized. Its practical
performances are then evaluated by means of a Monte Carlo study.

8.1 Introduction

The so called functional data (such as, for instance, curves, surfaces, images) are
nowadays commonly object of analysis both in applied and in theoretical Statistics.
A lot has been done to deal with functional data since the pioneer works of [5], [6]
and [9]: many multivariate methods and models have been extended to this field and
new ideas have arisen and been developed (see, for instance, the recent special issues
[2], [3], [7], [8] and the collective works [1] and [4]).

Looking at this literature, one can see how the regression models with a real-
valued response and functional covariates have received a lot of attention, with a
special attention to the nonparametric field which represents a fruitful domain of
research (for an overview, see [6]).

In the nonparametric regression context, a central role is played by pseudo-
metrics: since they are useful tools to capture the information contained in the
explanatory curve, it is crucial to select the right one to obtain relevant results. This
is usually done by cross-validation. However, only a partial theoretical result has
been provided by [10] to prove its efficiency.
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The aim of the present work is to deepen this idea and extend it to a more general
context. The goal is to explore its potential use to extract the informative features of
the explanatory curve and hence construct more accurate estimates: after introducing
the notation and the cross-validation idea (see Section 8.2), a practical criterion to
select the optimal pseudo-metrics is illustrated (see Section 8.3). Finally, a simulation
study illustrates the practical behaviour of the introduced approach in two special
cases (see Section 8.4).

8.2 Pseudo-metrics use in Non-parametric Regression on
Functional Variable

Consider the following regression model

𝑌 = 𝑟 (𝑋) + 𝜖, (8.1)

in which 𝑌 is a real-valued random variable, 𝑋 is a random object lying in the space
F of the real-valued functions defined on [0, 1] which can be equipped with a family
of pseudo-metrics 𝑑 ∈ D, 𝑟 is a real-valued regression operator, and the residual 𝜖
satisfies E[𝜖 |𝑋] = 0.

Given a sample (𝑋𝑖 , 𝑌𝑖)1≤𝑖≤𝑛 drawn from (𝑋,𝑌 ), in the nonparametric case, it
is usual to make the kernel estimator of the regression operator 𝑟 depend on a
pseudo-metric 𝑑 as follows (see e.g. [6]):

�̂�𝑑 (𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑛∑
𝑖=1

𝑌𝑖

𝐾

(
𝑑 (𝑋𝑖 , 𝑥)

ℎ𝑛

)
𝑛∑
𝑖=1

𝐾

(
𝑑 (𝑋𝑖 , 𝑥)

ℎ𝑛

) if
𝑛∑
𝑖=1

𝐾

(
𝑑 (𝑋𝑖 , 𝑥)

ℎ𝑛

)
≠ 0

𝑌 otherwise.

(8.2)

The pseudo-metric 𝑑 is usually understood as a simple tool to define a relevant
estimator of the regression operator. However, its choice has a direct impact on the
regression operator actually estimated. Indeed, the use of a given pseudo-metric 𝑑
makes the estimator �̂�𝑑 designed for the regression model induced on the quotient
space F𝑑:

𝑌 = 𝑟𝑑 (𝑋) + 𝜖𝑑 (8.3)

for which E[𝜖𝑑 |{𝑍, 𝑑 (𝑍, 𝑋) = 0}] = 0 and hence 𝑟𝑑 (𝑋) = E[𝑌 |{𝑍, 𝑑 (𝑍, 𝑋) = 0}].
When 𝑑 is fixed and is not a metric, 𝑟𝑑 has no reason to be equal to 𝑟 and the estimator
is usually not consistent.

The choice of the pseudo-metric is hence crucial: it has a direct impact on the
kind of model one considers and the efficiency of the estimation procedure. A metric
would ensure 𝑟𝑑 = 𝑟 but may lead to low convergence rates (due to the curse of
dimensionality). A pseudo-metric may be a relevant tool to extract the appropriate



8 Pseudo-metrics as Interesting Tool in Nonparametric Functional Regression 55

information from the explanatory curve and improve the convergence rate. However,
its choice has to be done cleverly since a inappropriate pseudo-metric may lead to
an inconsistent estimator (especially when 𝑟𝑑 ≠ 𝑟).

In practice, the pseudo-metric 𝑑 is usually selected as a minimizer of the weighted
cross-validation criterion:

𝑑 = arg min
𝑑0 ∈D𝑛

𝑛∑
𝑖=1

(𝑌𝑖 − �̂� (−𝑖)
𝑑0

(𝑋𝑖))2𝜋(𝑋𝑖), (8.4)

where 𝜋 is a positive weight function, �̂� (−𝑖)
𝑑0

(𝑋𝑖) is the leave-one out kernel estimator
defined from the dataset (𝑋𝑖′ , 𝑌𝑖′ )1≤𝑖′ ≤𝑛, 𝑖′≠𝑖 and D𝑛 is the set of considered pseudo-
metric which may depend on 𝑛.

Depending on the nature of the set D𝑛, various specific situations can appear.
Some examples are in the following:

1. Unweighted pseudo-metric selection

a. Informative points (or interval) selection
Given a non random discretization grid (𝑡 𝑗 )1≤ 𝑗≤𝑝𝑛 , consider the pseudo-
metric family 𝑑𝐽𝑛 (𝑋, 𝑥) = 𝑑 ((𝑋 (𝑡 𝑗 ), 𝑗 ∈ 𝐽𝑛), (𝑥(𝑡 𝑗 ), 𝑗 ∈ 𝐽𝑛)), where 𝐽𝑛 is
a subset of {1, . . . , 𝑝𝑛}.

b. Informative support selection
One may also consider a continuous version of the previous one to de-
tect the informative “support” 𝐽𝑛 by considering the pseudo-metric family
𝑑𝐽𝑛 (𝑋, 𝑥) = 𝑑 (𝑋 |𝐽𝑛 , 𝑥 |𝐽𝑛 ), where 𝑋 |𝐽𝑛 (or 𝑥 |𝐽𝑛 ) denotes the restriction of 𝑋
(or 𝑥) to 𝐽𝑛 which is an union of several non overlapped intervals of [0, 1].

c. Informative basis selection
Given a non random functional basis (𝜙 𝑗 )1≤ 𝑗≤𝑝𝑛 for F , consider the pseudo-
metric family 𝑑𝐽𝑛 (𝑋, 𝑥) = 𝑑

(
(< 𝑋, 𝜙 𝑗 >, 𝑗 ∈ 𝐽𝑛), (< 𝑥, 𝜙 𝑗 >, 𝑗 ∈ 𝐽𝑛)

)
where 𝐽𝑛 ⊂ {1, . . . , 𝑝𝑛} is a set of selected basis functions.

2. Weighted pseudo-metric selection
Consider a family of weighted pseudo-metrics 𝑤 ↦→ 𝑑𝑤 , with the weight 𝑤
being a density.

a. Take 𝑝 ∈ N, and consider the weighted H𝑝,2𝑤 pseudo norms induced by the
density functions 𝑤:

𝑑𝑤 (𝑋, 𝑥) =

√∫
(𝑋 (𝑚) (𝑡) − 𝑥 (𝑚) (𝑡))2𝑤(𝑡)𝑑𝑡

where 𝑋 (𝑚) denotes the 𝑚-th derivative of 𝑋 .
b. Consider the weighted L2

𝑤 pseudo-norms induced by the discrete probability
measure 𝑤:
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𝑑𝑤 (𝑋, 𝑥) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
√∑𝑝𝑛

𝑗=1 (𝑋 (𝑡 𝑗 ) − 𝑥(𝑡 𝑗 ))2𝑤 𝑗
for influent
points selection;√∑𝑝𝑛

𝑗=1 (< 𝑋 − 𝑥, 𝜙 𝑗 >)2𝑤 𝑗
for influent
components selection.

The nature of the selected density will be informative to understand which
features of the explanatory curve 𝑋 contain information on 𝑌 .

Note that the informative support selection (example 1.b above) is a particular
case of continuous weighted pseudo-metric selection (example 2.a) in which the
weight function 𝑤 is selected among U (𝐽𝑛) densities.

A theoretical study of the efficiency of the cross-validation selection rule, that is
asymptotic equivalence of the MISE obtained with 𝑑 and the minimal one over all
D𝑛, is still in progress: it aims to extend some ideas illustrated in the work [10].

8.3 Optimal Pseudo-metric Selection in Practice

As explained in the previous section, the aim is to select the pseudo-metric leading
to the smallest value of the cross-validation criterion (8.4). The algorithm to get or
estimate this optimal pseudo-metric will differ from one situation to the other.

Consider first the selection of some points or components (examples 1.a and 1.c
above). In these families, each pseudo-metric may be identified to a presence/absence
vector 𝐴𝑛 ∈ {0, 1}𝑝𝑛 . The optimization procedure may be done in an exhaustive way
considering any configuration of this vector. When 2𝑝𝑛 is huge, bottom-up or top-
down procedures and discrete weighted pseudo-metrics (example 2.b above) may be
relevant alternatives. Moreover, one may expect some sparsity of the vector 𝐴𝑛 and
hence add some LASSO type penalty to the cross-validation criterion (8.4).

Consider now the selection of the optimal weighted pseudo-metric (example 2)
or the selection of the informative support (example 1.b). The main idea is to use
a parametric approximation 𝑤 of the weight function (except for discrete weighted
pseudo-metrics, example 2.b, in which 𝑤 is already a vector of real parameters).
This parametrization may be done using a mixture of given densities ( 𝑓 𝑗 )1≤ 𝑗≤𝑝𝑛
functions:

𝑤 =
𝑝𝑛∑
𝑗=1

𝜃 𝑗 𝑓 𝑗 with 𝜃 𝑗 ≥ 0,
𝑝𝑛∑
𝑗=1

𝜃 𝑗 = 1 (8.5)

The optimization problem is hence reduced to the selection of the optimum vec-
tor (𝜃1, . . . , 𝜃𝑝𝑛 ). This may be done using any relevant parametric optimization
procedure.

Examples of densities that can be used to build the mixture 8.5 are the uniform
ones, each one defined over 𝑝𝑛 contiguous subintervals of [0, 1], or the normal ones
truncated over [0, 1], having the means defined as 𝑝𝑛 equispaced points in [0, 1] and
the same standard deviation (which decreases as 𝑝𝑛 increases).



8 Pseudo-metrics as Interesting Tool in Nonparametric Functional Regression 57

8.4 Simulation Studies

This section presents the results on some experiments to show the performances of
the proposed method: in particular the attention is focused on the informative support
selection and the informative basis selection (see examples 1.b and 1.c above).

Each sample of curves 𝑋𝑖 used in the simulations consists in 𝑛 = 200 trajectories
of a standard Brownian motion on [0, 1], discretized over a grid of 1000 equispaced
points 0 ≤ 𝑡1 < · · · < 𝑡1000 ≤ 1. The errors 𝜖𝑖 are generated from independent
centered Gaussian random variables N (0, 𝛾) with 𝛾 equals to 0.2 times the standard
deviation of 𝑟 (𝑋) in order to control the signal-to-noise ratio.

Informative Support Selection

For each curve, define the mean values 𝑚0 and 𝑚1 over two intervals (𝑎0, 𝑏0] =
(0.2, 0.3] and (𝑎1, 𝑏1] = (0.8, 0.9]:

𝑚𝑘 (𝑋𝑖) =
1

#𝑇𝑘

∑
𝑗∈𝑇𝑘

𝑋𝑖 (𝑡 𝑗 ), 𝑘 = 0, 1,

where 𝑇𝑘 =
{
𝑗 : 𝑎𝑘 < 𝑡 𝑗 ≤ 𝑏𝑘

}
.

Consider 𝜙(𝑋𝑖) = 0.7𝑚0 (𝑋𝑖) + 0.3𝑚1 (𝑋𝑖) and define:

𝑌𝑖 = sin(𝜋𝜙(𝑋𝑖)) + 𝜖𝑖 𝑖 = 1, . . . , 200.

The aim is to check if the proposed data-driven choice may lead to relevant identi-
fication of the informative parts of the curve. We search for the optimum weight 𝜃 𝑗
in (8.5) with 𝑓 𝑗 uniform densities over (( 𝑗 − 1) /𝑝𝑛, 𝑗/𝑝𝑛], 𝑗 = 1, . . . , 𝑝𝑛:

𝑤(𝑡, 𝜃) =
𝑝𝑛∑
𝑗=1

𝜃 𝑗 I( 𝑗−1
𝑝𝑛
, 𝑗𝑝𝑛

] (𝑡)
with for all 1 ≤ 𝑗 ≤ 𝑝𝑛, 𝜃 𝑗 ≥ 0 and

∑𝑝𝑛
𝑗=1 𝜃 𝑗 = 1.

In Figure 8.1 one estimate of the weight function 𝑤 with 𝑝𝑛 = 20 is shown: one
can see that the informative parts of the curves (highlighted in grey) are quite well
identified.

In order to evaluate the accuracy of the cross-validation selection rule, the MISEs
for 100 Monte Carlo samples are computed with 𝑝𝑛 = 10, 20, 30. In Figure 8.2 these
results are compared with the ones obtained when the classical (unweighted) L2

norm and the weighted L2
𝑤0 norm involving the true weight function 𝑤0 are used.

Looking at the boxplots, one can appreciate the good performances of the proposed
approach: the gain with respect to the use of the L2 norm is considerable and appears
not very sensitive to the choice of 𝑝𝑛.
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Fig. 8.1 An example of the estimated weight function 𝑤 when 𝑝𝑛 = 20

Informative Basis Selection

Consider the eigenvalues 𝜆 𝑗 and the associated eigenfunctions 𝜓 𝑗 of the covariance
operator of a Brownian motion:

𝜆 𝑗 =
1(

𝑗 −
1
2

)2
𝜋2

𝑗 = 1, 2, . . .

𝜓 𝑗 (𝑡) =
√

2 sin
(
𝜋

(
𝑗 −

1
2

)
𝑡

)
, 𝑡 ∈ [0, 1] , 𝑗 = 1, 2, . . .

Define the regression model:

𝑌𝑖 = [sin(4𝜋𝜑2 (𝑋𝑖)) + sin(4𝜋𝜑4 (𝑋𝑖))]2 + 𝜖𝑖 𝑖 = 1, . . . , 200

where 𝜑𝑘 (𝑋𝑖) =
√
𝜆𝑘 〈𝜓𝑘 , 𝑋𝑖〉, 𝑘 = 2, 4, and estimate it nonparametrically using the

pseudo-metric family introduced in the example 1.c with 𝑝𝑛 = 6 (one deals with 64
possible configurations). Since in practice the basis in unknown, the eigenfunctions
are estimated from the empirical covariance operator.

Table 8.1 collects the means and the standard deviations of the MISEs computed
over 100 Monte Carlo replications, using some selections of the basis functions(
𝜓 𝑗
)
1≤ 𝑗≤6. Only the best results, ordered decreasing according to the means, are
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MISE.10 MISE.20 MISE.30 MISE.nnp MISE.w0
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Fig. 8.2 The estimated MISEs when 𝑝𝑛 = 10, 20, 30 (MISE.10, MISE.20 and MISE.30 respec-
tively) and the ones when one uses the L2 and L2

𝑤0 norms (MISE.nnp and MISE.w0 respectively).

Table 8.1 Mean and standard deviation of MISEs over 100 MC simulations.
𝐽𝑛 Mean St.Dev.

{2, 4} 1.589 0.293
{2, 4, 6} 1.610 0.294

{2} 1.614 0.301
{2, 4, 5} 1.619 0.293
{2, 5} 1.638 0.299

{1, 2, 3, 4, 5, 6} 2.617 0.522

reported besides the one calculated when all the first 6 eigenfunctions are taken to
evaluate the classical PCA-pseudo-metric. Reading the results, it emerges that the
best performances are obtained when 𝐽𝑛 = {2, 4}, that is when only the informative
basis elements 𝜑2 and 𝜑4 are exploited in the pseudo-metric.
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Chapter 9
Testing a Specification Form in Single
Functional Index Model

Laurent Delsol and Aldo Goia

Abstract In this paper we propose a test of specification in functional regression
with scalar response exploiting a semi-parametric approach. Once the test statistics
is defined, its finite sample performances are analyzed through a simulation study.

9.1 Introduction

A wide part of the recent methodological and applied statistical literature is devoted to
the study of functional regression models where relation between a random function
𝑋 , defined on an interval, and a real response 𝑌 is described by:

𝑌 = 𝑟 [𝑋] + E

where 𝑟 is a functional which models the conditional expectation of 𝑌 given 𝑋 and
E is a centered random error. This kind of model appears in many scientific domains
and has been analyzed under different specifications of the regression operator 𝑟 or
in a full nonparametric context. For a review, see for instance the monographes [9],
[14] or [19], or some works in collections of recent contributions ([1], [5]), or in
special issues ([2], [3], [12], [15]).

In this framework, the check of the specification of the regression operator is a
very important problem: the interest toward this issue is testified by a wide literature
on structural testing procedures (see, for instance, [4], [6], [7], [8], [18]).

A useful help in this research field can come from the semi-parametric regression
approaches. They combine flexibility and interpretability avoiding some dimension-
ality problems that can occour in the full nonparametric context. To have a partial
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idea on the richness of this research area, one can see the general presentation of
semi-parametric approaches [13] and some recent papers and references therein (see,
e.g. [10], [11], [17]).

In this work one exploits the Single Functional Index Model (SFIM) which
postulates that, in the case of a predictor 𝑋 valued in a Hilbert space H equipped
with an inner product 〈·, ·〉, the regressor operator can be written

𝑟 [𝑋] = 𝑔(〈𝑋, 𝜃〉)

where 𝑔 is a real unknown link function, and 𝜃 is an unknown element in H with
unit-norm. So far, various techniques have been introduced to estimate 𝑔 and 𝜃 (see
e.g. [10]).

One of the main benefits of SFIM is that it makes possible to bring back an
infinite dimensional problem to a one dimensional framework by projecting along
the direction 𝜃 and then to graphically visualize an estimate of 𝑔, suggesting in this
way the nature of the link between 𝑋 and 𝑌 . For instance, a linear shape of the
plot drives to a linear specification of the regression model. Hence, one can build
a test procedure to check if a target specification 𝑔0 for 𝑔, depending on some real
parameter, is compatible with the observed dataset at a given significance level.

The aim of this work is to develop the test procedure: after illustrating the frame-
work and the basic principle of the test (see Section 9.2), a test statistic based on a
kernel approach is introduced (see Section 9.3). The performances of the test proce-
dures on finite sample sizes are analyzed by means of a Monte Carlo simulation (see
Section 9.4).

9.2 Notation and Basic Principle

Let 𝑋 be a random variable (r.v. in the following) mapping in a Hilbert space H
equipped with the inner product 〈·, ·〉 and associated norm ‖·‖, and 𝑌 a real r.v. and
state the following SFIM assumption

𝑌 = 𝑔(〈𝑋, 𝜃〉) + E (9.1)

where 𝑔 : R→ R, 𝜃 ∈ H with ‖𝜃‖2 = 1 for identifiability, and E is a centered real
r.v. with variance 𝜎2.

One wants to to test the following hypothesis:

𝐻0 : 𝑔 (𝑢) = 𝑔0 (𝛽, 𝑢) , ∀𝑢 vs. 𝐻1 : ∃𝑢 : 𝑔 (𝑢) ≠ 𝑔0 (𝛽, 𝑢)

where 𝑔0 (𝛽, ·) : R → R is a known function, measurable w.r.t. the 𝜎-algebra
generated by 𝑋 , depending on the parameter 𝛽 =

(
𝛽0, 𝛽1, . . . , 𝛽𝑝

)
∈ R𝑝+1. To fix

the ideas, the above setting includes the possibility of testing the linearity of the
regression by specifying 𝑔0 (𝛽, 𝑢) = 𝛽0 + 𝛽1𝑢.

Under the null hypothesis, for any positive weight function 𝑊 , one has:

E
[
(𝑔(〈𝑋, 𝜃〉) − 𝑔0 (𝛽, 〈𝑋, 𝜃〉))2 𝑊 (𝑋)

]
= 0 (9.2)
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Since, by the model (9.1), 𝑔(〈𝑋, 𝜃〉) = E [𝑌 |𝑋], then under 𝐻0 one gets

𝑔(〈𝑋, 𝜃〉) − 𝑔0 (𝛽, 〈𝑋, 𝜃〉) = E [𝑌 − 𝑔0 (𝛽, 〈𝑋, 𝜃〉) |𝑋] = E [E|𝑋]

and hence Equation (9.2) writes

E
[
E [E|𝑋]2 𝑊 (𝑋)

]
= E [EE [E|𝑋]𝑊 (𝑋)] = 0

whereas, under the alternative hypothesis one gets E [EE [E|𝑋]𝑊 (𝑋)] > 0.
As𝑊 can be chosen arbitrarily, one can take𝑊 = 𝑓𝜃 > 0, the density distribution

function of 〈𝑋, 𝜃〉, a choice which helps later to simplify the test statistic expression.
To implement a test procedure it is enough to introduce an empirical version of
E [EE [E|𝑋] 𝑓𝜃 (〈𝑋, 𝜃〉)] based on a sample drawn from (𝑋,𝑌 ): one tends to reject
𝐻0 if such quantity is significantly far from zero. The idea was introduced firstly in
[21] for the multivariate setting.

9.3 The Test Statistic

Consider a sample (𝑋𝑖 , 𝑌𝑖) , 𝑖 = 1, . . . , 𝑛, of i.i.d. replications of (𝑋,𝑌 ) and an
estimator �̂� of 𝜃. Let 𝛽 be some estimators of 𝛽, obtained under 𝐻0 by regressing 𝑌𝑖

against the transformations of 𝑔0

(〈
𝑋𝑖 , �̂�
〉)

(in particular, if 𝑔0 is affine, one regresses

𝑌𝑖 against
〈
𝑋𝑖 , �̂�
〉
). Finally define Ê𝑖 = 𝑌𝑖 − 𝑔0

(
𝛽,
〈
𝑋𝑖 , �̂�
〉)

.
At this stage, as said in Section 9.2, we have to provide a test statistic as the

emprical version of E [EE [E|𝑋] 𝑓𝜃 (〈𝑋, 𝜃〉)]. To do this, we consider some non-
parametric kernel estimates of E [E|𝑋] and 𝑓𝜃 at the point 𝑋𝑖 and, by combining
them, we get

𝑇𝑛 =
1
𝑛

𝑛∑
𝑖=1

Ê𝑖
�����
𝑛∑
𝑗=1
𝑗≠𝑖

Ê 𝑗
𝐾𝑖 𝑗∑
𝑗≠𝑖 𝐾𝑖 𝑗


����
1

(𝑛 − 1) ℎ

∑
𝑗≠𝑖

𝐾𝑖 𝑗

=
1

𝑛 (𝑛 − 1) ℎ

𝑛∑
𝑖=1

𝑛∑
𝑗=1, 𝑗≠𝑖

Ê𝑖 Ê 𝑗𝐾𝑖 𝑗

where 𝐾𝑖 𝑗 = 𝐾
( (
𝑑
(
𝑋𝑖 , 𝑋 𝑗
) )

/ℎ
)

and 𝐾 is a kernel function, ℎ is a suitable bandwith
and 𝑑 a suitable semi-metric. Recalling that we are working in the frame of SFIM,
it is natural to choose:

𝑑
(
𝑋𝑖 , 𝑋 𝑗
)
=
��〈𝜃, 𝑋𝑖〉 −
〈
𝜃, 𝑋 𝑗
〉�� = ��〈𝜃, 𝑋𝑖 − 𝑋 𝑗

〉��
that is, the semi-norm based on projection over the (one-dimensional) subspace
spanned by 𝜃, the first projection pursuit direction. Since 𝜃 is unknown, it is replaced
by �̂�, providing the test statistic:
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𝑇𝑛 =
1

𝑛 (𝑛 − 1) ℎ

𝑛∑
𝑖=1

𝑛∑
𝑗=1, 𝑗≠𝑖

Ê𝑖 Ê 𝑗𝐾 𝜃𝑖 𝑗

where 𝐾 𝜃𝑖 𝑗 = 𝐾
(���〈�̂�, 𝑋𝑖 − 𝑋 𝑗

〉��� /ℎ) .
Following similar arguments as in [16] or [21] one can derive the following

estimate for the variance of 𝑇𝑛:

𝑆2
𝑛 =

2
𝑛 (𝑛 − 1) ℎ

𝑛∑
𝑖=1

𝑛∑
𝑗=1, 𝑗≠𝑖

Ê2
𝑖 Ê

2
𝑗

(
𝐾 𝜃𝑖 𝑗

)2
.

This allows to obtain the studentized test statistic version 𝑛
√
ℎ𝑇𝑛/𝑆𝑛 for which a

theoretical study is still in progress.

9.4 Finite Dimensional Performances of the Test

In this section the performances of the test by using Monte Carlo experiments under
different experimental conditions are analyzed: the empirical power is computed as
the frequency of times in which the test reject the null hupothesis over the number
of replications. The critical region of the test at the level 𝛼 is based on the Gaussian
approximation of the null distribution: one rejects the null hypothesis whenever the
value of the studentized test statistics is greather than the quantile of order 1−𝛼 of the
standard normal distribution. That approximation is based on heuristic arguments
deriving on evidences from simulations and could be supported theoretically by
results in [18].

The data used in the simulations are generated according to the following SFIM
model:

𝑌𝑖 = 𝑔 (〈𝜃, 𝑋𝑖〉) + 𝜎E𝑖 𝑖 = 1, . . . , 𝑛

where:

• E𝑖 are i.i.d. standard normal r.v.s and𝜎2 = 𝜌2𝑉𝑎𝑟 (𝑔 (〈𝜃, 𝑋〉)) with 𝜌 controlling
the signal-to-noise ratio (we use 𝜌2 = 0.2 and the variance is estimated for each
sample);

• The functional covariate obeys to:

𝑋𝑖 (𝑡) = 𝐴𝑖 + 𝐵𝑖𝑡
2 + 𝐶𝑖 exp (𝑡) + sin (𝐷𝑖2𝜋𝑡) 𝑡 ∈ [−1, 1]

where 𝐴𝑖 , 𝐷𝑖 , 𝐶𝑖 and 𝐷𝑖 are r.v.s independent and uniformly distributed over
(−1, 1), so that the random process is centered; each trajectory is discretized
over a grid of 100 equispaced design points;

• The functional coefficient is:

𝜃 (𝑡) = 𝜅 cos(2𝜋𝑡2) 𝑡 ∈ [−1, 1]
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being 𝜅 the normalization constant such that ‖𝜃‖ = 1; in such a way, the r.v. 〈𝜃, 𝑋〉
is centered and bounded.

• The sample sizes used are: 𝑛 = 50, 100, 200;
• All the integrals are approximated by summations.

In the following we present the results when one tests linearity and a nonliner
case at the nominal level 𝛼 = 0.05. For what concerns the estimation of the SFIM
we use the first step of the approach proposed in [10], which combines a spline
approximation of the functional coefficient 𝜃 and the one-dimensional Nadaraya-
Watson approach: the bandwidth in this latter is selected by a leave-one-out CV
approach, whereas the approximation of 𝜃 is based on cubic splines with 5 knots.
The bandwidth ℎ used in computing the test statistics is selected by the unbiased
cross-validation approach when one estimates the density 𝑓𝜃 .

9.4.1 Testing Linearity

Consider the following null hypothesis:

𝐻0 : 𝑔 (𝑢) = 𝑢

The power of the test is evaluated from 1000 Monte Carlo replications for the
following alternatives:

𝐻 (1)
1 (𝛾) : 𝑔 (𝑢) = 𝑢 + 𝛾𝑢2

𝐻 (2)
1 (𝛾) : 𝑔 (𝑢) = 𝑢 + 𝛾 sin (3𝜋𝑢) /10

with 𝛾 = 0.5, 0.75, 1 (when 𝛾 = 0 the empirical level is computed). The results of the
experiments are collected in Table 9.1. Despite one uses an asymptotic approximation
for the null distribution, the empirical level is rather close to the theoretical one, also
for a relatively small sample size. As expected, the further one moves away from the
linearity by increasing 𝛾, the greater is the estimated power, both in the quadratic
and the sinusoidal case. Anyway, very good are the performances when 𝑛 = 200,
also with a relatively modest departure from the null hypothesis.

9.4.2 Testing a Cubic Link

In this second experiment, one considers the null hypothesis of a cubic link:

𝐻0 : 𝑔 (𝑢) = 𝑢3

The empirical level and the empirical power have been computed from 1000 MC
replications for the following family of alternatives:

𝐻1 (𝛿) : 𝑔 (𝑢) = 𝑢3 + 𝛿𝑢 𝛿 = 0.02, 0.04, 0.06, 0.08
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Table 9.1 Estimated level (first line) and power for the test of linearity under different experimental
conditions.

Sample size
Alternatives 50 100 200
𝐻 (★)

1 (0) 0.057 0.053 0.054
𝐻 (1)

1 (0.5) 0.143 0.236 0.434
𝐻 (1)

1 (0.75) 0.276 0.507 0.828
𝐻 (1)

1 (1) 0.439 0.811 0.984
𝐻 (2)

1 (0.5) 0.209 0.397 0.750
𝐻 (2)

1 (0.75) 0.381 0.710 0.967
𝐻 (2)

1 (1) 0.598 0.911 1.000

Table 9.2 Estimated level (first line) and power for testing cubic specification under different
experimental conditions.

Sample size
Alternatives 50 100 200
𝐻1 (0) 0.069 0.061 0.056
𝐻1 (0.02) 0.186 0.263 0.419
𝐻1 (0.04) 0.394 0.624 0.891
𝐻1 (0.06) 0.587 0.846 0.993
𝐻1 (0.08) 0.702 0.957 1.000

(for 𝛿 = 0 the empirical level is given). The results of the experiments are collected
in Table 9.2.

Also in this second experiment, the obtained results are rather good. The estimated
level is slightly higher than the nominal one, providing a liberal test in particular
for relatively small sample size. About the estimated power, it increases with the
sample size 𝑛 and with 𝛿, following a coherent behaviour with the departure from
the null hypothesis. In conclusion, one has an empirical evidence that the Gaussian
approximation of the null distribution works reasonably well.

9.5 Concludings

In this paper a test procedure for checking the validity of SFIM is introduced and
its performances under some special alternatives are analyzed for finite dimensional
samples: the obtained results, based on a Gaussian approximation of the null distri-
bution, appear promising.

The work opens towards at least two future lines of research. The first one is
to provide a rigorous theoretical study: in particular, to get the asymptotic null
distribution and the power of the test, at least under some alternatives, by exploiting
and adapting ideas and mathematical tools proposed in [18]. The second line is
to improve the performances of the test by using a threshold value obtained with
a bootstrap procedure. In practice, once bootstrap samples are generated (under
the null hypothesis) and for each of them the test statistic has been computed, the
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empirical distribution of the latter is available. Hence its quantile of order 1 − 𝛼 can
be evaluated and used in defining the critical region of the test.
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Chapter 10
A New Method for Ordering Functional Data
and its Application to Diagnostic Test

Graciela Estévez-Pérez and Philippe Vieu

Abstract This contribution proposes a new ordering method for functional data
which could be a starting point for developing new advances in problems for which
the ordering of curves is of interest. This method is used to construct a diagnostic
test, based on the functional version of ROC curves, for situations when the observed
biomarker is a functional variable.

10.1 Introduction

A growing number of fields are handling functional data, that is, data coming from
realizations of random elements taking values in infinite-dimensional spaces (i.e.
in functional spaces). In the last decades, multiple statistical procedures have been
extended to functional data context emerging a new area in Statistic known as
functional data analysis (FDA). For an overview of this topic see, for instance,
[19], [9], [12] and the recent survey discussions by [4], [11] or [1]. However, any
functional procedure which needs to estimate a functional distribution function is
no direct, because it requires establishing some ordering method for elements of
infinite-dimensional spaces. This is one of the challenge that this work aims to front.

To be exact, as part of the main purpose of constructing a diagnostic test based on
functional biomarkers, we are interested in achieving an idea of when a functional
data precedes to another in some sense. For that, after some quick discussions
about ranking of data (Sect. 10.2) and application of ROC curves to diagnostic test
(Sect. 10.3), we are presenting our general methodology for ordering functional data
in Sect. 10.4. Some simple examples are also developed in this section to show how
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the procedure works in practice. Finally, Sect. 10.5 briefly outlines our main purpose
of constructing a diagnostic test based on a functional biomarker.

10.2 Some Discussion about Ranking: From One to Infinite
Dimensions

It is well known that several unambiguous orderings can be consider in one-
dimensional spaces. However, for multivariate data the first attempt of ordering
consisted in projecting the multidimensional space in a suitable one dimensional
subspace, so it retains as much information as possible of data. Several approaches
for choosing this subspace have been proposed from [2], arising different sub-
ordering methods so-called reduced ordering (or R-ordering). See, for example, [8],
[15] and [7].

Nowadays, one of the most popular ordering approach in multidimensional spaces
is based on the notion of data depth. A multivariate depth is a function that provides a
P-based center-outward ordering of points inR𝑑 , where 𝑃 is a probability distribution
on R𝑑 (see [20]), so that high values of depth indicate points that are central relative
to the probability distribution 𝑃 and lower depths indicate peripheral points for 𝑃.
Therefore, one can compute the depths of all the sample points and order them
according to decreasing depth values, obtaining a ranking of the sample points from
the center outward. For an overview on multivariate depths see, for example, [22].

In infinite-dimensional spaces, several notions of functional depth have been re-
cently defined ([10], [5], [3], [6] and [21]). However, this partial ordering, which
induces a centre-outward ranking of the observations, does not distinguish the loca-
tion relative to the data center for two observations which have the same depth. Thus,
as our goal is not to order observations with respect to a center (the deepest point),
but to identify whether a curve precedes to another in some sense, an alternative
ordering methodology is needed for functional data. This is what we describe in
Sect. 10.4.

10.3 Some Discussion about ROC Curves and Diagnostic Test

The receiver operating characteristic (ROC) curve is the most popular tool to evaluate
the accuracy of diagnostic tests when continuous real variables are used as markers,
thus it is of great importance in clinical practice and medical research. There are nu-
merous articles in the literature on parametric and nonparametric statistical methods
for estimating ROC curves ([18] and [17] among others) and their most common
summary measure, the area under the curve (AUC) (see for example, [16]).

The technological advances of the last decades are allowing to observe, in some
settings, markers with more complex structures. Thus, the need to extend the ROC
methodology to functional context becomes each day more important. The FDA
community has started debating recently on the development of diagnostic analysis
and curves ROC estimation techniques but, at our knowledge, only when functional
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data are involved as covariables ([13] and [14]). The extension of multivariate ideas
to this situation is more easy since the conditional distribution function is still an
un-functional one. Note that any diagnostic procedure based on ROC curves needs to
estimate the distribution function of the considered random biomarker. The reason
for this lack of development for ROC analysis with functional sample is probably
linked with the difficulty of establishing a suitable ordering in infinite-dimensional
spaces. The procedure for ordering infinite-dimensional data, which will be proposed
below, will enable to create a diagnostic test based on a functional biomarker, as we
comment in Sect. 10.5.

10.4 A Flexible Functional Ordering Method

Following ideas close to R-ordering (see [7] and its references), we will propose next
a pre-ordering method for functional data which allows identifying whether a curve
precedes to another in some sense.

The problem of ordering functional data can be expressed as follows. Given
𝜒1 (𝑡) ≡ 𝜒1, 𝜒2 (𝑡) ≡ 𝜒2; 𝑡 ∈ 𝑇 two random points of a functional space (𝐸, 𝑑), where
𝑑 is a semi-metric and 𝑇 = [0, 1] without loss of generality, we are interested in
defining an arrangement of the form 𝜒1 � 𝜒2, where the symbol "�" means "pre-
cede to". We propose an ordering procedure which involves the preordering of the
functional space 𝐸 with respect to an ordered curves set. Precisely, given 𝜒1 and 𝜒2
two random points of the functional space (𝐸, 𝑑), the construction of the ordering
methodology can be summarized by the three following steps:

First step Fix some subset (𝐸1, �1) in 𝐸 , in such a way that one can construct
�1 to be a total order relation on 𝐸1;

Second step Define 𝜂(·) to be a projection function of 𝐸 into 𝐸1;

Third step Say that 𝜒1 precedes to 𝜒2 in 𝐸 (and write it as 𝜒1 � 𝜒2), if and only
if 𝜂(𝜒1) �1 𝜂(𝜒2) in 𝐸1.

Note that � is a preorder relation in 𝐸 since it satisfies the properties of reflexivity
and transitivity but it is not an order since the antisymmetry is not verified.

This methodology is very flexible because many different choices can be made,
both for the pilot ordered subset (𝐸1, �1) as for the projector 𝜂(·). Several options
are possible depending on the kind of statistical problem one has to deal with.
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10.4.1 How Does the Classification Procedure Work in Practice?

One simulated example will be developed below to show how the ordering proce-
dure works in practice. We address a supervised classification problem because the
diagnostic test are the main focus of this paper, but other issues could be discussed.

Example: Ranking a grouped sample. In this example we show the ranking proce-
dure’s usefulness in a supervised classification problem of curves. For that, a set of
=1+=2 = 20+20 = 40 curves were generated from two continuous time process with
mean functions `1 (C) = 5 + C (1− C) and `2 (C) = 5 + C3/2 (1− C)3/2, for C ∈ ) = [0, 1]
(=1 = 20 from � group (dashed line) and =2 = 20 from #� group (dotted line)).
As it can be seem in panel (A) of Figure 10.1, the curves were smoothed and rep-
resented by group membership together with the mean curves (thick line). �1 has
been chosen as the "line in �" through the sample means functions by group, that
is, �1 = {j2 (C) = 2j�(C) + (1 − 2)j# �(C); C ∈ ), 2 ∈ [0, 1]} (see panel (B)). [(·)
has been chosen as the function which projects � in �1 searching for each j ∈ �
the closest point in �1 in accordance with the semi-metric based on mplsr ([9]). To
illustrate the behaviour of the ordering procedure three curves by group, randomly
selected, were highlight in panel (C) and projected on �1 (see panel (D)).
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Fig. 10.1 Example of curves in � and their projections in �1

By comparing the panels (C) and (D) in Fig. 10.1, it can be appreciated how the
ordering procedure works and the distance between the projected curves. It is worth
noting the discrimination in �1 between curves coming from different population.
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10.5 A Functional Diagnostic Test

The general functional ranking strategy, depicted before in Sect. 10.4, could be a
starting point for developing new advances in any problem for which the ordering
of curves is of interest. In fact, we have used it to construct a diagnostic test based
on functional biomarkers. The main steeps of method are outlined below and more
detailed information will be provide in the work presented during IWFOS 2020.

1. The framework Let 𝜒 ≡ 𝜒(�) be a functional biomarker and 𝜒1 = 𝜒/𝐴, 𝜒2 =
𝜒/𝑁𝐴 be the conditioned functional variables by affected subjects (A) and non-
affected ones (NA), which are valued in a semi-metric space (𝐸, 𝑑). In addition,
we suppose that the probability measures of random variables 𝜒1 and 𝜒2 differ
by a shift Δ ∈ 𝐸 in the location.

We are in front of a discrimination problem and the data consist in 𝑛1 and 𝑛2
i.i.d. random samples as 𝜒1 and 𝜒2

{𝜒𝑖 𝑗 (𝑡); 𝑖 = 1, 2; 𝑗 = 1, ..., 𝑛𝑖; 𝑡 ∈ 𝑇}

where, without loss of generality, 𝑇 = [0, 1] and 𝑛 = 𝑛1 + 𝑛2 denotes the total
sample size.

2. The classification rule Our diagnostic method consists in finding a cutoff func-
tion or discrimination function 𝜒𝑐0 ≡ 𝜒𝑐0 (𝑡) ∈ 𝐸 , with 𝑡 ∈ 𝑇 , which separates
Affected (A) and Non-Affected (NA) subjects properly.

Step 1 We select 𝑀𝐴 ≡ 𝑀𝐴(·) and 𝑀𝑁 𝐴 ≡ 𝑀𝑁 𝐴(·) two curves of the functional
space 𝐸 as representatives of each group 𝐴 and 𝑁𝐴, respectively. Then, we
consider the totally ordered set (𝐸1, �1), where 𝐸1 is the line in 𝐸 through
functions 𝑀𝐴 and 𝑀𝑁 𝐴, that is, the family of curves:

𝐸1 = {𝜒𝑐 (𝑡) = 𝑐𝑀𝐴(𝑡) + (1 − 𝑐)𝑀𝑁 𝐴(𝑡); 𝑡 ∈ 𝑇, 𝑐 ∈ [0, 1]}

and �1 is the total order in 𝐸1 induced by the natural ordering in R.
Step 2 We take the pilot ordered subset 𝐸1 with the total order relation �1 and

we consider the projection function 𝜂 : 𝐸 → 𝐸1 that assigns to each curve
in 𝐸 the nearest element in 𝐸1 when a semi-metric 𝑑 (, ) is used. That is, the
projection function is defined by:

𝜂(x) = min{y ∈ 𝐸1/𝑑 (x, y) = min{𝑑 (x, y1); y1 ∈ 𝐸1}}

Note that 𝜂(·) allows to establish a preorder relation in 𝐸 (�): we say that 𝑥1
precedes to 𝑥2 in 𝐸 (and write it as 𝑥1 � 𝑥2), if and only if 𝜂(𝑥1) �1 𝜂(𝑥2)
in 𝐸1.

Step 3 Predetermined a cutoff curve 𝜁 and assuming that curves with higher
values are linked with Affected subjects, an individual associated with a
new functional data 𝜒0 is diagnosed as Affected (A) if 𝜒0 � 𝜁 . In this
case we say that the test result is +, and we denote it by 𝑇+.
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As the classification result depends on the prefixed cutoff curve 𝜁 ∈ 𝐸 , we
propose to move continuously 𝜁 in {𝜒𝑐 ∈ 𝐸1; 𝑐 ∈ [0, 1]} and to take the
value 𝑐0 ∈ [0, 1] such as the curve 𝜒𝑐0 lets to discriminate 𝐴 and 𝑁𝐴 in the
most efficient way.

3. How to select the optimal cutoff curve 𝜒𝑐0? The accuracy of the test is defined
by the pairs Specificity (1 − 𝛼𝑐) and Sensitivity (1 − 𝛽𝑐) for each cutoff curve
𝜒𝑐 . If the value 𝑐 is moved in [0, 1], the sensitivity and the specificity vary
inversely, then to selecting the “best“ cutoff curve 𝜒𝑐0 it is needed a balance
between these values. Thus, the functional version of the Receiver Operating
Characteristic (ROC) curve is defined by the graph in the unit square representing
for each 𝑐 ∈ [0, 1] the pair (𝛼𝑐 , 1 − 𝛽𝑐), which represents a global measure of
the discriminatory ability of our functional diagnostic test along all cutoff curves
𝜒𝑐 .

Based on data {𝜒𝑖 𝑗 (𝑡); 𝑖 = 1, 2; 𝑗 = 1, ..., 𝑛𝑖; 𝑡 ∈ 𝑇}, the most natural procedure
for estimating the ROC curve is by its empirical version.

4. An optimal data-driven procedure For selecting the optimal cutoff curve 𝜒𝑐0

or discrimination curve, we propose to take 𝜒𝑐0 such that the pair of values
(1−𝛼𝑐0 , 1− 𝛽𝑐0 ) is as close as possible to the pair of perfect classification given
by (1, 1). This is equivalent to searching the point on the ROC curve closest
to the (0, 1) point, and this method is usually called the North-West corner or
the Closest-to-(0,1) criterion.

Thus, individuals associated with a functional data 𝜒 � 𝜒𝑐0 are classified as
Affected (positive test), whereas individuals with 𝜒 � 𝜒𝑐0 are classified as
Non-Affected (negative test).

From a comprehensive simulation study, we have observed that functional diag-
nostic test proposed is a good option to discriminate two groups and classify new
subjects when the biomarker is functional. Several simulation scenarios whose mean
functions present different degrees of separation and hence, different levels of diffi-
culty to distinguish Affected subjects from Non-Affected ones, have been considered.
We have also considered diverse sample sizes and several levels of variability intra
and inter curves, to cover a wider range of real situations.
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Chapter 11
A Functional Data Analysis Approach to the
Estimation of Densities over Complex Regions

Federico Ferraccioli, Laura M. Sangalli, Eleonora Arnone and Livio Finos

Abstract In this work we propose a nonparametric method for density estimation
over two-dimensional domains. Following a functional data analysis approach, we
consider a penalized likelihood estimator, with a roughness penalty based on a dif-
ferential operator. This approach allows for the estimation of densities on any planar
domain, including those with complex boundaries or interior holes. We develop an
estimation procedure based on finite elements. Thanks to the use of this numer-
ical technique, the proposed method has great flexibility and high computational
efficiency.

11.1 Introduction

It the recent years there has been an increasing cross-contamination of techniques
from functional data analysis and from spatial data analysis; see, e.g., the special
issue [19] and the review in [9]. Here in particular we consider the problem of
estimating a density function 𝑓 on a two-dimensional domain with a complex shape.
For example, Figure 11.1 illustrates crime locations in the municipality of Portland,
Oregon. The interest is to study the distribution of crimes in order to identify critical
and dangerous areas in the city. Here the complex geographical conformation of the
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Fig. 11.1 On the left, points distributed over a complex domain with boundaries. On the right, the
constrained Delaunay triangulation of the same domain.

domain, and in particular the presence of the river, is crucial in the study of the
phenomenon. There is a clear difference between the West-side, characterized by
a lower number of crimes, and the East-side, characterized by a higher number of
crimes. The difference is particularly pronounced in the Northern and in the Southern
part of the city.

The analysis of data observed over domains with complex shapes has lately drawn
lots of attention. [21] and [26] propose smoothing methods with a regularization
based on a differential operator; [22] extends these models to spatial regression and
[2] considers two regularizing terms involving general partial differential equations;
[3] deals with spatially dependent functional data over complex domains, and [18]
tackles the case of object data. The problem of density estimation in this complex
setting as not been addressed yet.

In this work we present a flexible density estimation method for data distributed
over complex regions. Themodel formulation is based on a nonparametric likelihood
approach, with a regularization that involves partial differential operators. In the
univariate case, a similar approach is considered in [13] and later developed in [23].
In the multivariate setting, the proposal in [14] develops a spline model that can be
used for simple tensorized domains. All these methods are nonetheless not easily
generalizable to the case of complex multivariate domains.

The method we propose leverages on advanced numerical analysis techniques
to address the estimation problem. In particular, we use the finite element method,
often used in engineering applications to solve partial differential equations. The
main advantage of these techniques consists in the possibility of considering spatial
domains with complex shapes, instead of simple tensorized domains, as considered
by [14] and by the other available methods for density estimation. Moreover, the
proposed method for density estimation does not impose any shape constraint; on the
contrary, it permits the estimation of fairly complex structures. In particular, thanks
to the finite element formulation, the method is able to capture highly localized
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features, and lower dimensional structures such as ridges. This ability also makes
the method particularly well suited in research areas such as density based clustering
[6] and ridge estimation [11].

11.2 Methodology

11.2.1 The Standard Approach

Let us first introduce the problem of nonparametric maximum likelihood estimation
in the univariate case, proposed for the first time in [13]. Let 𝑋1, . . . , 𝑋𝑛 be i.i.d.
observations with distribution function 𝐹 and density 𝑓 on a bounded domainΩ ⊂ R.
The idea is to maximize a functional

𝐿 ( 𝑓 ) − 𝜆𝑅( 𝑓 ) (11.1)

where 𝐿 ( 𝑓 ) =
∑
𝑖 log 𝑓 (𝑥𝑖) is the log-likelihood, 𝑅( 𝑓 ) is the roughness penalty,

and the parameter 𝜆 > 0 controls the amount of smoothness. The penalty 𝑅( 𝑓 ) is
necessary to have a well defined likelihood, that would otherwise be unbounded
because of the infinite class of functions we are considering. The idea is to reduce
the space of possible solution in order to avoid trivial solutions such as the sum of
delta functions at the observations. This can be achieved by penalizing too rough
estimates. To measure the roughness or complexity of the estimate, in [13] the authors
consider the functional 𝑅( 𝑓 ) = | | (

√
𝑓 ) (1) | |22. Further developments of this model are

presented in [23], where the authors consider a regularization functional of the form
𝑅( 𝑓 ) = | | (log 𝑓 ) (3) | |22.

11.2.2 Proposed Model and Estimation Procedure

We now consider the problem of estimating a density function 𝑓 on a complex
spatial domain. Let 𝑿1, . . . , 𝑿𝑛 be i.i.d. observations drawn from a distribution 𝐹
with density 𝑓 on a bounded planar domain Ω ⊂ R2. Likewise in in [23] we consider
the logarithm tranform 𝑔 = log( 𝑓 ), where 𝑔 is a real function on Ω.

As discussed in the previous section, some type of regularization is necessary to
avoid an unbounded likelihood. Here we consider a regularization functional of the
form

𝑅(𝑔) =
∫
Ω
(Δ𝑔)2 𝑑𝑥 where Δ𝑔 =

𝜕2𝑔

𝜕𝑥2
1

+
𝜕2𝑔

𝜕𝑥2
2
.

where 𝒙 = (𝑥1, 𝑥2). The functional Δ𝑔 is called Laplacian, and represents a mea-
sure of local curvature of 𝑔. It therefore controls the smoothness of the estimates
while reducing the space of possible solutions. A key feature of the Laplacian is the
invariance with respect to Euclidean transformations of the spatial coordinates. It
therefore ensures that the concept of smoothness does not depend on the orienta-
tion of the coordinate system. Under appropriate boundary conditions, the density
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corresponding to the null family of the operator, i.e. when 𝜆 → +∞, is the uniform
ditribution over Ω.

From a theoretical perspective, an analogous regularized nonparametric like-
lihood approach has been considered in the context of simple multidimensional
domains in [14], using spline basis. The authors develop an elegant theoretical
framework to study the asymptotic properties of such penalized density estimators.
The generalization to multivariate domains with complex shapes is nonetheless not
obvious. The main problems rely on the form of the regularizing functional and the
discretization used, based on splines.

Here we propose a novel solution that exploit advanced numerical techniques,
such as the finite element method. At first, we consider an appropriate discretization
of the domainΩ. Since we are dealing with bounded domains, we can use constrained
triangulations (see Figure 11.1). We then define a piecewise polynomial function over
the discretized domain. In particular, let 𝝍 := (𝜓1, . . . , 𝜓𝐾 )� be the vector of linear
finite element basis associated with the triangulation. Such basis are locally supported
piecewise linear functions. We can define the discretized version of the function 𝑔
as g�𝝍(𝑥), where g ∈ R𝐾 is the vector of coefficients of the basis expansion. The
penalization functional can be discretized by the quadratic form g�𝑅1𝑅

−1
0 𝑅1g, with

𝑅0 =
∫
Ω
(𝝍𝝍�) and 𝑅1 =

∫
Ω
(𝝍𝒙1𝝍

�
𝒙1 + 𝝍𝒙2𝝍

�
𝒙2 ) ,

where 𝝍𝒙1 = (𝜕𝜓1/𝜕𝑥1, . . . , 𝜕𝜓𝑘/𝜕𝑥1)� and 𝝍𝒙2 = (𝜕𝜓1/𝜕𝑥2, . . . , 𝜕𝜓𝑘/𝜕𝑥2)�. For
details on the derivation of the discretized regularization functional, see for instance
[22].

11.3 Future Research

In this section we discuss some possible extensions of the proposed density estimation
method. A first possibility is to consider higher dimensional and non-euclidean do-
main. For example, two-dimensional surfaces or complex three-dimensional bounded
regions. Modern applications often require the analysis of data observed over these
complex domains (see, e.g., [20]). In neuroscience researches for instance, brain
studies are carried out on the cerebral cortex, a two dimensional curved domain
with an highly convoluted nature [16, 8], or consider the brain as a whole, a three-
dimensional domain with highly complex internal and external boundaries. In other
fields, such as geoscience, data are often distributed over bounded non-planar do-
mains. Flexible density estimation methods are therefore required to overcome the
classical concept of Euclidean distance. In the case of Riemaniann manifolds, some
proposals based on exponential maps are offered by [17, 4]. The finite element for-
mulation in the proposed framework gives enough flexibility for possible extensions
to curved two-dimensional domains and to complex three-dimensional domains. In
particular, we can resort to surface finite elements, as in [16], and to volumetric finite
elements.
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Another possibility is to develop time-dependent density estimators. This type
of modelization allows for the study of the evolution of underlying processes gen-
erating the data. The topic has drawn very little attention, especially in more than
one dimension (see, e.g., [12] and references therein, for some first proposals in this
regard). In the proposed approach, the generalization might consider two regulariza-
tions, one in time and one in space, or alternatively a unique regularization involving
a time-dependent differential operator, in analogy to the spatio-temporal regression
methods presented in [3] and [1].

Finally, a fascinating alternative is to tell the whole story from a bayesian per-
spective. The penalization has indeed the form of a Gaussian prior over a graph,
the triangulation. This may lead to interesting considerations in terms of random
processes, especially in the case of Poisson intensity estimation.
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Chapter 12
A Conformal Approach for Distribution-free
Prediction of Functional Data

Matteo Fontana, Simone Vantini, Massimo Tavoni and Alexander Gammerman

Abstract Interval prediction has always been a complex problem to solve in the realm
of Functional Data Analysis, and the solutions currently proposed to address this very
important theoretical and applied issue are not satisfactory. In this contribution we
propose a novel approach, based on a non-parametric forecasting approach coming
from machine learning, called Conformal Prediction. In the scalar setting, the method
is based on simple yet remarkable considerations about sample quantiles. After
having stated in a formal way the issue of forecasting for functional data, we develop
an algorithm that can be used to generate non-parametric prediction bands for a
functional-on-scalar linear regression model. These forecasts are proven to be valid
in a statistical sense (i.e., they guarantee a global coverage probability larger or equal
to a given threshold) under a very minimal set of assumptions, and thus extremely
useful in the statistical practice. The method is then tested on a real world application,
namely ensemble emulations for climate economy models, very used in the climate
change economics realm.
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12.1 Introduction

Functional Data Analysis (FDA) [16, 3] is a vibrant and dynamic field of statistics,
that aims to develop theory and methods dealing with data points that come in
the form of uni- or multivariate functions defined over a one or multi-dimensional
domain. The typical mathematical setting of functional data consists in a random
sample of independent real-valued univariate functions𝑌1 (𝑡), . . . , 𝑌𝑛 (𝑡) defined over
the compact interval 𝑇 = [𝑡0, 𝑡1] ⊂ R. The most common embedding of such
functions is a Hilbert space such as 𝐿2, but other embeddings are possible, such
as Sobolev spaces ([18]) to deal with differential information or Bayes spaces for
functional compositions [6].

Still open in FDA research is the the definition and computation of meaningful
prediction bands. despite some attempts relying on a parametric setting have been
performed [7, 2], it can be argued that the distributional assumptions at the core of
these specific methods can’t be tested in the statistical practice, which makes these
forecasting methods not useful for many real world applications.

The main idea of the present work is to use a relatively new prediction framework,
called Conformal Prediction (CP) [19], to develop a statistical method able to pro-
duce global prediction bands for functional data, while having guarantees on their
statistical validity. Conformal Prediction was developed in the Machine Learning
community as a method to define prediction intervals for Support Vector Machines
[5]. It has been subsequently used by statisticians as a way to develop distribution-
free prediction intervals for regression, both in the low [9] and high-dimensional
[10] setting.

This contribution is structured as follows: in Section 12.2 we extend the CP
framework to Functional Data Analysis, while in Section 12.3 we discuss the specific
role of the Conformity Measure (CM) in predicting functional data in a conformal
way, and how CMs define the shape of the prediction set calculated using CP. We
then provide an application to a problem arising in climate change economics in
Section 12.4.

12.2 Conformal Prediction for Functional Variables

Let us consider a regressive framework, in which we observe 𝑛 data points

𝑍1, . . . , 𝑍𝑛 ∼ 𝑃

where each 𝑍𝑖 , 𝑖 = 1, . . . , 𝑛 is IID. Each 𝑍𝑖 is a tuple {𝑋𝑖 , 𝑌𝑖} in R𝑝 × 𝐿2. 𝑌𝑖 is
the response, a function embedded in 𝐿2 [𝑇] space, that is the space of 𝐿2 functions
defined over the interval 𝑇 = [𝑡0, 𝑡1]. 𝑋𝑖 is instead a 𝑝−dimensional vector of
covariates 𝑋𝑖 =

[
𝑋𝑖,1, . . . , 𝑋𝑝,1

]
.

The objective is predicting with confidence a new (functional) value 𝑌𝑛+1 from a
new vector of covariates 𝑋𝑛+1 by using a regression operator of the form

𝜇(𝑥) = E (𝑌 | 𝑋 = 𝑥) , 𝑌 ∈ 𝐿2 [𝑇], 𝑥 ∈ R𝑝 . (12.1)
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In a more formal way, given a nominal type-1 error level 𝛼 ∈ (0, 1), the idea is to
identify sets C in 𝐿2 [𝑇] for which the following property holds:

P (𝑌𝑛+1 ∈ C(𝑋𝑛+1)) ≥ 1 − 𝛼 (12.2)

Please note that our objective is more ambitious than the one described in [8],
where the authors aim to identify a prediction set not for𝑌𝑛+1 itself, but for Π (𝑌𝑛+1),
its projection over a basis of 𝐿2 [𝑇].

The driving example in our case is Linear Function-on-Scalar regression , a
specific case of a Functional Linear Model (FLM) [16] in which the covariates are
scalars, the response is a function, and 𝜇(𝑥) is approximated using a 𝑡-dependent
linear combination of the covariates 𝑥. Please note that in the specified setting we
do not require 𝜇 to be the exact conditional mean: all the results presented still stand
also in the case of poorly estimated or even mis-specified regression model.

A Conformal Prediction framework is quite apt to address the problem of iden-
tification of prediction sets as described by Equation 12.2. Moreover, the use of CP
requires a very minimal set of assumptions (namely, the data tuples being IID).

The basic reasoning behind the developement of CP is due to an intuitive yet re-
markable result about the probabilistic properties of sample quantiles. Let𝑈1, . . . ,𝑈𝑛
be IID samples of a random scalar variable1. For a given level 𝛼 and after having
independentely sampled 𝑈𝑛+1 from the same distribution, it can be noted that

P (𝑈𝑛+1 ≤ 𝑞1−𝛼) ≥ 1 − 𝛼 (12.3)

where 𝑞1−𝛼 is the sample quantile defined as

𝑞1−𝛼 =

{
𝑈( �(𝑛+1) (1−𝛼) �) , if �(𝑛 + 1) (1 − 𝛼)� ≤ 𝑛

+∞ otherwise.
(12.4)

where 𝑈(1) , . . . ,𝑈(𝑛) is a order statistic of 𝑈1, . . . ,𝑈𝑛. The previous result is valid
not only in the univariate setting, where the order statistic is of straightforward
definition, but also in the multivariate and functional case, after having defined a
suitable notion of ordering. The statement in 12.3 is easy to verify: If𝑈1, . . . ,𝑈𝑛 are
exchangeable, the rank of 𝑈𝑛+1 among the previous observations will be distributed
as a discrete uniform over {1, . . . , 𝑛, 𝑛 + 1}. As shown by [10], starting from this
simple result, one can build with relative ease prediction sets for linear regression
models, with the only assumption of the data being IID and that the regression
operator being invariant to permutations of the training data.

We now provide an extension of the framework in [10] to the functional case. Let
𝑦 ∈ 𝐿2 be a new (trial) value. For each 𝑦 we train the regression estimator �̂�𝑦 on the
dataset 𝑍1, . . . , 𝑍𝑛, (𝑋𝑛+1, 𝑦). We then define the functional regression residuals

1 Please note that the IID assumption is actually too strict, and the whole argument stands also
under the weaker notion of exchangeability
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𝐸𝑦,𝑖 =
(
𝑌𝑖 − �̂�𝑦 (𝑋𝑖)

)
, 𝑖 = 1, . . . , 𝑛

𝐸𝑦,𝑛+1 =
(
𝑦 − �̂�𝑦 (𝑋𝑛+1)

)
.

(12.5)

Please note that, being 𝑌𝑖 and 𝑦 objects in 𝐿2, also the residuals are actually
residual functions, not scalars. For this reason, the ranking step proposed at this point
in [10] is now non-trivial, and its choice will have important consequences on the
interpretability of the forecast bands provided. Let R

({
𝐸𝑦,1, . . . , 𝐸𝑦,𝑛, 𝐸𝑦,𝑛+1

})
:

(𝐿2 [𝑇])𝑛+1 → R𝑛+1 be a functional able to provide a scoring criterion among
𝐸𝑦,1, . . . , 𝐸𝑦,𝑛, 𝐸𝑦,𝑛+1, and 𝜌(𝐸𝑦,𝑖) the value of this score for the function 𝐸𝑦,𝑖 . Let
us assume that the criterion behaves like a depth measure, assigning high values to
points that are deep in the point cloud, and low values to shallow points. We can
then build a statistic 𝜋(𝑦) by computing

𝜋(𝑦) =
1

𝑛 + 1

𝑛+1∑
𝑖=1

1
{
𝜌(𝐸𝑦,𝑖) ≤ 𝜌(𝐸𝑦,𝑛+1)

}
(12.6)

where 1{·} is the indicator function. Essentially, 𝜋(𝑦) represents the proportion of
fitted residuals in the augmented sample that have a lower score than the last one
𝑅𝑦,𝑛+1. By exchangeability of 𝑍1, . . . , 𝑍𝑛+1 and the permutational invariance of �̂� we
can see that 𝜋(𝑌𝑛+1 is distributed as a uniform defined over the set

{ 1
𝑛+1 ,

2
𝑛+1 , . . . , 1
}
.

This means that

P ((𝑛 + 1)𝜋(𝑌𝑛+1) ≤ �(1 − 𝛼) (𝑛 + 1)�) ≥ 1 − 𝛼 (12.7)

which can be alternatively interpreted by saying that 1 − 𝜋(𝑌𝑛+1) is a valid (con-
servative) 𝑝−value to test the null hypothesis 𝐻0 : 𝑌𝑛+1 = 𝑦. By calculating such
𝑝−value over all possible values of 𝑦 ∈ 𝐿2 and then perform a thresholding to the
desired level, we can define in a fairly straightforward way our conformal prediction
interval for 𝑋𝑛+1 in the following way.

𝐶𝑐𝑜𝑛 𝑓 𝑜𝑟𝑚𝑎𝑙 (𝑋𝑛+1) =
{
𝑦 ∈ 𝐿2 : (𝑛 + 1)𝜋(𝑌𝑛+1) ≤ �(1 − 𝛼) (𝑛 + 1)�

}
(12.8)

The whole procedure is summarised in Algorithm 1 of [4]. [22] prove that conformal
prediction sets defined as in 12.8 have valid finite-sample coverage: in fact, Vovk
et al. proofs are valid for very general covariates and responses (i.e. elements of
measurable sets), much more general than the relatively well-behaved 𝐿2 functions.

While being theoretically valid, this version of Conformal Prediction is very hard
and computationally intensive to be implemented: As noted by [22], the "search"
step has to be performed on a regular grid on the set in which the 𝑌𝑖 , 𝑖 = 1, . . . , 𝑛 are
embedded. Defining a regular grid in 𝐿2 is a nontrivial task, and will reasonably yield
a grid of points of such a size that will render any real-world implementation of the
full version of CP non-feasible. For this reason, instead of the Full or Transductive
Conformal Prediction framework, we will use the Split [8] or Inductive [15, 22]
Conformal Prediction that is able to ease, by a smarter use of the training data, the
computational burden associated to CP. The essential idea behind Split Conformal
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Prediction is, as the name suggests, random splitting the training data in two samples,
a proper training one and a calibration one. We present the Split Conformal prediction
version of the method in Algorithm 2 of [4].

12.3 Functional Conformity Measures

To perform a Conformal Prediction task we need to choose a method to order residual
curves. While for data lying inR this issue is straightforward, this is no longer the case
even on the Euclidean plane R2. The most common idea to perform such ordering is
the use of data depth, which allows also generalizations of univariate concepts such
as medians and quantiles in the multivariate setting ([11] and references therein).

While many choices for a functional conformity or non-conformity measures can
be performed, such as the use of small-ball probabilities ([3], specifically Chapter 4
and 13) used as a proxy for density in the 𝐿2 case, we are focusing our attention to
depth measures for functional data, and specifically the Band Depth ([12]).

As shown by Lopez-Pintado and Romo in [12] and by [20], the concept of depth
in the functional setting can be effectively used to develop functional versions of
univariate nonparametric techniques and visualization methods such as rank tests
and boxplots. In fact, Band Depth is particularly apt to be used for identifying 𝛼-
regions (in the sense of [11]) in the shape of bands. and thus very effective in reaching
the goal of identifying prediction bands for functional data. Additional information
about the choice of band depth can be found in [4]. The concept of band depth can be
then effectively used as the ordering criterion in CP: we present the specific version
of the algorithm in [4]

We have argued in favour of the validity of set predictions calculated through CP
methods: it should also be noted that the bands identified using CP are valid also in
a global sense, meaning that its coverage properties are valid for ∀𝑡 ∈ 𝑇 . The proof,
along some considerations about the pratical identification of the prediction set are
presented in [4]

12.4 Application to IAM Ensemble Forecasting

As a test case for this newly developed method, we present an application to climate
change economics, in which we create a statistically valid scenario and policy emu-
lator via the use of functional on scalar linear models and the forecasting methods
described in Section 12.3.

Climate Change is by far, the greatest policy challenge the humankind is facing:
according to the last Intergovernmental Panel for Climate Change (IPCC) report [1]
more decisive actions must be undertaken now, if we want to contain the average
increase of the World surface temperature by 1.5°C, and avoid severe disruptions to
the earth climate system. A fundamental tool to understand and explore the complex
dynamics that regulates this phenomenon is the use of computer models, such as
Integrated Assessment Models [14]. By integrating an economic and a climatic
module, these models are able to simulate the profile of a variable of interest on a
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given timescale (usually 𝐶𝑂2 over the next century). Predicting a quantity for such a
long time scale is a notoriously hard task, with a great degree of uncertainty involved.
Many efforts have been undertaken to model and control this uncertainty, such as
the development of standardized scenarios of future developement, called Shared
Socioeconomic Pathways (SSPs) [21, 17] or the use of model ensembles to tackle
the issue of model uncertainty. All the details about the application can be found in
[4], while an example of prediction bands generated using the described version of
CP for functional data can be seen in Figure 12.1
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Prediction and Conformal confidence bands for SSPs, Alpha=0.1

Fig. 12.1 Prediction Bands for SSP1, SSP2 and SSP3, 𝛼 = 0.10
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Chapter 13
G-Lasso Network Analysis for Functional Data

Lara Fontanella, Sara Fontanella, Rosaria Ignaccolo, Luigi Ippoliti and Pasquale
Valentini

Abstract Network analytical tools are becoming increasingly popular in analysing
interdependent and interacting data entities. Statistical modelling of network data
seeks to recover the underlying relational structure of the data capturing relevant
characteristics and regularities in the pattern of interactions. This framework is
widely adopted in multivariate data setting. However, in many applications, data are
naturally regarded as random functions rather than multivariate vectors. In this work,
we propose a simple approach to extend network analytical tools to the functional
data setting. Specifically, we show that the graph representation of a set of functions
can be retrieved through the precision matrix of a Gaussian Process, which encodes
the conditional dependence structure among functional data. By using the standard
graphical Lasso algorithm, preliminary results of the proposed methodology are
shown for a benchmark dataset of daily average temperatures.

13.1 Introduction

Network science is a modern discipline that has gained popularity in many scientific
fields, such as social sciences, medicine, physics and environmental science. Any set
of data consisting of different entities with a relational structure can be described as
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a network. Statistical modelling of this data enables the relational structures between
the entities to be evaluated, as well as enabling the identification both of the most
influential objects and of those groups of nodes, known as communities, that are in-
ternally well connected. This analytical approach is popular because of its flexibility
and because it enables network connectivity structures and measures to be conceptu-
alized. Graph theory, in this context, can transform these complex systems into useful
mathematical representations. Probabilistic graphical models, in which it is assumed
that the inferred graph structure encodes the conditional dependence relationship
among random variables represented by the data entities, is one useful approach for
graph-learning. Although this framework is well-established for vector-valued data,
little attention has been given to functional data, and effective statistical modelling of
network functional data is still under development and requires innovative theories.
The literature on functional graphical models is still sparse with only a few recent
papers available [24, 17, 18].

With the advance of modern technology, huge amounts of data are being recorded
continuously over some intervals or intermittently at several discrete points along a
domain that can be time, but also depth or altitude for example. These are examples of
functional data, which are intrinsically infinite-dimensional. Instead of considering
their discrete representation, in Functional Data Analysis (FDA) curves are treated
as single entities (for an overview see [19, 8]).

In this work, we evaluate the usefulness of network analytical models applied to
the functional data domain. In particular, we consider network functional data to
be modelled through undirected graphs, where the vertices represent random func-
tions. The graph is learned through probabilistic graphical models and the inferred
network encodes the conditional dependence structure among the functions. In this
framework, we show how complex connections among functional data can be struc-
tured and made interpretable. Moreover, the importance of each function within the
network can be studied through centrality analysis [10, 11, 4], which quantifies the
ability of a function to influence other functions using its connection topology. The
topological structure can also facilitate the identification of communities. Commu-
nity detection [14], or network clustering, is a crucial step in the investigation of
complex network structures. In this context, it involves the identification of groups
of highly connected functions. This analysis may offer insights on how the network
is organised and can facilitate classification of the functions, based on their role with
respect to the communities to which they belong.

Preliminary results from network analysis of functional data are shown for the
benchmark dataset of Canadian weather-stations [19].

13.2 Graphical Models for Functional Data

Let Y =
{
𝑌 𝑗
} 𝑝
𝑗=1 be a collection of 𝑝 square integrable random functions, where

each component 𝑌 𝑗 is defined in 𝐿2 (T ), and T is a compact subset of R [8].
Furthermore, suppose that 𝑌 𝑗 is a zero mean Gaussian Process with covariance
function 𝐸
[
𝑌 𝑗 (𝑡)𝑌 𝑗 (𝑡 ′)
]
= 𝐾 𝑗 (𝑡, 𝑡 ′), with 𝑡, 𝑡 ′ ∈ T . Then, it is well known [8] that

there exist constants, 𝜆1 ≥ 𝜆2 ≥ . . . ≥ 0, together with continuous orthonormal
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basis functions, 𝜓1 (𝜃), 𝜓2 (𝜃), . . ., for which Mercer’s Theorem [21] provides the
following convenient spectral decomposition

𝐾 𝑗 (𝑡, 𝑡 ′) =
∞∑
𝑣=1

𝜆𝑣𝜓𝑣 (𝑡)𝜓𝑣 (𝑡 ′), 𝑗 = 1, . . . , 𝑝

Then, using the Karhunen-Loéve expansion (KLE) we may represent 𝑌 𝑗 (𝑡) as

𝑌 𝑗 (𝑡) =
∞∑
𝑣=1

𝛼
( 𝑗)
𝑣 𝜓𝑣 (𝑡) (13.1)

with
𝛼

( 𝑗)
𝑣 =
∫

T
𝑌 𝑗 (𝑡)𝜓𝑣 (𝑡)𝑑𝑡, (13.2)

being zero mean uncorrelated random variables with variance 𝜆𝑣 .

13.2.1 Functional Gaussian Graphical Models

To evaluate the relationships among the functional data, the proposed model exploits
the theory of graphical models to infer an undirected graph whose vertices are defined
by the 𝑝 random functions.

In particular, we assume an undirected graph 𝐺 = (𝑉, 𝐸) to describe the condi-
tional independence relationships of components in Y, whereby 𝐺 can be inferred
through the graphical Lasso (G-Lasso) technique [23, 12]. An undirected graph
𝐺 = (𝑉, 𝐸) is defined by a finite set of vertices 𝑉 = {1, . . . , 𝑝}, and a set of undi-
rected edges 𝐸 ⊆ {(𝑖, 𝑗) : 𝑖, 𝑗 ∈ 𝑉 × 𝑉, 𝑖 ≠ 𝑗} that are encoded as pairs of vertices
of 𝐺. Here, we assume that the functional variables {𝑌1, 𝑌2, . . . , 𝑌𝑝} belong to the
undirected graph 𝐺 and the absence of an edge between 𝑖 and 𝑗 , with 𝑖, 𝑗 = 1, . . . , 𝑝
and 𝑖 ≠ 𝑗 , corresponds to the conditional independence of the two random func-
tions given the remaining ones, i.e. 𝑌𝑖 ⊥ 𝑌 𝑗 |𝑌𝑉 \𝑖, 𝑗 . This is known as the pairwise
Markov property relative to 𝐺, which implies both the local and the global Markov
properties relative to 𝐺 [16]. Then, if the functional variables {𝑌1, 𝑌2, . . . , 𝑌𝑝} are
from a 𝑝-dimensional Gaussian Process with covariance matrix 𝚺, it turns out that
every pair of functions not contained in the edge set is conditionally independent,
given all remaining functions, and corresponds to a zero entry in the precision matrix
𝚽 = 𝚺−1 [16].

13.2.2 Estimation

The pattern of zero entries in the elements 𝜙𝑖 𝑗 of the precision matrix 𝚽, which
corresponds to conditional independence restrictions between functions, can be
learned by using the G-Lasso algorithm. In particular, to achieve sparsity in the
precision matrix, the algorithm imposes a 𝐿1 penalty for the estimation of 𝚽 and
maximises the log-likelihood
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log det 𝚽 − Trace
(
S𝚽
)
− 𝛾 | |𝚽| |1

where | |𝚽| |1 is the 𝐿1 norm (i.e., the sum of the absolute values of the elements of
𝚽) and

S =
1
𝑁𝑟

𝑁∑
𝑙=1

A′
𝑙A𝑙 , 𝑙 = 1, . . . , 𝑁

is the sample covariance matrix of expansion coefficients A𝑙 =
(
�̂� (1)
𝑙 �̂� (2)

𝑙 . . . �̂� (𝑝)
𝑙

)
∈

R𝑟×𝑝 with �̂� ( 𝑗)
𝑙 =
(
�̂�

( 𝑗)
𝑙1 �̂�

( 𝑗)
𝑙2 . . . �̂�

( 𝑗)
𝑙𝑟

) ′ being the vector of the first 𝑟 estimated ex-
pansion coefficients of equation (13.2) associated with the 𝑙-th observed replication,
𝑙 = 1, . . . , 𝑁 , of collection Y =

{
𝑌 𝑗
} 𝑝
𝑗=1.

The 𝐿1 penalized maximum likelihood estimator requires the selection of the
regularization parameter 𝛾, which directly controls the sparsity level of the graph 𝐺.
When 𝛾 = 0 no penalty is imposed. Increasing 𝛾 results in an increasing number of
zero entries in the precision matrix. The choice of the parameter 𝛾 is then crucial for
retrieving the underlying network structure. The optimal computational properties
of the G-Lasso algorithm facilitate the use of data-driven selection approaches. A
common practice is that of estimating several graph structures, 𝐺 (𝛾), over a grid of
values for 𝛾, ranging from small to large. Selection criteria, such as Akaike Infor-
mation Criterion (AIC) [1], Bayesian Information Criterion (BIC) [22], Extended
Bayesian Information Criterion (EBIC) [9] can be then adopted to select the best
model.

13.3 Network Analysis on the Canadian Weather

In this application, the Canadian temperature data are used as test set to evaluate
network modelling approaches to functional data. The dataset consists of daily
measured temperatures at 35 different locations in Canada over 365 days (see, e.g.,
[19], for more details)1.

Since for each station only one functional observation is available (i.e. 𝑁 = 1),
each temperature profile was represented by the first 200 expansion coefficients by
means of principal cubic splines [15].

As described in Section 13.2.2, to evaluate the relationships among the 35 weather
stations, an undirected graph was then obtained from the precision matrix estimated
through the G-Lasso algorithm2. The G-Lasso algorithm was run for 100 different
values of the regularization parameter 𝛾 and the best model was selected using the
EBIC index [6, 9].

To characterise the network, the centrality indices were also computed [14].
These measures provide valuable information on the importance and position of
each function within the network, namely strength, closeness, and betweenness. The
strength is a measure of direct connections of a function to the others and it is

1 All statistical analyses were run in the programming language R. The data are available in the fda
package [20].
2 We used qgraph [7], bootnet [6] and igraph [5] packages for network estimation and visualization.
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computed by summing the absolute value of all edge weights for a function with
other functions in the network. Closeness is based on the length of the average
shortest path between a function and all functions in the network and expresses how
well the function is indirectly connected to the others. The betweenness measures
how frequently the function lies on the shortest path between two other functions
and identifies the nodes that act as bridges between the other functions in a network
[7].

Fig. 13.1 Network of the Canadian weather dataset. Left panel: connectivity structure of the 35
Canadian weather stations. Right panel: centrality measures for each station.

Figure 13.1 shows the retrieved network, which is sparse due to the LASSO
estimation: the network has only 217 non-zero edges out of 595 possible edges, with
density, given by the number of existing relationships relative to the possible number
of ties, equal to 0.364. The network structure seems to capture the geographical
neighbouring relationship among the weather stations as strong connections emerge
among the stations of Sidney and St. Johns, London and Toronto, Resolute and
Inuvik, Dawson and Whitehorse. In general, close stations are highly connected,
while station far apart do not show connections, meaning that their temperature
profiles differ significantly.

The centrality indices show that functions differ quite substantially in their cen-
trality estimates. In the network, St. Johns, Dawson and Pr. Albert have the highest
strength, while Yellowknife has the highest betweenness and closeness. This indi-
cates that while the formers are highly connected locally to their neighbours, sharing
similar temperature profiles, Yellowknife is highly connected globally.

To further investigate the relationships among the weather stations, we evaluated
the community structure of the networks derived from the empirical data, in order
to identify groups of locations likely to be highly connected. We performed net-



96 Sara Fontanella et al.

work clustering using the fast greedy modularity optimization algorithm for finding
communities [3].

The community detection algorithm identified five clusters, which seem highly
coherent with the actual geographical position of the stations (see Figure 13.2A).
The red cluster consists of the temperature curves registered in the North Canada
stations. The continental stations are grouped in the green cluster, while the orange
group consists of the Pacific stations. Finally, the stations of the Atlantic coast are
gathered in the purple and blue clusters. The latter is made up of the stations located
in Quebec and Ontario, while the former primarily captures station situated in Nova
Scotia. The obtained results are consistent with previous studies [2, 13].

The average temperature curves (Fig. 13.2C) clearly show that meteorological
conditions are harsher in the northern part of Canada. Temperatures in the Pacific
coast stations (orange cluster) are higher throughout the year and show low variability,
while the continental cities have lower temperatures compare to the coast cities,
especially during winter.
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Fig. 13.2 A) Geographical position of the Canadian weather stations according to their cluster
membership, B) Weather station temperature profiles stratified by clusters and C) Estimated mean
temperature profile for each cluster.
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13.4 Discussion

In this paper, we have considered the use of Gaussian graphical models for learning
structures and graphs from functional data. For practical implementation, we have
suggested the use of the simple G-Lasso algorithm. However, how to estimate the
pattern of interactions among the functions is still an open problem of both theoretical
and practical significance. Extensions of the present proposal will be an issue that
we leave for future works.

References

[1] Akaike, H.: Information theory and an extension of the maximum likelihood
principle, in B. N. Petrov & B. F. Csaki (Eds.), Second International Sympo-
sium on Information Theory, 267–281. Academiai Kiado, Budapest (1973)

[2] Bouveyron, C., Jacques, J.: Model-based clustering of time series in group-
specific functional subspaces. Advances in Data Analysis and Classification
5(4), 281–300 (2011)

[3] Clauset, A., Newman, M., Moore, C.: Finding community structure in very
large networks. Phys. Rev. E 70, 066111 (2004)

[4] Costa, L. d. F., Rodrigues, F. A., Travieso, G., Villas Boas, P. R.: Characteri-
zation of complex networks: A survey of measurements. Advances in Physics
56(1), 167–242 (2007)

[5] Csardi, G., Nepusz, T.: The igraph software package for complex network
research. InterJournal, Complex Systems, 1695 (2006)

[6] Epskamp, S., Borsboom, D., Fried, E.: Estimating psychological networks
and their accuracy: A tutorial paper. Behavior Research Methods, 50, 195–
212 (2017)

[7] Epskamp, S., Cramer, A., Waldorp, L., Schmittmann, V., Borsboom, D.:
qgraph: Network visualizations of relationships in psychometric data. Jour-
nal of Statistical Software 48(4), 1–18 (2012)

[8] Ferraty, F., Vieu, P.: Nonparametric Functional Data Analysis: Theory and
Practice (Springer Series in Statistics). Springer-Verlag, Berlin, Heidelberg
(2006)

[9] Foygel, R., Drton, M.: Extended bayesian information criteria for gaussian
graphical models. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel,
R.S., Culotta, A. (eds), Advances in Neural Information Processing Systems
23, 604–612. Curran Associates, Inc. (2010)

[10] Freeman, L.: A set of measures of centrality based on betweenness. Sociometry
40(1), 35–41 (1977)

[11] Freeman, L.: Centrality in social networks conceptual clarification. Social
Networks 1(3), 215 – 239 (1978)

[12] Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation
with the graphical Lasso. Biostatistics 9(3), 432–441 (2008)

[13] Jacques, J. Preda, C.: Model-based clustering for multivariate functional data.
Computational Statistics & Data Analysis 71, 92–106 (2014)



98 Sara Fontanella et al.

[14] Javed, M., Younis, M., Latif, S., Qadir, J., Baig, A.: Community detection
in networks: A multidisciplinary review. Journal of Network and Computer
Applications 108, 87–111 (2018)

[15] Kent, J., Mardia, K.: Modelling strategies for spatial-temporal data. In Lawson,
A. and Denison, D., editors, Spatial Cluster Modelling, 213–226. London:
Chapman and Hall (2002)

[16] Lauritzen, S.: Graphical Models. Oxford Science Publications. Clarendon
Press (1996)

[17] Li, B., Solea, E.: A nonparametric graphical model for functional data with
application to brain networks based on fmri. Journal of the American Statistical
Association 113(524), 1637–1655 (2018)

[18] Qiao, X., Guo, S., James, G.M.: Functional graphical models. Journal of the
American Statistical Association 114(525), 211–222 (2019)

[19] Ramsay, J., Silverman, B.: Functional Data Analysis. Springer Series in Statis-
tics. Springer (2005)

[20] Ramsay, J., Wickham, H., Graves, S., Hooker, G.: fda: Functional Data Anal-
ysis. R package version 2.4.8 (2018)

[21] Riesz, F., Sz-Nagy, B.: Functional analysis. Ungar, New York (1955)
[22] Schwarz, G.: Estimating the dimension of a model. The Annals of Statistics

6(2), 461–464 (1978)
[23] Yuan, M., Lin, Y.: Model selection and estimation in the Gaussian graphical

model. Biometrika 94(1), 19–35 (2007)
[24] Zhu, H., Strawn, N., Dunson, D.: Bayesian graphical models for multivariate

functional data. Journal of Machine Learning Research 17(204), 1–27 (2016)



Chapter 14
Modelling Functional Data with
High-dimensional Error Structure

Yuan Gao, Han Lin Shang and Yanrong Yang

Abstract We propose to model raw functional data as a mixture of functions and high-
dimensional error. The conventional approach to retrieve the functional component
from raw data is through varied smoothing techniques. Nevertheless, smoothing
itself may not be adequate when measurement error exists. We propose to use factor
model to reduce the dimension of the high-dimensional measurement error, while
smoothing the functional component. Our model also provides as an alternative for
modelling functional data with step jump. Regularized least squares method is used
to find the model estimates. We look at the asymptotic behaviour of the estimator
when both the sample size and the number of points per curve go to infinity and the
limiting distribution is derived.

14.1 Introduction

With the increasing capability of data storing, functional data analysis (FDA) has
received growing attention in the last twenty years. Functional data are considered
as realizations of smooth random objects, in graphical representations of curves,
images, and shapes. The monographs of [12, 13] and [11] provide a comprehensive
account of the methodology and applications of FDA. More recent advances in this
field can be found in survey papers [3, 7, 8, 14, 17]. We denote a random sample of
𝑛 functional data as X𝑖 (𝑢), 𝑖 = 1, . . . , 𝑛, and 𝑢 ∈ I, where I is a compact interval
on the real line.
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In practice, the observed data are discrete points and are often contaminated with
noise or measurement error. If we use 𝑌𝑖 𝑗 to represent the 𝑗 th observation on the 𝑖th
subject, then the observed data can be expressed with the model

𝑌𝑖 𝑗 = X𝑖 (𝑢 𝑗 ) + 𝜂𝑖 𝑗 , 𝑗 = 1, . . . 𝑝.

We use X𝑖 (𝑢 𝑗 ) to denote the realization of the 𝑗 th discrete point on the curve X𝑖 , and
𝜂𝑖 𝑗 is the measurement error. In this paper, we assume that measurement error only
takes place where the measurements are taken. Thus the error 𝜂𝑖 𝑗 is a multivariate
term of dimension 𝑝. Even though in real data, the functional component 𝑋𝑖 (𝑢 𝑗 ) is of
the same 𝑝 dimension, it is different from 𝜂𝑖 𝑗 in nature. We may impose smoothing
assumptions on the functions, which usually means the function possesses one or
more derivatives. This smoothness feature is used to separate the functions from the
measurement errors. This is called functional smoothing.

Classic smoothing tools apply to functional data, including kernel methods [16];
local polynomial smoothing [6] and spline smoothing [15, 4, 9]. With pre-smoothed
functions, estimates such as mean and covariance functions can be further obtained.
Recent studies on functional smoothing approaches include [2, 18, 19].

However, smoothing tools alone may not be adequate in removing the error and
may cause unstable estimation of the function in cases where systematic measurement
error exist. In this context, the measurement error is more than pure white noise. The
problem of measurement error arises in different fields such as survey data, nutrition
data and environment studies. In order to model the measurement error term, we take
a further look at 𝜂𝑖 𝑗 . In FDA, it is often the case that the number of discrete points
𝑝 on each subject is large compared to the sample size 𝑛. Hence the term 𝜂𝑖 𝑗 is a
high-dimensional component. This raises the problem of the curse of dimensionality,
which naturally calls for dimension reduction models. Abundance studies have been
conducted on various dimension reduction techniques on large data. Among them,
factor models are widely used [1, 5, 10].

In this article, we propose to use a factor model on the measurement error term.
The high-dimensional measurement error is assumed to be driven by a small number
of latent factors.

𝜂𝑖 𝑗 = 𝝀�
𝑖 𝑭𝑗 + 𝜖𝑖 𝑗 , 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑝,

where 𝐹𝑗 ∈ R𝑟 are the unobserved factors; 𝜆𝑖 ∈ R𝑟 are the factor loadings and 𝜖𝑖 𝑗
are idiosyncratic errors with mean zero. Thus the observed data can be written as
the sum of two components.

𝑌𝑖 𝑗 = X𝑖 (𝑢 𝑗 ) + 𝝀�
𝑖 𝑭𝑗 + 𝜖𝑖 𝑗 , 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑝.

Since we observe the data as a mixture, there is an identification problem between
the two parts. It is required that the high-dimensional term 𝜂𝑖 𝑗 is independent of
the functional term X(𝑢). Even though compared with simple smoothing model,
our mixed model introduces more parameters due to the factor model assumed on
the measurement error, it turns out that by simultaneously estimating the two parts,
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the total number of parameters is often equivalent or even smaller than the usual
smoothing model itself.

14.2 Motivation

14.2.1 Functional Data with Measurement Error

Figure 14.1 shows the rainbow plots of the average daily temperature and log pre-
cipitation at 35 locations in Canada. Due to the nature of the two kinds of data, it is
reasonable to assume that temperature and precipitation are functions over time. The
two graphs, however, display distinct features. In the temperature plot, it is relatively
easy to discern the shape of each curve, while in the precipitation plot, there is a great
amount of variability in the raw data such that it is almost impossible to observe the
underlying shape of the curves.

Smooth temperature data can be retrieved without much difficulty using basic
smoothing techniques. The residuals are small with constant variation. On the other
hand, for the precipitation data, the residuals after smoothing are of high variation
and even contain some extreme values. It is reasonable to suspect the existence of
measurement error. Our model endeavours to further explain the large residuals in
similar cases as the precipitation data.

Fig. 14.1 Average daily temperature and log precipitation in 35 Canadian weather stations averaged
over 1960 to 1994

14.2.2 Functional Data with Step Jump

We provide another example on functional data with step jump to motivate the
proposed model. Suppose we observe a sample of raw functional data with step
jump in the mean level as shown in Figure 14.2. The first graph shows the raw data,
where a jump could be seen in the middle. The middle graph is smoothed functions
generated by using B-spline smoothing with penalty. The residuals after smoothing
is presented in the bottom graph. The large residuals around the jump make it clear
that, the residuals still contain structures and without measures to deal with the
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step jump, smoothing itself is not enough to model this type of data. The proposed
model applying to the same data generates smaller residuals and the model can be
shown to be of less flexibility. By less flexibility, we mean that the model has fewer
parameters or degrees of freedom. This is indeed one of the main goals in view of
model selection methods.

Fig. 14.2 Simulated sample of functional data with step jump

14.3 Model Specification and Estimation

14.3.1 Model with Basis Expansion

We consider a sample of functional data X8 (D), 8 = 1, . . . , =, which takes values in
the space � := !2 (I) of real-valued square integrable functions on I. The space
� is a Hilbert space, equipped with the inner product 〈G, H〉 :=

∫
G(D)H(D)3D. The

function norm is defined as ‖G‖ := 〈G, G〉1/2. The functional nature of X8 (D) allows
us to represent it as a linear expansion of a set of smooth basis functions.

X8 (D) =
 ∑
:=1

28:q: (D), D ∈ I

where q: (D) are a set of basis functions, and 28: are the coefficient for the 8th curve.
Although functions are of infinite dimensionality, we regard X8 (D) as the target
function that possesses the smoothing feature. This imposed smoothness condition
implies we could write the function as a sum of finite basis functions. It does not
mean that FDA simply reduces to multivariate data analysis and the number of  
also depends on how the basis system is chosen. Therefore, we can write the full
model as
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𝑌𝑖 𝑗 =
𝐾∑
𝑘=1

𝑐𝑖𝑘𝜙𝑘 (𝑢 𝑗 ) + 𝜂𝑖 𝑗 ,

𝜂𝑖 𝑗 = 𝝀�
𝑖 𝑭𝑗 + 𝜖𝑖 𝑗 , 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑝.

In this article, we treat the basis functions 𝜙𝑘 (𝑢) as known. This is of course a
simplification to accommodate for the theoretical proofs. In real data analysis, there
exist a variety of choices for the basis functions and the decision can be quite
subjective.

14.3.2 Estimation

We can write the model for the 𝑖th object as

𝒀𝑖 = 𝚽𝒄𝑖 + 𝑭𝝀𝑖 + 𝝐𝑖 , 𝑖 = 1, . . . , 𝑛

Combining all the objects, we can write in matrix form

𝒀 = 𝚽𝑪 + 𝑭𝚲� + 𝑬,

where 𝒀 is 𝑝 × 𝑛 and 𝑪 is a 𝐾 × 𝑛 matrix containing all coefficients. The matrix
𝚲 = (𝝀1, . . . , 𝝀𝑛)� 𝑛 × 𝑟 and 𝑬 = (𝝐1, . . . , 𝝐𝑛) is 𝑛 × 𝑝. Since 𝚽 is assumed to
be known, we will illustrate how the parameters 𝑪, 𝑭 and 𝚲 are estimated in the
following.

First for the latent factor estimation, there is an identification problem such that
𝑭𝚲� = 𝑭𝑨𝑨−1𝚲� for any 𝑟 × 𝑟 invertible matrix 𝑨. Thus we impose the normal-
ization restriction on the factor matrix 𝑭 𝑭�𝑭/𝑝 = 𝑰𝑟 . It is also required for the
factor loading matrix that 𝚲�𝚲 is a diagonal matrix.

We propose to use a penalized least squares approach, where the objective function
is defined as

𝑆𝑆𝑅(𝒄𝑖 , 𝑭,𝚲) =
𝑛∑
𝑖=1

[
(𝒀𝑖 − 𝚽𝒄𝑖 − 𝑭𝝀𝑖)�(𝒀𝑖 − 𝚽𝒄𝑖 − 𝑭𝝀𝑖) + 𝛼𝑃𝐸𝑁 (X𝑖)

]
,

where 𝑃𝐸𝑁 (X𝑖) is a penalty term used for regularization, and 𝛼 is the tuning pa-
rameter controlling the degree of smoothness.To quantify the notion of "roughness"
in a function, we use the square of the second derivative. Define the measure of
roughness as 𝑃𝐸𝑁2 (X𝑖) =

∫
[𝐷2X𝑖 (𝑠)]2𝑑𝑠, where 𝐷2X𝑖 denotes taking the second

derivative of the function X𝑖 . To simplify the penalty term denote

𝚽(𝑢) = (𝜙1 (𝑢), . . . , 𝜙𝐾 (𝑢))�. (14.1)

Then X𝑖 (𝑢) = 𝒄�
𝑖 Φ(𝑢). We can re-express the roughness penalty 𝑃𝐸𝑁2 (X𝑖) in a

matrix form as the following:
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𝑃𝐸𝑁2 (X𝑖) =
∫

[𝐷2X𝑖 (𝑠)]2𝑑𝑠 =
∫

[𝐷2𝒄�
𝑖 𝚽(𝑠)]2𝑑𝑠

=
∫

𝒄�
𝑖 𝐷

2𝚽(𝑠)𝐷2𝚽�(𝑠)𝒄𝑖𝑑𝑠 = 𝒄�
𝑖

[∫
𝐷2𝚽(𝑠)𝐷2𝚽′(𝑠)𝑑𝑠

]
𝒄𝑖

= 𝒄�
𝑖 𝑹𝒄𝑖

where 𝑹 =
∫
𝐷2𝚽(𝑠)𝐷2𝚽′(𝑠)𝑑𝑠.

The penalty term is different for each subject only by the coefficient 𝒄𝑖 . Thus the
objective function can be written as

𝑆𝑆𝑅(𝒄𝑖 , 𝑭,𝚲) =
𝑛∑
𝑖=1

[
(𝒀𝑖 − 𝚽𝒄𝑖 − 𝑭𝝀𝑖)�(𝒀𝑖 − 𝚽𝒄𝑖 − 𝑭𝝀𝑖) + 𝛼𝒄�

𝑖 𝑹𝒄𝑖
]
,

subject to the constraint 𝑭�𝑭/𝑝 = 𝑰𝑟 .
To estimate the coefficient 𝒄𝑖 , define the projection matrix 𝑴𝐹 = 𝑰𝑝 −

𝑭(𝑭�𝑭)−1𝑭� = 𝑰𝑝 − 𝑭𝑭�. It is easy to obtain the standard least squares solu-
tion for the coefficient �̂�𝑖 , see the first equation in (14.2).

Next to estimate 𝑭 and 𝚲, we focus on the factor model term𝜼𝑖 = 𝑭𝝀𝑖 + 𝝐𝑖 , and in
matrix form 𝒁 = 𝑭𝚲� + 𝑬, where 𝒁 = (𝜼1, . . . , 𝜼𝑛). The factor model is estimated
using principal component. We perform eigen-decomposition on the covariance
structure of the matrix 𝒁 to obtain the factor and the factor loadings. The covariance
of the matrix 𝒁 can be calculated as 𝒁𝒁� =

∑𝑛
𝑖=1 𝜼𝑖𝜼

�
𝑖 =
∑𝑛
𝑖=1 (𝒀𝑖−𝚽𝒄𝑖) (𝒀𝑖−𝚽𝒄𝑖)�.

It could be seen that 𝑭 is needed to estimate 𝒄𝑖 , and in turn 𝒄𝑖 is needed to estimate
𝑭. The final estimator ( �̂�𝑖 , 𝑭, �̂�) is the solution of the set of equations{

𝒄𝑖 =
(
𝚽�𝑴�̂�𝚽 + 𝛼𝑹�)−1 𝚽�𝑴�̂�𝒀𝑖 , 𝑖 = 1, . . . , 𝑛[

1
𝑛𝑝

∑𝑛
𝑖=1 (𝒀𝑖 − 𝚽�̂�𝑖) (𝒀𝑖 − 𝚽�̂�𝑖)�

]
𝑭 = 𝑭𝑽𝑛𝑝 ,

. (14.2)

We can estimate 𝑭 and �̂�𝑖 using numerical iterations. The estimated factor loadings
can be obtained by �̂�

�
= 𝑭�(𝒀 − Φ𝑪). Finally, the functional component can be

estimated by X̂𝑖 (𝑢) = �̂��
𝑖 Φ(𝑢), where Φ(𝑢) is defined as in (14.1).

14.4 Asymptotic Properties

We introduce the matrix

𝑫𝑖 (𝑭) =
1
𝑝
𝚽�𝑴𝑭𝚽 −

1
𝑝
𝚽�𝑴𝑭𝚽𝝀�

𝒊

(
𝚲�𝚲
𝑛

)�
𝝀𝑖

First, we state the assumptions made.

Assumption (1) For some constant 𝑀 , sup 1√
𝑝E‖𝜙𝑘 (𝑢)‖ ≤ 𝑀, 𝑘 = 1, . . . , 𝐾.

We have also for each 𝑖 ∈ 1, . . . , 𝑛, inf 𝑫𝑖 (𝑭) > 0 �
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The above assumption is on the norm of the set of basis functions. This gives a bound
to the vector 𝝓𝑘 ∈ R𝑝 that contains the discrete points on the basis function. We also
require the matrix 𝑫𝑖 to be positive definite.

Assumption (2) For some constant 𝑀 ,

1. E‖𝑭𝑗 ‖4 ≤ 𝑀 , 𝑗 = 1, . . . , 𝑝, and 1
𝑝

∑𝑝
𝑗=1 𝑭𝑗𝑭

�
𝑗 −→𝑝 𝚺𝑭 > 0 for some 𝑟 × 𝑟

matrix 𝚺𝑭 , as 𝑝 → ∞;
2. E‖𝝀𝑖 ‖4 ≤ 𝑀 , 𝑖 = 1 . . . , 𝑛, and 𝚲�𝚲−→𝑝 𝚺𝚲 > 0 for some 𝑟 × 𝑟 matrix 𝚺𝚲, as

𝑛 → ∞. �

This assumption ensures the existence of 𝑟 factors.

Assumption (3) The error terms 𝜖 𝑗𝑖 , 𝑗 = 1, . . . , 𝑝, 𝑖 = 1, . . . , 𝑛 are independent in
both directions with E(𝜖 𝑗𝑖) = 0, and Var(𝜖 𝑗𝑖) = 𝜎2; and E|𝜖 𝑗𝑖 |8 ≤ 𝑀 . Also, 𝜖 𝑗𝑖 is
independent of 𝜙𝑠 , 𝝀𝑡 , and 𝑭𝑠 for all 𝑗 , 𝑖, 𝑠, 𝑡. �

We require that the errors are independent in themselves and also of the functional
and high-dimensional terms. This is a commonly seen assumption made to simplify
the proofs.

Assumption (4) The tuning parameter satisfies 𝛼 = 𝑜(1). �

This is conventionally assumed in ridge regression. This assures that the asymptotic
bias of the estimator is zero.

Theorem 1 Under Assumptions, as 𝑛, 𝑝 → ∞, we have 1√
𝑛
‖𝑪0 − 𝑪‖ −→𝑝 0.

Next we can obtain the rate of convergence.

Theorem 2 Under Assumptions, if 𝑝/𝑛 → 𝜌 > 0,

√
𝑝
‖𝑪0 − �̂�‖

√
𝑛

= 𝑂 𝑝 (1).

We study the case when the dimension 𝑝 and the sample size 𝑛 are comparable.
We achieve rate √

𝑝 convergence considering ‖𝑪0−�̂� ‖√
𝑛

on the whole. This is expected
that the rate of convergence for smoothing models depend on the number of discrete
points observed on each curve.
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Chapter 15
Goodness-of-fit Tests for Functional Linear
Models Based on Integrated Projections

Eduardo García-Portugués, Javier Álvarez-Liébana,
Gonzalo Álvarez-Pérez and Wenceslao González-Manteiga

Abstract Functional linear models are one of the most fundamental tools to assess
the relation between two random variables of a functional or scalar nature. This
contribution proposes a goodness-of-fit test for the functional linear model with
functional response that neatly adapts to functional/scalar responses/predictors. In
particular, the new goodness-of-fit test extends a previous proposal for scalar re-
sponse. The test statistic is based on a convenient regularized estimator, is easy to
compute, and is calibrated through an efficient bootstrap resampling. A graphical
diagnostic tool, useful to visualize the deviations from the model, is introduced and
illustrated with a novel data application. The R package goffda implements the
proposed methods and allows for the reproducibility of the data application.

15.1 Functional Linear Models

15.1.1 Formulation

Given two separable Hilbert spaces H1 and H2, we consider the regression setting
with centered H2-valued response Y and centered H1-valued predictor X:
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Y = 𝑚(X) + E, (15.1)

where 𝑚 : X ∈ H1 ↦→ E [Y|X = X] ∈ H2 is the regression operator and the
H2-valued error E is such that E [E|X] = 0. When H1 = 𝐿2 ( [𝑎, 𝑏]) and H2 =
𝐿2 ( [𝑐, 𝑑]), the Functional Linear Model with Functional Response (FLMFR; see,
e.g., [15, Chapter 16]) is the most well-known parametric instance of (15.1). If the
regression operator is assumed to be Hilbert–Schmidt, 𝑚 is parametrizable as

𝑚𝛽 (X) =
∫ 𝑏
𝑎

𝛽(𝑠, ·)X(𝑠) d𝑠 =: 〈〈𝛽,X〉〉, (15.2)

for 𝛽 ∈ H1 ⊗H2 = 𝐿2 ( [𝑎, 𝑏] × [𝑐, 𝑑]) a square-integrable kernel. The present work
considers this framework and is concerned with the goodness-of-fit of the family of
H2-valued and H1-conditioned linear models

L := {〈〈𝛽, ·〉〉 : 𝛽 ∈ H1 ⊗ H2} . (15.3)

Any X ∈ H1 and Y, E ∈ H2 can be represented in terms of orthonormal bases
{Ψ 𝑗 }∞

𝑗=1 and {Φ𝑘 }∞
𝑘=1 as X =

∑∞
𝑗=1 𝑥 𝑗Ψ 𝑗 , Y =

∑∞
𝑘=1 𝑦𝑘Φ𝑘 , and E =

∑∞
𝑘=1 𝑒𝑘Φ𝑘 ,

where 𝑥 𝑗 = 〈X,Ψ 𝑗〉H1 , 𝑦𝑘 = 〈Y,Φ𝑘〉H2 , and 𝑒𝑘 = 〈E,Φ𝑘〉H2 , ∀ 𝑗 , 𝑘 ≥ 1. Also,
𝛽 ∈ H1 ⊗ H2 can be expressed as

𝛽 =
∞∑
𝑗=1

∞∑
𝑘=1

𝑏 𝑗𝑘 (Ψ 𝑗 ⊗ Φ𝑘 ), 𝑏 𝑗𝑘 =
〈
𝛽,Ψ 𝑗 ⊗ Φ𝑘
〉
H1 ⊗H2

, ∀ 𝑗 , 𝑘 ≥ 1.

Therefore, the population version of the FLMFR based on (15.2) can be expressed as

𝑦𝑘 =
∞∑
𝑗=1

𝑏 𝑗𝑘𝑥 𝑗 + 𝑒𝑘 , 𝑘 ≥ 1. (15.4)

15.1.2 Model Estimation

The projection of (15.4) into the truncated bases {Ψ 𝑗 }𝑝𝑗=1 and {Φ𝑘 }𝑞𝑘=1 opens the way
for the estimation of 𝛽 given a centered sample {(X𝑖 ,Y𝑖)}𝑛𝑖=1. Indeed, the truncated
sample version of (15.4) is expressed as

Y𝑞 = X𝑝B𝑝,𝑞 + E𝑞 , (15.5)

where Y𝑞 and E𝑞 are 𝑛 × 𝑞 matrices with the respective coefficients of {Y𝑖}𝑛𝑖=1 and
{E𝑖}𝑛𝑖=1 on {Φ𝑘 }𝑞𝑘=1, X𝑝 is the 𝑛 × 𝑝 matrix of coefficients of {X𝑖}𝑛𝑖=1 on {Ψ 𝑗 }𝑝𝑗=1,
and B𝑝,𝑞 is the 𝑝 × 𝑞 matrix of coefficients of 𝛽 on {Ψ 𝑗 ⊗ Φ𝑘 }𝑝,𝑞𝑗,𝑘=1.

Several estimators for 𝛽 have been proposed; see, e.g., [16, 13, 5, 1, 14]. A popular
estimation paradigm is Functional Principal Components Regression (FPCR; [15]),
which considers the (empirical) Functional Principal Components (FPC) {Ψ̂ 𝑗 }𝑝𝑗=1



15 Goodness-of-fit Tests for Functional Linear Models Based on Integrated Projections 109

and {Φ̂𝑘 }𝑞𝑘=1 as a plug-in for {Ψ 𝑗 }𝑝𝑗=1 and {Φ𝑘 }𝑞𝑘=1 underneath (15.5). Estimation

by FPCR yields B̂𝑝,𝑞 = arg minB𝑝,𝑞
44Y𝑞 − X𝑝B𝑝,𝑞

442 =
(
X′
𝑝X𝑝
)−1X′

𝑝Y𝑞 , with
𝑗 = 1, . . . , 𝑝 and 𝑘 = 1, . . . , 𝑞. The estimator B̂𝑝,𝑞 depends on (𝑝, 𝑞) and an
automatic data-driven selection of (𝑝, 𝑞) is of most practical interest. However,
cross-validatory procedures are computationally expensive, especially since two
tuning parameters must be optimized. A simple alternative for selecting 𝑞 is to
guarantee a certain proportion of explained variance (say, 0.99) for {Y𝑖}𝑛𝑖=1. The
more critical selection of 𝑝 can be done by first ensuring a certain proportion of
explained variance (say, 0.99) and then performing a LASSO-regularized FPCR
regression (FPCR-L1 henceforth):

B̂(𝜆)
𝑝,𝑞 = arg min

B𝑝,𝑞

⎧⎪⎨⎪⎩ 1
2𝑛

𝑛∑
𝑖=1

44(Y𝑞 ) 𝑖 − (X𝑝B𝑝,𝑞 ) 𝑖442 + 𝜆

𝑝∑
𝑗=1

444(B𝑝,𝑞 ) 𝑗444⎫⎪⎬⎪⎭ ,
where the notation (A)𝑖 stands for the 𝑖-th row of the matrix A. This regularization
applies a row-wise penalty that enables variable selection for a given 𝜆, which can
be efficiently selected by cross-validation and its one standard error variant [9].

However, FPCR-L1 lacks an explicit expression for the hat matrix (in contrast with
FPCR), an important handicap for the bootstrap algorithm outlined in Section 15.2.3.
To combine the flexible variable selection of FPCR-L1 with the analytical form of
FPCR, we propose the FPCR-L1S estimator, which firstly implements FPCR-L1 for
variable selection and then performs FPCR on the selected predictors. It returns the
hat matrix H(𝜆)

C = X̃ �̃�
(
X̃′
�̃�X̃ �̃�
)−1X̃′

�̃� , where X̃ �̃� is the matrix of the coefficients of
the 𝑝 LASSO-selected predictors (not necessarily sorted).

Simulations [11, Section 2.4] report that FPCR-L1S outperforms FPCR.

15.2 Proposed Goodness-of-fit Tests

15.2.1 Test Statistic Genesis

Our aim is to test whether the regression operator belongs to the class of linear
operators described in (15.3), that is, to test

H0 : 𝑚 ∈ L vs. H1 : 𝑚 ∉ L.

To do so, we use the following lemma to characterize H0 in terms of the one-
dimensional projections of Y and X. The lemma requires from analogues of the
Euclidean (𝑝 − 1)-sphere S𝑝−1 := {x ∈ R𝑝 : ‖x‖ = 1}: the (𝑝 − 1)-sphere of H1 for
{Ψ 𝑗 }∞

𝑗=1, S𝑝−1
H1 , {Ψ 𝑗 }∞𝑗=1

:= {
∑𝑝
𝑗=1 𝑥 𝑗Ψ 𝑗 ∈ H1 : ‖x‖ = 1} and, analogously, S𝑞−1

H2 , {Φ𝑘 }∞𝑘=1
.

Lemma 1 (H0 characterization on finite-dimensional directions; [11]) Let X
and Y be H1- and H2-valued random variables, respectively, 𝛽 ∈ H1 ⊗ H2, and let
{Ψ 𝑗 }∞

𝑗=1 and {Φ𝑘 }∞
𝑘=1 be bases ofH1 andH2, respectively. Then, the next statements

are equivalent:
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i. H0 holds, that is, 𝑚 (X) = 〈〈X, 𝛽〉〉, ∀X ∈ H1.
ii. E
[〈

Y−〈〈X, 𝛽〉〉, 𝛾 (𝑞)
Y
〉
H2
�{〈

X,𝛾 (𝑝)
X

〉
H1

≤𝑢
} ] = 0, for almost every 𝑢 ∈ R,∀𝛾 (𝑝)

X ∈

S
𝑝−1
H1 , {Ψ 𝑗 }∞𝑗=1

, ∀𝛾 (𝑞)
Y ∈ S𝑞−1

H2 , {Φ𝑘 }∞𝑘=1
, and for all 𝑝, 𝑞 ≥ 1.

The reader is referred to [11] for the proof of the lemma.
We use the above characterization to detect deviations from H0. We do so by

means of the (𝑝, 𝑞)-truncated empirical version of the doubly-projected integrated
regression function in statement ii, that is, the residual marked empirical process

𝑅𝑛,𝑝,𝑞
(
𝑢, 𝛾 (𝑝)

X , 𝛾 (𝑞)
Y
)
=

1
√
𝑛

𝑛∑
𝑖=1

〈
Ê (𝑞)
𝑖 , 𝛾 (𝑞)

Y
〉
H2
�{〈

X(𝑝)
𝑖 ,𝛾

(𝑝)
X

〉
H1

≤𝑢
} , 𝑢 ∈ R,

(15.6)
with residual marks

〈
Ê (𝑞)
𝑖 , 𝛾 (𝑞)

Y
〉
H2

= ê′
𝑖,𝑞h𝑞 and jumps

〈
X(𝑝)
𝑖 , 𝛾 (𝑝)

X
〉
H1

= x′
𝑖, 𝑝g𝑝 ,

where ê′
𝑖,𝑞 represents the 𝑖-th row of the 𝑛 × 𝑞 matrix of residual coefficients Ê𝑞

on {Φ𝑘 }𝑞𝑘=1, x𝑖, 𝑝 are the first 𝑝 coefficients of X𝑖 on {Ψ 𝑗 }𝑝𝑗=1, and g𝑝 ∈ S𝑝−1 and
h𝑞 ∈ S𝑞−1 are the coefficients of 𝛾 (𝑝)

X and 𝛾 (𝑞)
Y , respectively.

To measure the proximity of (15.6) to zero (and hence to H0), and following
the ideas of [7] and [12], we consider a Cramér–von Mises norm on Π (𝑝,𝑞) =
S
𝑞−1
H2 , {Φ𝑘 }∞𝑘=1

× S𝑝−1
H1 , {Ψ 𝑗 }∞𝑗=1

× R, yielding the so-called Projected Cramér–von Mises
(PCvM) statistic:

PCvM𝑛,𝑝,𝑞 =
∫
S𝑞−1×S𝑝−1×R

[
𝑅𝑛,𝑝,𝑞
(
𝑢, g𝑝 , h𝑞
) ]2

𝐹𝑛,g𝑝 (d𝑢) dg𝑝 dh𝑞 ,

where 𝐹𝑛,g𝑝 is the empirical cumulative distribution function of {x′
𝑖, 𝑝g𝑝}𝑛𝑖=1.

From the developments in [11], we get an easily computable form of the statistic:

PCvM𝑛,𝑝,𝑞 =
1
𝑛2

2𝜋𝑝/2+𝑞/2−1

𝑞Γ(𝑝/2)Γ(𝑞/2)
Tr
[
Ê′
𝑞A•Ê𝑞
]
, (15.7)

where Tr(·) denotes the trace operator and A• is a certain 𝑛 × 𝑛 symmetric matrix
that only depends on {x𝑖, 𝑝}𝑝𝑖=1.

15.2.2 Statistic Interpretation and Particular Cases

The statistic (15.7) can be regarded as a weighted quadratic norm:

PCvM𝑛,𝑝,𝑞 =
1
𝑛2

2𝜋𝑝/2+𝑞/2−1

𝑞Γ(𝑝/2)Γ(𝑞/2)

𝑞∑
𝑘=1

44(𝑒1,𝑘 , . . . , 𝑒𝑛,𝑘
)44

A•
,

where Ê (𝑞)
𝑖 =
∑𝑞
𝑘=1 𝑒𝑖,𝑘Φ𝑘 , 𝑖 = 1, . . . , 𝑛, and ‖v‖A• := (v′A•v)1/2 is a norm in

R𝑛 induced by A•. Therefore, the statistic aggregates across the dimensions of the
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truncated response the A•-weighted norms of the coefficients of the functional errors
on {Φ𝑘 }𝑞𝑘=1. The basis of such interpretation is the next lemma (proof given in [11]).

Lemma 2 ([11]) Assume that the functional sample {X𝑖}𝑛𝑖=1 has pairwise distinct
coefficients {x𝑖, 𝑝}𝑛𝑖=1 on an arbitrary 𝑝-truncated basis {Ψ 𝑗 }𝑝𝑗=1 ofH1. Then, for any
sample size 𝑛 ≥ 1, the 𝑛 × 𝑛 matrix A• is positive definite.

The general framework of the FLMFR seamless adapts to scalar response or
predictor. So do the estimation methods discussed in Section 15.1.2 and the statistic
(15.7). Indeed, in the case of scalar response (see, e.g., [2] and [4]), H2 = R
is identifiable with the subspace of 𝐿2 ( [𝑐, 𝑑]) of constant functions with basis
{(𝑑 − 𝑐)−1/2} and 𝛽(·, ★) ≡ 𝛽(·) ∈ 𝐿2 ( [𝑎, 𝑏]) is a univariate function. The statistic
PCvM𝑛,𝑝,1 precisely corresponds to the PCvM statistic for the functional linear
model with scalar response given in [12]. In the case of scalar predictor (see [3]),
𝛽(·, ★) ≡ 𝛽(★) ∈ 𝐿2 ( [𝑐, 𝑑]) and PCvM𝑛,1,𝑞 results in a test statistic specific for
such model.

15.2.3 Bootstrap Calibration and Graphical Tool

The calibration of the statistic (15.7) is done through a wild bootstrap on the residuals.
We sketch next the main steps of such resampling, referring to Algorithm 1 in [11]
for the specifics and its adaptation to the 𝛽-specified case.

1. Compute the statistic PCvM𝑛, �̃�,𝑞 from the residuals ê𝑖,𝑞 = Y𝑖,𝑞 − X𝑖, �̃�B̂(𝜆) ,C
�̃�,𝑞 ,

𝑖 = 1, . . . , 𝑛, associated to the FPCR-L1S estimate B̂(𝜆) ,C
�̃�,𝑞 (which selects 𝑝).

2. For 𝑏 = 1, . . . , 𝐵:

a. Perturb the residuals as e∗𝑏
𝑖,𝑞 := 𝑉∗𝑏

𝑖 ê𝑖,𝑞 , 𝑖 = 1, . . . , 𝑛, where {𝑉∗𝑏
𝑖 }𝑛𝑖=1 are

independent zero-mean and unit-variance random variables.
b. Using {e∗𝑏

𝑖,𝑞}
𝑛
𝑖=1, simulate {Y∗𝑏

𝑖,𝑞}
𝑛
𝑖=1 from the multivariate linear model.

c. Fit the multivariate model from {(X𝑖, �̃� ,Y∗𝑏
𝑖,𝑞)}

𝑛
𝑖=1 and obtain B̂∗𝑏

�̃�,𝑞 .
d. Compute the bootstrapped statistic PCvM∗𝑏

𝑛, �̃�,𝑞 from the bootstrap residuals
ê∗𝑏
𝑖,𝑞 := Y∗𝑏

𝑖,𝑞 − X𝑖, �̃�B̂∗𝑏
�̃�,𝑞 , 𝑖 = 1, . . . , 𝑛.

3. Estimate the 𝑝-value by Monte Carlo as #{PCvM𝑛, �̃�,𝑞 ≤ PCvM∗𝑏
𝑛, �̃�,𝑞}/𝐵.

The bootstrap procedure yields as a by-product a graphical diagnostic tool of the
goodness-of-fit of the FLMFR that helps visualizing the possible deviations from
H0. The tool compares the empirical process on which the PCvM statistic is applied,

𝑅𝑛,𝑝,𝑞
(
𝑢, g𝑝 , h𝑞
)
=

1
√
𝑛

𝑛∑
𝑖=1

ê′
𝑖,𝑞h𝑞�{x′

𝑖,𝑝g𝑝≤𝑢
} ,

with 𝐺 samples of its bootstrapped version:
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𝑅∗𝑏
𝑛,𝑝,𝑞

(
𝑢, g𝑝 , h𝑞
)
=

1
√
𝑛

𝑛∑
𝑖=1

(ê∗𝑏
𝑖,𝑞)

′h𝑞�{x′
𝑖,𝑝g𝑝≤𝑢
} , 𝑏 = 1, . . . , 𝐺.

The graphical tool employs the FPC bases {Ψ̂ 𝑗 }𝑝𝑗=1 and {Φ̂𝑘 }𝑞𝑘=1 and considers g𝑝
and h𝑞 as the canonical vectors in R𝑝 and R𝑞 , respectively. This allows to visualize
the deviations from H0 when “it is projected” in the first FPC of {X𝑖}𝑛𝑖=1 and the
first FPC of {Y𝑖}𝑛𝑖=1 (or any other combination thereof). Figure 15.2 shows and
explains two outputs of this diagnostic tool, for the situations in which H0 is and is
not rejected.

15.3 Application: AEMET Temperatures Dataset

The aemet_temp dataset in the goffda [10] package contains daily temperatures of
𝑛 = 73 weather stations from the Meteorological State Agency of Spain (AEMET)
during the time span 1974–2013. The dataset is split in two 20-year periods, 1974–
1993 and 1994–2013, and the daily temperatures on each weather station are averaged
for both periods. This results in two functional samples for the average temperatures
across Spain on 1974–1993 (predictor X) and 1994–2013 (response Y). Both sam-
ples were smoothed with local linear estimators using cross-validated bandwidths to
ease visualization. Figure 15.1 (left) shows the samples of X and Y.

The PCvM test based on 𝑝 = 4 (selected by FPCR-L1S with 𝜆 chosen by one
standard error cross-validation) and 𝑞 = 3 (selected such that the proportion of
explained variance is 0.99) yielded a 𝑝-value equal to 0.4155 using 𝐵 = 104 bootstrap
replicates. Therefore, the FLMFR is not rejected. The estimated 𝛽, shown in Figure
15.1 (right), reveals a temperature increment on the latter period with respect to
the former, a conclusion supported by the predominance of positive values on the 𝛽
surface and the positiveness of almost all the temperature curves. The diagnostic tool
in Figure 15.2 (left) shows no remarkable deviations of the residual marked empirical
process from H0. The PCvM test rejects emphatically the simple hypotheses H0 :
𝛽 = 0 and H0 : 𝛽(𝑠, 𝑡) = �{𝑠=𝑡 } (stationary-temperature hypothesis; right panel in
Figure 15.2), thus corroborating a significant change in the temperatures between
both periods. The diagnostic tool for the latter hypothesis reveals that the non-
stationarity is due to the relations between the second FPC of {X𝑖}𝑛𝑖=1 and {Y𝑖}𝑛𝑖=1,
both related with the variation shape of the temperature curves along the year.

15.4 Software: goffda R Package

The R package goffda [10] implements all the methods described and allows for
replication of the data application. The implementation of the critical parts of the
goodness-of-fit tests, such as the computation of the A• matrix and the computation
of the PCvM statistic, are implemented in C++ (through Rcpp [6]) for the sake of
efficiency. The goffda package relies on the fdata class from the fda.usc [8]
package, so it is fully compatible with the latter.
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Fig. 15.1 Left: Temperatures of 73 AEMET weather stations for the periods 1974–1983 (X) and
1994–2013 (Y), along with their means. Right: FPCR-L1S estimator V̂ for the FLMFR.

Fig. 15.2 Graphical tool of the PCvM test. The black curve represents the observed process
'=,?,@

(
D, e 9 , e:

)
for its projections on the 9-th FPC of {X8 }=8=1 and the :-th FPC of {Y8 }=8=1,

9 , : = 1, 2. The grey curves stand for the bootstrapped processes underH0, i.e., '∗1=,?,@
(
D, e 9 , e:

)
,

1 = 1, . . . , 100. The left 2 × 2 panel shows the diagnostic output for H0 : < ∈ L in the AEMET
temperatures dataset. The non-rejection ofH0 is manifested in the centrality of the observed process
within the bootstrapped ones. The right 2× 2 panel shows the diagnostic for H0 : V (B, C) = 1{B=C} ,
with rejection of H0 evidenced by the outlyingness of '=,?,@ (D, e2, e2) .

The main functions of goffda are: flm_est (several estimation methods for
the FLMFR); Adot (efficient implementation of the A• matrix); flm_stat (com-
putation of (15.7)); flm_test (implementation of the test with its bootstrap re-
sampling). flm_est and flm_test deal seamlessly with either functional/scalar
responses/predictors.
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Chapter 16
From High-dimensional to Functional Data:
Stringing Via Manifold Learning

Harold A. Hernández-Roig, M. Carmen Aguilera-Morillo and Rosa E. Lillo

Abstract The study of high-dimensional data is becoming a common trend in modern
research. Recently, stringing emerged as a methodology to treat high-dimensional
sample vectors as realizations of smooth stochastic processes. Under the hypothesis
of noisy and order-perturbed measurements, stringing introduces smooth transitions
between predictors and takes advantage of Functional Data Analysis (FDA) to study
the data. Once a functional representation is achieved, it is possible to visualize
intrinsic patterns, or fit functional regression models. We propose manifold learning
as an alternative to multidimensional scaling in the reordering step. In a simulation
study we show that our proposal achieves smaller relative order errors, and that it
can recover more complex relationships between predictors.

16.1 Introduction

High-dimensional data refer to scenarios in which the dimension 𝑝, the number
of features or predictor variables, is so large that calculations become extremely
difficult. Often, in high-dimensional data the number of observations 𝑛 is much
smaller than 𝑝 (𝑛 � 𝑝). In these scenarios, modeling is a challenging problem
that has been addressed under strong assumptions, such as sparsity constraints [5].
The prevailing approach for 𝑛 � 𝑝 problems is usually related to dimensionality
reduction, and variable selection, in other words, excluding features from the analysis.
On the other hand, data visualization techniques—such as parallel coordinates—fail
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in these cases, due to the high-dimensionality of 𝑝. A different view, mentioned in
[3], is that of Andrew’s Plots [1], in which the high dimensional vectors are expanded
in terms of trigonometric functions. Nevertheless, none of these techniques consider
the intrinsic relationship between predictors.

Stringing was introduced in [3] as a methodology to map high-dimensional vec-
tors to the infinite-dimensional function space. Once transformed, all tools from FDA
are available to study high-dimensional data. This methodology had early beginnings
in classification of gene expression profiles [11], and it has been extended to other
functional regression models, such as Cox’s [3]. In these scenarios, typical 𝑛 � 𝑝,
it is possible to take advantage of the high-dimensionality of the data to transform
them into functions. Then, functional modeling can be applied to estimate different
types of responses. Moreover, this methodology provides a sophisticated graphi-
cal representation of multivariate data that reveals its characteristics and intrinsic
patterns.

Briefly, stringing assumes that data is observed with an unknown and randomly
permuted order of the predictors. The methodology consists of reordering these
predictors to achieve smooth transitions between the components of each data vector.
Finally, it considers the transformed vectors as realizations of a smooth stochastic
process. In the original paper [3], the authors apply Unidimensional Scaling (UDS)
to the columns of the design matrix, obtaining positions inR for each predictor. UDS
is the unidimensional version of Multidimensional Scaling (MDS), thus, it finds a
one-dimensional representation that preserves distances between predictors in the
higher-dimensional space. Functional representation is achieved with Functional
Principal Components Analysis (FPCA), or any other smoothing technique (see [7]
for examples).

Two basic problems arise from UDS-stringing: (i) complex relationships between
predictors, say non-linearity, could be invisible for some distances; and (ii) while
reordering, we might be losing important features of the data that cannot be rep-
resented in R, but in higher dimensions (say R2, or R3). This work focuses on the
first problem. We propose stringing via manifold learning, an alternative—based on
Isometric Feature Mapping (Isomap) [9] and Locally Linear Embedding (LLE) [8]
algorithms—that is able to recover more complex relationships between predictors,
and assigns positions in the real line for each of them. In a simulation study we show
that the reordering error decreases when manifold learning replaces UDS.

16.2 Stringing via Manifold Learning

The original approach of stringing consists of projecting a collection x1, . . . , x𝑝 of
predictors from R𝑛 to 𝑠1, . . . , 𝑠𝑝 in R𝑙 , being 𝑙 � 𝑛. Only the case 𝑙 = 1 has been
addressed in the literature. UDS is used to estimate the best ranks 𝑑∗

𝑟𝑠 of pairwise dis-
tances that could lead to the lower-dimensional representation 𝑠1, . . . , 𝑠𝑝 ∈ R. This
intermediate step has similarities with seriation or sequencing [6]. The difference is
that stringing takes advantage of the inherent order of R, and treats the reordered
components of each subject as realizations of a smooth stochastic process.
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Assume we observe 𝑝 features (or predictors) for 𝑛 subjects, and that we can
arrange data in a matrix X𝑛×𝑝 with rows:{

𝑥𝑖 · =
(
𝑥𝑖1, . . . , 𝑥𝑖 𝑝
)
; 𝑥𝜏𝑖 · ∈ R𝑝
}𝑛
𝑖=1 .

Each row is generated by a hidden smooth stochastic process {𝑍𝑖 (𝑠), 𝑠 ∈ 𝐼 ⊂ R},
with support points 𝑠 𝑗 ∈ 𝐼, 𝑗 = 1, . . . , 𝑝, so that 𝑍𝑖 (𝑠 𝑗 ) = 𝑥𝑖 𝑗 is an entry of X.
The stringing methodology is developed under the hypothesis that what we actually
observe is a matrix X̃ with a randomly permuted order of the columns. In such cases,
treating the rows as realizations of a smooth function is meaningless and a previous
reordering step is needed.

UDS is perhaps the simplest tool to recover the best unidimensional configuration
of the columns x̃ 𝑗 of X̃. Through any suitable pairwise-column distance (dissimilar-
ities are also possible) we can build a matrix 𝐷 = (𝑑𝑟𝑠)1≤𝑟 ,𝑠≤𝑝 with entries:

𝑑𝑟𝑠 = 𝑑 (x̃𝑟 , x̃𝑠); x̃𝑟 , x̃𝑠 ∈ R𝑛.

The procedure finds minimizing dissimilarities 𝑑∗
𝑟𝑠, in the target space R, of the

stress:

𝑆2 (𝑠) = min
{𝑑∗
𝑟𝑠 : 𝑑∗

𝑟𝑠∼𝑑𝑟𝑠 }

∑
𝑟<𝑠 (𝑑∗

𝑟𝑠 − 𝑑𝑟𝑠)2∑
𝑟<𝑠 𝑑

2
𝑟𝑠

,

where 𝑑∗
𝑟𝑠 ∼ 𝑑𝑟𝑠 means monotonically related quantities (𝑑𝑟𝑠 < 𝑑𝑢𝑣 =⇒ 𝑑∗

𝑟𝑠 ≤
𝑑∗
𝑢𝑣 , ∀ 𝑟 < 𝑠, 𝑢 < 𝑣); and the 𝑑𝑟𝑠 represent point-to-point distances of a configura-

tion 𝑠 ⊂ R. Details can be consulted in [6].
Therefore, with UDS we can assign a support point 𝑠 𝑗 ∈ R to each predictor

indexed by 𝑗 = 1, . . . , 𝑝. In [3], the new order of the predictors is characterized by
a permutation 𝜓𝑝 , called the stringing function, such that 𝑠𝜓𝑝 (1) < 𝑠𝜓𝑝 (2) < . . . <
𝑠𝜓𝑝 (𝑝) . For each predictor 𝑗 with rank order 𝜓𝑝 ( 𝑗), and for a fix 𝑇 , we could also

define its regularized position 𝑠 𝑗 𝑝 =
𝑗 − 1
𝑝 − 1

· 𝑇 . The purpose is to normalize the

resulting domain to [0, 𝑇].
As an alternative to UDS, we assume that the predictors x̃ 𝑗 = (𝑥1 𝑗 , . . . , 𝑥𝑛 𝑗 )𝜏 ∈

R𝑛 (columns of X̃) are the result of mapping the coordinates {𝑠 𝑗 ∈ M} of an
underlying 𝑙-dimensional smooth manifold M. Thus, through manifold learning it
is possible to recover the unknown coordinates of these vectors in a lower, but more
complex, 𝑙-dimensional space. In this paper we focus on the case 𝑙 = 1, analogously
to UDS-stringing. In this context we propose Isomap [9] and LLE [8] algorithms to
compute the estimates {𝑠 𝑗 ∈ M}.

The motivation behind this approach can be illustrated with the Swiss-roll exam-
ple, Fig. 16.1. Consider the rectangle M̃ covering [0, 10] × [0, 10] ⊂ R2, Fig. 16.1.a.
We roll this two-dimensional manifold and map it to R3 using the transformation
(𝑥, 𝑦) → (𝑥 cos(𝑥), 𝑦, 𝑥 sin(𝑥)), Fig. 16.1.c. MDS preserves Euclidean distances
across dimensions. Thus, if we apply this method to our data in R3, points like 𝐴
and 𝐵 will be positioned closer than they really are in the underlying rectangle.
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(a)

(b)

(c)

Fig. 16.1 The Swiss-roll example: a two-dimensional manifold M̂ (rectangle in [0, 10]× [0, 10] ⊂
R2) is mapped to R3. (a) The one dimensional configuration to be estimated with stringing. (b) The
true distance between points 𝐴 and 𝐵 in M̂ (bold line) is approximated by the shortest path (dashed
line): the result of joining neighboring points. (c) The coordinates in R3 exhibit a Swiss-roll shape.
The points 𝐴 and 𝐵 seem to be closer in the higher-dimensional space, according to the Euclidean
distance. The dashed line approximates the geodesic distance in M̂, by connecting neighboring
points in R3.

The Isomap algorithm approximates the geodesic distances {𝑑M
𝑟𝑠 }—those dis-

tances in the underlying manifold—by means of the shortest paths between any of
the pairs x̃𝑟 , x̃𝑠 ∈ R𝑛. These paths are the result of joining neighboring points, de-
fined as the 𝜅-nearest according to the Euclidean distance in R𝑛. Finally, it applies
MDS to estimate the {𝑠 𝑗 }, using as inputs the approximations {𝑑M

𝑟𝑠 }. This is a global
approach to manifold learning, as it preserves the global geometry of M.

In the Swiss-roll example, Isomap estimates the shortest paths {𝑑M̃
𝐴𝐵} (dashed

line in Fig. 16.1.c) between 𝐴 and 𝐵, by joining neighboring points in R3. This
estimation approximates the true Euclidean distance in R2 (bold line in Fig. 16.1.b)
where the manifold M̃ lies. Moreover, if we fix the target dimension to be 𝑙 = 1,
manifold learning still retrieves a fair projection onto the x-axis (Fig. 16.1.a). To
overcome the problem of fixing 𝑙, we adopt the Local Quality criterion (𝑄local)
[4], and estimate the optimum number of neighbors 𝜅max < 𝑝 that improves the
estimation of the coordinates in R. Increasing the number 𝜅max makes the outcome
of Isomap closer to that from classical MDS, so we expect Isomap-stringing to work
at least as well as the UDS-stringing.

The second algorithm, LLE, preserves local neighborhood information in the
manifold, without estimating the true geodesic distances. It fixes a suitable number
𝜅 and reconstructs each point ˆ̃x𝑖 =

∑𝜅
𝑗=1 �̂�𝑖 𝑗 x̃ 𝑗 , in terms of its 𝜅-nearest neighbors
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𝑁 𝜅𝑖 = {x̃ 𝑗 }𝜅𝑗=1, and some optimal weights �̂�𝑖 𝑗—in the sense that they minimize the
reconstruction error

∑𝑝
𝑖=1 ‖ ˆ̃x𝑖 − x̃𝑖 ‖2; subject to

∑
𝑗 �̂�𝑖 𝑗 = 1, and �̂�𝑖 𝑗 = 0,∀𝑥 𝑗 ∉ 𝑁 𝜅𝑖 .

The coordinates {𝑠𝑖 ∈ M}𝑝𝑖=1, best reconstructed by the weights {�̂�𝑖 𝑗 }𝜅𝑗=1, are
estimated by minimizing the embedding cost function:

𝑝∑
𝑖=1

‖𝑠𝑖 −
𝜅∑
𝑗=1

�̂�𝑖 𝑗 𝑠 𝑗 ‖2.

Under some constraints that make the objective function invariant under translation,
rotation, and change in scale, the problem is reduced to the estimation of the bottom
𝑙+1 eigenvectors of the sparse 𝑝× 𝑝 matrix 𝑀 =

(
𝐼𝑝 − �̂�
) 𝜏 (

𝐼𝑝 − �̂�
)
. The “bottom”

eigenvectors refer to those with the 𝑙+1 smallest eigenvalues, 𝐼𝑝 is the identity matrix
of size 𝑝× 𝑝, and �̂� is the matrix of optimal weights (�̂�𝑖 𝑗 )1≤𝑖, 𝑗≤𝑝 . Details regarding
the LLE algorithm can be consulted in the original paper [8]. Once more, we focus on
the target dimension 𝑙 = 1, and adopt the 𝑄local criterion to compute the optimum
𝜅max.

Finally, once a configuration 𝑠 ⊂ R is achieved, we can compute the regularized
nodes {𝑠 𝑗 𝑝 ∈ [0, 𝑇] ⊂ R}, and represent the underlying smooth stochastic process
that generates the data by means of the Karhunen-Loève (K-L) expansion [7]. The
model can be expressed as follows:

𝑥𝑖 𝑗 = 𝑍𝑖 (𝑠 𝑗 𝑝) + 𝜖𝑖 𝑗

= 𝜇(𝑠 𝑗 𝑝) +
∞∑
𝑘=1

𝜉𝑖𝑘𝜙𝑘 (𝑠 𝑗 𝑝) + 𝜖𝑖 𝑗 ,

where 𝜇 is the mean function of the underlying stochastic process, and {𝜙𝑘 } is a
sequence of orthonormal eigenfunctions, in the 𝐿2 ( [0, 𝑇]) sense, of the covariance
operator 𝐴𝐺 : 𝐿2 ( [0, 𝑇]) → 𝐿2 ( [0, 𝑇]). This operator is defined as:

(𝐴𝐺 · 𝑓 ) (𝑡) =
∫

[0,𝑇 ]
𝐺 (𝑠, 𝑡) 𝑓 (𝑠)𝑑𝑠,

for any 𝑓 ∈ 𝐿2 ( [0, 𝑇]). The kernel 𝐺 (𝑠, 𝑡) = E [(𝑋 (𝑡) − 𝜇(𝑡)) · (𝑋 (𝑠) − 𝜇(𝑠))], for
any 𝑠, 𝑡 ∈ [0, 𝑇]; is the covariance function of the stochastic process 𝑋 . The principal
component scores {𝜉𝑘 } are zero-mean uncorrelated random variables satisfying 𝜉𝑘 =∫
[0,𝑇 ] (𝑋 (𝑡) − 𝜇(𝑡)) 𝜙𝑘 (𝑡)𝑑𝑡. The error terms are all independent and identically

distributed (i.i.d.) 𝜖𝑖 𝑗 ∼ 𝑁 (0, 𝜎2).

16.3 Simulation Study

We simulate data from noisy Ornstein-Uhlenbeck (O-U) processes, and study the per-
formance of stringing via manifold learning. This is the case of zero-mean stochastic
processes {𝑈𝑡 : 𝑡 ∈ [0, 𝑇]}, characterized by the covariance function:
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𝐺 (𝑠, 𝑡) = 𝑃 exp (𝛼 |𝑡 − 𝑠 |) .

We generate the O-U processes by means of the truncated K-L expansion:

𝑈 (𝑡) =
𝐾∑
𝑘=1

𝜉𝑘𝜙𝑘 (𝑡); 𝑡 ∈ [0, 𝑇] ⊂ R.

Following [10], it is possible to estimate the eigenvalues {𝜆𝑘 } for each O-U
process using the formula: 𝜆𝑘 =

2𝑃𝛼
𝛼2 + 𝑏2

𝑘

, where the numbers 𝑏𝑘 are the positive

solutions of:

tan
(
𝑏𝑘

𝑇

2

)
=

𝛼

𝑏𝑘
(𝑘 is odd); tan

(
𝑏𝑘

𝑇

2

)
= −

𝑏𝑘
𝛼

(𝑘 is even).

The eigenfunctions {𝜙𝑘 (𝑡)}, normalized in [0, 𝑇] are:

cos
(
𝑏𝑘
(
𝑡 − 𝑇

2
) )[

𝑇
2

(
1 +

sin(𝑏𝑘𝑇)
𝑏𝑘𝑇

)]1/2 (𝑘 is odd);
sin
(
𝑏𝑘
(
𝑡 − 𝑇

2
) )[

𝑇
2

(
1 −

sin(𝑏𝑘𝑇)
𝑏𝑘𝑇

)]1/2 (𝑘 is even).

For i.i.d. 𝜉𝑘 ∼ 𝑁 (0, 1) and i.i.d. 𝑧𝑖 𝑗 ∼ 𝑁 (0, 1), we generate noisy O-U realizations:

𝑥𝑖 𝑗 =
𝐾∑
𝑘=1

𝜉𝑘𝜙𝑘 (𝑡 𝑗 ) + 𝜎 · 𝑧𝑖 𝑗 ,

where the error variance is computed in terms of the signal-to-noise ratio (SNR):

𝑆𝑁𝑅 =
1
𝑛 ·𝑝
∑
𝑖, 𝑗 |𝑢𝑖 𝑗 |
𝜎

∈ {∞, 6.81, 2.68}.

We study different 𝑛/𝑝 ratios: 𝑛 = 30, 𝑝 = 100; 𝑛 = 𝑝 = 50; and 𝑛 = 60, 𝑝 = 100.
The nodes {𝑡 𝑗 } are 𝑝 regularized positions on the interval [0, 4]. For fixed 𝑃 = 1,
𝛼 = 0.1 we take 𝐾 = 14 basis functions and scores.

We apply stringing to 400 matrices X̃𝑛×𝑝 generated from noisy O-U processes, but
with randomly-permuted columns. We compare Isomap-stringing and LLE-stringing
with UDS-stringing based on Euclidean distance and Pearson Correlation. To assess
the performance of each method, we use the relative order error (ROE) introduced
in [3]:

𝑅𝑂𝐸 =

∑𝑝
𝑗=1 |𝑜𝑆𝑗 − 𝑜 𝑗 |

E

(∑𝑝
𝑗=1 |𝑜𝑅𝑗 − 𝑜 𝑗 |

) = ∑𝑝𝑗=1 |𝑜𝑆𝑗 − 𝑜 𝑗 |
(𝑝 − 1) (𝑝 + 1)

3

,

where 𝑜 𝑗 denotes the true rank for each predictor indexed by 𝑗 = 1, . . . , 𝑝; 𝑜𝑅𝑗
the rank of predictor 𝑗 after the random permutation; and 𝑜𝑆𝑗 the rank induced by
stringing.
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Fig. 16.2 Boxplots of ROE values computed on 400 simulated O-U processes. Columns
represent different SNR: {∞, 6.81, 2.68}. Rows represent three different 𝑛/𝑝 ratios:
{30/100; 50/50; 60/100}. Stringing is carried out via Unidimensional Scaling (UDS) and Manifold
Learning (ML).

Fig. 16.2 includes the resulting boxplots of ROE values, under different SNR
(and therefore different variances). Comparisons with Isomap-stringing and LLE-
stringing show that manifold learning outperforms UDS: lower medians, smaller
interquartile range (IQR) and fewer outliers. In this study, Isomap seems to be the
best algorithm when 𝑆𝑁𝑅 → ∞ (𝜎 → 0). On the other hand, LLE performs better
in noisier scenarios, no matter the ratio 𝑛/𝑝. Isomap and LLE are the most consistent
algorithms under the hypothesis of measurement errors.

16.4 Discussion

The results of this study indicate that stringing via manifold learning achieves a
better reordering of the data, compared to the previous version of the methodology.
If predictors are allowed to be in a manifold, then it is possible to estimate smoother
transitions between them. This hypothesis is consistent with the intrinsic complexity
of high-dimensional data vectors. Thus, combining our proposal with FDA can result
in an effective representation of general high-dimensional data.
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We hypothesize that our proposal, combined with functional regression, could
lead to new insights into the problem of high-dimensional data modeling. This idea
has been explored for UDS-stringing in [3], as an alternative to the sparsity con-
straints from penalized regression. Also, the essence of manifold learning: reducing
dimension, could be a key factor to extend stringing. The idea of estimating positions
in R2 or R3 for each predictor—instead of assigning ranks—was mentioned in [3],
but has not been addressed in the literature.

The applicability to real data, such as genetic expression arrays [11, 3], makes
stringing and its generalization an attractive research topic. Recently, some extensions
to more complex datasets have been published. In [2] stringing is applied to study
functional connectivity in patients with Alzheimer. In [12] stringing is included as
part of a functional test for high-dimensional covariance matrix, with application to
mitochondrial calcium concentration.
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Chapter 17
Functional Two-sample Tests Based on
Empirical Characteristic Functionals

Zdeněk Hlávka and Daniel Hlubinka

Abstract Two-sample tests for functional data based on empirical characteristic func-
tionals are proposed. The test statistic is of Cramér–von Mises type with integration
over a preselected family of probability measures, say 𝑄, leading a computationaly
feasible and powerful test statistic. The choice of the probability measure 𝑄 is dis-
cussed and the empirical size and power of the resulting two-sample functional tests
are investigated in a small simulation study.

17.1 Introduction

Functional data analysis already became a standard [11, 6, 7, 9] with many tools
obtained as a generalization of a corresponding multivariate method. In this contri-
bution, we investigate the general functional two-sample problem and propose a new
two-sample functional test statistic based on empirical characteristic functionals.

Assuming two functional random samples, say 𝑋1, . . . , 𝑋𝑛 and 𝑌1, . . . , 𝑌𝑚, the
problem of testing the null hypothesis of equality of the respective mean functions,
i.e.,

𝐻0 : 𝑚𝑋 (.) = 𝑚𝑌 (.)

has already been extensively investigated, see [3] for an overview. Slightly different
hypothesis is studied in [8], namely

𝐻0 : ∀𝑡 𝑋 (𝑡) =L 𝑌 (𝑡)
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testing simultaneously the distribution of all projections where =L denotes the
equality in distribution.

In the following, instead of comparing only the mean functions or testing the
distributions of projections, we are interested in testing a more general null hypothesis
of equality of entire functional distributions:

H0 : 𝜙𝑋 = 𝜙𝑌 (17.1)

where 𝜙𝑋 and 𝜙𝑌 denotes, respectively, the characteristic functional (CF) of the
𝑋 and 𝑌 sample. The definition and properties of CF and empirical CF (ECF)
are summarized in Section 17.2. A two-sample test statistic based on a distance
between two ECFs is proposed in Section 17.3. Finally, a small simulation study in
Section 17.4 investigates small sample properties of the ECF-based two-sample test.

17.2 Empirical Characteristic Functional

In what follows, we consider functional random variables with values in the space
of continuous functions or in the space of measurable square integrable functions,
i.e., 𝑋 : Ω → C[0, 1] or 𝑋 : Ω → L2 [0, 1], where the domain is as usually (and
wlog) chosen to be [0, 1].

The CF of 𝑋 is 𝜙𝑋 (𝑢) = E exp (𝑖〈𝑢, 𝑋〉) for 𝑢 ∈ C∗[0, 1] or 𝑢 ∈ L∗
2 [0, 1], the

dual space of C[0, 1] or L2 [0, 1], respectively. Due to the properties of CF, it is
sufficient to consider just 𝑢 ∈ L∗

2 [0, 1] = L2 [0, 1] for both options in which case
〈𝑢, 𝑋〉 =
∫ 1
0 𝑢(𝑡)𝑋 (𝑡)d𝑡.

The ECF of a functional random sample 𝑋1, . . . , 𝑋𝑛 is

𝜙𝑋 (𝑢) =
1
𝑛

𝑛∑
𝑘=1

exp
(
𝑖〈𝑢, 𝑋𝑘〉
)
.

The functional data are not observed continuously in most cases. We may consider
all 𝑋𝑖’s to be observed on a regular grid of points 𝑡 𝑗 = 𝑗/𝑁 , 𝑗 = 0, 1, . . . , 𝑁 since
the generalisation to different observation points is straightforward. The ECF is then

𝜙𝑋 (𝑢) =
1
𝑛

𝑛∑
𝑘=1

exp
(
𝑖〈𝑢, 𝑋𝑘〉𝑑
)
,

where 〈𝑢, 𝑋〉𝑑 =
∑𝑁
𝑖=1 𝑢(𝑡𝑖)𝑋 (𝑡𝑖) (𝑡𝑖 − 𝑡𝑖−1) = 1

𝑁

∑𝑁
𝑖=1 𝑢(𝑡𝑖)𝑋 (𝑡𝑖).

17.3 Cramér–von Mises Type of Statistics

Our Cramér–von Mises two-sample test is based on two random samples 𝑋1, . . . , 𝑋𝑛
and 𝑌1, . . . , 𝑌𝑚 with the test statistic
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L2 [0,1]

|𝜙𝑋 (𝑢) − 𝜙𝑌 (𝑢) |2d𝑄(𝑢), (17.2)

where 𝑄 is some probability measure on the space L2 [0, 1] discussed later. The
squared distance |𝜙𝑋 (𝑢) − 𝜙𝑌 (𝑢) |2 of the ECFs may be rewritten as(

1
𝑛

𝑛∑
𝑘=1

cos〈𝑢, 𝑋𝑘〉𝑑 −
1
𝑚

𝑚∑
ℓ=1

cos〈𝑢,𝑌ℓ〉𝑑

)2
+

(
1
𝑛

𝑛∑
𝑘=1

sin〈𝑢, 𝑋𝑘〉𝑑 −
1
𝑚

𝑚∑
ℓ=1

sin〈𝑢,𝑌ℓ〉𝑑

)2
(17.3)

and we obtain after some calculation and using the trigonometric identity the final
form

1
𝑛2

𝑛∑
𝑘, 𝑗=1

cos〈𝑢, 𝑋𝑘 − 𝑋 𝑗〉𝑑+
1
𝑚2

𝑚∑
ℓ, 𝑗=1

cos〈𝑢,𝑌ℓ − 𝑌 𝑗〉𝑑−
2
𝑚𝑛

𝑛∑
𝑘=1

𝑚∑
ℓ=1

cos〈𝑢, 𝑋𝑘 − 𝑌ℓ〉𝑑 .

(17.4)

17.3.1 Choice of 𝑸

The measure𝑄 is some probability measure on the space L2 [0, 1]. We propose to use
a special form of this measure, namely some special form of a Gaussian measure.
Hence, we consider a random function 𝑈 with all finite-dimensional distribution
being multivariate normal distribution. Since the data are observed on a discrete grid
of 𝑁 points, it is sufficient to consider a random vector 𝑈𝑁 =

(
𝑈 (𝑡1), . . . ,𝑈 (𝑡𝑁 )

)
following zero mean 𝑁-dimensional normal distribution with the variance matrix
𝑽 = (𝑣𝑖, 𝑗 )𝑁𝑖, 𝑗=1. For a fixed discretely observed function 𝑥, we have

〈𝑈, 𝑥〉𝑑 =
1
𝑁

𝑁∑
𝑖=1

𝑈 (𝑡𝑖)𝑥(𝑡𝑖) ∼ N ���0, 1
𝑁2

𝑁∑
𝑗 ,𝑘=1

𝑥(𝑡𝑖)𝑥(𝑡 𝑗 )𝑣𝑖, 𝑗

�� = N
(
0, 𝜎2 (𝑥)
)
,

where 𝜎2 (𝑥) = 1
𝑁 2 𝑥

𝑇𝑽𝑥 and E𝑄 cos〈𝑈, 𝑥〉𝑑 becomes

E𝑄 cos

(
1
𝑁

𝑁∑
𝑖=1

𝑈 (𝑡𝑖)𝑥(𝑡𝑖)

)
= exp
(
−

1
2
𝜎2 (𝑥)
)

(17.5)

and the test statistic (17.2) based on the two samples 𝑋1, . . . , 𝑋𝑛 and 𝑌1, . . . , 𝑌𝑚
becomes
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𝑇 =
1
𝑛2

𝑛∑
𝑘, 𝑗=1

exp
(
−

1
2𝑁2 (𝑋𝑘 − 𝑋 𝑗 )𝑇𝑽 (𝑋𝑘 − 𝑋 𝑗 )

)
+

1
𝑚2

𝑚∑
𝑘, 𝑗=1

exp
(
−

1
2𝑁2 (𝑌𝑘 − 𝑌 𝑗 )𝑇𝑽 (𝑌𝑘 − 𝑌 𝑗 )

)
−

2
𝑛𝑚

𝑛∑
𝑘=1

𝑚∑
𝑗=1

exp
(
−

1
2𝑁2 (𝑋𝑘 − 𝑌 𝑗 )𝑇𝑽 (𝑋𝑘 − 𝑌 𝑗 )

)
.

(17.6)

The null hypothesis will be rejected for large values of the test statistic 𝑇 , i.e., for

𝑇 ≥ 𝑐(𝛼), (17.7)

where 𝑐(𝛼) denotes critical value such that 𝑃(𝑇 ≥ 𝑐(𝛼) |H0) = 𝛼. In the following,
the critical value will be approximated by the permutation principle [2].

17.3.2 The Matrix 𝑽

The performance of the test largely depends on the matrix 𝑽 introduced in Sec-
tion 17.3.1. We propose several possibilities and our test is then compared with other
two-sample tests in a small simulation study.

The most simple choice is to set 𝑽 = I𝑁 but the following possibilities should
have better power.
Variance matrix of a Gaussian process: This proposal follows classical “random
projection” approach. It is considered that𝑈 is a Gaussian process, usually a Wiener
process and 𝑽 = Σ𝑊 is the variance matrix of the process observed at 𝑗/𝑁, 𝑗 =
1, 2, . . . , 𝑁 .
The observations: We consider 𝑛 + 𝑚 iid 𝑍ℓ ∼ N(0, 1), and

𝑈 =
1

√
𝑛 + 𝑚

⎡⎢⎢⎢⎢⎣
𝑛∑
𝑗=1

𝑍 𝑗𝑋 𝑗 +
𝑚∑
𝑘=1

𝑍𝑘+𝑛𝑌𝑘

⎤⎥⎥⎥⎥⎦ .
Then

𝑧𝑞,𝑟 =
1

𝑁2 (𝑛 + 𝑚)

⎡⎢⎢⎢⎢⎣
𝑛∑
𝑗=1

𝑋 𝑗 (𝑡𝑞)𝑋 𝑗 (𝑡𝑟 ) +
𝑚∑
𝑘=1

𝑌𝑘 (𝑡𝑞)𝑌𝑘 (𝑡𝑟 )
⎤⎥⎥⎥⎥⎦

and we can set 𝑽 = 𝒁 = (𝑧𝑞,𝑟 )𝑞,𝑟=1,...,𝑁 .
Sample covariance matrix: By centering the (functional) observations, we actually
obtain 𝑽 = Σ̂, where Σ̂ denotes the sample variance matrix of the observed 𝑁-
dimensional random vectors (approximating the functional observations).

Notice that the quadratic forms in exponential functions in (17.6) look similarly to
Hotelling’s𝑇2 test statistic, where the matrix𝑽 is chosen as the inverse of the sample
covariance matrix. Therefore, further possible choices of the matrix 𝑽 could be the
inverse of the matrix Σ̂ or Σ𝑊 . Note that the inverse of Σ̂ generally does not exist
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but, depending on the number of observations, first 𝑑 eigenvectors and eigenvalues
can be used to calculate a simple approximation. Interestingly, the eigenvectors (or
eigenfunctions) tend to recover the direction (in the functional space) that separates
the two sets of functional observations, see also the discussion in [5].
Eigenvectors and eigenvalues: Denote by𝜆1 ≥ 𝜆2 ≥ . . . the ordered eigenvalues, and
by 𝑒1, 𝑒2, . . . the corresponding orthogonal eigenfunctions of the covariance operator
of the combined dataset. Consider 𝑑 ≥ 1 and iid random variables 𝑍ℓ ∼ N(0, 1),
and define

𝑈 =
𝑑∑
ℓ=1

1
√
𝜆ℓ

𝑒ℓ𝑍ℓ .

The theoretical eigenfunctions and eigenvalues are replaced by eigenvectors 𝑒ℓ and
eigenvalues �̂�ℓ of the empirical variance matrix Σ̂ in practical applications. Then for
some 1 ≤ 𝑑 ≤ min(𝑚 + 𝑛, 𝑁) define

𝑒𝑞,𝑟 =
𝑑∑
ℓ=1

1
�̂�ℓ

𝑒ℓ (𝑡𝑞)𝑒ℓ (𝑡𝑟 ).

In the following, we denote the resulting matrix𝑽 = (𝑒)𝑞,𝑟=1,...,𝑁 = Σ̂−1
𝑑 . The choice

of 𝑑 is discussed later.

17.4 Simulation and Comparison

We start by investigating the empirical power against the ’location shift’ alternative.
Following [4, Section 5], we generate two functional samples

𝑋𝑖 (𝑡) = 𝜇𝑥 (𝑡) + 𝜀𝑥,𝑖 (𝑡) (17.8)

and
𝑌𝑖 (𝑡) = 𝜇𝑦 (𝑡) + 𝜀𝑦,𝑖 (𝑡),

where the mean functions are 𝜇𝑥 (𝑡) = (1, 2.3, 3.4, 1.5) (1, 𝑡, 𝑡2, 𝑡3)� and 𝜇𝑦 (𝑡) =
𝜇𝑥 (𝑡) + 2𝛿(1, 2, 3, 4) (1, 𝑡, 𝑡2, 𝑡3)�/

√
30 so that the parameter 𝛿 controls the differ-

ence between 𝜇𝑥 (𝑡) and 𝜇𝑦 (𝑡). The subject-effect functions 𝜀.,𝑖 (𝑡) are defined as
a random linear combination of 11 orthonormal basis vectors 𝜓𝑤 (𝑡) (such that
𝜓1 (𝑡) = 1, 𝜓2𝜔 (𝑡) =

√
2 sin(2𝜋𝜔𝑡), 𝜓2𝜔+1(𝑡) =

√
2 cos(2𝜋𝜔𝑡), for 𝜔 = 1, . . . , 5)

with coefficients 𝑏.,𝑖,𝑤 ∼ 𝑁 (0, 1.5𝜌𝑤 ), for 𝑤 = 1, . . . , 11.
In this section, we set 𝜌 = 0.5. The choice 𝛿 = 0 means that the null hypothesis is

satisfied and we investigate the empirical size. An example of two data sets generated
under the alternative, with 𝛿 = 0.5, is plotted in Figure 17.1. Note that these two
samples were generated in the same way as samples 2 and 3 in [4, Section 5.2].

We compare empirical sizes and powers of the proposed two-sample ECF-based
test (ECF) with various variance matrices 𝑽, described in Section 17.3.2, to tests
implemented in R library fdANOVA [4]. Many of these tests are based on the usual
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Fig. 17.1 Random samples -1, . . . , -10 (solid lines) and .1, . . . , .10 (dashed lines) generated
according to the algorithm described in Section 17.4 with X = 0.5 and d = 0.5.

univariate (pointwise) F-statistics, say �= (C) for C ∈ (0, 1), that are combined into a
single test statistic:

GPF: globalizing pointwise F test, )GPF =
∫
�= (C)3C,

Fmaxb: maximizing pointwise F test, )Fmaxb = max �= (C),

Another approach is based on testing : projections of the original functions by
combining p-values [1] that are based on:

ANOVA: ANOVA F-test statistic,
ATS: ANOVA-type statistic,
WTPS: Wald type permutation statistic.

Similarly to the choice of the random process (and matrix \) in Section 17.3.2, the
projections are generated either as Gaussian white noise (G) or Brownian motion
(B). A detailed description of the function fanova.tests() in R library fdANOVA
is given in [4].

In the first two columns of Table 17.1, we can see that the empirical size of all
tests is close to the nominal level U = 5% both for = = < = 10 and = = < = 20
observations.

For = = < = 10, the empirical power is smallest for ECF tests with \ = Σ−1
,

(7.8%) and\ = ` (27.6%). The empirical power of most tests lies between 47% and
60%. Somewhat higher power, almost 70%, has been obtained for Fmaxb and ECF
tests with \ = Σ̂−1

6 . Using 3 = 8 eigenvectors, the highest empirical power (90.5%)
is observed for the ECF test with \ = Σ̂−1

8 .
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𝛿 = 0 𝛿 = 0.5
method test/𝑽 𝑛 = 10 𝑛 = 20 𝑛 = 10 𝑛 = 20
GPF 6.1 6.2 58.0 88.4
FMAXB 6.1 3.6 69.8 98.0

ANOVA 3.5 3.3 51.1 90.1
P-Gauss ATS 5.0 4.9 54.2 89.6

WTPS 3.8 3.6 47.8 90.5
ANOVA 2.7 3.4 54.7 87.7

P-BM ATS 3.4 3.5 55.5 87.0
WTPS 2.6 3.1 47.5 88.0
I 4.7 4.0 53.9 89.3
Σ𝑊 4.4 4.8 57.5 87.8
Σ−1
𝑊 5.8 4.8 7.8 11.8

𝒁 4.8 4.9 27.6 52.1ECF
Σ̂ 4.5 5.6 43.2 76.6
Σ̂−1

2 4.2 5.7 47.6 79.4
Σ̂−1

6 5.2 5.9 67.6 95.2
Σ̂−1

8 4.2 4.9 90.5 99.9

Table 17.1 Empirical size (𝛿 = 0) and empirical power (𝛿 = 0.5) (in %) of two-sample functional
tests, nominal level 𝛼 = 0.05, 𝜌 = 0.5, 𝑁 = 50 gridpoints, equally sized samples (𝑛 = 𝑚), 1000
simulations with 1000 permutations. Bold font denotes the highest observed empirical power.

Results for 𝑛 = 𝑚 = 20 are similar but observed differences are smaller because
the power of most tests is close to 90%.

F-statistic ECF
𝑛 = 10 𝑛 = 20 𝑽 𝑛 = 10 𝑛 = 20

GPF 7.6 5.4 I 6.3 9.2
FMAXB 6.9 6.2 Σ𝑊 22.4 54.1

ANOVA 4.7 4.4 Σ−1
𝑊 8.5 14.8

P-Gauss ATS 4.9 3.3 𝒁 28.6 59.1
WTPS 4.9 4.5 Σ̂ 53.2 89.5
ANOVA 3.5 3.1 Σ̂−1

2 6.4 4.9
P-BM ATS 3.6 3.9 Σ̂−1

6 9.8 7.0
WTPS 3.1 3.0 Σ̂−1

8 10.0 10.6

Table 17.2 Empirical power (𝜎𝑦 = 2) (in %) of two-sample functional tests, nominal level
𝛼 = 0.05, 𝜌 = 0.5, 𝑁 = 50 gridpoints, equally sized samples (𝑛 = 𝑚), 1000 simulations with 1000
permutations. Bold font denotes the highest observed empirical power.

The study of the empirical power against the ‘change-of-scale’ alternative is
summarized in Table 17.2; the random functions 𝑋𝑖 (𝑡) are still generated according
to (17.8) while the second sample is changed to

𝑌 𝜎𝑖 (𝑡) = 𝜇𝑦 (𝑡) + 𝜎𝑦𝜀𝑦,𝑖 (𝑡),

with 𝛿 = 0 (implying that 𝜇𝑥 (.) = 𝜇𝑦 (.)) and with additional parameter 𝜎𝑦 > 0
controlling the variance. As may be expected, the empirical power of the F-statistic-
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based tests shown in Table 17.2 is very close to the nominal test level. The best
power is obtained for the ECF-based test with 𝑽 = Σ̂, the sample covariance matrix.
On the other hand, the ECF-based tests using 𝑽 based on the inversion of (some)
covariance matrix do not perform very well.

We conclude that the ECF test with the matrix 𝑽 approximating the inverse
covariance matrix leads to the best results against the ‘location shift’ alternative
while the ECF test with 𝑽 = Σ̂ leads to the best results against the ‘change-of-
scale’ alternative. Interestingly, the ECF test outperforms the F-statistic-based tests
implemented in library fdANOVA even against the ‘location shift’ alternative.
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Chapter 18
Some Remarks on the Nelson–Siegel Model

Lajos Horváth

Abstract We discuss some results in functional data analysis where the mean and
the covariance are expended in some theoretically justified basis.

18.1 Introduction and Motivation

We consider functional observations 𝑋1 (𝑡), 𝑋2 (𝑡), . . . , 𝑋𝑁 (𝑡) defined on the interval
T . It is popular to assume in financial models that

𝑋𝑖 (𝑡) =
𝐾∑
ℓ=1

𝑏𝑖,ℓ,0 𝑓ℓ (𝑡; 𝝀0) + 𝜖𝑖 (𝑡), with 𝐸𝜖𝑖 (𝑡) = 0, 𝑡 ∈ T , 1 ≤ 𝑖 ≤ 𝑁, (18.1)

where the random coefficients satisfy

𝑏𝑖,ℓ,0 = 𝑐ℓ,0 + 𝑒𝑖,ℓ with 𝐸𝑒𝑖,ℓ = 0, 𝑡 ∈ T , 1 ≤ ℓ ≤ 𝐾 and 1 ≤ 𝑖 ≤ 𝑁. (18.2)

Under assumptions (18.1) and (18.2)

𝐸𝑋𝑖 (𝑡) =
𝐾∑
ℓ=1

𝑐ℓ,0 𝑓ℓ (𝑡; 𝝀0), 𝑡 ∈ T and 1 ≤ 𝑖 ≤ 𝑁,

i.e. the mean of the observations can be written as a linear combination of the
functions 𝑓1 (𝑡; 𝝀0), 𝑓2 (𝑡; 𝝀0), . . . , 𝑓𝐾 (𝑡; 𝝀0), where the functions 𝑓1, 𝑓2, . . . , 𝑓𝐾 are
known and 𝝀0 ∈ 𝑅𝑑 is the true value of an unknown parameter. In several applications
𝝀0 is fixed and set to a value based on previous experiments or the choice is justified by
theoretical arguments. It is generally not estimated, so the curves 𝑓𝑘 (𝑡; 𝝀0) are treated
as given, deterministic functions. These functions are called functional factors, or
simply factors. The motivation for (18.1) and (18.2) is the popular Nelson–Siegel
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model [13] (cf. [6]) and its extensions. Further motivations and applications of the
model in (18.1) and (18.2) are given in [1, 3, 4, 5, 7, 16, 17]. The parameter
of the model is a = (𝑐1, 𝑐2, . . . , 𝑐𝐾 , 𝝀

�)� ∈ 𝑅𝐾+𝑑 , whose true value is a0 =
(𝑐1,0, 𝑐2,0, . . . , 𝑐𝐾,0, 𝝀

�
0 )�. [10] use least squares to estimate the value of 𝝀0. The

estimator �̂�𝑁 minimizes the least squares loss function

𝑈𝑁 (a) = 1
𝑁

𝑁∑
𝑖=1

∫ (
𝑋𝑖 (𝑡) −

𝐾∑
ℓ=1

𝑐ℓ 𝑓ℓ (𝑡; 𝝀)

)2
𝑑𝑚(𝑡), (18.3)

where 𝑚(𝑡) is a suitably chosen weight function. The estimator â𝑁 is thus defined
by

â𝑁 = argmaxa∈A𝑈𝑁 (a).

[10] establish the almost sure consistency and the asymptotic normality of �̂�𝑁 . These
results are used to provide tests to check the validity of the model defined by (18.1)
and (18.2). Following the methodology of [2], heteroscedastic functional errors 𝜖𝑖 in
(18.1) and heteroscedastic multivariate errors 𝑒𝑖,ℓ in (18.2) are allowed. In contrast
to [2], [10] does not assume that the times, when the second order properties of 𝜖𝑖
and/or 𝑒𝑖,ℓ change, are known. So the errors in the Nelson–Siegel model might not
be stationary, the observation is segmented into periods of mean stationarity. [8]
investigated a similar model. They established tests to find changes in the mean of
the observations when the variance of the observations is a function of time.

18.2 Mathematical Interpretation of the Nelson–Siegel Model

We rewrite (18.1) and (18.2) as

𝑋𝑖 (𝑡) =
𝐾∑
ℓ=1

𝑐ℓ,0 𝑓ℓ (𝑡; 𝝀0) +
𝐾∑
ℓ=1

𝑒𝑖,ℓ,0 𝑓ℓ (𝑡; 𝝀0) + 𝜖𝑖 (𝑡), 𝑡 ∈ T , 1 ≤ 𝑖 ≤ 𝑁. (18.4)

Hence

𝐸𝑋𝑖 (𝑡) = 𝜇(𝑡) =
𝐾∑
ℓ=1

𝑐ℓ,0 𝑓ℓ (𝑡; 𝝀0)

and 𝐾 functions completely determine the mean of the observations. Since the func-
tions are linearly independent in the space of square integrable functions, we can
assume without loss of generality that they are orthogonal. The errors are decom-
posed into two parts in (18.4), one part is spanned by 𝑓1, 𝑓2, . . . , 𝑓𝐾 and the second
part is 𝜖𝑖 (𝑡) and it is assumed that these two terms are independent or at least un-
correlated. The decomposition of (18.4) is similar to the projection method which
has been successfully used in functional data analysis. [9] and [11] provide detailed
accounts of the applications of projections and several data examples.

Let 𝜙1, 𝜙2, . . . , be an orthonormal basis in 𝐿2 [T ], the Hilbert space of square
integrable functions on T . The inner product in 𝐿2 [T ] is defined by
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〈 𝑓 , 𝑔〉 =
∫

T
𝑓 (𝑡)𝑔(𝑡)𝑑𝑡

and the corresponding norm is ‖ · ‖T . We write 𝑋𝑖 in the standard nonparametric
form

𝑋𝑖 (𝑡) = 𝜇(𝑡) + 𝜂𝑖 (𝑡) with 𝐸𝜂𝑖 (𝑡) = 0, 𝑡 ∈ T , 1 ≤ 𝑖 ≤ 𝑁. (18.5)

The projection of 𝑋𝑖 (𝑡) into the direction of 𝜙ℓ (𝑡) is

〈𝑋𝑖 , 𝜙ℓ〉 = 𝜇ℓ + 𝜂𝑖,ℓ , 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ ℓ < ∞,

where 𝜇ℓ = 〈𝜇, 𝜙ℓ〉 and 𝜂𝑖,ℓ = 〈𝑋𝑖 , 𝜙ℓ〉. Thus we obtain the Karhunen–Loéve
expansion of 𝑋𝑖 (𝑡)

𝑋𝑖 (𝑡) =
∞∑
ℓ=1

𝜇ℓ𝜙ℓ (𝑡) +
∞∑
ℓ=1

𝜂𝑖,ℓ𝜙ℓ (𝑡),

which can be written as

𝑋𝑖 (𝑡) =
𝐾∑
ℓ=1

𝜇ℓ𝜙ℓ (𝑡) +
𝐾∑
ℓ=1

𝜂𝑖,ℓ𝜙ℓ (𝑡) + 𝜂𝑖 (𝑡), 𝑡 ∈ T , 1 ≤ 𝑖 ≤ 𝑁.

Of course, 𝜂𝑖 (𝑡) = 0 if and only if 𝜙1 (𝑡), 𝜙2 (𝑡), . . . , 𝜙𝐾 (𝑡) span 𝜇(𝑡). So the Nelson–
Siegel model picks 𝐾 functions which completely explain the mean.

The most often used method to study random curves is the functional principle
component analysis, which uses the orthonormal eigenfunctions of

𝐶 (𝑡, 𝑠) = 𝐸 (𝑋𝑖 (𝑡) − 𝜇(𝑡)) (𝑋𝑖 (𝑠) − 𝜇(𝑠)),

assuming that the sample is stationary. The eigenvalues 𝜏1 ≥ 𝜏2 ≥ . . . and the
corresponding eigenfunctions 𝜓1 (𝑡), 𝜓2 (𝑡), . . . are the solutions of the eigenvalue
problem

𝜏𝑗𝜓 𝑗 (𝑡) =
∫

T
𝐶 (𝑡, 𝑠)𝜓 𝑗 (𝑠)𝑑𝑠, 1 ≤ 𝑗 < ∞. (18.6)

(the norm of the eigenfunctions is 1). The principle component analysis gives the best
approximation for the error term in (18.5). However, the scores 〈𝜇, 𝜓ℓ〉, 1 ≤ ℓ ≤ 𝐾
might not provide any information about 𝜇(𝑡) or the approximation for 𝜇(𝑡) in terms
of the first 𝐾 eigenfunctions of the covariance function 𝐶 (𝑡, 𝑠) is rather poor. As
usual, 𝐶 (𝑡, 𝑠) unknown but it is easily approximated by the empirical covariance
function

�̂�𝑁 (𝑡, 𝑠) =
1
𝑁

𝑁∑
𝑖=1

(𝑋𝑖 (𝑡) − �̂�𝑁 (𝑡)) (𝑋𝑖 (𝑠) − �̂�𝑁 (𝑠)), with �̂�𝑁 (𝑡) =
1
𝑁

𝑁∑
𝑖=1

𝑋𝑖 (𝑡).

The empirical eigenvalues 𝜏1 ≥ 𝜏2 ≥ . . . ≥ 𝜏𝑁 ≥ 0 and eigenfunctions
�̂�1 (𝑡), �̂�2 (𝑡), . . . , �̂�𝑁 (𝑡) defined by
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𝜏𝑗 �̂� 𝑗 (𝑡) =
∫

T
�̂�𝑁 (𝑡, 𝑠)�̂� 𝑗 (𝑠)𝑑𝑠, 1 ≤ 𝑗 ≤ 𝑁 (18.7)

are used for the (empirical) projections. As usual, the norm of �̂� 𝑗 is 1. If the
𝐿2 [T ×T ] norm of �̂�𝑁 (𝑡, 𝑠) −𝐶 (𝑡, 𝑠) goes to 0 in probability, we have immediately
the consistency of the estimators 𝜏𝑗 . The eigenfunctions of 𝜓 𝑗 (𝑡) and �̂� 𝑗 (𝑡) are not
unique, even in case of distinct eigenvalues, they are determined up to a sign only.
[9] provides a survey of the estimation of eigenvalues and eigenfunctions. [15] and
[14] contain theory and applications of estimates in case or repeated eigenvalues.

Let 0 ≤ 𝛼 ≤ 1 and define

𝐴𝛼 (𝑡, 𝑠) = (1 − 𝛼)𝐶 (𝑡, 𝑠) + 𝛼𝜇(𝑡)𝜇(𝑠), (𝑡, 𝑠) ∈ T × T .

It is clear that 𝐴(𝑡, 𝑠) is a non negative definite function, so we can define
again the eigenvalues 𝛾1,𝛼 ≥ 𝛾2,𝛼 ≥ . . . and the corresponding eigenfunctions
𝜁1,𝛼 (𝑡), 𝜁2,𝛼 (𝑡), . . . as the solutions of

𝛾 𝑗 ,𝛼𝜁 𝑗 ,𝛼 (𝑡) =
∫

T
𝐴(𝑡, 𝑠)𝜁 𝑗 ,𝛼 (𝑠)𝑑𝑠, 1 ≤ 𝑗 < ∞. (18.8)

If𝛼 = 0, then (18.8) reduces to (18.6) and if𝛼 = 1, then the only nonzero eigenvalue is
1 and the corresponding eigenfunction is constant times 𝜇(𝑡). Hence the projections
into the directions of 𝜁 𝑗 (𝑡), 1 ≤ 𝑗 ≤ 𝐾 are a compromise between capturing the
mean and the covariance of stationary observations. The parameter 𝛼 is chosen such
that the mean squared error

MSE(𝛼) = 𝐸

44444𝑋1 (𝑡) −
𝐾∑
ℓ=1

〈𝑋1, 𝜁ℓ〉𝜁ℓ (𝑡)

444442
T

is minimised. We suggest estimating 𝛼 from the sample. Let

�̂�𝑁 ,𝛼 (𝑡, 𝑠) = (1 − 𝛼)�̂�𝑁 (𝑡, 𝑠) + 𝛼�̂�(𝑡) �̂�(𝑠), (𝑡, 𝑠) ∈ T × T

and �̂�1,𝛼 ≥ �̂�2,𝛼 ≥ . . . ≥ �̂�𝑁 ,𝛼 ≥ 0 and 𝜁1,𝛼 (𝑡), 𝜁2,𝛼 (𝑡), . . . , 𝜁𝑁 ,𝛼 (𝑡) are the
eigenvalues and the orthonormal eigenfunctions of the empirical �̂�𝑁 ,𝛼 (𝑡, 𝑠). The
empirical version of MSE(𝛼) is

@MSE(𝛼) =
1
𝑁

𝑁∑
𝑖=1

44444𝑋𝑖 (𝑡) −
𝐾∑
ℓ=1

〈𝑋𝑖 , 𝜁ℓ,𝛼〉𝜁ℓ,𝛼 (𝑡)

444442
T

and we suggest using the minimiser of @MSE(𝛼) in practice. We note that if
𝑋1, 𝑋2, . . . , 𝑋𝑁 of (18.5) and 𝐸 ‖𝑋1‖2

T < ∞, then by the ergodic theorem in Hilbert
spaces we have that for all 0 ≤ 𝛼 ≤ 144�̂�𝑁 ,𝛼 − 𝐴𝛼

44→ 0 a.s.
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Hence the methods in Section 2.5 of [9] can be used to show that���̂�ℓ,𝛼 − 𝛾ℓ,𝛼
��→ 0 a.s.

and 44𝜁ℓ,𝛼 − 𝑠ℓ 𝜁ℓ,𝛼
44→ 0 a.s.,

where 𝑠1, 𝑠2, . . . , 𝑠𝐾 are random signs. Hence all statistical methods based on prin-
cipal components and their empirical versions can be easily modified to employ the
eigenfunctions of 𝐴𝛼 or �̂�𝑁 ,𝛼.

In several applications the sum of the observations plays an important role and
in this case it might be more suitable to use the long run covariance function of the
stationary sequence 𝑋ℓ ,−∞ < ℓ < ∞. The long run covariance function is defined
as

𝐷 (𝑡, 𝑠) =
∞∑

ℓ=−∞
var (𝑋ℓ (𝑡), 𝑋ℓ (𝑠)) .

Kernel based estimators are used to estimate 𝐷 (𝑡, 𝑠) from the sample and the consis-
tency of the estimator is established under various conditions. [12] consider several
estimators of the log run covariance function when the means of several functional
populations are compared. They discuss the consistency of procedures, using differ-
ent type long run covariance estimators, in detail. For surveys we refer again to [9]
and [11]. Using the eigenfunctions of 𝐷 (𝑡, 𝑠) we approximate well the random term
but we cannot be sure if the mean is also captured. The method discussed above
can be easily modified when 𝐶 (𝑡, 𝑠) is replaced with 𝐷 (𝑡, 𝑠). Thus we obtain better
projections for the mean and 𝐷 (𝑡, 𝑠),
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Chapter 19
Modeling the Effect of Recurrent Events on
Time-to-event Processes by Means of Functional
Data

Francesca Ieva, Marta Spreafico and Davide Burba

Abstract In this paper we propose a methodological framework for modeling infor-
mation carried out by a longitudinal process by means of functional data, within a
survival framework targeting the time-to-event process of interest. In particular, the
longitudinal process is represented by the compensator of a marked point process
the recurrent events are supposed to derive from. By means of Functional Principal
Component Analysis (FPCA), a suitable dimensional reduction of these objects is
carried out in order to plug them into a survival Cox regression model. In doing
so, we enrich the information available for modeling survival with relevant dynamic
features, whose time-varying nature is properly taken into account. Such method-
ology is applied to data provided by the healthcare division of Lombardia regional
district in Italy, related to patients hospitalized for Heart Failure (HF) between 2000
and 2012, who assume multiple drugs over time. The model enables personalized
predictions, quantifying the effect of personal behaviors and therapeutic patterns on
long-term survival.

19.1 Introduction

A recurrent event is an event which may occur more than once. Many situations in
clinical practice can be modeled in the framework of recurrent events, for instance
the process of re-hospitalizations of chronic patients over time, drug purchases and
many others. In this paper we look at the recurrent events for a set of individuals as
particular stochastic processes, namely marked point processes for recurrent events.
We assume the form of the generating Cox model for counting processes [1] for
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representing their compensators (i.e., their predictable parts) as functional data. This
approach originates from proposals in [2, 5]. In doing so, we end up with functional
data representing the dynamic behavior of some covariates of interest, to be included
into the model for the time-to-event process of interest (e.g., long-term survival).
Suitable dimensionality reduction through Functional Principal Component Analysis
(FPCA) [9] may then be carried out, and the resulting scores may be included in a
predictive model.

We applied our methodology to analyse HFData administrative database pro-
vided by Regione Lombardia - Healthcare Division related to patients hospitalized
for Heart Failure (HF) between 2000–2012 [7]. HFData provides, besides storing
patients variables like age, gender and survival time, also observations related to
drugs purchases and hospitalisations. Our analysis aims at providing a joint descrip-
tion of the HF related long-term survival and of the processes that may affect it (e.g.,
drugs purchase as a proxy of drugs intake, and hospitalisations).

This contribution is structured as follows: Sect. 19.2 presents the whole method-
ology, with a detailed description of the marked point process formulation for recur-
rent events. Sect. 19.3 reports the application to HFData. Finally, Sect. 19.4 contains
some concluding remarks. All the analyses are carried out using the software R [10].

19.2 Methodology

In this section we focus on the main novelty introduced by the present work, i.e.,
the idea of representing the compensators of suitable marked point processes as
functional covariates possibly affecting the outcome process of interest.

Let 𝑇𝑠𝑡𝑎𝑟𝑡 be the time instant a HF patient is discharged by her/his first hospi-
talization and enrolled into the current study, and 𝑇0 = 𝑇𝑠𝑡𝑎𝑟𝑡 + 365 the starting
time of the follow up. Moreover, let 𝑇𝑒𝑛𝑑 be the minimum between the death or
the administrative censoring (31-12-2012) for the same patient. The time-to-event
process of interest, i.e., the long term survival of the patient, is measured on the time
interval 𝑇𝑒𝑛𝑑 − 𝑇0. On the other hand, the compensators of the stochastic processes
of interest is reconstructed on the time interval 𝑇0 −𝑇𝑠𝑡𝑎𝑟𝑡 , called observation period
in what follows.

Let’s consider 𝐾 recurrent events for a set of 𝑛 individuals as stochastic processes.
In particular, let’s use marked point process for recurrent events [11], where a
possibly multivariate jump mark m(𝑘)

𝑖 is associated to each jump time 𝑡 (𝑘)𝑖 . The
observations (possibly censored) of multiple events for each individual may be seen
as the realisation of an 𝑛-component multivariate counting process

(
𝑁 (𝑘)

1 , ..., 𝑁 (𝑘)
𝑛

)
where 𝑁 (𝑘)

𝑖 is the stochastic process which counts the observed events of the 𝑘-
th process in the life of the 𝑖-th individual. According to the Doob-Meyer (D-M)
decomposition [8], each counting process 𝑁 (𝑘)

𝑖 (𝑡) is the sum of a martingale 𝑀 (𝑘)
𝑖 ,

which represents the residual of the process, and a unique predictable increasing
process Λ(𝑘)

𝑖 (𝑡) =
∫ 𝑡
0 𝜆 (𝑘)

𝑖 (𝑠)𝑑𝑠. This predictable process, namely compensator,
may be thought as a functionl datum, and will be the core of our modeling effort.
A counting process where jumps may have different size can be modelled as a point
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process, assuming that a given distribution regulates the size of the jumps. A marked
point process is then the couple of processes describing the behaviour of jumps
and marks, and it is usually modelled through the conditional intensity function
𝜆 (𝑘) (𝑡,m(𝑘)

��F (𝑘)
𝑡 ), i.e., the expected rate of events 𝑘 at time 𝑡 with mark m(𝑘) :

𝜆 (𝑘)
(
𝑡,m(𝑘) ��F (𝑘)

𝑡

)
= 𝜆 (𝑘)

𝑔

(
𝑡
��F (𝑘)
𝑡

)
𝑓 (𝑘)
(
m(𝑘) ��F (𝑘)

𝑡

)
(19.1)

where 𝑘 is the process of interest, F (𝑘)
𝑡 is the filtration of the process and it is

interpreted as the history of realisations of the process, 𝜆 (𝑘)
𝑔 is the ground intensity,

i.e. the intensity process of the counting process, and 𝑓 (𝑘) is the multivariate density
of the mark m(𝑘) . Using this formulation, conditional independence of jump times
and marks is assumed.
To handle recurrent events and allow predictors to change in time, we used the
counting process formulation of the Cox model for recurrent events, as done in [1].
In particular, for each event 𝑘 , the conditional intensity function 𝜆 (𝑘)

𝑖 (𝑡) of patient 𝑖
in Eq. (19.1) takes the form:

𝜆 (𝑘)
𝑖 (𝑡) = 𝑌 (𝑘)

𝑖 (𝑡)𝜆 (𝑘)
0 (𝑡) exp
{
𝜷 (𝑘)𝑇 x(𝑘)

𝑖 (𝑡)
}

exp
{
𝜸 (𝑘)𝑇 z(𝑘)

𝑖 (𝑡)
}

= 𝑌 (𝑘)
𝑖 (𝑡)𝜆 (𝑘)

0 (𝑡) exp
{
𝜷 (𝑘)𝑇 x(𝑘)

𝑖 (𝑡) + 𝜸 (𝑘)𝑇 z(𝑘)
𝑖 (𝑡)
} (19.2)

where x(𝑘)
𝑖 (𝑡) is the possibly time-dependent vector of covariates of the 𝑖-th individ-

ual, z(𝑘)
𝑖 (𝑡) is the time-dependent vector of covariates related to the marks m(𝑘)

𝑖 of
the 𝑖-th individual, 𝜷 (𝑘) and 𝜸 (𝑘) are fixed vectors of coefficients, 𝜆 (𝑘)

0 is the under-
lying hazard function shared across patients, and𝑌 (𝑘)

𝑖 is a predictable process taking
values in {0, 1}. Whenever 𝑌 (𝑘)

𝑖 = 1, the 𝑖-th individual is under observations (i.e.
𝑌 (𝑘)
𝑖 takes the role of the censoring variable). The estimation of the parameters 𝜷 (𝑘)

and 𝜸 (𝑘) was based on a partial likelihood function [4], and maximised by applying
the Newton-Raphson iterative procedure [6]. For all 𝑘 ∈ 𝐾 the baseline cumulative
hazard Λ(𝑘)

0 (𝑡) =
∫ 𝑡
0 𝜆 (𝑘)

0 (𝑠)𝑑𝑠 can be estimated using the Breslow estimator Λ̂(𝑘)
0

[3], which returned step-function. However, since true underlying functions Λ(𝑘)
0 are

absolutely continuous, we smoothed the estimates using the approach adopted in [2],
obtainining regularised version of Λ(𝑘)

0 , namely Λ̃(𝑘)
0 .

Then, we considered 𝑡 (𝑘)𝑖,0 < 𝑡 (𝑘)𝑖,1 < ... < 𝑡 (𝑘)
𝑖,𝑁

(𝑘)
𝑖 (𝜏)

the realised jump times of process

𝑁 (𝑘)
𝑖 , with 𝜏 equal to the censoring time (possibly equal for all individuals or not)

and 𝑡 (𝑘)𝑖,0 = 0 for any 𝑘, 𝑖. We could express the realisations of each compensator Λ(𝑘)
𝑖

for the 𝑘-th process of patient 𝑖 as a function of Λ(𝑘)
0 , 𝜷 (𝑘) and 𝜸 (𝑘) :
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Λ(𝑘)
𝑖 (𝑡) =
∫ 𝑡

0
𝜆 (𝑘)
𝑖 (𝑠)𝑑𝑠 =
∫ 𝑡

0
𝜆 (𝑘)

0 (𝑠)𝑒𝜷
(𝑘)𝑇 x(𝑘)

𝑖 (𝑠)+𝜸 (𝑘)𝑇 z(𝑘)
𝑖 (𝑠)𝑑𝑠

=

𝑁
(𝑘)
𝑖 (𝑡)∑
𝑗=1

∫ 𝑚𝑖𝑛(𝑡 (𝑘)𝑖, 𝑗 ,𝑡
)

𝑡
(𝑘)
𝑖, 𝑗−1

𝜆0 (𝑠)𝑒𝜷
(𝑘)𝑇 x(𝑘)

𝑖 (𝑡 𝑗−1)+𝜸 (𝑘)𝑇 z(𝑘)
𝑖 (𝑡 𝑗−1)𝑑𝑠

=

𝑁
(𝑘)
𝑖 (𝑡)∑
𝑗=1

𝑒𝜷
(𝑘)𝑇 x(𝑘)

𝑖 (𝑡 𝑗−1)+𝜸 (𝑘)𝑇 z(𝑘)
𝑖 (𝑡 𝑗−1)
[
Λ(𝑘)

0

(
𝑚𝑖𝑛
(
𝑡 (𝑘)𝑖, 𝑗 , 𝑡
))

− Λ(𝑘)
0

(
𝑡 (𝑘)𝑖, 𝑗−1

)]
(19.3)

An estimate of the compensator in Eq. (19.3) can be obtained as:

Λ̂(𝑘)
𝑖 (𝑡) =

𝑁
(𝑘)
𝑖 (𝑡)∑
𝑗=1

𝑒�̂�
(𝑘)𝑇 x(𝑘)

𝑖 (𝑡 𝑗−1)+�̂� (𝑘)𝑇 z(𝑘)
𝑖 (𝑡 𝑗−1)
[
Λ̃(𝑘)

0

(
𝑚𝑖𝑛
(
𝑡 (𝑘)𝑖, 𝑗 , 𝑡
))

− Λ̃(𝑘)
0

(
𝑡 (𝑘)𝑖, 𝑗−1

)]
(19.4)

where �̂� (𝑘) and �̂� (𝑘) are the estimated vectors of coefficients and Λ̃(𝑘)
0 is the smoothed

estimate of the cumulative baseline hazard. To check the fitting of Λ̂(𝑘)
𝑖 , we graph-

ically verified if the estimates �̂� (𝑘)
𝑖 of martingale residuals 𝑀 (𝑘)

𝑖 involved in the
D-M decomposition may be effectively considered as realisations of martingales
observing if their means �̄� (𝑘) (𝑡) = 1

𝑁

∑𝑁
𝑖=1 �̂�𝑖

(𝑘) (𝑡) were approximately 0.
Applying this procedure for 𝑘 = 1, . . . , 𝐾 , we end up with a 𝐾−variate functional

data for each patient, characterizing her/his recurrent events dynamic in the obser-
vation period 𝑇0 − 𝑇𝑠𝑡𝑎𝑟𝑡 . We can now use such data in a methodological pipeline,
as described in the next section.

19.3 Application and Results

We now present the analysis of HFData, obtained through a 4-steps procedure.

Step 1. Data preprocessing & Clinical history
We applied our methodology to a representative sample of HFData related to 4,872
patients with their first HF discharge between January 2006 to December 2012 [7].
The study-period started from the first discharge for HF (index date) and was di-
vided into the observation period (365 days from the index discharge date) for the
compensators reconstruction and the follow-up period for survival analysis. Only pa-
tients alive at the end of the observation period were followed up to observe survival
outcomes. A final cohort of 4,541 (93.2%) patients was selected. Administrative
censoring date was December 31𝑠𝑡 , 2012.
We identified four types of stochastic processes of interest: rehospitalisations due
to HF (hosp) and purchases of Angiotensin Converting Enzyme (ACE) inhibitors,
Beta-Blocking (BB) agents and Anti Aldosterone (AA) agents, identified by their
Anatomical Therapeutic Chemical (ATC) codes [12]. Hence, the set of recurrent
events of interest was 𝐾 = {𝑘 : 𝐴𝐶𝐸, 𝐵𝐵, 𝐴𝐴, 𝐻𝐹 ℎ𝑜𝑠𝑝}. Finally, we selected only
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events happened to patients within the one year observation period. Such events are
named "clinical history" of the patients. Then, for each patient 𝑖, each event process
was seen as a marked counting process 𝑁 (𝑘)

𝑖 , with jump times 𝑡 (𝑘)𝑖 equal to event
times (i.e. date of admission in hospital or date of drug purchase) and jump marks
m(𝑘) equal to the length of stay in hospital or the duration of drug coverage.

Step 2. Modeling compensators
2.1 Features selection and coefficients estimation. For each process 𝑘 , we used as
covariates z(𝑘)

𝑖 (𝑡) of patient 𝑖: 𝑁𝑚 (𝑘) (𝑡), i.e., the number of events related to the 𝑘−th
process occurred in the past; 𝑦 (𝑘) (𝑡), i.e., the sum of the corresponding marks. Also
the logarithmic transformations (shifted away from 0) of the same variables, i.e.,
𝑙𝑜𝑔(𝑁𝑚 (𝑘) (𝑡) + 1) and 𝑙𝑜𝑔(𝑦 (𝑘) (𝑡) + 1), and respective interactions, were consid-
ered. Adjustments for 𝑎𝑔𝑒 and 𝑔𝑒𝑛𝑑𝑒𝑟 at baseline were also performed. The vector
of all the covariates considered for the model is indicated by x(𝑘)

𝑖 .
Among all the models tested through a cross-bvalidation procedure, features re-

lated to 𝑁𝑚 (𝑘) (𝑡), 𝑦 (𝑘) (𝑡) and their interaction were selected and the signs of their
fitted coefficients were consistent throughout the four processes, allowing us to give
similar interpretations. In particular, 𝑁𝑚 (𝑘) (𝑡) and 𝑦 (𝑘) (𝑡) (or the corresponding log-
arithmic version) could be interpreted as indicators of a “self-exciting” behaviour. In
other words, many drug purchases (or being hospitalized often in the past) and the
purchase of big quantities of drug (or having spent long periods of time at the hos-
pital) both increase the risk of a new purchase (or of a new hospitalisation) [HR>1].
Moreover, the interaction term being significant suggests that the increase in risk is
softened in case of several drug purchases (or many hospitalizations) and/or a great
quantities of drug purchased (or a long time spent at the hospital in the past) [HR<1].
Finally, we fitted four Cox models, one for each process 𝑘 , using the selected features
on the entire dataset to estimate coefficients �̂� (𝑘) and �̂� (𝑘) .

2.2 Fit and smooth cumulative baseline hazard. Once we estimated the coefficients
�̂� (𝑘) and �̂� (𝑘) of each of the 𝑘-th Cox model for recurrent events, we compute the
estimated cumulative baseline hazards Λ̂(𝑘)

0 with the Breslow estimator. Since this
procedure provide a step function (Λ̂(𝑘)

0 ), we smooth them using 20 knots spline ba-
sis, constraining Λ̃(𝑘)

0 (−0.5) = 0. In doing so, for all 𝑘 ∈ 𝐾 we obtain monotonically
increasing estimates Λ̃(𝑘)

0 of the cumulative baseline hazards.

2.3 Reconstruct compensators. At this point, we can reconstruct the trajectories
of the compensators Λ̂(𝑘)

𝑖 of the four considered stochastic processes for all the
patients, exploiting Eq. (19.4). The trajectories of compensators �̂�(𝑘)

𝑖 constitute our
time-varying covariates. Fig. 19.1 shows the compensators of the stochastic pro-
cesses describing ACE purchase (top-left panel), BB purchase (top-right panel), AA
purchase (bottom-left panel) and HF hospitalisation (bottom-right panel) of a sam-
ple of 500 HF patients belonging to HFData. Observe that the large variability of
the compensators across different patients reflects the variability of the realizations
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Fig. 19.1 Compensators of the marked counting processes of purchases of ACE inhibitors (top-left
panel), BB agents (top-right panel), AA (bottom-left panel) and of HF hospitalisations (bottom-right
panel) fitted using Eq. (19.4).

of their recurrent events. Finally, we checked that means of martingale residuals
�̄� (𝑘) (𝑡) were approximately equal to 0 in order to check for adequate fitting of the
procedure.
Step 3. Summarize compensators through FPCA
We then applied FPCA techniques to compensators estimated at the previous step.
Since compensators are postive and increasing function, i.e., constrained functions,
we apply FPCA only for summarizing information emerging from the time-varying
compensators. Transformation approaches may be applied, before FPCA, but in this
case do not drive to significant improvements in the final results. The first PCs dis-
tinguish patients with different risks: a patient with high scores on the first PC is
likely to experience more events than a patient with a low score. The second PCs
distinguish patients with different time distribution of the events: a patient with a
high score on the second PC is likely to experience more events in the first months
of the observation period and less events in the last months of the observation period
than a patient with a low score.

Step 4. Predictive survival Cox’s model
Appling 10-fold cross validation to select the best set of covariates among 𝑎𝑔𝑒,
𝑔𝑒𝑛𝑑𝑒𝑟, first and second 𝑃𝐶𝑠 of each group of compensators �̂�(𝑘) , we selected the
model with the highest Concordance Index, i.e.:

𝜆(𝑡 |x) = 𝜆0 (𝑡)𝑒𝑥𝑝{𝛽1𝑎𝑔𝑒 + 𝛽2𝐵𝐵_𝑃𝐶1 + 𝛽3ℎ𝑜𝑠𝑝_𝑃𝐶1 + 𝛽4ℎ𝑜𝑠𝑝_𝑃𝐶2} (19.5)
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Then, we fitted the Cox’s regression model with that choice of covariates on a training
set composed by 70% of the data (3,179 patients).

All the covariates resulted statistically significant at confidence level 5%. El-
der patients coherently have a higher risk of dying (HR = 1.065, 95% 𝐶𝐼 =
[1.0558; 1.0744]). The HR relative to 𝐵𝐵_𝑃𝐶1 was 0.997 (95%𝐶𝐼 = [0.9948; 0.9992]),
indicating that proper BB agents intake is correlated to longer life expectancy. The
HR relative to ℎ𝑜𝑠𝑝_𝑃𝐶1 was 1.020 (95% 𝐶𝐼 = [1.0080; 1.0323]), standing as
a proxy o patients’ critical conditions (patients experiencing many hospitalizations
in the past present a higher risk of dying). Interestingly, the HR relative to the
ℎ𝑜𝑠𝑝_𝑃𝐶2 was 0.756 (95% 𝐶𝐼 = [0.7039; 0.8119]), meaning that patients with
many hospitalizations at the beginning of the observation period and few hospital-
izations in the end had higher survival probability, since they probably corresponded
to the ones who had already experienced a critical phase of the disease and survived
from it. Finally, we used the fitted model to predict survival time of patients belong-
ing to the test set, i.e. the remaining 30% (1,362 patients), obtaining a Concordance
Index equal to 67.56%.

19.4 Conclusions

In this work, we proposed an effective methodology to extract and summarize in-
formation from trajectories of compensators of suitable marked point processes for
recurrent events intended as functional data. The development of this procedure is
due to the need of effectively describing and resuming information from dynamic
processes affecting an outcome process of interest, and to plug it into a Cox regres-
sion model. This methodology extends the one proposed in [2], allowing the counting
processes to depend on their marks. Moreover, the introduction of this novel way to
account for time-varying variables by means of compensators of marked stochastic
processes, allowed for modeling self-exciting behaviors, for which the occurrence
of events in the past increases the probability of a new event. This approach has
three main advantages with respect to standard Cox regression models: first of all, it
enables to properly exploitation of the role of repeated events within a time-to-event
framework, usually accounted for using simple counts of events as fixed covariate.
Second, it links FDA and survival analysis, enlarging the range of possible applica-
tion of survival regression models. Finally, the application of the proposed predictive
models to clinical data may allow to differentiate scheduling of controls according
to predicted risk, modulating therapies according to patients behavior and enabling
a real-time update of prognosis. This is not possible with standard Cox regression
models, nor with other extensions of it.
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Chapter 20
On Robust Training of Regression Neural
Networks

Jan Kalina and Petra Vidnerová

Abstract Estimation, prediction or smoothing of curves represents a fundamental
task of functional data analysis. Nonlinear regression methods allow to search for
the best-fit curves explaining the dependence of a response variable on available
independent variables. Neural networks, commonly used for the task of nonlinear
regression, are however highly vulnerable to the presence of outlying measurements
in the data. New robust versions of common types of neural networks, namely
multilayer perceptrons and radial basis function networks, are proposed here based
on nonlinear regression quantiles or highly robust loss functions. Three datasets are
analyzed to illustrate the performance of the novel robust approaches, which turn
out to outperform standard neural networks or other competing regression tools over
contaminated data.

20.1 Introduction

Analysis of curves (i.e. their modeling and/or smoothing) represents a fundamental
task of functional data analysis [15, 20]. If the task is to model (explain and smoothen)
the unknown shape of a response variable conditioning on the knowledge of available
independent variables, one may use one of diverse tools of the nonlinear regression
methodology, which is often denoted as function approximation. These numerous
tools include various types of kernel smoothers, smoothing splines, or artificial
neural networks. An important issue is however the performance of these tools of
nonlinear regression under the presence of outlying measurements in the data.
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Regression neural networks allow to capture the multivariate structure of the
regressors. The most commonly used methods for training regression neural networks
based on the least squares criterion are biased under contaminated data [18] as well as
vulnerable to adversarial examples. This non-robustness becomes even more severe
for data with a very large number of regressors [4]. This is true for two important
types of multilayer feedforward networks, namely multilayer perceptrons (denoted
as MLPs) and radial basis function (RBF) networks. Therefore, researchers have
recently become increasingly interested in proposing alternative robust (resistant)
methods for their training [3, 10]. Only a few robust approaches for training for
MLPs have been introduced. Some of them become computationally infeasible for
a larger 𝑝 [13] and thus were presented only on simple examples with a very small
number 𝑝 of regressors, Approaches replacing the common sum of squared residuals
by a robust loss onsidered the loss functions corresponding to the median [2],
least trimmed absolute value (LTA) estimator [17], or least trimmed squares (LTS)
estimator [3, 18].

In this paper, we propose an original method for robust training neural networks
based on nonlinear quantiles or robust loss functions. We also fill a gap of robust
methods for other types of neural networks, mainly for RBF networks. Also, system-
atic comparisons of the performance of robust neural networks with other nonlinear
regression tools seem to have been missing. Here, we compare the performance
of various nonlinear regression tools including the newly proposed robust neural
networks over three datasets.

20.2 Training Artificial Neural Networks

20.2.1 Model and Standard Approaches

MLPs and RBF neural networks represent well established classes of artificial neu-
ral networks suitable for the nonlinear regression model. Throughout the paper, we
consider the regression task to model a continuous response 𝑌1, . . . , 𝑌𝑛 by means
of 𝑝 independent variables (regressors, features) available for 𝑛 observations (mea-
surements, instances), where the values for the 𝑖-th observation (𝑖 = 1, . . . , 𝑛) are
denoted as 𝑋𝑖1, . . . , 𝑋𝑖 𝑝 . We are interested in estimating the regression function

𝑟 (𝑥) = E(𝑌 |𝑋 = 𝑥), 𝑥 ∈ �𝑝 , (20.1)

based on the given data in the situation, when the shape of the function 𝑟 (𝑥) is
unknown and we only assume that it exists. We do not consider any assumptions on
the shape of 𝑟 (𝑥). Available estimates of (20.1) are often denoted as nonparametric,
even if they depend on a finite number of parameters, because it is actually the whole
function 𝑟 which represents the unknown parameter. We will not formulate further
assumptions; these would be however needed for deriving important properties of
some of available estimators.

MLPs contain an input layer, one or more hidden layers with a fixed number of
neurons, and an output layer. As we use the most standard form of MLPs, we will
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not present their detailed model, as it can be found in numerous monographs (see
e.g. [7, 5]). Concerning RBF networks, the architecture of their most common type
may be described as a hierarchical structure with an input layer containing 𝑝 inputs,
a single hidden layer with 𝑁 RBF units (neurons), and a linear output layer. Most
commonly [7, 10], the user chooses a radially symmetric function (kernel, basis
function) denoted here as 𝜓.

Standard training of the most common types of neural networks, including MLPs
and RBF networks, is based on minimizing the sum of squared residuals over all
parameters, which are traditionally denoted as weights. The loss function in the
form of sum of squared residuals causes the non-robustness of plain MLPs and RBF
networks with respect to outlying measurements (outliers) [3, 17].

20.2.2 Inter-quantile Robust Neural Networks

We will now introduce regression 𝜏-quantile estimators by means of MLPs and
RBF networks, denoted as QMLP(𝜏) and QRBF(𝜏) for a fixed 𝜏 ∈ (0, 1). Based
on them, robust interquantile versions of neural networks will be defined in this
section. Quantiles estimated by means of MLPs, also called quantile regression
neural network, are available only for a single hidden layer (cf. [21]). They represent
flexible tools for situations, when the regression curve remains unknown; thus, they
may provide more complex information about the trend in the data compared to
(20.1).

The novel QRBF(𝜏) estimator is formally defined by replacing the usual quadratic
loss function by 𝜌𝜏 (see [11])

𝜌𝜏 (𝑥) = 𝑥 (𝜏 − �[𝑥 < 0]) , 𝑥 ∈ �, (20.2)

with indicator function denoted by �. Denoting fitted values of the response by �̂�𝑖 ,
the computation requires to find

min
𝑛∑
𝑖=1

𝜌𝜏
(
𝑌𝑖 − 𝑌𝑖
)

(20.3)

over the space of networks parameters.
We define the new interquantile robust RBF networks denoted as IQ-RBF net-

works, depending on two given parameters 𝜏1 and 𝜏2, by means of Algorithm 1.
Interquantile MLPs (IQ-MLP) are defined in an analogous way. The network is
trained for observations between two different quantiles with parameters 𝜏1 and 𝜏2;
the outlier detection and deletion (trimming) by means of the quantiles ensure the re-
sistance against outliers. The approach is inspired by the trimmed least squares (TLS)
estimator in linear regression, which has appealing robustness properties (see [8] for
their extensive discussion).
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Algorithm 1 IQ-RBF network.
Input: Response 𝑌1, . . . , 𝑌𝑛
Input: Regressors 𝑋𝑖 ∈ �𝑝 for 𝑖 = 1, . . . , 𝑛
Input: Constants 𝜏1 and 𝜏2, where 𝜏1 ∈ (0, 1) , 𝜏2 ∈ (0, 1) , and 𝜏1 < 1/2 < 𝜏2
Output: IQ-RBF trained with parameters 𝜏1 and 𝜏2
1: Compute QRBF(𝜏1) network
2: For each 𝑖 = 1, . . . , 𝑛, put �̂� QRBF(𝜏1 )

𝑖 equal to the fitted value of 𝑌𝑖 by QRBF(𝜏1) network
3: Compute QRBF(𝜏2) network
4: For each 𝑖 = 1, . . . , 𝑛, put �̂� QRBF(𝜏2 )

𝑖 equal to the fitted value of 𝑌𝑖 by QRBF(𝜏2) network
5: Fit a standard RBF network only for such measurements, for which

𝑌𝑖 ≥ �̂� QRBF(𝜏1 )
𝑖 & 𝑌𝑖 ≤ �̂� QRBF(𝜏2 )

𝑖 (20.4)

20.2.3 Neural Networks with a Robust Loss Function

The MLP with the LTA-based loss function [17, 18] will be now denoted as LTA-
MLP. It is defined for a fixed ℎ (𝑛/2 ≤ ℎ < 𝑛) by means of

arg min
𝑏∈�𝑝

ℎ∑
𝑖=1

|𝑢(𝑏) |(𝑖) . (20.5)

In [17], LTA-MLP yielded slightly better results than LTS-MLP, which seems inspir-
ing for the field of robust statistics, where the LTA estimator is practically unknown.
The LTS-MLP, based on the least trimmed squares (LTS) estimator (see [8]), is
defined by

arg min
𝑏∈�𝑝

ℎ∑
𝑖=1

𝑢2
(𝑖) (𝑏). (20.6)

Robust RBF networks, denoted here as LTA-RBF or LTS-RBF networks, will
be defined by means of (20.5) and (20.6) in the context of RBF networks. In other
words, they are obtained by replacing the usual quadratic loss (i.e. sum of squared
residuals) by the loss functions of the LTS or LTA estimators.

20.3 Numerical Examples

Three datasets will be now analyzed to illustrate the performance of the novel
methods for nonlinear regression. All three have been found as suitable for regression
modeling in the literature. In order to improve the convergence of the neural networks
training, each dataset is considered after a usual standardization, i.e. each variable is
centered to have the mean equal to 0 and scaled to have variance equal to 1.

The methods used in all the computations include the Nadaraya-Watson (N-
W) kernel regression with Epanechnikov kernel and regularized networks with a
Gaussian kernel [7]. MLPs are always used with a sigmoid activation function in the
hidden layer (or layers) and a linear output layer. For RBF networks, we choose 𝜓 to
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be the Gaussian density. Other parameters of MLPs and RBF networks were chosen
to obtain the best possible results (in terms of MSE) in every example, while the
robust versions have the same parameters as the plain (standard) versions. Methods
based on the LTS and LTA use the trimming constant ℎ =  3𝑛/4!, where  𝑥!
denotes the integer part of 𝑥 ∈ �. Interquantile methods (IQ-MLP and IQ-RBF)
use 𝜏1 = 0.15 and 𝜏2 = 0.85. Table 1 presents for each of the regression methods a
reference (or it reveals which methods are novel) together with a reference for the
software code for the computation.

We use a standard back-propagation algorithm for the task of minimisation to
obtain all neural networks computed here. Particularly, the RMSprop optimization
technique was used. All robust versions of MLPs and RBF networks were imple-
mented exploiting the TensorFlow library [1] of Python. We implemented regularized
networks in R. The results are evaluated in a 10-fold cross validation for all three
datasets.

We consider two versions of the prediction error, namely the standard mean
squared error (MSE) computed over all observations, or its robust counterpart de-
noted as the trimmed mean squares error (TMSE). Using 𝛼 = 3/4 and ℎ =  𝛼𝑛!,
these are defined as

MSE =
1
𝑛

𝑛∑
𝑖=1

𝑢2
𝑖 and TMSE(𝛼) =

1
ℎ

ℎ∑
𝑖=1

𝑢2
(𝑖) , (20.7)

where the prediction errors 𝑢1, . . . , 𝑢𝑛 are considered after being arranged in as-
cending order (in squares) as 𝑢2

(1) ≤ 𝑢2
(2) ≤ · · · ≤ 𝑢2

(𝑛) .

20.3.1 Results

The first dataset is the Travel and Tourism Competitiveness Index (TTCI) dataset with
𝑝 = 12 and 𝑛 = 141, which was previously analyzed by (robust) linear regression
methods in [9]. Numerical values of the prediction errors for various nonlinear tools
are presented in Table 1 here. A standard MLP with 12 neurons in a single hidden
layer is influenced by the presence of outliers, which is true also for a plain RBF
network with 𝑁 = 12 RBF units. While the novel methods do not improve MSE
compared to standard ones (and are not expected to improve a non-robust version of
prediction error), they improve values of TMSE.

The second dataset is the Boston Housing dataset [6] with the per capita crime
rate in different Boston suburbs as the response variable. We selected all 𝑝 = 11
continuous features (omitting features 4, 7, and 9 from the original dataset) to be
the regressors. There are no missing values in the dataset, which allows us to work
with all 𝑛 = 506 measurements. We use MLPs containing 16 and 8 neurons in the
two hidden layers and RBF networks with 𝑁 = 50. Values of prediction error are
compared in Table 1. While the novel methods do not improve MSE, they improve
values of TMSE. This corresponds to our empirical evidence that the Boston Housing
dataset contains about 10 % of severe outliers.
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Dataset
TTCI Boston housing Auto MPG

Method Source/Code MSE/TMSE MSE/TMSE MSE/TMSE
N-W [19]/R 0.51/0.17 54.3/4.3 53.7/21.3

Reg. networks [7]/Own 0.47/0.15 60.6/4.7 61.0/19.4
Versions of MLP

MLP [7]/[1] 0.41/0.14 57.9/5.3 60.8/28.9
RMLP [10]/Own 0.44/0.12 65.1/4.3 72.8/15.0

LTS-MLP [17]/Own 0.43/0.12 67.2/4.5 69.4/14.3
LTA-MLP [17]/Own 0.43/0.12 66.8/4.5 69.6/14.1
IQ-MLP Novel/Own 0.44/0.12 67.7/4.2 70.1/13.8

Versions of RBF network
RBF [7]/[1] 0.39/0.14 52.7/4.4 46.9/17.2

RRBF [10]/Own 0.43/0.12 59.7/3.9 51.0/13.3
LTS-RBF Novel/Own 0.45/0.12 60.3/4.1 52.7/12.9
LTA-RBF Novel/Own 0.45/0.12 61.1/4.1 53.2/12.7
IQ-RBF Novel/Own 0.44/0.11 60.8/3.7 52.3/12.2

Table 20.1 Results for the three datasets of Section 20.3 evaluated in a 10-fold cross validation. Pre-
diction error measures (MSE and TMSE(3/4)) evaluated for various (standard or robust) nonlinear
regression methods.

The third dataset is the Auto MPG dataset [6] with the consumption of cars
in miles per gallon (MPG) playing the role of the response, explained by 𝑝 = 4
continuous regressors, namely displacement, horsepower, weight, and acceleration.
Observations with some missing values (i.e. observations with index 33, 127, 331,
337, 355, and 375) are omitted, so we work with 𝑛 = 392. For the analysis, we use
MLPs with 16 and 8 neurons in the hidden layers and RBF networks with 𝑁 = 40.
The results are again presented in Table 1. The novel methods do not improve MSE
but do improve TMSE compared to standard methods. This argument in accordance
with the fact that the Auto MPG dataset is contaminated by severe outliers as well
as leverage points.

20.4 Conclusions

Regression neural networks, commonly used for modeling the unknown shape of
the relationship of a response variable on available regressors, are vulnerable to
the presence of outliers in the data. The effect of outliers becomes more intricate
with an increasing number of regressors in the model and even more if the number
of regressors exceeding the number of observations, i.e. in situations with 𝑛 < 𝑝
[14]. In this paper, several novel approaches for robust training of MLPs and RBF
networks, i.e. two very common types of neural networks, are proposed for the task
of nonlinear regression. The computation of all the novel methods is straightforward
and can rely on adapting standard optimization algorithms. Properties of the novel
robust methods depend on choosing a particular architecture and parameters, which
is supported by numerical evidence.
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The numerical examples of this paper illustrate the novel robust neural networks
to be meaningful over three real datasets. The results reveal the non-robustness
of standard (plain) tools and the robustness of the novel methods based on quan-
tiles (IQ-MLP, IQ-RBF) or robust loss functions (LTS-RBF, LTA-RBF). If suitable
architecture for the neural networks was found and considered, the robust neural
networks yield a smaller robust prediction error compared to other methods over
the contaminated data. In other words, the robust methods are able to outperform
standard neural networks or other (non-robust) regression tools including also the
popular Nadaraya-Watson kernel regression. The computation of the novel approach
is far less demanding compared to robust neural networks of [3, 10], which are
computationally very tedious already for 10 regressors.

Neural networks (in their plain form) have also been successfully applied to
functional data in various research fields (see e.g. [12]), while versions of neural
networks adapted for the context of functional data are also available [16]; the latter
were obtained as an extension of traditional neural networks for regression to the
situation with 𝑝 → ∞ [13, 14]. As the next natural step, we would like to extend
the robust training proposed in this paper to convolutional neural networks, or to
combine robustness with regularization; the performance of such novel approaches
to training neural networks is intended to be investigated over high-dimensional or
functional data.
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Chapter 21
Simultaneous Inference for Function-valued
Parameters: a Fast and Fair Approach

Dominik Liebl and Matthew Reimherr

Abstract This work presents a new approach for constructing simultaneouse confi-
dence bands for function-valued parameters. The bands are fast to compute as they
are based on nearly closed-form expressions and, therefore, do not require com-
putationally expensive resampling based methods. The shape of the bands can be
constructed according to a desired criteria specified by the user. A particularly in-
teresting criteria is the proposed concept of “fair” or equitable bands which leads to
simultaneous confidence bands that have an adaptive width reflecting the local mul-
tiple testing problem. The theoretical foundations of our simultanouse confidence
bands are presented in [9]. In this short paper, we deviate from [9] and consider the
practically important special case of the linear function-on-scalar regression model.
Moreover, we present a novel application on testing for differences in yield curves
of A and B-type rated countries.

21.1 Introduction

This work is concerned with constructing simultaneous confidence bands that allow
to quantify estimation uncertainty for function-valued parameters. While the theo-
retical foundations of our bands are presented in [9], we focus in this paper on the
applications of our bands to the practically important case of the function-on-scalar
regression model.

Simultaneous inference for function-valued parameters is a highly relevant statis-
tical problem and has received increasing attention in recent years. However, current
solutions usually suffer from some major drawbacks: they are computationally ex-
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pensive, they result in bands that are very conservative, or they control only the
point-wise type-I error rate.

By contrast to the majority of existing alternative approaches (see, for instance, [4,
5, 1, 6, 10, 3, 16]), our bands do not rely on re-sampling or simulation-based methods
which makes our bands fast to compute. Building upon results from random field
theory (see [2]) we propose a method that exploits the expected Euler characteristic
inequality and derives a simultaneous confidence band using the Kac-Rice formula
(see [7, 12]). We extend the existing Kac-Rice formula in order to allow for band-
shapes that adapt to a desired criteria such a minimum width or equitable inference
(fair). Related to our approach is the work of [14] who also propose a random field
theory based confidence band; this approach, however, does not consider the case of
adaptive band shapes.

The rest of the paper is structured as follows. In Section 21.2 we present our
methodological and theoretical contributions, Section 21.3 contains our real-data
application and Section 21.4 concludes.

21.2 Simultaneous Confidence Bands

Let us consider the linear function-on-scalar (see, e.g., Ch. 13 in [11]) regression
model

𝑦𝑖 (𝑡) = 𝑥𝑖𝜷(𝑡) + 𝜀𝑖 (𝑡), 𝑡 ∈ [0, 1], 𝑖 = 1, . . . , 𝑛, (21.1)

with continuous dependent variable 𝑦𝑖 ∈ 𝐶1 ( [0, 1]), deterministic or random pre-
dictors 𝑥𝑖 = (1, 𝑥𝑖2, . . . , 𝑥𝑖𝐾 ) ∈ R𝐾 , 1 ≤ 𝐾 < ∞, unknown continuous parameter
functions 𝜷(𝑡) = (𝛽1 (𝑡), . . . , 𝛽𝐾 (𝑡))�, with 𝛽 𝑗 ∈ 𝐶1 ( [0, 1]) for 𝑗 = 1, . . . , 𝐾 , and
continuous random error function 𝜖𝑖 ∈ 𝐶1 ( [0, 1]). We consider the case of an iid
sample (𝑌𝑖 , 𝑥𝑖 , 𝜀𝑖) distributed as (𝑌, 𝑥, 𝜀) for all 𝑖 = 1, . . . , 𝑛, where 𝜀 is independent
from the predictors 𝑥. The error function 𝜀 is assumed to be a Gaussian processes
with zero mean function E(𝜀(𝑡)) = 0 for all 𝑡 ∈ [0, 1] and a finite, non-zero, co-
variance function 𝜎(𝑠, 𝑡) = E(𝜀(𝑠)𝜀(𝑡)) with 𝑡, 𝑠 ∈ [0, 1]. All statements above
involving stochastic quantities such as 𝑦𝑖 ∈ 𝐶1 ( [0, 1]) are meant to hold almost
surely.

For reasons of traceability, we focus in this short paper on the special case of a
Gaussian error process 𝜀 with known covariance function 𝜎. The practically more
relevant case of a unknown covariance function is considered in [9]. Based on the
central limit theorems in [6], one can also relax the normality assumption (see also
our theoretical paper [9]).

Under the above setup, the unknown functional slope coefficients, 𝜷(𝑡) =
(𝛽1 (𝑡), . . . , 𝛽𝐾 (𝑡))�, in model (21.1) can be consistently estimated using the or-
dinary least squares estimator

𝜷(𝑡) = (𝛽1 (𝑡), . . . , 𝛽𝐾 (𝑡))� =
(
𝑋�𝑋
)−1

𝑋�𝑌 (𝑡), where

𝛽 𝑗 (𝑡) ∼ N
(
𝛽 𝑗 (𝑡), 𝜎(𝑡, 𝑡)

[
(𝑋�𝑋)−1]

𝑗 𝑗

)
, 𝑗 = 1, . . . , 𝐾,
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with 𝑋 denoting the 𝑛×𝐾 predictor matrix [𝑋]𝑖 𝑗 = 𝑥𝑖 𝑗 and𝑌 (𝑡) = (𝑦1 (𝑡), . . . , 𝑦𝑛 (𝑡))�.
If 𝑋 contains stochastic components, the above distributional statement is understood
as conditionally on 𝑋; this convention is used also in the remaining parts of this paper.

In order to construct a simultaneous confidence band for 𝛽 𝑗 , 𝑗 = 1, . . . , 𝐾 , that
allows for an adaptive band-shape, we allow for a generally non-constant, continuous
critical value function 𝑐𝛼 (𝑡) > 0 such that

𝑃
(
𝛽 𝑗 (𝑡) ∈ 𝛽 𝑗 (𝑡) ± 𝑐𝛼, 𝑗 (𝑡)

√
Var
(
𝛽 𝑗 (𝑡)
)
∀ 𝑡 ∈ [0, 1]
)

≥ 1 − 𝛼, 𝑗 = 1, . . . , 𝐾,

where 𝛼 denotes the significance level (for instance, 𝛼 = 0.05). Using the symmetry
of the distribution of 𝛽 𝑗 (𝑡), one can define the critical value function, 𝑐𝛼 (𝑡), by the
following equation

𝑃
(
∃𝑡 ∈ [0, 1] : 𝑍 𝑗 (𝑡) ≥ 𝑐𝛼, 𝑗 (𝑡)

)
≤ 𝛼/2, where (21.2)

𝑍 𝑗 (𝑡) =
(
𝛽 𝑗 (𝑡) − 𝛽 𝑗 (𝑡)

)√
𝜎(𝑡, 𝑡)
[
(𝑋�𝑋)−1
]
𝑗 𝑗

∼ N(0, 1), 𝑗 = 1, . . . , 𝐾.

That is, 𝑍 𝑗 is a mean-zero Gaussian process 𝑍 𝑗 ∼ GP(0, 𝜎[(𝑋�𝑋)−1] 𝑗 𝑗 ), 𝑗 =
1, . . . , 𝐾 .

Unfortunately, finding the exact, i.e., non-conservative critical value function,
𝑐𝛼 (𝑡), for which the left-hand-side of Equation (21.2) equals 𝛼/2, is a very tricky
problem since we do not want to impose restrictive assumptions on the structure of
the covariance function 𝜎. Therefore, we propose to derive a slightly conservative
critical value function by making use of the so-called expected Euler characteristic
inequality (see, for instance, [2]). This inequality involves the following random
counting variable, 𝑁𝑢,𝑍 𝑗 ( [0, 1]), which counts the number of up-crossings of 𝑍 𝑗
about 𝑐𝛼 on the interval [0, 1],

𝑁𝑐,𝑍 𝑗 ( [0, 1]) := #{0 ≤ 𝑡 ≤ 1 : 𝑍 𝑗 (𝑡) = 𝑐(𝑡), 𝑍 ′
𝑗 (𝑡) > 𝑐′(𝑡)}, 𝑗 = 1, . . . , 𝐾.

If 𝑁𝑐,𝑍 𝑗 ( [0, 1]) = 0, then the only way that 𝑍 𝑗 (𝑡) could have exceeded 𝑐(𝑡) was if 𝑍 𝑗
started above of 𝑐 at 𝑡 = 0, since both functions, 𝑍 𝑗 and 𝑐, are continuous. This leads
to the expected Euler characteristic inequality which follows directly from applying
Boole’s inequality and then Markov’s inequality:

𝑃
(
∃𝑡 ∈ [0, 1] : 𝑍 𝑗 (𝑡) ≥ 𝑐(𝑡)

)
= 𝑃
(
{𝑍 𝑗 (0) ≥ 𝑐(0)} or {𝑁𝑐,𝑍 𝑗 ( [0, 1]) ≥ 1}

)
≤ 𝑃
(
𝑍 𝑗 (0) ≥ 𝑐(0)

)
+ 𝑃
(
𝑁𝑐,𝑍 𝑗 ( [0, 1]) ≥ 1

)
≤ 𝑃
(
𝑍 𝑗 (0) ≥ 𝑐(0)

)
+ E
[
𝑁𝑐,𝑍 𝑗 ( [0, 1])

]
= E
[
𝜑𝑐 (𝑍 𝑗 )
]
,

(21.3)

for 𝑗 = 1, . . . , 𝐾 , where 𝜑𝑐 (𝑍 𝑗 ) := �𝑍 𝑗 (0) ≥𝑐 (0) + 𝑁𝑐,𝑍 𝑗 ( [0, 1]) denotes the Euler
(or Euler-Poincaré) characteristic of the excursion set {𝑡 ∈ [0, 1] : 𝑍 (𝑡) ≥ 𝑐(𝑡)}.
For large values 𝑐, the inequality in (21.3) gives a very tight, almost exact approxi-
mation (see the results in [13]). Intuitively, the Euler characteristic, 𝜑𝑐 (𝑍 𝑗 ), counts
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exceedance events by, first, checking if 𝑍 𝑗 (0) > 𝑐(0) and then by checking for
additional exceedance event by moving 𝑡 through the domain [0, 1].

The next step is to derive an expression for the mean of the Euler characteristic,
E[𝜑𝑐 (𝑍 𝑗 )], since this allows one to derive powerful simultaneous confidence bands
by finding the critical value function 𝑐𝛼 (𝑡) which solves

E[𝜑𝑐𝛼 (𝑍 𝑗 )] = E
[
�𝑍 𝑗 (0) ≥𝑐 (0)
]
+ E
[
𝑁𝑐,𝑍 𝑗 ( [0, 1])

]
= 𝛼/2.

The crucial, non-trivial part is to derive an expression for the mean of the counting
variable 𝑁𝑐,𝑍 ( [0, 1]). Explicit formulas for E[𝑁𝑐,𝑍 ( [0, 1])] are grouped together
under the famous “Kac-Rice formulas” acknowledging the works of [7] and [12].
In [9] we derive a generalized Kac-Rice formula that allows us to consider adaptive
critical value functions 𝑐𝛼 (𝑡). In the following we present the corresponding result
in [9] for the special case of the function-on-scalar regression model (21.1) with
Gaussian error processes. The required theoretical assumptions are as following.

Assumption (A1)

a) 𝑍 𝑗 = {𝑍 𝑗 (𝑡) : 𝑡 ∈ [0, 1]} is a centered Gaussian process, 𝑍 𝑗 ∼ GP(0, 𝜎𝑍 𝑗 ),
where

𝜎𝑍 𝑗 (𝑠, 𝑡) =
𝜎(𝑠, 𝑡) [(𝑋�𝑋)−1] 𝑗 𝑗√

𝜎(𝑠, 𝑠) [(𝑋�𝑋)−1] 𝑗 𝑗 𝜎(𝑡, 𝑡) [(𝑋�𝑋)−1] 𝑗 𝑗
, 𝑗 = 1, . . . , 𝐾.

b) 𝑍 𝑗 ∈ 𝐶1 [0, 1] almost surely.
c) The covariance function 𝜎𝑍 𝑗 of 𝑍 𝑗 is such that 𝜎𝑍 𝑗 (𝑠, 𝑡) = 1 if and only if 𝑠 = 𝑡.
d) Define the roughness function 𝜏𝑗 (𝑡) =

√
Var(𝑍 ′

𝑗 (𝑡)) and let 𝜏𝑗 (𝑡) > 0. �

Points a) and b) are fulfilled under our above introduced setup for the function-
on-scalar regression model (21.1). Point c) is essentially a structural regularity
assumption on the covariance function 𝜎(𝑠, 𝑡) of the error processes 𝜀 in model
(21.1) and excludes the case of periodic processes 𝜀 with 𝜀(𝑡1) = 𝜀(𝑡2), almost
surely, for some 𝑡1 ≠ 𝑡2. Note that the assumption in point c) is by far less restrictive
than, for instance, the assumption of a stationary covariance function as used by [15].
The roughness function 𝜏𝑗 (𝑡) in point d) allows to measure the dependence structure
of 𝑍 𝑗 which is important to quantify the multiple testing problem that needs to be
considered by the simultaneous confidence band.

Under Assumption (A1) one can derive the following result.

Theorem 1 Let Assumption A1 hold and assume that the critical value function
𝑐 ∈ 𝐶1 [0, 1], then we have that
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E[𝜑𝑐 (𝑍 𝑗 )] = Φ (−𝑐(0)) +
∫ 1

0

𝜏(𝑡)
2𝜋

exp
{
−

1
2

[
𝑐(𝑡)2 +

𝑐′(𝑡)2

𝜏(𝑡)2

]}
𝑑𝑡

+
∫ 0

0

𝑐′(𝑡)
√

2𝜋
exp
{
−
𝑐(𝑡)2

2

}
Φ

(
𝑐′(𝑡)
𝜏(𝑡)

)
𝑑𝑡, 𝑗 = 1, . . . , 𝐾.

(21.4)

See [9] for a proof of a generalized version of Theorem 21.4. Theorem 21.4 allows for
non-constant critical value functions and, therefore, generalizes the classic Gaussian
Kac-Rice formula. In fact, for a constant critical value, 𝑐(𝑡) ≡ 𝑐, Equation (21.4)
simplifies to the case of the classic Gaussian version of the Kac-Rice formula,
namely: E[𝜑𝑐 (𝑍 𝑗 )] = Φ(−𝑐) +

∫ 1
0 𝜏(𝑡)/(2𝜋) exp{−𝑐2/2}𝑑𝑡.

Equation (21.4) can now be used to determine a critical value function 𝑐𝛼 (𝑡) by
solving E[𝜑𝑐𝛼 (𝑍 𝑗 )] = 𝛼/2. However, the this equation is generally solved by many
different critical value functions 𝑐𝛼. That is, there are many different band-shapes
that lead to a valid simultaneous (1−𝛼) × 100% confidence band. This may seem to
be an unfavorable situation, but it is more of a blessing than a curse since it allows us
to select band-shapes according to user specified criteria such as minimum width or
fair band width that reflects the local multiple testing problem. A detailed discussion
of the computational methods for solving E[𝜑𝑐𝛼 (𝑍 𝑗 )] = 𝛼/2 by taking into account
user specified criteria is beyond the scope of this short paper, but the interested reader
is referred to [9].

21.3 Application

In this section we demonstrate the applicability of the above introduced simultaneous
confidence for the function-on-scalar regression model. The yield-curve data shown
in Figure 21.1 is available at www.worldgovernmentbonds.com.
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Fig. 21.1 Yield curves data for 𝑛 = 36 government bonds for Jan 13, 2020.

http://www.worldgovernmentbonds.com
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In order to test for a difference in the means of A-type rated countries and B-type
rated countries, we use the following linear function-on-scalar regression model

𝑦𝑖 (𝑡) = 𝛽1 (𝑡) + 𝛽2 (𝑡)𝑥𝑖 + 𝜀𝑖 (𝑡),

where 𝑦𝑖 denotes the yield-curve of country 𝑖, with 𝑖 = 1, . . . , 𝑛 = 36, 𝑥𝑖 is a dummy
variable with 𝑥𝑖 = 0 if country 𝑖 is a A-type (AAA/AA/A) rated country and 𝑥𝑖 = 1 if
country 𝑖 is a B-type (BBB/BB/B) rated country. The null-hypothesis of no difference
between a A-type rating and a B-type rating is then formalized as

H0: 𝛽1 (𝑡) = 0 simultaneously for all 𝑡 ∈ [0, 1].

The estimation result 𝛽1 and the simultaneous 95% confidence interval for 𝛽1 is
shown in Figure 21.2 and we can conclude that 𝛽1 is significantly different from zero
everywhere on the domain.
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Fig. 21.2 Simulations 95% confidence band for the function-valued parameter 𝛽1 (dashed lines)
and the estimate 𝛽1 (solid line).

21.4 Conclusion

This short paper derives simultaneous confidence bands for the function-valued
coefficients in function-on-scalar regression models using the theoretical results in
[9]. Our derivations focus on the simple case of Gaussian error processes 𝜀, but
may also be derived for elliptical processes following the more general results in
[9]. We use a pointwise estimation approach for estimating the parameter functions
𝜷(𝑡) = (𝛽1 (𝑡), . . . , 𝛽𝐾 (𝑡))� which is justified in our application since the yield-
curves are very smooth. In the case of irregular sampled noisy response functions, one
would typically prefer some regularized estimation approach such as, for instance,
a penalized least squares estimation (see, for instance, [8], Ch. 5.2). Therefore, it
would be useful to extend our work for regularized estimation procedures.
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Chapter 22
Single Functional Index Model under Responses
MAR and Dependent Observations

Nengxiang Ling, Lilei Cheng and Philippe Vieu

Abstract This contribution deals with the estimation of the functional single index
regression model (FSIRM) with responses missing at random (MAR) for strong
mixing time series data. Some asymptotic properties such as the uniform almost
complete convergence rate and asymptotic normality of the estimator are obtained
respectively under some general conditions.

22.1 Introduction

The single index model had been employed to reduce the dimensionality of data,
and to avoid the "dimension disaster" problem while maintaining the advantages of
nonparametric smoothing in multivariate regression case. Furthermore, these ideas
have been first extended to the functional setting by [8] for functional regression
problems, which leads to the functional single index regression model (FSIRM)
below:

𝑌 = 𝑟 (〈𝜃, 𝝌〉) + 𝜀, (22.1)

where 𝑟 (·) is an unknown real link function from R to R, 𝜃 = {𝜃 (𝑡), 𝑡 ∈ 𝐼} is
a functional single index set in a separable Hilbert space H defined on a compact
interval 𝐼 with the inner product 〈·, ·〉 and 𝜀 is a random error with 𝐸 (𝜀 | 𝝌) = 0, 𝑎.𝑠.
Here, the explanation of 𝑌 given 𝝌 = 𝝌(𝑡) (𝑡 ∈ 𝐼) is done through the functional
single index 𝜃 in H as 𝐸

(
𝑌 |𝝌
)
= 𝐸
(
𝑌 | 〈𝜃, 𝝌〉
)
.

Many researchers have paid attention to the functional single index model. For
example, [1] proposed to estimate the unknown functional single index via the cross
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validation technique. [2] considered the estimation of the conditional density of a
scalar response variable 𝑌 , given a Hilbertian random variable 𝝌 when the observa-
tions are linked with a single-index structure. The pointwise and the uniform almost
complete convergence rate of the kernel estimate of this model were established. [16]
extended the research to the 𝛼-mixing case. Meanwhile, [3] obtained some asymp-
totic results of a nonparametric conditional cumulative distribution estimator with
applications in the functional single index model for time series data. [5] investigated
a class of functional partially linear single index models, and a profile least squares
approach combined with local constant smoothing for estimating the slope function
and the link function were proposed in the model. [22] studied a flexible single-index
partially functional linear regression model, the convergence rates and asymptotic
normality of the estimators were obtained under some mild conditions. [21] investi-
gate the large-sample estimation and inference in multivariate single-index models,
and some asymptotic properties of the model are also established.

On the other hand, we notice that all the contributions involved above are in
the case of the samples being observed completely. However, in many practical
works such as market surveys, medical studies, reliability test and so on, some pairs
of observations may be incomplete which is often called missing data. Statistical
analysis with missing data is a very difficult task since missing data themselves
contain little or no information about missing data mechanism in most cases. The
fundamental and most widely used assumption about missing data mechanism is
the missing responses at random. We can quote: [4], [18], [19], [20], [12], [6]
and references therein for explanatory variables being finite dimensionality. When
explanatory variables are infinite case or they are of functional feature, only very
few literature was reported to investigate statistical models with missing data. For
example, [9] first proposed to estimate the mean of a scalar response based on an
i.i.d. functional sample in which the explanatory variables are observed completely
and the response variables are missing at random. [15] investigated the asymptotic
properties of regression operator estimate for functional stationary ergodic data
with missing responses at random. While [14] and [7] study respectively the semi-
functional partially linear regression model and the functional linear model with
missing scalar responses at random in the case of i. i. d. sample. [11] investigate the
inferential procedures for partially observed functional data.

Inspired by all the papers above, our contribution in this paper is to investigate the
functional single index regression model (22.1) with missing responses at random
in the case of strong mixing functional time series data. For more details in this
direction, see [14]. Let 𝝌 be observed completely, and 𝛿 = 0 if 𝑌 is missing,
otherwise 𝛿 = 1. Furthermore, let the missing mechanism be such that

𝑃 (𝛿 = 1|𝝌, 𝑌 ) = 𝑃(𝛿 = 1|𝝌) = 𝑝(𝝌).

We first recall the definition of strong mixing dependence. A process {(𝜒𝑖 , 𝑌𝑖), 𝑖 ≥
1} is called strong mixing with mixing coefficient 𝛼(𝑛), if
𝛼(𝑛) = sup𝜅 sup𝐴∈A𝜅1

sup𝐵∈A+∞
𝜅+𝑛

|𝑃(𝐴 ∩ 𝐵) − 𝑃(𝐴)𝑃(𝐵) | → 0, 𝑎𝑠 𝑛 → ∞, where
A𝜅
𝑗 denotes the 𝜎-algebra generated by the random vectors {(𝜒𝑖 , 𝑌𝑖), 𝑗 ≤ 𝑖 ≤ 𝑘}.
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The process {(𝜒𝑖 , 𝑌𝑖), 𝑖 ≥ 1} is said to be arithmetically strong mixing with order
𝑎 > 0, if ∃𝐶 > 0, 𝛼(𝑛) ≤ 𝐶𝑛−𝛼 .

22.2 Model and Methodology

22.2.1 Modelling with Responses MAR and Estimators

Following model (22.1), let {(𝜒𝑖 , 𝑌𝑖 , 𝛿𝑖), 1 ≤ 𝑖 ≤ 𝑛} be arithmetically strong mixing
functional data with identically distribution as (𝝌, 𝑌 , 𝛿), where 𝜒𝑖 , 𝝌 take value in
a separable Hilbert space H with scalar product 〈·, ·〉 and its norm ‖ · ‖ = 〈·, ·〉1/2,
and 𝑌𝑖 , 𝑌 take value in R. That is

𝑌𝑖 = 𝑟 (〈𝜃, 𝝌𝑖〉) + 𝜀𝑖 , 𝑖 = 1, 2, ..., 𝑛.

with 𝐸 (𝜀𝑖 | 𝝌𝑖) = 0, 𝑎.𝑠. 𝛿𝑖 = 0 if 𝑌𝑖 is missing and 𝛿𝑖 = 1 otherwise. We also
assume that 𝑃(𝛿𝑖 = 1|𝑌𝑖 , 𝜒𝑖) = 𝑃(𝛿𝑖 = 1|𝜒𝑖) = 𝑝(𝜒𝑖), 𝑖 = 1, 2, ..., 𝑛. Meanwhile, let
the semi-metric 𝑑𝜃 (·, ·) with the functional single index 𝜃 be defined as 𝑑𝜃 (𝜒1, 𝜒2) :=
|〈𝜒1 − 𝜒2, 𝜃〉|. The kernel estimator of 𝑟 (〈𝜃, 𝜒〉) is constructed as following:

�̂�𝑛 (𝜃, 𝜒) =
∑𝑛
𝑖=1 𝛿𝑖𝑌𝑖𝐾 (ℎ−1𝑑𝜃 (𝜒, 𝜒𝑖))∑𝑛
𝑖=1 𝛿𝑖𝐾 (ℎ−1𝑑𝜃 (𝜒, 𝜒𝑖))

:=
�̂�2𝑛 (𝜃, 𝜒)
�̂�1𝑛 (𝜃, 𝜒)

, (22.2)

where �̂�1𝑛 (𝜃, 𝜒) = 1
𝑛

∑𝑛
𝑖=1 𝛿𝑖Δ 𝑖 (𝜃, 𝜒) and �̂�2𝑛 (𝜃, 𝜒) = 1

𝑛

∑𝑛
𝑖=1 𝛿𝑖𝑌𝑖Δ 𝑖 (𝜃, 𝜒), with

Δ 𝑖 (𝜃, 𝜒) =: 𝐾 (ℎ−1𝑑𝜃 (𝜒,𝜒𝑖))
𝐸𝐾 (ℎ−1𝑑𝜃 (𝜒,𝜒𝑖))

and 𝐾 (·) is a kernel functions, ℎ := ℎ𝑛 > 0 is a
sequence of bandwidths tending to zero as 𝑛 goes to infinity.

Obviously, the estimator (22.2) depends on the functional single index 𝜃 =
{𝜃 (𝑡), 𝑡 ∈ 𝐼}. However, in practice, 𝜃 is usually unknown and must be estimated.
Here, for any 𝜃, we borrow an idea from [5] by using a profile least squares approach
combined with local smoothing constant technique to estimate the functional single
index 𝜃. So we need to minimize the following weighted sum:

𝑛∑
𝑖=1

∑
𝑗: 𝑗≠𝑖

(
𝑌 𝑗𝛿 𝑗 − 𝑟 (〈𝜃, 𝜒𝑖〉)

)2
𝐾 (ℎ−1𝑑𝜃 (𝜒 𝑗 , 𝜒𝑖))/ℎ, (22.3)

where 𝐾 (·) is a kernel function and ℎ is a bandwidth with 0 < ℎ = ℎ𝑛 → 0. Let 𝜔𝑖
be the solution of minimizing (22.3) which is presented as

𝜔𝑖 =

∑
𝑗: 𝑗≠𝑖 𝑌 𝑗𝛿 𝑗𝐾𝑖 𝑗∑
𝑗: 𝑗≠𝑖 𝐾𝑖 𝑗

, where 𝐾𝑖 𝑗 = 𝐾 (ℎ−1𝑑𝜃 (𝜒 𝑗 , 𝜒𝑖)). Then, we obtain the profile

least squares estimator by minimizing the profile least squares function below:

𝑆(𝜃) =
𝑛∑
𝑖=1

(
𝑌𝑖𝛿𝑖 − 𝜔𝑖
)2 (22.4)

subject to 〈𝜃, 𝜃〉 = ‖𝜃‖ = 1 and 𝜃 (𝑡0) = 1 for 𝑡0 ∈ 𝐼 . For convenience, similar to [5],
we have
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𝜃 (𝑡) =
∞∑
𝑠=1

𝛼𝑠𝜑𝑠 (𝑡), 𝑡 ∈ 𝐼, (22.5)

where 𝜑1 (𝑡), 𝜑2 (𝑡), ... are chosen as the principal component bases of 𝝌(𝑡) con-
structed from covariance function 𝐾𝝌 (𝑢, 𝑣) = 𝐶𝑜𝑣(𝝌(𝑢), 𝝌(𝑣)) of the random
processes 𝝌(𝑡). However, the basis functions 𝜑𝑠 (𝑡) and 𝛼𝑠 are unknown in practice,
and need to be estimated in order to obtain estimator of 𝜃 (𝑡). For this purpose, we
consider the empirical version of 𝐾𝝌 (𝑢, 𝑣) given by

𝐾𝝌 (𝑢, 𝑣) =
1
𝑛

𝑛∑
𝑖=1

{𝜒𝑖 (𝑢) − 𝜒(𝑢)}{𝜒𝑖 (𝑣) − 𝜒(𝑣)},

where 𝜒(𝑣) = 1
𝑛

∑𝑛
𝑖=1 𝜒𝑖 (𝑡), the eigenfunctions 𝜑𝑠 (𝑡) of the covariance operator

associated with 𝐾𝝌 (𝑢, 𝑣) is the estimators of the basis functions 𝜑𝑠 (𝑡) for 𝑠 = 1, 2, ....
By (22.5) and selecting a suitable positive integer 𝜏, it follows that

𝜃 (𝑡) ≈
𝜏∑
𝑠=1

𝛼𝑠𝜑𝑠 (𝑡). (22.6)

Thus, combining (22.4) with (22.6) leads to

𝑆(𝛼1, ..., 𝛼𝜏) =
𝑛∑
𝑖=1

(𝑌𝑖 − 𝜔𝑖)2 , (22.7)

subject to
∑𝜏
𝑠=1 𝛼

2
𝑠 = 1 and
∑𝜏
𝑠=1 𝛼𝑠𝜑𝑠 (𝑡0) > 0 (i.e. 𝜃 (𝑡0) > 0). Now, following the

same steps as [5], we can find the optimal solutions �̂�𝑠 of (22.7), 𝑠 = 1, 2, ...𝜏. Then,
the estimator of 𝜃 (𝑡) is obtained by

�̂� (𝑡) =
𝜏∑
𝑠=1

�̂�𝑠𝜑𝑠 (𝑡). (22.8)

Hence, the estimation �̂� (𝑡) of 𝜃 (𝑡) depends on the choice of 𝜏 although our main
interest lies in the case where the scalar responses is MAR for functional time series
data.

22.2.2 Some Notations and Assumptions

Let 𝑆H , ΘH be a compact subset of H , and 𝑁1,𝑛, 𝑁2,𝑛 be the minimal number of
open balls with radius 𝜀 in H which is necessary to cover 𝑆H and ΘH with centers
𝜒1, ..., 𝜒𝑁1,𝑛 and 𝜃1, ..., 𝜃𝑁2,𝑛 respectively. For 𝑖 = 1, 2..., 𝑁1,𝑛, denote 𝐾𝑖 (𝜃, 𝜒) :=
𝐾 (ℎ−1 | 〈𝜒 − 𝜒𝑖 , 𝜃〉 |) and 𝐵𝜃 (𝜒, ℎ) =: {Y ∈ H | 〈𝜒 − Y, 𝜃〉 ≤ ℎ} for ∀𝜒 ∈ H .
Let Ψ𝑆H (𝜀) = log(𝑁1,𝑛) and ΨΘH (𝜀) = log(𝑁2,𝑛) be the Kolmogrov’s 𝜀-entropy
of 𝑆H and ΘH respectively. For a fixed 𝜒 ∈ 𝑆H and 𝜃 ∈ ΘH , denote 𝑡 (𝜒) =
arg min𝑡 ∈{1,2,...,𝑁1,𝑛 } ‖𝜒−𝜒𝑡 ‖ and 𝑘 (𝜃) = arg min𝑘∈{1,2,...,𝑁2,𝑛 } ‖𝜃−𝜃𝑘 ‖ respectively.
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The �̂� (𝑡) depends on the suitable choice of positive integer 𝜏 which the parametric
can be obtained by cross-validation method, in generally, the maximum value of 𝜏
no more than 10. The influence of the mixing structure on the rates of convergence
will be shown through the quantities:
𝑠2
𝑛,1 =
∑𝑛
𝑖=1
∑𝑛
𝑗=1 |𝐶𝑜𝑣(𝑌𝑖Δ 𝑖 (𝜃𝑘 (𝜃) , 𝜒𝑡 (𝜒) ), 𝑌 𝑗Δ 𝑗 (𝜃𝑘 (𝜃) , 𝜒𝑡 (𝜒) )) |,

𝑠2
𝑛,2 =
∑𝑛
𝑖=1
∑𝑛
𝑗=1 |𝐶𝑜𝑣(𝑌𝑖∇𝑖 , 𝑌 𝑗∇ 𝑗 ) |,

𝑠2
𝑛,3 =
∑𝑛
𝑖=1
∑𝑛
𝑗=1 |𝐶𝑜𝑣(𝑌𝑖Γ𝑖 , 𝑌 𝑗Γ 𝑗 ) |,

𝑠2
𝑛,4 =
∑𝑛
𝑖=1
∑𝑛
𝑗=1 |𝐶𝑜𝑣(∇𝑖 ,∇ 𝑗 ) |,

𝑠2
𝑛,5 =
∑𝑛
𝑖=1
∑𝑛
𝑗=1 |𝐶𝑜𝑣(Γ𝑖 , Γ 𝑗 ) |,

𝑠2
𝑛,6 =
∑𝑛
𝑖=1
∑𝑛
𝑗=1 |𝐶𝑜𝑣(Δ 𝑖 (𝜃𝑘 (𝜃) , 𝜒𝑡 (𝜒) ),Δ 𝑗 (𝜃𝑘 (𝜃) , 𝜒𝑡 (𝜒) )) |, where

∇𝑖 =: 1
𝜙 (ℎ) 𝐼{𝐵𝜃 (𝜒,ℎ)

⋃
𝐵𝜃 (𝜒𝑡 (𝜒) ,ℎ) } (𝜒𝑖),

Γ𝑖 =: 1
𝜙 (ℎ) 𝐼{𝐵𝜃 (𝜒𝑡 (𝜒) ,ℎ)

⋃
𝐵𝑘 (𝜃 ) (𝜒𝑡 (𝜒) ,ℎ) } (𝜒𝑖) and 𝐼𝐴(·) is an indicative function of a

set 𝐴.
Denote 𝑠

′2
𝑛 = max
{
𝑠2
𝑛,1, 𝑠

2
𝑛,2, 𝑠

2
𝑛,3

}
, 𝑠

′′2
𝑛 = max
{
𝑠2
𝑛,4, 𝑠

2
𝑛,5, 𝑠

2
𝑛,6

}
. Throughout this

contribution, let 𝐶,𝐶1 and 𝐶2, ... be some positive constants not depending on 𝑛,
which may take different values in each appearance.

(A1) There exists a differentiable function 𝜙(·) such that, for ∀𝜒 ∈ 𝑆H , ∀𝜃 ∈ ΘH ,
0 < 𝐶1𝜙(ℎ) ≤ 𝑃

(
𝝌 ∈ 𝐵𝜃 (𝜒, ℎ)

)
=: 𝜙𝜃,𝜒 (ℎ) ≤ 𝐶2𝜙(ℎ) < ∞ and ∃𝜉0 > 0,∀𝜉 <

𝜉0, 𝜙
′ (𝜉) < 𝐶.

(A2) The kernel 𝐾 (·) is a positive bounded function supported on [0, 1] and is
differentiable on [0, 1] such that, ∃𝐶1, 𝐶2,−∞ < 𝐶1 < 𝐾

′ (𝑡) < 𝐶2 < 0 for
0 < 𝑡 < 1.

(A3) 𝑟 (〈𝜃, .〉) is such that: ∃𝛽 > 0,∀(𝜒1, 𝜒2) ∈ 𝑆H × 𝑆H ,
|𝑟 (〈𝜃, 𝜒1〉) − 𝑟 (〈𝜃, 𝜒2〉) | ≤ 𝐶𝑑𝜃 (𝜒1, 𝜒2)𝛽 .

(A4) There exist 𝑎 > 1 and 𝑏 > 2 such that 𝑠−(𝑎+1)
𝑛, 𝑗 = 𝑜(𝑛−𝑏) for 𝑗 = 1, ..., 6.

(A5) For 𝑛 being large enough, the Kolmogrov’s 𝜀-entropy of 𝑆H and ΘH for
𝜀 = log 𝑛

𝑛 satisfies:

(i)
(log 𝑛)2

𝑛𝜙(ℎ)
< Ψ𝑆H

(
log 𝑛
𝑛

)
+ ΨΘH

(
log 𝑛
𝑛

)
<

𝑛𝜙(ℎ)
log 𝑛

,

(ii)
∑∞
𝑛=1 (𝑁𝑛)1−𝛾 < ∞, for some 𝛾 > 1 and 𝑁𝑛 = 𝑁1,𝑛.𝑁2,𝑛,

(iii) 𝑛𝜙(ℎ) = 𝑂 ((log 𝑛)2).

(A6)

(i) ∃𝜈 > 2, such that 𝐸 |𝑌 |𝜈 < ∞. For a fixed 𝜃 ∈ 𝑆H and ∀𝑢 ∈ 𝑆H .
(ii) 𝐸 [(𝑌 − 𝑟 (〈𝜃, 𝝌〉))2 |𝝌 = 𝑢] = 𝑔2 (𝑢, 𝜃) and 𝑝(·) are continuous in a neigh-

borhood of 𝜒 respectively, that is
sup{𝑢:𝑑𝜃 (𝜒,𝑢)�ℎ} |𝑔2 (𝑢, 𝜃) − 𝑔2 (𝜒, 𝜃) | = 𝑜(1), as ℎ → 0,
sup{𝑢:𝑑𝜃 (𝜒,𝑢)�ℎ} |𝑝(𝑢) − 𝑝(𝜒) | = 𝑜(1), as ℎ → 0.

(iii) Let 𝑔𝜈 (𝑢, 𝜃) = 𝐸 [
��𝑌 − 𝑟 (〈𝜃, 𝝌〉|𝜈

��𝝌 = 𝑢] be continuous in some neighbor-
hood of 𝜒.
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(A7)

(i) 0 < sup𝑖≠ 𝑗 𝑃[(𝜒𝑖 , 𝜒 𝑗 ) ∈ 𝐵𝜃 (𝜒, ℎ) × 𝐵𝜃 (𝜒, ℎ)] � 𝜓𝜃,𝜒 (ℎ),
where 𝜓𝜃,𝜒 (ℎ) → 0 as ℎ → 0 with 𝜓𝜃,𝜒 (ℎ)

𝜙2
𝜃,𝜒 (ℎ) = 𝑂 (1).

(ii) There exists an function 𝜏𝜃,𝜒 (·) satisfying:
∀𝑡 ∈ [0, 1], lim

𝑛→∞
𝜙𝜃,𝜒 (ℎ𝑡)
𝜙𝜃,𝜒 (ℎ) = 𝜏𝜃,𝜒 (𝑡).

(A8) The bandwidths ℎ = ℎ𝑛 satisfies:

(i) 𝑛𝜙𝜃,𝜒 (ℎ) → ∞, as 𝑛 → ∞.
(ii) 𝑛ℎ2𝛽𝜙𝜃,𝜒 (ℎ) → 0, as 𝑛 → ∞.

(A9) For some 𝜈 > 2 and 𝑚 > 1 − 2/𝜈 such that
∑∞
𝑛=1 𝑛

𝑚 [𝛼(𝑛)]1−2/𝜈 < ∞.

Comments on the assumptions: Assumption (A1) characterizes the concentration
of the explanatory variable in small balls. Similar to the discussions in [10], (A2) and
(A3) are the quite usual conditions on the kernel function for nonparametric FDA.
(A4) shows the covariance structure of the dependent sample, see, for instance, [17]
and [10] respectively for details; (A5) is used to obtain the uniform consistency rate.
(A6)(ii) and (A6)(iii) stand as local continuous conditions, which is necessary to
establish the main results and make the results more concise in this paper. (A7)(i)
gives the behavior of the joint distribution of the couple (𝜒𝑖 , 𝜒 𝑗 ) in relation to
its margin, and also permits us to present an explicitly asymptotic variance term,
respectively. (A8)(ii) will be used to remove the bias term in the asymptotic normality
results. (A9) is a standard assumption on the strong mixing coefficient.

22.3 Asymptotic Properties

Theorem 1 Under assumptions (A1)–(A5), we have that, as 𝑛 → ∞,

sup
𝜃 ∈ΘH

sup
𝜒∈𝑆H

|�̂�𝑛 (𝜃, 𝜒) − 𝑟 (〈𝜃, 𝜒〉) | =

= 𝑂 (ℎ𝛽) +𝑂𝑎.𝑐𝑜
���
√

𝑠∗2
𝑛

(
Ψ𝑆H (log 𝑛 / 𝑛) + ΨΘH (log 𝑛 / 𝑛)

)
𝑛2


�� , (22.9)

where 𝑠∗2
𝑛 = 𝑚𝑎𝑥
{
𝑠
′2
𝑛 , 𝑠

′′2
𝑛

}
.

Theorem 2 Under assumptions (A1)–(A3) and (A6)–(A9), then we get that,

(𝑛𝜙𝜃,𝜒 (ℎ))1/2 (�̂�𝑛 (𝜃, 𝜒) − 𝑟 (〈𝜃, 𝜒〉)) 𝐷−→ 𝑁 (0, 𝜎2 (𝜃, 𝜒)), as 𝑛 → ∞, (22.10)

where 𝜃 ∈ {𝜃 (𝑡), 𝑡 ∈ 𝐼} and 𝜎2 (𝜃, 𝜒) := 𝑀2
𝑀 2

1

𝑔2 (𝜒,𝜃)
𝑝 (𝜒)

with 𝑀 𝑗 = 𝐾 𝑗 (1) −
∫ 1
0 (𝐾 𝑗 )′ (𝑢)𝜏𝜃,𝜒 (𝑢)𝑑𝑢, for 𝑗 = 1, 2, and 𝐷−→ means the conver-

gence in distribution.
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22.4 Conclusion

This contribution investigates the estimation of the functional single index regres-
sion model (FSIRM) with responses missing at random (MAR) for strong mixing
time series data. The large sample properties such as the uniform almost complete
convergence rate and asymptotic normality of the estimator are obtained respectively
under some general conditions. What is presented here is mainly issued from [13] in
which the detail proofs and extensive simulation studies as well as deeper real data
analysis of the method can be found.
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Chapter 23
O2S2 for the Geodata Deluge

Alessandra Menafoglio, Davide Pigoli and Piercesare Secchi

Abstract We illustrate a few recent ideas of Object Oriented Spatial Statistics (O2S2),
focusing on the problem of kriging prediction in situations where a global second
order stationarity assumption for the random field generating the data is not justifiable
or the space domain of the field is complex. By localizing the analysis through the
Random Domain Decomposition algorithm, we build ensembles of local predictors
eventually aggregated in an ultimate one. The localization allowed by the algorithm
is also effective for dealing with data which are mildly non-Euclidean and can be
locally linearized, as it happens for data embedded in a Riemannian manifold.

23.1 Introduction: Object Oriented Data Analysis for Spatially
Dependent Complex Data

Public and private companies, national statistical offices, healthcare organizations
and systems, space agencies, research laboratories and universities collect and store
an ever increasing amount of data which are referenced in space or time. Data
are captured by infrastructures distributed in space, like mobile phone networks
tracking people and objects moving over an urban maze or sensor systems recording
over time the composition of chemical species measured in sampled locations of
an estuarine region or in a large-scale ground-water body. Additive manufacturing,
which is feeding the 4th industrial revolution, requires real-time monitoring of parts

Alessandra Menafoglio
MOX - Department of Mathematics, Politecnico di Milano, Milano, Italy,
e-mail: alessandra.menafoglio@polimi.it

Davide Pigoli
Department of Mathematics, King’s College London, London, United Kingdom,
e-mail: davide.pigoli@kcl.ac.uk

Piercesare Secchi (�)
MOX - Department of Mathematics, Politecnico di Milano, Milano, Italy and Center for Analysis
Decisions and Society, Human Technopole, Milano, Italy, e-mail: piercesare.secchi@polimi.it

169© Springer Nature Switzerland AG 2020 

Contributions to Statistics, https://doi.org/10.1007/978-3-030-47756-1_23

G. Aneiros et al. ,   (eds.), Functional and High-Dimensional Statistics and Related Fields

mailto:alessandra.menafoglio@polimi.it
mailto:davide.pigoli@kcl.ac.uk
mailto:piercesare.secchi@polimi.it
https://doi.org/10.1007/978-3-030-47756-1_23
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47756-1_23&domain=pdf


170 Alessandra Menafoglio, Davide Pigoli and Piercesare Secchi

represented as shapes and identified as space dependent data points of a manifold.
Steadily more, these data are high dimensional and complex – like functions, tensors,
graphs and networks – due to the advance of a new generation of sensors and
diagnostic devices able to measure reality in a pulverized format.

The availability of massive geodata is pushing the demand for new statistical
paradigms, oriented by the goals of the analysis and the nature of the data the analysis
is based upon. Following the Object Oriented Data Analysis approach first advocated
by Wang and Marron [17], the atoms of the statistical inquiry (e.g., vectors, curves,
operators, networks) are indivisible objects which should be modeled as points of a
mathematical space whose dimensionality, topology and geometrical properties must
not injure the data complexity in the face of the goals of the analysis. In this short
paper we will pursue an object oriented approach for spatial statistics – christened
Object Oriented Spatial Statistics (O2S2) in [7].

Typical problems of O2S2 are those of prediction, classification, regression, data
fusion and dimensional reduction; for a recent review, we refer to [10], beside the
already mentioned [7]. In the following pages we illustrate some recent advances of
the O2S2 system of ideas, leveraging the papers [8, 9] and considering the problem
of kriging prediction in situations where the random field generating the object
data cannot be assumed to be globally stationary, or the spatial domain supporting
the random field is complex, although locally Euclidean. To attack these issues we
will illustrate a Random Domain Decomposition (RDD) approach which builds an
ensemble of local models to generate predictions eventually aggregated into a final
global one. Interestingly, the localization idea RDD is based upon is also instrumental
to tackle the kriging problem when the object data are mildly non-Euclidean and
can be locally linearized, as it happens when they are elements of a Riemannian
manifold.

In the next section we will briefly introduce the notion of kriging in a O2S2
perspective. The following section will sum up the RDD algorithm. Next we will
illustrate kriging prediction by means of RDD by summarizing two case studies
directed at the environmental monitoring of the Chesapeake Bay. A section with
conclusions will close the paper.

23.2 A Gentle Initiation to the O2S2 Perspective on Kriging

Let 𝑥𝑠1 , ..., 𝑥𝑠𝑛 be 𝑛 data objects observed in the sampled locations 𝑠1, ..., 𝑠𝑛 of a
spatial domain 𝐷. Assuming that the 𝑥𝑠𝑖 ’s are point observations of a random field
defined on 𝐷, the problem is to predict the realization 𝑥𝑠0 of the field at an unobserved
location 𝑠0 in 𝐷. Approaching the problem, we are immediately confronted with two
critical issues. The first is related with the complexity of the objects 𝑥𝑠𝑖 ’s, the second
with the complexity of the spatial domain 𝐷.

Following the object oriented approach, the random data cloud {𝑥𝑠𝑖 : 𝑠0, 𝑠1, ..., 𝑠𝑛 ∈
𝐷} should be embedded in a mathematical space M – often called the feature space
– whose geometry must properly account for the nature of the objects and the scope
of the analysis. For instance, if the goal is to elicit a representation of the predictor
of 𝑥𝑠0 in a linear form
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𝑛∑
𝑖=1

𝜆𝑖𝑥𝑠𝑖 ,

then M should be linear. Moreover, if we aim at an ordinary kriging predictor [2]
where the weights 𝜆1, ..., 𝜆𝑛 are optimal in the sense of minimizing

𝐸

⎡⎢⎢⎢⎢⎣
44444𝑥𝑠0 −

𝑛∑
𝑖=1

𝜆𝑖𝑥𝑠𝑖

444442⎤⎥⎥⎥⎥⎦ subject to 𝐸

[
𝑛∑
𝑖=1

𝜆𝑖𝑥𝑠𝑖

]
= 𝐸 [𝑥𝑠0 ], (23.1)

then M should be normed – allowing to define the expected value 𝐸 [·] à la Fréchet.
In this case, we also need to be able to measure stochastic dependence between
random elements with values in M, something which is conveniently achieved if M
is endowed with a notion of inner product and thus a mean to measure angles.

Kriging prediction when the feature space M is Hilbert has been extensively
treated in the literature: see the review paper [7] and references therein. Notably,
in Functional Data Analysis a typical choice for M is the space 𝐿2 of square inte-
grable functions. Nonetheless, when point-wise and differential information embed-
ded within the functions are both relevant for the analysis, a Sobolev space might be a
more appropriate feature space. It might happen that the data objects are constrained
functional data, for instance when they can be represented as probability densities,
i.e. non negative functions integrating to a positive constant; these compositional
data can be suitably embedded in a Hilbert space endowed with the generalized
Aitchison’s geometry (a.k.a., Bayes Hilbert space, [5]). In fact, we will use this spe-
cific feature space to maximum advantage in a case study illustrated in Section 23.4
which explores the random field of the densities of oxygen dissolved in the waters of
the Chesapeake Bay.

Things do not proceed so smoothly when object data are not Hilbert, for instance
when they are points of a Riemannian manifold, a non-linear space which can be
approximated by a Hilbert space only locally. While there have been some attempts
to introduce new concepts of stochastic dependence in this kind of spaces (see, e.g,
[11, 4]), a rigorous treatment of kriging prediction is still out of reach due to the non-
linearity of the Fréchet expectation. To overcome this issue, in [12], we introduced
a tangent space model for kriging Riemannian data which grounds on the idea of (i)
linearizing the data by projecting them into the tangent space (which is Hilbert), (ii)
perform kriging in the tangent space, and (iii) finally transform the prediction back
into the original Riemannian feature space. This approach works very well when the
variability of the data is not large, i.e. when the data reside in a local neighbor of
the feature space and therefore the linear approximation allowed by their projection
on the tangent space is good. Local linearization of Riemannian data will be the key
point of a case study illustrated in Section 23.4 where we analyze the random field of
covariance matrices of dissolved oxygen and water temperature over the Chesapeake
Bay. Localization will be obtained by means of the RDD scheme reported in Section
23.3.

A second critical element of complexity may arise when the spatial domain 𝐷 has
a complex topology and is not convex due to the presence of holes or boundaries, or



172 Alessandra Menafoglio, Davide Pigoli and Piercesare Secchi

when the appropriate notion of closeness is not captured by the Euclidean distance.
These issues make it difficult to leverage Tobler’s first law of geography which
states that "everything is related to everything else, but near things are more related
than distant things" [15]. The problem of analyzing spatial data when their domain
of observation has a complex topology has been considered in the functional data
literature: for instance, see [13] and references therein. We approach the problem
through localization, assuming that the space domain 𝐷 can be locally approximated
by simple Euclidean subdomains. Localization is once again obtained by means of
the RDD scheme, which is by now time to put forward.

23.3 Localization through Random Domain Decomposition

The classic workhorse for solving the kriging prediction optimality problem formal-
ized in (23.1) is the semi-variogram [2], whose counterpart when data are Hilbert is
the trace semi-variogram [6], defined, for any two locations 𝑠𝑖 , 𝑠 𝑗 ∈ 𝐷, as

𝛾(𝑠𝑖 , 𝑠 𝑗 ) =
1
2

{
𝐸
[44𝑥𝑠𝑖 − 𝑥𝑠 𝑗
442] − 44𝐸 [𝑥𝑠𝑖 ] − 𝐸

[
𝑥𝑠 𝑗
]442} .

If the random field defined on 𝐷 and generating the 𝑥𝑠𝑖 ’s has spatially constant mean
and is second-order stationary, then 𝛾 can be estimated by fitting a parametric valid
model to the empirical trace semi-variogram. This course of action can be extended
to the case of mildly non-stationary random fields, where the mean of the field is
not constant but can be represented by a linear model, and the residuals are second
order stationary: for details, see [6].

For stronger types of non-stationarity and object data, the literature is rather
scanty and no all-encompassing procedure is known to us, even for cases where
the spatial domain 𝐷 is a rectangular subset of a Euclidean space. The problem is
further complicated by the fact that non-stationarity of the field generating the data
often happens in co-occurence with a spatial domain whose topology is complex,
with holes or barriers, and the distance measuring closeness between locations is
not Euclidean, as it happens, for instance, between locations of an estuarine system
lying on opposite sides of a promontory. However, the degree of non-stationarity
of the field, as well as the degree of complexity of the domain, may depend on the
spatial scale of observation. Indeed, even though the field may appear non-stationary
at a global spatial scale, stationarity may be a viable assumption at a local scale.
Similarly, a spatial domain which is complex at a global scale, might be locally
approximated through a simple Euclidean domain.

For tackling the kriging prediction problem in these situations, the Random
Domain Decomposition (RDD) approach was proposed in [8]; its goal is to localize
the analysis by means of a divide et impera strategy, and generate an ensemble of
locally optimal predictors, which are eventually aggregated in a final one. RDD is
rooted in the bagging idea of Breiman [1] and has a direct predecessor called Bagging
Voronoi Algorithm [14]. Indeed, RDD is composed of two stages: a bootstrap stage
and an aggregating stage. The bootstrap stage consists of 𝐵 iterations: at each iteration
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the spatial domain 𝐷 is randomly partitioned in local neighbors, where the notion of
neighbor must be consistent with the specific topology characterizing the complexity
of 𝐷. In each neighbor, a local analysis is performed, assuming stationarity of the
field generating the data and Euclidean approximation of the spatial domain. Hence,
at a given location 𝑠0 ∈ 𝐷, the bootstrap stage results in a set of 𝐵 predictions, each
of them locally optimal conditionally on the realization of the random partition of
𝐷. In the final aggregating stage, the 𝐵 predictions resulting from the bootstrap stage
are aggregated in a ultimate prediction, typically by taking a (weighted) average. For
further details, we refer to [8].

Consistently with Tobler’s law [15], by localizing in space spatially dependent
data, RDD has the further effect of localizing data in their feature space. This makes
RDD suitable for the analysis of non-Euclidean spatially dependent object data
which could be efficiently locally linearized, as is the case when the feature space is
a Riemannian manifold. This idea was exploited in [9], using to maximum advantage
the tangent space model for kriging Riemannian data introduced in [12], a model
which is indeed appropriate when the data variability is not large.

23.4 Monitoring Dissolved Oxygen in the Waters of the
Chesapeake Bay

The Chesapeake Bay is the largest estuarine system in USA. The Bay has been
monitored for years, to assess the impact of human activities on aquatic variables
deemed critical for its ecosystem. Of primary importance is the dissolved oxygen
(𝐷𝑂) in the waters of the Bay, since 𝐷𝑂 is necessary for the life of most marine
species. The areas of the Bay where 𝐷𝑂 is below 2 mg/l are called Dead zones. In
these areas most of the marine species suffocate.

Figure 23.1b shows the outline of the Chesapeake Bay and the locations of
110 monitoring stations (dots). In each of these stations, 17 measurements of 𝐷𝑂
were recorded in the time period 1990-2006 [source: US Environmental Protection
Agency Chesapeake Bay Program (US EPA-CBP)]. No significant autocorrelation
exists, along the years, for the time series of 𝐷𝑂. In the figure, each dot indicating
the position of a monitoring station has been colored according to the corresponding
value of the 𝐷𝑂 sample mean. The same color is used in the graph in Figure 23.1a,
where the smoothed probability density functions (pdf) of 𝐷𝑂 are represented: these
pdf’s are the object data of this first case study, detailed in [8], whose primary goal
is to predict the 𝐷𝑂 pdf at the unobserved locations of the Bay.

We embed the 𝐷𝑂 pdf’s in the Bayes Hilbert feature space introduced in [16].
This is the space B2 (𝐼) of real valued positive functions defined on an interval 𝐼 ⊂ 𝑅
of length 𝜂, whose logarithm is squared-integrable. The space B2 (𝐼) is endowed
with the equivalence relation of proportionality, and is equipped with a separable
Hilbert structure if, for any 𝑓 , 𝑔 ∈ B2 (𝐼) and 𝛼 ∈ 𝑅, the following operations

( 𝑓 ⊕ 𝑔) (𝑡) =
𝑓 (𝑡)𝑔(𝑡)∫

𝐼
𝑓 (𝑠)𝑔(𝑠) d𝑠

, (𝛼 $ 𝑓 ) (𝑡) =
𝑓 (𝑡)𝛼∫

𝐼
𝑓 (𝑠)𝛼 d𝑠

, 𝑡 ∈ 𝐼,

and inner product,
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Fig. 23.1 Distribution of 𝐷𝑂 in the Chesapeake Bay. Prediction in panels (b) and (c) are obtained
by using 16 local neighbors in each of the 100 bootstrap iterations.

〈 𝑓 , 𝑔〉 =
1
2𝜂

∫
𝐼

∫
𝐼

ln
𝑓 (𝑡)
𝑓 (𝑠)

ln
𝑔(𝑡)
𝑔(𝑠)

d𝑡 d𝑠,

are defined. See [16] and references therein for more details.
Next come the realization that the random field generating the 𝐷𝑂 pdf’s is not

stationary and the spatial domain 𝐷 of the estuarine system, i.e. the area of the Bay
covered by water, is non convex, with irregular boundaries, promontories and islands.
Accordingly, the distance capturing the notion of closeness in the Bay is non Eu-
clidean, since even if a short air distance separates two points lying on opposite sides
of a promontory, the land separating them represents a barrier for the distribution
of 𝐷𝑂 (i.e. large water distance). Hence, for computing kriging predictions of 𝐷𝑂
pdf’s, we follow the RDD, having represented the Bay through a constrained Delau-
nay triangulation (for details see [8]). In the bootstrap stage of RDD, local neighbors
of 𝐷 are obtained based on the graph-based metric implied by the triangulation.
Aggregation of the local predictors is secured by simple averaging in B2 (𝐼). Details
for setting the model parameters for this specific RDD implementation are given
in [8]. Note that kriging the entire pdf’s, instead of, e.g., their summary statistics
(mean, variance, or selected quantiles), allows projecting the full information content
embedded in pdf’s to unsampled locations of 𝐷. For instance, Figure 23.1b-c show,
respectively, the mean of the predicted pdf’s, and the probability of 𝐷𝑂 < 2𝑚𝑔/𝑙:
dead zones are identified by a contour line representing the value of this probability
being equal to 1/2.

Dissolved oxygen in water is influenced by the water temperature (𝑊𝑇). Hence
it becomes of interest to study the spatial variation of the covariance matrix of 𝐷𝑂
and 𝑊𝑇 over the Chesapeake Bay. The dataset we consider for this second case
study consists of the sample covariance matrices of 𝐷𝑂 and 𝑊𝑇, estimated at 144
locations within the Bay where more than 10 joint measurements, taken along the
period 1990-2006, were available [source: US Environmental Protection Agency
Chesapeake Bay Program (US EPA-CBP)]. The object data are now covariance
matrices and they are embedded in the feature space 𝑃𝐷 (2) of the 2x2, symmetric,
positive definite matrices with real entries. The goal of the analysis is to predict the
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covariance matrix between 𝐷𝑂 and𝑊𝑇 at an unobserved location of the Bay; details
of this case study are reported in [9].

The feature space 𝑃𝐷 (2) is a convex cone, subset of the Hilbert space 𝑆𝑦𝑚(𝑝)
of the 2x2, symmetric matrices with real entries. Although 𝑃𝐷 (2) is not a linear
space, it can be endowed with a metric [3]. A natural choice is the invariant under
affine transformation metric defined, for all Ψ1,Ψ2 ∈ 𝑃𝐷 (2), as

𝑑𝑅 (Ψ1,Ψ2) = | | log(Ψ
1
2
1 Ψ2Ψ

1
2
1 ) | |,

where log(·) is the logarithm matrix, and | | · | | is the norm defined on 𝑆𝑦𝑚(𝑝) when
this space is endowed with the Frobenius inner product 〈𝐴1, 𝐴2〉 = trace(𝐴𝑇1 𝐴2),
for 𝐴1, 𝐴2 ∈ 𝑆𝑦𝑚(𝑝). For any Ψ ∈ 𝑃𝐷 (2), geodesics in 𝑃𝐷 (2) passing through Ψ,
as well as associated exponential and logarithmic maps – i.e., maps to and from the
linear tangent spaces in Ψ , identified with 𝑆𝑦𝑚(𝑝), – are defined consistently with
𝑑𝑅; for references and details we refer to [9].

Applying the RDD scheme along the same line described above for predicting
the pdf’s of 𝐷𝑂, we are able to localize the kriging prediction to neighbors of
𝐷 where the variability of the objects is not large and therefore the tangent space
model for kriging covariances, introduced in [9], is reasonable. Results are shown
in Figure 23.2 which represents, for different locations of the Bay, the sd’s of 𝐷𝑂
and 𝑊𝑇, together with their correlations, simultaneously estimated as elements of
the corresponding covariance matrix.

Fig. 23.2 Predictions of covariance matrices between 𝐷𝑂 and𝑊𝑇 in the Chesapeake Bay, using
10 local neighbors in each of the 100 bootstrap iterations.

23.5 Conclusions

O2S2 is a system of ideas which meets the growing demand for statical models and
algorithms able to drive the analyses required by the geodata deluge. In this short
illustrative paper, we pointed to our main contributions to the problem of kriging
object data, when the assumption of stationarity of the random field generating them
is not tenable, or the spatial domain is complex.
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Chapter 24
Riemannian Distances between Covariance
Operators and Gaussian Processes

Minh Hà Quang

Abstract In this work we study several recently formulated Riemannian distances be-
tween infinite-dimensional positive definite Hilbert-Schmidt operators in the context
of covariance operators associated with functional random processes. Specifically,
we focus on the affine-invariant Riemannian and Log-Hilbert-Schmidt distances and
the family of Alpha Procrustes distances, which include both the Bures-Wasserstein
and Log-Hilbert-Schmidt distances as special cases. In particular, we present finite-
dimensional approximations of the infinite-dimensional distances and show their
convergence to the exact distances. The theoretical formulation is illustrated with
numerical experiments on covariance operators of Gaussian processes.

24.1 Introduction

The study of functional data has received increasing interests recently, see e.g.
[25, 6, 10]. One particular approach for analyzing functional data has been via
the analysis of covariance operators. Recent work along this direction includes
[21, 7], which utilize the Hilbert-Schmidt distance between covariance operators
and [24, 13], which utilize non-Euclidean distances, in particular the Procrustes
distance, also known as Bures-Wasserstein distance. The latter distance corresponds
to precisely the L2-Wasserstein distance between two zero-mean Gaussian measures
on Hilbert space in the context of optimal transport and can better capture the intrinsic
geometry of the set of covariance operators. In this work, we study other non-
Euclidean distances between covariance operators that arise from the Riemannian
geometric viewpoint of positive definite Hilbert-Schmidt operators, including in
particular the affine-invariant Riemannian and Log-Hilbert-Schmidt distances. 1

Minh Hà Quang (�)
RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, 15F, Chuo-kuo, Tokyo,
103-0027, Japan, e-mail: minh.haquang@riken.jp

1 Many more theoretical results, along with further numerical experiments, will be presented in the
longer version of the current work.
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24.2 Covariance Operators Associated with Random Processes

Let (Ω, F , 𝑃) be a probability space. Let 𝐼 ⊂ R be compact. Let 𝑋 be a random
process taking values in L2 (𝐼), that is 𝑋 (𝑡) ∈ L2 (𝐼) ∀𝑡 ∈ 𝐼, where L2 (𝐼) is the
space of square integrable functions on 𝐼 under the Lebesgue measure. Assume
further that E( | |𝑋 (𝑡) | |2L2 (𝐼 ) ) < ∞. The mean function associated with 𝑋 is defined
by 𝑚𝑋 (𝑡) = E(𝑋 (𝑡)). The covariance function associated with 𝑋 is defined by

cov𝑋 (𝑡1, 𝑡2) = E( [𝑋 (𝑡1) − 𝑚𝑋 (𝑡1))] [𝑋 (𝑡2) − 𝑚𝑋 (𝑡2))]). (24.1)

Then cov𝑋 : 𝐼 × 𝐼 → R is a positive definite kernel and gives rise to the covariance
operator 𝐶𝑋 : L2 (𝐼) → L2 (𝐼), which is the integral operator defined by

(𝐶𝑋𝑔) (𝑡) =
∫
𝐼

cov𝑋 (𝑡, 𝑡 ′)𝑔(𝑡 ′)𝑑𝑡 ′, 𝑔 ∈ L2 (𝐼). (24.2)

Let us assume further that cov𝑋 is continuous. Then 𝐶𝑋 is a positive, self-adjoint,
trace class operators on L2 (𝐼). In the following, we study different distances, particu-
larly Riemannian distances, between two covariance operators𝐶𝑋 and𝐶𝑌 associated
with two random processes 𝑋 and 𝑌 , respectively.

24.3 Finite-dimensional Distances

Let 𝐴, 𝐵 be two covariance matrices corresponding to two Borel probability measures
in R𝑛, then 𝐴, 𝐵 ∈ Sym+(𝑛), the set of 𝑛 × 𝑛 real, symmetric, positive semi-definite
matrices. Examples of distance functions that have been studied on Sym+(𝑛) include

1. Euclidean (Frobenius) distance 𝑑𝐸 (𝐴, 𝐵) = | |𝐴 − 𝐵| |𝐹 , where | | | |𝐹 denotes
the Frobenius norm. For 𝐴 = (𝑎𝑖 𝑗 )𝑛𝑖, 𝑗=1, | |𝐴| |2𝐹 = tr(𝐴𝑇 𝐴) =

∑𝑛
𝑖, 𝑗=1 𝑎

2
𝑖 𝑗 . This

distance is computationally efficient but simply treats 𝐴, 𝐵 as vectors in R𝑛2 ,
disregarding all of their intrinsic structures (e.g. symmetry, positivity).

2. Square root distance [5] 𝑑1/2 (𝐴, 𝐵) = | |𝐴1/2 − 𝐵1/2 | |𝐹 = (tr[𝐴 + 𝐵 −
2(𝐴1/2𝐵1/2)])1/2.

3. Bures-Wasserstein distance 𝑑BW (𝐴, 𝐵) = (tr[𝐴+ 𝐵− 2(𝐵1/2𝐴𝐵1/2)1/2])1/2 (see
e.g. [4, 9, 8, 3, 12]. This is precisely the L2-Wasserstein distance between two
zero-mean Gaussian probability measures in R𝑛 with covariance matrices 𝐴, 𝐵.
It coincides with the square root distance if and only if 𝐴 and 𝐵 commute.

Consider now the set Sym++(𝑛) of 𝑛 × 𝑛 real, symmetric, positive definite (SPD)
matrices. Elements of this set include, e.g., covariance matrices of Gaussian densities
onR𝑛. In general, by regularizing covariance matrices if necessary, we can treat them
as elements of Sym++(𝑛). The set Sym++(𝑛) is rich in intrinsic geometrical structures
and one common approach is to view it as a Riemannian manifold. Examples of
Riemannian metrics that have been studied on Sym++(𝑛) include

1. Affine-invariant Riemannian metric (see e.g. [22, 2]), with the corresponding
Riemannian distance 𝑑aiE (𝐴, 𝐵) = | | log(𝐵−1/2𝐴𝐵−1/2) | |𝐹 , where log denotes
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the principal logarithm of 𝐴. Let 𝐴 = 𝑈diag(𝜆1, . . . , 𝜆𝑛)𝑈𝑇 be the spectral
decomposition of 𝐴, then log(𝐴) = 𝑈diag(log(𝜆1), . . . , log(𝜆𝑛))𝑈𝑇 . The affine-
invariant Riemannian distance 𝑑aiE (𝐴, 𝐵) corresponds to the Fisher-Rao distance
between two zero-mean Gaussian densities with covariance matrices 𝐴, 𝐵 inR𝑛.

2. Log-Euclidean metric [1], with the corresponding Riemannian distance being
the Log-Euclidean distance given by 𝑑logE (𝐴, 𝐵) = | | log(𝐴) − log(𝐵) | |𝐹 .

3. When restricted on Sym++(𝑛), the Bures-Wasserstein distance is also the Rie-
mannian distance corresponding to a Riemannian metric.

On Sym++(𝑛), the Frobenius, square root, and Log-Euclidean distances are all spe-
cial cases of the power-Euclidean distances [5], 𝑑𝐸,𝛼 (𝐴, 𝐵) =

44 𝐴𝛼−𝐵𝛼
𝛼

44 , 𝛼 ∈ R, 𝛼 ≠
0, with lim𝛼→0 𝑑𝐸,𝛼 (𝐴, 𝐵) = | | log(𝐴) − log(𝐵) | |𝐹 . Here 𝐴𝛼 = exp(𝛼 log(𝐴)),
where exp(𝐴) =

∑∞
𝑘=0

𝐴𝑘

𝑘! . Similarly, the Bures-Wasserstein and Log-Euclidean
distances are special cases of the 𝛼-Procrustes distances, which are Riemannian
distances corresponding to a family of Riemannian metrics on Sym++(𝑛) [19, 17],
𝑑𝛼proE(𝐴, 𝐵) = (tr[𝐴2𝛼+𝐵2𝛼−2(𝐵𝛼𝐴2𝛼𝐵𝛼)1/2 ]1/2

|𝛼 | , 𝛼 ∈ R, 𝛼 ≠ 0, with lim𝛼→0 𝑑
𝛼
proE(𝐴, 𝐵) =

| | log(𝐴) − log(𝐵) | |𝐹 . For a fixed 𝛼 ≠ 0, the 𝛼-Procrustes distance coincides with
the power-Euclidean distance if and only if 𝐴 and 𝐵 commute.

Infinite-dimensional generalizations. Consider now the setting of infinite-
dimensional covariance operators. The finite-dimensional Frobenius distance gener-
alizes readily to the infinite-dimensional Hilbert-Schmidt distance | |𝐴−𝐵| |HS, where
𝐴, 𝐵 are Hilbert-Schmidt operators. Similarly, the formulas for the square root and
Bures-Wasserstein distances remain valid in the infinite-dimensional setting, where
𝐴, 𝐵 are positive trace class operators on a Hilbert space.

The situation is substantially different with the Log-Euclidean and affine-invariant
Riemannian distances (see also the discussion in [24]). This is due to the fact that a
positive compact operator 𝐴 on a Hilbert space, such as a covariance operator, pos-
sesses a sequence of eigenvalues approaching zero, and hence both 𝐴−1 and log(𝐴)
are unbounded. Thus the formulas for the Log-Euclidean and affine-invariant Rie-
mannian distances cannot be carried over directly to the covariance operator setting.
Instead, a proper infinite-dimensional generalization of the affine-invariant Rieman-
nian and Log-Euclidean metrics on the set of SPD matrices have been proposed by
using the concepts of extended (unitized) Hilbert-Schmidt operators, positive definite
(unitized) Hilbert-Schmidt operators, and extended Hilbert-Schmidt inner product
and norm [11]. We next discuss these concepts.

24.4 Riemannian Distances between Positive Definite
Hilbert-Schmidt Operators

We first discuss the concept of positive definite (unitized) Hilbert-Schmidt operators
on a Hilbert space [11]. Specifically, let H be an infinite-dimensional separable real
Hilbert space with inner product 〈 , 〉 and corresponding norm | | | |. Let L(H) denote
the set of bounded linear operators on H . We recall the set of trace class operators on
H , Tr(H) = {𝐴 ∈ L(H) : | |𝐴| |tr =

∑∞
𝑘=1〈𝑒𝑘 , (𝐴∗𝐴)1/2𝑒𝑘〉 < ∞}, where 𝐴∗ is the
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adjoint of 𝐴, {𝑒𝑘 }∞
𝑘=1 is any orthonormal basis in H and the definition of the trace

norm | | | |tr is independent of the choice of such basis. For 𝐴 ∈ Tr(H), the trace of 𝐴
is tr(𝐴) =
∑∞
𝑘=1〈𝑒𝑘 , 𝐴𝑒𝑘〉 =

∑∞
𝑘=1 𝜆𝑘 , where {𝜆𝑘 }∞

𝑘=1 denote the eigenvalues of 𝐴.
The set of Hilbert-Schmidt operators on H is defined to be HS(H) = {𝐴 ∈ L(H) :
| |𝐴| |2HS = tr(𝐴∗𝐴) =

∑∞
𝑘=1 | |𝐴𝑒𝑘 | |2 < ∞}, the Hilbert-Schmidt norm | |𝐴| |HS being

independent of the choice of basis {𝑒𝑘 }∞
𝑘=1. This set is itself a Hilbert space with the

Hilbert-Schmidt inner product 〈𝐴, 𝐵〉HS = tr(𝐴∗𝐵) =
∑∞
𝑘=1〈𝐴𝑒𝑘 , 𝐵𝑒𝑘〉. The set of

extended (or unitized) Hilbert-Schmidt operators on H is defined in [11] to be

HS𝑋 (H) = {𝐴 + 𝛾𝐼 : 𝐴 ∈ HS(H), 𝛾 ∈ R}. (24.3)

This is a Hilbert space under the extended Hilbert-Schmidt inner product

〈𝐴 + 𝛾𝐼, 𝐵 + 𝜈𝐼〉HSX = 〈𝐴, 𝐵〉HS + 𝛾𝜈, (24.4)

under which the scalar operators 𝛾𝐼, 𝛾 ∈ R, are orthogonal to the Hilbert-Schmidt
operators. The corresponding extended Hilbert-Schmidt norm is given by

| |𝐴 + 𝛾𝐼 | |2HSX
= | |𝐴| |2HS + 𝛾2, (24.5)

under which | |𝐼 | |HSX = 1, in contrast to the Hilbert-Schmidt norm, where | |𝐼 | |HS = ∞.
We recall that 𝐴 ∈ L(H) is said to be positive definite [23] if ∃𝑀𝐴 > 0 such that

〈𝑥, 𝐴𝑥〉 ≥ 𝑀𝐴 | |𝑥 | |2 ∀𝑥 ∈ H . This condition is equivalent to requiring that 𝐴 be both
strictly positive, that is 〈𝑥, 𝐴𝑥〉 > 0 ∀𝑥 ≠ 0, and invertible, with 𝐴−1 ∈ L(H). Let
P(H) be the set of self-adjoint positive definite bounded operators on H .

Positive definite (unitized) Hilbert-Schmidt operators. The set of positive def-
inite (unitized) Hilbert-Schmidt operators on H is then defined to be

𝒫𝒞2 (H) = P(H) ∩ HS𝑋 (H)
= {𝐴 + 𝛾𝐼 : 𝐴 ∈ HS(H), 𝐴∗ = 𝐴, 𝛾 ∈ R, 𝐴 + 𝛾𝐼 > 0}. (24.6)

This is a Hilbert manifold, being an open subset of the Hilbert space HS𝑋 (H). On
𝒫𝒞2 (H), both log(𝐴 + 𝛾𝐼) and (𝐴 + 𝛾𝐼)−1 are well-defined and bounded.

Affine-invariant Riemannian distance. The generalization of the affine-Riemannian
metric on Sym++(𝑛) to the Hilbert manifold 𝒫𝒞2 (H) was defined in [11], with the
corresponding Riemannian distance given by

𝑑aiHS [(𝐴 + 𝛾𝐼), (𝐵 + 𝜈𝐼)] = | | log[(𝐵 + 𝜈𝐼)−1/2 (𝐴 + 𝛾𝐼) (𝐵 + 𝜈𝐼)−1/2] | |HSX .
(24.7)

Log-Hilbert-Schmidt distance. Similarly, the generalization of the Log-Euclidean
metric on Sym++(𝑛) to 𝒫𝒞2 (H) was defined in [20], with the corresponding Log-
Hilbert-Schmidt distance given by

𝑑logHS [(𝐴 + 𝛾𝐼), (𝐵 + 𝜈𝐼)] = | | log(𝐴 + 𝛾𝐼) − log(𝐵 + 𝜈𝐼) | |HSX . (24.8)
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The definition of the extended Hilbert-Schmidt norm guarantees that both 𝑑aiHS [(𝐴+
𝛾𝐼), (𝐵 + 𝜈𝐼)] and 𝑑logHS [(𝐴 + 𝛾𝐼), (𝐵 + 𝜈𝐼)] are always well-defined and finite for
any pair (𝐴 + 𝛾𝐼), (𝐵 + 𝜈𝐼) ∈ 𝒫𝒞2 (H). In the setting of reproducing kernel Hilbert
space (RKHS) covariance operators, both the affine-invariant Riemannian and Log-
Hilbert-Schmidt distances admit closed form formulas in terms of the corresponding
kernel Gram matrices [20], [14].

Distances between positive Hilbert-Schmidt operators. In the case 𝛾 = 𝜈 > 0
is fixed, both 𝑑aiHS [(𝐴 + 𝛾𝐼), (𝐵 + 𝛾𝐼)] and 𝑑logHS [(𝐴 + 𝛾𝐼), (𝐵 + 𝛾𝐼)] become
distances on the set of self-adjoint, positive Hilbert-Schmidt operators on H . In the
following, let Sym(H) ⊂ L(H) denote the set of self-adjoint, bounded operators
and Sym+(H) ⊂ Sym(H) the set of self-adjoint, positive, bounded operators on H .

Theorem 1 Let 𝛾 ∈ R, 𝛾 > 0 be fixed. The distances 𝑑aiHS [(𝐴 + 𝛾𝐼), (𝐵 + 𝛾𝐼)],
𝑑logHS [(𝐴 + 𝛾𝐼), (𝐵 + 𝛾𝐼)] are metrics on the set Sym+(H) ∩ HS(H) of positive
Hilbert-Schmidt operators on H .

Related and further generalizations. Similar to the extended Hilbert-Schmidt
operators, we can define the extended trace class operators [15] to be Tr𝑋 (H) = {𝐴+
𝛾𝐼 : 𝐴 ∈ Tr(H), 𝛾 ∈ R} along with the extended Fredholm determinant detX (𝐴 +
𝛾𝐼) and subsequently the extended Hilbert-Carleman determinant [18]. With these
concepts, we obtained the infinite-dimensional Alpha Log-Det divergences [15] and
Alpha–Beta Log-Det divergences [16] between positive definite (unitized) trace class
operators and subsequently on the entire Hilbert manifold𝒫𝒞2 (H) [18]. The Alpha-
Beta Log-Det divergences form a highly general family of divergences on 𝒫𝒞2 (H)
and include the affine-invariant Riemannian distance as a special case.

The 𝛼-Procrustes distances can also be generalized to the infinite-dimensional
setting of 𝒫𝒞2 (H) and include both the Bures-Wasserstein and Log-Hilbert-
Schmidt distances as special cases [19, 17],

𝑑𝛼proHS [(𝐴 + 𝛾𝐼), (𝐵 + 𝛾𝐼)], 𝛼 ∈ R, 𝛼 ≠ 0 (24.9)

=
1
|𝛼 |

(tr[(𝐴 + 𝛾𝐼)2𝛼 + (𝐵 + 𝛾𝐼)2𝛼 − 2[(𝐵 + 𝛾𝐼)𝛼 (𝐴 + 𝛾𝐼)2𝛼 (𝐵 + 𝛾𝐼)𝛼]1/2)])1/2,

lim
𝛼→0

𝑑𝛼proHS [(𝐴 + 𝛾𝐼), (𝐵 + 𝛾𝐼)] = | | log(𝐴 + 𝛾𝐼) − log(𝐵 + 𝛾𝐼) | |HSX . (24.10)

In particular, for 𝐴, 𝐵 ∈ Sym+(H) ∩ Tr(H),

lim
𝛾→0

𝑑1/2
proHS [(𝐴 + 𝛾𝐼), (𝐵 + 𝛾𝐼)] = 2(tr[𝐴 + 𝐵 − 2(𝐵1/2𝐴𝐵1/2)])1/2. (24.11)

Finite-rank and finite-dimensional approximations. In practice, it is typically
necessary to deal with finite-rank and/or finite-dimensional approximations of the
above infinite-dimensional distances. In the cases of 𝑑aiHS and 𝑑logHS, these approx-
imations are consequences of the following general convergence results.

Theorem 2 Let 𝐴, {𝐴𝑛}𝑛∈N ∈ Sym(H)∩HS(H) be such that lim𝑛→∞ ||𝐴𝑛−𝐴| |HS =
0. Assume that (𝐼 + 𝐴) > 0, 𝐼 + 𝐴𝑛 > 0 ∀𝑛 ∈ N. Then log(𝐼 + 𝐴𝑛), log(𝐼 + 𝐴) ∈
Sym(H) ∩ HS(H) and
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lim
𝑛→∞

|| log(𝐼 + 𝐴𝑛) − log(𝐼 + 𝐴) | |HS = 0. (24.12)

Theorem 3 Let 𝐴, 𝐵, {𝐴𝑛}𝑛∈N, {𝐵𝑛}𝑛∈N ∈ Sym(H)∩HS(H) be such that lim𝑛→∞ ||𝐴𝑛−
𝐴| |HS = 0, lim𝑛→∞ ||𝐵𝑛 − 𝐵| |HS = 0. Assume that (𝐼 + 𝐴) > 0, (𝐼 + 𝐵) >
0, 𝐼 + 𝐴𝑛 > 0, 𝐼 + 𝐵𝑛 > 0 ∀𝑛 ∈ N. Then (𝐼 + 𝐵𝑛)−1/2 (𝐼 + 𝐴𝑛) (𝐼 + 𝐵𝑛)−1/2 − 𝐼,
(𝐼 + 𝐵)−1/2 (𝐼 + 𝐴) (𝐼 + 𝐵)−1/2 − 𝐼 ∈ Sym(H) ∩ HS(H) and

lim
𝑛→∞

|| log[(𝐼 + 𝐵𝑛)−1/2 (𝐼 + 𝐴𝑛) (𝐼 + 𝐵𝑛)−1/2]

− log[(𝐼 + 𝐵)−1/2 (𝐼 + 𝐴) (𝐼 + 𝐵)−1/2] | |HS = 0. (24.13)

Finite-dimensional approximations via orthogonal projections. We now fo-
cus on the study of the finite-dimensional approximations of 𝑑aiHS and 𝑑logHS via
orthogonal projections. Let 𝐴 ∈ HS(H). Let {𝑒𝑘 }∞

𝑘=1 be any orthonormal basis for
H . For any 𝑓 ∈ H , we have 𝑓 =

∑∞
𝑘=1〈 𝑓 , 𝑒𝑘〉𝑒𝑘 . Let 𝑁 ∈ N be fixed and consider

the finite-dimensional subspace H𝑁 = span{𝑒𝑘 }𝑁𝑘=1. Consider next the projection
operator 𝑃𝑁 =

∑𝑁
𝑘=1 𝑒𝑘 ⊗ 𝑒𝑘 : H → H𝑁 . For any 𝑓 ∈ H , 𝑃𝑁 𝑓 =

∑𝑁
𝑘=1〈 𝑓 , 𝑒𝑘〉𝑒𝑘

and for the operator 𝑃𝑁 𝐴𝑃𝑁 : H → H ,

𝑃𝑁 𝐴𝑃𝑁 𝑓 = 𝑃𝑁

𝑁∑
𝑘=1

〈 𝑓 , 𝑒𝑘〉𝐴𝑒𝑘 =
𝑁∑
𝑗=1

(
𝑁∑
𝑘=1

〈 𝑓 , 𝑒𝑘〉〈𝐴𝑒𝑘 , 𝑒 𝑗〉

)
𝑒 𝑗 ∈ H𝑁 .

Thus 𝑃𝑁 𝐴𝑃𝑁 is a finite rank operator, with rank at most 𝑁 , and range(𝑃𝑁 𝐴𝑃𝑁 ) ⊂
H𝑁 . In particular, 𝑃𝑁 𝐴𝑃𝑁 |H𝑁 : H𝑁 → H𝑁 and for 𝑓 , 𝑔 ∈ H𝑁 , we have

〈𝑔, 𝑃𝑁 𝐴𝑃𝑁 𝑓 〉 =
𝑁∑
𝑗 ,𝑘=1

〈 𝑓 , 𝑒𝑘〉〈𝑔, 𝑒 𝑗〉〈𝐴𝑒𝑘 , 𝑒 𝑗〉 = 〈g,A𝑁 f〉R𝑁 , (24.14)

where f = (〈 𝑓 , 𝑒𝑘〉)𝑁𝑘=1, g = (〈𝑔, 𝑒𝑘〉)𝑁𝑘=1 ∈ R𝑁 and A𝑁 is the 𝑁 × 𝑁 matrix with
(A𝑁 )𝑖 𝑗 = 〈𝐴𝑒𝑘 , 𝑒 𝑗〉. Thus on H𝑁 with basis {𝑒𝑘 }𝑁𝑘=1, 𝑃𝑁 𝐴𝑃𝑁 |H𝑁 is represented by
the matrix A𝑁 . Furthermore, 𝐴 ∈ Sym(H) ⇒ 𝑃𝑁 𝐴𝑃𝑁 |H𝑁 ∈ Sym(H𝑁 ) ⇒ A𝑁 ∈
Sym(𝑁) and 𝐴 ∈ Sym+(H) ⇒ 𝑃𝑁 𝐴𝑃𝑁 |H𝑁 ∈ Sym+(H𝑁 ) ⇒ A𝑁 ∈ Sym+(𝑁).

Theorem 4 (Finite-dimensional approximation of Log-Hilbert-Schmidt distance)
Assume that (𝐴 + 𝐼), (𝐵 + 𝐼) ∈ 𝒫𝒞2 (H). Let 𝐴𝑁 = 𝑃𝑁 𝐴𝑃𝑁 |H𝑁 and 𝐵 =
𝑃𝑁 𝐵𝑃𝑁 |H𝑁 . Then

lim
𝑁→∞

|| log(𝐴𝑁 + 𝐼) − log(𝐵𝑁 + 𝐼) | |HS = | | log(𝐴 + 𝐼) − log(𝐵 + 𝐼) | |HS. (24.15)

Assume that (𝐴 + 𝛾𝐼), (𝐵 + 𝛾𝐼) ∈ 𝒫𝒞2 (H), 𝛾 ∈ R, 𝛾 > 0. Then

lim
𝑁→∞

|| log(𝐴𝑁 + 𝛾𝐼) − log(𝐵𝑁 + 𝛾𝐼) | |HS = | | log(𝐴 + 𝛾𝐼) − log(𝐵 + 𝛾𝐼) | |HS.

(24.16)
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Table 24.1 Classification errors on the test set
Distance (𝜎1 = 1, 𝜎2 = 1.1) (𝜎1 = 1, 𝜎2 = 1.3) (𝜎1 = 1, 𝜎2 = 1.5)

Hilbert-Schmidt 55% 22% 8%

square root 44% 6% 0%

Bures-Wasserstein 41% 6% 0%

Log-Hilbert-Schmidt 11% 0% 0%

Affine-invariant 16% 0% 0%

Theorem 5 (Finite-dimensional approximation of Affine-invariant Riemannian
distance) Assume that (𝐴 + 𝐼), (𝐵 + 𝐼) ∈ 𝒫𝒞2 (H). Let 𝐴𝑁 = 𝑃𝑁 𝐴𝑃𝑁 |H𝑁 and
𝐵 = 𝑃𝑁 𝐵𝑃𝑁 |H𝑁 . Then

lim
𝑁→∞

|| log[(𝐵𝑁 + 𝐼)−1/2 (𝐴𝑁 + 𝐼) (𝐵𝑁 + 𝐼)−1/2] | |HS

= | | log[(𝐵 + 𝐼)−1/2 (𝐴 + 𝐼) (𝐵 + 𝐼)−1/2] | |HS. (24.17)

Assume that (𝐴 + 𝛾𝐼), (𝐵 + 𝛾𝐼) ∈ 𝒫𝒞2 (H), 𝛾 ∈ R, 𝛾 > 0. Then

lim
𝑁→∞

|| log[(𝐵𝑁 + 𝛾𝐼)−1/2 (𝐴𝑁 + 𝛾𝐼) (𝐵𝑁 + 𝛾𝐼)−1/2] | |HS

= | | log[(𝐵 + 𝛾𝐼)−1/2 (𝐴 + 𝛾𝐼) (𝐵 + 𝛾𝐼)−1/2] | |HS. (24.18)

24.5 Numerical Experiments on Gaussian Processes

We carry out the following binary classification of sample covariance operators
corresponding to two zero-mean Gauss-Markov processes with covariance functions
cov𝑖 (𝑠, 𝑡) = exp(−𝜎𝑖 |𝑠 − 𝑡 |), 𝜎𝑖 > 0, 𝑖 = 1, 2, on the interval 𝐼 = [0, 1]. For each
process, we generated sample covariance operators, each using 500 sample paths on
201 regularly spaced points on [0, 1]. The training and testing sets contain 10 and
100 sample covariance operators, respectively, split equally between the two classes.
For classification, we utilized the nearest neighbor approach. For the affine-invariant
Riemannian and Log-Hilbert-Schmidt distances, we fixed 𝛾 = 10−9. We reported
the classification errors in three different scenarios in Table 24.1. For the setting
(𝜎1 = 1, 𝜎2 = 1.5), the two Gaussian processes are easily distinguished and perfect
classification is achieved for all except the Hilbert-Schmidt distance. For the case
(𝜎1 = 1, 𝜎2 = 1.1), the two Gaussian processes are clearly much closer to each other
and the distances performed differently, with the worst result by the Hilbert-Schmidt
distance and the best result by the Log-Hilbert-Schmidt distance.
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Chapter 25
Depth in Infinite-dimensional Spaces

Stanislav Nagy

Abstract Depth is a statistical tool that aims to introduce sensible data-dependent
ordering of points in multivariate / function spaces. In theory, this should allow
construction of statistical procedures based on ranks, orderings, or quantiles for
multi-dimensional data. Some of the natural properties a depth should satisfy in
finite-dimensional spaces however lose tractability and appeal as the dimension
grows. We introduce the depth in finite-dimensional spaces, and outline particu-
lar difficulties one faces when attempting to generalize depths to the situation of
functional, or other infinite-dimensional data.

25.1 Statistical Depth

Unlike for points in the real line, there is no natural ordering of 𝑑-dimensional
vectors with 𝑑 > 1. Therefore, the invaluable nonparametric statistical inference
based on the notions of order statistics, ranks, and quantiles [6], breaks down when
R𝑑-valued random vectors are observed. An interesting solution to this problem was
suggested in the 1970s by J. W. Tukey [15], who proposed to rank observations inR𝑑
according to their centrality, as evaluated with respect to (w.r.t.) the given probability
distribution 𝑃 on R𝑑 . Denote by P (M) the set of all (Borel) probability measures
on a measurable space M, and suppose that we are given 𝑥 ∈ R𝑑 and 𝑃 ∈ P

(
R𝑑
)
.

The halfspace (or Tukey) depth of 𝑥 w.r.t. 𝑃 is defined as the smallest 𝑃-probability
of a closed halfspace that contains 𝑥, that is

ℎ𝐷 (𝑥; 𝑃) = inf
𝑢∈R𝑑

P (〈𝑋, 𝑢〉 ≤ 〈𝑥, 𝑢〉) . (25.1)

Here, 𝑋 ∼ 𝑃 is a random vector with distribution 𝑃, and (Ω,A,P) is the probability
space on which all random quantities are defined.
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The halfspace depth allows to order points ofR3 in a distribution-specific manner.
Given that the probability measure % is known, G is said to be “more centrally
located" than H if ℎ� (G; %) > ℎ� (H; %). This way, the point1 G̃ ∈ R3 that satisfies
ℎ� (G̃; %) = supH∈R3 ℎ� (H; %) serves as an analogue of the median for 3-variate
data, and is frequently called the halfspace median of %. Just as the median in R, the
halfspace median is known to have many beneficial properties; for instance, it is a
quite robust location parameter, under mild conditions on %. On the other side of the
spectrum, points whose halfspace depth ℎ� (·; %) is small are the peripheral points
that can be separated from the support of % by a hyperplane bounding a halfspace
of small probability. Of course, in typical situations the true probability measure %
is not known, and only a random sample -1, . . . , -= from % is available. In that
case we denote by %= ∈ P

(
R3

)
the empirical measure of this random sample, and

rank the points of R3 according to their sample depth ℎ� (·; %=). In the left panel
of Fig. 25.1 we see several contours of the halfspace depth function for a random
sample of bivariate data.

Fig. 25.1 A bivariate random sample of size 30 and several of its halfspace depth contours (left
panel) and simplicial depth contours (right panel). For both concepts, the depth of a point outside
the convex hull of the data is zero.

The halfspace depth is by far not the only depth available in R3 . For instance,
in 1988 the simplical depth was proposed [7] — for G ∈ R3 and % ∈ P

(
R3

)
we

consider
B� (G; %) = P (G ∈ co (/1, . . . , /3+1)) (25.2)

where /1, . . . , /3+1 are independent realisations of / ∼ %, and co (·) is the convex
hull mapping. The simplical depth evaluates the probability that G is contained in a
simplex whose vertices are randomly drawn from %.

1 Or the barycentre of
{
G ∈ R3 : ℎ� (G; %) = sup{ℎ� (H; %) : H ∈ R3 }

}
if this set is not a sin-

gleton.
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Desirable properties of finite-dimensional depths. Besides the renown halfspace
and simplicial depth, hundreds of other depths are nowadays available in the lit-
erature. The first systematic treatment of the general concept of the depth comes
with Y. Zuo and R. Serfling [16, 17], who argued that a reasonable statistical depth
function 𝐷 : R𝑑 × P

(
R𝑑
)
→ [0, 1] : (𝑥, 𝑃) ↦→ 𝐷 (𝑥; 𝑃) must satisfy (most of) the

following conditions for all 𝑃 ∈ P
(
R𝑑
)
:

(P1) Affine invariance: For any 𝐴 ∈ R𝑑×𝑑 non-singular and 𝑏 ∈ R𝑑 , 𝐷 (𝑥; 𝑃) =
𝐷 (𝐴𝑥 + 𝑏; 𝑃𝐴𝑋+𝑏) for all 𝑥 ∈ R𝑑 . Here, 𝑋 ∼ 𝑃, and 𝐴𝑋 + 𝑏 ∼ 𝑃𝐴𝑋+𝑏 .

(P2) Maximality at centre: For𝑃 symmetric2 around �̃�,𝐷 (�̃�; 𝑃) = sup𝑦∈R𝑑 𝐷 (𝑦; 𝑃).
(P3) Decreasing along rays: For �̃� the depth median3 of 𝑃, 𝑥 ∈ R𝑑 and 𝜆 ∈ [0, 1],

𝐷 (𝑥; 𝑃) ≤ 𝐷 (𝜆𝑥 + (1 − 𝜆)�̃�; 𝑃).
(P4) Vanishing at infinity: lim‖𝑥 ‖→∞ 𝐷 (𝑥; 𝑃) = 0.
(P5) Semi-continuity in 𝑥: Function 𝐷 (·; 𝑃) is upper semi-continuous.
(P6) Continuity in 𝑃: As 𝑃𝜈 → 𝑃 weakly, 𝐷 (𝑥; 𝑃𝜈) → 𝐷 (𝑥; 𝑃) for all 𝑥 ∈ R𝑑 .

Sometimes a condition stronger than (P3) is considered:

(P7) Quasi-concavity in 𝑥: All upper level sets of 𝐷 (·; 𝑃) are convex.

The first four conditions are taken from [17], (P5)–(P7) are from [13]. It turns out that
the halfspace depth satisfies all these conditions (with (P6) under a mild assumption
on 𝑃). The simplicial depth violates (P7), see also the right panel of Fig. 25.1 and
[17].

All properties (P1)–(P6) are important. For random samples, however, especially
(P6) is crucial, as it implies the consistency of the sample depth at 𝑥. In fact, for
applications it is quite important that a uniform extension of (P6) holds true, at least
for 𝑃𝑛 empirical measures of random samples of size 𝑛 from 𝑃:

(P8) Uniform consistency: sup𝑥∈R𝑑 |𝐷 (𝑥; 𝑃𝑛) − 𝐷 (𝑥; 𝑃) | = 0 almost surely.

Both ℎ𝐷 and 𝑠𝐷 satisfy (P8). In function spaces, an analogue of this property is ex-
tremely demanding, and separates the truly reasonable depths from other approaches.

Proposition 1 For 𝐷 that satisfies (P1) and (P4), any 𝑥 ∈ R𝑑 outside the affine hull4
of Supp(𝑃) denoting the support of 𝑃 ∈ P

(
R𝑑
)
, obtains zero depth, i.e. 𝐷 (𝑥; 𝑃) = 0.

Proof If 𝑥 lies outside the affine hull of Supp(𝑃), there exists an affine transform 𝐴
that maps Supp(𝑃) into the hyperplane 𝐻 =

{
𝑦 ∈ R𝑑 : 𝑦𝑑 = 0

}
and 𝑥 into 𝐴(𝑥) =

(0, . . . , 0, 1)T ∈ R𝑑 . A further linear map 𝑦 ↦→ (𝑦1, . . . , 𝑦𝑑−1, 𝜆𝑦𝑑)T with 𝜆 > 0
leaves 𝐻 intact, yet translates 𝐴(𝑥) to (0, . . . , 0, 𝜆)T. Altogether, by (P1) the depth of
𝑥 w.r.t. 𝑃 must equal the depth of (0, . . . , 0, 𝜆)T w.r.t. a fixed distribution supported
in 𝐻, no matter which 𝜆 > 0 we chose. Condition (P4) allows to conclude. �

2 A measure 𝑃 ∈ P (M) in a linear space M is (centrally) symmetric around �̃� ∈ M if for any
𝑆 ⊂ M measurable we have 𝑃 (𝑆 − �̃�) = 𝑃 ( �̃� − 𝑆) .
3 The barycentre of the set of maximizers of 𝐷 ( ·; 𝑃) .
4 Smallest translation of a vector subspace that contains the support of 𝑃.
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The last observation will be useful in the study of functional depths. As we will
see in Section 25.3, direct application of (P1)–(P8) fails in infinite-dimensional
spaces.

25.2 Practice: Depth for Infinite-dimensional Data

Putting aside the discussion which of the properties (P1)–(P8) are reasonable to
be expected from a depth in an infinite-dimensional space, let us first explore what
kinds of depths for functional data have been considered in the literature. Our list is
by no means exhaustive, but attempts to provide a fair outline of the state-of-the-art.

Suppose that 𝐵 is an infinite-dimensional Banach space and 𝑋 ∼ 𝑃 ∈ P (𝐵).
Typical examples of 𝐵 we consider are the function spaces C of continuous functions
from [0, 1] to R, or the Hilbert space L2 of square-integrable curves on [0, 1].

Functional halfspace depth. A straightforward extension of a depth to 𝐵-valued
data is a replacement of the inner product 〈·, 𝑢〉 in (25.1) by a bounded linear
functional 𝜙 ∈ 𝐵∗ from the dual space 𝐵∗ of 𝐵. This substitution yields the functional
halfspace depth which to 𝑥 ∈ 𝐵 and 𝑋 ∼ 𝑃 ∈ P (𝐵) assigns

ℎ𝐷 (𝑥; 𝑃) = inf
𝜙∈𝐵∗

P (𝜙(𝑋) ≤ 𝜙(𝑥)) , (25.3)

considered for instance in [2]. Not much is known about the properties of this depth;
it is usually discarded instantly because of the following observations.

Example 1 Consider 𝑃 ∈ P (C) the distribution of the standard Wiener process
symmetric around the constant zero function 0 ∈ C. Immediately ℎ𝐷 (0; 𝑃) =
1/2, and 0 is the only halfspace median of 𝑃. Nevertheless, for a random sample
𝑋1, . . . , 𝑋𝑛 from 𝑃 with empirical measure 𝑃𝑛 it can be shown [4] that almost surely
there exists 𝑡0 ∈ [0, 1] such that min {𝑋1 (𝑡0), . . . , 𝑋𝑛 (𝑡0)} > 0. Taking 𝜙 ∈ C∗ the
Dirac functional5 at 𝑡0, we get ℎ𝐷 (0; 𝑃𝑛) = 0 almost surely for any 𝑛 = 1, 2, . . . ,
and neither the analogue of (P6) nor (P8) can be true.

The situation is even worse — as shown in [2, Theorem 3] for a particular class
of Gaussian processes, ℎ𝐷 of almost all functions equals zero. Both these negative
results are easily extended to other infinite-dimensional Banach spaces 𝐵. These
problems with inconsistency and degeneracy are new in function spaces — we do
not encounter them in R𝑑 . We will see later that they are inherently connected with
the desired properties (P1) and (P4).

Functional simplicial depth. An often considered extension of the simplicial depth
to functional data is the band depth defined in the space C [8]. For 𝑥 ∈ C and
𝑃 ∈ P (C) it takes the form6

5 The Dirac functional at 𝑡 ∈ [0, 1] is the evaluation mapping 𝛿𝑡 : C → R : 𝑥 ↦→ 𝑥 (𝑡) .
6 For simplicity we consider only the depth from [8] for 𝐽 = 2; extensions to 𝐽 > 2 are straightfor-
ward, and share the same properties as this basic depth.
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𝑏𝐷 (𝑥; 𝑃) = P (min {𝑍1 (𝑡), 𝑍2 (𝑡)} ≤ 𝑥(𝑡) ≤ max {𝑍1 (𝑡), 𝑍2 (𝑡)} for all 𝑡 ∈ [0, 1]) .

Here 𝑍1, 𝑍2 are independent realisations of 𝑍 ∼ 𝑃 ∈ P (C). The band depth is a
natural extension of 𝑠𝐷, with the random simplex co (𝑍1, . . . , 𝑍𝑑+1) from (25.2)
replaced by a random band of a pair of functions — the region in between the graphs
of functions 𝑍1 and 𝑍2. Nevertheless, the band depth appears to suffer from the same
problems as the functional halfspace depth. For functional data such as those from
Example 1 it tends to degenerate, and fails to satisfy (P8) [4].

Integrated depths. A specific family of functional depths is covered by the umbrella
term integrated depths. The original integrated depth from [3] was defined simply
as an integral of (univariate) depths ℎ𝐷 (𝑥(𝑡); 𝑃𝑡 ) of functional values 𝑥(𝑡) ∈ R of
𝑥 ∈ C at 𝑡 ∈ [0, 1], w.r.t. the marginal distribution 𝑃𝑡 ∈ P (R) of the functional value
𝑋 (𝑡) of 𝑋 ∼ 𝑃; a comprehensive treatment of these depths can be found in [1]. In a
general Banach space 𝐵, consider a (not necessarily probability) measure 𝜇 on the
dual 𝐵∗ of 𝐵. For any 𝜙 ∈ 𝐵∗ we may project both 𝑥 ∈ 𝐵 and 𝑋 ∼ 𝑃 ∈ P (𝐵) into R,
and subsequently a (univariate) depth of 𝜙(𝑥) can be evaluated w.r.t. the distribution
of 𝜙(𝑋) denoted by 𝑃𝜙 (𝑋 ) ∈ P (R). The final (𝜇-)integrated depth of 𝑥 w.r.t. 𝑃 is
defined as the 𝜇-integral of these depths of projected quantities

𝑓 𝐷 (𝑥; 𝑃) =
∫
𝐵∗

𝐷
(
𝜙(𝑥); 𝑃𝜙 (𝑋 )

)
d 𝜇(𝜙). (25.4)

The original integrated depth from [3] is obtained by considering 𝜇 the uniform
measure on the Dirac functionals {𝛿𝑡 : 𝑡 ∈ [0, 1]}. In general, 𝑓 𝐷 evaluates the 𝜇-
weighted mean depth of a projection of 𝑥, w.r.t. the same projected quantity of
𝑋 ∼ 𝑃. Many depths given in the literature fall into the general framework of
integrated depths. For instance, the popular modified band depth [8] is simply an
integrated depth from [3] with 𝐷 the simplicial depth (25.2) for one-dimensional
data and 𝜇 as above.

Infimal depths. Suppose now that only a subset Φ of the dual space 𝐵∗ is given.
Instead of averaging the depths over projections from Φ, in [9] it was proposed to
evaluate the minimum depth of a projection of 𝑥

𝑖𝐷 (𝑥; 𝑃) = inf
𝜙∈Φ

𝐷
(
𝜙(𝑥); 𝑃𝜙 (𝑋 )

)
. (25.5)

This depth is called the (Φ-)infimal depth of 𝑥 w.r.t. 𝑋 ∼ 𝑃 ∈ P (𝐵). It closely
relates to the functional halfspace depth (25.3) — for 𝐷 the halfspace depth (25.1)
in R, the infimum in (25.5) is taken over a subset Φ of all the functionals 𝐵∗ defining
halfspaces in 𝐵. Therefore, 𝑖𝐷 (𝑥; 𝑃) ≥ ℎ𝐷 (𝑥; 𝑃) which should alleviate the problem
with “too many projections" from Example 1. But, in fact already for the small set
Φ of Dirac functionals {𝛿𝑡 : 𝑡 ∈ [0, 1]}, many of the undesirable properties of the
functional halfspace depth remain to burden also the infimal depth. In particular, the



192 Stanislav Nagy

Fig. 25.2 A functional random sample of size 30 (all curves) along with the deepest sample
function(s) (thick solid grey) and the least deep function(s) (dashed grey) for an integrated depth
(left panel) and an infimal depth (right panel).

depth (25.5) still does not possess a universally consistent sample version [4], and
tends to degenerate.7

Adaptive depths Integrated and infimal depths can be seen to come from a broader
collection of depth functions. For : ≠ 0 given, the :-th moment integrated depth
[11] of G ∈ L2 w.r.t. % ∈ P

(
L2) is defined by

0� (G; %) =
(∫ 1

0
(� (G(C); %C ) + 1/2): d C

)1/:
− 1/2. (25.6)

For : = 1 this depth equals the usual integrated depth (25.4) when applied as in
[3]. Extensions of the :-th moment integrated depth towards other Banach spaces
�, general subsets of projections Φ ⊂ �∗, and different weighting measures ` as in
(25.4) are straightforward. The advantage of considering the :-th power in (25.6)
comes with its flexibility— as : → −∞, 0� (G; %) approaches the essential infimum
of � (G(C); %C ) over C ∈ [0, 1]. This depth is essentially the infimal depth (25.5) (with
Φ the Dirac functionals again). Therefore, the extended integrated depths encompass
all the integrated, and all the infimal depths as special cases. Parameter : may be
tuned to obtain versatile intermediate depths, similar in spirit to the extremal depth.
This tuning allows to emphasize different properties of the underlying functions.
Low : accentuates extremality, while higher : attaches more weight to the overall
trend in the cross-sectional depth averaged over the domain. The choice of : may be
data-driven; in many applications such as the classification of functional data this
tuning appears to give quite promising results [11, Section 4]. Most importantly, the

7 The concept of an infimal depth was rediscovered independently in [12]. There, the extremal
depth similar to (25.5) was proposed with a refinement of a more elaborate tie-breaking procedure.
The extremal depth, however, still fails to satisfy extensions of (P6) and (P8).
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adaptive depths (25.6) do not suffer from the shortcomings of the infimal depths; they
do not degenerate, and satisfy (P8), with no conditions needed for 𝑃 [11, Section 3].

Finally, when the shape properties of functional data come into play, order-
extensions of the adaptive depth (25.6) in the spirit of [10] can be introduced easily
into (25.6). For details we refer to [11].

25.3 Theory: Desiderata for Depths in Function Spaces?

Having obtained several classes of depths that appear to work reasonably well in the
practice of functional data analysis, let us turn to the more difficult question of which
properties of a functional depth are desirable.

First, note that the finite-dimensional spaces R𝑑 are all proper subspaces of L2,
isometrically embedded for instance by the map

R𝑑 → L2 :
(
𝑥 = (𝑥1, . . . , 𝑥𝑑)T

)
↦→

(
𝑡 ↦→

√
𝑑
𝑑∑
𝑖=1

𝑥𝑖 I [(𝑖 − 1)/𝑑 ≤ 𝑡 < 𝑖/𝑑]

)
.

If L2 is supposed to be considered with its linear structure, and if all the desired
conditions (P1)–(P8) are expected to work also in L2, (P1) and (P4) imply that
any curve 𝑥 ∈ L2 outside the affine hull of Supp(𝑃) gets zero depth. This follows
from Proposition 1. For infinite-dimensional data, however, this entails degeneracy
as encountered in Example 1. Indeed, for a random sample 𝑋1, . . . , 𝑋𝑛 of Wiener
processes the probability that any fixed function 𝑥 ∈ L2 lies inside an affine hull
of 𝑋1, . . . , 𝑋𝑛 is zero. Likewise, 𝑋1, . . . , 𝑋𝑛 are, with probability one, affinely in-
dependent, and using the proof of Proposition 1 again they must attain the same
depth. Consequently, consistency (P6) and (P8) cannot be satisfied for non-trivial
functional depths that satisfy extensions of (P1) and (P4).

The main problem of (P1)–(P8) in functional settings appears to be the assumption
of the linear structure, inappropriate for data of infinite dimensionality. While (P8)
must be satisfied for any reasonable depth in any space,8 the most crucial conditions
(P1), (P3) and (P7) must be revised. Currently it appears to be unclear how to replace
these conditions, and more generally, what to expect from a depth in a Banach space.

Albeit analogues to (P1)–(P8) can be found in the literature [5], these have
been cut to the bone, and present minimal requirements for a feasible depth.

So, what makes the depth for functional data so different from the depth in R𝑑?

• Every datum lives in its own subspace. For infinite-dimensional random vari-
ables, it is typical that a random sample of 𝑛 observations spans an 𝑛-dimensional
affine space in 𝐵. The linear structure of 𝐵 is thus inappropriate for inference.

8 Compare with [14, Assertion 2.3].
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• Functions have shapes. While the order of the coordinates in R𝑑 is rather
arbitrary,9 the domain of functional data is naturally ordered. Functions may
differ in shapes. This special trait is not addressed in most depth-based analysis.

• Coordinate projections of functional data do not exactly match. In functional
depth it is assumed that the curves are aligned, meaning that no phase variation is
allowed in 𝑃. This assumption is unrealistic, and it is unclear how to incorporate
pre-alignment of the curves into the analysis based on the depth.

None of these challenges have been addressed adequately in the current literature
on functional data depth. Despite the enormous advancement in the practice of
functional depth and depth-based methods, our understanding of what the concept
of depth means in truly infinite-dimensional spaces has hardly progressed over the
past 20 years. This remains to be a major challenge in functional data analysis.
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Chapter 26
Variable Selection in Semiparametric
Bi-functional Models

Silvia Novo, Germán Aneiros and Philippe Vieu

Abstract A new sparse semiparametric functional model is proposed, which tries
to incorporate the influence of two functional variables in a scalar response in a
flexible way, but involving interpretable parameters. One of the functional variables
is included trough a single-index structure and the other one linearly, but trough the
high-dimensional vector formed by its discretized observations. For this model, a
new algorithm for variable selection in the linear part is proposed. This procedure
takes advantage of the functional origin of the scalar covariates with linear effect.
Some asymptotic results will ensure the good performance of the method. Finally,
Tecator’s data will illustrate the great applicability of the presented methodology:
good predictive power together with interpretability of the outputs.

26.1 Introduction

Functional variables are more and more common in practical situations and develop-
ing techniques with high level of flexibility and interpretability has became a target in
current statistical researches. To be adapted to these practical requirements, models
and procedures able to reduce dimensionality are of first necessity (see [9]) and both
semiparametric and sparse ideas are of great interest for reaching this purpose.

In some situations, we have a scalar variable of interest, let say 𝑌 , and we want to
know which points of the grid in which is observed a functional variable, namely 𝜁 (𝑡),
are the most influential (points of impact) on this scalar variable. In other words, we
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want to select the relevant variables among the set of discretized observations of 𝜁 .
The problem is that standard variable selection methods, coming from an adaptation
of the multivariate methodology, can provide inadequate results. On the one hand,
these procedures are affected by the strong dependence between variables, which in
this case is directly derived from its functional origin. On the other hand, the great
quantity of observations makes difficult obtaining results in reasonable amount of
time.

In [3], a new method is presented, the partitioning variable selection (PVS)
procedure, for selecting impact points in the linear model

𝑌 = 𝑎 +
𝑝𝑛∑
𝑗=1

𝛽0 𝑗 𝜁 (𝑡 𝑗 ) + 𝜀, (26.1)

where 𝜁 is a random curve defined on some interval [𝑎, 𝑏] and is observed in the
points 𝑎 ≤ 𝑡1 < · · · < 𝑡𝑝𝑛 ≤ 𝑏 and 𝜀 denotes the random error. The main idea of the
PVS method is creating a two-stage algorithm for selecting relevant variables, taking
advantage of the fact that the covariates with linear effect come from a discretization
of a curve. In this case, variables that are close in the discretization will contain very
similar information on the response.

In [2], the PVS procedure has been extended to the semi-functional partial linear
model (SFPLM), which is defined as

𝑌 =
𝑝𝑛∑
𝑗=1

𝛽0 𝑗 𝜁 (𝑡 𝑗 ) + 𝑚(X) + 𝜀, (26.2)

where X denotes a random variable valued on some separable Hilbert space, H ,
and 𝑚 is an unknown link function. However, practical requirements of controlling
dimensionality and of associating interpretable parameters to both functional objects
lead us to propose a new model.

Specifically, this paper focuses on a model based on a mixture of partial linear and
single index ideas, the so-called semi-functional partial linear single index model
(SFPLSIM), which is defined by the relationship:

𝑌 =
𝑝𝑛∑
𝑗=1

𝛽0 𝑗 𝜁 (𝑡 𝑗 ) + 𝑚 (〈𝜃0,X〉) + 𝜀, (26.3)

where 𝜃0 is an unknown functional direction in H and 〈·, ·〉 denotes the inner product
in this space.

In model (26.3) (as in models (26.1) and (26.2)), we assume that only a few scalar
variables among the set {𝜁 (𝑡1), . . . , 𝜁 (𝑡𝑝𝑛 )} are going to form part of the model, so
we are going to adapt the PVS methodology for selecting the relevant ones. From
now on, let us denote as 𝑆𝑛 = { 𝑗 = 1, . . . , 𝑝𝑛, 𝛽0 𝑗 ≠ 0} the set of subscripts
corresponding to relevant variables and denote as 𝑠𝑛 = ♯(𝑆𝑛) its cardinal.
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26.2 The PVS Procedure

For carrying out the two stages of the method, assume that we have a statistical
sample of size 𝑛, {(𝜁𝑖 ,X𝑖 , 𝑌𝑖), 𝑖 = 1, . . . , 𝑛} i.i.d. as (𝜁,X, 𝑌 ) and split this sample
into two independent subsamples, asymptotically of the same size 𝑛1 ∼ 𝑛2 ∼ 𝑛/2,
each one to be used in one stage of the method. Let us denote such subsamples as:

E111 = {(𝜁𝑖 ,X𝑖 , 𝑌𝑖), 𝑖 = 1, . . . , 𝑛1}, E222 = {(𝜁𝑖 ,X𝑖 , 𝑌𝑖), 𝑖 = 𝑛1 + 1, . . . , 𝑛1 + 𝑛2 = 𝑛}.

Furthermore, assume without loss of generality that the number of covariates with
linear effect, 𝑝𝑛, can be factorized in the following way: 𝑝𝑛 = 𝑞𝑛𝑤𝑛 with 𝑞𝑛 and 𝑤𝑛
integers.

26.2.1 First Stage

The first step of the PVS method is based on considering a reduced model, with only
𝑤𝑛 covariates with linear effect (covering the entire discretization interval of 𝜁) and
directly discard the other covariates with linear effect (since they contain very similar
information about the response) before applying a standard procedure of variable
selection. For that, only subsample E111 is used. Specifically:

1. Consider the set of variables R111
𝑛 = {𝜁 (𝑡111𝑘 ), 𝑘 = 1, . . . , 𝑤𝑛}, where 𝑡111𝑘 =

𝑡 [ (2𝑘−1)𝑞𝑛/2] and [𝑧] denotes the smallest integer not less than 𝑧 ∈ R.
2. The following model with only 𝑤𝑛 covariates with linear effect is obtained:

𝑌𝑖 =
𝑤𝑛∑
𝑘=1

𝛽111
0𝑘 𝜁𝑖 (𝑡

111
𝑘 ) + 𝑚111
(〈
𝜃111

0,X𝑖
〉)

+ 𝜀111
𝑖 . (26.4)

3. Apply to model (26.4) the standard procedure presented in [8], based on Penal-
ized Least Squares (PLS). An estimator (�̂�𝛽𝛽

111
0, �̂�

111
0) of the pair (𝛽𝛽𝛽111

0, 𝜃
111
0) is obtained,

where 𝛽𝛽𝛽111
0 = (𝛽111

01, . . . , 𝛽
111
0𝑤𝑛 )

�. Then, 𝜁 (𝑡111𝑘 ) is selected in R111
𝑛 if, and only if,

𝛽111
0𝑘 ≠ 0.

26.2.2 Second Stage

In the second step of the PVS method, variables in the neighbourhood of the selected
ones in the first stage are included. For that, only the subsample E222 is considered.
Specifically:

1. A new set of variables is consideredR222
𝑛 =
⋃{

𝑘,𝛽111
0𝑘≠0
} {𝜁 (𝑡 (𝑘−1)𝑞𝑛+1), . . . , 𝜁 (𝑡𝑘𝑞𝑛 )

}
.

Denoting by 𝑟𝑛 = ♯(R222
𝑛), variables inR222

𝑛 can be renamed asR222
𝑛 =
{
𝜁 (𝑡2221), . . . , 𝜁 (𝑡

222
𝑟𝑛 )
}

and the following model can be considered:

𝑌𝑖 =
𝑟𝑛∑
𝑘=1

𝛽222
0𝑘 𝜁𝑖 (𝑡

222
𝑘 ) + 𝑚222
(〈
𝜃222

0,X𝑖
〉)

+ 𝜀222
𝑖 . (26.5)
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2. Again, the PLS method presented in [8] is applied, but now to model (26.5),
obtaining an estimator (�̂�𝛽𝛽

222
0, �̂�

222
0) of the pair (𝛽𝛽𝛽222

0, 𝜃
222
0), where 𝛽𝛽𝛽222

0 = (𝛽222
01, . . . , 𝛽

222
0𝑟𝑛 )

�.
Then, 𝜁 (𝑡222𝑘 ) is selected in R222

𝑛 if, and only if, 𝛽222
0𝑘 ≠ 0.

26.2.3 Final Selection and Model Estimate

At the end of the PVS procedure, a variable 𝜁 (𝑡 𝑗 ) ∈ {𝜁 (𝑡1), . . . , 𝜁 (𝑡𝑝𝑛 )} is selected if
and only if belongs to R222

𝑛 and its estimated coefficient in the second stage, said 𝛽222
0𝑘 𝑗 ,

is non-null. Therefore, the following estimated set of relevant variables is obtained,
𝑆𝑛 = { 𝑗 = 1, . . . , 𝑝𝑛, such that 𝑡 𝑗 = 𝑡222𝑘 𝑗 with 𝜁 (𝑡222𝑘 𝑗 ) ∈ R222

𝑛 and 𝛽222
0𝑘 𝑗 ≠ 0}.

In this case, a natural way of obtaining estimators for 𝛽𝛽𝛽0 and 𝜃0 in model (26.3)
is using the estimations obtained in the second stage of the algorithm, we mean:
𝛽0 𝑗 = 𝛽222

0𝑘 𝑗 if 𝑗 ∈ 𝑆𝑛, and 𝛽0 𝑗 = 0 otherwise. In the same way, �̂�0 = �̂�222
0.

Denoting by �̂�𝛽𝛽0 the vector of estimated linear coefficients, an estimator of the
function 𝑚𝜃0 (·) ≡ 𝑚(〈𝜃0, 𝜒〉) can be obtained by smoothing the residuals of the
parametric fit:

𝑚𝜃0
(𝜒) ≡ 𝑚
(〈
�̂�0, 𝜒
〉)

=

∑𝑛
𝑖=1

(
𝑌𝑖 − 𝜁𝜁𝜁�

𝑖 �̂�𝛽𝛽0

)
𝐾
(
𝑑𝜃0

(𝜒,X𝑖) /ℎ
)

∑𝑛
𝑖=1 𝐾
(
𝑑𝜃0

(𝜒,X𝑖) /ℎ
) ,

where we have denoted 𝜁𝜁𝜁 𝑖 =
(
𝜁𝑖 (𝑡1), . . . , 𝜁𝑖 (𝑡𝑝𝑛 )

)� and ℎ > 0 is a bandwidth,
𝐾 is a kernel function and, for any 𝜃 ∈ H , 𝑑𝜃 (·, ·) is the semimetric defined as
𝑑𝜃 (𝜒, 𝜒′) = |〈𝜃, 𝜒 − 𝜒′〉 | for each 𝜒, 𝜒′ ∈ H .

26.3 Summary of Theoretical Results

In this work, the model selection consistency as well as the corresponding rates of
convergence of the estimators derived from the PVS procedure (𝛽0, �̂�0 and 𝑚 𝜃 ) are
obtained. In particular, under suitable assumptions, we proved that:

• P(𝑆𝑛 = 𝑆𝑛) → 1 as 𝑛 → ∞.
• ∃𝛾 ≥ 0 such that | |�̂�𝛽𝛽0 − 𝛽𝛽𝛽0 | | = 𝑂 𝑝 (𝑛−1/2𝑠

𝛾
𝑛),

• ∃𝑑 : R→ (0,∞) such that | |�̂�0 − 𝜃0 | | = 𝑂 𝑝 (𝑛−1𝑑 (ℎ)𝑠𝛾−3/2
𝑛 ).

• sup𝜃 ∈Θ𝑛 sup𝜒∈C
{��𝑚𝜃 (𝜒) − 𝑚 𝜃0 (𝜒)

��} = 𝑂 𝑝 (𝑎𝑛) +𝑂 𝑝
(
𝑛−1/2𝑠

𝛾+1/2
𝑛

)
, where 𝑎𝑛

is the rate of convergence of the regression estimator in a pure functional model
and Θ𝑛 is a ball centred in 𝜃0 (for details, see [8]).

26.4 Real Data Application

In this section, a benchmark data set in the nonparametric functional context is
modelled thought different functional regression models including the SFPLSIM
proposed in this paper. The results obtained show the usefulness of both the SFPLSIM
and the PVS estimation procedure.
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Fig. 26.1 Sample of 100 absorbance curves X (left panel) together with their second derivatives
X (2) (right panel)

Before beginning the next sections dedicated to present the data set, modelling
and prediction, we indicate that, in the estimation of the two models that require
variable selection (see models SFPLM and SFPLSIM), the tuning parameter of the
penalty function (considered in the PLS procedure which is used in each stage of the
PVS one) and ℎ were selected by means of the BIC procedure, and the Epanechnikov
kernel and the penalty function SCAD were used. In addition, in the SFPLSIM the
order of the splines (in the spline basis for the estimation of \0) was ; = 3, while the
number of regularly interior knots, <=, was fixed to 4 (since it is a moderate value
that usually works well; big values of <= have high computational cost). For details
on the role of the splines, see [7].

26.4.1 Tecator’s Data

The real data application will be focused on the well-known Tecator’s data, which
include the fat content and the near-infrared absorbance spectra of 215 finely chopped
pieces of meat. For each piece of meat, the fat content, .8 , is scalar, while the
corresponding near-infrared absorbance spectra observations were collected on 100
equally spaced wavelengths (C 9 , 9 = 1, . . . , 100) in the range 850–1050 =<; so each
subject can be considered as a continuous curve, X8 . As usual when one deals with
Tecator’s data set, we will use the second derivatives of the absorbance curves,X (2)

8
,

as functional covariate instead of the original curve (see e.g. [6] for details). Figure
26.1 displays samples of both the absorbance curves and their second derivatives.

Our purpose is modelling the relation between the fat content and the absorbance
spectra and then, use the model to predict the fat content. In order to compare the
behaviour of each considered model and estimation procedure, we will split the
original sample into two subsamples: a training sample, T1 = {(X (2)8 , .8)}160

8=1 , and a
testing one, T2 = {(X (2)8 , .8)}215

8=161. In this way, all the estimation task is made only by
means of the training sample, while the testing sample is used to measure the quality
of the predictions. To quantify the error in the prediction task, the mean square
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Table 26.1 Values of the MSEP from some functional models

Model MSEP

FLM: 𝑌 = 𝛼0 +
∫ 1050
850 X(2) (𝑡)𝛼(𝑡)𝑑𝑡 + 𝜀 7.17

FNM: 𝑌 = 𝑟1 (X(2) ) + 𝜀 4.06
FSIM: 𝑌 = 𝑟2

(〈
𝜃0, X(2) 〉) + 𝜀 3.49

error of prediction (MSEP) will be used: MSEP = 1
55
∑215
𝑖=161

(
𝑌𝑖 − 𝑌𝑖

)2
, where 𝑌𝑖

is the predicted value for 𝑌𝑖 obtained from each considered model and estimation
procedure.

26.4.2 Modelling and Prediction Steps

In literature, several models have been used to describe the relation between the fat
content and the absorbance spectra (see, for instance, [6] for a functional nonpara-
metric model, and [5] for a multiple index functional model; see also [4] and [10]
for functional partial linear and partial linear single-index models with exogenous
covariates, respectively). [7] modelled this data set using the functional single-index
model (FSIM) and compared the performance of the obtained predictions with that
provided by the functional linear model (FLM) and the pure functional nonparamet-
ric model (FNM). Such three models as well as the corresponding MSEPs obtained
from kernel estimation procedures are summarized in Table 26.1 (for details, see
[7]). As can be observed, the relation between the fat content and the absorbance
curves seems nonlinear (models with a nonparametric component, FNM and FSIM,
offer much more accurate predictions than the linear model FLM).

However, more information can be taken from absorbance observations. For
instance, the existence of points of impact in the spectrometric curves can be studied;
that is, what values (if any) of the discretized curve, (X(2) (𝑡1), . . . ,X(2) (𝑡100)), could
improve the predictive results of FNM and FSIM.

Having in mind this idea, an extension of the FNM could be given by the SFPLM.
In addition to the standard procedure of variable selection (PLS) proposed in [1] for
the SFPLM, we will apply the PVS algorithm. Table 26.2 shows both the expression of
the SFPLM considered and the MSEP results for the two variable selection methods
(PLS and PVS). Note that it is obtained a clear improvement in the MSEP when
one considers the SFPLM instead of the simpler model FNM (in fact, the SFPLM
achieves even better performance than the FSIM). This improvement is even bigger
when the PVS method is applied. Now, we put in practice the proposal in this paper:
the PVS procedure applied to the SFPLSIM (note that this model can be seen as an
extension of the FSIM). Both the expression of the SFPLSIM considered and the
corresponding MSEPs are collected in Table 26.3. The better performance, from the
point of view of the MSEP, of the SFPLSIM agaisnt the other four models considered
in this section is evident (compare results in Tables 26.1-26.3). Furthermore, the PVS
method overpasses the results of the PLS standard procedure, both in MSEP and
simplicity of the model. The estimation of the functional direction, 𝜃0, using the
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Table 26.2 Values of the MSEP from the SFPLM when the PLS or the PVS procedures are used
(in parentheses, the number of covariates selected)

Model MSEP

PLS PVS
SFPLM: 𝑌 =

∑100
𝑗=1 X(2) (𝑡 𝑗 )𝛽0 𝑗 +𝑚1 (X(2) ) + 𝜀 2.70 (8) 2.51 (10)

Table 26.3 MSEP when the proposed SFPLSIM and the PLS or the PVS procedures are used (in
parentheses, the number of covariates selected)

Model MSEP

PLS PVS
SFPLSIM: 𝑌 =

∑100
𝑗=1 X(2) (𝑡 𝑗 )𝛽0 𝑗 +𝑚

(〈
𝜃0, X(2) 〉) + 𝜀 0.96 (10) 0.88 (9)
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Fig. 26.2 Left panel: Estimate of the functional direction (𝜃0) in the SFPLSIM. Right panel:
Predicted values vs Observed values

PVS procedure is displayed in Figure 26.2 (left panel). It is worth being noted
that the graphic of �̂�0 suggests that the two bumps around wavelengths 890 and
990, as well as a peak around wavelength 950, could be important indicators of
the fat content. Finally, a graphic of the predicted values with the PVS procedure
(𝑌𝑖 , 𝑖 = 161, . . . , 215) versus the observed ones (𝑌𝑖 , 𝑖 = 161, . . . , 215) can be seen
in Figure 26.2 (right panel). The high predictive power of the SFPLSIM together
with the PVS method is evident.

26.4.3 Summary

Our real data application evidences the advantages of using the SFPLSIM together
with the PVS procedure in terms of accuracy of predictions. In addition, as in the case
of FSIM, the SFPLSIM presents the advantage of the interpretation of the estimated
direction of projection, �̂�0, which could also complement the information about how
the (second derivative of the) spectrometric curves affect to the fat content.
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Chapter 27
Local Inference for Functional Data Controlling
the Functional False Discovery Rate

Niels Lundtorp Olsen, Alessia Pini and Simone Vantini

Abstract A topic which is becoming more and more popular in Functional Data
Analysis is local inference, i.e., the continuous statistical testing of a null hypothesis
along a domain of interest. The principal issue in this topic is the infinite amount of
tested hypotheses, which can be seen as an extreme case of multiple comparisons
problem. A number of quantities have been introduced in the literature of multivariate
analysis in relation to the multiple comparisons problem. Arguably the most popular
one is the False Discovery Rate (FDR), that measures the expected proportion of
false discoveries (rejected null hypotheses) among all discoveries. We define FDR in
the setting of functional data defined on a compact set ofR𝑑 . A continuous version of
the Benjamini-Hochberg procedure is introduced, along with a definition of adjusted
𝑝-value function. Some general conditions are stated, under which the functional
Benjamini-Hochberg (fBH) procedure provides control of FDR. We show how the
procedure can be plugged-in with every parametric or nonparametric pointwise
test, given that such test is exact. Finally, the proposed method - together with a
nonparametric test - is applied to the analysis of the benchmark dataset of Canadian
temperatures.

27.1 Introduction

In functional data analysis (FDA), the object of statistical methods are functions,
which are typically modeled as random elements of a Hilbert space [6]. In this
framework inference is particularly challenging, since it deals with elements of
infinite dimensional spaces.
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Literature in this field first focused on so-called ‘global’ methods [4, 5]: testing
procedures where functions are treated as the atoms of the statistical analysis. In
such a case, inference is performed by means of a unique test, resulting in a global
𝑝-value. For instance, if we are interested in comparing two groups of curves, the
rejection of the null hypothesis of equality in mean or distribution between the two
groups means that they differ significantly in at least one portion of the domain.
However, no information is given on the particular portion responsible for such a
rejection.

Lately, inferential methods for functional data have started focusing instead on
‘local’ techniques. In this case, inference is performed locally on the domain, and
the identification of the areas of the domain responsible for the rejection of the null
hypothesis is provided. Local inferential techniques are either based on simultaneous
confidence bands, which are provided with a fixed coverage probability [3, 7], or
on the definition of a 𝑝-value function, that provides a 𝑝-value at each point of the
domain, guaranteeing a control of a quantity related with the error rate on the whole
domain. Focusing on this second line of research, depending on the quantity that is
controlled, different methods can be defined. Many papers deal with the extension
of the control of the family-wise error rate (FWER) - a well known quantity defined
for multivariate data - to the case of functional data. For instance, [12] propose a
procedure controlling in a strong way the FWER between the elements of a partition,
while [10] propose to control the FWER over intervals.

In this work we focus instead on the false discovery rate (FDR), that was first
introduced in the seminal paper by Benjamini and Hochberg [1]. In particular, we
describe an extension of the FDR to functional data, and the functional Benjamini-
Hochberf (fBH) procedure: a procedure able to control the functional FDR. All
details about the FDR-controlling procedure, as well as the proofs of all results
described here are reported in [8]. Finally, to show the practical usefulness of our
procedure, we show the application to a well know dataset of Canadian temperatures.
Our procedure is applied to test differences in temperature distribution between
different Canadian regions.

An complete description of the theoretical properties of the fBH procedure, its
extension to the case of data defined on manifolds, an extensive simulation study
comparing it with other state-of-the-art methods, and an application of fBH to a data
set of daily temperatures on the Earth are reported in [8].

27.2 False Discovery Rate for Functional Data

FDR - first defined by Benjamini and Hochberg [1] - is a well-known target quantity
in multiple testing. In the framework of testing multiple hypotheses, the FDR is
defined as the expected proportion of correctly rejected null hypotheses among
all rejected hypotheses. In [1], the Benjamini-Hochberg (BH) procedure is also
provided, that is a procedure controlling the FDR under the condition of positive
regression dependence on the subset of true null hypotheses (PDRS, see [1] and [2]
for details).
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In the case of functional data, local null and alternative hypotheses are defined for
each point of the domain, so they are an infinite uncountable quantity. Hence, it does
not make sense to talk about number of correctly or falsely rejected null hypotheses.
In this section we show how it is possible to extend the notion of FDR to functional
data, and we present a procedure controlling this quantity.

27.2.1 Definition of the Functional FDR

Consider a data set of continuous functions defined on the common domain 𝐷 ⊂ R𝑑 ,
with 𝑑 ≥ 1. Assume that 𝐷 is compact and measurable. For all 𝑡 ∈ 𝐷, define as
𝐻𝑡0 and 𝐻𝑡1 a null and an alternative hypothesis, respectively, and let 𝑝(𝑡) denote the
𝑝-value of a test of 𝐻𝑡0 against 𝐻𝑡1. The collection of 𝑝(𝑡) for all 𝑡 ∈ 𝐷 is referred-to
as the unadjusted 𝑝-value function [10].

Let 𝑈 denote the portion of the domain where the null hypothesis is true: 𝑈 =
{𝑡 ∈ 𝐷 : 𝐻𝑡0 is true}. In the following, we assume that the test of 𝐻𝑡0 against 𝐻𝑡1 is
exact, that is:

∀𝛼 ∈ (0, 1),∀𝑡 ∈ 𝑈, P[𝑝(𝑡) ≤ 𝛼] = 𝛼.

In order to be able to define the functional FDR, we first define the following
quantities, related to the portions of the domain where the local null hypothesis is
true/false, and where it is rejected.

Definition 1 Given 𝑈 and an instance of 𝑝(𝑡), define the following subsets of the
domain:

• 𝑉 = {𝑡 : 𝐻𝑡0 is true and 𝐻𝑡0 is rejected}
• 𝑆 = {𝑡 : 𝐻𝑡0 is false and 𝐻0

𝑡 is rejected}

The random set𝑉 corresponds to committing type I errors, and in a given research
situation, it is desirable that 𝑉 is as small as possible and 𝑆 is as large as possible.
The union of 𝑉 and 𝑆 gives the portion of the domain where the null hypothesis is
rejected. In the FDR context, we are interested in controlling the expected proportion
between the measure of the region where the null hypothesis is wrongly rejected 𝑉 ,
and the measure of the region where the null hypothesis is rejected, that is 𝑉 ∪ 𝑆.
So, we define the functional FDR (fFDR) as follows.

Definition 2 The functional false discovery rate (fFDR) is defined as

fFDR = E[𝑄] = E
[

𝜇(𝑉)
𝜇(𝑉 ∪ 𝑆)

1𝜇 (𝑉∪𝑆)>0

]
where 𝑄 = 𝜇 (𝑉 )

𝜇 (𝑉∪𝑆) 1𝜇 (𝑉∪𝑆)>0 is the proportion of false discoveries, and 𝜇 is the
Lebesgue measure.

Definition 2 is based on the Lebesgue measure of the regions𝑉 and 𝑆, but it can be
extended to the case of any bounded measure of 𝐷 that is absolutely continuous with
respect to the Lebesgue measure. This extension can be used to deal with functional
data defined over manifolds. See [8] for further details.
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27.2.2 Control of the fFDR

We now focus on the control of the fFDR. As shown in [8] - and analogously
to the multivariate case - we can define the functional Benjamini-Hochberg (fBH)
procedure as the extension of the Benjamini-Hochberg procedure for functional data.

The fBH procedure can be defined by replacing the counts and sums in the original
BH procedure with the Lebesgue measure 𝜇.

Definition 3 (Functional Benjamini-Hochberg procedure - adjusted threshold)
Let 𝛼 ∈ (0, 1) be a desired significance level for the tests. The functional

Benjamini-Hochberg (fBH) procedure is: Reject hypotheses 𝐻𝑡0 that satisfy

𝑝(𝑡) ≤ 𝛼∗ where 𝛼∗ = arg max
𝑟

{
𝜇({𝑠 : 𝑝(𝑠) ≤ 𝑟})

𝜇(𝐷)
≥ 𝛼−1𝑟

}
We will refer to 𝛼∗ as the adjusted threshold of the procedure, and the function
𝑎(𝑟) = 𝜇({𝑠 : 𝑝(𝑠) ≤ 𝑟}) as the cumulated p-value function.

The fBH procedure of Definition 3 is based on adjusting the threshold 𝛼 to apply to
the unadjusted 𝑝-value function to select the portions of the domain where the null
hypothesis is rejected. In the application of FDR-controlling procedures, it is often
of interest to have the possibility of keeping the threshold fixed, and adjusting the
𝑝-value instead. As discussed by [8], the fBH procedure can be equivalently defined
through the notion of fFDR-adjusted 𝑝-value function.

Definition 4 (Functional Benjamini-Hochberg procedure - adjusted 𝑝-value)
The fFDR-adjusted 𝑝-value function 𝑝(𝑡) is defined as:

𝑝(𝑡) = min
𝑠≥𝑝 (𝑡)

{
1,

𝜇(𝐷)𝑠
𝜇(𝑟 : 𝑝(𝑟) ≤ 𝑠)

}
, 𝑡 ∈ d

It can be shown theoretically that the two definitions coincide. Furthermore,
a finite-dimensional approximation of the procedure that is based on a grid-
approximation of data can be given by applying multivariate BH procedure on the
pointwise evaluations of functional data. Such approximation converges to the con-
tinuous version of the procedure when the sampling density goes to infinity. Finally,
it can be shown that the fBH procedure controls the fFDR by 𝛼𝜇(𝑈)/𝜇(𝐷) ≤ 𝛼
under some regularity conditions (see [8] for all details) and under PDRS assumption
on data.

Note that what is required to apply the fBH procedure is to perform an exact
pointwise test over the domain of interest, in order to obtain the 𝑝-value function
𝑝(𝑡). This means that it is possible to plug-in the procedure with every suitable
test. In particular, if a nonparametric test is used, distributional assumptions on the
functional data are not required, making the fBH procedure very flexible.
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27.3 Analysis of Canadian Daily Temperatures

The aim of this section is to illustrate the potential of the fBH approach. We choose to
apply the procedure to a well-known benchmark functional data set, i.e. the Canadian
daily temperatures data set [11]. In addition, we compare the fBH procedure with
the interval-wise testing (IWT) procedure, proposed by Pini and Vantini [10]. The
data set contains the average daily temperatures (over 30 years) recorded by 35
weather stations in Canada. Coherently with previous analyses of the Canadian daily
temperature data [11], functional data have been obtained by a standard Fourier
smoothing on 65 harmonics.

The weather stations are divided into four climate zones: Atlantic, Pacific, Conti-
nental, and Arctic. We test the equality of the mean temperatures of the four climatic
zones in a pairwise perspective with nonparametric permutation tests, as done in
[10]. Denote as 𝑦 𝑗1 (𝑡), 𝑦 𝑗2 (𝑡), . . . , 𝑦 𝑗𝑛 𝑗 (𝑡) the functional data of the 𝑛 𝑗 stations of
a climatic zone 𝑗 ∈ {1, . . . , 4}. Assume that ∀ 𝑗 : 𝑦 𝑗𝑖 (𝑡) = 𝜇 𝑗 (𝑡) + 𝜀𝑖 𝑗 (𝑡), and that
𝜀𝑖 𝑗 (𝑡) are independent and identically distributed random functions. We want to test
for each couple ( 𝑗 , 𝑗 ′) ∈ {1, . . . , 4}2, 𝑗 ≠ 𝑗 ′ the following hypotheses:

𝐻𝑡0 : 𝜇 𝑗 (𝑡) = 𝜇 𝑗′ (𝑡) against 𝐻𝑡1 : 𝜇 𝑗 (𝑡) ≠ 𝜇 𝑗′ (𝑡).

To perform the test of comparisons between climatic zones we employ nonparametric
permutation tests [9]. Figure 27.1 reports the results of the analysis.

The hypothesis of equality on distribution between two climatic zones is tested
by means of nonparametric permutation tests, based on a squared mean-difference
test statistic. This leads to the computation of the unadjusted 𝑝-value function (solid
black line on the left panels of Figure 27.1), as described in [10]. The fBH procedure
defined in 4 is then applied to compute the fFDR adjusted 𝑝-value function (gray
dashed line). Finally, the IWT is also performed on the same data, leading to the
IWT-adjusted 𝑝-value function (gray dotted line).

It can be seen from Figure 27.1 that the fBH procedure is less conservative than
IWT in the majority of comparisons (fBH-adjusted 𝑝-value is often lower than IWT-
adjusted one). This is consistent with the different theoretical properties of the two
methods: the fFDR control implies that the average proportion of false discoveries
among the discoveries is below 𝛼. This type of control is often less conservative
than the FWER control, which focuses on the probability of committing at least one
false discovery on the whole domain. More in general, the results the two procedure
provide very similar interpretation of data differences: both Atlantic and Pacific
zones significantly differ from the Arctic zone over the entire year. Temperatures of
these two zones also significantly differ from the Continental ones during winter,
while Continental and Arctic zones are significantly different during the whole year
but for winter months.



210 Niels Lundtorp Olsen, Alessia Pini and Simone Vantini

−3
0

−1
0

0
10

20

Arctic − Atlantic

Time

Te
m

pe
ra

tu
re

 [°
C

]

J F M A M J J A S O N D

−3
0

−1
0

0
10

20

Arctic − Continental

Time

Te
m

pe
ra

tu
re

 [°
C

]

J F M A M J J A S O N D

−3
0

−1
0

0
10

20

Arctic − Pacific

Time

Te
m

pe
ra

tu
re

 [°
C

]

J F M A M J J A S O N D

−3
0

−1
0

0
10

20

Atlantic − Continental

Time

Te
m

pe
ra

tu
re

 [°
C

]

J F M A M J J A S O N D

−3
0

−1
0

0
10

20

Atlantic − Pacific

Time

Te
m

pe
ra

tu
re

 [°
C

]

J F M A M J J A S O N D

−3
0

−1
0

0
10

20

Continental − Pacific

Time

Te
m

pe
ra

tu
re

 [°
C

]

J F M A M J J A S O N D

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Arctic − Atlantic

Time

p−
va

lu
e

J F M A M J J A S O N D

Unadjusted
fBH−Adjusted
IWT−Adusted

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Arctic − Continental

Time

p−
va

lu
e

J F M A M J J A S O N D

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Arctic − Pacific

Time

p−
va

lu
e

J F M A M J J A S O N D

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Atlantic − Continental

Time

p−
va

lu
e

J F M A M J J A S O N D

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Atlantic − Pacific

Time

p−
va

lu
e

J F M A M J J A S O N D

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Continental − Pacific

Time

p−
va

lu
e

J F M A M J J A S O N D

Fig. 27.1 Left: unadjusted, fFDR adjusted, and IWT-adjusted 𝑝-value functions associated to the
pairwise differences between daily temperatures of four Canadian zones. Right: functional data and
periods of the year with significant differences between each pair of climatic zones controlling the
fFDR error rate at 5% (grey areas).
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Chapter 28
Optimum Scale Selection for 3D Point Cloud
Classification through Distance Correlation

Manuel Oviedo de la Fuente, Carlos Cabo, Celestino Ordóñez and Javier
Roca-Pardiñas

Abstract Multiple scale machine learning algorithms using handcrafted features are
among the most efficient methods for 3D point cloud supervised classification and
segmentation. Despite their proven good performance, there are still some aspects
that are not fully solved, determining optimum scales being one of them. In this work,
we analyze the usefulness of functional distance correlation to address this problem.
Specifically, we propose to adjust functions to the distance correlation between each
of the features, at different scales, and the labels of the points, and select as optimum
scales those corresponding to the global maximum of said functions. The method,
which to the best of our knowledge has been proposed in this context for the first
time, was applied to a benchmark dataset and the results analyzed and compared
with those obtained using other methods for scale selection.

28.1 Introduction

In recent decades there has been an explosion of sensors and techniques to obtain
spatial data representing real objects by means of 3D point clouds. Laser scanners,
either static, mobile, portable or airborne, as well as cameras and computer vision
algorithms, especially the Structure-from-Motion (SfM) algorithm [13], are currently
the main sources of this kind of data. From the beginning, it was quite evident
that there was a need to develop algorithms for the automatic extraction of useful
information from the point clouds; a need that increased with the progressive capacity
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of the sensors to measure larger point clouds each time. Among these algorithms,
those based on the application of machine learning techniques have proven to be very
efficient [10, 4], and, accordingly, their use is very extended nowadays. Moreover,
their efficiency increases when the features (covariates) of the model are not extracted
at a single scale but at several scales. In practice, this means that feature extraction
is carried out considering different sizes of the neighborhood (scale) around each
point (or voxel, when the point clouds is simplified by means of voxelization). In
this way, the extracted features for a point (voxel) at different scales capture different
characteristics of the objects around that point, and this helps in the classification
procedure. Unfortunately, the selection of the scales is often carried out heuristically,
taking into account the density of the point cloud, the kind of objects to be classified,
the noise of the data, etc. On other ocassions, the procedure simply consists in
selecting a number of scales at regular intervals. These procedures are quite objective,
and have some drawbacks [7]. For that reason, it is important to carry out research
into more objective scale selection methods, as an adequate selection has a positive
influence on the results of the classification. Previous works have addressed this
problem from different perspectives. One of them is to find the scale for which the
labelling of the current point is the most similar to the labellings of its neighbors at
the same scale [4]. Another approach [15] estimates the optimum scales taking into
account the local structure of the covariance matrix and the Shanon entropy [11].
In this work, we propose a different approach that assumes that the optimum scales
should correspond to the local maximum of the functions obtained calculating the
distance correlation between each of the features at a number of scales (i.e. 100) and
the values of the labels.

28.2 Methodology

28.2.1 Feature Extraction

A key aspect of machine learning applied to point cloud segmentation and classifi-
cation is to define and determine the features (input variables) to be introduced in
the mathematical models. The multi-scale strategy is based on the fact that a region
around a point can look like a 1D, 2D or 3D object depending on the size of the
region [2]. The input variables (features) included in the supervised classification
algorithms are algebraic expressions involving the eigenvalues of the eigendecom-
position of the local covariance matrix 𝚺: Σ = 1

𝑁

∑𝑁
𝑖=1 (p𝑖 − p̄)𝑇 (p𝑖 − p̄) = VΛVT,

where p𝑖 = (𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖) is a point of the point cloud, 𝜆1 > 𝜆2 > 𝜆3 are the eigen-
values, V a matrix whose columns are the corresponding eigenvectors, and 𝑁 the
number of points inside a sphere of center p𝑖 and radius 𝑅. That is, the eigenvalues,
and consequently the features extracted from the point cloud, depend on the values
of the scale (radius of the sphere).

The relationship between the values of the eigenvalues 𝜆1, 𝜆2, 𝜆3 at a point is
related to the local geometry at that point [5]: a linear 1D structure when 𝜆1 ≥
𝜆2, 𝜆3; a planar 2D structure when 𝜆1, 𝜆2 ≥ 𝜆3 and a volumetric 3D structure when
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𝜆1 ≈ 𝜆2 ≈ 𝜆3. Specifically, the features extracted for each point at each scale are:
Linearity 𝐿 = (𝜆1 − 𝜆2) /𝜆1, Planarity 𝑃 = (𝜆2 − 𝜆3) /𝜆1, Sphericity 𝑆 = 𝜆3/𝜆1,
Horizontality 𝐻 = 𝑎𝑐𝑜𝑠(v3 · z)/‖v3‖ and Z range 𝑍 = 𝑍𝑚𝑎𝑥 − 𝑍𝑚𝑖𝑛, which are very
common in the literature [15]. Calculation of Z range for each point is not limited to
a sphere but to a vertical cylinder of a specific section (scale) around that point. In
order to avoid the negative effect of outliers, Z coordinates are limited to an interval
between the 5th and 95th percentiles.

28.2.2 Optimum Scale Estimation from Distance Correlation Functions

Distance correlation [12] is a measure of the degree of correlation, linear or non-
linear, between two variables of arbitrary finite dimensions. When the data are
ordered and close enough, it is possible to approximate distance correlation values
for functions, and analyze them using methods for functional data. Particularly,
we are interested in determining the global maximum of the distance correlation
function, as it is supposed to be the point that captures the most relevant information
concerning the relationship between the variables. A similar approach was used by
the authors for variable selection in regression and classification problems [1, 6, 9].
𝑋 ∈ R𝑝 and 𝑌 ∈ R𝑞 being two random vectors, distance correlation between 𝑋 and
𝑌 is defined as

R2 (𝑋,𝑌 ) =
⎧⎪⎪⎨⎪⎪⎩

V2 (𝑋,𝑌 )√
V2 (𝑋 )V2 (𝑌 )

, V2 (𝑋)V2 (𝑌 ) > 0

0, V2 (𝑋)V2 (𝑌 ) = 0
(28.1)

whereV2 (𝑋,𝑌 ) = | | 𝑓𝑋,𝑌− 𝑓𝑋 𝑓𝑌 | |2 = 1
𝑐𝑝𝑐𝑞

∫
R𝑝+𝑞

| 𝑓𝑋,𝑌 (𝑡 ,𝑠)− 𝑓𝑋 (𝑡) 𝑓𝑌 (𝑠) |2
|𝑡 |1+𝑝 |𝑠 |1+𝑞 is the distance

covariance, a measure of the distance between 𝑓𝑋,𝑌 , the joint characteristic function
of random vectors 𝑋 and 𝑌 , and the product 𝑓𝑋 𝑓𝑌 of the characteristics functions
of 𝑋 and 𝑌 , respectively. For their part, 𝑐𝑝 and 𝑐𝑞 are constants depending on the
dimensions 𝑝 and 𝑞, respectively.

Distance correlation has some advantages over other correlation coefficients,
such as the Pearson correlation coefficient. First, it measures non-linear dependence.
Second, 𝑋 and𝑌 do not need to be one dimensional variables. Third, R(𝑋,𝑌 ) = 0 ⇔
𝑋,𝑌 are independent, that is, independence is a necessary and sufficient condition
for the nullity of distance correlation.

Once the correlation distance has been determined for each feature at different
scales 𝑘 ∈ R, we adjust a function 𝑚 : 𝑘 → R(𝑋,𝑌 ), and determine the values
of 𝑘 corresponding to global maximum of this function. Then, different supervised
classification algorithms are applied using the features at those scales, and the results
compared with those obtained when features are calculated at a specific number of
scales at constant intervals or following an exponential function.



216 Manuel Oviedo de la Fuente, Carlos Cabo, Celestino Ordóñez and Javier Roca-Pardiñas

28.3 Experimental Results

28.3.1 Dataset

In order to evaluate the performance of the proposed methodology, we apply it to the
Oakland 3D point cloud dataset [8], a benchmark dataset that has been previously
used in different studies concerning point cloud segmentation and classification.
The 3D point cloud was collected around the CMU campus in Oakland - Pittsburgh
(USA) using a Mobile Laser Scanner (MLS), that consists of two-dimensional laser
scanners, an Inertial Measurement Unit (IMU), and a Global Navigation Satellite
system (GNSS), all of them calibrated and mounted on the Nablab 11 vehicle.
Figure 28.1 shows a small part of the point cloud, where six labels have been
marked.

Fig. 28.1 Small area of the
Oakland point cloud dataset.
Each point has been assigned
a label.

28.3.2 Neighborhood Selection

Consider a sample data {X𝑖 ,G𝑖}𝑛𝑖=1 where X =
(
𝑋1, ..., 𝑋 𝐽=5) , represents the vec-

tor of features (linearity, planarity, sphericity, horizontality and Z range), and
G = (𝐺1, .., 𝐺𝑚=5) the vector of classes (cars, buildings, canopy, ground and
poles). For each sample 𝑖, each feature is evaluated at a regular grid of 𝑁 = 100
scales measured in centimetres: 𝑋 𝑗𝑖 =

(
𝑋
𝑗
𝑖 (𝑡1), 𝑋

𝑗
𝑖 (𝑡2), . . . , 𝑋

𝑗
𝑖 (𝑡𝑁 )
)
. Figure 28.2

shows a sample of 𝑛 = 150 curves for each features registered in the interval
𝑘 ∈ [𝑡1 = 50, 𝑡100 = 300] and the corresponding functional mean, both colored by
class label. Note the different performance of the features for the different classes and
scales. For instance, horizontality takes high values for the ground, and it is uniform
at different scales. However, this feature shows abrupt jumps at certain scales for the
poles, that could correspond to edge effects. As expected, linearity takes high values
for the poles and low values for the buildings.

Figure 28.3 shows the distance correlation functions for 100 repetitions of random
samples of size 𝑛 = 750 (150 per class), corresponding to each of the features
extracted. A histogram of the global maximum of distance correlation curves for
those repetitions is depicted at the bottom of the figure. As can be appreciated, most
of the maxima (impact points) correspond to low scales, except for the Z range
variable (5th - 95th range of z axis).
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Fig. 28.2 A sample of features curves: poles (green), ground (blue), vegetation (red), buildings
(magenta), and vehicles (cyan). Functional means for each class are represented as wider lines.

Our aim is to estimate an optimum neighborhood (scale) for each feature by
means of distance correlation (DC), taking into account its advantage with respect
to the Pearson coefficient. On the one hand, we calculated the distance correlation
between the dependent variable (the label for each curve) and each of the features,
see Figure 28.3. On the other hand, we calculated the distance correlation between
the labels and two independent variables, horizontality and Z range, given that these
features are more correlated with the dependent variable. In addition, DC between
the dependent variable and the five features was also calculated. It is evident that DC
functions are not very different for the five features analysed, and it is also evident
that maximum values are reached at low scales, except for the range of z. In addition,
it can also be appreciated that DC for horizontality and Z range are significantly

Fig. 28.3 Distance correlation functions between the group class and the features curves (top) and
histogram with the scale for the global maximum on each function (bottom).
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Table 28.1 Metrics of the classification using logistic regression (LR) and random forest classifier
(RF) for different scenarios of 𝑘.

Precision % Recall % F1 %
Model 𝑘 Poles Grou. Veg. Build. Cars Poles Grou. Veg. Build. Cars Poles Grou. Veg. Build. Cars
LR 50 70 96 74 88 76 74 99 72 77 82 72 98 73 82 78
LR 100 63 96 70 74 80 78 98 49 78 80 70 98 57 76 80
LR 175 51 96 66 64 75 63 93 32 78 82 57 95 43 70 78
LR 237 37 97 57 53 60 49 90 30 79 43 42 93 39 63 49
LR 300 28 95 49 49 46 34 88 32 80 25 31 91 39 61 31
LR 𝑘𝜆 61 97 70 74 77 73 96 50 78 80 66 97 75 75 52
LR 𝑘𝑚𝑑𝑐2 72 97 75 87 77 77 99 72 77 82 75 98 73 82 79
LR 𝑘𝑚𝑑𝑐5 74 97 75 88 78 76 99 71 79 87 75 98 73 83 82
RF 50 74 97 76 76 77 74 99 73 79 76 74 98 74 77 76
RF 112 76 99 78 71 85 80 96 74 79 77 78 98 76 78 81
RF 175 58 96 66 66 81 67 91 53 73 79 62 94 59 69 80
RF 237 52 96 57 67 76 63 89 45 68 79 57 92 50 67 77
RF 300 51 96 52 58 75 51 86 43 61 89 51 90 47 59 81
RF 𝑘𝜆 70 98 73 80 83 74 95 68 77 78 72 96 70 73 80
RF 𝑘𝑚𝑑𝑐2 76 98 78 74 82 77 98 77 80 77 76 98 77 77 78
RF 𝑘𝑚𝑑𝑐5 76 99 78 75 84 75 99 80 78 78 75 99 78 76 81

higher than for the other three features, which suggests that DC might be used not
only to estimate the optimum scales but also to select the most important features to
be included in the classification models.

In order to contrast the performance of this approach, we followed the proposal of
[15] computing the optimal scale 𝑘𝜆, corresponding to the minimum of the Shannon
entropy E𝜆, which depends on the normalized eigenvalues 𝑒𝑖 , 𝑖 = 1, ..., 3, of the local
covariance matrix Σ: 𝐸𝜆 = −𝑒1𝑙𝑛(𝑒1) − 𝑒2𝑙𝑛(𝑒2) − 𝑒3𝑙𝑛(𝑒3) (2).

28.3.3 Classification

The scale corresponding to the most frequent values providing a global maximum
(impact points) was used as input variable for two classification algorithms, multi-
nomial logistic regression classifier (LR) and random forest classifier (RF) [14],
in two scenarios: (a) 𝑘𝑚𝑑𝑐2 : only the features with the highest distance correlation
values (horizontality and Z range) were included in the model and (b) 𝑘𝑚𝑑𝑐5 : all
the features (linearity, planarity, sphericity, horizontality and Z range) were used to
train the models. Additionally, we used the following values of the scale 𝑘: (c) 𝑘𝜆,
obtained according to equation (2), (d) 𝑘𝑠𝑒𝑞 , linearly spaced scales corresponding to
the following values of 𝑘 in centimetres (cm): 50, 112, 175, 237, 300 and (e) 𝑘𝑒𝑥𝑝 ,
exponential spaced scales, that corresponds to 𝑘 = 1, 3, 7, 20, 55, 300 cm. This last
option arises from the fact that the global maximums of DC correspond to low scales.

Training data (150 per class) and test data (500 per class) were sampled from
different areas of the point cloud, in order to ensure their independence. Table 28.1
shows the results of the classification for the test sample, in terms of precision, recall
and F1-score, for each of the scales, using a logistic regression (LR) and random
forest classifier (RF).
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The metrics for the classification have quite different values depending on the
category, see Table 28.1. Thus, the best results were obtained for ground class, fol-
lowed by cars. Lower values were obtained for poles, vegetation and buildings. The
results are very similar when the set of the five features (𝑘𝑚𝑑𝑐5 ), or just the two with
the highest values of distance correlation (horizontality and Z range), are included
in the model (𝑘𝑚𝑑𝑐2 ). In general, the models that use the scales corresponding to
maximum distance correlation outperform the others, including that corresponding
to the minimum of the Shannon entropy (𝑘𝜆), that did not turn out to be particularly
good. Table 28.2 shows a decrease of the accuracy classification with the scale in
both classifiers. So, it is better to calculate the scales using exponential function
𝑘𝑒𝑥𝑝 than using a linear function 𝑘𝑠𝑒𝑞 . This approach limits the number of scales to
be calculated, thus reducing computing time.

Table 28.2 Total accuracy in % of the classification using logistic regression (LR) and random
forest (RF) classifiers for sequential 𝑘𝑠𝑒𝑞 , exponential 𝑘𝑒𝑥𝑝 , 𝑘𝜆, 𝑘𝑚𝑑𝑐2 and 𝑘𝑚𝑑𝑐5 scales.

𝑘𝑠𝑒𝑞 50 100 150 200 250 300
Model 𝑘𝑒𝑥𝑝 50 60 70 100 190 300 𝑘𝜆 𝑘𝑚𝑑𝑐2 𝑘𝑚𝑑𝑐5

LR 81 81 81 79 72 68 67 56 51 74 81 83
RF 80 81 82 81 75 72 71 66 65 78 81 81

28.4 Conclusions

Selecting optimum scales for supervised classification of 3D point clouds is relevant
not only to improve the results but also to understand the effect of the features
involved in the classification when the local neighborhood changes. We assume as
hypothesis of our study that calculating the maximum of the distance correlation
functions between the features (input variables) and the classes (output variable) can
help to determine the optimum scale for classification and to select the most important
variables at that scale. This hypothesis was tested on a benchmark 3D point cloud
from an urban environment, and the analysis of the results indicates that our approach
outperforms other common methods for scale selection, in particular one that uses
specific scales at regular intervals and another that calculates the optimum scale using
Shannon’s information. Moreover, the analysis of the distance correlation functions
for the different features provides information about the importance of these features
in the classification. The best results were obtained when the five features, calculated
at the optimum scale, were included in the classification model, but similar results
were obtained when only the two features with the highest values of the correlation
distance were considered. Accordingly, distance correlation function could be used
as a filter for feature selection regardless of the classification algorithm. For future
work, we plan to analyse a multi-scale analysis using significant structures of the
features curves [3, 6].

Acknowledgements M. Oviedo acknowledges support from MTM2016-76969-P project (Spanish
Ministry of Science, Innovation and Universities and the European Regional Development Fund).
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Chapter 29
Generalized Functional Partially Linear
Single-index Models

Mustapha Rachdi, Mohamed Alahiane, Idir Ouassou and Philippe Vieu

Abstract Single-index models are potentially important tools for multivariate non-
parametric regression analysis. They generalize linear regression models by replacing
the linear combination 𝛼𝑇0 𝑋 with a nonparametric component 𝜂0

(
𝛼𝑇0 𝑋
)
, where 𝜂0 (·)

is an unknown univariate link function. [7] studied generalized partially linear single-
index models (GPLSIM) where the systematic component of the model has a flexible
semi-parametric form with a general link function. In this paper, we generalize these
models to have a functional component, replacing the generalized partially linear

single-index models 𝜂0

(
𝛼𝑇0 𝑋
)
+ 𝛽𝑇0 𝑍 by 𝜂0

(
𝛼𝑇0 𝑋
)
+
∫ 1

0
𝛽𝑇0 (𝑡)𝑍 (𝑡) 𝑑𝑡, where 𝛼 is

a vector in IR𝑑 , 𝜂0 (·) and 𝛽0 (·) are unknown functions which are to be estimated.
We propose estimators of the unknown parameter 𝛼0 and the unknown functions
𝛽0 (·) and 𝜂0 (·) and we establish their asymptotic distributions. Then, we illustrate
through some examples the models and the effectiveness of the proposed estimation
methodology.
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29.1 Introduction

Let 𝐻 be an Hilbert space which is endowed with the scalar product < ·, · >𝐻 and
the norm | | · | |𝐻 . Let 𝑌 be a scalar response variable and (𝑋, 𝑍) ∈ IR𝑑 × 𝐻 be the
predictor vector where 𝑋 = (𝑋1, . . . , 𝑋𝑑) and 𝑍 be a functional random variable
which is valued in 𝐻.

For a fixed (𝑥, 𝑧) ∈ IR𝑑 × 𝐻, we assume that the conditional density function of
the response 𝑌 given (𝑋, 𝑍) = (𝑥, 𝑧) belongs to the following canonical exponential
family

𝑓𝑌 |𝑋=𝑥,𝑍=𝑧 (𝑦) = exp
(
𝑦 𝜉 (𝑥, 𝑧) − 𝐵(𝜉 (𝑥, 𝑧)) + 𝐶 (𝑦)

)
, (29.1)

where 𝐵 and 𝐶 are two known functions which are defined from IR into IR, and
𝜉 : IR𝑑 × 𝐻 −→ IR is the parameter in the generalized parametric linear model
which is linked to the dependent variable

𝜇(𝑥, 𝑧) = E
[
𝑌 |𝑋 = 𝑥, 𝑍 = 𝑧

]
= 𝐵′(𝜉 (𝑥, 𝑧)), (29.2)

where 𝐵′ denotes the first derivative of the function 𝐵.
In what follows we modelize 𝑔(𝜇(𝑥, 𝑧)) as a generalized functional partially linear

single-index model by

𝑔(𝜇(𝑥, 𝑧)) = 𝜂0
(
𝛼�𝑥
)
+
∫ 1

0
𝛽(𝑡)𝑧(𝑡)𝑑𝑡, (29.3)

where 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑑) ∈ IR𝑑 is the 𝑑-dimensional single-index coefficient
vector, 𝛽 is the coefficient function in the functional component, and 𝜂0 is the
unknown single-index link function which will be assumed to be sufficiently smooth.

29.2 Estimation Methodology

Let (𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖)𝑖=1,...,𝑛 be a sequence of independent and identically distributed (i.i.d.)
as (𝑋,𝑌, 𝑍) and, for each 𝑖 = 1, . . . , 𝑛,

𝑔 (𝜇 (𝑋𝑖 , 𝑍𝑖)) = 𝜂0
(
𝛼�𝑋𝑖
)
+
∫ 1

0
𝛽(𝑡)𝑍𝑖 (𝑡) 𝑑𝑡. (29.4)

We assume that the function 𝜂0 is supported within the interval [𝑎, 𝑏] where 𝑎 =
inf (𝛼�𝑋) and 𝑏 = sup(𝛼�𝑋).

We introduce a sequence of knots (𝑘𝑚) in the interval [𝑎, 𝑏], with 𝐽 interior
knots, such that 𝑘−𝑟+1 = · · · = 𝑘−1 = 𝑘0 = 𝑎 < 𝑘1 < · · · < 𝑘𝐽 = 𝑘𝐽+1 = · · · = 𝑘𝐽+𝑟 ,
where 𝐽 := 𝐽𝑛 is a sequence of integers which increases with the sample size 𝑛.

Now, let 𝑁1 = 𝐽𝑛 + 𝑟 be the number of knots,
(
𝐵 𝑗 (𝑢)
)
𝑗=1,...,𝑁1

be the B-spline
basis functions of order 𝑟, and ℎ = (𝑏 − 𝑎)/(𝐽𝑛 + 1) be the distance between the
neighbors knots.
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We introduce a new knots sequence 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑘+1 = 1 of
[0, 1]. Then, there exists 𝑁2 = 𝑘 + 𝑟 + 1 functions in the B-splines basis which
are normalized and of order 𝑟, such that 𝛽(·) ≈ 𝛿�𝐵2 (.) where 𝐵2 (.) =(
𝐵21 (.), 𝐵22 (.), . . . , 𝐵2𝑁2 (.)

)� and 𝛿 ∈ IR𝑁2 .
By setting

𝑊

(∫ 1

0
𝑍 (𝑡)𝐵21 (𝑡)𝑑𝑡, . . . ,

∫ 1

0
𝑍 (𝑡)𝐵2𝑁2 (𝑡)𝑑𝑡

)
, (29.5)

and 𝑤 and 𝑊𝑖 are defined accordingly to (29.5), the mean function estimator 𝜇 (𝑥, 𝑧)
is then given by the evaluation of the parameter 𝜃 = (𝛼�, 𝛾�, 𝛿�)� and by inverting
the following equation 𝑔 (𝜇 (𝑥, 𝑧)) 𝐵2 𝑗 (𝑡)𝑧(𝑡)𝑑𝑡 = �̂��𝐵1 (�̂��𝑥) + �̂��𝑤. Notice that
the parameter 𝜃 = (𝛼�, 𝛾�, 𝛿�)� is determined by maximizing the following quasi-
likelihood rule

�̂� =
(
�̂��, �̂��, �̂��
)�

= arg max
𝜃=(𝛼,𝛾, 𝛿) ∈IR𝑑×IR𝑁1×IR𝑁2

𝑙 (𝜃),

where

𝑙 (𝜃) := 𝑙 (𝛼, 𝛾, 𝛿) =
1
𝑛

𝑛∑
𝑖=1

𝑄
(
𝑔−1 (𝑚𝑖) , 𝑌𝑖

)
,

with
𝑚 (𝑥, 𝑧) = 𝛾�𝐵1

(
𝛼�𝑥
)
+ 𝛿� 〈𝑧, 𝐵2 (.)〉

𝑚𝑖 := 𝛾�𝐵1
(
𝛼�𝑋𝑖
)
+ 𝛿�𝑊𝑖 and 𝑚0𝑖 = 𝛾�

0 𝐵1 (𝑈0𝑖) + 𝛿�
0 𝑊𝑖 ,

where 𝑈0𝑖 = 𝛼�
0 𝑋𝑖 with 𝛼0, 𝛾0, 𝛿0, 𝜂𝜃 , 𝛽0 denoting the true values, respectively, of

𝛼, 𝛾, 𝛿, 𝜂 and 𝛽.
To overcome the constraint ‖𝛼‖ = 1 and 𝛼1 > 0 of the 𝑑-dimensional index 𝛼,

we proceed by a re-parametrisation which is similar to [11]:

𝛼(𝜏) =
(√

1 − ‖𝜏‖2, 𝜏�
)�

for 𝜏 ∈ IR𝑑−1.

The true value 𝜏0, of 𝜏, must satisfies ‖𝜏0‖ ≤ 1. Then, we assume that ‖𝜏0‖ < 1.
The jacobian matrix of 𝛼 : 𝜏 → 𝛼(𝜏) of dimension 𝑑 × (𝑑 − 1) is 𝐽 (𝜏).

Notice that 𝜏 is unconstrained and is one dimension lower than 𝛼.
Finally, let

𝑅(𝜏) =
(
𝐽 (𝜏) 0

0 𝐼𝑁 2×𝑁2

)
the jacobian matrix of (𝛼(𝜏)�, 𝛿�)� which is of dimension (𝑑 + 𝑁2) × (𝑑 + 𝑁2 − 1) .

Let

(�̃�, �̃�) = arg max
‖𝛼 ‖𝑑=1, 𝛿

1
𝑛

𝑛∑
𝑖=1

𝑄
(
𝑔−1 {𝜂 (𝛼�𝑋𝑖

)
+ 𝛿�𝑊𝑖
}
, 𝑌𝑖

)
Denote
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𝑚𝑖 = 𝛾�𝐵1
(
𝛼�𝑋𝑖
)
+ 𝛿�𝑊𝑖 , 𝑇𝑖 =

(
𝑋�
𝑖 ,𝑊

�
𝑖

)�
,

𝑚0𝑖 = 𝑚0𝑖 (𝑋𝑖 ,𝑊𝑖) = 𝛾�
0 𝐵1
(
𝛼�

0 𝑋𝑖
)
+ 𝛿�

0 𝑊𝑖 = 𝛾�
0 𝐵1 (𝑈0𝑖) + 𝛿�

0 𝑊𝑖 with 𝑈0𝑖 = 𝛼�
0 𝑋𝑖 ,

𝑚0 (𝑇) = 𝛾�
0 𝐵1
(
𝛼�

0 𝑋
)
+ 𝛿�

0 𝑊 = 𝛾�
0 𝐵1 (𝑈0) + 𝛿�

0 𝑊 with 𝑈0 = 𝛼�
0 𝑋

and
(�̃�, �̃�) = arg max

𝜏, 𝛿
�̃� (𝜏, 𝛿)

where

�̃� (𝜏, 𝛿) =
1
𝑛

𝑛∑
𝑖=1

𝑄
(
𝑔−1 {𝜂 (𝛼(𝜏)�𝑋𝑖

)
+ 𝛿�𝑊𝑖
}
, 𝑌𝑖

)
Note that 𝜃𝜏 = (𝜏�, 𝛾�, 𝛿�)� is a (𝑑 − 1) × 𝑁1 × 𝑁2-dimensional parameter, while
𝜃 is a 𝑑 × 𝑁1 × 𝑁2-dimensional one.

Let

𝜌𝑙 (𝑚) =
1

𝜎2𝑉
(
𝑔−1 (𝑚)
) [ 𝑑

𝑑𝑚

(
𝑔−1 (𝑚)
)] 𝑙

and denote
𝑞𝑙 (𝑚, 𝑦) =

𝜕𝑙

𝜕𝑚𝑙
𝑄
(
𝑔−1 (𝑚), 𝑦
)
, for 𝑙 = 1, 2.

Then

𝑞1 (𝑚, 𝑦) =
(
𝑦 − 𝑔−1 (𝑚)
)
𝜌1 (𝑚) and 𝑞2 (𝑚, 𝑦) =

(
𝑦 − 𝑔−1 (𝑚)
)
𝜌′

1 (𝑚)−𝜌2 (𝑚).

So, 𝑙 (𝜃𝜏) becomes

𝑙 (𝜃𝜏) =
1
𝑛

𝑛∑
𝑖=1

𝑄
(
𝑔−1 {𝛾�𝐵1
(
𝛼�(𝜏)𝑋𝑖
)
+ 𝛿�𝑊𝑖
}
, 𝑌𝑖

)
=

1
𝑛

𝑛∑
𝑖=1

𝑄
(
𝑔−1 {𝑚𝑖} , 𝑌𝑖

)
The score vector is then

𝑆 (𝜃𝜏) =
𝜕𝑙

𝜕𝜃𝜏
(𝜃𝜏) =

1
𝑛

𝑛∑
𝑖=1

𝑞1 (𝑚𝑖 , 𝑌𝑖) 𝜉𝑖 (𝜏, 𝛾, 𝛿),

where

𝜉𝑖 (𝜏, 𝛾, 𝛿) =
���
𝛾�𝐵′

1 (𝛼�(𝜏)𝑋𝑖) 𝐽�(𝜏)𝑋𝑖
𝐵1 (𝛼�(𝜏)𝑋𝑖)

𝑊𝑖


�� .
The Fisher Scoring update equations 𝜃 (𝑘+1)

𝜏 = 𝜃 (𝑘)
𝜏 −
[
𝐻
(
𝜃 (𝑘)
𝜏

)]−1
𝑆
(
𝜃 (𝑘)
𝜏

)
, be-

comes
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𝜃 (𝑘+1)
𝜏 = 𝜃 (𝑘)

𝜏 +

[
𝑛∑
𝑖=1

𝜌2

(
𝑚 (𝑘)
𝑖

)
𝜉𝑖

(
𝜏 (𝑘) , 𝛾 (𝑘) , 𝛿 (𝑘)

)
𝜉�
𝑖

(
𝜏 (𝑘) , 𝛾 (𝑘) , 𝛿 (𝑘)

)]−1

×

[
𝑛∑
𝑖=1

(
𝑌𝑖 − 𝜇 (𝑘)

𝑖

)
𝜌1

(
𝑚 (𝑘)
𝑖

)
𝜉𝑖

(
𝜏 (𝑘) , 𝛾 (𝑘) , 𝛿 (𝑘)

)]
,

where 𝑚 (𝑘)
𝑖 = 𝛾 (𝑘)�𝐵1

(
𝛼 (𝑘)�(𝜏 (𝑘) )𝑋𝑖

)
+ 𝛿 (𝑘)�𝑊𝑖 , for 1 ≤ 𝑖 ≤ 𝑛 and 𝜇 (𝑘)

𝑖 =

𝑔−1
(
𝑚 (𝑘)
𝑖

)
.

It follows that

𝛽(𝑡) = �̂��𝐵2 (𝑡) ≈ 𝛿 (𝑘)�𝐵2 (𝑡), 𝜂(𝑡) = �̂��𝐵1 (𝑡) ≈ 𝛾 (𝑘)�𝐵1 (𝑡),

𝑚𝑖 = �̂��𝐵1
(
𝛼�(�̂�)𝑋𝑖
)
+ �̂��𝑊𝑖 ≈ 𝛾 (𝑘)�𝐵1

(
𝛼�
(
𝜏𝑘
))

𝑋𝑖 + 𝛿 (𝑘)�𝑊𝑖 ,

where 𝜇𝑖 = 𝑔−1 (𝑚𝑖), and �̂� = 𝛼
(
𝜏 (𝑘) ) is the estimator of the single-index coefficient

vector of the GFPLSIM model.

29.3 Assumptions

We present asymptotic properties of the estimators for the nonparametric compo-
nents, the functional component, the single-index coefficient vector and the slope
function of the GFPLSIM model. For this aim, we will need some assumptions.

Let 𝜑, 𝜑1 and 𝜑2 be measurable functions on [𝑎, 𝑏]. We define the empirical inner
product 〈𝜑1, 𝜑2〉𝑛 and its corresponding norm ‖𝜑‖𝑛 as follows

〈𝜑1, 𝜑2〉𝑛 =
1
𝑛

𝑛∑
𝑖=1

𝜑1 (𝑈𝑖) 𝜑2 (𝑈𝑖) and ‖𝜑‖2
𝑛 =

1
𝑛

𝑛∑
𝑖=1

𝜑2 (𝑈𝑖) where 𝑈𝑖 = 𝛼�𝑋𝑖 .

If 𝜑, 𝜑1 and 𝜑2 are 𝐿2-integrable, we define the theoretical inner product and its
corresponding norm as follows

〈𝜑1, 𝜑2〉 = E [𝜑1 (𝑈)𝜑2 (𝑈)] and ‖𝜑‖2
2 = E
[
𝜑2 (𝑈)
]
=
∫ 𝑏
𝑎

𝜑2 (𝑢) 𝑓 (𝑢)𝑑𝑢.

Let 𝑣 ∈ N∗ and 𝑒 ∈ (0, 1] such that 𝑝 = 𝑣 + 𝑒 > 1.5. We denote by H(𝑝) the
collection of functions 𝑔 which are defined on [𝑎, 𝑏] whose 𝑣-th order derivative,
𝑔 (𝑣) , exists and satisfies the following 𝑒-th order Lipschitz condition���𝑔 (𝑣) (𝑚′) − 𝑔 (𝑣) (𝑚)

��� ≤ 𝐶 |𝑚′ − 𝑚 |𝑒 , for all 𝑎 ≤ 𝑚, 𝑚′ ≤ 𝑏.

(C1) The single-index link function 𝜂0 ∈ H (𝑝), where H(𝑝) is defined as above.
(C2) For all 𝑚 ∈ IR and for all 𝑦 in the range of the response variable 𝑌 , the function
𝑞2 (𝑚, 𝑦) is strictly negative and for 𝑘 = 1, 2, there exist some positive constants 𝑐𝑞
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and 𝐶𝑞 such that 𝑐𝑞 <
��𝑞𝑘2 (𝑚, 𝑦)
�� < 𝐶𝑞 .

(C3) The marginal density function of 𝛼�𝑋 is continuous and bounded away from
zero and is infinite on its support [𝑎, 𝑏].
(C4) For any vector 𝜏, there exist positive constants 𝑐𝜏 and 𝐶𝜏 , such that

𝑐𝜏 𝐼𝑡×𝑡 ≤ E
[(

1
𝑇

) (
1
𝑇

)� ���𝛼�(𝜏)𝑋 = 𝛼�(𝜏)𝑥
]

≤ 𝐶𝜏 𝐼𝑡×𝑡 ,

where 𝑡 = 1 + 𝑁1 + 𝑁2 and 𝑇 = (𝑋�,𝑊�)�.
(C5) The number of knots 𝑁𝑛 satisfies 𝑛

1
2(𝑝+1) � 𝑁𝑛 � 𝑛

1
8 , for 𝑝 > 3, where

𝑁𝑛 = 𝑁1.
(C6) The fourth order moment of the random variable 𝑍 is finite i.e., E‖𝑍 (.)‖4 ≤ 𝐶
where 𝐶 denotes a generic positive constant.
(C7) The covariance function 𝐾 (𝑡, 𝑠) = Cov(𝑍 (𝑡), 𝑍 (𝑠)) is positive definite.
(C8) The slope function 𝛽 is a 𝑟-th order continuousely differentiable function i.e.,
𝛽 ∈ C𝑟 [0, 1] .
(C9) For some finite positive constants 𝐶𝜌, 𝐶∗

𝜌 and 𝑀0

|𝜌1 (𝑚0) | ≤ 𝐶𝜌 and |𝜌1 (𝑚) − 𝜌1 (𝑚0) | ≤ |𝑚 − 𝑚0 | for all |𝑚 − 𝑚0 | ≤ 𝑀0.

(C10) For some finite positive constants 𝐶𝑔, 𝐶∗
𝑔 and 𝑀1, the link function 𝑔, in the

model (29.3), satisfies:
���� 𝑑𝑑𝑚 𝑔(𝑚)
���
𝑚=𝑚0

���� ≤ 𝐶𝑔 and, for all |𝑚 − 𝑚0 | ≤ 𝑀1,���� 𝑑𝑑𝑚 𝑔−1 (𝑚) −
𝑑

𝑑𝑚
𝑔−1 (𝑚)
���
𝑚=𝑚0

���� ≤ 𝐶∗
𝑔 |𝑚 − 𝑚0 | .

(C11) There exists a positive constant 𝐶0, such that

E(𝜖2 |𝑈𝜏,0) ≤ 𝐶0, where 𝜖 = 𝑌 − 𝑔−1 (𝑚0 (𝑇)) .

29.4 Some Asymptotics

Next we formulate several assertions on the considered estimators.
Estimation of the nonparametric component. The following theorem states the

convergence, with rates, of the estimator 𝜂.

Theorem Under assumptions (C1)–(C8), we have

‖𝜂 − 𝜂0‖2 = O𝑝
{√

𝑁𝑛

(
1

√
𝑛ℎ

+ ℎ𝑝
)}

and ‖𝜂 − 𝜂0‖𝑛 = O𝑝
{√

𝑁𝑛

(
1

√
𝑛ℎ

+ ℎ𝑝
)}

,

where O𝑝 denotes a “grand O of Landau" in probability. �

Estimation of the slope function.
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Theorem Under assumptions (C1)–(C8), we have

‖𝛽(·) − 𝛽0 (·)‖2 = O𝑝

(
𝑁𝑛

(
ℎ𝑝 +

1
√
𝑛ℎ

)2)
.

Estimation of the parametric components. The next theorem shows that the
maximum quasi-likelihood estimator is root-𝑛 consistent and is asymptotically nor-
mal, although the convergence rate of the nonparametric component 𝜂 is slower than
root-𝑛. Before enouncing the theorem, let us denote by

Υ
(
𝑢𝜏,0
)
=
E

[
𝑋𝜌2 (𝑚0 (𝑇))

���𝑈𝜏,0 = 𝑢𝜏,0

]
E

[
𝜌2 (𝑚0 (𝑇))
���𝑈𝜏,0 = 𝑢𝜏,0

] , Γ
(
𝑢𝜏,0
)
=
E

[
𝑊𝜌2 (𝑚0 (𝑇))

���𝑈𝜏,0 = 𝑢𝜏,0

]
E

[
𝜌2 (𝑚0 (𝑇))
���𝑈𝜏,0 = 𝑢𝜏,0

] ,
Φ(𝑥) = Φ
(
𝑈𝜏,0, 𝑥
)
= 𝑥 − Υ
(
𝑢𝜏,0
)

and Ψ(𝑤) = Ψ
(
𝑈𝜏,0, 𝑤
)
= 𝑤 − Γ
(
𝑢𝜏,0
)
.

Theorem Under assumptions (C1)–(C8), the constrained quasi-likelihood estima-
tors �̂� and �̂� with ‖�̂�‖𝑑 = 1 are jointly asymptotically normally distributed, i.e.,

√
𝑛

(
�̂� − 𝛼0
�̂� − 𝛿0

)
D−→ N
(
0, 𝑅 (𝜏0) 𝐷−1𝑅� (𝜏0)

)
,

where D→ denotes the convergence in distribution, and

𝐷 = E

[
𝜌2 (𝑚0 (𝑇))
(
𝜂′

0
(
𝑈𝜏,0
)
𝐽� (𝜏0)Φ(𝑋)
Ψ(𝑊)

) (
𝜂′

0
(
𝑈𝜏,0
)
𝐽� (𝜏0)Φ(𝑋)
Ψ(𝑊)

)�]
,

and
𝑅(𝜏) =
(
𝐽 (𝜏) 0

0 𝐼𝑁2×𝑁2

)
.

Comments on the assumptions. The smoothnes condition in (C1) describes that
the single-index function 𝜂0 (·) can be approximated by functions in the 𝐵-spline
space with a normalized basis. On the other hand, the condition (C2) ensures the
uniqueness of the solution, whereas condition (C3) is a smoothness assumption of
the joint and the marginal density functions of 𝛼�𝑋 and 𝑋 . On the other hand,
condition (C5) allows to obtain the rate of growth of the dimension of the spline
space with respect to the sample size. Conditions (C6) and (C7) are required on the
covariates function 𝑍 and (C8) is a smoothness assumption on the slope function.
Conditions (C4), (C9), (C10) and (C11) are a Lemma’s technical assumptions.

29.5 A Numerical Study

We conducted (i) a simulation study and (ii) an application on some real datasets.
The obtained results are very satisfactory and very promising. In order to save
space, we cannot present it here. In this practical study, all the parameters have been
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chosen with precision and all the procedures are well controlled. These results can
be requested from the authors. The proofs will be published in an extended version
of this paper.
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Chapter 30
Functional Outlier Detection through
Probabilistic Modelling

Álvaro Rollón de Pinedo, Mathieu Couplet, Nathalie Marie, Amandine Marrel,
Elsa Merle-Lucotte and Roman Sueur

Abstract
Functional data consist in the most typical case of one-dimensional curves that

represent the evolution of some physical parameter of interest with time. However,
the analysis of this kind of objects is far from being simple, and the possibility of
treating contaminated data is a classical problem that can arise in this framework as
frequently as in the multivariate one. This justifies the development a new functional
outlier detection technique based on functional measures capable of capturing the
the outlyingness in the magnitude and shape sense that is presented in this paper.

30.1 Introduction

In recent times, the increasing use of computer codes in simulation studies, as well
as the generalization of the use of sensors have resulted in the generation of large
quantities of high-dimensional data which in many cases can be considered to be
functional. It is the case for instance in the domain of thermal-hydraulics simulation
[9] or the registration of the concentration of atmospheric pollutants [6].
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The domain of functional data analysis is relatively recent, and the main references
on the field are the works of Ramsay and Silverman [12] and Ferraty [8]. These data
will be supposed to belong to an infinite-dimentional vector space [3] and, more
specifically, in the context of these works, we shall consider functional random
variables.

Given a probability space (Ω,A, P), where Ω is the sample space, A is the event
space, and P is a probability measure, as well as a certain functional space F , then
a random variable is called functional, if it takes its values in a vector space of
infinite dimension (F ,BF), where BF is the Borel 𝜎-algebra of the space. It is then
a measurable application 𝑋 : Ω → F .

Taking this definition into consideration, the considered functions could have an
arbitrary number of dimensions, but in our context we shall focus on one-dimensional
functions (curves). This is the classical case of the evolution of a physical parameter
as a function of time.

In this context, the development of tools that allow the detection of anomalous
or outlying curves in certain sets of functional data is not obvious, but can have a
major impact on the conclusions that are extracted from the study of these data. An
identification tool can be used in order to automatically identify curves associated
with unexpected physical phenomena, measurement errors or other relevant pieces
of information needed by the users before extracting conclusions from the original
set of data.

In the following parts of the document we will expose the main points regarding
the domain of functional outlier detection (Sections 30.2.1 and 30.2.2), the new
procedure that has been implemented (Sections 30.2.3 and 30.2.4), as well as some
mathematical properties and a test through known theoretical examples (Sections
30.2.5 and 30.3).

30.2 Functional Outlier Detection

30.2.1 Introductory Aspects

The first main remark that should be made is that there is no formal definition of what
constitutes an outlier in a set of data. This is the reason why most references prefer
not to give a precise definition, and mostly define them as data within the studied set
that behave in an abnormal way when compared to the majority of objects [2].

As it is usual, the field of outlier detection is far more developed in the multivariate
context than in the functional one. Most existing detection techniques in the multi-
variate framework rely on some notion of density or distance between the objects of
the set of data, but this approach is not necessarily adapted for functional data. As
an example, in a set of periodic curves, a particular one could be considered to have
an outlying nature because its frequency is significantly different from the others,
even though that curve could be placed in a highly dense region. This is the reason
why some authors [4] make an essential distinction between magnitude (those who
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deviate from the normal set by a certain distance criteria), and shape (those whose
form is significantly different from most of the curves of a set) functional outliers.

In [10], a general classification of the main existing methods of functional outlier
detection is presented. In general, they can be divided into three main groups: (i)
Two stage approaches, where there is a dimensionality reduction step that allows
the application of a classical multivariate methods, (ii) Non-parametric approaches
which do not intend to represent the data in a space of lower dimension, but rather
quantify the differences between the curves through similarity measures, and finally,
(iii) model-based approaches, which aim to model the probability density function
(pdf) of some scalar descriptor of the functional data.

Our method follows the line of the last possibilities, and is based on two notions.
The first one is the fact that in all generality, it is true that both magnitude and
shape outliers can be of interest, and therefore there is a need for a method capable
of capturing both notions of outlyingness and the use of non-parametric functional
measures adapted to these characteristics seems logical. On top of that, when complex
data are analysed and the notions of orientation of curves or shape become relevant,
it is convenient to adjust some kind of probabilistic model over the random variables
of interest (such as the aforementioned non-parametric descriptors), so that data
objects that fit the distribution should have high probabilities of occurence.

30.2.2 Functional Measures

Two functional measures (this is a slight abuse of terminology, since the second
is not strictly a measure) are retained thanks to their sensitivity to magnitude and
shape differences. They are the h-modal depth [11] (also called h-mode depth), a
definition of local depth due to the fact that it does not take into account the whole
empirical sample of functional data, but only a slightly smaller window in order to
guarantee to a certain degree that multimodality distributions can be detected, and
the Dynamic Time Warping (DTW) [15], which is a measure of correspondence
between temporal sequences that allows the comparison of their shapes.

The h-mode depth of a realization 𝑧 ∈ C([0, 1]) with respect to 𝑍 ∼ 𝑃 ∈
P(C([0, 1])) is defined as:

ℎ𝑀 (𝑧; 𝑃) = E
( 1
ℎ(𝑃)

𝐾
( ‖𝑧 − 𝑍 ‖

ℎ(𝑃)

))
, (30.1)

where 𝐾 : R→ R is a kernel function and ‖ · ‖ is a chosen norm on the considered
functional space. There are several kernel functions available, but one that is typically
used is the Gaussian Kernel:

𝐾 (𝑡) =
2

√
2𝜋

exp
(
−
𝑡2

2

)
, 𝑡 > 0

and ℎ represents the bandwidth, which is usually taken as the 15th percentile of the
empirical distribution of ‖𝑧𝑖 − 𝑧𝑘 ‖; 𝑖, 𝑘 = {1, ..., 𝑁} [7].
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The other main measure that will be used mainly for shape outlier detection,
comes from the time series domain, the Dynamic Time Warping (DTW), which
provides a measure of similarity and correspondence between two sequences of
data.

Given two sequences 𝑋 � (𝑥1, 𝑥2, ..., 𝑥𝑁 ); 𝑁 ∈ N and𝑌 � (𝑦1, 𝑦2, ..., 𝑦𝑀 ); 𝑀 ∈
N, as well as a feature space S. Then, 𝑥𝑛, 𝑦𝑚 ∈ S for 𝑛 ∈ [1 : 𝑁] and 𝑚 ∈ [1 :
𝑀], and we can define a local cost measure (sometimes also called local distance
measure), which is a function: 𝑐 : S × S → R≥0.

In this case, an (𝑁, 𝑀)-warping path, is a sequence 𝑝 = (𝑝1, ..., 𝑝𝐿) with 𝑝𝑙 =
(𝑛𝑙 , 𝑚𝑙) ∈ [1 : 𝑁] × [1 : 𝑀];∀𝑙 ∈ [1 : 𝐿] which also satisfies the following
conditions:

• Boundary condition: 𝑝1 = (1, 1) and 𝑝𝐿 = (𝑁, 𝑀).
• Monotonicity condition: 𝑛1 ≤ 𝑛2 ≤ ... ≤ 𝑛𝐿 and 𝑚1 ≤ 𝑚2 ≤ ... ≤ 𝑚𝐿 .
• Step size condition: 𝑝𝑙+1 − 𝑝𝑙 ∈

{
(1, 0), (0, 1), (1, 1)

}
for 𝑙 ∈ [1 : 𝐿 − 1].

The total cost 𝑐𝑝 (𝑋,𝑌 ) of a given warping path is:

𝑐𝑝 (𝑋,𝑌 ) �
𝐿∑
𝑙=1

𝑐(𝑥𝑛𝑙 , 𝑦𝑛𝑙 ).

Finally, an optimal warping path between 𝑋 and 𝑌 is a warping path 𝑝∗ having
minimal total cost among all possible warping paths. Having defined this path, DTW
distance 𝐷𝑇𝑊 (𝑋,𝑌 ) between 𝑋 and 𝑌 is defined as the total cost of the optimal
warping path. This way, if two curves are normalised, it is possible to compare the
shape of curves by making use of modified versions of this DTW measure.In order
to simplify the notation, from here onwards both notions will be expressed as:

ℎ𝑀 (𝑧𝑖 , 𝑃) ≡ 𝑑𝑖,1 (𝑧𝑖),∀𝑧 ∈ (R𝑄)U ,

𝐷𝑇𝑊 (𝑧𝑖 , 𝑧 𝑗 ) ≡ 𝑑𝑖, 𝑗 ,2 (𝑧𝑖 , 𝑧 𝑗 ),∀𝑧𝑖 , 𝑧 𝑗 ∈ (R𝑄)U ,

and 𝐷𝑇𝑊 (𝑧𝑖) = 𝑑𝑖,2 =
1
𝑁

𝑁∑
𝑗=1

𝑑𝑖, 𝑗 ,2 (𝑧𝑖 , 𝑧 𝑗 ).

30.2.3 Methodology

The association of a value of depth for each functional datum 𝑧𝑖 , and of DTW for
each pair of data 𝑧𝑖 , 𝑧 𝑗 is the basis of this functional outlier detection technique. Since
the analysed curves will be considered functional random variables, any real-valued
measure applied to them shall be treated as a real-valued random variable. In this
case, the h-mode depth and the DTW shall be denoted {𝐷1, 𝐷2}.

The main idea of the algorithm is to adjust a probabilistic model such as the
Gaussian Mixture Model (GMM) to the two real-valued random variables that are
supposed to quantify the degree of outlyingness in the magnitude and shape sense,
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i.e., the variables 𝐷1, 𝐷2, which will have a set of realizations depending on the
original data: {𝑑𝑖,1, 𝑑𝑖,2}𝑁𝑖=1.

Following this logic, a joint bivariate parametric probabilistic model to the pair of
data {𝑑𝑖,1, 𝑑𝑖,2} for every functional datum 𝑧𝑖 . By proceeding this way, a particular
curve can be considered as an outlier even if it does not have an extreme value with
regard to both measures if they are looked upon independently, but the combination
of its depth and DTW values can make it have an outlying nature.

The form of the GMM model is:

𝑓 (𝑑1, 𝑑2) =
𝐾∑
𝑘=1

�̂�𝑘N( �̂�𝑘 , Σ̂𝑘 ),

where 𝑘 ∈ {1, .., 𝐾} is the number of bivariate Gaussian probability functions of
mean vector �̂�𝑘 and covariance matrix Σ̂𝑘 and the weight vector {𝛼1, ..., 𝛼𝐾 } verifies∑𝐾
𝑘=1 𝛼𝑘 = 1 and 𝛼𝑘 ≥ 0. The function 𝑓 (𝑑1, 𝑑2) is the joint probability density

function of the random variables 𝐷1, 𝐷2, which associates a depth and a DTW value
to each functional realization. The estimation of all these parameters can be done
through the Expectation Maximization (EM) algorithm [5].

Once the joint PDF is adjusted, it is possible to extract probabilistic conclusions
on the random variables that are modelled. For instance, if a certain set of pairs
of values of {𝑑𝑖,1, 𝑑𝑖,2} defines a closed region such that a certain percentage of
probability mass, 𝑄 of the PDF is kept, there is a notion of multivariate quantile that
can be interpreted. More formally, if there exists a value 𝑞 such that:∫

R×R
�{ 𝑓 (𝑑1 ,𝑑2) ≤𝑞 } = 𝑄,

Then the identity 𝑓 (𝑑1, 𝑑2) = 𝑞 defines a (closed, due to the concave nature of the
GMM) curve that can be written as 𝛾 = 𝑔(𝑑1, 𝑑2) ≡ 𝜕𝐷, where 𝐷 is the open
domain in R × R with frontier defined by 𝜕𝐷, and such that ∀(𝑑𝑖,1, 𝑑𝑖,2) ∉ 𝐷, 𝑧𝑖 is
considered to be an outlier.

Naturally, the estimation of the joint PDF is dependent on the estimated set
of parameters {�̂�𝑘 , �̂�𝑘 , Σ̂𝑘 }𝐾𝑘=1, which is dependent on the quantity of available
functional data.

30.2.4 Estimation of the Probability of Being an Outlier

A practical way of implementing this procedure is to generate a bootstrap sample
from the original curves and perform an estimation of 𝛾, �̂�(𝑑1, 𝑑2) = 𝛾{ �̂�𝑘 , �̂�𝑘 ,Σ̂𝑘 }𝐾𝑘=1
for each group. By proceeding this way, it could be possible to estimate confidence
intervals for the estimated curve, or to associate a score to the likelihood of being an
outlier.

In summary, and taking the original curves {𝑧𝑖}𝑁𝑖=1 as starting point, several
bootstrap (sampling from the curves with replacement) groups will be obtained,
each one with the same number of samples from {𝑧𝑖}𝑁𝑖=1. Then an independent
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GMM model will be fitted to the data of each group through the EM algorithm, and
the desired quantile curve 𝛾 will be estimated for every group. By doing this, it is
possible to quantify if every curve is considered as outlier by fulfilling the criterion
of each bootstrap group.

More formally, if we have defined a certain number of groups 𝐵, indexed by 𝑏
such that 𝑏 ∈ {1, ..., 𝐵}, then for each functional datum 𝑧𝑖 , 𝑖 ∈ {1, ..., 𝑁} it is possible
to define a binary random variable 𝑊 such that:

𝑊 =

⎧⎪⎪⎨⎪⎪⎩
1 𝑖 𝑓 𝑧𝑖 ∉ 𝐷𝑏

0 𝑖 𝑓 𝑧𝑖 ∈ 𝐷𝑏

where 𝐷𝑏 is the previously mentioned acceptance region (open domain) in R × R
for the bootstrap group 𝑏. Then, by computing the expectancy of the realization of
the random variable 𝑊𝑖 = 𝑊 (𝑧𝑖) for each 𝑧𝑖 in each bootstrap group, it is possible
to quantify a score that will be equivalent to the probability of being considered an
outlier according to the aforementioned measures {𝑑𝑖,1, 𝑑𝑖,2}.

As an example, the value P(𝑊𝑖 = 1) quantifies the probability that the functional
datum 𝑧𝑖 is an outlier according to our criteria.

30.2.5 Estimation of the Number of Outliers

It is possible to perform an estimation of the number of outliers coherently with the
detection technique. According to this, if 𝜇 is the actual percentage of outliers, the
estimation of the number of outliers would be:

�̂� =

∑𝑁
𝑖=1 �(𝑑𝑖,1 ,𝑑𝑖,2)∉𝐷𝑖

𝑁
,

In this case, logically, the expectation of the estimator is equal to the significance
value of the rejection region defined by the GMM model if the sample is formed by
independent and identically distributed data :

E[�̂�] = E
[ 1
𝑁

𝑁∑
𝑖=1

�(𝑑𝑖,1 ,𝑑𝑖,2)∉𝐷𝑖
]
=

1
𝑁

· 𝑁 · P[(𝑑1, 𝑑2) ∉ 𝐷] = P[(𝑑1, 𝑑2) ∉ 𝐷] = 𝛼

And so the bias of the chosen estimator can be quantified as:

E[�̂� − 𝜇] = E[�̂�] − E[𝜇] = 𝛼 − 𝜇.

30.3 Confrontation to Theoretical Test Case

Two models will be retained in order to test the detection capacities of the algorithm.
The first one constitutes magnitude and shape outlier that does not deviate greatly
with respect to the other curves and the second is a shape outlier. The models are:
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• The first model is the funtion generator: 𝑓1 (𝑡) = 𝑠𝑖𝑛(𝑡) + 0.2𝑐𝑜𝑠(100𝑡) + 𝑢
where the variable 𝑢 is a realization of the distribution U[−1, 1]. The outliers
are generated through 𝑜(𝑡) = 𝑠𝑖𝑛(0.3𝑡) + 𝑛 where 𝑛 is a realization of the
distribution 𝑁 (0, 1).

• The second model that generates the functions is 𝑓2 (𝑡) = 4𝑡 + 𝑒 where 𝑒 is a
Gaussian Process of mean 𝜇 = 0 and correlation function given by 𝛾(𝑡1, 𝑡2) =

0.3𝑒− |𝑡1−𝑡2 |
0.3 , whereas the outliers follow the distribution: 𝑜2 (𝑡) = 4𝑡.

For every test, 50 main curves and 1 outlier were generated.
The outlier detection technique was applied to both cases 200 times in order to

estimate the false positive detection rate (percentage of data identified as outliers even
though they are not), as well as the detection rate (percentage of correctly identified
outliers). Both of them can me measured depending on how high the estimated
probability of being an outlier must be. For instance, it is possible to impose a score
outlyingness of 50% or 75% for a datum to be considered as outlier. The results
for these two models are compared with those of the functional boxplot [14] and
directional outlyingness [13](in the last case, by taking the most extreme values of
its univariate boxplot).

Table 30.1 Detection rates for the E[𝑊𝑖 ] ≥ 0.5 and E[𝑊𝑖 ] ≥ 0.75 criteria

50% Model 1 Model 2

Av. Detection rate 100% 100%
False Positive Rate 0.22% 1.5%

75% Model 1 Model 2

Av. Detection rate 100% 78%
False Positive Rate 0.17% 0.83%

Table 30.2 Detection rates for Directional Outlyingness and Functional Boxplot

DO Model 1 Model 2

Av. Detection rate 100% 64%
False Positive Rate 5.36% 9.8%

FB Model 1 Model 2

Av. Detection rate 42.6% 0%
False Positive Rate 0% 0.4%

30.4 Conclusions

In this work a novel functional outlier detection technique has been presented and
several results are exposed. Its outlier detection rates are competitive against state of
the art detection algorithms and it presents several other advantages.

One of them is the fact that not only a binary indicator of outlyingness is provided,
but also to what degree each functional datum can be considered to be an outlier. This
allows the user to establish a prioritization when analysing the underlying reasons
for this outlyingness behind the data. Another important advantage is the possibility
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of distinguishing the reasons why a datum is regarded as an outlier (if it is considered
as such in the magnitude or shape sense), by analysing the marginal distributions of
the fitted probabilistic model.
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Chapter 31
Topological Object Data Analysis Methods with
an Application to Medical Imaging

Chen Shen and Vic Patrangenaru

Abstract We apply ideas from algebraic topology to study distributions on object
spaces. We present a framework for using persistence landscapes to vectorize persis-
tence diagrams as in Bubenik(2015)[3] and Patrangenaru et al.(2018)[13]. We apply
these methods to analyze data from The Cancer Imaging Archive (TCIA), using
a technique developed earlier for regular types of digital images. The aim of this
study is a comparison of brain images of CPTAC Glioblastoma patients with similar
images from clinically normal individuals. Result shows persistence landscape may
capture topological features distinguishing the two groups.

31.1 Introduction

Glioblastoma multiforme (GBM), is the most aggressive cancer that begins within the
brain (see Holland(2000)[11]). We apply topological data analysis(TDA) methods
to object data distributions extracted from CT scans, to detect GBM. TDA provides
ways of analyzing features of object distributions that could not be addressed by
standard object data analysis (ODA). Objects are usually regarded as points on a
manifold or more generally on a stratified space, called object space,whose structure
is highly nonlinear, making significant standard statistical analysis obsolete. While
standard ODA methods are usually addressing location and spread parameter data
analysis, TDA delivers answers regarding distributions on the object space on the
whole, as they are based on Algebraic Topology (AT) invariants. AT helps detecting
“holes", “voids", “tubes" or other missing components in topological spaces via ho-
mology invariants. A multi-scale summary of such invariants is provided by applying
persistence topological invariants on metrizable distance spaces. TDA methods are
quite flexible, and there are many possible ways to apply them to object data. In this
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paper, we will use persistent homology. The crucial step is to encode the object data
through an increasing filtration of the support of a distribution on the object space,
containing enough structure so that the subsequent statistical analysis would be suc-
cessful. Statistics is rooted in the theory of errors; often times a continuous random
variable, regarded as a combination of measurements involving random errors, is
described in terms of its p.d.f., as a mixture of small‘bumps” around certain relevant
locations. Such probability models for error prone measurements, say for example,
multivariate normal distributions, Dirichlet distributions, Wishart distributions and
their mixtures, are models that can not capture the above mentioned topological fea-
tures of data. In TDA, one considers a sample of observation from a random object,
and apply to it persistent homology algorithms. We build an increasing family of
simplicial complexes, called Vietoris-Rips complexes, from the pairwise distances
between the point in the sample. We calculate their persistent homology and use
death vectors and persistence landscapes to vectorize the data, which allows apply-
ing functional data analysis techniques. The landscapes, that constitute a functional
summary of the object data, substantially simplify our statistical analysis.
A brief outline is given as follow. In section 2 we list the main steps of our topological
data analysis. We define death vectors and persistent landscapes (PLs) and introduce
metric structures of PLs; this allows us to apply functional data analysis techniques
to set statistical hypotheses and construct statistic tests. Section 3 is dedicated to
the brain cancer image data analysis based on The Cancer Imaging Archive(TCIA),
where TDA methods are used.

31.2 Object TDA via persistence homology

Due to space limitations, for basic AT definitions needed here, we send the Statistics
readership to Section 3.4. in Patrangenaru and Ellingson(2015)[12]. TDA summa-
rizes the topological and geometric structure of data by applying tools from AT to
certain geometric structures built from the data on hand. Suppose we have points on
a manifold, topology studies the connectivity of these points. We could replace each
point by a disk(ball) with radius 𝜀. As the radius increases, points will be connected
with edges and so the number of connected components will decrease. The connected
components are considered as 0 degree topological features, and the number of con-
nected components is denoted as the 0-th Betti number, 𝛽0. While connecting these
points with edges, simplices will also be created to produce topological features in
higher dimensions. A 0-simplex is a single point or vertex, a 1-simplex is the line
segment or edge determined by 2 distinct vertices, 2-simplex is the solid triangle
determined by 3 vertices, that do not lie on a line, and so on. The k-th Betti number
𝛽𝑘 counts the number of k-degree topological features. A set of simplices whose
vertices all have pairwise nonempty intersections is called the Vietoris-Rips (VR)
complex. In general, there is no single proximity parameter 𝜀 that yields a Vietoris-
Rips complex R𝜀 which best describes the topological and geometric structure from
which that data point cloud was sampled. Instead one considers all possible values
of 𝜀 and one determines which topological features persist as 𝜀 increases. Persis-
tent homology completely describes how homology persists as one steps through
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the filtration (see Edelsbruner et al.(2002)[9]). For example, consider a filtration
of Vietoris-Rips complexes R𝜀0 ⊂ R𝜀1 ⊂ · · · ⊂ R𝜀𝑚 for 𝜀0 < 𝜀1 < · · · < 𝜀𝑚.
One is interested in topological features that persist as the proximity parameter 𝜀
ranges from 𝜀0 to 𝜀𝑚. For a given value of 𝜀, the number of 𝑝-dimensional holes of
the Vietoris-Rips complex R𝜀 is determined as the dimension of the vector space
given by the 𝑝th homology group 𝐻𝑝 (R𝜀), where coefficients are taken to be in some
fixed field, typically Z2. The 𝑝th Betti number is given by𝛽𝑝 (R𝜀) = dim

[
𝐻𝑝 (R𝜀)
]
.

However, even knowing the Betti numbers at all values of 𝜀, one has no informa-
tion on whether or not the corresponding topological features persist as 𝜀 increases.
Persistent homology remedies this defect by encoding not just the Betti numbers,
but the persistent Betti numbers, given by 𝛽

𝑗
𝑖 = rank
(
𝐻𝑝 (R𝜀𝑖 ) → 𝐻𝑝 (R𝜀 𝑗 )

)
where

𝐻𝑝 (R𝜀𝑖 ) → 𝐻𝑝 (R𝜀 𝑗 ) is the linear map induced by the inclusions R𝜀𝑖 ⊂ R𝜀 𝑗 . The
image of this linear map is called a persistent homology group. The persistence
diagram gives a complete summary of persistent homology as a collection of points
{(𝑏, 𝑑)}, where each (𝜀𝑖 , 𝜀 𝑗 ) represents a homology class that is born at 𝜀𝑖 and dies
at 𝜀 𝑗 . To be precise, the multiplicity of the point (𝜀𝑖 , 𝜀 𝑗 ) in the persistence diagram is
given by 𝜇

𝑗
𝑖 = 𝛽

𝑗
𝑖−1 − 𝛽

𝑗
𝑖 + 𝛽

𝑗−1
𝑖 − 𝛽

𝑗−1
𝑖−1 . For a point (𝑏, 𝑑) in the persistence diagram,

the quantity 𝑑 − 𝑏 is called its persistence.

31.2.1 Death vectors and persistence landscapes

In order to facilitate statistical inference we wish to give a complete (i.e. invertible)
unique (i.e. injective) encoding of the persistence diagram as a vector. For the
Vietoris-Rips complex, since all vertices appear at filtration value 0, all of the
points in the persistence diagram for homology in degree 0 have birth coordinate
0. Thus, all of the information is included in the death times (the times when
connected components merge). As such, we encode the persistence diagram using
the corresponding order statistic. We call this the death vector. See the left hand side
of Figure 1. For more general persistence diagrams, such as for homology in degree
1 for the Vietoris-Rips complex (see the right hand figure in Figure 1), we use the
persistence landscape (Bubenik, 2015[2]), which we now describe. For each point

Fig. 31.1 Example of death vector(left) and persistence landscape(right).
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(𝑏, 𝑑) in the persistence diagram, consider the following function

𝑓(𝑏,𝑑) (𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑡 − 𝑏, if 𝑏 ≤ 𝑡 < 𝑏+𝑑

2 ,

𝑑 − 𝑡, if 𝑏+𝑑2 ≤ 𝑡 < 𝑑,

0, otherwise.
Then for 𝑘 ≥ 1, the 𝑘th persistence landscape function of the persistence diagram
D is given by

𝜆𝑘 (𝑡) = kmaxChen(𝑏𝑖 ,𝑑𝑖) ∈D 𝑓(𝑏𝑖 ,𝑑𝑖) (𝑡),

where kmaxChen denotes the 𝑘th largest element. Looking from a functional
data perspective, the persistence landscape consists of the sequence of functions
{𝜆1, 𝜆2, 𝜆3, . . .}. Note that by definition, for all 𝑡 ∈ R, 𝜆1 (𝑡) ≥ 𝜆2 (𝑡) ≥ 𝜆3 (𝑡) ≥ . . .;
that is, the persistence landscape is a decreasing sequence of functions, therefore one
may apply data analysis techniques for a statistical inference.

31.2.2 Statistics with persistence landscapes

Bubenik and Kim (2007)[2] showed that persistence landscapes belong to a sep-
arable Banach space 𝐿 𝑝 (N × R); and when 𝑝 ≥ 2 with finite first and second
moments, asymptotic results are applicable. Let 𝑋1, . . . , 𝑋𝑛 be iidr vectors and let
Λ1, . . . ,Λ𝑛 be the corresponding persistence landscapes. Using the vector space
structure, the sample mean landscape Λ𝑛 is given by the pointwise mean. That is,
Λ𝑛 (𝜔) = 𝜆𝑛,where 𝜆𝑛 (𝑘, 𝑡) = 1

𝑛

∑𝑛
𝑖=1 𝜆𝑖 (𝑘, 𝑡). On 𝐿 𝑝 (N×R), when 𝑝 ≥ 2 and under

the assumption of finite first and second moments, by delta method one can prove that
for any continuous differentiable function 𝑓 , the random variable 𝑓 (𝜆) also satisfies
SLLN and CLT. One could therefore set an asymptotic 𝑧 − 𝑡𝑒𝑠𝑡 to run statistical
inference for persistence landscapes. Let 𝑋1, . . . , 𝑋𝑛 be i.i.d.r, vectors from 𝑄 , and
𝑋 ′

1, . . . , 𝑋
′
𝑛′ be i.i.d.r, vectors from 𝑄 ′ with corresponding persistence landscapes Λ

and Λ′. We set 𝑌 = | |Λ| |, 𝑌 ′ = | |Λ′ | |. Let 𝜇 = 𝐸𝑌 and 𝜇′ = 𝐸𝑌 ′. Consider the null
hypothesis 𝐻0 : 𝜇 = 𝜇′. For the corresponding real random variables 𝑌𝑛, 𝑌 ′

𝑛′ , we

have
√
𝑛(𝑌𝑛 − 𝜇) 𝑑−→ 𝑁 (0, 𝜎2

𝑌 ), and under 𝐻0, similarly
√
𝑛(𝑌 ′

𝑛′ − 𝜇) 𝑑−→ 𝑁 (0, 𝜎2
𝑌 ′ ),

where 𝑌𝑛, 𝑌 ′
𝑛′ are the sample means and 𝜎2

𝑌 , 𝜎
2
𝑌 ′ are the corresponding variances.

By Slutsky’s theorem, if 𝑆2
𝑛, 𝑆

2
𝑛′ are the corresponding sample variances, in case

𝑛
𝑛+𝑛′ → 𝜃 ∈ (0, 1) as 𝑛 + 𝑛′ → ∞, we may use the statistic 𝑍 = 𝑌 𝑛−𝑌 ′

𝑛′√
𝑆2
𝑛/𝑛+𝑆2

𝑛′ /𝑛
′

that

converges weakly to standard normal random variable, as 𝑛+𝑛′ → ∞. From this non-
parametric large sample z-like test, a p-value could be obtained. For small samples,
we consider 𝑋∗

1 , . . . , 𝑋
∗
𝑛 and 𝑋 ′∗

1 , . . . , 𝑋∗
𝑛′ be bootstrap resamples corresponding to

samples from 𝑄,𝑄 ′ and corresponding norms of persistence landscapes resamples
with repetition 𝑌 ∗

𝑛 , 𝑌
′
𝑛′ ∗, for both populations. Let 𝑌 ∗

𝑛 , 𝑌
′
𝑛′

∗. By nonparametric boot-
strap, we may obtain a two-sample test statistic, by taking for each resample from
the two populations

𝑍∗ =
𝑌

∗
𝑛 − 𝑌 ′∗

𝑛′√
𝑆2∗
𝑛 /𝑛 + 𝑆2∗

𝑛′ /𝑛′
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Based on the nonparametric bootstrap distribution of 𝑍∗, a p-value can be obtained.

31.2.2.1 Nonparametric 𝝌2 test for mean PL based difference

Alternately, one may consider a multivariate two sample test for mean PL’s. Consider
Y = (Y1, . . . ,Yn1 )𝑇 , Y1 = (‖Λ1

1 | . . . , ‖Λ
𝑝
1 ‖), . . . ,Yn1 = (‖Λ1

𝑛1 ‖, . . . , ‖Λ
𝑝
𝑛1 ‖);

Y′ = (Y′
1, . . . ,Y

′
n1 )
𝑇 , Y′

1 = (‖Λ′1
1‖, . . . , ‖Λ′𝑝

1 ‖), . . . ,Y′
n2 = (‖Λ′1

𝑛2 ‖, . . . , ‖Λ
′𝑝
𝑛1 ‖),

where 𝑝 � 𝑛1+𝑛2 represent the dimensionality of persistence landscapeΛ1, . . . ,Λ𝑝

that contains the information of persistence homology of the data in dimensions
1, . . . , 𝑝.

If the two groups have sample sizes 𝑛1 ≠ 𝑛2, with total sample size 𝑛 = 𝑛1 + 𝑛2,
and lim𝑛→∞

𝑛1
𝑛 = 𝜃 ∈ (0, 1), let 𝑌𝑛1 , 𝑌

′
𝑛2 , 𝑆1,𝑛1 , 𝑆2,𝑛2 denote sample means and

sample covariance matrices. Then

(𝑌𝑛1 − 𝑌 ′
𝑛2 )
𝑇 [(

1
𝑛1

𝑆1,𝑛1 +
1
𝑛2

𝑆2,𝑛2 )]
−1 (𝑌𝑛1 − 𝑌 ′

𝑛2 ) →𝑑 𝜒2
𝑝as 𝑛 → ∞.

For 𝑛 large, we use the quantity on the left hand side to evaluate the p-value based on
from the 𝜒2

𝑝 tables. Similarly, if the sample sizes of the two PL groups are small, we
use nonparametric bootstrap to form a statistic test: Let 𝑌 ∗

1 , . . . , 𝑌
∗
𝑛1 and 𝑌 ′∗

1 , . . . , 𝑌 ′∗
𝑛2

be bootstrap resamples corresponding to 𝑝-dimensional persistence landscapesΛ,Λ′.
If the samples sizes are small, by nonparametric bootstrap, we may use a test based
on the 𝜒2 asymptotics. let 𝑌 ∗

𝑛1 , 𝑌
′∗
𝑛2 , 𝑆

∗
1,𝑛1

, 𝑆∗
2,𝑛2

denote the bootstrap counterparts
of sample means and sample covariances. Let 𝑛 = 𝑛1 + 𝑛2 be the total sample size.
Then, the boostrap distribution of the 𝑇2,∗ statistic

𝑇2,∗ = (𝑌 ∗
𝑛1 − 𝑌 ′∗

𝑛2 )
𝑇 [(

1
𝑛1

𝑆∗
1,𝑛1

+
1
𝑛2

𝑆∗
2,𝑛2

)]−1 (𝑌 ∗
𝑛1 − 𝑌 ′∗

𝑛2 ), (31.1)

can be used to derive a p-value for the 𝐻0 : 𝜇𝑌 = 𝜇𝑌 ′ .

31.3 The GMB Images and their PL analysis

Our imaging data were collected of patients immediately before the pathological
diagnosis, and from follow-up scans, where available. This data collection is from
the NCI’s Clinical Proteomic Tumor Analysis Consortium Glioblastoma Multiforme
(CPTAC-GBM) cohort. Radiology and pathology images from CPTAC Phase 3 pa-
tients are being stored in DICOM format. Brain tumors are classified by the types
of cells within the tumor. Each type of brain tumor grows and is treated in a differ-
ent way. Glioblastoma is a type of Grade IV astrocytomas and the most common
malignant (cancerous) adult brain tumor and one of the fastest-growing tumors of
the central nervous system. Imaging tests, which include CT(computed tomography)
scans and MRI(magnetic resonance imaging), are most common diagnostic tests for
detecting brain tumors. In this study, CT scan images are used to study the GBM
(see Figure 2). There are several levels of CT scans which detect different areas
of normal anatomy of human brain. Two levels of CT scans are used here to form
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Fig. 31.2 Brain CT scans: normal (left) and tumor (right).

different groups for statistical analysis. The data used in the article contains total
twenty-nine brain CT scan images. For Centrum semiovale level, eight images are
from normal group and eleven images are from tumor group. For Lateral ventricles
level, four images are from normal group and six images are from tumor group.
Next, each of 29 images was extracted, in MATLAB with using Image Segmenter
and edge map detection and then pairs of 2-dimensional points were selected and
prepared for computations. Our computations were performed in MATLAB and Im-
age Processing Toolbox Release 2016b, in R-3.5.2 with Jose Bouza’s TDA-tools and
in C++ with Ulrich Bauer’s Ripser code. First image segmentation was performed
in MATLAB’s Image Segmenter with using Otsu’s global threshold. Then, from
segmented images, by using edge detection function, point clouds for each CT scan
image were obtained. From these brain edges, point clouds of approximately 1000
points were sampled.
Next, the persistence diagrams for the Vietoris-Rips complexes of all the point

Fig. 31.3 Data Processing, A:Image Segmentation, B:Edge Detection, C:R-tda-tools

cloud data sets were computed using Ripser. These persistence diagrams were then
converted into vectors to facilitate statistical analysis. Specifically, the persistence
diagrams for homology in degree 0 were converted into death vector and the persis-
tence diagrams for homology in degree 1 were converted into persistence landscapes
using Jose Bouza’s tda-tools. Figure 4 shows the PLs for each sample from the nor-
mal group and GBM group. Next, we consider the average persistence landscapes for
the normal group and tumor group and the differences between these averages. See
Figure 5. The two groups highly differ in their topological type, as the p-value found
was 0.007. Upon inspection, the difference between normal group and tumor group
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Fig. 31.4 CT scan of individual from normal group and corresponding PL (up), and CT scan of
individual from GBM group and corresponding PL (down).

Fig. 31.5 Average PLs for normal group (left) and tumor group (middle) and their difference (right).

shows the two groups have difference topological features. A similar conclusion is
reached, if the nonparametric 𝑇2 like test in Section 2.2.1 is used instead. After com-
puting the pooled sample covariance matrix, the distribution of the statistic (31.1)
could be obtained, leading to a p-value smaller than .00001. In summary, CT scan
based PLs, could be used to differentiate between the GBM group and the healthy
group, using brain CT scan images.
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Chapter 32
Distribution-free Pointwise Adjusted 𝑷-values
for Functional Hypotheses

Meng Xu and Philip T. Reiss

Abstract Graphical tests assess whether a function of interest departs from an
envelope of functions generated under a simulated null distribution. This approach
originated in spatial statistics, but has recently gained some popularity in functional
data analysis. Whereas such envelope tests examine deviation from a functional
null distribution in an omnibus sense, in some applications we wish to do more: to
obtain 𝑝-values at each point in the function domain, adjusted to control the family-
wise error rate. Here we derive pointwise adjusted 𝑝-values based on envelope
tests, and relate these to previous approaches for functional data under distributional
assumptions. We then present two alternative distribution-free 𝑝-value adjustments
that offer greater power. The methods are illustrated with an analysis of age-varying
sex effects on cortical thickness in the human brain.

32.1 Introduction

In many functional data analysis (FDA) settings, one wishes to test either a null
hypothesis

𝐻0 : 𝑓 (𝑠) = 0 for all 𝑠 ∈ S, (32.1)

for a function 𝑓 defined on a domain S, or alternatively a family of null hypotheses

{𝐻0 (𝑠) : 𝑠 ∈ S} (32.2)

where for each 𝑠, 𝐻0 (𝑠) is the pointwise hypothesis 𝑓 (𝑠) = 0. For example, 𝑓 may
refer to

(i) a group difference 𝑓 (𝑠) = 𝑔1 (𝑠) − 𝑔2 (𝑠), where 𝑔1, 𝑔2 denote mean functions in
two subsets of a population, or
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(ii) a coefficient function 𝑓 (𝑠) = 𝛽(𝑠) in a functional linear model.

Clearly the global hypothesis 𝐻0 in (32.1) is just the intersection over all 𝑠 of the
pointwise hypotheses 𝐻0 (𝑠) in (32.2). The difference is that whereas (32.1) refers
to a single test, for which a single 𝑝-value would be appropriate, the family (32.2)
gives rise to a collection of 𝑝-values. The latter setup is appropriate when the values
of 𝑓 (𝑠) for different 𝑠 carry distinct scientific meaning. For example, in Section 32.6
below we test for sex-related differences in the thickness of the human cerebral cortex
as a function of age 𝑠. In this context, age-specific results may have implications for
the study of brain development.

Previous work has tended to focus either on distribution-free tests of the global
hypothesis (32.1) (see Section 32.3 below), or on multiplicity-adjusted parametric
pointwise tests for the family (32.2). As we show in Section 32.4, it is straightforward
to combine the advantages of both approaches—that is, to derive pointwise adjusted
𝑝-values without having to specify a null statistic distribution. In Section 32.5, we
present two alternative pointwise 𝑝-value adjustments that offer improved power.

32.2 Setup

We let 𝑇 (𝑠) (𝑠 ∈ S) denote a functional test statistic for null hypothesis (32.1), and
take as given a group of permutations of the data, along with the null hypothesis that
the joint distribution of𝑇 (𝑠), 𝑠 ∈ S, is invariant to such permutations. This hypothesis
may be stronger than (32.1), but for the sake of a brief and general presentation, we
ignore that distinction here. Let 𝑇0 be the test statistic function computed with
the real data, and 𝑇1, . . . , 𝑇𝑀−1 be test statistic functions that are computed with
randomly permuted data sets and thus constitute a simulated null distribution. We
consider 𝑇0 (𝑠), . . . , 𝑇𝑀−1 (𝑠) only for 𝑠 ∈ G, for a finite set G ⊂ S (e.g., a grid
of points spanning S, if the latter is a subinterval of the real line). We assume G
to be an adequate approximation to S, in the sense that the difference between a
minimum over G versus over S is negligible (see [2] for a relevant treatment of grid
approximations in functional hypothesis testing). We further assume that there are
no pointwise ties, i.e., ties among 𝑇0 (𝑠), . . . , 𝑇𝑀−1 (𝑠) for a given 𝑠 ∈ G.

32.3 Envelope Tests

Hypotheses regarding spatial point patterns are commonly tested by functions 𝑇 (𝑠)
of interpoint distance 𝑠, such as the 𝐾 function of [15]. Such functions typically
have unknown null distributions, and hence are most readily tested via Monte Carlo
methods. This is the motivation for graphical or envelope tests [15, 3, 1], which have
recently been formalized, extended, and applied to functional data [9, 8].

The global envelope test (GET) of [9] is based on the ranks 𝑅∗
𝑚(𝑠) of 𝑇𝑚 (𝑠)

among 𝑇0 (𝑠), . . . , 𝑇𝑀−1 (𝑠) for 𝑠 ∈ G. Here rank is defined in such a way that low
rank indicates maximal inconsistency with the null hypothesis. Thus, depending on
the test, 𝑅∗

𝑚 (𝑠) may be rank be from smallest to largest, rank from largest to smallest,
or for a two-sided test, the smaller of the two. The minimum rank attained by 𝑇𝑚,
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𝑅𝑚 = min𝑠∈G 𝑅∗
𝑚(𝑠), is a functional depth [7], which we may call the min-rank

depth. The GET 𝑝-value is then defined as

𝑝+ =

∑𝑀−1
𝑚=1 I(𝑅𝑚 ≤ 𝑅0) + 1

𝑀
. (32.3)

This 𝑝-value has a graphical interpretation in terms of envelopes, which we define
here in a manner that is consistent with [9], but that relates to 𝑝-values rather than
a specified level 𝛼. For 𝑗 ≥ 1, let 𝜅 𝑗 =

∑𝑀−1
𝑚=0 I(𝑅𝑚 ≤ 𝑗), and let 𝐸 𝜅 𝑗 be the

envelope defined by the set of 𝑀 − 𝜅 𝑗 curves {𝑇𝑚 : 𝑅𝑚 > 𝑗}, that is, the range from

¯
𝑇 𝜅 𝑗 (𝑠) = min𝑚:𝑅𝑚> 𝑗 𝑇𝑚 (𝑠) to 𝑇 𝜅 𝑗 (𝑠) = max𝑚:𝑅𝑚> 𝑗 𝑇𝑚 (𝑠) for each 𝑠. We say that 𝑇0
exits this envelope at 𝑠 if 𝑇0 (𝑠) ∉ [

¯
𝑇 𝜅 𝑗 (𝑠), 𝑇 𝜅 𝑗 (𝑠)]. Arguing as in [9], one can show

that 𝑝+ ≤ 𝜅 𝑗/𝑀 if and only if 𝑇0 exits 𝐸 𝜅 𝑗 at some 𝑠.

32.4 Adjusted 𝒑-values

Turning from the single hypothesis (32.1) to the family (32.2) of pointwise hypothe-
ses, the naïve or raw permutation-based 𝑝-values are

𝑝(𝑠) = 𝑅∗
0 (𝑠)/𝑀 (32.4)

for each 𝑠. These 𝑝-values, however, require adjustment for multiplicity [18] in order
to control the overall type-I error rate, usually taken as the family-wise error rate
(FWER). Strictly speaking, since the GET is a single test as opposed to a multiple
testing procedure, adjusted 𝑝-values with respect to the GET are undefined. But it
is natural to define the GET-adjusted 𝑝-value at 𝑠, in the notation of Section 32.3,
as the smallest value 𝜅 𝑗/𝑀 such that 𝑇0 exits the envelope 𝐸 𝜅 𝑗 at 𝑠. It can be shown
that an equivalent definition is

𝑝(𝑠) =
∑𝑀−1
𝑚=1 I[𝑅𝑚 ≤ 𝑅∗

0 (𝑠)] + 1
𝑀

; (32.5)

and that, as we would expect, the adjusted 𝑝-values 𝑝(𝑠) control the FWER.
The adjusted 𝑝-value (32.5) is not really new. The fda package [12] for R [11]

offers permutation 𝑡- and 𝐹-tests for settings (i) and (ii), respectively, of the Intro-
duction (and similar permutation 𝐹-tests are described by [14]). These tests yield
pointwise adjusted 𝑝-values that are related to (32.5), but there are two differences.
First, in the terminology of [4], the fda package offers max T adjusted 𝑝-values,
whereas (32.5) is more akin to min P adjusted 𝑝-values, which are more appropriate
when one cannot assume the null distribution of 𝑇 (𝑠) to be identical across 𝑠. Sec-
ond, [12] adopt a different permutation 𝑝-value convention in which the numerator
and denominator are reduced by 1, leading to the zero 𝑝-value problem criticized by
[10].
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32.5 More Powerful 𝒑-value Adjustments

We describe next two alternative adjusted 𝑝-values that are bounded above by (32.5)
and thus offer greater power.

32.5.1 Step-down Adjustment

In the language of multiple testing, the adjusted 𝑝-values (32.5) are of single-
step type, suggesting that an analogous step-down procedure [17, 4, 16] would
be more powerful. Define 𝑆𝑖 = {𝑠 ∈ G : 𝑅∗

0 (𝑠) ≥ 𝑖} for 𝑖 = 1, 2, . . ., and
𝑅𝑚;𝑈 = min𝑠∈𝑈 𝑅∗

𝑚(𝑠) for 𝑚 ∈ {0, . . . , 𝑀 − 1} and 𝑈 ⊂ G. We can then define the
step-down adjusted 𝑝-value at 𝑠 as

𝑝stepdown (𝑠) = max
𝑖∈{1,...,𝑅∗

0 (𝑠) }

∑𝑀−1
𝑚=1 I(𝑅𝑚;𝑆𝑖 ≤ 𝑖) + 1

𝑀
. (32.6)

This expression is readily shown to be less than or equal to 𝑝(𝑠) in (32.5). Thus the
step-down adjusted 𝑝-values offer greater power than their single-step counterparts,
but they can be shown to retain control of the FWER.

32.5.2 Extreme Rank Length Adjustment

The min-rank depth 𝑅𝑚 of Section 32.3 tends to be strongly affected by ties. In
particular, typically 𝜅1 > 1 of the 𝑀 functions attain rank 1 at some point and thus
have 𝑅𝑚 = 1, with the result that 𝜅1/𝑀 is the smallest attainable value of either
𝑝+ or 𝑝(𝑠). An alternative functional depth, the extreme rank length (ERL), largely
eliminates ties and thus leads to a more powerful variant of the GET. A formal
definition of ERL appears in [9], but the basic idea is to break the tie among curves
with the same min-rank depth 𝑅𝑚 by ordering from longest to shortest extent of
the region over which that minimum rank is attained. For example, four curves in
Fig. 32.1 attain pointwise rank 1 (from the top) somewhere in the domain and thus
all have 𝑅𝑚 = 1; the ERL depths 𝑅ERL

𝑚 =1-4, indicated in the figure, are based on
the widths of these curves’ regions of attaining rank 1.

An ERL envelope 𝐸 𝜅 𝑗 ;ERL [8] can be defined as in Section 32.3, but in terms of
𝑅ERL
𝑚 rather than 𝑅𝑚. We can then proceed as in Section 32.4, and define 𝑝ERL (𝑠),

the ERL-adjusted 𝑝-value at 𝑠, as 𝜅 𝑗/𝑀 for the smallest 𝜅 𝑗 such that 𝑇0 (𝑠) lies
outside 𝐸 𝜅 𝑗 ;ERL. This adjusted 𝑝-value is bounded above by (32.5), and hence offers
improved power. However, unlike most 𝑝-value adjustments, the ERL adjustment
is not order-preserving, in the sense that 𝑝(𝑠1) > 𝑝(𝑠2) does not guarantee that
𝑝ERL (𝑠1) ≥ 𝑝ERL (𝑠2). An counterexample, that is, a pair of points 𝑠1, 𝑠2 for which
𝑝(𝑠1) > 𝑝(𝑠2) but 𝑝ERL (𝑠1) < 𝑝ERL (𝑠2), appears in Fig. 32.1. Some might argue
that this non-order-preserving behavior vitiates the use of ERL-adjusted 𝑝-values
altogether.
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32.6 Application: Age-varying Sex Difference in Cortical
Thickness

We consider cortical thickness (CT) measurements from a longitudinal magnetic
resonance imaging study at the US National Institute of Mental Health, which were
previously analyzed by [13]. Specifically, we examine CT in the right superior
temporal gyrus in 131 males with a total of 355 observations, and 114 females with
300 observations, over the age range from 5–25 years (displayed in the left panel
of Fig. 32.2). Viewing the observations as sparse functional data, we fit the model
H8 (B) = V0 (B) + g8V1 (B) + Y8 (B), in which H8 (B) is the 8th participant’s CT at age
B; g8 = 0, 1 if this participant is male or female, respectively; and Y8 (B) denotes
error. We focus on testing whether the age-varying sex effect V1 (B) (female minus
male) equals zero; see the right panel of Fig. 32.2 for an estimate of this coefficient
function, along with pointwise 95% confidence intervals.

Fig. 32.1 An illustration of one-sided (higher = more extreme) ERL depths, and associated point-
wise adjusted ?-values. Here" = 100 and the numerals 1–4 denote ERL depths for the four curves
with '< = 1; the thickest curve represents the real data, so that 'ERL

0 = 1. The raw ?-values (32.4)
satisfy ? (B1) > ? (B2) , but ERL adjustment reverses the order, i.e., ?̃ERL (B1) < ?̃ERL (B2) .

Fig. 32.2 Left: Cortical thickness in the right superior temporal gyrus for the NIMH sample.
Right: Coefficient function estimate V̂1 (B) representing sex effect (female minus male), along with
approximate pointwise 95% confidence interval.
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The model was fitted by the pffr function [6], part of the R package refund [5],
with both the real data and " −1 = 3999 data sets with the sex labels permuted. The
upper panel of Fig. 32.3 displays standardized coefficient functions V̂1 (B)/ ŝe [ V̂1 (B)]
for the real and permuted data sets, along with a two-sided envelope for testing at
the 5% level. The GET ?-value (32.3) based on min-rank depth is ?+ = .003; if
we instead use the ERL depth, the GET ?-value falls to .00025 (= 1/"). But to
quantify the evidence of a sex effect in an age-specific manner, we require pointwise
?-values.

The lower panel of Fig. 32.3 shows the pointwise adjusted ?-values ?̃(B) (32.5),
along with the step-down and ERL-based adjusted ?-values of Section 32.5, for an
evenly spaced grid of 100 ages. Judging from the values of ?̃(B), there is only weak
evidence of a CT difference between girls and boys up to age 9. The step-down
?-values in this age range, on the other hand, are markedly lower and consistently
below the conventional .05 level. The ERL-adjusted ?-values are closer to ?̃(B) in
this lower age range but, somewhat less visibly, are the lowest of the three ?-values
for age 16 and higher. Thus neither one of the two adjustments of Section 32.5
consistently dominates the other.

It must be acknowledged that the right superior temporal gyrus was specifically
selected for the purpose of illustrating differences that may arise among the ?-value
adjustments. Comparable analyses for most other brain regions would have yielded
less prominent differences.

32.7 Discussion

Expression (32.5) defines distribution-free pointwise adjusted ?-values with respect
to the global envelope test of [9]. A pointwise ?-value approach such as this, which is

Fig. 32.3 Above: Standardized coefficient functions V̂1 (B)/ ŝe [V̂1 (B) ] for the real data (black
curve and circles) and for 3999 permuted data sets (grey curves), adapted from the R package GET
[9]. Dashed lines indicate envelope for testing at the 5% level. Below: Pointwise adjusted ?-values
?̃ (B) (single-step), ?̃stepdown (B) and ?̃ERL (B) .
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agnostic with respect to the distribution of 𝑇 (𝑠), is particularly valuable in analyses
that go beyond pointwise 𝑡- or 𝐹-tests. For example, we are currently developing
flexible pointwise tests for group differences in a measure of interest, based on
estimating each group’s density at each 𝑠, and then referring the distance between
group-specific densities to a permutation distribution for each 𝑠; this distribution has
no known analytic form under the null hypothesis.

The step-down and ERL-based adjusted 𝑝-values of Section 32.5 offer more
powerful alternatives to (32.5), but some might question the suitability of the ERL
adjustment since it is not order-preserving in general. The cortical thickness analysis
of Section 32.6 illustrates the power gains that the step-down and ERL adjustments
may provide in some applications. Simulation studies will further elucidate the
relative performance of alternative 𝑝-value adjustments in FDA settings.
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