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Preface

Topics in Modal Analysis & Testing represents one of eight volumes of technical papers presented at the 38th IMAC, A
Conference and Exposition on Structural Dynamics, organized by the Society for Experimental Mechanics, and held in
Houston, Texas, February 10-13, 2020. The full proceedings also include volumes on Nonlinear Structures and Systems;
Dynamics of Civil Structures; Model Validation and Uncertainty Quantification; Dynamic Substructures; Special Topics in
Structural Dynamics & Experimental Techniques; Rotating Machinery, Optical Methods & Scanning LDV Methods; and
Sensors and Instrumentation, Aircraft/Aerospace, Energy Harvesting & Dynamic Environments Testing.

Each collection presents early findings from experimental and computational investigations on an important area
within Structural Dynamics. Topics in Modal Analysis represents papers on enabling technologies for Modal Analysis
measurements and applications of Modal Analysis in specific application areas.

The organizers would like to thank the authors, presenters, session organizers, and session chairs for their participation in
this track.

Lexington, MA, USA Brandon Dilworth
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Chapter 1 )
Modal Analysis on a Wind Turbine Blade Based on Wind Tunnel ¢z
Experiments

L. G. Trujillo-Franco, H. F. Abundis-Fong, R. Campos-Amezcua, and R. Gomez-Martinez

Abstract This paper describes the evaluation of a time domain algebraic modal parameters identification methodology.
This methodology is applied on a wind turbine blade. The natural frequencies and modal damping factors associated to the
blade are estimated from measurements of velocities. A comparison with usual modal identification techniques is performed
in order to evaluate and establish the main contributions of the proposed approach. The modal parameter identification
algorithms are implemented to run (but not limited to) on a Matlab platform running in a PC using measurements obtained
from a laser vibrometer and the corresponding data acquisition system. The results show the performance and parametric
estimation of the proposed algebraic identification approach.

Keywords Experimental modal analysis - Operational modal analysis - Wind tunnel experiments

1.1 Introduction

The field of structural dynamics has a set of applications that is in a constant expansion due to the advances in mechanical
design procedures and testing protocols and structural health monitoring schemes applied to engineering structures involved
in the considerably diverse universe of mechatronic systems, for example the specific case of wind turbines that involve
supporting structures and blades that are subjected to harmonic excitation product of their natural interaction with the air in
normal or nominal operating conditions. In this context, modal analysis and modal testing are powerful technological tools
with a solid theoretical and experimental background [1-4] widely applied to the validation of the mathematical models of
the dynamic response of the mechanical systems. In both of the two main presentations of modal analysis: experimental
modal analysis (EMA) and operational modal analysis (OMA) the mechanical design engineer have a reliable source of
information about the dynamic nature of the system or constituting part of it, like the case of the blades, a vital part of a wind
turbine for an energy generation system.

In this work, we present experimental results of a modal analysis procedure performed on a wind turbine blade designed
for small power applications. The test was performed in the two common formats: experimental modal analysis at laboratory
conditions and operational modal analysis in real life-like operational conditions, the latter were simulated by wind tunnel
experiments with turbulence generated by using a fixed pattern grid. We use velocity measurements in the analysis to
determine the natural frequencies and modal damping factors.
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1.2 Modal Analysis and Operational Calculus

It is well known that the mathematical model for most of the engineering structures considered as flexible mechanical systems
of n degrees of freedom (DOF) under free vibration condition is given by the so called and continuously cited in the literature
ordinary differential equation, in matrix form:

Mx+Cx+Kx=0, xeR’ (1.1

here, x is the vector of displacements, and M, C and K are symmetric inertia, damping and stiffness n x n matrices,
respectively. Those matrices do not obey or follow a known or fully established pattern, therefore it is common to make
assumptions in order to guarantee the stability and physical coherence of the model. In general one can assume that (1.1)
represents a real system when K is positive definite and C = 0, and asymptotically stable when C is positive definite (see,
e.g., Inman [12]). On the other hand it is also well known that the coupled differential Eq. (1.1) can be transformed to modal
coordinates ¢;, i = 1, 2, - - -, n, as follows:

Gi + 26iwigi + wqi =0 (1.2)

X(1) =¥q() (1.3)

where w; and ¢; are the natural frequencies and damping ratios associated to the i-th vibration mode, respectively, and W is
the so-called n x n modal matrix In notation of Mikusifiski’s operational calculus [1, 5], the modal analysis representation
or modal model (1.2) is described as:

(52 +26@is + 0}) () = pos + pus (1.4)

where p,, ; are constants depending on the system initial conditions at the time tp > 0. Using Eqgs. (1.3) and (1.4), we obtain the
expression for the physical displacements x;, in the form of a summation of independent single degree of freedom responses
known as vibration modes:

n

xj(s)zzwi,- (po.j + p1.js) (15)

2
s2+2jwjs + w7

j=1
It is easy to prove that for each physical displacementx;we have:

m-2 4 an—l,iszn_l (1.6)

pe(s) xi(s) =roi +riis—+ - +ram-2is
where p(s) is the characteristic polynomial of the mechanical system and r;; are constants which can be easily calculated by
using the values of the system initial conditions as well as the modal matrix components 1/, and has the general polynomial
form given by:

pe(s) =2 +ag—1s™ '+ ais +ap (1.7)

When using velocity measurements, instead of displacement measurements, one could simply multiply Eq. (1.5) by s and
then describe the velocity output as:

n

.. . )
yi(S):Zl//l] (PO,]S+P1,]S ) (18)

2
s2+2jwjs + w7

j=1

The resulting output y;(s) = sx;(s) is a velocity output variable; described in a complex s domain. It is widely known
that the roots of the characteristic polynomial (1.7) provide the damping factors and the damped natural frequencies, and
hence the natural frequencies and damping ratios of the flexible structure. Here, we use a modal parameters identification
approach to estimate the modal parameters of the mechanical system through the estimation of the positive coefficients ay
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of the system’s characteristic polynomial using only velocity measurements of some output variable, obtained from a wind
tunnel experiment.

1.3 Output Only Modal Parameters Estimation

We perform an algebraic identification approach to estimate the modal parameters of the mechanical system through the
real-time estimation of the coefficients aj of the system’s characteristic polynomial as reported in [8, 9] using only velocity
measurements of a single point of the blade. The application of the online algebraic identification scheme is performed using
cumulative trapezoidal numerical integration with fixed sampling period of 4.16 ws. The specific algebraic identification
scheme applied here is described on detail in [7] where is shown that by solving the algebraic Eq. (1.9) also detailed in [7-9]
one obtains the parameter vector 0 as:

Ay
Ay
0=A"B=—| : (1.9)

Then, the algebraic identifiers to estimate the coefficients ay of the characteristic polynomial, avoiding singularities when
the determinant A = det(A(z)) crosses by zero, are obtained with:

Ap_
g,kzw’ k=1, 2,--- . 2n—1 (1.10)
14l

Thus, one could implement the algebraic identifiers (1.10) using only any available acceleration, velocity or position
measurements of any specific floor or degree of freedom. From the estimated coefficientsag, one can obtain the roots of the
characteristic polynomial. Hence, the estimates of the natural frequencies @,; and damping ratios ¢; are given by:

~ ~ ~ [ef}
@ni =1/67 + &3, (= ——— (1.11)

2, 2
VOoi Ty

where 6; and @; are respectively estimates of the damping factors and damped natural frequencies of the mechanical system.
The proposed algebraic identification scheme is shown in Fig. 1.1, where the block diagram shows the general structure of
the proposed approach. Notice that the data acquisition system samples the velocity at only one specific point or test location
of the wind turbine blade (in the horizontal axis direction at a precise fixed sample rate of 2.4Khz), and then, those samples

are sent to a standard PC running under Windows 1 0° to finally perform the time domain identification scheme.

1.4 Wind Turbine Blade

In the present work, we report the results of a vibrations analysis of a wind turbine blade made of a composite material (glass
fiber). First, we performed a traditional modal testing based on impact hammer response analysis assuming free clamped
boundary conditions as shown in Fig. 1.2a. The impact hammer testing was performed by acquiring velocity measurements
using a Polytec® portable laser vibrometer model PVD-100 at 2.4ksps at one fixed reference point and 9 different locations
of excitation according to Maxwell’s reciprocity principle [2, 3].

The complete set of measurements, corresponding to 9 different points of excitation is shown in Fig. 1.3, where Fig.
1.3a shows the free decay response, in the time domain, whereas Fig. 1.3b shows the resulting frequency response functions
(FRF) of each point. Finally, the estimation, by applying the classic peak picking technique, of the first 7 natural frequencies
and modal damping factors are reported in Table 1.1.
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Signal with multiple
harmonic components

Doppler effect laser vibrometer/
Data acquisition system

Buffered full speed USB
communication

Desktop computer running
Windows 10 and Matlab
Simulink

Time domain modal
parameters identification

Fig. 1.1 Flowchart of the proposed modal parameters estimation scheme

(b)

Fig. 1.2 Wind tunnel set up for modal testing of the wind turbine blade: (a) Free clamped boundary conditions and (b) Power-distance mount and

focus stabilization of the portable laser vibrometer

0.5
® =
£o s
7] o
> 05 .
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10

Point T 05
00 t[s]
(@)

Fig. 1.3 Impact response of the blade; (a) Free vibration decay in the time domain (b) FRF at different excitation points

The detailed FRF corresponding to the point number 7 is shown in Fig. 1.4 where the first six resonances are marked in

red.
By a brief examination of the experimental FRF, we can assume the dynamic behavior of the wind turbine blade in the

specific bandwidth of 300 Hz is dominantly linear and lightly damped considering the velocity range of 0.6 m/s. Even though
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Table 1.1 Impact hammer test Mode | Natural frequency [Hz] | Modal damping %
modal parameters identification 1 o.15 0.05
2 32.6 0.19
3 75.8 0.09
4 141.0 0.26
5 175.8 0.06
6 214.24 0.05
7 275.03 0.30
6
0.6 —FRF

4 Resonances

047

[Vel(w)|

0.2

50 100 150 200 250 300

w |Hz|

Fig. 1.4 Experimental FRF of point 7 corresponding to excitation point 2

Variable wind speed
2m/s - 18 mis

Ll

Fixed pattern grid

Fig. 1.5 Wind turbine experiments set up; (a) flowchart and (b) fixed pattern (passive) turbulence generator grid

the construction material of the blade is a composite material (glass fiber) the performed modal testing does not evidence the
presence of non-linearity or distortion in the experimental FRF.

1.5 Wind Tunnel Experiment

It is well known that in normal operation conditions, the blades, as the main eolic energy conversion elements of the wind
turbines (including small power systems), are subjected to harmonic excitations. In the ideal case of laminar flow (not
common in real environmental conditions) the main stresses are static; nevertheless, the fatigue issues are considerably
common in real life applications. In order to perform a realistic operational conditions test, we introduce a fixed pattern
(square panel) grid in the wind tunnel (Fig. 1.5), with the purpose of generating turbulence in the laminar-like flux wind
produced by the turbine of the wind tunnel that produces the controlled and variable speed wind excitation as shown in
Fig. 1.5.
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<107 x10°
g 1
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.E. 0l En.a ‘
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Fig. 1.6 Dynamic response of the wind turbine blade under turbulent wind excitation. In (a) time domain velocity signals at different wind speeds,
and (b) FRF a corresponding to different wind speeds

—FRF
4 Resonances

L)

2 6

DA M .

50 100 150 200 250 300
w [Hz]

Fig. 1.7 FRF at wind speed 18 m/s

In order to evaluate the identification scheme using the same boundary conditions with operational or turbulent wind
excitation, the wind turbine blade was subjected to 8 different wind speed references in the interval [2-9] m/s.

The time domain responses corresponding to the different wind speeds referenced to the 15th point or response location
are those shown in Fig. 1.6a. Naturally, the amplitude of the velocity signal increases according to the wind speed, however,
the frequency content of the signal is (in terms of harmonic content) the same and it shows the inherent dynamic behavior of
the blade [1] as it is depicted in Fig. 1.6b. The FRF corresponding to the wind speed of 18 m/s is reported with detail in Fig.
1.7, where the resonances are marked with red and only the first seven bending modes are analyzed.

1.6 Application of the Time Domain Identification Scheme

The proposed time domain modal parameters estimation scheme has been reported and detailed in several previous works [6,
7—12] where the online methodology of this approach has been evaluated. Here, we use the same methodology in its off-line
configuration. The same algebraic problem expressed on (1.9) is solved in a post-processing context. Roughly speaking, we
take a buffer of 2400 samples as shown in the flowchart of Fig. 1.1, and then, we apply the algebraic identification scheme
(1.11) to the time domain array of experimental values. The results of the application of the time domain identification
scheme are reported in Table 1.2. where a comparison with those obtained with the impact hammer testing is shown.
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Table 1.2 Wind tunnel test modal parameters identification

Natural frequency [Hz] Modal damping %

Mode Peak picking Time domain algebraic Peak picking Time domain algebraic
1 9.04 8.82 0.027 0.032

2 32.02 32.0 0.17 0.23

3 74.45 75.2 0.08 0.07

4 138.21 137.8 0.24 0.26

5 170.82 169.6 0.06 0.08

6 212.66 211.56 0.03 0.04

7 275.56 273.2 0.3 0.37

1.7 Conclusion

An algebraic and time domain identification approach for the estimation of the natural frequencies and damping ratios of a
lumped parameters vibrating mechanical system is presented, specifically, a wind turbine blade, subjected to turbulent wind
excitation in a wind tunnel environment. The values of the coefficients of the characteristic polynomial of the mechanical
system are firstly estimated from a data buffer, and then the modal parameters are obtained. In the design process, we have
considered that measurements of only one velocity output, or measurement point is available for the implementation. It is
also important to consider that one could easily extend the results for situations where acceleration or position measurements
are available. The algebraic modal parameter identification was tested for a lumped parameters N-DOF mechanical system
excited by a turbulent wind in wind tunnel conditions. In general, the experimental results show a satisfactory performance
of the proposed identification.

Acknowledgements We appreciate the support of the wind tunnel facility’s technical staff of Instituto de Ingenieria of Universidad Nacional
Auténoma de México. We express our gratitude to R. Sanchez, .M. Arenas, O. Rosales and M.A. Mendoza for their special attention and
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Chapter 2 )
An Investigation of Vibrational Characteristics of Lap Joints Ao
Using Experimental and Analytical Methods

Thomas Roberts and Phillip J. Cornwell

Abstract Many structures are assembled with components that are joined together with connections such as lap joints,
making it important to understand how to effectively model and identify damage, such as loosening bolts, in these
connections. The structures examined in this work were two bars joined by simple lap joints — a solid structure, a welded
structure, and a bolted structure. Experimental modal analysis and finite element models were used to determine the natural
frequencies, damping ratios, and mode shapes for each of the different structure configurations. The first goal of this work
was to determine if changes in the natural frequencies and damping ratios were large enough to distinguish between different
types of structures and between experimental and analytical models. Although differences were present, results showed that
natural frequencies and damping ratios are not extremely reliable metrics for determining the differences in these structures.
Damage in the bolted structure was investigated by loosening or removing a bolt. Bonded contact regions were implemented
within the bolted structure FE models to simulate the effects of a loosened connection while maintaining linearity for modal
analysis. The end-goal in this aspect of the research was to ascertain whether a fractional strain energy method via mode
shape curvature could be used to determine the location and intensity of damage in a structure. For convenience, a MATLAB
GUI was developed to implement this technique. The strain energy method was unsuccessful in identifying differences
between structures or damage within the bolted structure, for the differences in mode shape curvatures was not significant
enough. Results from the finite element model, however, exhibited significant enough differences to distinguish the bolted
structure from the solid and welded structures as well as to detect several different simulated forms of damage.

Keywords Bolted joints - Welded joints - Structural health monitoring - Strain energy - Modal analysis

2.1 Introduction

This work involved experimental modal analysis, finite element models, and the structural health monitoring technique called
the fractional strain energy method. The structures examined in this study have two different types of lap joints — welded
and bolted. These types of joints are very common in real structures, and it is important to understand how the joints change
the dynamic characteristics of the structure. McCarthy et al. emphasized the importance of analyzing mechanical joints, as
they are likely to be the weakest points within a structure [1]. Mechanical joints introduce factors such as bolt bending, bolt
pre-loading, and non-linear stress/strain relationships, which are very hard to model analytically.

Previous research on the vibrational characteristics of lap joints, particularly bolted ones, points out that it can be difficult
to distinguish different levels of bolt pretension based on natural frequencies alone [2, 3]. For that reason, the experimental
aspects of this work are focused mostly on detecting more severe cases of damage, such as a missing bolt. Sun et al. found
that there is some correlation between a tighter bolted lap joint and a lower resulting damping ratio [2]. Other comparisons
between different types of lap joint structures, such as welded and bolted, are verified in this work. Zaman et al. studied the
differences between a welded lap joint structure and bolted lap joint structure. The results from that work show that even
when mass properties are similar, welded lap joints tend to be stiffer than bolted lap joints [4]. Another common method for
analyzing the vibrational characteristics of lap joints is utilizing guided waves. This work aims to take a simpler approach to
the problem, but Du et al. and Kedra et al. describe the guided wave analysis process in detail [5, 6].
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Previous research has shown multiple different ways to represent structures with joints in a finite element model. Many
studies have attempted to analyze these factors using a two-dimensional model [1], as the computation cost of a three-
dimensional model is much greater. If a three-dimensional model is used, Kim et al. offers multiple suggestions for accurately
modeling a bolted joint. Pretension can be modeled rather simply as a thermal deformation or an external strain in the bolt.
The most simplistic representation for the fastener is a solid model as opposed to an assembly of bolts, washers, and nuts
[7]. Using a solid representation of the fasteners allows for more simple external geometries and thus a smoother, more
accurate mesh using brick elements [7]. More complex fastener models, such as assemblies of nuts, bolts, and washers with
contact conditions, can be used to produce a model that more closely resembles the real world. The main disadvantages of
more complex models are the uncertainty in contact parameters and the increased simulation time. However, the increased
complexities of this type of model may allow for a more accurate representation of energy dissipation within the bolted
joint. Unfortunately, modeling techniques that use pre-stress of any kind or contact parameters that are anything but bonded
cannot be used in modal analysis. Modal analysis studies require that all properties of the model be linear. If more complex
modeling techniques are desired, then time-dependent solvers can be used to determine the dynamic response from the FE
model. If the computational capability is available, some researchers prefer to use nonlinear FE solvers to analyze problems
like this. For example, Sun et al. used penalty stiffness contact in the entirety of a bolted lap joint model and solved for the
frequency response with a nonlinear solver [2]. Kim et al. proposed a method for simulating bolt pretension that requires
only boned contact regions in the model. A cylindrical-shaped region around the bolt hole was used for applying bonded
contact constraints between the two plates in the joint [7]. Additionally, the solid bolt model was bonded to those same
contact regions.

Many methods have been proposed to model welded joints using finite elements. The most practical method of those
researched breaks up the model into three zones: base metal, weld metal, and heat-affected metal. Each of these zones is a
solid model, and the zones are assembled together and connected with contact parameters within the finite element program
[8]. This method allows for the inside of the joint (where the weld has not penetrated) to be modeled without contact, similar
to the actual specimen. Additionally, pre-stresses due to the intense heat of the welding process can be applied to specific
regions of the model; since the heat-affected zone is a separate body, it can be isolated in order to apply the heat pre-stress.
Lastly, the amount of filler material left as a product of the welding process can be controlled very easily using this method
of assembling the model.

Another objective of this work was to utilize structural health monitoring techniques to compare structures with and
without damage. The chosen method was a fractional strain energy method, proposed by Stubbs for beam-like structures
[9] and extended by Cornwell [10] for plate-like structures. The fractional strain energy method uses the curvature of mode
shapes to calculate a damage index. Experimental mode shapes and FE mode shapes were used in the method for detecting
differences between the solid, welded and bolted structures. Additionally, the fractional strain energy method was used to
detect differences between an undamaged bolted structure and a damaged one with a missing bolt. This comparison was
again made with both experimental and analytical mode shape information.

2.2 Experimental Methods

Roving hammer tests were performed on three structures — one solid, one welded, and one bolted, as shown in Fig. 2.1. Each
structure was constructed from 6061 Aluminum bar stock. The solid structure was machined from a solid piece of ¥2” x 2/
stock. The bolted and welded structures were constructed from two pieces of %4 x 2/ stock. Welded joints contain a filler
material that was assumed to be 4043 Aluminum, and the bolts in the bolted structure were medium carbon alloy steel.

The first method used for characterizing the modal properties of the lap joint structures was a roving hammer modal
test. Each structure was tested at 45 different points in order to create a grid with nodes spaced one-inch by one-inch apart.
Mode shapes, natural frequencies, and damping ratios were computed for each of the three lap joint structures. In addition,
the bolted structure was tested with one of the four bolts removed from the assembly. In the context of structural health
monitoring (SHM), a structure with a missing bolt would be considered damaged when being compared to a structure with
all four bolts adequately tightened to 25 inch-Ibs. The bolted structure was only tested with all bolts fully tightened or one
bolt completely removed.

The experimental modal tests were mapped to a planar geometry with one-inch by one-inch node spacing. The geometry
used for the modal test had 45 nodes, and 72 tracelines. For the fractional strain energy method, a total of 28 four-node shells
and three separate fifteen-node beams were defined. Figure 2.2 shows the geometry used for all experimental modal tests.
The planar geometry of the structures was set to the x- and y-planes and the response degree-of-freedom was in the positive
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Fig. 2.1 Solid, welded, and bolted lap joint structures (front to rear, respectively) used for experimental analysis

Fig. 2.2 Geometry used for mapping experimental modal data to the mode shapes of the structure

z-axis for detecting in-plane (I.P) modes. In order to observe out-of-plane modes (O.P.), the response degree of freedom was
changed to the negative y-axis. Each structure was tested three times in a randomized order.

2.3 Analytical Methods

Finite element models of each of the three lap joint structures were used for modal analysis studies, and the results from the
modal studies were compared to the results from the experimental modal tests. Each model was configured with the same
meshing parameters and appropriate material properties. Table 2.1 summarizes the material properties used to configure the
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Table 2.1 Material properties used for the three lap joint FE models

Material Density [g/cm3] Young’s modulus [GPa] Poisson’s ratio
AL 6061 2.65 66.0 0.33
AL 4043 2.68 75.0 0.33
Steel alloy 7.70 205 0.29

Bar sections —®«

Py
A .

Fig. 2.3 Geometry for the welded structure FE model consisting of two bar sections and a weld bead

three different finite element models. Just as in the experimental modal tests, the boundary conditions for each FE model
were assumed to be free-free.

2.3.1 Solid Structure FE Model

The solid structure was a rather simple model. The entire model was assigned AL 6061 material properties, and a global mesh
sizing of two millimeters was applied to the whole model in order to produce at least three elements through the thickness of
the model. No pre-stress or contact parameters were used in configuring the solid structure model.

2.3.2 Welded Structure FE Model

The welded structure model was composed of three parts — two bar sections and one weld bead. The two identical bar sections
were generated as pieces of flat bar that would fit together to form the final shape of the structure. The bar sections had a
small portion of material removed in order for the weld bead to be assembled into the model. The weld bead was created to
have a radius of half the thickness of the bar material. During the welding process, the filler material bonds the bars together.
To model this characteristic of the welded joint, AL 6061 material was removed and replaced with the AL 4043 weld bead.
The pieces used for this model are shown in Fig. 2.3.

The three-piece model was assembled using bonded contact conditions around the weld bead. Only the mating faces
between the weld bead and the bar sections were bonded together; the two bar sections had no contact conditions between
them. This contact condition most closely resembles the actual structure, as the only connection between the bar sections is
where the weld bead has penetrated.

2.3.3 Bolted Structure FE Model

The bolted structure model was constructed of two bar sections with matching holes and a bolt for each set of holes (four bolts
in all). The bar sections and bolts were assigned AL 6061 and Steel Alloy material properties, respectively. The geometry
used for the bolted structure model is shown in Fig. 2.4.

The bolts were modeled as an assembly of a bolt, nut, and two washers. Creating a solid geometry of the bolt assembly
allowed for a much simpler model as the contact between components and the interactions of bolt/nut threads were not a
concern for this analysis. Since the FE models were to be used in a modal study, all contact parameters were bonded, and no
pretension was included in the model.
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Contact regions

Fig. 2.5 Contact regions used to simulate pretension in the bolted structure FE model

In order to allow for the approximation of a loosened connection in the modal study, the bars were bonded to the bolts
using a circular region around each bolt hole, as shown in Fig. 2.5. A similar method was successfully employed by Liao et
al. [11]. These circular regions had shared topology with their respective bar sections, and contact was assigned between the
bars and between the bars and the bolt head/nuts. Different levels of pretension were approximated by changing the size of
the circular contact regions around the bolt heads.

Multiple trials of the bolted structure FE model were solved. First, the sizing of the contact region around each bolt was
adjusted to model the effects of a loosened connection in the model. In general, a smaller contact region around each bolt
resulted in a model that was less stiff, thus simulating the effects of loosening a bolt in the model while mass properties
remain constant. Next, one bolt was completely removed from the model along with its contact parameters. In this type of
model, the mass properties and the component contact are different from the undamaged structure. SHM methods were also
used to compare the differences between complete (healthy) structures and structures with missing components or differing
size contact regions (damaged).

2.3.4 Fractional Strain Energy Method

Changes in natural frequencies and damping ratios do not often provide sufficient information to determine the presence of
damage in a structure. Even if natural frequencies and damping ratios are sensitive to damage, they cannot be used to locate
the damage. In this work, a fractional strain energy method was implemented to compare experimental data and analytical
results.

The fractional strain energy method (SEM) was implemented for generic planar structures, such as a beam or plate, that
have only a single degree-of-freedom of modal response. The fractional strain energy for a beam element for a particular
mode shape, ;(x), is

N
1
U = E/EI< — ) dx. @.1)
0
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and the fractional strain energy for a plate element for a particular mode shape, ¥;(x, y), is

b a
D 02y, 2y \ 0%y \ (0% 02y \°
'=3ff(axz) ()~ (5) (52) 200 (55) -
0

For this analysis, the x-direction is the long dimension of the lap joint structures, and the y-direction is the short dimension.
Refer to Fig. 2.2 for a visualization. The plates or beams are then subdivided and the strain energy for each sub-region within
the model, Ujj, can be calculated by integrating over the area of each sub-region. The fractional strain energy at location jk
is defined to be

Uijk
fik = (23)
The damage index, Bjx, for each subdivision of the plate is then defined as

it ik

: 2.4
i1 fijk @9

Bjk =

where fl’]‘ ¢ 18 the fractional strain energy for the damaged structure, and m is the number of measured modes. The fractional

strain energy damage index is lastly normalized by its mean, B, and standard deviation, o, to create the final metric used
to compare healthy and damaged structures:

Zi = @“U;f 2.5)

Further detail about the development of the fractional strain energy method can be found in [10].

2.4 User Interface Development

The algorithm for the fractional strain energy method described in the previous section was originally part of the MATLAB
program DIAMOMD [6, 12]. DIAMOND (Damage Identification and Modal Analysis of Data) is a program created at Los
Alamos National Laboratory under the auspices of the US Department of Energy. The strain energy algorithms for both beam
and shell element computations were extracted from DIAMOND and modified to run independently using simpler forms of
data input. The splash page of the new strain energy user interface (UI) is shown in Fig. 2.6.

# Cumage identification = x

Damage Identification

via a Fractional Strain Energy Method

Interface Create at Rose-Hulman Institute of Technology
Interface Creators: Thomas Roberts and Dr. Phil Cornwell

SEM with Beams SEM with Shells

Convert FE Data to Modes

Version: REV1 Souce Code Acknowlegements 4| Program Documentation

Fig. 2.6 Main window of the strain energy method user interface. From here, the user can access the UI’s three main functions
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Fig. 2.7 SEM with Shells window. Here the user inputs geometry, undamaged and damaged modes, and selects which modes to use in the
computation

The window shown in Fig. 2.6 is where the user accesses the UI’s three main functions — SEM with Beams, SEM with
Shells, and Convert FE Data to Modes. The two strain energy methods work in similar ways and require the same inputs.
Once given the correct input, each function executes its respective method and produces damage identification results. Figure
2.7 shows the window for executing the SEM with Shells function (the window for the SEM with Beams functions is visually
identical with the exception of the figure’s title and resulting plot format).

To utilize the SEM functions within the UI, the user must input a valid geometry file, an undamaged modes file, and a
damaged modes file. The Ul requires these files to be in MATLAB data format. Geometry is specified by Nodes, Tracelines,
Beams, Quads, and Shells. Files for undamaged and damaged modes can be either direct modal analysis output from
DIAMOND, or the user can generate their own mode shape files from other modal analysis software packages. The SEM UI
only requires a MATLAB Structure data type of the nodal displacements that pertain to the geometry and a confirmation that
the response degree-of-freedom is in the positive z-axis. Some notable assumptions within the SEM UI are that it requires
planar geometries with the response degree-of-freedom being in the positive z-axis. The SEM with Beams function requires
that the beams used in the computation be parallel in either the x- or y-axis, but beams need not be the same length in this
function.

The third function within the SEM UI is mapping FE mode shapes to geometry that can be used within the strain energy
methods. The Convert FE Data to Modes window, shown in Fig. 2.8, has two capabilities — mapping FE mode shapes to an
existing geometry and mapping FE mode shapes to a new geometry. The user inputs a reference geometry (the geometry in
Fig. 2.8 is the same as shown in Fig. 2.2) MATLAB file and a Microsoft Excel file containing the FE mode shapes that are
defined by paths in the geometry. The format required for the FE Displacement Excel File can be found in the open-source
example data that accompanies the UlI. The UI then configures itself to map the Current Path to the nodes that the user inputs
in the Nodes for Path dialog box (node numbers separated by commas). This window in the Ul relies on similar geometry
assumptions as previously stated with some extra constraints. The Convert FE Data to Modes functions require that paths be
parallel in either the x- or y-axis and the same length, and it is advantageous to list the paths in ascending order with the most
negative x- or y-direction path first.

ANSYS Workbench 19.1 was used in this work to create FE models and do the modal analysis. ANSYS allows the user
to create paths along edges in a geometry, and this functionality allows the user to extract nodal displacements to be used in
the SEM UI. Figure 2.9 shows a screen shot of a path and its corresponding data from within an ANSYS modal analysis.

The second functionality of the Convert FE Data to Modes window (which is still in development) is mapping FE
displacements to a new geometry. For this function, the user only inputs the FE Displacements Excel File and the number
of nodes to discretize each path into. In this function it is critical that all paths be parallel, the same length, and listed in
the correct order. Once given the proper information, the UI generates the mode shape data and the geometry file to be used
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Fig. 2.8 Convert FE Data to Modes window. Here the user can perform two functions — mapping FE mode shapes to a current geometry and
mapping FE mode shapes to a new geometry
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Fig. 2.9 Path and tabular data from within an ANSYS modal analysis of the solid FE model

within the SEM windows. Once the FE displacements are mapped to existing or new geometry, the UI allows the user to
plot the mode shapes to ensure that information was mapped correctly. Finally, the user can save the information from this
window to be used later with the strain energy methods.

2.5 Results and Discussion

In this work, modal properties of different structures and models were compared using several different methods — natural
frequencies, damping ratios, and strain energy. Natural frequencies, damping ratios, and mode shapes were extracted from
the experimental modal tests of the three structures. Only natural frequencies and mode shapes were extracted from the FE
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models. The three previously mentioned methods were used to compare different structures and like structures with and
without damage.

2.5.1 Experimental Modal Comparisons

Each structure was tested three times. In order to extract natural frequencies, damping ratios, and mode shapes, a rational-
polynomial curve fitting method was used with the complex mode indicator function (CMIF) for each separate test. Figure
2.10 shows the average CMIF for each of the structures.

Natural frequencies and damping ratios for each of the three structures were used as a first level of comparison. Differences
in the natural frequencies for each of these structures were expected based on differences in mass and material properties.
The masses of the solid, welded and bolted structures were 348 grams, 356 grams, and 369 grams, respectively. Based on this
property alone, it was expected that the solid structure would have the highest natural frequencies, followed by the welded
and then bolted structures. However, the average experimental modal frequency results summarized in Table 2.2 show that
the welded structure actually had the highest natural frequencies. The welded structure contained a significant amount of
weld filler material, AL 4043, that has higher stiffness than the rest of the structure. The material stiffness as well as any
heat-induced stress from the welding and quenching process appear to have had a significant effect on the overall stiffness
of the welded structure, thus causing some natural frequencies to be relatively higher than expected.

10° : ;
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Fig. 2.10 Average CMIF used with a rational polynomial curve-fitting method for determining each structure’s modal properties

Table 2.2 Average natural frequencies for each structure and percent differences for comparison

Natural frequencies [Hz] Percent differences [%]
Mode Solid Welded Bolted Solid vs. Welded Solid vs. Bolted Welded vs. Bolted
1st bending 284.18 301.27 275.88 6.01 2.92 8.43
2nd bending 704.59 719.24 713.38 2.08 1.25 0.81
1st torsion 1212.8 1275.8 1225.5 5.19 1.05 3.94
3rd bending 1499.5 1577.1 1459.9 5.18 2.64 7.43
st O.P. bending 1893.5 1919.4 1823.7 1.37 3.69 4.99

2nd torsion 1906.2 1967.7 1891.1 3.23 0.79 3.90
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Table 2.3 Average natural frequencies and respective percent differences for the undamaged and damaged bolted structures. The O.P. direction
was not tested for the damaged structure

Natural frequencies [Hz] Percent differences [%]

Mode Bolted (Undamaged) Bolted (Damaged) Damaged vs. Undamaged
1st bending 275.88 273.17 0.97

2nd bending 713.38 713.38 0.001

1st torsion 1225.5 1217.6 0.65

3rd bending 1459.9 1445.4 0.99

1st O.P. bending N/A N/A N/A

2nd torsion 1891.1 1904.6 0.71

Table 2.4 Average damping ratios and standard deviations for each structure

Solid damping ratios Bolted damping ratios Welded damping ratios
Mode Avg. Std. Dev Avg. Std. Dev Avg. Std. Dev
Ist bending 0.00366 0.00093 0.00390 0.00112 0.00299 0.00100
2nd bending 0.00119 0.00053 0.00101 0.00013 0.00135 0.00047
Ist torsion 0.00108 0.00017 0.00086 0.00035 0.00113 0.00025
3rd bending 0.00071 0.00019 0.00090 0.00024 0.00103 0.00007
Ist O.P. bending 0.00172 0.00011 0.00108 0.00021 0.00109 0.00015
2nd torsion 0.00086 0.00035 0.00085 0.00039 0.00105 0.00024

Table 2.5 Percent differences in the average damping ratios for each of the three structures

Damping ratio percent differences [%]

Mode Solid vs. Welded Solid vs. Bolted Welded vs. Bolted
1st bending 7.40 18.32 23.94
2nd bending 15.45 13.03 33.68
1st torsion 20.50 5.35 32.52
3rd bending 26.49 44.44 14.19
1st O.P. bending 36.82 36.73 0.13
2nd torsion 1.67 22.10 24.18

A successive set of experimental modal data was taken from the bolted structure to examine the feasibility of using natural
frequencies to detect damage in a structure. As with previous tests, the bolts in the structure were tightened to 25 in-1bs, but
in this test, one bolt was removed from the structure. Table 2.3 summarizes the natural frequencies of the undamaged and
damaged bolted structures from experimental modal testing.

It is obvious from Table 2.3 that natural frequencies alone are not effective in distinguishing the undamaged structure
from the damaged one. As this is a reasonably small structure with very tight connections, it is unlikely that removing a
single bolt will have much effect on the natural frequencies. Removing the mass of a single bolt changes the overall mass of
the structure by 1.6%, and the existing pretension in the model is still too significant to effectively loosen the joint.

Contrary to the results from comparing different structures via natural frequencies, damping ratios for the three structures
did not provide consistent results. Table 2.4 is a compiled list of the average damping ratios for each structure along
with respective standard deviations. Table 2.5 contains the percent differences between the average damping ratios of the
structures.

On average, the standard deviations of the damping ratios for all structures was 26% of the average damping ratio value.
In some cases, such as the 2nd Torsion mode for the welded structure, the standard deviation in the damping ratios was over
45% of the damping ratio average value. These statistics suggest that there is too much variability between damping ratios for
each individual structure to allow for a meaningful comparison of results between structures. To reinforce this observation,
Fig. 2.11 shows the individual damping ratio results from each test of each structure.

Consider the results of the 1st Bending mode. There is more variability in the individual damping ratios for the
bolted structure than there is between the averages of all three structures. Figure 2.11 shows that the variability between
structures is not significant enough to consider damping a proper metric for distinguishing between different structures or
damaged/undamaged structures.
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Fig. 2.11 Damping ratio results from each of the three experimental modal tests done on each structure

Table 2.6 Natural frequencies and percent differences for the solid structure and the solid structure finite element model

Natural frequencies [Hz] Percent differences [%]
Mode Solid Solid FE Solid vs. Solid FE
1st bending 284.18 284.52 0.12
2nd bending 704.59 707.49 0.41
1st torsion 1212.8 1214.5 0.13
3rd bending 1499.5 1505.8 0.41
1st O.P. bending 1893.5 1889.8 0.19
2nd torsion 1906.2 1903.4 0.14

Table 2.7 Natural frequencies and percent differences for the welded structure and the welded structure finite element model

Natural frequencies [Hz] Percent differences [%]
Mode Welded Welded FE Welded vs. Welded FE
1st bending 301.27 295.05 2.06
2nd bending 719.24 718.46 0.10
1st torsion 1275.8 1250.1 2.02
3rd bending 1577.1 1558.8 1.16
1st O.P. bending 1919.4 1938.4 0.98
2nd torsion 1967.7 1933.8 1.72

2.5.2 FE Model Comparisons

The FE models for the solid and welded structures needed very little refinement in order to produce results with reasonable
percent error when compared to the experimental results. The only parameters varied in these models were the densities
and Young’s modulus of the two aluminum alloys. The material model for AL 6061 was modified so that mass properties
and natural frequencies matched for the solid model. This AL 6061 material model was then shared with the remaining FE
models. The material model for AL 4043 was modified in a similar fashion until experimental and FE results for the welded
structure matched. Tables 2.6 and 2.7 summarize the natural frequencies from the experimental modal analysis and the FE
modal analysis for the solid and welded structures, respectively.

An inherent source of uncertainty for the bolted structure is the pretension within each bolt. Depending on the torque
applied to each bolt when assembling the joint, natural frequencies (and damping ratios) are subject to change with the
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pretension. Intuitively, one would imagine that the higher the pretension in the joint, the stiffer the system will be and the
higher the natural frequencies will become. This possibility poses an interesting question from the perspective of structural
health monitoring. If changing pretension has an effect on the modal properties of a system, then those properties could
be used to detect the severity and location of a loosened connection. In order to simulate loosened connections, the size of
the contact zone (i.e. area where elements are bonded together) was varied and modal properties were extracted for each
different size contact zone. Table 2.8 shows the natural frequencies of the bolted structure from experimental data and from
two different FE models — Bolted FE with 10-mm contact regions and Bolted FE with 17-mm contact regions.

As expected, the model with the larger contact region resulted in higher natural frequencies. However, the FE model
results still vary from the experimental results significantly (up to about 6%), especially when comparing higher frequency
modes. Since the FE natural frequencies are consistently lower than those from the experimental modal tests, it is possible
that the material properties of the bolts should be adjusted. By increasing the stiffness of the bolts, the natural frequencies of
the models would likely increase, but these adjustments may lead to a model that is falsely accurate. The bolted connection
creates much more variability within the model than material properties do, so it is more likely that the connection parameters
are modeled incorrectly rather than the material model being the source of error.

The last of the FE studies were two models with one bolt missing — 10-mm and 17-mm contact regions with a bolt and its
contact region missing. The mass properties of the model as well as the stiffness from pretension will be affected by removing
a bolt. Table 2.9 lists the natural frequencies of the undamaged and damaged FE models with 10-mm contact regions. Table
2.10 lists the natural frequencies of the undamaged and damaged FE models with 17-mm contact regions.

From Tables 2.9 and 2.10, it is apparent that natural frequencies change in the damaged vs. undamaged models; however,
the results are counterintuitive. Overall, the damaged structures had slightly lower natural frequencies than the undamaged
structures, especially in the 1st Torsion, 3rd Bending, and 1st O.P. Bending modes. The damaged model with 17-mm contact

Table 2.8 Natural frequencies and percent differences for the bolted structure, bolted structure FE model with 10-mm contact regions, and the
bolted structure FE model with 17-mm contact regions

Undamaged natural frequencies [Hz] Percent difference [%]
Mode Bolted Bolted FE 10 mm Bolted FE 17 mm Bolted vs. FE 10 mm Bolted vs. FE 17 mm
1st bending 275.88 260.13 269.85 5.70 2.18
2nd bending 713.38 693.10 697.27 2.84 2.25
Ist torsion 1225.5 1167.0 1195.7 4.77 2.43
3rd bending 1459.9 1388.2 1438.6 4.91 1.46
1st O.P. bending 1823.7 1754.3 1812.2 3.80 0.63
2nd torsion 1891.1 1777.9 1790.9 5.98 5.29

Table 2.9 Natural frequencies and percent differences for the undamaged and damaged bolted structure FE model with 10-mm contact regions

Bolted FE model 10-mm contact region

Natural frequencies [Hz] Percent differences [%]
Mode Undamaged Damaged Damaged vs. undamaged
Ist bending 260.13 254.20 2.14
2nd bending 693.10 693.39 0.04
1st torsion 1167.0 1121.1 3.74
3rd bending 1388.2 1348.4 2.72
Ist O.P. bending 1754.3 1690.7 3.48
2nd torsion 1777.9 1775.6 0.12

Table 2.10 Natural frequencies and percent differences for the undamaged and damaged bolted structure FE model with 17-mm contact regions

Bolted FE model 17-mm contact region

Natural frequencies [Hz] Percent differences [%]
Mode Undamaged Damaged Damaged vs. undamaged
1st bending 269.85 248.29 7.81
2nd bending 697.27 695.21 0.28
1st torsion 1195.7 1096.4 8.10
3rd bending 1438.6 1314.1 8.52
1st O.P. bending 1812.2 1644.6 9.18

2nd torsion 1790.9 1785.3 0.29
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regions, which would be expected to have higher natural frequencies than the damaged model with 10-mm contact regions,
consistently had the lowest natural frequencies of all the models. These results suggest that the size of the contact region
has a profound effect on the overall stiffness of the model, as removing one 17-mm contact region had a much greater effect
on the natural frequencies than removing one 10-mm contact region. Additionally, these results show that the FE models
were much less sensitive to changes in material properties and overall mass properties — removing a bolt decreases mass and
would be expected to increase natural frequencies, which was not the case in either model.

2.5.3 Strain-Energy Method Comparisons

The following comparisons utilize the strain energy method with shell elements. The SEM comparison of the experimental
mode shapes produced similar results to those seen in the natural frequency comparison. The differences between structures
was not extreme enough to be detected. Both the comparisons of the solid to the welded structure and the solid to the bolted
structure resulted in a damage index mapping that did not allow the structures to be distinguished from each other, as shown
in Figs. 2.12a, b.

A successive set of experimental modal tests was done on the bolted structure using the geometry shown in Fig. 2.2
for finer discretization. Finer geometries allow for more resolution within each shell. Additionally, geometries with more
than two points in the y-axis, as shown in Fig. 2.13, allow for curvature to be computed between nodes in both the x and
y-directions. Figure 2.13 shows the SEM comparison (from experimental modal data) of the undamaged bolted structure and
the bolted structure with a bolt missing near Node 7. This comparison also uses a finer geometry than the previous SEM
comparisons.

From Fig. 2.13 it is clear that it was not possible to distinguish a difference between the undamaged and damaged bolted
structures. The failure of the strain energy method in this context is likely due to the same reasons as the natural frequency
method’s deficiencies. The mass properties of the structures are not different enough, and the pretension in the model is high
enough, that with only one bolt missing, the joint remains tight.

The second application for the strain energy method UI was to compare the FE mode shape results. FE models of the
solid, welded, and multiple bolted structures were created using ANSYS Mechanical. These models were discretized to the
same geometry as seen in Fig. 2.13. First, the FE results from the solid and welded models and the solid and bolted models
were compared using the SEM with shell elements, as shown in Fig. 2.14a, b, respectively.

From Fig. 2.14, it is clear that the SEM was not able to identify any differences between the models of the solid structure
and the welded structure, but it did identify a difference in the region around the bolts between the model of the solid structure
and the model of the bolted structure. In the first case, the masses of these two models are closer to each other than the masses
of the solid and bolted models. Second, the welded model has bonded contact conditions at all points on the perimeter of
the joint seam, whereas the bolted model is only bonded around each bolt. Since the bolted model’s joint seam is allowed

Y .
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Fig. 2.12 SEM with shell elements comparing (a) the solid and welded structure and (b) the solid and bolted structure
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(a) (b)

Fig. 2.14 SEM comparing (a) the solid and welded FE models and (b) the solid and bolted FE models. The bolted model used 17-mm contact
regions with four bolts

to separate at its edges and there is additional mass due to the bolts, it is logical that its mode shapes would be different
compared to the solid structure’s.

Another question of interest was to examine the sensitivity of the FE models to different contact regions. As previously
described, the reason for varying the size of the contact regions was to simulate joint loosening. The natural frequencies for
the structures with four bolts were larger, as expected, with larger contact regions. Thus, it was expected that the curvature
of the mode shapes of the different models would exhibit noticeable differences as well. Figure 2.15 shows the comparison
of the bolted FE models using different sized contact regions with all four bolts in the model.

In the comparison shown in Fig. 2.15, there are larger damage indices around the contact regions at the bolt locations,
indicating differences in the structures at these locations. It is also notable that the damage indices do not “leak” far into
the surrounding areas, suggesting this level of discretization has high enough resolution to accurately locate damage in the
model.

Since the SEM can detect differences in contact region sizes in FE models using four bolts, it is logical to assume that the
same method will be able to detect a difference in models that use only three bolts. To examine this, FE models with both
17-mm and 10-mm contact regions were compared when each respective model had a bolt (and its contact region) removed
from the model. This comparison is shown in Fig. 2.16a, b.

Figure 2.16a shows that the SEM is capable of detecting damage in a structure when a single bolt and its contact region
are removed from the model. The damage is expected near Node 7, and the method correctly detects the general area of the
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Fig. 2.15 SEM with shell elements comparing two FE models of the bolted structure. One model used 17-mm contact regions and the other used
10-mm contact regions

(@) ' (b)

Fig. 2.16 SEM with shell elements comparing undamaged and damaged bolted FE models. (a) model used 17-mm contact regions, and the
damaged structure was missing a bolt near Node 7. (b) model used 10-mm contact regions, and the damaged structure was missing a bolt near
Node 7

damage. However, the SEM was not capable of precisely locating the damage in this model, as the damage indices are higher
on the opposite side of the structure (near Node 21) where there was no damage. Figure 2.16b, on the other hand, correctly
identified the location of the removed bolt. Thus, the SEM was capable of detecting the general area of the damage, but not
always the exact location.

2.6 Conclusions

In this work, the differences between a solid structure, a welded structure, and a bolted structure were examined. Even though
it was sometimes possible to distinguish one structure from another using modal properties, some properties had significant
uncertainty and variability, making it difficult to draw conclusions. Damping ratios extracted from the experimental modal
tests proved to be an ineffective property for comparing the three structures. The variability between different tests of the
same structure was sometimes greater than the variability in damping ratios between structures. The experimental natural
frequencies, however, provided distinct enough results to distinguish each structure. It was expected that the solid structure
would have the highest natural frequencies, followed by the welded and bolted structures, based on their masses; however, the
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welded structure had consistently higher natural frequencies than the other two structures. Although the welded structure was
heavier than the solid structure, the stiffer material properties of the weld-filler material resulted in higher natural frequencies.
The mass properties were found to be of less significance than other properties of the structures. The FE models of the solid
and welded structures confirmed the results from the experimental modal tests; the natural frequencies from the FE models
and the experiments compared very well. The bolted structure FE model, however, did not match the experimental results
quite as well as the other two models. In order to simulate the tightness of the bolted joint, different sized contact regions
were used in the FE models. In general, larger contact regions correlated to higher natural frequencies, and the larger contact
regions tended to compare better to the experimental modal results.

When damage was introduced into the bolted structure by removing a bolt, changes in experimental modal properties
proved to be inadequate to distinguish between the undamaged and damaged structures. There was virtually no difference
in the natural frequencies between the bolted structure with all four bolts (undamaged) and that with one bolt completely
missing (damaged). However, natural frequency results from the FE models did show some differences between the damaged
and undamaged structures. One would expect that removing a bolt and its contact region from the model would lower the
natural frequencies; this expectation held true, although some of the results were still counter-intuitive. Before removing the
bolt from the model, the 17-mm contact region model had higher natural frequencies than the 10-mm contact region model.
When a bolt was removed from the model, however, the 10-mm contact region model had higher natural frequencies than the
17-mm contact region model. These results, though not expected, confirm that the models are very sensitive to the contact
parameters used to represent the bolted joint and that other properties, such as mass and material parameters, have a smaller
effect on the model.

The fractional strain energy method was used to compare the different structures. In the case of the experimental results,
the strain energy method was not able to detect differences between solid, welded, and bolted structures nor was it able
to distinguish the undamaged from the damaged bolted structures. Comparing the FE models with the SEM was more
successful. The SEM could not detect a difference between the solid and welded FE structures, but the method was able
to detect a difference between solid and bolted FE structures. Lastly, the SEM was used to compare the bolted FE models
with and without damage (a bolt and its contact region removed from the model). The comparison of the undamaged and
damaged FE models with 17-mm contact regions correctly identified the general area of the damage, but the SEM incorrectly
identified the precise location of the damage. The comparison of the undamaged and damaged FE models with 10-mm contact
regions correctly identified the precise area where the damage was located. Unfortunately, even though the method was able
to determine differences in the FE models, its failure in the case of the experimental data indicates serious limitations of
the method. Therefore, even though the SEM may be successful when using FE results, it may not useful when using
experimental data.
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Chapter 3 )
Using Strain Gages as References to Calculate Free-Free Ao
Frequency Response Functions

Kevin Napolitano and David Cloutier

Abstract The objective of many modal tests to experimentally measure free-free modes is achieved by suspending the test
article on soft supports such that the resulting rigid body modes are adequately decoupled in frequency from the flexible body.
The soft supports can also be placed at the nodal locations of the primary free-free modes to provide further decoupling.

Oftentimes, however, the rigid body modes cannot be separated from the flexible body modes for a variety of reasons,
such as the flexible modes being very low in frequency, the test article being so large that it is not cost effective to build
a suspension system, or a combination of both. In these cases, the rigid body and flexible modes are intermingled, which
means that effort must be spent updating the model of the suspension system instead of the test article itself. Sometimes,
one may also want to use the experimentally measured free-free modes directly in an analysis without building an analysis
model.

This paper proposes a method that uses strain gage measurements at the structure’s boundary as references for calculating
frequency response functions. The resulting frequency response functions, associated with a free-free structure, can then be
used to estimate modes.

Keywords Modal testing - Vibrations - Constraint shapes - Boundary condition correction - Strain gage

3.1 Introduction

Recently implemented methods by ATA Engineering have used acceleration measurements on the boundary of a test article
as references to calculate frequency response functions (FRFs) that result in fixed base modes [1-5]. The key to implementing
these methods is to have at least one independent input on the boundary for every independent acceleration degree of freedom
(DOF) on the boundary. In the case where a set of accelerations on the boundary are highly correlated, a reduced number of
constraint shapes can be used as references.

It would be advantageous if a similar method could be developed to measure FRFs associated with a free-free structure
mounted on a flexible boundary. Conceptually, this can be achieved if all interface forces’ patterns can be measured and
separated into independent references when FRFs are calculated.

Unfortunately, it is often difficult or impossible to mount interface load cells between a structure and its boundary.
However, it is straightforward to mount strain gages at the structure interface; in this way, while forces are not measured
directly, the measured forces are proportional to the forces flowing between the structure and boundary.

This paper proposes a method that uses strain gage measurements at the structure’s boundary as references for calculating
FRFs. The resulting FRFs, associated with a free-free structure, are then used to estimate modal parameters.

3.1.1 Calculation of Free-Free FRFs Using Interface Forces as References

For this calculation, assume that the test article is mounted to a boundary such as a shake table through a series of interface
load cells, and also assume that the system is excited on the test article at some locations as well as on the boundary with
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as many shakers as there are independent force patterns associated with the interface load cells. The baseline FRFs can be
defined as

{R} =[H]{F}, 3.1)

where {R} is all of the measured responses including accelerations and interface load measurements, [H] is the FRF matrix,
and {F} is all the applied forces. To simplify this derivation, assume that the responses are accelerations on the test article
{a}, and interface forces {f,-}, such that

R} = “}. 32
{}{fr (3.2)

Also assume that the applied forces {F} can be separated into forces applied directly to the test article {f;}, and forces
applied to the boundary {f}, such that

_ i
{m_{ﬁ}. (3.3)

The FRF matrix [H] is partitioned to obtain

{G}Z[Hai Hab]{fi}. (3.4)
fr Hy; Hyp f b

In the case where the number of independent reaction force patterns is less than the number of interface load cell
measurements, the number of reaction force DOFs can be reduced using force pattern constraint shapes such that

{fi}=1¥1{/fE}, (3.5)

where [W] is a matrix of independent force patterns and {fg} is the force pattern DOFs. Inserting Eq. (3.5) into Eq. (3.4)

yields
a _ Hai Hab fl
{fE}_[HEi HEb:|{fb}’ (3.6)

where, since {fg} = (Y] {fe}, [HE]=[V]"[H,;] and [Hgp]=[V]" [H,»]. Note that the term “+ denotes the pseudo-inverse
of a matrix.

Assuming that an equal number of forces are applied to the boundary as there are independent force patterns, one can
perform a partial inversion of the FRF matrix to move the force patterns to the right-hand side and the boundary forces to the

left'hand Side to Obtain

where Hy; = Hyi — HupHep " Hpi, Hap = HapHpp ™', Hyi = —Hpp ' Hpi, and Hyp = Hgp ™.

For any linear relationship in the form of {x} = [C]{y}, the matrix element Cj; is equal to the value of x;due to a unit input
at y;, holding all other elements {y} in equal to zero. Applying this property to Eq. (3.7) means that the submatrix H,; is the
FRF matrix associated with all interface force patterns equal to zero—the definition of a free-free boundary condition.

Most load cells are based on strain gages that are calibrated to give an estimate of force. However, instead of measuring
forces directly, assume one measured a series of strain gages of which a linear combination captured all the interface force
patterns such that

{fr} = [Dl{e}, (3.8)
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where {¢} is a vector of strain gages and [D] is a calibration matrix used to calculate forces. With no loss in generality, one
can measure strains directly and then use them to calculate a series of force patterns, which can then be used to measure
free-free FRFs. Combine Eq. (3.8) with Eq. (3.5) to obtain {f,} = [D]{e} = [V]{f£}, and therefore {e} = [m {fE }, where
[W] = [D]" [¥] and [¥]is a matrix of independent strain patterns.

In practice, one would not calculate the calibration matrix and would instead calculate the matrix [W] directly from the
strain measurements.

3.1.2 Numerical Example

This example is a simplified version of a structure mounted on a rigid six DOFs shake table with four three-axis load cells
(twelve load cell measurements in total) mounted between the structure and its rigid base.

A picture of the simplified model is presented in Fig. 3.1. Nodes 1, 11, and 21 are coincident. Node 1 is not connected to
nodes 11 and 21, but nodes 11 and 21 are connected through a six-DOF spring. Nodes 2 through 5 are coincident with nodes
12 through 15 and are connected to each other through three-DOF springs. Nodes 2 through 5 are rigidly connected to node
1, nodes 12 through 15 are rigidly connected to node 11, and node 31 is connected rigidly to node 21. Mass elements are
applied to the independent nodes 1, 11, and 31.

The properties of the simplified model are listed in Table 3.1. Spring and mass element values were varied arbitrarily to
introduce some nonsymmetry and to demonstrate that one only needs to measure relative displacement, and not interface
force, for the method to work.

There are 18 independent DOFs. The baseline full system modal parameters including six rigid body modes are listed in
Table 3.2.

FRFs were calculated by applying forces to all six DOFs at node 1 and three translational DOFs at node 31 and measuring
acceleration responses at all nodes. Damping of 0% was used for the six rigid body modes, and 1% was used for the twelve
flexible modes. Relative displacement (similar to strain) was measured across nodes 2 through 5 and nodes 12 through 15,
respectively. A total of twelve relative displacement FRFs were calculated.

Fig. 3.1 Display model of ;+N 31
structure. Nodes 1, 11, and 21 are i
coincident. Nodes 2 through 5 are

coincident with nodes 12 through

15, respectively

L3 12

,)N21
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Table 3.1 Structure properties and node dependencies

NODES LOCATIONS SPRING ELEMENTS
Node Master Spring
Number| X [ Y | Z | Node Node 1|Dir 1| Node 2| Dir 2| Value
1) 00| 00| 00 1 Load Cell Springs
2| 10| 00| 00 1 2 1] 12 1| 10000
3| 00| 1.0] 00 1 2 2| 12 2| 100000
4] -1.0| 00| 00 1 2 3 12 3| 10000
5/ 0.0]-1.0] 0.0 1 3 1] 13 1{ 1000000
11| 00| 0.0 00 11 3 2| 15 2| 10000
12| 10| 00 00 11 3 3 13 3| 100000
13| 00| 10 00 11 4 1 1 1| 100000
14| -1.0| 0.0[ 00 11 4 2 13 2| 10000
15| 0.0]| -1.0{ 0.0 11 4 3 1 3| 100000
21| 00| 00| 00O 21 5 1] 15 1| 100000
31 0.1]-0.2| 40 21 5 2| 15 2| 10000
5 3 15 3| 10000
MASS PROPERTIES Structure Base Springs
Node ul 1 211 1| 10000
Number|Mass |Ixx |lyy |12z 1l 2 21 2| 10000
1 3 ‘W 3 A a1} 3 21 3| 10000
11 1M 2| 3 11 4] 21 4 8000/
31 i 1| 1] 1 1 5| 21 5 9000
n = 21 6| 10000
Table 3.2 Baseline full system modes
Mode No. Frequency Hz Mode No. Frequency Hz Mode No. Frequency Hz
1 0.00 7 9.45 13 67.90
2 0.00 8 10.47 14 70.43
3 0.00 9 17.78 15 76.42
4 0.00 10 19.08 16 117.47
5 0.00 11 35.83 17 122.33
6 0.00 12 64.86 18 299.73
Table 3.3 Constraint shapes
Singular value shapes
DOF 1 2 3 4 5 6
102X+ 0.002 —0.001 —0.036 0.002 —0.026 —0.001
102Y+ 0.005 —0.101 —0.584 —0.039 0.786 0.017
102Z+ —0.001 0.081 —0.009 —0.102 0.014 —0.698
103X+ 0.997 0.022 —0.041 0.004 —0.037 0.000
103Y+ 0.009 —0.009 —0.023 —0.006 0.104 0.002
103Z+ —0.016 0.659 —0.043 0.735 0.092 —0.099
104X+ 0.016 —0.010 —0.362 0.020 —0.259 —0.005
104Y+ 0.017 —0.008 0.013 —0.008 0.130 0.003
104Z+ 0.016 —0.738 0.067 0.659 —0.010 —0.112
105X+ —0.067 —0.023 —0.720 0.040 —0.515 —0.010
105Y+ 0.009 —0.009 —0.023 —0.006 0.104 0.002
105Z+ 0.002 —0.059 0.002 —0.110 0.004 —0.700

Six independent relative motion constraint shapes were calculated by performing a singular value decomposition of the
relative motion FRFs. The constraint shapes are shown in Table 3.3. DOFs 102 through 105 correspond to the relative
displacements across nodes 2 through 5 and nodes 12 through 15, respectively.
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Fig. 3.2 PSMIF for baseline uncorrected FRF (blue) and free-free corrected FRF (red). The red curve is equivalent to FRF from a test article in a
free-free boundary condition
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Fig. 3.3 PSMIF for free-free corrected FRF (red) associated with constraint shape references

These constraint shapes were used to calculate FRFs from the nine applied loads through the coordinate transformation
{fe} = [er {e}, and then a partial matrix inversion was performed using Eq. (3.7) to generate FRFs with the constraint
shapes and the forces at node 31 as references. A power spectrum mode indicator function (PSMIF) for all acceleration DOFs
on the test article—using the three DOFs at 31 as references for both the baseline and the corrected FRF—are shown in Fig.
3.2. Figure 3.3 shows the PSMIF of the corrected FRF of the test article using the relative displacement constraint shapes.
Note that the PSMIF continues to increase as frequency increases. This is because the damping forces across the interface
are not captured. However, since the constraint shapes capture all the unique relative motion patterns (and therefore all the
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Table 3.4 Test article free-free modal parameters

Mode No. Baseline Free-Free (Analysis) Hz Corrected Free-Free (Fit FRF Data) Hz
7 11.537 11.537
8 14.699 14.699
9 18.380 18.380
10 22.508 22.508
11 69.002 69.002
12 69.145 69.145

unique force patterns) between the base and the test article, the FRFs associated with forces applied directly to the test article
are the same as if the test article were tested in a free-free boundary condition.

As a final check, modal parameters were extracted using the corrected FRFs and were compared to the modal parameters
of an eigenvalue analysis of the free-free test article. These results are shown in Table 3.4.

3.2 Summary

A method has been presented that can potentially use strain gages mounted at interfaces to help measure true free-free modes
of a test article mounted to a flexible boundary. The following are the keys to implementing the method:

1. ensure that the strain gages, or constraint shapes of a combination of strain gages, capture all the interface forces,
2. apply at least one independent excitation to the base for each unique strain gage (or constraint shape) reference, and
3. use the FRF associated with shakers mounted to the test article to calculate free-free modes.
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Chapter 4 )
A Principle for Obtaining Pragmatic Uncertainty Bounds on Ao
Modal Parameters

Jonas G. Kjeld and Anders Brandt

Abstract In the field of structural dynamics, determination of damping contributions of civil structures is a subject
influenced with considerable uncertainties. Many different modal parameter estimation techniques are available to describe
the dynamic behavior using only the modal response, both in frequency and time domain, but common for all is the struggle
to obtain stable damping values. This paper deals with the extraction of modal parameters on simulated data through
Operational Modal Analysis with focus on establishing uncertainty bounds for the damping estimates. We investigate a
pragmatic principle to bound the errors, including both random and bias errors. Modal parameters are extracted by applying
a low order and a high order parameter estimation method which makes it possible to establish uncertainty bounds of the
total damping. These uncertainty bounds represent a lower and a higher boundary for the damping estimates corresponding
to each of the identified natural modes of the test structure. Attaching a statistical confidence interval to the estimates allows
for a better understanding of the uncertainties related to the damping values obtained through Operational Modal Analysis.

Keywords Operational modal analysis - Damping quantification - Uncertainty bounds - Signal processing - Offshore
structures

4.1 Introduction

In Operational Modal Analysis (OMA) of large civil structures, it is usually possible to identify consistent modal parameters
in terms of natural frequencies and mode shapes but when it comes to damping of the structure, it appears to be much
more difficult to quantify consistent estimates. If we consider an offshore wind turbine (OWT), the structure is exposed to
a number of different operational conditions in terms of climatic changes, scour depth, the active system of the OWT itself
and many other parameters. The variations in operational conditions influence the dynamic behavior of the structure and this
is potentially the reason why it is so difficult to obtain stable damping estimates. Some of these challenges are described in
[1,2].

Today, a variety of modal parameter estimation (MPE) methods are available and while they all are capable of identifying
and extract modal parameters of a given system, the results turn out to be slightly different. It is possible to establish a general
formulation for many of the MPE methods based on either the Frequency Response Function (FRF) or Impulse Response
Function (IRF) which makes it more intuitive to grasp the difference in modal parameters each method computes. A unified
formulation for modal identification is presented in [3] which makes it possible to compare the most commonly used MPE
methods.

The motivation for this paper comes from the experience that it is very difficult to obtain reliable damping estimates. If
we include multiple MPE methods and investigate their characteristic equations, we expect that a confidence interval can be
defined which bounds the errors, including both random and bias errors. In this paper, the pragmatic uncertainty bounds are
defined by studying the modal parameters obtained by using the Mulitple-reference Ibrahim Time Domain (MITD) method
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and the Modified Multiple-reference Ibrahim Time Domain method. Among other MPE methods, the MITD and MMITD
method are presented in [4].

In [5] and [6], numerical methods for calculating the uncertainty on the modal parameters have been presented with focus
on simulated and measured vibration data.

4.2 Theory

The FRF matrix of a system, [ H], can be described as the inverse of the system impedance matrix, [Z] which can be obtained
by applying the Laplace transformation of Newton’s equation based on physical properties including the mass, [ M], stiffness,
[K], and damping matrices, [C]. For large systems, such as most civil structures, we rarely know the damping matrix and
extraction of modal parameters based on the entire modal matrices is inefficient in terms of computation. Instead, the Laplace
transformation of Newton’s equation can be rewritten using the mode shape matrix, [¥], and pole matrix, [S]

[H()] = [wIS~ e’ (4.1)
In time domain, this can be written as
[h()] = [W][e™" (L] 4.2)

where W is the eigenvector matrix, [e%'] is the diagonal pole matrix and L is the modal participation factor (MPF) matrix.

4.2.1 Multiple-Reference Ibrahim Time Domain (MITD) Method

The MITD method is an extension of the Ibrahim time domain (ITD) method presented in [7]. The MITD method allows for
multiple references to be included in the parameter estimation and is applicable for Operational Modal Analysis (OMA) as
it works on free decay measurements and thus correlation functions.

The common equation given in Eq. (4.2) is also valid for the MITD method. Next step is to repeat this equation at different
times, a total of m times in row direction and n times in column direction

[A(1)] [h(t +AD] -+ [h(t + (n — DAD)]

G+ AD]  Th(+2A0] - [k +nAn)]
[Hyun (1)] = | : : 43)
[A(t + (m — DAD] [h(t +nAD)] ... [h(E + (m +n —2)At)]

This equation is known as the block Hankel matrix (referred to as the Hankel matrix). By using the Hankel matrix,
Eq. (4.2) can be expanded into

[Hyn (0] = [17e* L] (44)
The expanded mode shapes are given as
(V]
. [W]le )
[\,p] - , (4.5)

[\If] |—es,(n—1)AtJ
and the extended MPF matrix

[L] = [1LIT rev®iLi” . res=DA L) ] 4.6)
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It is now possible to rewrite Eq. (4.4) by post multiplying with the pseudo-inverse of the expanded mode shape matrix
[#]
[V [Hyn ()] = e JILT" @7

If a new Hankel matrix is defined, shifted At in time, the diagonal pole matrix becomes [¢* *+2? | which can be rewritten
to [e*" | [e*r 2! |. Using Eq. (4.7) with the time shifted Hankel matrix, we get

[Hun (1 + A1) = [$1[e 2 [TWTT [ Hyn (1)] 4.8)
Defining a system matrix [A] = [li/] [esrm ] \IJ]+ results in
[AI[Hmn ()] = [Hpn (t + AL)]. (4.9)
The system matrix can be calculated as

[AN Hypn (1)1 = [Hin (t + A1 = [ANHypn (O Hypn (1T = [Hynn (t + AN Hypn (017 @i
= [A1] = [Hun(t + ADT Hyn (17 ((Hypin ()1 Hyn (1)17) ™! '

From Equation (4.8) and (4.10) an eigenvalue problem for each column in [\IJ] can be established which needs to be
solved in order to obtain the modal parameters

[A] [@] = [ﬁz] resrA | @.11)

Here, X, are the eigenvalues and correspond to 581 The poles of the system, s, can now be calculated as s, = f; In(},).

4.2.2 Modified Multiple-Reference Ibrahim Time Domain (MMITD) Method

For the MMITD method, the transposed Hankel matrix at time ¢ is required

Hun1 = [£] 171 [7] (4.12)
The time shifted Hankel matrix then becomes
[Hon (¢ + ADIT = [ L] re7 2 e [&]T (4.13)
Similar to Equation (4.7), we get
e 1 [5]" = [2] tham o (4.14)

Inserting this into Eq. (4.13), the equation becomes
- 1+
(Hon 0+ A0 = [L] 172 [L] (Han D) “.15)
Post multiplication of [ H,,, ()] into Eq. (4.15) gives

- ~7+
[y (t + ADNT [Hyn(£)] = [L] e’ | [L] [Hyun (D1 [Hyn (1)] (4.16)
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A system matrix is defined as
-1
(A1 = ((Hnn(t + AOI Hyn 1) (i OF [Hn 1) *.17)

Finally, in order to obtain the eigenvalue problem, post multiplying Eq. (4.16) with ([Hn, OV [Hun (t)])_1 and [i] is
needed

[A] [L] - [L] [e% | (4.18)

It is important to note that the MMITD method gives us the modal participation factors ([L]) and not directly the mode
shapes, in contrary to the MITD method. The mode shapes can be estimated in a second step, by using the least squares time
domain method [4].

Relevant for both MITD and MMITD is data compression. In this paper, Singular Value Decomposition (SVD) is applied
which condenses the frequency response matrix so that the resulting matrix contains the same information as the original.

When working with MPE methods, a number of decisions have to be made on how to solve the system equation for the
modal parameter estimation. Some of the decisions are described below.

4.2.3 Low Order Versus High Order Method

Instead of using a physically-based mathematical model to describe the various MPE methods, it is also possible to consider
a matrix coefficient polynomial model where the common characteristics can be more intuitively identified. By considering
a particular response point p and reference point g, Eq. (4.2) can be written as

up(t) — Bu(@" + Bu1@)" T 4 4 Po(@)°

ipa (1) = fo@)  am@" +am 1@ 4+ a(2)0

(4.19)

Where z = ¢! and in this case, #; denotes an arbitrary time — this can be seen as the measured time. By collecting the
terms in Eq. (4.19), the polynomial can be written as

o () ZZO,BI(Z)’
hoo(t;) = 220 _ 1= 4.20
) 7o iak@)k (4.20)
k=0

If the MPE method considered is based on the original FRF or IRF, the polynomial order describing the denominator
(o) in Eq. (4.20) will in most cases be low (one or two) and the MPE method will be described as a low order method,
accordingly. The resulting dimensions of oy is [NsxNgs] and B is [N xN]. Here, S denotes the short dimension which
refers to the number of references (inputs) and L denotes the long dimension which refers to the number of responses
(outputs). If the MPE method is based on the transposed FRF or IRF, instead, the dimensions of o« and Sy are reversed and
thus the polynomial order of the denominator (that is o) will become higher. The method is now defined as a high order
method.

Equation (4.2) directly shows that the MITD method is a low order method since it is built on the original FRF whereas
the MMITD method is built on the transposed FRF seen from Eq. (4.12) making it a high order method.

4.2.4 Normalization to the Lowest or Highest Coefficient of the Matrix Polynomials

The roots of the matrix coefficients can be determined by solving for the eigenvalues of the companion matrix. This requires
normalization of either the lowest order coefficient (g = 1) or the highest order coefficient («(m) = 1). It can be worth to
consider the influence of the normalization since it may influence the results to some extent. A study comparing low order
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and high order normalization has been carried out in [8] which, however, generally showed an insignificant difference in the
estimated modal parameters.

4.2.5 Calculating the System Matrix with Respect to Either the Original Hankel Matrix or the
Time Shifted Hankel Matrix

If we consider Eq. (4.10), the system matrix [A] can also be calculated using the time shifted Hankel matrix ([ H,,,, (f + Af)]).
If this is the case, [A] will become

[A2] = [Hun(t + ADI Hpn (t + AT ((Hyn (D1 Hynn (¢ + ADTT) ™! 4.21)

It turns out, that the resulting modal parameters change slightly depending on which Hankel matrix is used for calculating
the system matrix. According to [9], it is good practice to estimate the modal parameters by considering both cases and
average the extracted modal parameters.

4.3 Methodology

The modal parameters are extracted from simulated acceleration time data based on an FE-model representing an OWT with
9 references located evenly spaced along the structure. In the simulation, only the first 4 non-symmetrical bending modes are
included and the damping of each mode has been set to 1%. In Table 4.1, the settings for simulation of time data are listed.
The natural frequencies of the first 4 non-symmetrical bending modes are 0.309, 1.197, 2.006 and 4.300 Hz, respectively.

For most MPE methods, it is necessary to determine the optimal model order which yields better results in terms of modal
parameters. Here, it is very popular to utilize the so-called stabilization diagram which visualizes the calculated poles as a
function of increasing model order. In order to select poles that represent the actual natural modes of the system, certain
engineering skills and judgment is required. An algorithm for automated operational modal analysis (AOMA) is presented
in [10] that successfully has estimated modal parameters from different data sets including experimental measurements from
a bridge test. The algorithm utilizes a statistical representation of modal parameters and is complemented by a number of
decision rules based on the modal assurance criterion. The estimated modal parameters are only dependent on a few specified
tolerances which reduces any bias that may have been introduced by the user. A similar approach is carried out in this paper
to estimate the modal parameters of the simulated data.

In this paper, a low order and a high order method are considered which refers to MITD and MMITD, respectively, but the
coefficient matrices of the system are only normalized to the highest order. Both cases of either using the first Hankel matrix
or the time shifted Hankel matrix are also taken into account. In order to truly investigate the outcome of these considerations,
it has been important to ensure that as many input parameters to the MPE method as possible remain unchanged. One of the
more important input parameters in the MPE methods, is the first time lag and the total number of time lags considered in
the correlation functions. Since the correlation function of the noise (typically broadband noise) dies out fast, the first few
time lag values should be skipped — in this case, the first 10 were skipped. The total number of time lags is fixed but for the
modal parameter estimation, the start value will vary for each computation.

In Table 4.2, the input parameters for the estimation of modal parameters are given.

Table 4.1 Settings for simulation of acceleration time data

Data simulation
Sampling frequency f; [Hz] Measurement time 7 [s] Number of references [—] Damping of each mode [z] [%]
10 9000 9 1
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Table 4.2 Input parameters for modal parameter estimation

J. G. Kjeld and A. Brandt

Modal parameter estimation
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Fig. 4.1 Histograms of calculated poles. (——) shows the MIF overlay. (™= shows the bins of the histogram and (- - -) indicates the minimum
number of estimates required in a bin to be considered in the further analysis. (a) MITD and [A;]. (b) MITD and [A3]. (¢) MMITD and [A;]. (d)
MMITD and [A5]

4.4 Results and Discussion

During modal parameter estimation, a total of 4 separate calculations are carried out. Results of the first two are visualized
in Fig. 4.1a and b which are based on the MITD method with changes to the system matrix [A] as to how it is calculated —
that is either [A1] from Eq. (4.10) or [A;] from Eq. (4.21). The results of the last two are visualized in Fig. 4.1c and d which
are based on the MMITD method, similarly with changes to the system matrix. The Mode Indicator Function (MIF) overlay
shown in the figures, is an average of the Power Spectral Density using Welch method with a 50% overlap Hanning window
for all output channels. From the figures, it is very difficult to tell any difference between the MITD method and MMITD
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Fig. 4.2 Histograms of damping estimates from identified modes. (- - -) indicates the lower boundary (5%-fractile) and (- - -) indicates the higher
boundary (95%-fractile). (a) Mode 1 at 0.308 Hz. (b) Mode 2 at 1.197 Hz. (¢) Mode 3 at 2.005 Hz. (d) Mode 4 at 4.307 Hz

method whereas the largest difference can be seen when switching between [A1] and [A;]. Nevertheless, the estimates for
all 4 calculations are very similar.

Estimates for all 4 calculations are collected into one set of parameters for each mode which has been identified as one
of the FE modes. In order to ensure that each mode from all calculations have similar modal properties, a MAC criterion of
0.99 is applied. In Fig. 4.2, histograms of the collected damping estimates for the 4 modes (which match the FE model) are
shown together with the 5%-fractile and 95%-fractile (90% confidence interval).

From the plots in Fig. 4.2a—d, there is no apparent distribution that fits them all. This is somehow unexpected since many
of the studies on uncertainty bounds of modal parameters assume that the distribution of measured or simulated data is
Gaussian. Mode 3 comes closest to a Gaussian distribution but the remainder seems far from — especially mode 2 and 4. For
the first 3 modes, the majority of damping estimates are within a small range and the target damping of 1% lies within the
90% confidence interval. The 1% target damping is also within the boundaries for mode 4 but based on the lower boundary
(5%-fractile), the damping is generally estimated lower than expected. It is also evident to see from the histograms in Fig. 4.1
that the number of damping estimates within one bin for the fourth mode is much lower than the number of estimates for the
other modes. The fourth mode also has multiple bins very close in frequency with a significant number of estimates whereas
the estimates lie in a single bin for each of the first 3 modes. This is possibly a result of a small bin width which is based
on the first frequency, in fact, the frequency of the first mode divided by 50 (0.006 Hz). In Table 4.3, the 90% confidence
interval is listed for all 4 modes. The total number of estimates for each mode is also listed and here, this number also tells
that there are significantly fewer estimates of the fourth mode compared to the rest. The last column of the table displays the
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Table 4.3 Results from modal parameter extraction including uncertainty bounds

Mode no. | Frequency | Damping value 95%-fractile [%] | Damping value 95%-fractile [%] | Number of estimates [ — ] | Cross-MAC value [ — ]

1 0.308 0.991 1.099 1854 0.9997
2 1.197 0.855 1.008 2282 0.9999
3 2.005 0.963 1.064 1742 0.9991
4 4.307 0.784 1.045 1046 0.9999

4.3

1.2

4.3 0.3

Fig. 4.3 Cross MAC between mode shapes from simulated data and mode shapes from the FE model

diagonal cross MAC value between the mode shape extracted from the simulated data and the mode shape derived from the
FE model. In Fig. 4.3, the entire cross MAC matrix is visualized.

In this case, the diagonal values are of most interest, since the MAC plot shows that the natural modes extracted from
the simulated data follow the order of the FE modes. The diagonal cross MAC values also show, that there is almost no
difference in the mode shapes extracted from the simulated data and the modes from the FE model.

4.5 Conclusions

This paper presented pragmatic uncertainty bounds for modal parameters obtained from simulated data in terms of a statistical
confidence interval. In the first step, acceleration time data were simulated based on an FE model which represents an offshore
wind turbine. In the second step, modal parameters of the system were extracted using the Multiple-reference Ibrahim Time
Domain method and Modified Multiple-reference Ibrahim Time Domain method and finally, the results of both methods
were compared. A statistical representation in terms of histograms showed that the distribution of the damping estimates is
not Gaussian. It was shown that a 90% confidence interval bounded the true damping for all modes.
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Chapter 5 )
On Partitioning of an SHM Problem and Parallels with Transfer o
Learning

George P. Tsialiamanis, D. J. Wagg, Paul A. Gardner, N. Dervilis, and K. Worden

Abstract In the current work, a problem-splitting approach and a scheme motivated by transfer learning is applied to a
structural health monitoring problem. The specific problem in this case is that of localising damage on an aircraft wing. The
original experiment is described, together with the initial approach, in which a neural network was trained to localise damage.
The results were not ideal, partly because of a scarcity of training data, and partly because of the difficulty in resolving two of
the damage cases. In the current paper, the problem is split into two sub-problems and an increase in classification accuracy
is obtained. The sub-problems are obtained by separating out the most difficult-to-classify damage cases. A second approach
to the problem is considered by adopting ideas from transfer learning (usually applied in much deeper) networks to see if a
network trained on the simpler damage cases can help with feature extraction in the more difficult cases. The transfer of a
fixed trained batch of layers between the networks is found to improve classification by making the classes more separable
in the feature space and to speed up convergence.

Keywords Structural health monitoring (SHM) - Machine learning - Classification - Problem splitting - Transfer
learning

5.1 Introduction

Structural health monitoring (SHM) refers to the process of implementing a damage detection strategy for aerospace, civil
or mechanical engineering infrastructure [1]. Here, damage is defined as changes introduced into a system/structure, either
intentionally or unintentionally, that affect current or future performance of the system. Detecting damage is becoming
more and more important in modern societies, where everyday activities depend increasingly on engineering systems and
structures. One the one hand, safety has to be assured, both for users and for equipment or machinery existing within these
structures. On the other hand, infrastructure is often designed for a predefined lifetime and damage occurrence may reduce
the expected lifetime and have a huge economic impact as a result of necessary repairs or even rebuilding or decommison.
Damage can be visible on or in structures, but more often it is not, and has to be inferred from signals measured by sensors
placed on them.

An increasingly useful tool in SHM is machine learning (ML) [1]. In many current applications large sets of data
are gathered by sensors or generated by models and these can be exploited to gain insight into structural dynamics and
materials engineering. Machine learning is employed because of its efficiency in classification, function interpolation and
prediction using data. Data-driven models are built and used to serve SHM purposes. These models can also be used to further
understand how structures react to different conditions and explain their physics. However, one of the main drawbacks of
such methods is the need for large datasets. ML models may have many parameters which are established during training on
data which may need to span all the health conditions of interest for the given structure or system. Larger datasets assist in
better tuning of the models as far as accuracy and generalisation are concerned. However, even if large datasets are available,
sometimes there are very few observations on damaged states, which are important in SHM. In the current paper, increased
accuracy of a data-driven SHM classifier will be discussed in terms of two strategies: splitting the problem into two sub-
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Fig. 5.1 Traditional (a) and transfer (b) learning schemes (following [2])

problems and attempting transfer of information between the two sub-problems in a manner motivated by transfer learning
[2].

Transfer learning is the procedure of taking knowledge from a source domain and task and applying it to a different
domain and task to help improve performance on the second task [2]. Transfer learning is useful because a model trained on
a dataset can not naturally be applied on another due to difference in data distribution, but can be further tuned to also apply
on the second dataset. An accurate representation of the difference between traditional and transfer learning schemes can be
seen in Fig. 5.1. The SHM problem herein will be addressed using neural networks [3], for which transfer learning has been
proven quite efficient (although usually in deeper learning architectures [7, 8]). Due to the layered structure of the networks,
after having created a model for a task, transferring a part of it (e.g. some subset of the layers) is easy. The method is used
in many disciplines, such as computer vision [4, 5]. The most commonly-used learners are Convolutional Neural Networks
(CNNs), which can be very slow to train and may need a lot of data, which in many cases can be hard to obtain (e.g. labelled
images). These problems can be dealt with by using the fixed initial layers of pre-trained models to extract features of images,
and then train only the last layers to classify in the new context. In this way, both the number of trainable parameters and
the need for huge datasets and computation time are reduced. Another topic that transfer learning has been used in is natural
language processing (NLP) [6], where the same issues of lack of labelled data and large amounts of training time are dealt
with by transferring of pre-trained models into new tasks. Further examples of the benefits of transfer learning can be found
in web document classification [7, 8]; in these cases, in newly-created web sites, lack of labelled data occurs. To address this
problem, even though the new web sites belong to a different domain than the training domain of the existing sites, the same
models can be used to help classify documents in the new websites.

In the context of the current work, transfer learning is considered in transferring knowledge from one sub-problem to the
other by introducing pre-trained layers into new classifiers. The classification problem that will be presented is related to
damage class/location. A model trained to predict a subset of the damage classes (source task) with data corresponding of
that subset (source domain), will be used to boost performance of a second classifier trained to identify a different subset of
damage states.

5.2 Problem Description

Similar to the aforementioned applications, in SHM machine learning is also used for classification and regression. In data
driven SHM one tries to identify features that will reveal whether a structure is damaged or what type of damage is present
and so, labelled data are necessity. Therefore, in SHM applications lack of labelled data about damage location or severity
is a drawback. SHM problems can be categorised in many ways but are often broken down according to the hierarchical
structure proposed by Rytter [9]:

1. Is there damage in the system (existence)?
2. Where is the damage in the system (location)?
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w

. What kind of damage is present (type/classification)?
. How severe is the damage (extent/severity)?
5. How much useful (safe) life remains (prognosis)?

N

A common approach to the first level is to observe the structure in its normal condition and try to find changes in features
extracted from measured signals that are sensitive to damage. This approach is called novelty detection [10, 11], and it
has some advantages and disadvantages. The main advantage is that it is usually an unsupervised method, that is only
trained on data that are considered to be from the undamaged condition of the structure, without a specific target class
label. These methods are thus trained to detect any changes in the behaviour of the elements under consideration, which can
be a disadvantage, since structures can change their behaviour for benign reasons, like changes in their environmental or
operational conditions; such benign changes or confounding influences can raise false alarms.

In this work a problem of damage localisation is considered (at Level 2 in Rytter’s hierarchy [9]); the structure of interest
being a wing of a Gnat trainer aircraft. The problem is one of supervised-learning, as the data for all damage cases were
collected and a classification model was trained accordingly. Subsequently, the classifier was used to predict the damage
class of newly-presented data. The features used as inputs to the classifier were novelty indices calculated between frequency
intervals of the transmissibilities of the normal condition of the structure (undamaged state) and the testing states. The
transmissibility between two points of a structure is given by equation (5.1), and this represents the ratio of two response
spectra. This feature is useful because it describes the response of the structure in the frequency domain, without requiring
any knowledge of the frequency content of the excitation. The transmissibility is defined as,

]:i
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where, F; is the Fourier Transform of the signal given by the ith sensor and FRF; is the Frequency Response Function
(FRF) at the ith point.

The experiment was set up as described in [12]. The wing of the aircraft was excited with a Gaussian white noise using an
electrodynamic shaker attached on the bottom surface of the wing. The configuration of the sensors placed on the wing can be
seen in Fig. 5.2. Responses were measured with accelerometers on the upper surface of the wing, and the transmissibilities

Fig. 5.2 Configuration of DR
sensors on the Gnat aircraft wing
[13]

ec3
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between each sensor and the corresponding reference sensor were calculated. The transmissibilities were recorded in the
1-2 kHz range, as this interval was found to be sensitive to the damage that was going to be introduced to the structure. Each
transmissibility contained 2048 spectral lines.

Initially, the structure was excited in its normal condition, i.e. with no introduced damage. The transmissibilities of this
state were recorded and subsequently, to simulate damage, several panels were removed from the wing, one at a time. In
each panel removal, the wing was excited again with white Gaussian noise and the transmissibilities were recorded. The
panels that were removed are shown in Fig.5.3. Each panel has a different size, varying from 0.008 to 0.08 m? and so the
localisation of smaller panels becomes more difficult, since their removal affects the transmissibilities less than the bigger
panels. The measurements were repeated 200 times for each damage case, ultimately leading to 1800 data points belonging
to nine different damage cases/classes. The data were separated into training, validation and testing sub sets, each having 66
points per damage case.

For the purposes of damage localisation, features had to be selected which would be sensitive to the panel removals;
this was initially done manually [13], selecting by visual ‘engineering judgement’ the intervals of the transmissibilities
that appeared to be more sensitive to damage and calculating the novelty indices of each state by comparison with the
transmissibilities of the undamaged state. The novelty indices were computed using the Mahalanobis squared-distance
(MSD) D? of the feature vectors x;, which in this case contained the magnitudes of transmissibility spectral lines. The
MSD is defined by,

D =(x;—%"S7'(x; — %) (5.2)

were X is the sample mean on the normal condition feature data, and S is the sample covariance matrix.

After selecting ‘by eye’ the most important features for damage detection [13], a genetic algorithm was used [14] to
choose the most sensitive features, in order to localise/classify the damage. Finally, nine features were chosen as the most
sensitive and an MLP neural network [3] with nine nodes in the input layer, ten nodes in the hidden layer and nine nodes in
the decision layer was trained. The confusion matrix of the resulting classifier is shown in the Table 5.1. It can be seen that
the misclassification rate is very low and that the damage cases that are most confused are the ones where the missing panel
is Panel 3 or Panel 6, which were the smallest ones.

5.3 Problem Splitting

As mentioned in [15], the rule-of-thumb for a network that generalises well is that it should be trained with at least ten
samples per weight of the network. The aforementioned network had 180 trainable weights (and another 19 bias terms) so
the 596 training samples are not ideal for the neural network. As a solution, a splitting of the original problem into two
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Table 5.1 Confusion Matrix of neural network classifier, test set, total accuracy: 98.14% [14]

Predicted panel 1 2 3 4 5 6 7 8 9
Missing panel 1 65 0 0 0 0 0 0 0 1
Missing panel 2 0 65 0 1 0 0 0 0 0
Missing panel 3 1 0 62 0 0 1 0 1 1
Missing panel 4 0 0 0 66 0 0 0 0 0
Missing panel 5 0 0 0 0 66 0 0 0 0
Missing panel 6 0 3 0 0 0 62 0 1 0
Missing panel 7 0 0 0 0 0 66 0 0
Missing panel 8 1 0 0 0 0 0 65 0
Missing panel 9 0 0 0 0 0 0 0 0 66

sub-problems is considered here to try and reduce the misclassification rate on the testing data even further. The dataset
is split into two parts, one containing all the damage cases except Panels 3 & 6 and the second containing the rest of the
data. Subsequently, two neural network classifiers were trained separately on the new datasets. This was thought to be a
good practice, since the panels are the smallest, and their removal affects the novelty indices less than the rest of the panel
removals. The impact is that the points appear closer to each other in the feature space, and are swamped by points belonging
to other classes, so the initial classifier cannot separate them efficiently. By assigning the tasks to different classifiers, an
increase in performance is expected, especially in the case of separating the two smallest panel classes.

To illustrate the data feature space, a visualisation is attempted here. Since the data belong to a nine-dimensional feature
space, principal component analysis (PCA) was performed on the data and three of the principal components, explaining 71%
of total variance, are plotted in scatter plots shown in Fig. 5.4a. Points referring to data corresponding to the missing panels 3
and 6 (grey and magenta points respectively) are entangled with other class points causing most of the misclassification rate
shown above.

Random initialisation was followed for the neural networks. Initial values of the weights and biases of the networks were
sampled from a normal zero-mean distribution. The two networks were initialised several times and trained for different
sizes of the hidden layer to find the ones with optimal structure for the newly-defined problems. After randomly initialising
and training multiple neural networks for both cases and keeping the ones with the minimum loss function value the best
architectures were found to be networks with nine nodes in the hidden layer for both cases and seven output nodes for the
first dataset and two for the second. The loss function used in training was the categorical cross-entropy function given by,

N ng

N 1 n -
L(y,y)= N E E [yi jlogyi,j + (1 — yi j)log(1 — y; j)] (5.3)
i=1 j=I

In Equation (5.3), N is the number of samples during training, n.; is the number of possible classes, ¥; ; the estimated
probability that the ith point belongs to the jth class and y; ; is 1 if the ith sample belongs to the jth class, otherwise it is 0.

Confusion matrices on the test sets for the classifiers are shown in Tables 5.2 and 5.3. By splitting the dataset into two
subsets the total accuracy is slightly increased from 98.14% to 98.82%. This is best considered in terms of classification
error, which has been reduced from 1.86% to 1.18%, and this is an important reduction in SHM terms. Reduction of the
number of trainable parameters has certainly contributed to this improvement, since the amount of training data is small.
Performance on the task of separating only the two smallest panel classes was also increased because it is an easier task for
the classifier than trying to discriminate them among the panel removals with greater impact on the novelty indices. This fact
is also clear in Fig. 5.4c, where the principal components of samples belonging to the classes of missing Panels 3 and 6 are
clearly separable.

5.4 Knowledge Transfer Between the Two Problems

Having split the problem into two sub-problems, a scheme motivated by transfer learning in deeper learners was examined.
The idea being to establish if the features extracted at the hidden layer in one problem, could be used for the other. In transfer
learning termology, the seven-class problem specifies the source domain and task, while the two-class problem gives the
target domain and task. The transfer is carried out by using the fixed input and hidden layers from the classifier in the source
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Fig. 5.4 Principal components of all samples (a), samples excepting panels 3 and 6 (b) and samples of panels 3 and 6 (c)

Table 5.2 Confusion Matrix of

neural network classifier trained Predicted panl ! 2 1 > ! i o
on the first dataset, test set, total Missing panel 1 | 65 1 0 0 0 0 0
accuracy: 98.48% Missing panel2 | 0 |63 1 0O, 0 0|2
Missing panel 4 | 1 0 |65 0 0 0 0
Missing panel 5 | 0 0 0 |66 0 0 0
Missing panel 7 | O 0 0 0 |66 0 0
Missing panel 8 | 1 0 0 0 65 0
Missing panel 9 | 1 0 0 0 0 0 |65

task, as the input and hidden layers of the target task; this means that only the weights between the hidden and output layers

remain to be trained for the target task. This strategy reduces the number of parameters considerably. The functional form of
the network for the source task is given by,

y = foWa2(f1(Wix+b1)) + b2 (5.4)

where fy and f; are the non-linear activation functions of the output layer and the hidden layer respectively, W » are the
weight matrices of the transformations between the layers, by are the bias vectors of the layers, X is the input vector and y
the output vector. The softmax function is chosen to be the activation function of the decision layer, as this is appropriate
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Table 5.3 Confusion Matrix of neural network classifier trained on the first dataset, test set, total accuracy: 100%

Predicted panel 3 6
Missing panel 3 66 0
Missing panel 6 0 66
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Fig. 5.5 Training and validation loss histories and the point of early stopping (red arrow)

Table 5.4 Confusion Matrix of neural network classifier trained on the original data of the second dataset, test set, total accuracy: 97.72%

Predicted panel 3 6
Missing panel 3 65
Missing panel 6 2 64

to a classification problem. The prediction of the network, concerning which damage class the sample belongs to, is the
index that maximises the output vector y; the outputs are interpreted as the a posteriori probabilities of class membership, so
this leads to a Bayesian decision rule. Loosely speaking, one can think of the transformation between the hidden and output
layers as the actual classifier, and the transformation between the input layer into the hidden layer as a map to latent states in
which the classes are more easily separable. In the context of deep networks, the hope is that the earlier layers carry out an
automated feature extraction which facilitates an eventual classifier. In the deep context, transfer between problems is carried
out by simply copying the ‘feature extraction’ layers directly into the new network, and only training the later classification
layers. The simple idea explored here, is whether that strategy helps in the much more shallow learner considered in this
study. The transfer is accomplished by copying the weights W; and biases b1 from sub-problem one directly into the network
for sub-problem two, and only training the weights W5 and biases b».

As before, multiple neural networks were trained on the first dataset. In a transfer learning scheme, it is even more
important that models should not be overtrained, since that will make the model too case-specific and it would be unlikely
for it to carry knowledge to other problems. To achieve this for the current problem, an early stopping strategy was followed.
Models were trained until a point were the value of the loss function decreases less than a percentage of the current value.
An example of this can be seen in Fig. 5.5 where instead of training the neural network for 1000 epochs, training stops at the
point indicated with the red arrow.

After multiple networks were trained following the early stopping scheme above, the network with the lowest value
on validation loss was determined and the transfer learning scheme was applied to the second problem. The nonlinear
transformation given by the transition from the input layer to the hidden layer was applied on the data of the second
dataset. Consequently, another neural network was trained on the transformed data, having only one input layer and one
output/decision layer. To comment on the effect of the transformation, another two-layer network was trained on the original
second dataset and the results were compared.

The confusion matrices of the two neural networks on the testing data are given in Tables 5.4 and 5.5; the misclassification
rates are very similar. However, it is interesting to also look at the effect of the transfer on the convergence rate of the network
trained on the transferred data and also to illustrate the feature transformation on the first and the second datasets.
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Table 5.5 Confusion Matrix of neural network classifier trained on the transformed data of the second dataset, test set, total accuracy: 96.96%

Predicted panel 3 6
Missing panel 3 65 1
Missing panel 6 3 63
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Fig. 5.7 Principal components of original features of the second dataset (a) and transformed features (b)

The training histories of the two models can be seen in Fig.5.8. It is clear that the loss history of the model with
transformed data (blue and cyan lines) converges faster, especially in the initial part of the training, and it also reaches a
lower minimum value for the loss function in the same number of training epochs. This can be explained by looking at the
effect of the learnt transformation on the data. In Figs. 5.6 and 5.7 this effect is illustrated. (Note that the points are different
from those in Fig. 5.4, because principal component analysis was performed this time on the normalised data in the interval
[—1, 1] for the neural network training). The transformation spreads out the points of the original problem (first dataset) in
order to make their separation by the decision layer easier; however, it is clear that it also accomplishes the same result on the
second dataset. The points in Fig. 5.7b are spread out compared to the initial points and thus, their separation by the single
layer neural network is easier. Furthermore, the points lay further away from the required decision boundary and this explains
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Fig. 5.8 Loss histories of transferred model: train(blue), validation(cyan) and model trained on initial data: train(red), validation(magenta)

both the faster training convergence and the lower minimum achieved. In contrast to the transformation of the first dataset,
in the second dataset, the transformation does not concentrate points of the same class in specific areas of the feature space
(Fig.5.7). In Fig. 5.6b the points are both spread and concentrated closer according to the class they belong. This probably
means that only a part of the physics of the problem is transferred in the second problem through this specific transformation.

5.5 Discussion and Conclusions

For the SHM classification (location) problem considered here, splitting the dataset into two subsets contributed to increasing
the classification accuracy by a small percentage. This result was explained by the lesser effect that the small panel removals
had on the novelty index features. This issue arose because the points representing these classes were close to each other and
also points from other classes — those corresponding to large panel removal/damage. By considering the two damage cases
as different problem, perfect accuracy was achieved in the task of classifying damage to the small panels, and there was also
a small increase in the performance of the classifier tasked to identify the more severe damage states.

An attempt at a crude form of transfer learning was also investigated. Having trained the neural network classifier on
the first dataset of the seven damage cases, transfer of knowledge to the second sub-problem was considered. This was
accomplished by copying the first two layers of the first classifier — the ‘feature extraction’ layers — directly into the second
classifier and only training the connections from the hidden layer to the output. The result is not particularly profound; the
transfer does allow a good classifier, even with the smaller set of trainable parameters, but is not as good as training the
network from scratch. The result is interesting, because it is clear that the source network is carrying out a feature clustering
and cluster separation on the source data, that is still useful when the target data are presented. This suggests that the main
issue with the small-panel damage classification is that the data are masked by the close presence of the large-panel data.
Separating out the small-panel is the obvious answer. The results are interesting because they illustrate in a ‘toy’ example,
how the early layers in deeper networks are manipulating features automatically in order to improve the ultimate classification
step. The other benefit of the separation into sub-problems, was the faster convergence of the network training.
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Chapter 6 )
An Ontological Approach to Structural Health Monitoring Ao

George P. Tsialiamanis, David J. Wagg, 1. Antoniadou, and K. Worden

Abstract In the current work, an ontological framework for structural health monitoring (SHM) is discussed. Ontologies
are used in disciplines like knowledge engineering and natural language processing, but their structure and goals also fit the
purposes of SHM. In SHM projects — as in all projects — many problems arise during knowledge sharing and application.
Ontologies can deal with these problems and at the same time have more benefits for SHM processes, as their modularity
may assist in extending and transferring knowledge. An SHM-specific ontology is constructed here and described; It contains
many objects that can be used in the procedure of monitoring structures. The ontology can also be used as a database to store
data acquired, but also serves as a knowledge-base for the current discipline’s algorithms and methods. Further, having close
connections to object-oriented programming, ontologies straightforwardly facilitate software development and reusability of
their components. Certainly, the ontology can be used to save time during the application of SHM, but also can be applied
to improve performance of existing methods, by finding within the ontology the best algorithm to fit the purpose of each
method.

Keywords Structural health monitoring (SHM) - Ontologies - Database - Knowledge-base - Knowledge engineering

6.1 Introduction

In modern societies, everyday activities are becoming increasingly dependent on structural and mechanical systems. These
systems have a design life which is heavily dependent on the external conditions that they will be subjected to throughout
their operation. Since it is critical that they survive their design while remaining operational and safe, a framework to ensure
both operability and safety is required. With this purpose in mind, structural health monitoring (SHM) can be employed.
SHM refers to the process of implementing a damage detection strategy for aerospace, civil or mechanical engineering
infrastructure [1]. Application of SHM to systems can be partitioned into the following steps [2]: (1) observation of the
system during its operation, (2) data acquisition from the system and, (3) extraction of features that are sensitive to damage
and determine the current state of system’s health. The steps of SHM can be implemented in many ways. More specifically,
the final two steps of feature extraction and current state evaluation have been implemented with various methods that come
from different scientific disciplines like signal processing, machine learning, physical modelling, etc. All these methods
interact with each other and have their advantages and disadvantages. Being motivated by this and by the fact that in many
projects problems arise from poor communication between various project members and difficulty in knowledge sharing [3],
this paper is proposing a connecting framework for these components and for sharing knowledge within the SHM process.

The proposed framework here is an ontological one. Ontologies are used in many fields including computer science,
semantics and natural language processing. The Ontology’s purpose of sharing knowledge, developing software modules
and interoperability between different projects fits the needs of SHM and can be exploited to improve performance of
such applications. In the current work, an SHM ontology is constructed and discussed in the context of using it to better
understand its component functions: using it as a database, to apply SHM techniques more efficiently and to implement
software according to the ontology.

Although applicable to SHM in a broad sense, an ontology could be particularly useful in a Population-based SHM
(PBSHM) setting [4—8], where the goal is to develop general inference tools across a population. Here an ontology would
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identify useful, and perhaps overlooked, connections between objects such as Irreducible Element (IE) models and Attributed
Graph (AG) representations of structures [5, 6] and appropriate knowledge transfer methods like transfer learning [7] and
‘forms’ [4, 7]. This may provide benefits in highlighting appropriate methods for each data source such that destructive
phenomenon like negative transfer in transfer learning are avoided.

A similar approach has been outlined in previous work [9] to exploit the advantages of using ontologies in the scope of
verification and validation (V&V) and system identification, fields that also have many interacting components.

6.2 Components of the Ontology

Ontologies have many definitions. The one that is preferred here is given in [10]: “An ontology is a specification of a
conceptualization”. This means that the ontology is a description of knowledge on a specific domain that can be helpful in
sharing and explaining, storing and reusing/transferring it to similar projects and domains.

Ontology construction is usually carried out using ontology languages like OWL [11]. To facilitate ontology construction,
software with user interfaces exist e.g. Protege [12] and GATE. The specific ontology construction software used herein
was Protege, developed at Stanford University in collaboration with the University of Manchester; it was chosen for its
convenience in editing the ontology and defining the components. In Fig. 6.1 the interface of Protege is shown, on the left
various pieces of the ontology are listed and on the right a specific class is being edited. Protege has many capabilities and
flexibility in editing and creating ontologies like defining variable types according to one’s needs, automatic clustering of
objects following axioms, etc.
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The procedure of constructing the ontology is executed through construction of its components. The components

constituting an ontology are:

1

2.

. Individuals: are members of the ontology. Individuals are instances of the classes that they belong to and have

corresponding characteristics.
Classes: are sets that include instances with similar characteristics. Classes are partitioned in subclasses and all the
instances belonging to them share the properties of the superclass.

. Connections: are the relationships connecting classes. The defined connections show the way that two or more classes

may be related. The name of the connection is the semantic definition of the interaction between connected classes.

. Attributes: are characteristics of individuals; they refer to a quantitative characteristic of an individual and their values

are not always the same between individuals of the same class.

. Properties: are the connections between individuals and attributes. A property of an individual reveals an attribute that

may differentiate it from similar individuals. As with the connections, the property name defines the semantics of the
individual-attribute relationship.

. Annotations: are strings including definitions of objects. They can be thought as an attribute being a string that describes

the functionality of an individual or a class.

Having defined an ontology through the components above, a hierarchy of classes and subclasses is created. This is

also called a taxonomy and is the result of the ontology having connected different classes only through connections
defining the relationship of subclass and superclass. Following this path, an initial tree structure was accomplished. This
is the fundamental structure of the in-hand ontology. Connections linking classes with different relationships were defined
thereafter. In the following sections, both the fundamental structure and the complete structure will be described.

6.3 Main Ontology Structure

In order to facilitate the shaping of the ontology, a taxonomy was initially defined comprising of the most important
superclasses of instances used in SHM. These superclasses were chosen to be:

. analysis models;

data;

. data processing;
. physical parts;
. SHM methods.

The first four classes contain algorithms and data types that are used in many disciplines and can be easily transferred into

other ontologies. The final class contains the SHM methods that may be used in the procedure of monitoring structures and
must be connected with instances in other classes, since these methods use instances of all other superclasses. One can think
of the final class as the main goal and connecting component of the ontology (Fig. 6.2).

SHM
ontology
Analysis models Data Data. Physical SHM
processing parts methods
Data— Physics- . Extracted | | Raw Ngrrlrla- Signal , Tnye Unsupervised
driven based Diagrams lisation | | proce-| |Sensors| | Structures Series Novelty
data data . .
models | | models Standar- | | ssing App- Detection
disation roaches Approaches

Fig. 6.2 The five superclasses and some of their subclasses
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To further explain the content of the aforementioned classes, their description and some of their subclasses will be
presented subsequently. The “analysis models” class contains anything that is used to analyse a structure. Since many types
of models are used in various structural health monitoring techniques, like monitoring the modal assurance criterion (MAC)
[13] or neural networks [14] to classify/localise damage. The first partition is into the classes of “physical models” and
“data-driven models”. “Data-driven models” is a class that mainly contains machine learning techniques. These are models
that simulate physics, but infer their output using existing data from structures. These models are partitioned mainly into
regression models and classification models. The first of these classes is composed of models predicting values of variables
(e.g. natural frequencies, displacements, etc.) and are more commonly used in simulating the behaviour of structures, whilst
the second one is often used to discriminate data corresponding to damaged or undamaged states of the structure. Some of
the included models are neural networks [15], K-means clustering [16], support vector machines [17], autoassociative neural
networks [18] etc. Physics-based models are constructed by studying and explaining the physics of problems. Two major
subclasses of this class are the analytical and numerical models. Numerical models contain finite element models, surrogate
models, lumped mass models etc; they are the most often-used ones, since they can be simulated using computers. On the
other hand, the analytical models are solved using calculations and are not perhaps as common as the numerical ones, since
engineering problems often preclude analytical solutions; however, they are still included in the ontology for completeness.

The “Data” superclass contains all the data that are acquired from structures. The data are partitioned in classes according
to their type. For example, acceleration, displacement and velocity data, which belong to the time domain, but also data in
the frequency domain. Furthermore, the data are also separated into data from sensors (“raw data”), data from processing
the sensor data (“processed data”) and data from any models (“simulation data”). “Data” is probably the class that can be
more easily transferred into ontologies describing other domains, since most processes nowadays produce data and their
analyses are based on data. Additionally, data can be transferred from one SHM application to another. Analysing data from
a structure and making inference about them, can help in understanding the behaviour of similar structures or materials used
in another SHM application. Some subclasses included in this class are “accelerograms”, “contour plots”, “mode shapes”,
“displacement simulation data”, “displacement sensor data”, etc.

The next superclass is related to methods that are used to process the data. These methods mainly belong to the
discipline of signal processing, from the simple and ubiquitous Fourier transform [19] and signal statistics extraction, to
more complicated methods like wavelet decomposition of signals [20]. These methods are vital for SHM, because they may
reveal unseen features of the signals that are sensitive to damage. It is quite common that a damaged state can be spotted by
observing a spectrum (which is produced by performing a Fourier transform on the acceleration signal of a sensor) rather than
the acceleration time-history itself. Methods included in this class are: “signal smoothing algorithms”, “Hilbert transform”,
“principal component analysis”, etc.

The fourth superclass is the “physical parts” that the all methods refer to. This class simply contains instances of the
structures that are monitored and the sensors placed on them. The instances are just objects referring to an existing structure.
The structures belonging to this class can be partitioned in substructures for a more detailed and modular representation of a
greater object. For example a wind turbine can be partitioned into its blades and the tower and even deeper, the blade can be
partitioned into the cell and the stiffeners existing inside. This class serves the purpose of registering all monitored physical
objects but also separating them into classes to facilitate search for data from a specific structure or type of structures.

Last but not least, is the class containing all methods that are used in SHM. This class is the most important one, as it
uses components from every other class and combines them into methods that monitor a structure. Some of the methods here
are trivial, such as monitoring the maximum value of a sensor signal; but there are also much more sophisticated methods,
like monitoring the modal force error on a structure, that require data from the “data” class, finite element models from
the corresponding class and also data processing methods. All methods included refer to a specific structure, use data from
sensors, process them with a processing method and make inference about the current situation of the structure according to
a model from the class “analysis models”.

Many types of SHM methods are included in the current ontology. They are partitioned into subclasses according to the
type of data they use and the types of algorithms/methods used to make inferences. For example, there are the “acoustic
emission monitoring” [21] and “guided wave approaches” [22] whose data come from receivers trying to “hear” cracks
in materials and ultrasound receivers correspondingly. Other classes of methods are the “novelty detection methods”,
which are unsupervised ones [23], trying to identify changes in the behaviour of structures, having as inputs only normal
condition/undamaged state data. Major classes of this superclass can be seen in Fig. 6.3. It should be noted that for the
specific ontology, this list is exhaustive, but it can definitely be extended with more SHM methods.
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SHM
methods
. Basic . . . .
Acoustic sional Guided Modal Supervised Temporal Time Unsupervised-Novelty
emission st atgis tics wave properties | | classification moments series detection
monitoring monitoring approaches | | monitoring | | approaches | | monitoring | | approaches approaches
Fig. 6.3 SHM “methods” class

Fig. 6.4 Schematic overview of the ontology

6.4 Connections

Having defined a tree structure for the ontology and included all the components that are used in SHM procedures, further
connections have to be defined in order to specify more analytically the interaction of these components. This is achieved
by adding connections in the ontology. The name of the connection, as mentioned above, is the semantic definition of the
connection; it explains how two objects are connected within the ontology for the purpose of SHM. So far the defined
connections are only of type “is a subclass of”. For example, “data-driven models” is a subclass of “analysis models”.

Connections are added to explain the functionality of components. Data-driven models use data so they are connected to
the type of data that they use with a connection named “uses data of type”. Furthermore, all types of models produce data
and are connected to them with a connection called “produces data”. Following this logic, all the components gradually get
connected to other ones and form a more complicated diagram that represents the existing knowledge about SHM. The result
can be seen in Fig. 6.4. It is clear that adding these connections to the architecture makes it much more complicated than the
tree that was the initial structure (part of it is shown in Fig. 6.2).

As expected, the “SHM methods” class is connected to most of the other classes. All methods have to use one or more
analysis models, they all refer to a structure, use sensors, exploit data taken from sensors and process the data using a data
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Fig. 6.5 An SHM novelty detection method

processing method. Finally, each method outputs a result concerning the current state of a structure. This explains both why
this class can be considered the goal of the ontology and the connective factor of it.

An important aspect of ontology connections is the possibility and generation of inverse connections. Inverse or reverse
connections are defined as the inverse property of a direct connection of classes A and B. For example if class A is a subclass
of class B, then class B is a superclass of class A. This type of connection integrates the semantics of the ontology and
defines a more detailed description of the components; they can be really useful when a new component is to be added into
the ontology. In that case, connections are defined linking it to existing elements and through reverse connections the current
elements’ functionality is updated. As an example, one may consider the addition of a new SHM method in the ontology.
Machine learning method A is used by the new object and therefore, a direct connection with name “uses method” connects
the newcomer and machine learning method A. The inverse property in this case is named “is used by method” and extends
the definition of machine learning method A by connecting it to the new SHM method. In Fig. 6.5 a novelty detection SHM
data can be seen as the orange circle. It is connected with direct connections (white arrows) to other classes (yellow ellipses)
and an attribute (red ellipse). Each direct connection has a corresponding inverse one (red arrows) that defines how the classes
in yellow circles affect the class under examination.

6.5 Aspects of the Ontology

Having constructed the ontology, some of its uses or aspects will be examined. The first and most straightforward one is using
the ontology to share knowledge. It is clear that the fabricated network is really effective in explaining the functionality of its
components and their interaction. Apart from the annotations explaining each object’s function, one is lead by the connections
to other components directly connected to the one that is of interest, and learns their functionality too, gaining further intuition
in the methods. Furthermore, within a project, collecting knowledge in the ontology and sharing it facilitates everyone’s
understanding in each other’s part. For example, if a method is developed by a member of a group and it gets included in the
ontology by defining connections with existing pieces of knowledge, methods and structures, it gets automatically explained
to other members by observing it as a part of the ontology. This can solve difficulties in communication, misunderstandings
and boost a group’s productivity.

Further to helping groups in understanding and communicating, ontologies can be used in the same scope to increase
the efficiency of SHM applications, to automate them and expand existing knowledge. It is clear that the ontology is
quite modular. Using a regression algorithm for an SHM method means that another one can be used and maybe different
algorithms can yield better results than the initial one. A method’s connection to a specific algorithm almost certainly means
that it can be connected to algorithms in the same superclass as the existing one. Following this scheme algorithms that
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optimise SHM methods can be found, and new pieces of knowledge are produced, since the newly assembled SHM method
may be something that has never been applied before. An example of the above is having an algorithm of “supervised
classification approaches” class connected to “classification neural networks” to perform the classification. The neural
network class is a subclass of “classification models” just like “classification support vector machines”. The neural networks
then can be replaced by support vector machines and an alternative way of applying the existing “supervised classification
approaches” method has been created. This procedure is shown in Fig. 6.6.

Another aspect of the ontology is that it can assist in developing software about the topic it describes. Ontologies are tightly
connected to object-oriented programming [24]. Classes exist in both cases and objects of a class inherit properties form
their parents. Implementing knowledge from an ontology in combination with an object-oriented scheme is much easier than
trying to directly implement all methods as different software pieces. Clustering in classes encourages reusability and makes
software more understandable. Different modules created in a project can be transferred and used in other projects, both in
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Fig. 6.6 Initial method of supervised damage classification using neural networks (top) and alternative method created by swapping neural
networks for support vector machines (bottom)
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the case of software modules and as ontological classes. Connections define clearly the interaction between software objects
and help developers understand the way all components should be combined to achieve a specific result. This approach
can be considered as another way of increasing productivity within a group, by facilitation of all software implementations
needed.

The database aspect of the ontology is also a straightforward one. The “Data” class contains all data coming from both real-
life structures and simulation models. Connections between these data and the structures and sensors they come from form a
filing system or a database. Users of the ontology can at anytime find data coming from objects of interest, since connections
exist between them and are produced by their data. At the same time, data are partitioned into categories according to what
they represent; for example displacement, acceleration, frequency response functions, probability density functions of events,
etc. Moreover, data are connected to processing methods that potentially transform them and users can have access directly
to these methods and process the data in hand. This detailed description of data also assists exchanging data in different
projects and disciplines.

Apart from direct consideration of the ontology as a database described in the previous paragraph, it can also be considered
a database for instances of algorithms and methods. Every individual in the ontology is an object that interacts with other
objects and has attributes. These objects are implemented and stored during a project. Trying to find an object can be easier
if it is searched through values of it’s characteristics. For example, looking for a finite element model with more than 10,000
degrees of freedom can be a search within the class of finite element models for objects with “degrees of freedom” attribute
value greater than 10,000. Furthermore, the filing algorithms used makes the ontology a knowledge-base, including every
possible method that can be used in the scope of SHM. Users can look for them and read about them and their interactions
with other instances.

6.6 Discussion and Conclusions

The ontology is clearly a way of describing one’s knowledge about a subject. It is a diagramatisation of intuition within a
discipline, connecting different parts of it and explaining the semantics of connections. The semantics of components and
those of their interactions are well defined, trying to connect every piece of knowledge one has about a subject. It is well
suited for SHM projects, as methods from different disciplines have to be used and interact. The ontological framework
proposed can assist in sharing knowledge within one or many projects, as parts of it are transferable and may be fit for other
purposes as well. The ontology is structured in such a way so that it can be expanded by addition of more elements used
under the scope of SHM. Moreover, expanding of the ontology, following the proposed scheme of inverse properties, will
connect existing elements to new ones updating even current knowledge description.

Different aspects of the ontology were discussed. A quite important and useful one is the database aspect. An ontology
potentially is a database and a knowledge-base for projects. Following this approach, databases for scientific projects can be
created and data sharing is made easier, since the ontology gives a detailed description of the data, the source of data and
also the algorithms that may be used to process them. Searching for data through special characteristics that one needs is
facilitated by looking for elements in the ontology with specific attribute values.

As future work, it should be noted that automatic ontology generation would be a really useful tool in the current
framework. Generating automatically (or semi-automatically) ontological classes and incorporating them within the ontology
will increase its capabilities in boosting productivity of teams. Extending the ontology in such a way will also assist in
optimising algorithm performance since ontological components may be connected in more different ways as it extends, and
more efficient algorithms can be found for SHM problems (or other disciplines). Finally, knowledge extension would be
benefited by automatic generation of ontological components by allowing users to understand new methods and how they
are used and combine them with existing ones.
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Chapter 7 )
Passive Aeroelastic Tailored Wing Modal Test Using the Fixed Sk
Base Correction Method

Natalie Spivey, Rachel Saltzman, Carol Wieseman, Kevin Napolitano, and Benjamin Smith

Abstract In modal testing and finite element model correlation, analysts desire modal results using free-free or rigid
boundary conditions to ease comparisons of test versus analytical data. It is often expensive both in cost and schedule to
build and test with boundary conditions that replicate the free-free or rigid boundaries. Static test fixtures for load testing
are often large, heavy, and unyielding, but do not provide adequate boundaries for modal tests because they are dynamically
too flexible and often contain natural frequencies within the frequency range of interest of the test article. Dynamic coupling
between the test article and test fixture complicates the model updating process because significant effort is required to model
the test fixture and boundary conditions in addition to the test article. If there were a way to correct the modal results for
fixture coupling, then setups used for other structural testing could be adequate for modal testing. In the case described in
this paper, a partial static loads testing setup was used, which allowed significant schedule and cost savings by eliminating
a unique setup for a modal test. A fixed base correction technique was investigated during modal testing of a flexible wing
cantilevered from part of a static test fixture.

The technique was successfully used to measure the wing modes de-coupled from the dynamically active test fixture. The
technique is promising for future aircraft applications, but more research is needed.

Keywords Modal Test - Ground Vibration Test - Fixed Base - Passive Aeroelastic Tailored Wing

Nomenclature
a acceleration
accel accelerometer

AFRC Armstrong Flight Research Center

CFAST  a NASTRAN element that connects two shell elements to provide the joint stiffness of the connecting elements
CReW Calibration Research Wing

DOF degrees of freedom

f external force

fwd forward

FBC Fixed Base Correction
FEM finite element model

FLL Flight Loads Laboratory
FRF frequency response function
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GVT ground vibration test

Hz Hertz

iso isometric

k structural stiffness

b pound

LE leading edge

m mass

MAC modal assurance criterion
MIF Mode Indicator Function

NASA National Aeronautics and Space Administration
NMIF Normal Mode Indicator Function
OML outer mold line

PAT Passive Aeroelastic Tailored
PSMIF  Power Spectrum Mode Indicator Function
TE trailing edge

WI1B wing Ist bending
W2B wing 2nd bending
W3B wing 3rd bending
W4B wing 4th bending
W5B wing Sth bending
W6B wing 6th bending
W7B wing 7th bending
WIT wing st torsion
W2T wing 2nd torsion
WIF/A  wing Ist fore/aft
W2F/A  wing 2nd fore/aft
W3F/A  wing 3rd fore/aft
WA4F/A  wing 4th fore/aft
WLTF Wing Loads Test Fixture
X displacement

® frequency

7.1 Introduction

New aircraft structures often require static and dynamic structural ground testing to validate the analytical structural finite
element models (FEMs) used in determining airworthiness. Static and dynamic ground tests require different boundary
conditions, which result in two different costly and specialized test setups. Therefore, it would be beneficial if a modal
survey could be conducted while a test article is mounted in a static test fixture for a structural loads test, allowing for two
traditionally separate structural tests to be performed using one test fixture. This paper discusses an effort to apply a fixed
base correction technique to measure fixed base modes from a test article mounted to part of a dynamically active static test
fixture.

The Flight Loads Laboratory (FLL) at the National Aeronautics and Space Administration (NASA) Armstrong Flight
Research Center (AFRC) (Edwards, California) specializes in both structural modal testing and loads calibration testing of
aerospace research structures [1]. To facilitate the loads calibration test on the Passive Aeroelastic Tailored (PAT) Wing, a
Wing Loads Test Fixture (WLTF), shown in Fig. 7.1, was designed.

Reaction table

Wing Loads
Test Fixture

(WLTF)

Base support

Self-reacting frame

Fig. 7.1 Side view of the dynamically active static Wing Loads Test Fixture



7 Passive Aeroelastic Tailored Wing Modal Test Using the Fixed Base Correction Method 63

The PAT Wing - a carbon-epoxy high-aspect-ratio wing of an approximately 39-ft semi-span - was built to investigate a
new composite technology known as tow-steering to increase aeroelastic efficiencies [2—4] and underwent a modal test in
the FLL. The modal test of the high-aspect-ratio, tow-steered wingbox was conducted to validate the FEM. The objective of
the modal test was to measure the primary frequencies, mode shapes, and damping up to the Wing Ist Torsion (W1T) mode
(expected to be approximately 55 Hz). To streamline the modal test and save significant project resources of time, cost, and
schedule, the modal test used the same hardware configuration as was used for the follow-on loads testing, with the wing
cantilevered out from the WLTF table.

This setup differs from a standard modal test setup. The boundary conditions of the wing mounted onto the WLTF table
were not ideal for modal testing because truly rigid boundary conditions were not required for static loads testing. Finding the
analytical connection stiffness of how the wing was physically mounted would be a very difficult analytical task; however,
by using the Fixed Base Correction (FBC) test method, the table-mounted boundary conditions were analytically fixed for
the modal test.

The uniqueness of FBC methodology compared to traditional modal tests is that it requires an equal number of
independent drive point inputs (that is, shakers) as base mode shapes to remove. The result is that many shaker inputs
are required; the number depends on the complexity of the base which is desired to be “fixed.” The FBC method allows
for test articles to be tested with non-ideal modal testing boundary conditions that can normally complicate testing and
drive up cost and schedule. While a traditional ground vibration test (GVT) only requires shakers be attached to the wing
or test article, the FBC method also requires multiple shakers be attached to the mounting fixture. The fixture excitation
accelerations are used as references when calculating frequency response functions (FRFs) instead of using the traditional
shaker forces as references. This FBC strategy analytically removes and de-couples enough of the fixture response from
the wing in order to “fix” the fixture and aid in comparing modal ground test results to FEM modal results. More
detail regarding the background of the FBC method is presented below. This paper details the second time that the FBC
technique has been applied to aeronautics applications. The FLL previously conducted a test on the Calibration Research
Wing (CReW); this was a pathfinder GVT for the PAT Wing test [5]. Using the CReW static loads testing setup for the
GVT and implementing FBC allowed significant schedule and cost savings by eliminating a unique setup for a modal
test.

7.2 Theory/Correction Methodology

There exists considerable literature discussing how to extract fixed base modes from structures, mainly satellite-related
structures, mounted on shake tables [6—14]. These methods require two different approaches to extract fixed base modes from
structures mounted on flexible shake tables. One method applies a constraint equation to measured mass-normalized mode
shapes to generate fixed base modes [15]. The advantage of using mass-normalized modes is that a large number of shakers
do not necessarily need to be mounted on the base, which simplifies the test setup. The accuracy of this method, however,
depends on how well a linear combination of the measured modes can represent the fixed base modes. If the measured test
modes don’t span the space of the true fixed base modes, then this method will not be able to accurately estimate them.
The method also requires well-excited modes so that modal mass can be accurately calculated. A second method, hereafter
called the Fixed Base Correction method, is the focus of this paper and uses base accelerations as references to calculate
the FRFs associated with a fixed base [16, 17]. The FRFs are then post-processed to extract fixed based modes of the test
article.

The FBC method can be illustrated with a simple spring-mass 2-degrees-of freedom (2-DOF) system, as shown in Fig.
7.2.

Applying Newton’s second law, the equation of motion for an undamped system in the frequency domain is as shown in

Eq. (7.1):
—w?my +k —k x| _[|h
[ —k —w2m2+2k}{xz}_{fz} o

where m is the mass, w is the frequency, k is the structural stiffness, x is the displacement, and f is the external force. The
subscripts 1 and 2 refer to blocks 1 and 2, respectively. It should be noted that the 2-DOF system above is the same k value,
but the FBC method can be further generalized for different structural stiffness values.
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Fig. 7.2 Spring-mass two-degrees-of-freedom system

The FREF for traditional modal testing is calculated using the shaker forces applied to DOF 1 and DOF 2 as references to
obtain the full system response. The results of using these traditional FRFs are referred to in this paper as the “uncorrected”
results, as shown in Eq. (7.2):

. —? (—w2m2 + 2k) —w’k A 79
a= (—w?my + 2k) (—w?m) + k) — k2 (—w?my + 2k) (—w?m) + k) — k2 { f } (7.2)

where a is the acceleration.
When implementing the FBC, however, if the force at DOF 1 and the acceleration at DOF 2 are used as references, then
the resulting FRFs are associated with a structural system with dynamics associated with DOF 2 fixed, as shown in Eq. (7.3):

—602 k fl
= 7.3
a I:—a)zm1+k—w2m1+ki|{a2} (7.3)

Furthermore, the FRF associated with the force applied at DOF 1 is equivalent to an FRF associated with DOF 2 being
fixed. This property is exploited in the FBC method by using drive point accelerations, instead of the traditionally used shaker
forces, on the test fixture as references when calculating the FRF.

The key necessity of the FBC method is at least one independent excitation source, usually modal shakers, for each
degree of freedom that is desired to be fixed. Therefore, FBC modal testing requires multiple shakers used on the test fixture
in addition to the test article. Although not described in this paper, the FBC technique could also use constraint shapes
as references when the number of independent sources is larger than the number of independent DOF of the test fixture
[16]. The fundamental FBC strategy is to use shaker accelerations as references, rather than the traditional shaker forces,
when calculating FRFs. Personnel at ATA Engineering, Inc. (San Diego, California) have implemented the FBC modal
methodology into their IMAT™ (Interface between MATLAB®, Analysis and Test) software (MATLAB is a registered
trademark of The MathWorks, Natick, Massachusetts).

The fixed base corrected FRF can be calculated directly using shaker accelerations on the fixture and shaker forces on
the test article as references [18], or by performing a partial inversion of the baseline FRFs that have been calculated using
all shaker forces as references [6, 17]. In fact, the results are equivalent if measured forces are used as basis vectors when
calculating the FRF directly [19].

One advantage of calculating the FRF directly is that doing so removes the requirement to mount load cells to the shakers
on the test fixture. The advantage of performing a partial inversion of the FRF matrix is that boundary conditions can be
changed quickly by changing which DOF are to be inverted.

One potential disadvantage of the FBC method is that the measured damping values of the FBC modes have been observed
to be slightly different from expected values; sometimes very lightly damped modes may even be calculated to have slightly
negative damping. In these cases, it may be better to report the damping values of the mode from the uncorrected test data
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that best align with the FBC mode. Analytically, the damping values calculated from the FBC method should be accurate.
Further study is needed to understand how the FBC method affects damping measurements.

7.3 Test Description

The following sections describe the PAT Wing test article, the finite element model, and the modal testing details. The PAT
Wing modal testing was conducted in the summer of 2018 with the intent to use the FBC method.

7.3.1 Test Article

The PAT Wing test article, depicted in Fig. 7.3, is a carbon-epoxy, semi-span, flexible right wingbox designed and
manufactured by Aurora Flight Sciences (Manassas, Virginia) (“Aurora”) using a composite technology called tow steering.
The test article is a 27% scale model of the NASA undeflected Common Research Model (uCRM) with a high aspect ratio
of 13.5, 36.8-degree wing sweep, and approximately 39-ft semi-span.

The wingbox consists of two skins; both the upper and the lower surfaces are of the tow-steered wingskins. The forward
and aft spars are primarily carbon-fiber composite. An outboard section of the forward spar was replaced with approximately
12 ft of aluminum due to manufacturing difficulties. The wing contains 58 composite ribs connected to the wingskins. Along
the wingspan there are 14 load lugs: seven on the leading edge (LE) spar and seven on the trailing edge (TE) spar). The load
lugs are permanently installed to the wingbox for the load testing; see Fig. 7.4. Along the TE spar there is a Yehudi break
between lugs 1 and 2. At the wing root there are two large steel reaction plates (forward/LE and aft/TE) each containing two
three-inch reaction pins. The root reaction plates are mounted to attachment hardware connecting to the WLTF table. The
wingbox was assembled using numerous fasteners and, in some locations, bonding agents.

Upper skin

Load lugs

Lower skin

+~—— Leading edge (LE) spar
Trailing edge s

(TE) spar

Fig. 7.3 The Passive Aeroelastic Tailored Wing Test Article

Upper load lug interface

Lower load lug interface
Reaction plates Shackles NOT
installed for

Rod ends NOT
installed for
GVT

Reaction pins Trailing edge

(TE) load lugs Lug #7

Fig. 7.4 Load lugs on the leading edge and the trailing edge of the Passive Aeroelastic Tailored Wing



66 N. Spivey et al.

A weight and balance test was performed prior to the wing being shipped from Aurora to NASA AFRC. The wing weighed
2621 1b with the installed reaction plates, the internal strain gage instrumentation, and the wire bundle.

While the root reaction plates are adequate for static testing because they carry static loads properly, they are not adequate
for measuring fixed base modes because plates are dynamically flexible in the out-of-plane direction.

7.3.2 Finite Element Model

Data from both the modal and loads tests were used to validate the FEM analytical models, modeling techniques, and
assumptions used for the towed-steering technology. Personnel of Aurora and of the NASA Langley Research Center
(Hampton, Virginia) participated in a combined effort to create an MSC Nastran™ (MSC Software, Newport Beach,
California) FEM of the PAT Wing along with the wing reaction plates, attachment hardware, and WLTF reaction table,
shown in Fig. 7.5. Unique material orientations were assigned to each wingskin element to account for the spatially varying
tow-steering paths. Skins consisted of a laminate with 62.5% of the tows following the local tow-steering path and the balance
of the laminate consisting of plies offset —45 deg., +45 deg., and 90 deg. from the local tow-steering path. Homogenized
laminate properties corresponding to this ply fraction were assigned to the skin elements based on unnotched tensile testing
performed on representative tow-steering coupons.

The FEM modeled both rib and spar caps with shell elements, and fasteners were modeled utilizing discrete CFAST
elements. Element offsets were applied to all skin elements to position them at the as-measured OML, which includes
deviations from the nominal design due to local variations in liquid shim thickness between the skins and spar and rib caps
in Fig. 7.6.

Fig. 7.5 Finite element model of the Passive Aeroelastic Tailored Wing and the Wing Loads Test Fixture reaction table

Unique element orientation
assigned to each skin element
to model tow-steering

Spar and rib caps modeled
with shell elements

Fasteners modeled with

WLTF CFAST elements

reaction table
Shell offsets account for true OML
(including liquid shim thickness variations)

Fig. 7.6 Finite element model of the Passive Aeroelastic Tailored Wing and the Wing Loads Test Fixture reaction table
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During the wing fabrication, some unexpected defects were found and multiple fixes were made to ribs and spars. Aurora
subsequently updated the FEM to incorporate differences of the as-built wing. Non-structural masses were updated to account
for as-measured part and assembly masses. This FEM was used for test predictions and post-test comparisons. Currently there
are no plans to correlate the as-built FEM with test results.

7.3.3 Modal Test Setup

The PAT Wing modal test using the FBC method took place July 10-12, 2018 in the NASA AFRC FLL high bay. The
original modal test setup plan for the FBC PAT Wing, shown in Fig. 7.7, was to perform the test with the wing installed on
the dynamically active WLTF, as the wing would be for the loads testing. In this test configuration, the PAT Wingtip would
be approximately 124 inches above the Flight Loads Laboratory floor.

Upon further review of the test plan and understanding of the FBC technique, it was determined that the modal test could
be simplified by setting the WLTF table directly on the FLL floor (see Fig. 7.8), rather than installing the reaction table on
top of the WLTF base support. Using FBC made this approach possible because it analytically removed the effects of the
reaction table and the hardware below it. The reaction table being set directly on the FLL floor also significantly simplified
the shaker setup, because the wingtip now was only approximately 48 inches, rather than approximately 124 inches, above
the FLL floor. This further simplification allowed cost savings by increasing access to the wing; attaching the shakers at lower
heights also prevented adding additional flexibility and potential errors into the test. The reaction table on the FLL floor was
supported by four retractable feet and secured with a strap to floor tracks as shown in Fig. 7.9. The wing was cantilevered
from the reaction table by securing the two wing reaction plates to attachment hardware connected to the table.

PAT wing — PAT wing
reaction plates

Reaction table

Wing Loads
Test Fixture
(WLTF)

Fig. 7.8 The simplified modal test setup: the Passive Aeroelastic Tailored Wing mounted on only the Wing Loads Test Fixture reaction table
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Four retractable feet Table secured with strap to FLL floor
boundary condition boundary condition

Fig. 7.9 Boundary conditions of the Wing Loads Test Fixture reaction table on the Flight Loads Laboratory floor

PCB T333B32 PCB T356A16 PCB 393B04
uniaxial accel triaxial accel seismic uniaxial accel

Fig. 7.10 Ground test accelerometers used for modal testing (not to scale)

7.3.4 Modal Test Instrumentation

Modal testing normally requires accelerometers with a sensitivity of 100 mV/g distributed over the test article and force
transducers at the shaker locations. To implement the FBC method, additional 100 mV/g accelerometers were added on the
hardware being fixed along with a small handful of seismic uniaxial accelerometers, which typically have a sensitivity of
1000 mV/g. The seismic accelerometers with the higher sensitivity were used at each shaker location on the hardware being
fixed. This method produced clean shaker accelerometer data for use as references in the FBC method, as compared with
traditional shaker forces being used as references for the FRFs [15, 16]. The PAT Wing test used three different types of modal
accelerometers (PCB Piezoelectronics, Depew, New York), shown in Fig. 7.10, depending on whether a uniaxial or triaxial
accelerometer was desired to measure a certain number of DOF at each location along with the seismic accelerometers at the
fixed shaker locations.

For every shaker attached to the reaction table or wing reaction plates, a reference seismic accelerometer in the direction
of the shaker excitation along with a force transducer attached to the shaker stinger were used to measure the excitation
input. Figure 7.11 shows an example of the seismic accelerometer and force transducer shaker setup that was used on the
reaction table. The wingtip shaker did not require a seismic accelerometer and used a traditional modal accelerometer and
force transducer because the force was used as a reference when calculating the FRF; see Fig. 7.12.

7.3.5 Modal Test Accelerometer Layout

The PAT Wing modal test included accelerometers on the wing, as in traditional modal testing; implementing the FBC method
required additional accelerometers on the WLTF reaction table, reaction plates, and the attachment hardware connecting
them. The PAT Wing modal test used 106 different accelerometer locations for measuring a total of 274 DOF responses to
acquire the desired mode shapes of the wing and test fixture needed to implement the FBC technique. The total included the
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Fixed shaker locations Seismic accelerometers

Fig. 7.11 Typical shaker setup on the Wing Loads Test Fixture reaction table using seismic accelerometers

Wingtip shaker .
Traditional modal sensors

Fig. 7.12 Wingtip shaker setup using traditional modal accelerometer and force transducer

accelerometer responses for the one wingtip shaker along with each fixed shaker location; these were later used as reference
for the FBC. The data acquisition system also included the 14 shaker force transducers measured as references. Accordingly,
a total of 288 channels were recorded with the data acquisition system for each test run.

Of the 106 total locations there were 31 accelerometer locations on the wing (see Fig. 7.13), which had triaxial
accelerometers to measure a total of 87 DOF for the wing. The placement of the wing accelerometers was the same as
for any traditional modal test; sensors should be placed to adequately observe and differentiate modes of the structure.

The remaining 75 locations were on the WLTF reaction table, attachment hardware, and the wing reaction plates to
perform the FBC calculations. The majority of these locations used triaxial accelerometers for a total of 187 DOF measured
on the hardware being fixed; see Fig. 7.14 (some accelerometer locations are not visible in the figure).

The coordinates of the 106 accelerometer locations were used to create the test display model shown in Fig. 7.15. The test
display model was used to visualize the test mode shapes.

7.3.6 Modal Test Shaker Layout

The FBC technique requires multiple independent drive points (that is, shakers) be mounted to both the WLTF reaction table
and the PAT Wing test article. The shaker layout depends on where the FBC technique is trying to fix the boundary conditions.
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Accel directions

> X,Y,Z
° X,z

Fig. 7.13 Accelerometer locations on the Passive Aeroelastic Tailored Wing

Accel directions
® X,v,z2
oz

Fig. 7.14 Accelerometer locations on the Wing Loads Test Fixture reaction table, attachment hardware, and wing reaction plates

Top View Back View Iso View

Fig. 7.15 The Passive Aeroelastic Tailored Wing modal test display model

There must be at least as many independent sources as there are independent boundary deformations of the hardware desired
to be fixed in the test article frequency range of interest. The PAT Wing modal test included an effort to fix the reaction table
by adding more shakers to improve the fixed base modes. For each shaker configuration, one shaker was always positioned
on the wingtip as for traditional modal testing, and multiple other shakers were positioned around the WLTF reaction table
and connecting attachment hardware.

During the PAT Wing modal test three different shaker configurations (see Fig. 7.16) were attempted with the FBC method
to fix different hardware to improve the fixed base modes:

* 10 Shakers: nine shakers on the reaction table, one shaker on the wingtip

— Vertical wingtip excitation
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12 shakers

14 shakers

10 shakers SN

Fig. 7.16 Shaker configurations on the Passive Aeroelastic Tailored Wing

¢ 12 Shakers: two shakers added on aft triangular brackets (fore/aft)
— Vertical wingtip excitation

* 14 Shakers: two shakers added on wing root reaction plates (fore/aft)
— Vertical and fore/aft wingtip excitation

The direction of the shakers on the reaction table and connecting hardware are important and essentially eliminate the
effect of the hardware moving in each shaker direction; see Fig. 7.17. A few different shaker configurations were attempted
to improve the fixed base modes to fix the reaction table. The final shaker layout consisted of 14 total shakers with one
wingtip shaker plus 13 shakers around the reaction table and connecting hardware, as shown in Fig. 7.18. This method fixed
the reaction table and connecting hardware enough to decouple the wing modes.

The placement of the shakers around the WLTF was adjusted to excite primary base modes and maximize the capability of
the FBC to decouple the base modes from the wing modes. The shakers used were MB Dynamics (Cleveland, Ohio) Modal
110-1b and Modal 50-Ib electromagnetic shakers. Higher shaker forces were required on the base because it was stiffer than
the wing which required less force at the wingtip. The wingtip shaker force was approximately 0.7 Ib RMS for the various
tests; the base shaker forces varied between 3 and 5 1b RMS.

To compare the modal test FBC results with the above described shaker configurations to the FEM pre-test prediction
results, analytical boundary conditions were placed on the FEM. Figure 7.19 shows how each FEM component was fully
fixed. The FEM boundary conditions on all of the nodes that were rigid in all 6 DOF are shown in cyan. The fully-fixed
FEM used for the pre-test modal analysis was the sum of the fixed boundary conditions on the reaction table, the aft two and
forward two triangular brackets of the attachment hardware, and both wing reaction plates.
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Fig. 7.19 Finite element model fully-fixed boundary conditions
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7.4 Results

A total of 25 test runs were performed during the PAT Wing modal test using up to 14 shakers simultaneously to ensure
the primary wing modes up to the W1T were cleanly extracted. The following PAT Wing modal results show that the FBC
modes were successfully extracted using a total of 14 shakers.

7.4.1 Uncorrected Results

The uncorrected results using traditional modal testing techniques for the 10-shaker, 12-shaker, and 14-shaker configurations
were all very similar. The 10-shaker and 12-shaker tests had vertical wingtip excitations, as did one of the 14-shaker tests.
The other 14-shaker test had fore/aft wingtip excitation; the results of this test are shown in FEM/Test Cross MAC (modal
assurance criterion) Table 7.1. The main difference between the tests was that the WIT mode was difficult to pick up in tests
that had vertical wingtip excitations rather than fore/aft wingtip excitations. The W1T mode was also difficult to pick up due
to coupling with the Wing fifth Bending (W5B) mode and Wing third Fore/Aft (W3F/A) mode. While all of the expected
modes were captured up to WI1T, only a few of the Cross MAC values were above 0.9, or 90%. The Cross MAC values also
were not diagonal compared to a fully-fixed FEM, implying that the uncorrected test results did not accurately capture the
correct mode shapes and frequencies. The blank terms in the Cross MAC are below 0.15, or 15%.

Many of the uncorrected mode shapes showed significant base motion, particularly the modes with wing fore/aft (F/A)
and torsion (T) components. For example, a 9.1-Hz Wing second Bending (W2B) mode coupled with the Wing first Fore/Aft
(WI1F/A) mode and base motion. The mode shape and undeflected wireframe is shown in Fig. 7.20. The bottom plate of the
base is shown to have significant twisting motion as well as some rocking motion. The W2B mode is likely coupling with the
WI1F/A mode due to motion from the PAT Wing reaction plates; because this part of the base is not fixed, the base is coupling
with wing modes. The mode disappears once the FBC method is applied, because the FBC method reduces the motion of the
reaction plates as FBC base shakers are added.

Another challenge with the uncorrected test data was that there was a lot of coupling between modes in the 50- to 60-Hz
range. This coupling can be discerned from Table 7.1 (14-shaker uncorrected), as the W5B mode and the W3F/A mode
(Modes 10 and 12, respectively) appear to have components of W1T and some base motion. The other uncorrected tests (10
shakers and 12 shakers) also showed coupling between the W5B, W1T, and W3F/A modes; it was not possible to find a W1T

Table 7.1 Cross MAC of uncorrected results with 14 shakers

Uncorrected FEM/Test Cross MAC Table
14 Shakers FEM Shapes
Fore/Aft Wingtip Excitation 1 2 3 4 5[ 6 7 8 9 10 11 12 13 14
Fully Fixed Pretest FEM (Not Updated) W1B |W2B [W1F/A |W3B [W2F/A |W4B |WSB (W1T) |WI1T (W5B) |W3F/A |WEB |W2T |W2T (W4F/A) |WT7B |W4F/A
MAC 3.4| 104 11.3 22.5 31.7| 37.2 51.8 55.2 64.3| 76.8| 92.9 95.3] 103.1] 115.9
§ 1|W1B 3.5| 0.99] 0.30 0.16
;-'g 2|W1F/A (Base) 5.1 0.83 0.17
E 3|W2B (W1F/A, Base) 9.1] 0.26] 0.50 0.34 0.17
k= 4|W2B 10.1| 0.32| 0.98 0.40 0.19
5|W2F/A (Base) 16.5 0.87 0.53 0.34
6|W3B (W2F/A, Base) 20.2 0.31 0.73 0.37
7|W3B (Base) 22.0 0.28 0.88 0.35
8|W2F/A (W4B, Base) 34.1 0.20{ 0.15 0.66| 0.26 0.21 0.21
9|W4B (W2F/A, Base) 35.4 0.18 0.30] 0.7 0.29 0.27
10|WSB (W1T, Base) 50.4 0.26 0.23 0.35
11|W1T (Base) 56.5 0.70 0.30
12|W3F/A (W1T, Base) 60.1 0.45 0.71 0.50
13|W6B (W3F/A, Base) 67.8 0.21 0.77 0.43
14|WEB (W4F/A, Base) 81.2 0.85 0.25| 0.21
15|W4F/A (Base) 87.8 0.48 0.55
16|WA4F/A (Base) 95.6 0.42 0.53
17{W2T (Base) 98.9 0.91 0.18
18{W7B N/A
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£

Fig. 7.20 Uncorrected 9.1-Hz Wing 2nd Bending (Wing st Fore/Aft) mode with significant base motion (undeflected shape depicted by
wireframe)

Table 7.2 Cross MAC of Fixed Base Corrected configuration with 10 shakers

Fixed Base Corrected FEM/Test Cross MAC Table
10 Shakers FEM Shapes
Vertical Wingtip Excitation 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Fully Fixed Pretest FEM (Not Updated) W1B |W2B |W1F/A |W3B |[W2F/A |W4B [WSB (W1T) [W1T (WSB) |W3F/A |W6EB |W2T |W2T (W4F/A) |WT7B |W4F/A
MAC 3.4| 10.4] 11.3] 22.5 31.7| 37.2 51.8 55.2 64.3| 76.8| 92.9 95.3| 103.1] 115.9
ﬁ 1|W1B 3.5| 0.99] 0.31 0.16
E 2|W2B 10.2| 0.33| 0.99 0.40 0.18
E 3|W1F/A 10.7 0.94 0.24 0.22
2 4|W3B 21.2 0.35 0.99 0.40
5|W2F/A 29.5 0.43 0.95 0.20 0.44
6|w4B 35.1 0.33 0.95 0.20
7|WSB (W1T, Base) 521 0.26 0.15( 0.32
8|W1T (W3F/A, Base) 55.6 0.27 0.20 0.41 0.32 0.21
9|W3F/A (W1T, Base) 57.7 0.17 0.23 0.41 0.19
10|W6B (W3F/A, Base) 75.6 0.56| 0.19 0.35
11|W6EB (W4F/A, Base) 78.9 0.16 0.81 0.29
12{WA4F/A (W2T, Base) 88.8 0.35 0.46
13|WA4F/A (W2T, Base) 95.9 0.33 0.53
14|W2T (Base) 98.8 0.94 0.15
15|W7B (Base) 105.5 0.25 0.84

mode from the 10-shaker and 12-shaker uncorrected tests. Utilizing the FBC method enabled decoupling these sorts of mode
shapes.

7.4.2 Fixed Base Corrected Results with 10 Shakers

A buildup testing approach was used to add shakers around the WLTF base to analytically fix it. The tests were initially
started with 10 shakers, nine of which were on the WLTF reaction table; the 10th shaker was on the wingtip in the vertical
direction as described above. The Cross MAC table for the 10-shaker FBC is Table 7.2. As compared with the uncorrected
Cross MAC in Table 7.1, the first six mode shapes are now diagonal, indicating that the test results better match the FEM
results. The Cross MAC results are actually better than expected; the first six flexible modes have very high (above 0.9, or
90%) diagonal Cross MAC values.

Table 7.2 also shows that there are now only 15 modes up to the Wing 7th Bending (W7B) mode (as opposed to the 18
modes up to W7B in Table 7.1), thus some of the redundant base modes were removed by applying FBC. The W7B mode
was also able to be found by applying FBC; this mode was not found in the uncorrected Cross MAC Table 7.1.

The Wing 1st Bending (W1B) and W2B modes did not show a lot of change after implementing FBC, which implies that
the non-ideal modal test setup boundary condition was already stiff enough in the vertical direction to capture these modes.
The FBC did, however, appear to significantly stiffen the W1F/A and Wing 2nd Fore/Aft (W2F/A) modes, increasing the
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Fig. 7.21 10-shaker comparison of uncorrected versus Fixed Base Corrected for Fore/Aft modes (undeflected shape depicted by wireframe)

Cross MAC values of these modes from approximately 0.85 (85%) to approximately 0.95 (95%), providing confidence that
the FBC method is matching the test results to the FEM results.

The W1F/A and W2F/A mode shapes are shown in Fig. 7.21 comparing uncorrected and 10-shaker FBC test results.
The FBC method significantly reduced, and almost eliminated, any base rotation, which can be seen as the blue lines in
the insets in the figure. The wing shapes also show some improvement as well, since the FBC mode shapes have higher
relative wingtip displacements at the wingtip than do the uncorrected mode shapes. Figure 7.21 also shows how applying the
FBC method significantly stiffened the F/A modes, increasing the W1F/A frequency from 5 Hz to 11 Hz and increasing the
W2F/A frequency from 17 Hz to 30 Hz. These results suggest that the FBC method has already significantly improved the
quality of the GVT data gathered with only 10 shakers. The FBC method had the greatest effect on the F/A modes in the
10-shaker configuration.

7.4.3 Fixed Base Corrected Results with 12 Shakers

After the 10-shaker FBC tests, an additional two shakers (shaker number 11 and number 12) were added on the attachment
hardware known as the aft triangular brackets in the F/A direction, as seen in Fig. 7.17. These two shaker locations were
chosen because the PAT Wing reaction plates showed significant F/A deflection. This method separated some of the coupled
modes and added multiple more diagonal modes on the Cross MAC table, as can be seen in Table 7.3. One highlight is
that the W5B mode, W1T mode, and W3F/A mode were decoupled to some degree. This decoupling was very difficult to
accomplish with only 10 shakers using the FBC method (Table 7.2); it was also difficult to accomplish without using the
FBC method (Table 7.1). The W5B mode, the W1T mode, and the W3F/A mode finally could show up on the Cross MAC
diagonal with values of 0.6 (60%) or better; it is likely that these values were not higher due to some remaining motion in
the base. It is also notable that adding the two shakers reduced the number of modes from 15 (Table 7.2) to 13 (Table 7.3),
again reducing the number of redundant base modes. The 12-shaker FBC configuration was a significant improvement over
the previous 10-shaker FBC configuration, which illustrates how crucial it is to the FBC method that an adequate number of
shakers are added in the correct directions to fix the base modes up to the frequencies that are desired to be measured in the
test article.

Adding the two F/A shakers also allowed the Wing 6th Bending (W6B) mode to show up on the Cross MAC diagonal. As
can be seen in the 10-shaker FBC Cross MAC table (Table 7.2), one of the test W6B modes appeared to couple with the FEM
W3F/A mode due to the F/A motion of the PAT Wing reaction plates. Figure 7.22 compares the W6B mode shapes of the
10-shaker and 12-shaker FBC datasets to show how adding the two F/A shakers removed the W3F/A coupling by removing
some of the base motion in the F/A direction.
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Table 7.3 Cross MAC of Fixed Base Corrected configuration with 12 shakers
Fixed Base Corrected FEM/Test Cross MAC Table
12 Shakers FBC FEM St
Vertical Wingtip Excitation 1 2 3 4 5 6 7 8 9] 100 11 12 13 14
Fully Fixed Pretest FEM (Not Updated)  |W1B |W2B |W1F/A |W3B |W2F/A |W4B |W5B (W1T) |WA1T (W5B) |W3F/A |W6B |W2T (W2T (W4F/A) |W7B |WA4FIA
MAC 3.4| 10.4] 11.3) 225 31.7| 37.2 51.8 55.2| 64.3| 76.8| 92.9 95.3| 103.1 1159
5;' 1|w1B 3.5| 0.98| 0.34 0.17
u:l: 2|w2B 10.1] 0.34| 0.98 0.39 0.18
2| 3lwiFma 10.9 0.96 0.25 0.23
= 4|{W3B 21.3 0.35 0.99 0.41
5|W2F/A 29.7 0.42 0.95 0.19 0.44
6|W4B 35.1 0.32 0.95 0.19
7|WS5B (W1T) 52.2 0.19 0.60 0.30 0.23
8|W1T (W3F/A, Base) 57.1 0.42 0.59
9|W3F/A (Base) 58.2 0.47 0.81 0.47
10|We6B (Base) 77.4 0.15) 0.71 0.21
11|W4F/A (Base) 81.4 0.18 0.54| 0.23 0.69
12|W2T (Base) 98.5 0.92 0.18
13|WT7B (Base) 106.8 0.18| 0.71
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Fig. 7.22 Comparison of Fixed Base Corrected Wing 6th Bending mode shapes with and without wing Fore/Aft coupling (10 versus 12 Shakers)

7.5 Fixed Base Corrected Results with 14 Shakers

Due to the remaining F/A motion in the base, two more shakers were added to the wing root reaction plates (Fig. 7.16 and
Fig. 7.17) to remove most of the remaining base motion in the test article frequency range of interest. While the objective of
the GVT was to accurately capture modes up to W1T, it was desired to examine several higher frequency modes to evaluate
how well the FBC method could work with non-ideal modal boundary conditions.

There was not a significant change in the Cross MAC table between the 12-shaker and 14-shaker tests that used FBC. The
14-shaker FBC table is presented as Table 7.4. The main difference is that the W6B mode showed improvement with the
Cross MAC value increasing from 0.71 (71%) to 0.88 (88%). The W7B mode also improved from 0.71 (71%) to 0.82 (82%).
It is promising that these modes improved, which shows how the FBC method continued to remove more base motion as
more shakers are added in the correct directions and locations on the base.
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Table 7.4 Cross MAC of Fixed Base Corrected configuration with 14 shakers

Fixed Base Corrected FEM/Test Cross MAC Table
14 Shakers FEM Shapes
Fore/Aft and Vertical Wingtip Excitation 1 2 3 4 5 6 7 8 9 10 1 12 13 14
Fully Fixed Pretest FEM (Not Updated) W1B[W2B |W1F/A |W3B |W2F/A (W4B |W5B (W1T) |WA1T (W5B) |W3F/A |WEB |W2T |W2T (WAF/A) |WT7B |W4F/A
Wingtip Excitati MAC 3.4| 10.4 11.3] 225 31.7] 37.2 51.8 55.2 64.3| 76.8] 92.9 95.3] 103.1] 1159
§ 1|Fore/Aft W1B 3.6| 0.99] 0.33 0.17
g 2|Vertical W2B 10.0| 0.29| 0.98 0.40 0.19
E 3|Fore/Aft W1F/IA 11.0 0.94 0.24 0.21
1 alForeian w3B 212 0.34 0.99 0.41
5|Fore/Aft W2F/A 30.2 0.41 0.96 0.18 0.43
6|Fore/AFt W4B 35.2 0.32 0.95 0.20
7|Vertical W5B (W1T) 52.2 0.20 0.69 0.21 0.21
8|Vertical WIT 56.4 0.40 0.57
9|Vertical W3FIA (W1T) 59.1 0.46 0.15 0.73 0.46
10| Vertical WEB (Base) 77.4 0.88 0.23
11| Vertical W4F/A (W2T, Base) 88.6 0.16 0.21 0.50 0.17 017 0.70
12|Vertical W2T (Base) 98.6 0.90 0.20
13|Vertical W7B (Base) 106.4 0.17 0.82

Table 7.5 Frequency percent difference with respect to finite element model between 14-shaker uncor-
rected and 14-shaker Fixed Base Corrected

Frequency (Hz) % Difference to FEM Frequency
e Mode 14-Shaker | 14-Shaker 14-Shaker 14-Shaker

# Description FEM

Uncorrected FBC Uncorrected FBC
1 WI1B 3.4 3.5 3.6 3% 5%
2 W2B 10.4 10.1 10.0 -3% -4%
3 W1F/A 11.3 5.1 11.0 -55% -3%
4 W3B 225 22.0 21.2 -2% -6%
5 W2F/A 31.7 16.5 30.2 -48% -5%
[ wa4aB 37.2 35.4 35.2 -5% -5%
7 W5B (W1T) 51.8 50.4 52.2 -3% 1%
8 WIT | 552 | 565 56.4 2% 2%

Unfortunately, it continued to be difficult to improve the W1T mode and match it to the FEM W1T mode. The cause is
probably the FEM W 1T mode coupling with FEM W5B, so the test data W1T modes with less W5B coupling did not match
as well as would be ideal.

The use of the FBC method significantly reduced the difference between the test frequencies and the fully-fixed FEM
frequencies, as can be seen in Table 7.5. The frequencies with a percent difference under 5% are shaded green, the frequencies
with a percent difference under than 10% are shaded orange, and the frequencies with a percent difference above 10% are
shaded red. Only the modes up to the WIT test objective are shown. Five of the uncorrected redundant base modes were
excluded from this table in order to simplify the comparison between uncorrected and FBC. The F/A modes benefitted the
most from correction. The W1F/A mode percent difference dropped by about 50%, which also corresponded to a large
frequency shift from 5 Hz to 11 Hz. Modes other than F/A did not exhibit frequencies that looked significantly different. The
main thing that the FBC method improved for these modes was cleaning up the test wing mode shapes to better match the
FEM mode shapes, which is reflected by the Cross MAC table values increasing as more shakers were added while using the
FBC method. Some values, however, did not increase significantly due to remaining small amounts of base motion.

Applying the FBC method can either increase or decrease the frequency of an uncorrected mode. If there is an inertial
boundary condition effect (which is common with shake tables), the frequency tends to decrease as FBC is applied. If there
is a stiffness boundary condition effect (which is common with static structures), the frequency tends to increase as FBC is
applied.

A comparison of the W7B modes between the 12-shaker and 14-shaker FBC tests shows a little improvement in the base
stiffness, as can be seen in Fig. 7.23. While both modes were relatively clean after adding so many base shakers, the 14-
shaker configuration reduced the F/A motion of the reaction plates which reduced the Wing 4th Fore/Aft (W4F/A) motion
that the W7B mode shapes were experiencing.
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Fig. 7.23 Comparison of Fixed Base Corrected Wing 7th Bending mode shapes from 12-shaker versus 14-shaker: Wing 4th Fore/Aft coupling
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Fig. 7.24 Comparison of mode indicator functions for 14-shaker uncorrected versus 14-shaker Fixed Base Corrected

One of the primary benefits of applying the FBC method was reducing the base motion that coupled with various wing
modes. One example was the W4F/A mode. In the uncorrected post-processing Mode Indicator Functions (MIFs), there were
two peaks associated with W4F/A: one at 87 Hz, and the other at 95 Hz. Both mode shapes looked similar and the MIF peaks
were about the same size, making it difficult to determine which was the true W4F/A mode. In contrast, there was only one
MIF peak associated with W4F/A in the FBC post-processing at 88 Hz, as can be seen in Fig. 7.24.

In future tests, FBC results could potentially be improved by adding more accelerometers on the wing and base. There
could also be more optimization performed when choosing locations for the base shakers. The PAT Wing GVT shows that
the FBC method is promising, although more research is needed for aeronautics applications.

All of the uncorrected 14-shaker mode shapes can be seen in Fig. 7.25. Only an abbreviated version of the mode shape
names is shown in Fig. 7.25; the complete uncorrected test mode shape names can be seen in Table 7.1.

All of the FBC 14-shaker mode shapes can be seen in Fig. 7.26.
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Fig. 7.25 Isometric mode shape pictures: uncorrected 14-shaker configuration
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7.6 Summary

Passive Aeroelastic Tailored Wing ground vibration test results show the feasibility of using the Fixed Base Correction
(FBC) method to decouple the wing and test fixture modes for a long flexible wing mounted to a dynamically active
static test fixture. The test frequencies and mode shapes of the wing better matched fixed boundary condition finite element
model predictions by using this method. The FBC technique is implemented by applying an excitation to the desired “fixed”
boundary hardware with multiple independent sources (that is, shakers) where there are at least as many independent sources
as there are independent boundary deformations in the test article frequency range of interest. The FBC method then uses the
shaker boundary accelerations (measured by seismic accelerometers) as independent references when calculating frequency
response functions. This FBC method has the potential to change how modal testing is traditionally performed and can save
money and schedule time by eliminating an independent setup for modal testing. The FBC results also produce test results
with reliable and comparable boundary conditions to replicate in and compare with analytical models.
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Chapter 8 )
Nonlinear Normal Mode Estimation with Near-Resonant Steady Sk
State Inputs

Michael Kwarta and Matthew S. Allen

Abstract Nonlinear normal modes (NNMs) have been widely used for understanding and characterizing the motion of
nonlinear structures, yet current methods to measure them experimentally are time-consuming and not always reliable. Since
the structural nonlinearities usually occur when the sample oscillates at high amplitudes, specimens can be damaged or at
least develop fatigue cracks when the testing is lengthy. Moreover, the interaction between the shaker and the structure can
lead to distortions of the excitation force and can impact the quality of the measured test data. In our previous work, we
proposed an NNM estimation algorithm that can help to overcome the issues mentioned above. The approach uses near-
resonant data together with an algorithm based on the Single Nonlinear Resonant Mode (SNRM) method to then estimate
the NNM backbone. The SNRM algorithm, in its original form, requires vibration modes to be well-separated and assumes
no internal resonances between them. This work proposes a possible modification to the algorithm that will allow the modal
coupling to be detected as well. The final version of the algorithm will be first tested with data generated numerically using
a reduced model of a curved beam experiencing modal interactions. Then the method will be used to estimate the NNMs of
a curved steel beam that exhibits significant modal interactions. The results will be validated against those obtained using
well-established testing approaches.

Keywords Nonlinear system identification - Single nonlinear resonant mode Method - Modal coupling - Nonlinear
normal modes - Nonlinear modal analysis

8.1 Overview of the Basic SNRM Algorithm

The authors’ prior work, presented in [1, 2], used the Single Nonlinear Resonant Mode method to predict the Nonlinear
Normal Mode backbone of a mechanical system experiencing very limited modal coupling. That algorithm is based on the
SNRM equation (8.1), which was first proposed in [3].
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where:

— V is the complex amplitude of the velocity signal,

— Q is the forcing frequency,

— ®;, wy;, ¢ are the mode shape, natural frequency and modal damping ratio of the i-th mode, respectively,
— Fis a vector giving the spatial distribution of the sinusoidal excitation force,

— j is the index of the dominant mode,

— N, denotes the number of relevant linear modes, and

— the quantities marked (~) vary with the vibration level.
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To identify a mechanical system experiencing modal coupling, Eq. (8.1) has to be modified. A discussion on how this
might be done is presented in the next sections. The concepts proposed herein are motivated by the measurements collected
in several numerical tests.

8.2 Nonlinear Resonant Steady State Response Analysis

The modifications proposed here are motivated by the results collected in a numerical simulation of a single input Force
Appropriation test. This test was performed on a simulation model of a curved beam with clamped-clamped boundary
conditions. The beam was created using 400 shell elements resulting in a total of 3030 DOFs and was reduced to a 2-mode
ICE-ROM including modes 1 and 2.

The backbone curve of the first Nonlinear Normal Mode of the beam is shown in Fig. 8.1. It consists of three segments
that were computed separately because the response of the beam is unstable in the vicinity of  pairs of
points (1G, 2A) and (2E, 3A), which are marked in the figure. The authors suspect that the structure experiences internal
resonance near pair (1G, 2A). The reason for instability near the backbone’s point of minimum frequency is at this moment
unknown and will be investigated.

The response of the nonlinear part of the mechanical system at point 3D (also marked in Fig. 8.1), decomposed into modal
velocities (t), is presented in Fig. 8.2 and Table 8.1. Figure 8.2 shows time responses of modal velocities, while in Table 8.1
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Fig. 8.1 Segments of the NNM backbone curve presented on frequency-energy plot
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cycles (T = %’) (The cycles almost overlay)
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Table 8.1 Fourier coefficients magnitudes of the first five harmonics of modal velocities presented in Fig. 8.2 and their ratio to the maximal
coefficient value (expressed in %). Values marked with blue correspond to the modes/harmonics which are considered to exhibit modal coupling

Q 2Q2 3Q 4Q 5Q
q1(t) 6.77e-02 (100.00) 1.59¢-02 (23.45) 1.37e-02 (20.29) 3.52e-03 (5.19) 2.58e-03 (3.81)
qa2(1) 1.04e-03 (1.54) 2.84e-02 (41.89) 1.87e-03 (2.76) 6.48e-03 (9.57) 9.61e-04 (1.42)

the magnitudes of their Fourier coefficients are presented and compared with one another indicating which modes/harmonics
participate the most in the system’s response. The quantities q(¢) and v;'.l (t) are defined in Eqs. (8.2) and (8.3), respectively.

q1(t)
qn =20 | =o'V (8.2)

Table 8.1 shows that the modal coupling at point 3D takes place between five modes/harmonics. Namely, between
mode one occurring as first, second and third harmonics and mode two occurring as second and fourth harmonics. These
modes/harmonics are also dominant in the steady-state response of the structure oscillating in the vicinity of point 3D.
Thus it might be possible to estimate the NNM parameters based on the near-resonant measurements, even if the structure
experiences modal coupling. The next section presents an overview of a concept that could be used to modify the original
SNRM formulation so that it can successfully identify a nonlinear mechanical system using near-resonant response data such
as that shown here.

8.3 Discussion on the SNRM Algorithm Extension

A generalized form of the SNRM model function is presented in Eq. (8.3). Rather than expressing the response using a
single complex amplitude, as in Eq. (8.1), it considers the motion over a certain time. Hence, one could include the sub-
or higher-harmonics in the system’s response (as e.g. indicated in Table 8.1). This form also brings the model closer to the
original Nonlinear Normal Modes definition, which introduces them as (non-necessarily synchronous) periodic motions of
the conservative system [4].

Niin

T i Q2
yneas (t) — Vn~l(t) + RG{Z q’kq)k FQ ¢'*4 }
J k=1w(2),k - Q2+ 2i S (2 ’

kj

(8.3)

Vi (n)

where:
— V™% (1) is the full-field velocity response of the structure (measured experimentally or numerically),
- v;'.l (¢) is the full-field nonlinear velocity response of the structure oscillating near the j-th NNM and

- vlj" "(t) is a term responsible for modeling the response of the system far from the j-th NNM.

One of the possible concepts of how to express the quantity v’}l is shown in Eq. (8.4). This formula allows for modeling the
response with several modes and/or harmonics. Additionally, it has certain similarities to the nonlinear term from Eq. (8.1),
which facilitates a physical interpretation of the new quantities introduced in (8.4).
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The new quantities introduced in Eq. (8.4) are defined as follows:

— N,y indicates how many coupling terms should be considered in the system identification process,

- ¢ j(n) is the damping ratio corresponding to mode ® ;(n) which is expected to occur in the system response. If ¢ j(n)isa
large number than the mode @ ; () is negligible in the system’s response.

— hj(n) indicates if the mode @ ;(n) vibrates with the forcing frequency € (h;(n) = 1), or if it appears as a sub- or higher
harmonic (k;(n) # 1).

In the case study presented in the previous section, which focuses on the motion near the first NNM (j = 1),
the quantities introduced above should be given the following values: N, = 5, ®1(n) = [<I>1 ¢ & Oy <I>2],
hi(n) = [1 232 4] and £i(n) = [El,l 21,2 21,3 21)4 51’5]. The damping ratios of the coupled modes
(El,k, k € {1,...,5}) could be modeled as unknown functions of vibration level, with values known when the system
vibrates at low amplitudes. At low vibration levels, the response of the structure is dominated by the underlying linear
system. Thus, 51,1 = Elli” and fl‘k, k € {2,...,5} should be given large enough values, so that the contribution of the their
pseudo-modes to the system’s response can be treated as negligible.

The extension to the SNRM algorithm discussed briefly in this section is one of several possible concepts the authors are
currently investigating. The final version of the model function (8.4) and the discussion on its correctness from the physical
standpoint as well as the ability to capture modal interactions experienced by the oscillating structure will be presented at the
conference.

8.4 Conclusion and Future Work

This work briefly discussed one possible modification to the SNRM algorithm that would enable it to capture modal coupling.
The main goal of this extension is to estimate the Nonlinear Normal Mode backbone curve and additionally detect the modal
interaction. The authors are currently investigating variations on the model function in (8.4) in order to determine which to
implement in the final version of the system identification algorithm.

In future work, the method will be tested numerically using a ROM of a curved beam, which experiences significant modal
coupling. Then the algorithm will be used to identify the NNMs of a curved steel beam that exhibits modal interactions. The
results will be validated against those obtained using well-established testing approaches.
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Chapter 9 )
Automatic Modal Parameter Identification with Methods g
of Artificial Intelligence

Maik Gollnick, Daniel Herfert, and Jan Heimann

Abstract The increasing use of operational and experimental modal analysis provides experienced and inexperienced users
always face new challenges. Automated evaluation, as a tool for distinguishing between physical and mathematical poles
and for removing uncertainties in the accuracy of results, is becoming increasingly important (Jenny Lau, et al.: “Automatic
modal analysis: reality or myth?”). This work deals specifically with the description of extreme values and their automated
selection in indicator functions. The developed method is based on methods of pattern recognition and artificial intelligence
and does not require any further parameters and or expert knowledge for later execution. The functional values of the indicator
functions are represented by a simple feature vector with small dimensions and classified by a “Support Vector Machine”
(SVM). Since the characteristics describe the function course, they are independent of the measurement parameters, such
as sampling rate or frequency spacing. To increase robustness, existing methods from the field of “computer vision” were
adapted and new ideas developed. Due to the versatile applicability of the method, an enormous database is required for the
learning process. Therefore, a method for the creation of a training basis with synthetic data was developed. This covers a
very wide range of applications and special cases, such as modes that are close together or strongly damped. In addition, the
influence of inaccuracies, such as sensor noise, was modelled.

Keywords Modal analysis - Identification - Artificial intelligence - Peak detection

Nomenclature
Ng Number of reference frequency response functions
N Number of spectral lines (frequencies)

w Frequency (rad/s)

[H(w)] Frequency response function matrix

[T] Eigenvector matrix

[A] Eigenvalue matrix (diagonal)

[U] Left singular vector matrix (unitary)

[Z] Signular value matrix (diagonal)

[V] Right singular vector matrix (unitary)

Ag kth eigenvalue

pIy kth singular value

l(w) Left prominence feature at frequency w
r(w) Right prominence feature at frequency @
h(w) Relative height feature at frequency w
CMIFy, kth complex mode indicator function

0 Hermitian (conjugate transpose) of matrix
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9.1 Introduction

The automatic determination of modal parameters is an essential point to perform a modal analysis even without much
previous knowledge of the user. Furthermore, automatic reproducible determination is very important for monitoring
applications that also use modal parameters. This work deals specifically with the description of extreme values and their
automated selection in indicator functions. This approach tries to use the same parameters to determine the modal parameters
that a human would use for evaluation. Thereby the indicator functions are represented by a simple feature vector with small
dimensions and classified by a SVM [2]. The features were selected so that they describe the function independently of
measurement parameters. This means, for example, that they are independent of sampling rate or frequency spacing.

This approach for automatic determination of modal parameters is integrated in the vibration analysis software
Wavelmage Modal [6]. It thereby offers the use of experimental modal analysis not only for experts, but also for beginners
and completes the package to perform a dynamic structural analysis. In addition to the intuitive acquisition of data using
the recorder module, the entire modal analysis process is simplified and combined in a single software package. Also, the
modal parameters obtained in this way can be used directly to improve the FE simulation via model updating. In addition
to experimental modal analysis, the software also provides operational modal analysis, operating deflection shapes, order
analysis and a large number of options for signal processing. Wavelmage is specialized in processing large amounts of data
of several Gigabytes (e.g. Laser Doppler Measurements).

The automatic modal parameter identification is validated in this publication exclusively by examples of experimental
modal analysis. However, it can also be used in the software for applications of operational modal analysis.

9.2 Background

The method presented in this work is based on procedures and their approaches from the field of machine vision and image
comprehension. The sense and content of the data is achieved by the description and classification via representing object
features. The characteristics are determined as generally as possible and independent of external parameters, so that the
recognition of the same object under changed conditions is guaranteed. This approach has been transferred to modal analysis
for finding peaks in indicator functions. The peak locations are described and classified by general properties.

The procedure is applicable to many types of indicator functions and is not specialized for a particular type. In addition,
the developed method serves only as pre-processing for modal analysis, since the semantics of a peak (physical or complex
mode) are not considered.

Due to the widespread use of the “Complex Mode Indicator Function” (CMIF) [3] in the field of modal analysis, this
function was chosen as a reference example. Furthermore, the CMIF method offers an easy and efficient way to determine
modal parameters of a complex object.

The first formulation of the CMIF process was based on the eigenvalue decomposition of the following matrix:

H)"H () =T (0) A () T(0)? 9.1)

It quickly became clear that singular value decomposition (SVD) of the FRF matrix was a more practical approach and
that it could dispense the matrix multiplication H(w)" H(w). Thus, the CMIF method for the FRF matrix H(w) is defined by
each frequency w:

H(w) = U (0) T () V(o) (9.2)

The matrix U(w) forms the left singular vectors (the approximated mode shapes) and the matrix V(w) the right singular
vectors (the approximated modal participation factors). The k CMIF curves are given by the singular values Xy (w) for the
number of reference FRFs Ny at each frequency w. The reference to the eigenvalue decomposition is given by:

VA (w) =2 (w),k=1,2,..Ng 9.3)

The natural frequencies and modes close to each other can be identified by peaks in the different CMIF curves. But
not every peak corresponds to a mode, since they can also be caused by noise, leakage effects, non-linearity, or the cross
eigenvalue effect [7].
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9.3 Peak Descriptor

For the automatic recognition of peaks in indicator functions, three phases are passed through: the pre-processing of the
available data, the compilation of feature vectors and the classification. In the first phase, all data-improving preprocessing
steps are possible. Since the procedures are often related to a use case, prior knowledge of the possible characteristics of the
peaks is always required. For example the window size of a median filter is always data specific and not generally usable. In
order to guarantee the general applicability of this method, this paper has only decided to remove the linear trend.

In the second phase, a feature vector is constructed to distinguish peaks from any other function value. The three features
are: left /(w;) and right r(w;) prominence and the relative height h(w;) of a peak at frequency w;.

1 () = |{w; < 0i | CMIFy (0j) < CMIFy (w;) and 1 with j <1 <iand CMIFy () > CMIF (0)}| /NF

(9.4)
r(w) = |{w; > w; | CMIFy (0;) < CMIFy (w;) and }l with j <1 <iand CMIFy (o) > CMIFy (w))}| /NF
9.5)
h(wﬂ:max(min CMIF; (a)j), min CM 1 Fy, (wj)) 9.6)
Wj<w; Wj>w;j

The left prominence describes the number of consecutive function values that are smaller to the left of the currently
viewed frequency. The right prominence accordingly the smaller values on the right hand side. So this counter is independent
of frequency spacing because it is normalized by the number of frequency lines for the respective indicator function (see Fig.
9.1).

As shown in Fig. 9.1, peaks are represented by a high left and right prominence. In contrast, noise peaks produce small
values for both features or are distributed along one of the feature axes. This example shows two weak points. On one hand,
both features are always related to the position of the peak within the considered frequency band and on the other hand,
modes close to each other are difficult to separate, since the stronger ones dominates the weaker ones. If the peak is moved
from frequency zero to the nyquist frequency, the behavior in the feature space can be seen in Fig. 9.2.

The Fig. 9.2 clearly shows that the position of a peak is described by a straight line in the feature space. For the separability
between peaks and noise, it means that a peak cannot occur at the left or right edge of the frequency band, if it is to be reliably
distinguished from a noise peak. Therefore, it must be ensured during the measurement that a sufficiently large frequency
interval is covered and that the significant peaks are not at the edge.

For better separability, the relative height of a maximum has been defined as the difference between the current peak and
the maximum of the left and the right minimum value is calculated (see Fig. 9.3). Finally, the altitude value is scaled to the
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Fig. 9.1 Left: Example of an indicator function with two peaks to show the left and right peak prominence. Right: Indicator function transformed
to feature space
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Fig. 9.2 Left: Moving peak from 1 kHz to 9 kHz. Right: Behavior of moving peaks in the feature space
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Fig. 9.3 Left: Example of an indicator function with one peak to show the relative height. Right: Indicator function transformed to feature space

current frequency band between [0..1]. The resulting feature is independent of different altitude levels in indicator functions.
In summary, a peak is defined either by a high left and right prominence and/or by a high relative height value.

9.4 Generation of Training Data

The training data can consist of real measurement data or synthetic data. To insert measurement data, it must be manually
pre-processed so that peaks and non-peaks are marked. This process requires a considerable amount of additional work,
since a large amount of data must be available in order to map sufficient variations in peaks and each data set must also be
processed manually. In addition, errors can always occur during preprocessing by humans, such as incorrectly marked peaks,
which have a negative impact on the classification. Therefore, synthetic training data were used in this paper. Thus, expertise
on peaks and non-peaks contributes to the structure of synthetic indicator functions and it is possible to correct and/or extend

the training set at any time.
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For the synthetic indication functions, the decaying sinusoidal oscillations were generated by the following equation:

y=Y Ajetsin@ o fir1) 9.7)
i=1

The parameters amplitude A;, decay t and frequency f; were randomly generated. To generate the time vector and to
restrict the frequencies f;, the sampling rate, the number of frequency lines and the number of frequencies n contained in the
signal were set to a fixed value. Since the features are independent of these parameters, a random assignment is not necessary.
Finally, white noise was added.

9.5 Classification

The basic design of a “Support Vector Machine” (SVM) [2] requires a training set that defines which class belongs to which
data set. The training objects are presented as feature vectors in a vector space. In our case, this is the R3. The assignment of
the training data to classes is realized by a hyperplane, which acts as a separation plane. The minimal distance of the sets of
vectors to the plane is maximized. This should guarantee a better separability of non-trivial data.

For objects that are not linearly separable, the hyperplane is transferred to a higher dimensional space. In this space,
with a sufficiently high dimension, the training data can again be separated linearly. When transforming back into a space
with a smaller dimension, the linear hyperplane becomes a non-linear, possibly non-contiguous hyperplane. The so-called
“kernel trick” is used to reduce the complexity and the calculation load for the outward and backward transformation. Kernel
functions are used to describe the hyperplane in the low and the high dimensional spaces. With this step, the support vectors
at the edge of the hyperplane are sufficient to fully describe the outer boundaries of the classes.

By generating synthetic indicator functions, the size of the training data quickly increases, since we try to cover every
special case. In addition, a clear linear separation is not always guaranteed. Noise or other simulated disturbances for example
can shift positions of non-peaks from one class to another. These effects can be minimized by using an SVM with suitable
kernel functions.

To get these suitable kernel functions, the used SVM was optimized with regard to the training data using an “Iterative
Single Data Algorithm” (ISDA) [4] and the assumption of 5% outliers.

9.6 Measurement Setup

Two structures were measured and simulated as part of the publication [5]. These are a flange and a UAV rotor blade.

The vibration response of a stainless steel flange (120 mm x 14 mm) to a force excitation was investigated. The flange
was attached to a frame with a rubber band. Thus free boundary conditions can be assumed on the entire surface. The flange
was excited by a shaker (PCB SmartShaker with integrated power amplifier, model K2007E01) via a thin stinger (diameter
approx. 2 mm). In order to get a force transmission only normal to the surface the stinger with force sensor (PCB type
208C02) was mounted on the back side at the outer edge using glue, see Fig. 9.4 (left). The system response of the flange to
the force excitation was measured with a 3D-Laser Doppler Vibrometer (3D-LSV) measurement system (PSV-500, Polytec).
As test signal a periodic chirp was used. Based on simulation results, the frequency range of the excitation was limited to
4-12 kHz. The surface velocities in all three directions (x, y,z) were scanned using an unevenly distributed mesh grid with
more than 200 measuring points over the whole surface of the flange. The correlation between excitation and response leads
to the individual frequency response function for each measuring point. This is used to identify the modal parameters.

The system response of a carbon fiber reinforced polymer (CFRP) rotor blade was investigated. The rotor blade (274 mm
length) was fixed at its root on one side in order to realize the actual installation situation. For this purpose the rotor blade was
mounted to a frame. The light structure was excited broadly by an automatic modal hammer (WaveHit, gfai tech GmbH) to
avoid additional mass coupling by a sensor. In order to achieve a sufficient force transmission the location of the impact have
been chosen to be on the free end of the blade tip, see Fig. 9.4 (right). The modal hammer, as a full automatic device, was
synchronized with 3D-LSV data acquisition system, which measured the individual system response in all three directions
(x, ¥, z) at 170 unevenly distributed measuring points on the whole surface of the structure.
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Fig. 9.4 Left: Setup for the Experimental Modal Analysis on a flange. The structure with free boundary conditions is excited by a shaker between
4-12 kHz. Acquisition of the system response via 3D-LSV. Right: Setup for the Experimental Modal Analysis on a rotor blade. The structure fixed
on one side was excited broadly by an automatic modal hammer (WaveHit, gfai tech GmbH). Acquisition of the system response via 3D-LSV
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Fig. 9.5 Left: First CMIF curve of a stainless steel flange. Right: First CMIF curve of an UAV rotor blade. Classified peaks are marked

To create the training data, indicator functions with a sampling rate of 20 kHz and a frequency spacing of 0.0005 Hz
were generated. The amplitude, decay and frequencies of the sinusoidal oscillation were randomly generated and white noise
was added. The training set consisted of a total of 6044 peaks and 99,940 non-peaks. The classification was applied to the
CMIF curves of the stainless steel flange and rotor blade. Both objects were excited at one reference point, shaker and modal
hammer, respectively. This meant that only one CMIF curve was available for the evaluation of both measurement objects
(see Fig. 9.5).

Figure 9.5 shows the results of the classification for the stainless steel flange and rotor blade using the first CMIF curve.
It becomes clear that nearly all peaks are found correctly by the applied method. Peaks with too low height and to low left
or right prominence are classified as non-peak. The frequency 6043 Hz for the stainless steel flange and the frequencies
1023 Hz, 1775 Hz and 2405 Hz for the rotor blade were not detected as peaks. This result is due to the fact that these peak
characteristics were not taken into account during the learning process. The amount of training must therefore be adjusted
with regard to these variants.

In summary, it becomes clear that peaks and non-peaks in the feature space are distinct from each other (see Figs. 9.6, 9.7
and 9.8) and that the respective features complement each other.
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Fig. 9.6 Left: Indicator function (stainless steel flange) transformed to feature space. Right: Indicator function (UAV rotor blade) transformed to
feature space. Relative height and right prominence plane is shown
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Fig. 9.7 Left: Indicator function (stainless steel flange) transformed to feature space. Right: Indicator function (UAV rotor blade) transformed to
feature space. Relative height and left prominence plane is shown

9.7 Conclusion

In this paper a new machine learning based approach for automatic peak finding is presented. For this purpose a feature
vector consisting of the left and right peak prominence and relative height was presented. In addition, an approach for the
synthetic creation of learning data was described as an alternative to use real data. With this method, a lot of training data
was generated quickly and flexibly. All possible peak characteristics are mapped and disturbances such as sensor noise were
modelled. Furthermore, the use of synthetic data reduces the additional effort involved in compiling training examples and
avoids possible errors by the user. For classification, an SVM was optimized with the “Iterative Single Data Algorithm”
and under the assumption of 5% outliers. The results of the classification procedure were presented by 3D -Laser Doppler
Vibrometer measurements on a stainless steel flange and a reinforced polymer (CFRP) rotor blade. The CMIF curves were
used as indicator functions. For further investigations, modal indicators, such as the average or modal coherence, can be
added as characteristics, to better adapt the solution to the application of modal analysis.
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Chapter 10 )
A Single Step Modal Parameter Estimation Algorithm: Ao
Computing Residues from Numerator Matrix Coefficients

of Rational Fractions

Nimish Pandiya, Christian Dindorf, and Wim Desmet

Abstract The current state-of-the-art modal parameter estimation algorithms follow a two-step procedure to estimate from
measurements, the modal parameters in the form of complex natural frequencies (poles), participation and modal vectors,
and modal scaling factors. The current work investigates the use of previously neglected matrix-coefficients of the numerator
polynomial in the rational fraction matrix description model for computing the residues for each of the poles identified.
While the denominator polynomial describes the global characteristics of the system, the local characteristics are included
in the numerator polynomial and residues and residuals may be extracted by appropriate mathematical manipulations. The
procedure is labeled as a “single-step” algorithm mainly because the least-squares fitting using the measured frequency
response functions is carried out only once. The proposed method is applied to a lumped mass multi-degree-of-freedom
system where the frequency response function matrix is truncated in its output degrees of freedom to mimic a realistically
measured multiple-input multiple-output frequency response function matrix. The parameters are validated against the
traditional two-step approach using the accuracy of the reconstructed frequency response functions and several existing
model validation techniques. The results indicate that the proposed algorithm yields an accurate model of the dynamic
system under test.

Keywords Modal parameter estimation - Rational fraction model - Partial fraction model - Residue estimation -
Stabilization chart

10.1 Introduction

Modal parameter estimation (MPE) refers to system identification of vibrating structures by fitting a known parametric
model to measured frequency (FRF) or impulse (IRF) response functions. The parameters computed, i.e. complex natural
frequencies, mode-shapes and participation vectors, and modal scaling factors [1], describe the dynamics of the structure
under test in a linear regime. As such, MPE finds applications in analyses of vibrating structures like finite-element model
verification and validation, reduced-order modeling, sub-structuring etc. With a long history [2] of successfully proposed
approaches associated with it, the maturity of this branch of research may be gauged by the current research focus being
on statistical approaches [3], operational modal parameter estimation [4] and minimizing user interaction during the MPE
process [5, 6]. Applicability to industrial (and noisy) data is the driving force behind investigations and much effort has been
put into handling and tracking of measured functions and validation of results from realistically damped systems.
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The current standard commercial algorithms (e.g. PolyMax [7]) employ a two-step process for the computation of the said
parameters. The Unified Matrix Polynomial Approach (UMPA) [8] provides a general framework for various algorithms and
is also used in this work. UMPA utilizes measured FRFs (or IRFs) to compute a rational fraction model (Equation 10.3)
by minimizing residuals in a least-squares sense. The complex natural frequencies and participation vectors are obtained in
the first step by carrying out an eigen-value decomposition on a companion matrix derived from the denominator matrix-
coefficients. The numerator coefficients on the other hand are eliminated [7] or left unused [8]. After the selection of valid
poles (typically done by the analyst using a stabilization/consistency chart [9]), the calculation of the residue and the residuals
from the pole-residue representation of FRFs (Equation 10.11) is accomplished in a second step. The modal model is often
validated by using metrics like modal assurance criterion (MAC) [10], mean phase correlation (MPC), mean phase deviation
(MPD) and synthesis correlation coefficient [9, 11].

The present research aims at answering a more basic question — can the numerator coefficients be manipulated to make
the complete residue information available during the pole selection phase, to be included in the stabilization chart?

10.2 Theoretical Background

A left matrix-factor description (MFD) is used to ascribe a rational fraction model to measured FRF data (Equation 10.1).
The complete process is transferable to a right MFD form, but for the sake of simplicity, only one development is discussed.

[H(S)]NOXNi - I:lz:l; |:[Oli]Sii|i|N:XN(,|:r:lz:_;1 [[ﬂi]Si]]NoxNi - I:i:ij:nl |:[Ri]SiiIiINaxNi (101)

Here, [H (s)] represents the transfer function (s = j(2mf), for measured frequency response functions, f being the
sampled frequency in Hz). Its size is defined by the number of outputs (N,) and the number of inputs (V;) for each frequency
line observed (N y). The denominator polynomial model order is indicated by m, while n; and n, indicate the order of the
polynomials used to represent the lower and upper residuals respectively.

The description in Equation 10.1 is in terms of complex frequency. The equation holds for Ny number of frequencies
on the positive imaginary frequency axis and Ny on the negative imaginary frequency axis. The reader is referred to the
concept of characteristic space in [2]. Naturally, since the negative frequencies are not measured, they are simply assigned as
complex conjugates of the positive imaginary axis in the complex plane. The FRFs are also assigned as complex conjugates
of the corresponding positive frequency FRFs.

The terms in Equation 10.1 can be rearranged to result in the system shown in Equation 10.2, which is effectively the
rational fraction model with additional numerator coefficients for inclusion of residual terms. This is discussed in detail by
Fladung [12] and hereafter, the values n; = 2, n,, = 0 are used for physical inertia and stiffness residuals.

m m+ny

[Z [[ai]sf][Hm]] = [ 3 [[ﬁ)]siﬂ (102)

i=0 i=—ny

To avoid calculation of the trivial solution, without any loss in generality, the highest alpha coefficient is assumed to be the
identity matrix. Equation 10.3 for each frequency (N, = 2N frequency lines) is then be used to set up an over-determined
system of linear equations, which is solved in a least squares sense to recover the matrix coefficients. The complete setup of
the over-determined least-squares problem is shown in Appendix B of [8] for a right MFD formulation, which is simply the
transposed version of the left MFD equation.

m—1 m-ny,
[Z [[ai]si][H(s)” _ [ 3 [[Bi]si][l]] = [— [l][H(s)]sm:| (10.3)
i=0 i=—n;
The inversion of the Vandermonde-type matrix obtained by arranging the measurements in Equation 10.3 is an
ill-conditioned problem and often a Z-transform approach is used to improve the conditioning. By substituting s =
exp(2jm f At), the complex two-sided FRF is wrapped around a unit circle such that any increase in the frequency values is
essentially a rotation in the complex plane. Here, f is the frequency under transformation and At is the discrete time interval
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obtained from the Nyquist criterion. Employing orthogonal polynomials [8] for frequency tranformation results is another
approach to improve conditioning, but is computationally more expensive.

Once the least squares solution for the rational fraction matrix-coefficients (both [«;] and [3,-]) is computed, the residue
and the numerator matrix-coefficients may be separated using a simple, fully determined de-convolution solution as shown in
[12]. Hence for each model order iteration, the complete set of [«], [B], [ﬁ ] and [R] coefficients is available i.e. Equation 10.4
is fully defined.

[H(s)] = [a)] B+ [R($)] = [a(s)] [A(s)] (10.4)

Where,

la(s)] = [

m
i=0 Nox N,

]

[B(5)] = [mZ [[ﬂi]s"”

i=0 Ny x N;

ny

[R(s)] = [ 3 [[R,-]s"ﬂ

F— NoxN;
[B<s>]=[n§[[l][ﬂi]s"”N N+[ij[[a,-]si]]N N[Z [[R,»]si]L )
i=0 o X Vi i=0 oxXNoli=—p, o XN

Normally, the numerator matrix-coefficients remain unused and are discarded [8] or they are expressed in the form of
denominator matrix-coefficients [7] to improve the speed of the least-squares solution. The denominator coefficients are
used to construct a companion matrix, and its eigen-values and eigen-vectors (state-vectors of the order of the polynomial)
are calculated. These poles and vectors are then used to build the stabilization chart.

However, instead of utilizing anything but the denominator matrix-coefficients, all the available information is used to
compute the residues. The algorithm from Vu [13, 14] allows the inverse of a square matrix-coefficient polynomial to be
described as a ratio of its adjoint (matrix-coefficient) polynomial and the characteristic (monic) equation (Equation 10.5).

(No_l) [
| f o]
S dist d

[l n, = (10.5)

The algorithm requires recursive computation of a new set of matrices as defined in Equation 10.6 and coefficients as
defined in Equation 10.7 for the nth model order.

c d

(Bl =Y D ((Bamw.c-llewliool ™) (10.6)

v=1 w=1
Where,c =1,2,...,Ny,; d=0,1,...,Nyxn; and, [Bo.]=[xo]"

i

J
bji=- Z Z ((_l)c_lbjfc,ifd * trace([Bd,c])) (10.7)
c=1d=0

~.| —

Where,i =0,1,2,..., N, *n
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The coefficients required in Equation 10.5 are then computed using the Equations 10.8 and 10.9.
dl‘ = dan,,i (10.8)

-1

o] = Z > (1%, -1-cima  trace((BacD) (109)

c=0 d=0

The eigen-solution using the companion matrix leads to the same poles as the roots of the characteristic equation [15].
In other words, the characteristic equations of a square polynomial matrix and the companion matrix constructed using its
matrix-coefficients is identical. The monic denominator-polynomial can hence be used to to obtain the eigen-frequencies
present in the frequency range of interest.

The FRF matrix (or generally the transfer function matrix) is expressed using Equations 10.4 and 10.5 as:

e (s)In, xN, [B(S)IN, xN;

H x Nj
[H ()N, xN; = d(s)1x1

+ [R($)]IN,xN; (10.10)

The residues for each of the poles are computed by substituting the partial-fraction model (Equation 10.11) of the FRF in
Equation 10.10.

A,
o). - (4250 ) o]

i=—ny NOXNZ'

In conjunction with Equation 10.17, UMPA uses this equation system for the second least-squares step for estimating the
scaling factors and modal vectors [8]. Equation 10.12 is over-determined using the frequencies available according to the
frequency range selected.

[H(s)]Nan,- - [Lr]N(,sz,L —1A

By multiplying the resulting equation throughout by the factor (s — A,), the equation for the residue [A,] of the rth pole
emerges (Equation 10.13).

+
[Ar] = lim <[H(s)] % (s — A,)) = lim ([M + [R(s)]] % (s — ,\,)> (10.13)
Ny x N; S—Ar s—Ar d(s)

Since A, is a root of the polynomial represented by d(s), the limit takes an indeterminate form (the numerator and
denominator both vanish at 1,). However, since the denominator is now a monic polynomial, L’Hdopitals rule may easily
applied to compute the limit for the residue.

[A ] _ ([06+(S)][ﬂ(8)])
"Inyx N d’'(s)

Hence, the residue is calculated for each pole at each model order using Equation 10.15. This added information is
beneficial in applying an additional filter to the stabilization chart during the pole selection stage to test for consistency of
residues between successive model order iterations.

[ ] 2 fin]

o]
[ "INy xn; T S Nom ;g si=1

o, ., + X tm] 1012

r J2N, x 2N, i=—n N, x Nj

(10.14)

S=Ar

(10.15)

S=Ay
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The residue in Equation 10.15 is evaluated in the Z-domain and it must be scaled back to the complex-domain of the
original FRFs so that it may be used to reconstruct FRFs. The scaling factor is derived in Equation 10.16 and is dependent
on the Z-domain pole.

[+]
)

4], =
(jo) Sk At

(10.16)

It is also noteworthy that the residue is of unity rank. The rows of the residue matrix are the modal vectors scaled by
appropriate entries from the participation vectors. Therefore, the row-wise (or column-wise) MAC is expected to be unity,
indicating complete linear dependency of the residue matrix on each row/column. The structure of the residue matrix is
shown in Equation 10.17.

I:Ar:IND N = O,[L]In, x 2N,.[Wr]51]vr x N (10.17)

i

Here, Q; is the modal scaling factor, [L,] is the matrix of modal participation vectors and [-] is the matrix of mode shape
vectors. H denotes the Hermitian (complex-conjugate transpose) operation on a matrix.

The comparison of the residue matrices obtained from the proposed methodology and the “traditional” process can hence
be accomplished using MAC at each pole. Additionally, MPC and MPD metrics [16] that are applied to modal vectors can
also be applied to the residue matrix after reshaping it into a vector.

A summary of the current modal parameter estimation process, alongside the proposed method, is shown in Fig. 10.1.

Visualization using CMIF, auto-moment etc. 47/ Measured FRF data /
User inputs highest model order and frequency band
E Proposed methodology
Least squares solution for matrix coefficients for ;3 _kr S ; ] ¢
: . . +— Deconvolve to get numerator coefficients .
F each model order iteration E N = J s
%g ‘ E E ' ‘ ™ E
Z H Eliminate numerator coefficients : ' Adjoint and characteristic polynomials :
H » -
' v sl s v -
: Eigen solution of companion matrix for poles and b 3 Roots of the characteristic polynomial for :
. participation vectors ¥ poles )
g )| -
Stability Chart -~ Evaluate residues for all poles :
HERS B
User selects valid poles ;
.- - ] — : :
: - . :
ai | Leastsquares solution for modal vectors and modal i :
2 scaling factors : :
ZH: 1 : :
L ¥ : :
Validation of modal model = :
(FRF reconstruction, MAC, MPC, MPD etc.) N :

Fig. 10.1 The basic modal parameter estimation algorithm along with proposed modifications to bypass the second stage
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10.3 Analysis

The proposed method was evaluated on a theoretical system which is shown in Fig. 10.2. The lumped parameter model’s
FRF matrix was constructed using complete information about the masses, stiffness coefficients and proportional-damping
coefficients. The square FRF (9 x 9) matrix was then truncated to a rectangular size ((N, =) 4 outputs and (N; =) 9 inputs)
to mimic experimental matrix sizes.

Figure 10.3 shows the Complex Mode Indicator Function (CMIF) used to select a suitable frequency range of interest
for the MPE process. The model order (m) is a user-input and for this case ranged from 2 to 10. The proposed method
was applied post the least squares estimate of the matrix-coefficients. Using the traditional process, the stabilization chart
(Fig. 10.4), was constructed to select valid poles and was limited to a participation vector consistency check (blue diamonds).
Due to the proposed approach, the calculation of residues for all computed poles allowed for an additional consistency check
(for residues). This was applied to the pole results to obtain the stabilization chart shown in Fig. 10.5. Table 10.1 shows the
tolerances used to construct these stabilization charts.

From a comparison of the Figs. 10.4 and 10.5, it is observed that the poles showing consistency in participation vector
estimates also show consistency in their residue estimates. Although this is expected for the current case due to absence of
noise, it must be noted that this extra consistency parameter may be useful towards plotting very clear stabilization charts
in practical situations and for autonomous parameter estimation. It has been shown that inclusion of the residue information
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Fig. 10.2 The 9-DoF lumped mass system used for evaluating the proposal. The lumped masses are represented by the solid blocks, while the
dashed lines each represent a spring and dash-pot connecting the masses. The blue highlights represent the input locations (the long dimension of
the FRF matrix), while the green highlight implies the output locations that are “observed” i.e. DoFs which the FRF matrix is truncated to (the
short dimension of the FRF matrix)
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Fig. 10.3 Complex Mode Indicator Function for the system under test. The bands limit the number of frequencies used for the least squares
solution from 13.75 to 40 Hz
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Fig. 10.5 Stabilization chart with residue comparison between iterations. The solid symbols indicate the selected poles and are numerically the

same as the ones shown selected in Fig. 10.4

Table 10.1 Tolerances utilized for the construction of the stabilization chart. The legends in Figs. 10.4 and 10.5 may be referred for the symbols

used [8]

Consistency metric Tolerance Description

None - (Initial assignment)

Condition <100 Condition number check
Realistic Negative real part Filter out positively damped poles
Conjugate 0.1% Conjugate check

Frequency 0.5% Imaginary part of pole

Pole 1% Complex pole

Vector 5% Participation vector

Residue 5% Scaled residue
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Pole 1: 19.105081 Hz
Group 1: Traditional Residue
Group 2: Proposed Residue

Pole 2: 23.432167 Hz
Group 1: Traditional Residue
Group 2: Proposed Residue
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Pole 3: 26.930614 Hz

Group 1: Traditional Residue

Group 2: Proposed Residue
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Fig. 10.6 MAC matrix for dependence of columns of the residue matrix obtained from traditional and the proposed process for the three poles

(from the second-step least squares computation) in the pole selection phase is seen to improve the clarity of the stabilization

chart [16].

To compare the models obtained from the two approaches, the residues were also computed using the second least-

squares step for the selected poles in Fig. 10.4. The two sets were compared using a modal assurance criterion approach.
This is possible due to the structure of the residue matrix, shown in Equation 10.17. The column-wise MAC was expected to
show complete linear dependence of the columns and this was indeed the case. Figure 10.6 shows a MAC plot of residue for
each of the 6 poles (3 positive frequencies and 3 negative frequencies). The columns of the residues correspond to the long
dimension (4 elements in 9 vectors) and show a unity MAC value throughout. The MAC plots also indicate that the residues
from the proposed method are of unity rank since the residues from the traditional two-step process are forced to be of unity
rank.

The FRFs were then reconstructed using the residue from the traditional as well as the proposed approach, and plotted
against the original FRFs (Fig. 10.7, for example). It may be seen from the reconstructed FRF curves that the proposed
process identifies the same modal model as traditional process. Of course, a deviation between the two modal models is to
be expected in presence of noise in the measurements.

The residues, after being reshaped as vectors were also plotted in the complex plane (Fig. 10.8) and the mean phase
correlations indicated that both the methods resulted in real modes. The low deviations from the mean phase for all the poles
and the imaginary nature of the residues both indicate a correct estimation of the modal model.

It is worthwhile to mention that there is no restriction on the complexity or scaling of the modal residue under the proposed
scheme. There are various scaling strategies for the participation vectors that have been applied to clear up the stabilization



10 A Single Step Modal Parameter Estimation Algorithm: Computing. . . 105

Reconstructed FRF: Input DoF 1, Output DoF 1

102 E T T T T
F Original System FRF
Z Reconstructed FRF: Traditional 2-step MPE | 3
E 100k Reconstructed FRF: Proposed 1-step MPE ..
=
£
2 o
g 107 F
o £\ L
:‘§ % \ Ji /“\ I\
= 3 Al
%010-45 \\ /// VS - -
= L \
10.6 ! I I I I I I
0 20 40 60 80 100 120
50 T T T T T T
$
;H)D Uy TN 7
o | |
a A
o ' [l
2 -50F | Il T
<
& ' AN A
_1 Oo - 1 - I_ _ I_ - _I _ _I 1
0 20 40 60 80 100 120

Frequency [Hz]

Fig. 10.7 Comparison of reconstructed FRFs using the traditional two-step approach and the proposed one-step approach against the original FRF
for input 1 and output 1

diagram and ease the process of pole selection for the user through a clean stabilization chart [16]. From Fig. 10.8 it can also
be seen that the residue matrix obtained in the two cases is practically identical.

10.4 Conclusions

In the presented work, a “single-step” modal parameter estimation algorithm (Direct Estimation of Residues from
Rational-fraction Polynomials, or DERRP) is proposed. The procedure is based on the computation of the adjoint
matrix-coefficient polynomial and the characteristic equation from a rational fraction matrix-description of the measured
FRF matrix. It is shown that the proposed algorithm makes the residues available for comparison during the plotting
of the stabilization chart. Modal parameters are estimated using the proposed and the traditional two-step approach
for a multi-degree-of freedom lumped mass system and compared using existing model-validation techniques. The
results indicate that the estimated parameters are accurate and completely define the modal model of the system under
investigation.

The merit of the proposal lies in the fact that complete residue information is available to be used at the pole
selection phase. Hence, the poles that are extracted from the stabilization chart convey a greater statistical confidence.
Additionally, the pole selection phase is essentially transformed to allow model validation. With the (scaled) residue
information for selected poles already available, the need for the second least-squares solution step is eliminated. The
algorithm is expected to be helpful in effectively automating the pole selection process and hence the complete MPE
process.
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Pole 1: 19.105081 Hz
o Traditional Residue
[MPC = 99.95%, MPD = 0.05%]
* Proposed Residue
[MPC = 100.00%, MPD = 0.00%]

Pole 2: 23.432167 Hz
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Pole 3: 26.930614 Hz
o Traditional Residue
[MPC = 99.87%, MPD = 0.13%]
* Proposed Residue
[MPC = 99.99%, MPD = 0.01%)

Imaginary Imaginary Imaginary

Real Real Real

Fig. 10.8 Plot of the complex residues to evaluate the Mean Phase Correlation (MPC) and Mean Phase Deviation (MPD). No scaling of the
residues resulting from the proposed methodology has been performed
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Chapter 11 )
Improved Expansion Results Using Regularized Solutions Ao

Chris Beale, Ryan Schultz, and Deborah Fowler

Abstract Traditional expansion techniques utilize a modal projection wherein modal response is estimated based on a
generalized inverse of measurements at a sparse set of degrees of freedom. Those modal response estimates are then used
to project out to a larger set of degrees of freedom, resulting in predicted responses at more points or even full- field. As
with any generalized inverse problem, the results are sensitive to noise and conditioning of the inverted matrix. While much
has been done to improve numerics of matrix inversion problems in the context of input estimation or source identification
problems, little has been done to improve the numerics of inverse solutions in expansion problems. This work presents
numerical correction or regularization techniques applied to expansion problems using both simple and complex example
structures. The effects of degree of freedom selection and noise are explored. Improved expansion results are obtained
using straightforward regularization techniques, meaning higher accuracy responses can be obtained at expansion degrees of
freedom with no change in the sparse set of measurements.

Keywords Expansion - Modal filter - Projection - Regularization - Inverse problems

11.1 Introduction

Expansion techniques enable responses to be estimated at unmeasured degrees of freedom (DOFs) based on responses at
measured DOFs. Therefore, expansion can be used to better quantify the dynamics of a complex system despite the lack
of instrumentation or inability to instrument deeply embedded components. The larger set of unmeasured DOF (n-set) are
estimated by applying a projection operation on the smaller set of measured DOFs (a-set). The projection operation requires
an inverse or pseudo-inverse on a matrix of projection vectors, which can introduce errors in the expanded results depending
on the form of the matrix. When a proper selection of measured a-set DOFs are used and minimal noise exists in the
responses, the projection vector matrix will be well-formed and accurate expansion results can be expected. However, the
measured a-set DOFs cannot always be properly selected (due to channel number limitations or spatial limitations) and the
measured responses will always exhibit some level of noise contamination. As a result, the projection vector matrix can be
poorly conditioned (formed), which propagates and magnifies error (noise) from the measured a-set DOFs out to the larger
n-set of expanded DOFs. In order to mitigate the effects of poorly conditioned matrices in the expansion process, this paper
investigates the use of regularization in the expansion process to enhance the accuracy of expansion results.

System equivalent reduction expansion process (SEREP) is one expansion technique which works well for a variety of
systems in various environments. SEREP utilizes a transformation matrix comprised of the modal vectors of the system.
This transformation matrix effectively transforms the measured physical responses into modal space and then projects the
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modal responses back to physical space at a larger set of response DOFs. A pseudo-inverse is used to develop transformation
matrix, which implies that the technique is susceptible to the selection of the measured a-set DOF and the presence of noise
in the measured responses.

Two systems, one simple and one complex, are used to demonstrate expansion and investigate the effects of gauge
placement (DOF selection) and noise on the accuracy of the expansion results with and without regularization. While these
are contrived systems implemented as finite element models, they exhibit characteristics similar to the systems encountered
in practice making them proper candidates for investigating the factors that affect the accuracy of the expansion results.
The simple system, representative of a tuning fork, is used to demonstrate how gauge placement affects the conditioning of
the expansion transformation matrix and accuracy of the expansion results. The complex system consists of three coupled
components and is analyzed with a fixed-set of gauge locations (a-set DOF) where one component is entirely unmeasured.
This represents typical field instrumentation configurations where certain components cannot be fully instrumented due to
space limitations, cabling limitations, or other practical considerations. This complex system is used to examine the effects
of noise on expansion results, and to demonstrate how regularization techniques can be used to improve expansion results
when there is noise on the a-set DOF responses, which is typical of real measurements.

These models demonstrate several important characteristics of expansion problems. First, the test engineer must choose
the locations of the a-set DOFs (measured gauge locations) carefully to maximize the information which is used in the
expansion process. Next, the quality of the measurements should be high to avoid noise propagation and amplification issues
during the expansion process. If noise is present and non-trivial, regularization techniques such as Tikhonov regularization
or singular value regularization can be used to significantly improve expansion results by minimizing the noise amplification
effects in the expansion process.

11.2 Theory

Generally, expansion involves a transformation from the set of known responses (a-set DOFs) to a larger set of unknown
responses (n-set DOFs), via a transformation matrix such as

{xa (O} = [T {xa (D)}, (11.D

where the known and unknown responses are {x,} and {x,}, respectively, and the transformation matrix is [7]. This
transformation matrix can take many forms and in a fundamental sense is simply a mechanism for relating response at a
few points to the response at many points, often via some shape-based spatial relationship. The a-set and n-set responses can
be time histories, as shown in Eq. 11.1, frequency domain quantities such as linear spectra and cross- power spectral density
(CPSD) matrices, or mode shape vectors. Expansion of linear spectra is identical to Eq. 11.1, except the response quantities
are linear spectra vectors:

{Xn (@)} = [T]{X4 (@)}, (11.2)

where the known and unknown linear spectra are X,(w) and X,,(w), respectively. Expansion of mode shape matrices from the
a-set DOF, [U,], to the n-set DOF, [U,], is also similar:

[Un] = [T]1[Ud]. (11.3)

Expansion of CPSDs at the a-set DOF, [S,,], to the n-set DOF, [S,,,], is simply an outer product of Equation 11.2 because
a CPSD is an outer product of linear spectra vectors:

[Spn (@)1 = [T1[Sua @)][T]". (11.4)

11.2.1 SEREP Expansion

The SEREP method [1] uses a transformation matrix developed from the mode shape vectors of the system. During the
transformation, a modal projection is performed on the a-set responses, {x,}, to estimate the modal responses, {p}, using a
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pseudo-inverse of the mode shape matrix at the a-set DOFs, [U,]. The modal responses are then projected back to physical
space, but at the n-set DOFs resulting in the expanded responses {x,}. The SEREP transformation matrix is given by

[T1=[Uy][Ual", (11.5)

where the [U,]" represents the generalized inverse of the a-set DOF mode shape matrix. Substituting Eq. 11.5 into Eq. 11.1
demonstrates the modal projection-based expansion method in SEREP more clearly:

{xp} = [T1{xa} = [Uy] [Ua]+ {xa} = [Unl{p}, (11.6)

where {p} is a vector of modal responses. The modal responses are related to the physical responses via the mode shape
matrix:

{x} =[Ul{p}. (11.7)

As with any pseudo-inverse operation, the pseudo inverse of the a-setr DOF mode shape matrix, [U,], is subject to error
propagation which can become significant if the form of the [U,] matrix is poor. That is, the estimate of the modal response
can be affected by the form of the matrix. A well-conditioned [U,] matrix will result in an accurate projection into modal
space, estimate of the modal responses, and projection out to physical space at the n-set DOFs. However, a poorly-conditioned
[U,] matrix can result in a poor projection into modal space, inaccurate estimate of the modal responses, and thus a poor
estimate of the responses in physical space at the n-set DOFs. A typical measure of the quality of the form of a matrix
is the condition number which is the ratio of the largest and smallest singular values [2, 3]. A large condition number is
indicative of a poorly-formed matrix and a small condition number is indicative of a well-formed matrix. It is essentially a
measure of the independence of the rows or columns of a matrix. In the case of SEREP expansion, it would be a measure of
the independence of the rows or columns of the mode shape matrix at the a-ser DOF. These issues are universal in matrix
inverse problems and various techniques, called regularization, exist for improving the pseudo-inverse operation to improve
the accuracy of these types of problems.

11.2.2 Theory of Regularization in Direct Pseudo-Inverse Solutions

Regularization is used to modify the inverted matrix to reduce the effects of poor form and/or conditioning. Common
techniques are Tikhonov and singular value regularization. In both these methods, the matrix is perturbed slightly to improve
the condition number and reduce the errors which result from a direct inverse solution using that matrix. Changing the matrix
too much can result in additional error, so there is a balance of the amount of perturbation, or regularization, applied and the
improvement in the results.

The typical Moore-Penrose pseudo-inverse of a matrix [A] is given by

~1
(AT = [1A17 141] 14l (11.8)

Tikhonov regularization can be applied to the pseudo-inverse adding a diagonal matrix A%[/] to Eq. 11.8:

-1
(AT = [1A17 A1 +22111] 1A, (11.9)

where the value A is the regularization parameter. The value of XA dictates the amount of regularization. A very small value
of X would result in little regularization as the argument [HATT[A] + A2[1] is nearly equal to [IA]T[A]). Conversely, a large
value of A results in more regularization as the argument is very different from [[A]7[A]]. Very large values of A can perturb
the argument too much, resulting in erroneous estimates of [A]T. Careful choice of the regularization value is necessary to
clean up numerical issues with the matrix while not over-regularizing and introducing new errors into the solution.

Singular value regularization uses a slightly different approach. First singular value decomposition (SVD) is used to
represent the matrix [A] in terms of two unitary matrices, [Ux] and [Vx], and a diagonal matrix, [Sx]. [Ux] and [Vx] are
the left and right singular vector matrices, respectively, and [Sx] contains the singular values along the diagonal. A pseudo-
inverse of [A] can be obtained using this SVD form by:
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[ATY = [Us]1[Ss1 V1. (11.10)

Regularization can be applied by perturbing the smallest singular values, which has the effect of improving the condition
number and reducing the error propagation effects of inverting a poorly-conditioned matrix. The smallest singular values can
either be set to some larger values or set to zero, which has the effect of removing or truncating the smallest singular values
and vectors. These regularization techniques will be applied to expansion problems in the following sections.

11.3 Models Used for Demonstrating Expansion Effects

Two models were used to demonstrate the effects of gauge location and noise on expansion results and investigate
regularization as a technique to achieve higher accuracy results. The models are presented in order of complexity starting
with a simple two beam system, labeled the tuning fork model, and leading into an intricately coupled three beam system,
labeled the coupled components model.

11.3.1 Simple Model: Tuning Fork

The tuning fork model is schematically depicted in Fig. 11.1 and all the associated properties are listed in Table 11.1. The
model is comprised of two beams, a 20 inch base beam fixed at one end that is coupled to a 10 inch top beam at the mid-length
of the base beam. The tuning fork model was defined to focus on the effects of gauge placement on the expansion results and
how the results can be improved through regularization. The model serves to show that even in the case of a simple model
in a controlled analytical environment with minimal noise, the accuracy of the expansion results can be severely depreciated
by a poorly conditioned transformation matrix.

Top Beam = 10 inches

- »

Ne
b Base Beam = 20 inches

v

Fig. 11.1 Schematic depiction of the tuning fork model

Table 11.1 Tuning fork model

. Overall properties | Parameter Value Units
properties Young’s Modulus | 1.00E+407 | psi

Density 2.59E-04 |slugein
Width 0.50 in
Height 0.25 in

Base beam Parameter Value Units
Length 20 in
Nodes 41

Top beam Parameter Value Units
Length 10 in

Nodes 21
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11.3.2 Complicated Model: Coupled Components

The coupled components model is schematically depicted in Fig. 11.2 and all the associated properties are listed in Table 11.2.
The model is comprised of three beams intricately coupled together to serve as a practical example of a system-subsystem-
component assembly. The system beam, beam A, is 140 inches long and connected to ground by soft springs at each end.
The subsystem, beam B, is 50 inches long and coupled at both ends to the system beam A 45 inches from either end. The
component, beam C, is 10 inches long and coupled at one end to the subsystem beam B 90 inches from the origin, or 45
inches down the length of beam B.

The coupled components model resembles a structure commonly encountered in environments engineering analysis,
in which several subsystems and components are coupled to, or within, a larger system. Obtaining the response of the
subsystems and components is a challenge because of limited number of acquisition channels, inability to instrument deeply
embedded subsystems and small components, and noise contamination. Expansion is a viable approach to appropriately
characterize the response of non-instrumented components but is susceptible to noise. This model serves to demonstrate
how well regularization can enhance the expansion results of a representative engineering system under the limitations of
practical instrumentation.

T T T T T
b Component
K.=1.00-10° — 5‘:’;‘:’:‘:“" : @ e
b $K
K,=1.00-10° —
in b 4 e
S K K3
»
< <
”i: K Sys!em Ky ‘:
7 Beam A 7
1 1 1 1 1
0 45 90 95100 140
Node X Location [in]
Fig. 11.2 Schematic depiction of the coupled components model
Table 11.2 Coupled components model properties
Overall properties Parameter Value Units
System Beam A Young’s Modulus 1.00E+07 psi
Density 2.59E-04 slug « in~3
Width 3.00 in
Height 1.50 in
Wall thickness 0.188 in
Coupling Springs 1.00E+06 bein~!
Ground Springs 1.00E+403 Ib « in!
Parameter Value Units
Subsystem Beam B Length 140 in
Nodes 141
Parameter Value Units
Component Beam C Length 50 in
Nodes 51
Parameter Value Units
Length 10 in
Nodes 11
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11.4 Demonstration of the Effects of Gauge Location on Expansion Results

Modal expansion accuracy relies on a well-conditioned mode shape matrix to reduce sensitivity to noise. Prior to data
collection, conditioning is improved by properly placing gauges to maximize modal vector independence. Gauges are often
placed in symmetric grid patterns for ease in visualization and bookkeeping, but these configurations often have poor
conditioning. This can be remedied by using many more sensors than modes. However, most tests have limited channels
available, making efficient gauge placement the preferred solution. Sensor selection techniques to optimize modal vector
independence are often employed to maximize the number of modes characterized with a limited number of gauges. The
condition number of the mode shape matrix can be used to evaluate sensor placement and determine the optimal test geometry
for the desired application.

To demonstrate the sensitivity of SEREP expansion to the number and placement of sensors, three cases are presented.
Case 1 demonstrates the detrimental effect of using minimal, poorly placed gauges. Case 2 uses the same number of gauges
as Case 1 but places them using techniques that optimize modal vector independence. Case 3 shows that accurate expansion
of test data is infeasible without regularization techniques unless gauges are placed on each active component. Each case is
summarized as follows:

* Case 1: Using ten evenly spaced gauges to expand the response of ten modes

* (Case 2: Using ten gauges placed with modal vector independence optimization techniques to expand the response of ten
modes

* Case 3: Using forty gauges on the base beam to expand the response of ten modes to the top beam

The time domain response of the tuning fork model was simulated to use in the expansion process. The analytical input
pulse shown in Fig. 11.3 was applied to the right tip of the bottom beam, and the system response was calculated using
a modal superposition of the first 10 mode shapes. To simulate common experimental error, noise with a standard normal
distribution was added to the analytical response with a standard deviation of 0.5% of the average response magnitude.

11.4.1 Case 1: Using Evenly Spaced Gauges to Expand the Response of Ten Modes

If the number of gauges available approaches the number of modes needed for expansion, placing the gauges in an even
grid results in poor conditioning. To demonstrate this effect, equal numbers of gauges and modes are used in the expansion
process, with the gauges evenly spaced on the tuning fork model. Figure 11.4 shows the a-set DOF, which was defined as
the translational DOF of every sixth node for both beams. This resulted in a condition number of 90, which is higher than
desired for optimal expansion. The first ten modes of the system were used to calculate the SEREP transformation matrix,

Analytical Time Domain Force Pulse FFT of Analytical Force Pulse
0.4 -90
92 -100
. 110
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© 130
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Fig. 11.3 Excitation pulse applied to the two-beam model, in the time (left) and frequency (right) domains
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Fig. 11.4 Reduced set of 10
evenly spaced a-set DOF

(b) TRAC

MAC Value
TRAC Value

0 0
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Time Step DOF

Fig. 11.5 MAC (left) and TRAC (right) comparing expanded responses to the truth responses

then the system response was expanded to full field. Figure 11.5 shows the MAC comparing the expanded response to the
truth response over all points at each time step, and the TRAC comparing the responses at each DOF. The MAC and TRAC
indicate that some error was propogated through the expansion process, particularly effecting the end of the top beam in the
latter third of the time response. This is a result of the noise added to the data propogating through the poorly conditioned
inverted mode shape matrix.

While an even grid of points is problematic when the number of a-set DOF is close to the number of modes, an even grid
can still be used if the number of sensors is significantly increased. A follow-on example is presented to shown this, where a
reduced set of twenty a-set DOF was defined as the translational degree of freedom of every third node on both beams. This
resulted in an evenly spaced set of a-set DOF, shown in Fig. 11.6, for which the mode shape matrix had a condition number
of 1.9. This condition number is significantly less than the previous example using ten a-set DOF. Consequently, the MAC
and TRAC values shown in Fig. 11.7 are all approximately one, indicating high correlation and an accurate expansion.

11.4.2 Case 2: Using Ten Gauges Placed with Effective Independence or Condition Number
Optimization to Expand the Response of Ten Modes

For situations when available channels are limited, it is possible to significantly reduce the number of gauges needed to
preserve independence of the modal vectors by using an optimization algorithm to select sensor locations. This paper
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Fig. 11.6 Reduced set of 20
evenly spaced a-set DOF

(a) MAC (b) 1 TRAC
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Fig. 11.7 MAC (left) and TRAC (right) comparing expanded responses to the truth responses

Fig. 11.8 Reduced set of 10
a-set DOF chosen using effective
independence

demonstrates two methods for sensor selection: effective independence and condition number optimization. For this

simplified case, both techniques produce good results.
Ten gauges were placed using the effective independence method, shown in Fig. 11.8. Although the number of gauges

used is identical to the first example in Case 1, a condition number of 3.2 is obtained as opposed to 90 from case 1 because



11 Improved Expansion Results Using Regularized Solutions 115

(a) ] MAC (b)
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Fig. 11.9 MAC (left) and TRAC (right) comparing expanded responses to the truth responses

Fig. 11.10 Reduced set of 10
a-set DOF chosen using effective
independence

the gauges were located more appropriately. The MAC and TRAC shown in Fig. 11.9 indicate a highly accurate expansion,
as would be expected based on the condition number.

This case was repeated using the condition number optimization method to place the ten sensors, shown in Fig. 11.10.
This resulted in a condition number of 4.4, and a corresponding highly accurate expansion demonstrated in Fig. 11.11. These
results show that both techniques are effective at placing gauges to optimize for independence of the modal vectors, which
improves the accuracy of the expansion results when compared to a symmetric or grid-like test geometry.

11.4.3 Case 3: Using Forty Gauges on the Base Beam to Expand the Response of Ten Modes
to the Top Beam

When designing a test setup, there are often many components that are of interest and limited gauges for instrumentation.
For accurate expansion without the use of regularization techniques, each component of interest must be instrumented with
at least one sensor. To illustrate this, all the translational DOF of the bottom beam are used as the a-set DOF and no top beam
DOF are included, shown in Fig. 11.12. This results in a condition number of 13,040, which is four orders of magnitude
higher than the previous cases with accurate expansion. Correspondingly, the MAC and TRAC shown in Fig. 11.13 show
extremely poor expansion results for the behavior of the top beam. Notably, the expansion results are very poor even while
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Fig. 11.11 MAC (left) and TRAC (right) comparing expanded responses to the truth responses

Fig. 11.12 Reduced set of a-set
DOF defined as all translation
DOF of the bottom beam
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Fig. 11.13 MAC (left) and TRAC (right) comparing expanded responses to the truth responses
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Fig. 11.14 Reduced a-set DOF
defined as all translation DOF of
the bottom beam and one
translational DEF on the top
beam
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Fig. 11.15 MAC (left) and TRAC (right) comparing expanded responses to the truth responses

using four times as many gauges as needed in Case 2, demonstrating that intelligent gauge placement is more important than
the total number of gauges used.

The expansion results can be dramatically improved with a single additional gauge placed on the top beam. The a-set
DOF is shown in Fig. 11.14, with a condition number of 230. The MAC and TRAC shown in Fig. 11.15 indicate that there
is still some substantial error in the expansion results, but they are significantly less compared to the previous case where the
condition number was 13,040. Instrumenting every active component on a structure is pivotal if full- field expansion results

are desired.

11.5 Demonstration of the Effects of Noise on Expansion Results
11.5.1 Model Configuration (Active Degrees of Freedom)

The effects of noise on expansion results were investigated using the coupled components model. A single set of active
(a-set) DOF were used, shown in Fig. 11.16, that resemble a practical mapping of instrumentation used on a real engineering
structure. The number of active DOF were limited to 12 replicating a lack of available channels commonly experienced in the
field. None of the active DOF have been placed on component beam C and only a single DOF has been placed on subsystem
beam B. In most cases, it is impractical to instrument deeply embedded components and.
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| 1 | 1 | 1 11 | | | 1

0 9 19 29 45 909599 109 119 129 139

Node X Location [in]
Fig. 11.16 Active Degrees of Freedom of the coupled components model used to investigate noise effects on the expansion results

Table 11.3 Noise severity test
cases

Case | Amplitude
0.10

0.20

0.40

0.80

0.005
0.010
0.020
0.040

Mode shape

1
2
3
4
Time response | 1
2
3
4

subsystems, and the response at the base of the components and subsystems is more desirable. Therefore, the base of the
component beam C and subsystem beam B has been “instrumented” by retaining the associated DOF in the active set. The
remaining active DOF have been distributed along system beam A between the ends of the beam and the locations coupling
system beam A with subsystem beam B. The lack of active DOF on system beam A between the two coupling points (nodes
46 and 96) could be due to lack of clearance between the system and subsystem, or an inability to properly instrument the
structure between those two locations.

11.5.2 Noise Demonstration Test Matrix

Noise is a natural and unavoidable phenomenon experienced in all experimental measurements. Even the slightest bit of
noise can have detrimental effects on the expansion results. To investigate how the severity of noise, and noise in general,
effects the expansion results a series of test cases were developed and executed. A total of 8 test cases, defined in Table 11.3,
were performed split evenly into 4 noise cases of varying severity for each type of expansion, mode shape and time domain.

All noise was defined as a zero mean Gaussian distributed random variable. The severity of the noise was adjusted by
modifying the maximum amplitude of the noise. Due to the sensitivity of the expansion results to noise on the a-set response,
generating a new realization of noise each test case could yield drastically different expansion results. Therefore, a single
realization of noise was used and scaled to consider different levels of severity for each type of expansion. Each test case
was performed by simply adding the noise of the specified severity to the mode shape values or time responses of the active
DOF set.
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11.5.3 Noise Contaminated Expansion Results
Mode Shape Expansion

Mode shape expansion was performed with the active DOF set defined in Sect. 11.5.1 (Fig. 11.16) for all noise severity
cases defined in Sect. 11.5.2 (Table 11.3). Only the first ten modes were considered in the expansion process. The quality
of the results was quantified by computing the MAC of the expanded shapes with a set of reference shapes. The reference
shapes correspond to the analytical mode shapes superimposed with the noise of the considered test case. The MAC matrices
computed for each noise severity case is presented in Fig. 11.17. Inspecting the MAC matrices along the diagonals of each
test case, the values exhibit a clear trend of decreasing MAC value with increasing noise severity. Starting from the lowest
severity of noise, the MAC values of modes 4 (0.09) and 6 (0.76) are poor. By the third level of noise severity the MAC
values along the diagonal are all below 0.9 indicating a poor correlation.
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Fig. 11.17 MAC matrices computed from the expanded noisy mode shapes for each test case using the standard generalized inverse approach
with no regularization
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Fig. 11.18 Mode shape 2 comparison between the (a) noisy reference shape with the analytical mode shape and (b) expanded shape with the
noisy reference shape

A comparison between the noisy reference mode shape (Uy) with the analytical mode shape (U) of mode 2 is presented in
Fig. 11.18a for the least severe noise case, case 1 with noise amplitude 0.10, and the most severe noise case, case 4 with noise
amplitude 0.80, to provide a perspective of the severity of noise. A similar comparison between the expanded mode shape
(En) with the noisy reference mode shape (Uy) of mode 2 is presented in Fig. 11.18b. Considering the least severe noise
case in Fig. 11.18, the expanded mode shape diverges considerably from the reference mode shape (Fig. 11.18b) despite
how small the additive noise is relative to the analytical shape (Fig. 11.18a). The largest difference is observed by subsystem
beam B across the length lacking instrumentation (active DOF). The differences are enunciated in the most severe noise case
(Fig. 11.18b) and can be observed across each beam in the entire system. The noise added to the analytical mode shape is
discernible in the most severe noise case (Fig. 11.18a) but is still relatively low in comparison to the magnitude of response
of the mode shape. Overall, minor additions of noise induced a significant drop in correlation between the expanded mode
shapes and reference mode shapes as observed in the MAC matrices (Fig. 11.17) and mode shapes (Fig. 11.18b). Therefore,
mode shape expansion is heavily influenced by noise.

Time Domain Expansion

Time domain expansion was performed with the active DOF set defined in Sect. 11.5.1 (Fig. 11.16) for all noise severity cases
defined in Sect. 11.5.2 (Table 11.3). The time domain response was obtained through modal superposition of the coupled
components model exposed to a triangular pulse function at node 40. The sampling and excitation parameters used in the
modal superposition solution are listed in Table 11.4. A schematic of the modal superposition model and the response of
the input force in the time and frequency domain is shown in Fig. 11.19. The input forcing function was defined to provide
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Table 11.4 Modal superposition

) A with th ed Overall properties | Parameter Value | Units

parameters used with the couple

components model Sample rate 4000 |Hz
Sample size 3000

Sample time 075 |s
Pulse length 0.005 |s
Pulse amplitude | 10 Ibf
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T
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Fig. 11.19 Modal superposition schematic of the coupled components model and the response of the input force in the time and frequency domain

adequate excitation up to 400 Hz to cover the first ten modes of the coupled components model (7-389 Hz), which were
solely considered in the expansion process.

The quality of the results was quantified by computing the TRAC of the expanded time responses with the reference time
responses. The reference time responses correspond to the analytical time domain responses superimposed with the noise
of the considered test case. The TRAC values of all DOF computed for each noise severity case is presented in Fig. 11.20.
Inspecting the TRAC values of each test case for all DOF, the values exhibit a clear trend of decreasing TRAC value with
increasing noise severity. Starting from the lowest severity of noise, the TRAC values of nodes 50 through 76 (mid-span
of system beam A between the coupling points to subsystem beam B) and 143 through 184 (first 40 inches of subsystem
beam B) are low. Lower TRAC values at the aforementioned nodes, as opposed to all other nodes, are likely due to the lack
of instrumentation. The TRAC values have dropped below 0.9 for most nodes in component beam C by the third level of
severity, and for most nodes in system beam A by the fourth level of severity indicating a poor correlation.

The effects of noise on the expanded time domain responses are shown using node 202 as an example. Node 202
corresponds to the second to last node of the component beam C, shown in Fig. 11.21a. The results of the least severe
noise case, case 1 with noise amplitude 0.005, are provided in Fig. 11.21b and the results of the most severe noise case,
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Fig. 11.20 TRAC values computed from the expanded noisy time responses for each test case using the standard generalized inverse approach
with no regularization

case 4 with noise amplitude 0.040, are provided in Fig. 11.21c. A comparison of the noisy reference response (Uy) with
the analytical response (U) is shown for each noise case to give a perspective of the noise severity. Similarly, a comparison
of the expanded response (Ex) with the noisy reference response (Uy) is shown for each noise case to show the influences
of noise on the expanded results. Considering the least severe noise case (Fig. 11.21b), the noise exhibited on the reference
response is negligible relative to the analytical response. The resultant expanded response exhibits a slight increase in noise
compared to the noisy reference response, but otherwise correlates well with a TRAC of 0.99. In the most severe noise case
(Fig. 11.21c), the noise exhibited on the reference response is discernable, but still small relative to the analytical response.
Despite the low relative amplitude of the noise, the expanded results exhibit a large amount of noise resulting in a poor
TRAC value of 0.54. Similar to the observations extracted from mode shape expansion, time domain expansion is heavily
influenced by noise.
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Fig. 11.21 (a) Model schematic identifying node 202 and time response comparisons between the (b) noisy reference time response with the

analytical time response and (c) expanded time response with the noisy reference time response
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11.6 Using Regularization to Improve Expansion Results

Regularization was used as a preconditioning step prior to taking the generalized inverse during the expansion process to
reduce the condition number of the matrix requiring a generalized inverse. As a result, the noise and error introduced during
the expansion process was expected to be lower than if regularization was not performed. Two types of regularization were
considered, Singular Value Decomposition (SVD) and Tikhonov. Both techniques were used to perturb the matrix, increasing
low-valued matrix elements to reduce the condition number. Each regularization technique requires an input parameter, the
desired condition number and the regularization parameter value for the SVD and Tikhonov techniques, respectively. The
parameters were established through an optimization procedure that iteratively performed the regularized expansion and
stored the resultant MAC and TRAC values. The optimal parameter was identified as the condition number and regularization
parameter value that yielded the lowest mean error in the diagonal MAC values and TRAC values over all iterations.

11.6.1 Mode Shape Expansion Improvement

The mode shape expansion process was repeated using each regularization technique with the optimal input parameters over
all test cases identified in Sect. 11.5.2 (Table 11.3). The optimal input parameters used for each regularization technique,
the condition number of the inverted matrix, and the mean error values along the diagonal of the MAC matrix resultant
from each expansion approach are listed in Table 11.5 for all test cases. Inspecting the values in Table 11.5, the MAC
error is significantly reduced using either regularization technique relative to the expansion approach using no regularization
(generalized). Similarly, the condition number of the inverted matrix of each approach is lower when regularization was
used. As a result of a lower condition number, less noise and error were introduced during the expansion process yielding
better MAC values. Similar conclusions can be extracted from Fig. 11.22, which compares the MAC matrices computed
from the expansion results of all expansion approaches and noise cases. In general, the diagonals of the MAC matrices are
consistently above 0.80 regardless of the noise severity when regularization was used except for mode 4. Furthermore, the
off-diagonal values of the MAC matrices were closer to 0 when regularization was used. The correlation values of mode 4
were poor because of the gauge placement, which aligned with several nodes of the mode.

An example comparison of the expanded mode shapes (Ey) with the noisy reference mode shapes (Uy) is provided in Fig.
11.23 for mode 7 over all expansion approaches and test cases. When regularization was not used (generalized approach),
the mode shapes are shown to progressively diverge from the reference shape as noise severity increases.

On the other hand, when regularization was used the expanded and reference mode shapes are shown to align well
regardless of the noise severity. Similar observations can be made for all other mode shapes that exhibited good correlation
(above 0.90) in the MAC matrices.

Based on the results presented, the use of regularization yielded significant improvements to the results obtained from
mode shape expansion. Using regularization the mean error of the diagonals of the MAC matrix was reduced (Table 11.5),

Table 11.5 Input parameters, condition numbers, and mean MAC diagonal errors associated with each expansion approach over all test cases

Condition Number Case Amplitude Generalized SVD Tikhonov

1 0.10 487.26 132.00 133.11

2 0.20 487.26 15.00 15.52

3 0.40 487.26 14.50 13.44

4 0.80 487.26 13.00 12.54
Parameters Case Amplitude Generalized SVD Tikhonov

1 0.10 - 132.00 0.08

2 0.20 - 15.00 0.27

3 0.40 - 14.50 0.50

4 0.80 - 13.00 0.67
MAC error Case Amplitude Generalized SVD Tikhonov

1 0.10 0.16 0.08 0.08

2 0.20 0.29 0.10 0.10

3 0.40 0.46 0.11 0.11

4 0.80 0.67 0.14 0.13
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Fig. 11.22 MAC matrices computed from the expanded mode shapes for all expansion approaches and test cases
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Fig. 11.23 Comparison between the expanded and noisy reference mode shape 6 for each approach and test case

good correlation along the diagonals and poor correlation on the off-diagonals of the MAC matrix were observed (Fig. 11.22),
and the expanded mode shapes aligned well with the reference mode shapes (Fig. 11.23). The expansion results were
slightly less accurate as noise severity increased, but at a lesser rate than when regularization was not used. Furthermore, the
expansion results were still considered good for most modes even in the test case that exhibited the highest severity of noise.

11.6.2 Time Domain Expansion Improvement

The time domain expansion process was repeated using each regularization technique with the optimal input parameters over
all test cases identified in Sect. 11.5.2 (Table 11.3). The optimal input parameters used for each regularization technique, the
condition number of the inverted matrix, and the mean error values of the TRAC for all nodes resultant from each expansion
approach are listed in Table 11.6 for all test cases. Inspecting the values in Table 11.6, the TRAC error is significantly reduced
using either regularization technique relative to the expansion approach using no regularization (generalized). Similarly,
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Table 11.6 Input parameters, condition numbers, and mean TRAC errors associated with each expansion approach over all test cases

Condition number Case Amplitude Generalized SVD Tikhonov

1 0.005 487.26 12.80 13.09

2 0.010 487.26 9.80 11.81

3 0.020 487.26 4.40 13.87

4 0.040 487.26 3.40 25.64
Parameters Case Amplitude Generalized SVD Tikhonov

1 0.005 - 12.80 0.57

2 0.010 - 9.80 0.80

3 0.020 - 4.40 1.36

4 0.040 - 3.40 2.84
TRAC error Case Amplitude Generalized SVD Tikhonov

1 0.005 0.24 0.07 0.07

2 0.010 0.31 0.10 0.09

3 0.020 0.39 0.16 0.14

4 0.040 0.49 0.28 0.26

the condition number of the inverted matrix of each approach is lower when regularization was used. Because of a lower
condition number, less noise and error were introduced during the expansion process yielding better TRAC values. Similar
conclusions can be extracted from Fig. 11.24, which compares the TRAC values computed for each node from the expanded
results of all expansion approaches and noise cases. The TRAC values computed from the expanded results obtained with
regularization are generally always larger than the TRAC values obtained when regularization was not used. The TRAC
values obtained from the regularized results are considered good (>0.9) for all nodes of system beam A in the first two test
cases and for all nodes of component beam C in the first three test cases. Regardless of the expansion approach or noise
severity, the TRAC values of most nodes in subsystem beam B were poor. The poor correlation is likely due to the lack
of active DOF (instrumentation) local to the nodes exhibiting poor correlation. Similar conclusions can be drawn regarding
the poor correlation observed between nodes 50 through 76 of system beam A for all expansion results obtained without
regularization and all expansion results obtained with regularization in test cases 3 and 4.

An example comparison of the expanded time response (Ey) with the noisy reference response (Uy) is provided in
Fig. 11.25 for nodes 70 (mid-length of system beam A) and 202 (second last node of component beam C) in test cases
2 (noise amplitude of 0.010) and 4 (noise amplitude of 0.040) for all expansion approaches. All comparisons of the time
responses obtained when regularization was not used (generalized approach) exhibit larger errors and noise-like behavior that
increases drastically as the noise amplitude increases. On the other hand, the time responses obtained when regularization
was used are generally in good agreement with the reference responses regardless of the node or noise severity. The expanded
time responses obtained with regularization by node 70 with a noise amplitude of 0.040 has the lowest correlation but is a
significant improvement relative to the results obtained without regularization. Furthermore, as the noise severity increases
the error is introduced at a lesser rate in the expansion process when regularization was used. Similar observations can be
made for all other nodes that exhibited good correlation (TRAC value above 0.90).

Based on the results presented, the use of regularization yielded significant improvements to the results obtained from time
domain expansion. Using regularization the mean error of the TRAC values were reduced (Table 11.6), good correlation
between the expanded time responses and references time responses of most nodes were observed (Fig. 11.24), and the
expanded time responses aligned well with the reference time responses (Fig. 11.25) in most cases. The expansion results
were less accurate as noise severity increased, but at a lesser rate than when regularization was not used. Furthermore, the
expansion results were still considered good for most nodes up until the most severe level of noise was considered.

11.6.3 Additional Considerations

Significant improvements were obtained by incorporating regularization in the expansion process when the mode shapes
(Sect. 11.6.1) or time responses (Sect. 11.6.2) were exposed to noise. The amount of regularization used generally increased
as the amount of noise contamination increased. This was observed in Table 11.5 and Table 11.6 by the decrease in the
condition number wanted of the SVD approach and increase in the regularization parameter value of the Tikhonov approach
as the noise severity increased. Although the amount of regularization increased, the optimal regularization parameters
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Fig. 11.24 TRAC values of all nodes computed from the expanded time responses for all expansion approaches and test cases

generally yielded an inverted matrix having a condition number within the range of 3—25. The only case that yielded a higher
condition number was during the mode shape expansion analysis for the lowest noise severity. This is likely because the noise
was too insignificant to have a notable effect, as explained by the good correlations that were achieved without regularization
using an inverted matrix with a condition number of ~487.

The expanded results obtained using regularization were significant but were not enough to yield good correlations for
the shapes of all modes and time responses of all nodes. In the most severe noise cases for both expansion types, several
diagonal MAC values and numerous TRAC values were low (below 0.9). Therefore, it is important to note that regularization
can provide considerable improvements to the results but cannot completely resolve the issue of noise contamination in the
expansion process. The data should be thoroughly assessed and appropriate engineering judgement should be used before
deciding to apply regularization, and expansion in general, on noise contaminated data.
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Fig. 11.25 Comparison between the expanded and noisy reference time responses of nodes 70 and 202 for each approach in test cases 2 (noise
amplitude of 0.010) and4 (noise amplitude of 0.040)

11.7 Conclusions

Expansion is a very useful tool for making the most of measured data. However, as was shown here, the expansion results
are sensitive to various factors including the location of gauges and noise on the measured data. Much of the error which
results from an expansion process is due to error propagation and amplification in the pseudo-inverse used in forming the
expansion transformation matrix. As with any matrix inverse operation, inverting a poorly-conditioned matrix will result in
errors. Conditioning is greatly improved by carefully selecting measurement locations which are independent and cover as
much of the structure as possible. However, there are many cases where optimal gauge locations cannot be used because of
practical, logistical considerations. In those cases, regularization can be an effective method for improving expansion results.
Here, significant improvements in both time and mode shape expansion was achieved by using Tikhonov and singular value
regularization techniques, though care had to be taken in selecting the appropriate amount of regularization.
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Chapter 12 )
Expansion of Coupled Structural-Acoustic Systems Sk

Ryan Schultz, Dagny Beale, and Ryan Romeo

Abstract Expansion is useful for predicting response of un-instrumented locations and has traditionally been applied to
structures alone. However, there are a range of hollow structures where the influence of the acoustic cavity affects the
structural response, and the structural response affects the acoustic response. This structural-acoustic coupling results in a
gyroscopically coupled system with complex modes. Though more complicated than modes of a structure alone, the modes
of the coupled structural-acoustic system can be used as the basis vectors in an expansion process. In this work, complex
modes of a model of a coupled structural-acoustic system are used to expand from a sparse set of structural and acoustic
response degrees of freedom to a larger set of both structural and acoustic degrees of freedom. The expansion technique is
demonstrated with a finite element model of a hollow cylinder with simulated displacement and pressure measurements, and
expansion is studied for both modal and transient responses. Though more nuanced than traditional structure-only expansion
problems, the displacement and pressure response of a coupled structural-acoustic system can be expanded using the coupled-
system modes.

Keywords Expansion - Coupled system - Acoustoelastic - Structural-acoustic - Modes

12.1 Motivation and Theory

One major challenge in experimental testing is that only a few discrete points on an object of interest are measured but the
response of the full object is usually desired. Expansion is a method that can take the limited number of measurements and
some knowledge of the mode shapes of the object to predict the response at a larger number of points, and is especially
useful for structures with components that cannot easily be measured. Traditionally, expansion has only been applied to solid
structures with mode shapes comprised of displacement, velocity, or acceleration responses. However, there are many objects
of interest that are hollow structures that contain an acoustic cavity, such as rocket fairings and automobiles. The responses of
these coupled structural-acoustic systems depend on both structural modes and acoustic pressure modes. This work applies
traditional expansion to a coupled system to show that expansion is possible in coupled structures, and to determine the
challenges unique to coupled expansion.

Expansion from a set of measurements at the a-DOF to a set of unmeasured responses at the n-DOF is achieved by
multiplying the measured responses, {x,}, by a transformation matrix, [T], as in Eq. 12.1.

{xa} = [T1{xa}. (12.D)
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A matrix of mode shapes from a test at the a-DOF, [E, ], can similarly be expanded to shapes at the n-DOF by Eq. 12.2.
[En] = [T][Ed4]. (12.2)

With System Equivalent Reduction Expansion Process (SEREP) expansion method, the method that will be used in this
paper, the transformation matrix is composed of mode shape matrices at the a- and n-DOF, [U,] and [U,,] respectively [1],
asin Eq. 12.3.

[T]=[U,][U.]". (12.3)

These shape matrices typically come from a model, which allows the n-DOF to be at any of the model DOF. A pseudo-
inverse of the [U,] matrix, [U,]", projects the a-DOF measurements to modal space, giving the modal responses. These
modal responses are then projected back to physical space via a multiplication by the [U,,] shape matrix, giving the expanded
response.

Extending this expansion method to coupled systems is straightforward. Consider a system comprised of two components,
1 and 2. Let system 1 be a structural system with displacements in the x, y, and z directions, contained in the structural mode
shape matrix [Up]. Let system 2 be an acoustic domain with a pressure response, p, contained in the acoustic mode shape
matrix [Uz]. The measured mode shapes at the a-DOF of the components are [U,, 1] and [U,, 2] and the expanded mode
shapes at the n-DOF are[U,, 1] and [U,, 2]. Then, the coupled system transformation matrix can be formed with mode shape
matrices comprised of the shape matrices from each component:

+
_ Un,l Ua,l
[T] B |:Un,2:| |:Ua,2] . (12.4)

This is nothing more than a partitioning of the system DOF in terms of the DOF of each component.

The unique aspect of the coupled structural-acoustic system comes from the fact that this is a gyroscopically-coupled
system, which results in complex modes. In fact, some of the modes of these systems will be structurally-dominant, meaning
the mode is mostly structural response, and some modes will be acoustically-dominant, meaning the mode is mostly acoustic
response. Additionally, some modes may be coupled, with similar contributions from structural and acoustic DOFs. This
coupling is called acoustoelastic coupling and has some interesting effects on the system dynamics, including peak splitting
[2, 3]. This paper aims to use complex modes of a model of a coupled structural-acoustic system in an expansion problem by
simply using the complex shape matrices for the component matrices shown in Eq. 12.4 and see how the expanded response
compares to the actual response at a chosen set of un-measured DOFs.

Computing these coupled system modes with a finite element model is non-trivial because it is a quadratic eigenvalue
problem (QEVP), which presents an additional challenge in this work. Here, the coupled system modes were computed
using the QEVP solution in Sandia National Laboratories Sierra/Structural Dynamics solver [4]. While there are several
QEVP methods available, here the so-called SA_eigen method is used. The SA_eigen method uses the uncoupled, free-free
modes of the two subdomains (structural component and acoustic component) to form a reduced size coupled system which is
then solved in full. Then, the solution of the reduced system is projected back to full space to give an estimate of the coupled
system modes. This method is effective, though is sensitive to the uncoupled component modes and modal truncation.

12.2 Modal Expansion of a Coupled Structure

A Finite Element (FE) model was created for the coupled expansion analysis that consisted of a cylindrical structure enclosing
an acoustic fluid. The cylindrical structure was chosen to be 8-inch outer diameter, 24-inch long aluminum cylinder with 0.5-
inch thick walls and end caps on both ends. The bottom end cap was solid, while the top end cap has a 2-inch hole in the
center. The inside cavity of the cylindrical structure was modeled as an acoustic cavity filled with air, as shown in Fig. 12.1.
The dark circle shown on the top of the acoustic body is just a product of the mesh appearance; the acoustic domain is a
solid cylinder, and the mesh is consistent with the structural domain mesh. The dimensions of the coupled structure were
designed to create acoustic and structural modes that have similar frequencies and inherently couple. The model was meshed
using 62,191 hexahedral elements. The overlapping nodes between the acoustic and the structural domains were merged to
create the coupled system. The input to the QEVP solver asked for a target of 40 structural modes and 80 acoustic modes for
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Fig. 12.1 Coupled model with structural and acoustic domains (left) and chosen subsets of the structural and acoustic domains for analysis (right)

a total of 120 modes. The results of this solver are given as complex-valued modes that contain both a real and an imaginary
portion.

After the solution was found, subsets of the structural and acoustic domains were chosen to perform the expansion
analysis. The internal surface of the aluminum cylinder and the external surface of the acoustic domain were the chosen
subsets. The chosen subsets of the acoustic and structural domains will be referred to as the n-set of the model. A sample
of 50 points on the solid cylinder and 160 points on the acoustic domain within the n-set points were then chosen to create
the a-set points. The n-set points are shown in Fig. 12.1 as three-dimensional scatter plots of each domain, and the a-set
points are marked as black dots. The a-set points will be considered as the “measurement” points while the n-set points will
be considered as the “full-field” response. To make the a-set “measurements” more representative of actual measurements,
low-level random noise at 1% of the response mean was added to the a-set responses to simulate imperfect data.

Three modes will be used to study expansion in this paper: a mode dominated by structural response, a mode dominated
by acoustic response, and a mode with somewhat equal contributions of structural and acoustic responses. The modes were
chosen by plotting the contributions of structural and acoustic responses calculated in the FE result file, as shown in Fig.
12.2. The contribution of each type of response to each mode was given as a value from zero to one, with higher values
indicating a higher contribution to the mode.

From the contribution factors shown in Fig. 12.2, mode 12 was chosen to be the representative structurally-dominated
mode, mode 38 was chosen to be the representative acoustically-dominated mode, and mode 66 was chosen to be the
representative coupled mode. The real and imaginary portions of each mode are shown, respectively, in Figs. 12.3, 12.4,
and 12.5. Take note of the color scale in each plot, as some responses look significant but are actually very small with respect
to the dominant motion. In the structural mode in Fig. 12.3, both the real and imaginary structural modes have a strong
response while the acoustic response is small and has a similar shape to the structural mode. In the acoustic mode in Fig.
12.4, imaginary part of the acoustic mode dominates the response. In the coupled mode in Fig. 12.5, the real part of the
structural mode and the imaginary part of the acoustic mode both contribute strongly to the response.

To perform the expansion, a transformation matrix was required that could map between both structural and acoustic
modes. All solution modes, including rigid body modes, were included in the expansion. The transformation matrix was
computed by assembling each mode shape variable (x, y, and z for the structural response and p for the acoustic pressure
response) into a universal mode shape matrix, and then calculating the transformation matrix using Eq. 12.4. The results of
expansion are shown in the next three figures.

The structure-dominated mode 12 expansion is shown in Fig. 12.6, with the major contributors to the mode highlighted.
The structural expansion matches closely with the actual structural mode in shape and magnitude. The expanded acoustic
mode, however, does not resemble the actual acoustic mode and the expanded acoustic response has a higher amplitude than
the actual acoustic amplitude. This is likely due to the noise that was added to make the response more realistic. The acoustic
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response is essentially nonexistent, so the addition of noise masks the insignificant acoustic response. When expansion is
performed, noise is being expanded, so the compared acoustic responses are not expected to look the same.

The acoustic-dominated mode 38 expansion is shown in Fig. 12.7, with the major contributors to the mode highlighted.
The imaginary acoustic expansion (the dominant response in this mode) matches closely with the actual mode in shape and
magnitude. The expanded real portion of the structural mode is also a fairly close match to the real structural response, with
some slight differences in amplitude. The expanded imaginary structural response and the expanded real acoustic response
do not look similar to their counterparts. However, again this is likely due to the small, insignificant response values that
were poorly expanded in the presence of noise.

The coupled mode 66 expansion is shown in Fig. 12.8, with the major contributors to the mode highlighted. The expanded
real portion of the structural mode is very similar to the real structural response. The expanded imaginary acoustic response is
similar to the actual imaginary acoustic response, with some differenced around the center of the cylinder. These differences
could be due to mode truncation. Although more acoustic than structural modes were included in the expansion, the coupled
mode is fairly high in frequency, and the mode set used for expansion might not span the space of the acoustic response.
Again, the very small valued portions of the expanded mode (imaginary structural response and real acoustic response) did
not closely resemble the actual mode.

Overall, the coupled expansion was shown to be a success for the dominant portions of the mode shapes. Expansion using
complex modes generated from the QEVP solver was able to be used in traditional SEREP equations. However, some of the
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Fig. 12.5 Representative coupled mode (mode 66, 2608 Hz)

smaller modal response portions were not captured during the modal expansion. This analysis has shown that SEREP modal
expansion is applicable to coupled systems.

12.3 Coupled Expansion of a Transient Response

In the previous section, modal expansion of a coupled structural-acoustic system was shown. Here, the FE model of the
shell and its air cavity is used to demonstrate the expansion of transient response data. A 0.4 ms haversine pulse force was
applied in the radial direction to the shell node shown in Fig. 12.9. Then, the response of the shell and the air cavity was
captured at many nodes distributed throughout, as shown in Fig. 12.9. A subset of these DOF were assigned to the a-DOF
and the remaining to the n-DOF. Ideally, some optimal selection method, such as effective independence [5], would have
been used to choose the a-DOF from the structure and acoustic component, but here locations were randomly selected. The
84 structure nodes have acceleration response in the radial, tangential, and axial directions (three DOF per node), and the 168
acoustic nodes only have acoustic pressure response. The a-DOF consisted of the radial response at 30 structure nodes and
the pressure response at 50 acoustic nodes. While the number of a-set DOF was higher than would be desired for practical
implementation, fewer a-set nodes did not achieve good expansion results in this implementation. It is believed that improved
results, using fewer a-DOF could be achieved if the a-DOF were chosen with some optimum gauge selection algorithm.
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Fig. 12.7 Acoustic mode expansion (mode 38, 1969 Hz) from left to right: real structural mode, imaginary structural mode, real acoustic mode,
and imaginary acoustic mode

This expansion problem, just like all expansion problems, was sensitive to mode selection and truncation. Through
preliminary expansion simulations, it was observed that omitting the rigid body modes produced an improved solution.
In addition, preliminary analysis showed that modes up to 2500 Hz (the first 80 modes) were required to get a good match
to the actual response at the n-DOF. While there are only a few structural modes in this bandwidth, there are many acoustic
modes and coupled structural-acoustic modes. As such, a high number of modes were required. For other coupled systems
with fewer acoustic modes, fewer total system modes and thus fewer a-DOF may be required.
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Several uncertainties in the expansion method were discovered during this study. One uncertainty in particular was how
to deal with the complex modes. Should the modes in the [U,] and [U,] matrices be left as-is, fully complex? Or, should the
real and imaginary portions be expanded separately? Both methods were tried, and it was found that leaving the modes as-is,
fully complex, was needed for accurate transient expansion. It is possible that taking only the real or only the imaginary parts
may be useful if measurements at the a-DOF are only in one component. That is, if measurements are only on the structure
and the expansion is to some acoustic DOF, then the [U,] matrix may benefit by being forced to be purely real or imaginary
depending on the coupled nature of each mode. This is a possible avenue for future research.

Expansion of the transient response to a forced impulse was calculated by using all modes but the rigid body modes, and
calculating the transformation matrix with the complex mode shapes. The expansion results at two n-DOF are compared
to the actual simulated responses in terms of the time response in Figs. 12.10 and 12.11. Two of the structure and two of
the acoustic DOFs are shown for brevity; the results from these DOFs is representative of overall quality of the expansion.
Although differences are seen in both comparison plots, the expanded time responses follow the same general trends as the
actual time responses.

The magnitude of the linear spectra of the time responses were also compared and are shown in Figs. 12.12 and 12.13. The
spectra comparison plot shows that the expanded responses deviate more at higher frequencies, which could be an indicator
of modal truncation. Perhaps the addition of more modes, or a more logical selection of modes could improve the expansion
results.
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Fig. 12.13 Expanded time responses at two example acoustic DOF converted to linear spectrum magnitude

SEREP expansion of transient responses on a coupled structural-acoustic system was shown to be fairly successful.
The expanded time and spectra were representative of the actual responses, although not perfectly matched. Additional
understanding of the best way to handle complex mode expansion and improved mode selection could improve the expansion
capability.

12.4 Discussion and Conclusions

A coupled structural-acoustic model was used to demonstrate expansion across multiple domains. First, modal expansion
was demonstrated with successful results for the dominant portions of the mode. Next, transient response expansion was
also shown to be possible. This work has demonstrated that SEREP expansion works across coupled systems, however, this
work has also highlighted the need for a better understanding of the expansion variables. In the modal expansion analysis,
modal truncation could have contributed to the differences between the expanded and actual modal responses. A systematic
method for modal selection would be useful in for future expansion processes. Additionally, the inclusion of insignificant
modes in the expansion process could be reducing the accuracy of the expansion. Perhaps only including acoustic dominated
modes for the acoustic domain expansion and only including structurally dominated modes for structural expansion could
yield better expansion results. Another area of uncertainty in coupled expansion is the handling of complex-valued modes.
The acoustic modes seemed dominated by the imaginary portion of the mode while the structural modes were dominated by
the real portion of the mode shape. A more detailed study of these effects could help with the development of a more robust
coupled expansion method.
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Chapter 13 )
Expansion Methods Applied to Internal Acoustic Problems Ao

Ryan Schultz and Dagny Joffre

Abstract Expansion techniques have been used for many years to predict the response of un-instrumented locations on
structures. These methods use a projection or transformation matrix to estimate the response at un-instrumented locations
based on a sparse set of measurements. The transformation to un-instrumented locations can be done using modal projections
or transmissibilities. Here, both expansion methods are implemented to demonstrate that expansion can be used for acoustic
problems, where a sparse set of pressure measurements, say from a set of microphones in a cavity or room, are used to
expand and predict the response at any location in the domain. The modal projection method is applied to a small acoustic
cavity, where the number of active modes is small, and the transmissibility method is applied to a large acoustic domain,
where the number of active modes is very large. In each case, expansion is shown to work well, though each case has its
benefits and drawbacks. The numerical studies shown here indicate that expansion could be accurate and therefore useful
for a wide range of interior acoustic problems where only sparse measurements are available, but full-field information is
desired, such as field reconstruction problems, or model validation problems.

Keywords Expansion - Modal projection - Interior acoustics - Frequency response function - Transmissibility

13.1 Introduction

Expansion is a process where sparse measurements are used to infer the response at other locations in the domain. Most
typically, this is done with structures using accelerometer measurements at various locations on the structure and the System
Equivalent Reduction Expansion Process (SEREP) to expands from those sparse accelerometer measurements to other
locations of interest on the structure [1]. Often, a model of the structure is used to create the two mode shape matrices
needed for SEREP. The first shape matrix is at the measured response locations, here called the a-set degrees of freedom
(DOFs).

The second shape matrix is at the expanded response locations. The expansion could be to all locations, the n-DOFs, or
to a subset of other locations, the b- or c-DOFs. The shape matrixes need to have enough modes to span the space of the
content in the measured responses and the number of a-set DOFs must be greater than the number of modes in the matrix.
As such, if the response is broadband or involves many active modes, many a-set DOFs are required.

Just as expansion is useful for structural problems, expansion could be useful for many types of acoustic systems. For
example, expansion could be used to take a small number of microphone measurements in the inside of an aircraft fuselage
and provide the acoustic field at all locations within the fuselage. Expansion could also be used to determine the as-tested
pressures on a test article in an acoustic environmental test. In that case, the acoustic domain would be the test chamber,
the measured a-set DOFs would be a small number of microphones in the chamber, and the expanded, b-set DOFs would
be the points on the surface of a test article. In that way, the tested pressure loads on the test article could be known in a
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full-field sense. These use cases motivated this work, which uses simulations of big and small systems to exercise expansion
of acoustic domains and assess how typical structural expansion techniques may be used for a range of acoustic problems.

A span of acoustic domain sizes represents a span of modal density regimes. A small interior acoustic domain, such as
an automobile cabin or the payload bay of a rocket, perhaps may only have tens of modes in a typical bandwidth of interest
(e.g. below 2 kHz). Conversely, a large interior acoustic domain, such as a large auditorium or reverberation test chamber,
can have tens of thousands of modes in the same bandwidth. Thus, these represent very different types of dynamic systems
which require different expansion approaches. For the small domain with a small number of active modes, SEREP could
be very practical; the number of a-set DOFs (measurements) is tractable. However, the large domain, with a very large
number of active modes cannot use SEREP expansion as the number of a-set DOFs would be impractical. Here, expansion
of a large domain is accomplished instead with a transmissibility approach wherein the frequency response function (FRF)
matrices are formed between the a-set DOF outputs and inputs as well as between the b-set DOF outputs and inputs. Then,
the transmissibility matrix relating the b-set DOF outputs to the a-set DOF outputs is formed. In that way, the measured a-set
DOF outputs can be used to expand to the b-set DOF outputs. With a transmissibility approach, there only needs to be at
least as many a-set DOF as independent inputs, so it can work in very high modal density regimes.

In this paper, the theory of these two expansion approaches will be presented briefly. Then, SEREP will be used to expand
acoustic responses inside a model of a cavity of a shell test article, which is an example of a small domain with low modal
density. Next, transmissibilities will be used to expand acoustic responses in a model of a reverberation chamber, which is
an example of a large domain with high modal density. Unfortunately, no test data was available at the time of this writing to
demonstrate these techniques with actual measurements but results of these numerical example problems are promising and
should motivate an experimental demonstration in the future.

13.2 Theory

SEREP expansion uses a modal projection to convert a set of measured DOFs, the a-set DOFs, to a set of expanded DOFs,
the n-set DOFs. This is accomplished using a transformation matrix, [T]:

{xa (O} = [T {xa(®)}. (13.1)

The transformation matrix is formed using a set of mode shape matrices, [U,], [U,], at the a- and n-DOFs, respectively.
A pseudo-inverse of the [U,] mode shape matrix projects the measured a-set DOFs into modal space, giving the modal
responses. Those modal responses are then projected back to physical space at the n-set DOFs through the [U, ] mode shape
matrix. The SEREP transformation matrix is:

[T]=[U][Ual", (13.2)

where the superscript [-]* indicates a pseudo-inverse of the shape matrix. While Eq. 13.1 shows expansion of time responses,
frequency domain quantities can also be expanded in the same way. For example, linear spectra at a-DOFs, {X,}, can be
expanded to n-DOFs, {X, }, with an analogous equation:

{Xn (@)} =[T]{Xa (@)} . (13.3)

Expansion can also be achieved using transmissibility functions, which are a ratio of two FRFs. The first FRF relates the
measured responses at the a-DOFs to the input. This FRF is computed (if using the H1 FRF estimator) based on the CPSD
of the outputs and inputs, [S,;], and the CPSD of the inputs, [S;;]:

[Hai] = [Sail [S] - (13.4)
The FRFs at the n-DOFs can be similarly computed, giving [H,;] With the two FRFs relating outputs at a- and n-DOFs to
some inputs Z, the transmissibility matrix can be formed which relates the response at the n-DOFs to the response at the a-

DOFs [2]:

[Thal = [Hpil [Hai]+- (13.5)
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With the transmissibility matrix, [7},,], the measured response at the a-DOFs can be used to estimate the response at the
n- DOFs with:

{(Xn} = [Thal {Xa}. (13.6)

Note that the number of a-DOFs required for SEREP must be equal to or greater than the number of modes in [U,] and
[U,]. Similarly, there is a minimum number of a-DOF:s for the transmissibility expansion, where the number of a-DOFs must
be equal to or greater than the number of inputs to the system. Also, with the transmissibility approach, the input locations
and directions must be known and consistent. That is, the input locations used to determine the transmissibility matrix must
be the same as the actual input locations in any measurement used to expand. If the input locations change, the results will not
be valid. These techniques are general to any linear system and here are simply applied to acoustic systems to demonstrate
their usefulness for these types of problems.

13.3 SEREP Expansion for Acoustic DOF in a Small Domain Model

Acoustic finite element models were created for the small shell cavity and the large reverberation chamber. The shell cavity
model is based on a piece of test hardware shown in Fig. 13.1. The interior air cavity is cylindrical with a 7 inch diameter and
24 inch length. The model was meshed using hexahedral elements with the element size of 0.5 inch chosen to give accurate
results to at least 2 kHz. A 1 ms haversine input is provided at the edge of one end of the cavity as an acoustic velocity on a
set of element faces, shown in Fig. 13.1. The pressure response due to this input is measured at the a-set DOF and then used
to expand to the other DOF in the cavity. The first task was to determine the a-set DOF which can best measure the response
due to a set of modes in the chosen bandwidth of 1 kHz. This frequency range includes the first 20 modes, so at least 20
a-set.

DOF are needed. Here 25 DOF were chosen from a set of 168 candidate locations using the effective independence (EFI)
algorithm [3]. The candidate locations and the chosen a-set locations are shown in Fig. 13.2.

SEREP expansion of this acoustic domain is demonstrated two ways. First, the pressure modes of the cavity are expanded.
In this case, the cavity modes from the finite element model at the a-set DOF were used to expand to all the DOF in the model.
To make this expansion of “perfect” model data more realistic, random noise was added to the a-set “measured” shapes. As
shown in Fig. 13.3, the expansion of the acoustic pressure mode shapes of the cavity worked properly with this set of modes
and a-set DOF. The expanded mode shapes are nearly identical to the actual mode shapes at all the DOF in the cavity.

Next, expansion of transient pressure response is demonstrated by simulating the transient response of the cavity due to
the 1 ms haversine input at the corner of the cylinder. Again, some random noise was added to the measured a-DOF response
to simulate the effects of having imperfect response data. While the response of all the DOF could be used in the expanded
b-set DOF as in the mode shape expansion case, just two nodes specified in Fig. 13.4 were used in the b-set to simplify
visualization. The expansion results are shown in terms of the time response, in Fig. 13.5, and the power spectral density

b

Fig. 13.1 Shell test article hardware (left) and finite element mesh of the interior acoustic cavity (right)
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Fig. 13.6 Time expansion shown as PSDs at the two expanded b-set DOF

(PSD) of that time response, in Fig. 13.6. Using either metric, the expanded response of the two b-set DOF in this acoustic
domain match very well with the actual response, indicating that SEREP is a useful method for acoustic expansion of not
only mode shapes, but transient responses as well. A typical artifact of mode-based expansion methods is mode truncation
errors that are caused by not including enough modes in the mode shape matrices used to make the SEREP transformation
matrix. The effects of mode truncation are demonstrated in Fig. 13.7 where just three modes were used to populate the
transformation matrix. This is exactly the expected behavior, with the expanded response matching well at low frequencies
and not as well at higher frequencies.

The results from SEREP expansion of the acoustic response in terms of modes and time responses show that SEREP
is effective for internal acoustic problems as well as structures. While this isn’t surprising, it is useful to see the technique
demonstrated with this atypical application in mind. Just like with structural system expansion, acoustic system expansion
is sensitive to problem setup considerations such as mode truncation, as demonstrated here, and also factors such as a-set
DOF and mode selection. For systems with a small number of active modes, such as some automobile cabins or small
rocket payload sections, this expansion technique could be effective in generating full-field responses from a small number
of measurements.
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Fig. 13.8 Acoustic chamber model showing the three input locations and a-set DOF (left), b-set DOF located on the surface of a cylindrical test
article (center) and c-set DOF distributed throughout the chamber volume (right)

13.4 Transmissibility Expansion for Acoustic DOF in a Large Domain Model

Expansion of a large domain using transmissibilities is demonstrated using a model of a 21x25x30 foot reverberation
chamber. Due to the size of this domain, the element size was limited to 4 inches, which limits the maximum frequency
of the analysis to around 500 Hz. Three independent inputs were provided by surface velocities at small patches in three of
the bottom corners of the chamber model, which could represent three loudspeaker inputs, as shown in Fig. 13.8. Locations
of 20 a-set DOF are shown as red dots in the left image of Fig. 13.8. These locations were chosen at random in this case,
rather than with the EFI algorithm. Two sets of expansion DOF were chosen, representing two different use cases. The first,
the b-set DOF, represents points on the wetted surface of a cylindrical test article located in one corner of the chamber,
useful for cases where the as-tested pressure on a test article is desired. The second, the c-set DOF, are just random points
throughout the entire chamber domain, which provides an indication of the quality of the expansion over the entire space.
These two sets of expansion DOF are shown in the center and right images in Fig. 13.8.

The chamber has modes, just like the shell cavity, which can be viewed in terms of a pressure mode shape. Figure 13.9
shows two such modes of the chamber. The difference between the shell cavity and this chamber is the modal density. Where
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the shell cavity has just 4 modes below 1000 Hz, the chamber has more than 40,000 modes, as shown in Fig. 13.10. This
extreme number of modes is what motivated the use of transmissibilities instead of a modal projection for expansion of this
system.

Three independent, white noise inputs were applied at the three surface patches in terms of an acoustic velocity and
used in a transient simulation of the chamber model to obtain the pressure response at the a-, b-, and c-DOFs. Next, the
pressure response/input surface velocity FRFs were created using time responses of the pressure at the a-, b-, and c-DOF
and the applied surface velocity. To get accurate FRF estimates, 30 s of simulated response was needed. With approximately
0.1% Rayleigh damping assigned to the air in the model, it took around 4-5 s for the levels to become stationary in the
chamber. Also, it was observed that the FRF estimates were sensitive to the block size used. With a short block size, such
as 1 or 2 s, the FRFs were not converged and resulted in inaccurate expanded responses. Five to seven seconds was found
to give acceptable results in this case, though further study of this phenomenon is needed. The FRFs were used to create
transmissibility matrices relating the response at the b- and c- DOFs to the a-DOFs due to these three input locations. Next,
the PSD of the a-DOF response of this transient simulation was used along with the transmissibility matrices to expand to the
b- and c-DOF. Results of expansion of two example b- and c-DOF are shown in Figs. 13.11 and 13.12. The response at all
these locations is matched very well over this frequency range. So, with 20 a-set DOF this transmissibility-based expansion
works well. Next, the a-set was reduced to determine how well the expansion works with a very reduced set of DOF. Figure
13.13 shows expansion results at one b-set DOF and one c-set DOF using just four a-set DOF. Even with the number of a-set
DOF being thousands of times less than the number of modes, this expansion works properly. It should be noted that three
a-set DOF was also used, with decent results, though increasing to four provided more accurate results.

The similarities in the expanded and actual response in Figs. 13.11, 13.12, and 13.13 highlight the benefit of using
transmissibility for expansion of this high modal density system. Often the acoustic pressure on a test article during an
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acoustic environment test in a reverberation chamber is desired but cannot be measured. This transmissibility expansion
technique was able to take a very small number of measurements and accurately expand to many locations on the surface of
a test article or anywhere else in the chamber.

13.5 Discussion and Conclusions

Expansion techniques can make limited measurements much more useful, providing response estimates at any location
on the structure, or as shown here, in the acoustic domain. Modal projection approaches, such as SEREP, can work very
well provided there are enough a-set DOF for the active modes in the response. SEREP allows for shapes, time responses, or
frequency quantities such as linear spectra to be expanded with no knowledge of the input forces (or their locations) required.
As shown in the shell cavity example here, SEREP is also effective for interior acoustic problems with low modal density.

For problems with very large numbers of active modes, such as the reverberation chamber model used in this work, SEREP
is not appropriate as the number of measurements (a-set DOF) is impractically large. Instead, transmissibilities could be used
for expansion of these types of systems. The benefit of a transmissibility approach is that a much smaller number of a-set
DOF are required, because the number of a-set DOF only needs to be as large as the number of independent inputs to the
system. In the example shown here, four a-set DOF were used to expand response of a three-input system with thousands of
modes in the bandwidth. The downside of the transmissibility approach is that the input DOF must be known.

Overall, this work provided two simple examples which represent two different, but typical, acoustic systems for which
expansion would be a useful tool. The two expansion methods demonstrated here each provided accurate response estimates,
indicating expansion of acoustic domains is possible, and behaves just like the expansion of structures. Future efforts will try
to experimentally validate these findings using tests of small and large acoustic domains.
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Scaling an OMA Modal Model of a Wood Building Using OMAH  osie
and a Small Shaker

Osama Abdeljaber, Michael Dorn, and Anders Brandt

Abstract Operational modal analysis, OMA, results in unscaled mode shapes, since no forces are measured. Yet, obtaining
a scaled modal model, i.e. knowing the modal mass of each mode (assuming proportional damping), is essential in many
cases for structural health monitoring and load estimation. Several methods have therefore recently been developed for
this purpose. The so-called OMAH method is a recently developed method for scaling OMA models, based on harmonic
excitation of the structure. A number of frequencies are excited, one by one, and for each frequency, one or more frequency
response values are calculated, that are then used for estimation of the modal masses of each mode, and residual effects of
modes outside the frequency of interest. In the present paper, measurements were made on a four-story office building which
was excited with a small, 200 N sine peak electrodynamic shaker. It is demonstrated that this small shaker was sufficient
to excite the building with a force level of approx.. 1.8 N RMS close to the first eigenfrequency of the building, which
was sufficient to produce harmonic response across the building. Reliable modal masses were possible to obtain within an
accuracy of 6%. This demonstrates the feasibility of the OMAH method.

Keywords Operational modal analysis - OMAH method - Mode shape scaling

14.1 Introduction

Operational modal analysis (OMA) is a powerful technique for extracting modal properties (i.e. natural frequencies, mode
shapes, and damping ratios) from the ambient vibration response of a dynamic system. Unlike experimental modal analysis
(EMA), OMA is suitable for testing large civil structures since it does not require measuring the forces acting on the structure.
This, however, leads to unscaled mode shapes that are inadequate for many structural health monitoring, model calibration,
and vibration mitigation applications [1].

Several methods have been proposed for scaling of OMA mode shapes, some of which require carrying out OMA
repeatedly with different mass and stiffness layouts [2-4]. Another approach, referred to as OMA with exogenous input
(OMAX), requires applying a known broadband excitation on the structure [5, 6]. A third approach is to create an accurate
finite element (FE) model of the structure and rely on the mass matrix of the model to scale the mode shapes [7]. All these
methods are interesting and applicable for certain cases. However, the following practical issues can be identified here:

1. Conducting OMA with several mass/stiffness configurations can be laborious and time-consuming. Furthermore, the
additional masses required for large structures can be infeasible [4].

2. Carrying out OMAX on large structures requires large and expensive actuators to apply the required level of broadband
excitation.

3. The third approach is highly dependent on the accuracy of the FE model.

In an attempt to overcome these drawbacks, the so-called OMAH method was recently introduced [8]. OMAH is similar
to the aforementioned OMAX method except that it employs mono-harmonic excitations. The main advantage of OMAH is
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that narrowband harmonic excitations can be readily generated using inexpensive shakers [9]. Also, as demonstrated in [8],
signal processing techniques can be utilized to extract the vibration response under harmonic excitations from the measured
signals even when the signal-to-noise (SNR) ratio is very low. This means that a small shaker is potentially sufficient for
carrying out OMAH on large structures.

So far, OMAH has been tested only on relatively small structures (a staircase and a helipad) [8, 10]. Therefore, the aim of
the study presented in this paper is to investigate the feasibility of employing a small and inexpensive shaker for scaling the
mode shapes of a large civil structure using OMAH.

14.2 OMAH Theory

The frequency response function FRF between the displacement at degree-of-freedom (DOF) p and a force at DOF ¢ (i.e.
the receptence between p and ¢) can be written as:

Nm

Hpq(jo) =

r=1

v

my (jo — sp) (jw—s,*)

(14.1)

where 7 is the mode number, N, is the total number of modes considered, w is the angular frequency, m, is the modal mass
of mode r, ¥/ and v are the mode shape coefficients of mode r at p and ¢, respectively, and the superscript , indicates
complex conjugation. The pole associated with mode r can be expressed in terms of the corresponding eigenfrequency w,

and the damping ratio ¢, as follows:
sr = = + ja)r\/ 1 - é-rz (14.2)

Assuming well-separated modes, the FRF around the eigenfrequency w, can be estimated as:

v

my (jowr — sy) (]wr _s;k)
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The unscaled mode shapes v, along with the poles s, can be identified using OMA. Scaling OMA modes requires
estimating the modal masses m,, which is the objective of OMAH. To do so, a harmonic excitation F,(jwex) is applied on a
certain DOF ¢ at some frequency w, around the eigenfrequency w, of the desired mode. The response X, (jwex) under this
excitation is measured at a certain location p. Note that both ¢ and p should be picked from the DOFs considered in OMA.
Next, the receptence at wey is calculated as H), ;(jwex) = Xp(jwex)/Fy(jwex). The modal mass corresponding to this mode can
then be estimated as:

p.4q
my ~ . .1/” idi , (14.4)
Hp 4 (Jwex) (jwex — sr) (]wex - S;k)

Once the modal masses are identified, the scaled FRF between any two DOFs can be easily computed as given in Eq.
(14.1). For more details about OMAH, the reader is referred to [8] and [10], where also more general techniques, that take
all modes into account simultaneously, are presented.

14.3 Structure and Instrumentation

The test structure in this study was a four-story wood building located in Vixjo, Sweden (Fig. 14.1). The total area of the
building is about 5700 m? in total, separated into about 3700 m? of office space and approximately 2000 m? of restaurants
and conference rooms. Since July 2018, temperature, humidity, wind speed, displacement, and vibration at multiple points
have been continuously monitored using a network of sensors distributed across the building.
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Fig. 14.1 The test structure
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Fig. 14.2 Measurement locations and DOFs

A total of 12 geophones (Sunfull, PS-4.5B) were installed to monitor vibrations at the six locations given in Fig. 14.2. As
shown in Fig. 14.3, each pair of geophones was placed inside a small box which was attached to the load bearing structure at
the desired location to measure the dynamic response in x and y. Six ADC cards were provided to operate the 12 geophones.
The ADC card has four channels, each with a digital filter (Maxim Integrated, MAX7401), a sample/hold amplifier (Texas
Instruments, LF298) and a 24-bit A/D converter (Texas Instruments, ADS1255). An amplification circuit was also employed
to amplify the geophone outputs. Among the six ADC cards, a single card was configured as “Master” and used to send out
synchronization pulses to the other ones.

Additionally, a weather station (Davis Vantage Pro 2) was installed on the roof to measure outdoor temperature, humidity,
rain, wind speed and wind direction, and air pressure. A specially designed sensor card was used to acquire data from the
weather station.
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(b)

Fig. 14.3 Installation of geophones. (a) Two geophones inside a box. (b) The box attached to the structure
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Fig. 14.4 Modal parameters identified by OMA

14.4 Parameter Extraction by OMA

The ambient vibration signals measured by the geophones were utilized to identify the modal properties of the test structure.
A total of 189 vibration datasets were examined in terms of both wind speed and operational deflection shape (ODS) quality.
As a result, a single dataset was chosen for carrying out OMA. The chosen dataset consists of 12 geophone signals recorded
for approximately 61 min at a sampling frequency of 120 Hz.

The geophone signals were calibrated and converted to velocity signals according to the method described in [11]. A high-
pass filter with a cutoff frequency of 1 Hz was applied to eliminate unwanted low frequency components. The filtered signals
were then downsampled from 120 Hz to 10 Hz, since the frequency range of interest in this work is only up to 5 Hz. Next, a
complete correlation matrix was computed by considering the 12 DOFs as references. The resulting correlation matrix was
used to estimate the Hankel matrix required for OMA.

OMA was then carried out in Matlab [12] using the function ‘ir2pmitd’ available in ABRAVIBE Toolbox for Noise and
Vibration Analysis [13]. This function uses the Multi-reference Ibrahim Time Domain (MITD) method [14] to extract the
modal parameters corresponding to the first mode of the building. The resulting eigenfrequency, damping ratio, and mode
shape are presented in Fig. 14.4.
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14.5 Mode Shape Scaling by OMAH

To obtain the measurements required for OMAH, a small 200 N sine peak electrodynamic shaker (LDS V406) was used to
apply harmonic excitations at DOF 6 (i.e. third floor, +y direction). As shown in Fig. 14.5, the shaker was placed at the corner
near location 3 in Fig. 14.2 without mounting it to the floor. An additional mass of 1 kg was attached to the moving part of
the shaker, resulting in a total moving mass of 1.2 kg. Therefore, the inertial force exerted by the shaker can be estimated by
multiplying the acceleration of the moving part by 1.2 kg. Three accelerometers (Kistler 8772A5) were installed to measure
the vibration response of the moving part of the shaker as well as the shaker’s trunnion and the wall in the direction of
excitation.

Using this setup, the building was harmonically excited at its first natural frequency wex = 3.3 Hz with a force level of
approximately 1.8 N RMS. The acceleration response was recorded for a duration of 800 s, equivalent to approximately 2640
periods of the eigenfrequency. The sampling frequency was set to 40.96 Hz.

The acquired time-domain signals were used to compute the linear (root mean square, RMS) spectra of the response of the
three accelerometers. Fig. 14.6 shows that the acceleration spectra measured at the wall and trunnion during the first OMAH
test are in good agreement around the excitation frequency wex. This indicates that the dynamics between that trunnion and
the wall are insignificant (i.e. the shaker actually excited the building and was not only sliding on the carpet).

The FREF (i.e. the accelerance) Hg, 6(jw) between the wall and the moving part of the shaker was measured and then scaled
to displacement/force. The value of the FRF at the excitation frequency Hg, 6(jwex) Was used to scale the mode shape (i.e.
estimate the modal mass of the first mode) according to Eq. (14.4).

Fig. 14.5 OMAH setup
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Fig. 14.6 Comparison between the response measured by the accelerometer on the wall and that measured at the shaker’s trunnion. Note that it is
only the peak at 3.3 Hz that is of interest
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Fig. 14.7 Linear RMS spectrum of geophone signal in DOF 12, converted to acceleration

14.6 Verification of OMAH Result

The estimated modal mass was plugged into Eq. (14.1) to synthesize the FRF Hg ¢(jw)syn between an input force at DOF 6
and an output displacement at the same DOF. The FRF was then used to estimate the RMS of the response under a harmonic
force at the excitation frequency, Xg(jwex est as follows:

X6(jwex)est = Fo(J@ex)meas X H6,6(jwex)syn (14.5)

where Fe(jwex )meas 1S the measured force obtained from the acceleration of the moving mass of the shaker.

The actual (i.e. measured) RMS level of the displacement response at X¢(jwex)meas Was then computed by processing the
signal measured by the accelerometer on the wall. To verify the modal mass estimated by OMAH, the normalized percentage
error between the estimated Xg(jwex )est and the actual Xe(jwex Jmeas r€sponse was calculated as:

Eg = X6(JWex)est — X6(j Wex)meas % 100 (14.6)
Xf) (ja)ex)meas

Similarly, the modal masses were used to compute the FRF H1z ¢(jw)syn between the input excitation and the output
displacement at DOF 12 on the fourth floor. Then, the FRF was used to estimate the response of DOF 12 under the harmonic
excitation, X12(jwex)est- The actual response at the same location X12(jwex)meas Was calculated from the corresponding
geophone signal measured by the monitoring system during the OMAH test. The error E12 was then obtained according
to Eq. (14.6). The spectrum of the response of the geophone in DOF 12, converted to acceleration, is shown in Fig. 14.7. As
can be seen the response level is very small, but the spectrum estimate is good at the single frequency of 3.3 Hz.

The resulting normalized percentage errors at DOF 6 and 12 were 2.74% and —5.82%, respectively. This indicates that
OMAH was successful in scaling the first mode shape of the test structure with reasonable accuracy.

14.7 Conclusion

An OMAH test was carried out to identify the modal parameters of a four-story wood building. The first step was to apply
OMA to extract the first natural frequency, damping ratio, and the unscaled mode shape from the ambient vibration response
of the building. A small shaker was then used to excite the structure at its first eigenfrequency with a force of approx.
1.8 N RMS. The force applied by the shaker along with the acceleration measured at the excitation location were used to
estimate the corresponding modal mass and scale the mode shape. The estimated modal mass was used to synthesize the
harmonic response at two locations. To evaluate the accuracy of the scaling results, the synthesized response was compared
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to the measured one and found to be within 6% of the measured responses. This comparison demonstrated that a small and
inexpensive shaker is sufficient for scaling the mode shapes of a large civil structure using OMAH.
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monitoring. The authors would like to thank colleagues and collaborators that helped to put up install the sensors and the measurement network,
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Chapter 15 )
Quantitative Study on the Modal Parameters Estimated Using Sk
the PLSCF and the MITD Methods and an Automated Modal

Analysis Algorithm

Silas Sverre Christensen, Stefano Manzoni, Marcello Vanali, Alfredo Cigada, and Anders Brandt

Abstract There are many advanced algorithms used to estimate modal parameters. In this paper, the modal parameters
extracted from the Poly-reference Least Squares Complex Frequency (PLSCF) algorithm and the Multi-reference Ibrahim
Time Domain (MITD) algorithm, are compared. The former, is widely used in the industry and is known to produce almost
crystal clear stabilization diagrams with barely any spurious pole estimates. The latter, is less common and the stabilization
diagrams typically contain some spurious pole estimates. An Automated Modal Analysis (AMA) algorithm, that utilizes
the statistical representation of the pole estimates combined with a number of decision rules based on the Modal Assurance
Criteria (MAC), is employed, to detect probable physical poles. Simulated data from a Plexiglas plate is used in the study.
Results indicate that the absolute bias error associated with the modal parameter estimates output by the PLSCF algorithm
is higher than the bias error related to the modal parameter estimates output by the MITD algorithm. It was not conclusive
which of the two methods that had the lowest random error. It should also be mentioned that, while the MITD algorithm
could process all references and responses, the PLSCF algorithm relied strongly on a delicate selection of representative
references and that not too many references were used.

Keywords Automated operational modal analysis - Automated modal analysis - Poly-reference least squares complex
frequency - Multi-reference Ibrahim time domain - Damping

15.1 Introduction

Modal parameters describe the dynamic properties of structures and can aid in the development of sophisticated methods for
validating and updating models as well as monitoring structures during operation. There are many advanced algorithms
that can be used to estimate modal parameters. Among the most popular are: Multi-reference Ibrahim Time Domain
(MITD) [1, 2], Poly-reference Time Domain (PTD) [3], Eigensystem Realization Algorithm (ERA) [4], Stochastic Subspace
Identification (SSI) [5], Poly-reference Least Squares Complex Frequency (PLSCF) [6], Frequency Domain Decomposition
(FDD) [7] and Polyreference Frequency Domain (PFD) [8, 9].

In this paper we shall look at two of the methods mentioned, namely the PLSCF and MITD algorithms. The former
is widely used in the industry and especially popular for its ability to produce very clear stabilization diagrams that
produce almost no spurious information. The latter is less common and produces less clear stabilization diagrams. It may
be convenient for a modal analyst when interpreting stabilization diagrams that they are clear, but there is no guarantee
that a clear stabilization diagram yields the best modal parameter estimates. The time spend to interpret a stabilization
diagram and select the most probably physical poles may also be inconsistent depending on the appointed operator. There
are many methods available in the literature that automates this process, among some are: The K-Means (or Fuzzy-Means)
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Clustering algorithm [10, 11] and the Agglomerative Hierarchical Clustering algorithm [12, 13]. Some methods also utilizes
the statistical representation of the pole estimates [14—16]. In this paper an automated modal analysis (AMA) algorithm that
extends from the statistical representation of the pole estimates is used. The method is extended by adding a number of
decision rules based on the Modal Assurance Criterion (MAC).

The structure of this paper is as follows. In Sect. 15.2 the general outline of the PLSCF and the MITD algorithms are
described. Simulated data from a Plexiglas plate are presented in Sect. 15.3 along with the Automated Modal Analysis
(AMA) algorithm. The modal parameter estimates output by the two methods are presented in Sect.15.4, and their
dependencies are discussed in Sect. 15.5. A summary of the concluding remarks are found in Sect. 15.6.

15.2 Theory

Any frequency response matrix can be decomposed into a sum of system poles, s;, containing damping ratios, ¢, and natural
frequencies, f;, as well as a residue matrix, Ay, which carry information about the mode shape vectors, ¥, given as

N

2N
Hyo =3 A A* 3 A
r=1

-
jo—s  jo-—sk jo — s,

(15.1)

r=1

Note that the rightmost term is but a renumbering where the sum goes to 2N instead of N, in this way, every second residue
matrix is the complex conjugate of the previous residue. Information about the mode shape is retained in the numerator, while
the denominator contains information about the system poles. The basic equation of an individual frequency response, Hpq,
can also be written as a fraction of polynomials

Up(w;) _ Bu(s)™ + Bu—1(s) ™™D + - + Bo(s:)°
Fy(wi)  om(s)™ + am—1(s) "D + - + ap(s5:)°

Hpy () = (15.2)

where w;, is some measured frequency and s; = jw;, is the generalized frequency of the system while o and 8 denotes
the polynomial coefficients. The order of the numerator is typically two less than the order of the denominator, i.e. n=m
— 2. Rearranging Equation (15.2) and introducing the full frequency response matrix along with the polynomial coefficient
matrices o and B, yields

> (s Hiw) =) By(si) (15.3)
k=0 =0

Equation (15.3) is the frequency domain formulation using frequency response matrices. A similar expression can be
derived for the time domain where impulse responses, correlation functions or random decrement signatures may be used.
The force coefficients are zero, which gives

> exh(iise) =0 (15.4)
k=0

The polynomial coefficients for the frequency domain and the time domain are given in Equations (15.5) and (15.6)

2

ns™ 4+ 15"+ @y 25" 4+ =0 (15.5)

2

oz + a1 a2z 4+ ag=0 (15.6)
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15.2.1 The Poly-reference Least Squares Complex Frequency (LSCF) Algorithm

The Poly-reference Least Squares Complex Frequency (PLSCF) algorithm was first formulated in [6]. It is a poly-referenced
version of the Least Squares Complex Frequency (LSCF) algorithm [17], which is the frequency domain alternative to the
Least Squares Complex Exponential (LSCE) algorithm [18]. The poly-referenced version of LSCE is commonly known as
the Poly-reference Time Domain (PTD) algorithm [3]. The PolyMAX algorithm is similar to the PLSCF algorithm [19],
yet the exact similarities are not know since the internals of the commercial implementation are not known. This paper will
adopt the formulation given in [6] and [19].

The initial step of the PLSCF algorithm is to use a Right Matrix Fraction Description (RMFD) model, which is obtained
by post mutiplying Equation (15.3) by "7 ;' (jw;)¥ yielding

H(w) =Y BiGjo* Y e (jo* (15.7)

=0 k=0

where the matrix polynomial o ( ja),-)k and B, (j a),')k have N, x Nj and N, x N, coefficients, respectively. Here N, denote
the number of responses while N; denote the number of references. The number of references are typically lower than the
number of responses. For the RMFD model the number of eigenvalues equal mNj.

The basic concept of the PLSCF algorithm is to solve a least squares problem by minimising a cost function from an
error function that is derived from Equation (15.7). These steps are not included in this paper, but are found in [6] and
[19], where it is shown that the error function is only linear for N;j = 1 and otherwise non-linear. This is undesirable as N;j
typically is higher than one. By some algebraic manipulation, also left out in this paper, the non-linear error function can be
approximated by a linear error function. A cost function can then be formulated based on the linearised error function. The
cost function is minimized by setting its derivatives with respect to the unknown polynomial coefficients, 6, equal to zero.
This gives us the following reduced normal equations

XAX, 0 ... XAy, ﬁl
0 XX, XHY, 2
2Re _ _ . : =2Re(J7 16 =0 (15.8)
H H NiNy v H By,
YOX, YIX, - Y YR Y, .

with J being the Jacobian matrix where X and Y depend on the polynomial basis function as well as the estimated frequency
response matrices. A weighting function that accounts for the quality of the measured frequency responses matrices can also
be included in Equation (15.8).

By setting the B, ... B, y, polynomial coefficients equal to zero, the & polynomial coefficients can be solved. Hereafter
Bi ... By,n, may be found. In this way, the denominator of Equation (15.2), which contains the pole estimates are determined
first. Then the B ... By, y, polynomial coefficients, i.e. the modal participation factors (or mode shape vectors) can be
estimated.

A common way of solving the polynomial coefficient a is by using the companion matrix formulation, given as

__“m—l —0p—2 _OCO-
c=| 0 I -0 (15.9)
L 0 - 1 0 |

To solve Equations 15.5 and 15.6, it is normal to set &, = 1. It was, however, found in [20], that by utilizing a low order
normalization, i.e. setting ep = 1 in Equation 15.5, very clear stabilization diagrams were obtained when using the PLSCF
algorithm.
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The PLSCEF algorithm presented does not use Singular Value Decomposition (SVD), and it should not be needed, if an
appropriate number of references is selected and the number of references are limited to only a few references [20]. It was
pointed out in [21] that the PTD algorithm (time domain alternative to the PLSCF algorithm) produces bad stabilization
diagrams when the number of references exceeds more than 3.

A Left Matrix Fraction Description (LMFD) model can also be used, but that would yield mN,, eigenvalues, and since
0 >> i, the use of the SVD (or any other equation condensation) is then advised.

15.2.2 The Multi-reference Ibrahim Time Domain (MITD) Algorithm

The Multi-reference Ibrahim Time Domain (MITD) algorithm [2] is a multi-reference version of the Ibrahim Time Domain
algorithm [1]. This method operates in time domain thus requiring impulse response functions, correlation functions or
random decrement signatures as inputs. Correlation functions are used in the present analysis. The correlation function
matrix, R(7), is defined as

R(z) =E [y(t)yT(t + r)] (15.10)

where t denotes the time lag given in seconds and y(t) = [yl(t), ya(t), ..., yM(t)]T is the response vector consisting of M
measurements. This means that the diagonal elements in R(7) represent the autocorrelation functions while the off-diagonal
elements represent the cross-correlation functions. For the MITD method it is common to gather all the information at
different time lags in a block Hankel matrix, given by

[R(7))] [R(r) + An)] -+ [R(7) + (m — 1)Ar)]

[R(7) + At)] [R(7) +2A0)] - -- [R(z) + mAL)]
Hpm(7) = . . ] . (15.11D)

[R(7) + (n — DAO] [R(7) + nAD] - -+ [R(T) + (n +m —2)A1)]
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Equation (15.11) can be decomposed into a mode shape matrix ¥, a diagonal exponential pole matrix e*’ and a modal

participation matrix L7
Hyn(7) = Wes'LT (15.12)

The block Hankel matrix given in Equation (15.11) is also formulated for 7 + At¢, i.e. Hym(t + Ar). Using these
two expressions for the block Hankel matrix and by applying some algebraic manipulation, an eigenvalue problem can
be constructed. Since this eigenvalue problem is very large, it is condensed using the SVD, a tool that has shown to be
powerful in removing redundant information. The modal parameters are then extracted by solving the reduced eigenvalue
problem.

15.3 Methodology

Modal parameter estimates were extracted from an experimental dataset of a rectangular Plexiglass plate using the MITD
algorithm. The modal parameter estimates were subsequently used to produce a simulated dataset, from which modal
parameter estimates have been extracted using the PLSCF and the MITD algorithms.

The Plexiglass plate measures 533 x 321 x 20mm and is described by 35 degrees of freedom (DOFs) in a 7 by 5 grid.
See [22] for details on the experimental study whose data were also used in this paper. The modal parameters from the
experimental dataset were extracted using the MITD algorithm and an Automated Modal Analysis (AMA) algorithm. The
AMA algorithm, described in [23], starts with constructing a statistical representation of the pole estimates for varying model
orders. It is then complemented by a number of decision rules based on the Modal Assurance Criteria (MAC). The general
outline of the AMA algorithm is as follows
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. Choose a modal parameter estimation method capable of producing poles and mode shape vectors at varying model orders

. Estimate poles at mode shape vectors at various model orders

. Initiate the statistical representation of the pole estimates

. Introduce an occurrence threshold and temporarily exclude modal parameter estimates below said threshold

. Compute the MAC for each remaining bin and remove modal parameter estimates whose MAC value is poor in
comparison to the MAC values of the majority of poles in a given bin

6. Combine adjacent bins whose MAC values are similar

7. Add any adjacent modal parameters that did not pass step (4) to a bin if the MAC values are similar

8. Compute mean values and standard deviation for each remaining bin

[T OSSR

The AMA algorithm has shown successful in detecting structural modes from datasets on several real structures, e.g. the
Little Belt Suspension Bridge, the Heritage Court Tower and a Ro-Lo ship [23]. The modal parameter estimates from the
experimental dataset using the AMA algorithm, were then used to simulated 300 s forced response sequences at a sampling
frequency of 5000 Hz using superposition and digital filter theory [24]. Gaussian white noise processes were used as input
in all 35 DOFs with a noise level corresponding to 0.01% of the standard deviation of the forced response.

The simulated data were input into the PLSCF algorithm and the MITD algorithm to estimate modal parameters. A model
order of 100 was used for both algorithm, to ensure that many modal parameters were output.

For the PLSCF algorithm three of the four corner points were used as references of the 35 responses. The correlation
function estimates used to compute the spectral densities were postmultiplied by an exponential window so that the
correlation function value at the end of the measurement time was reduced to 0.01%. This is a common procedure used
to reduce the bias error added from truncations in the time domain [25]. A total of 100 averages were used to compute the
spectral density estimates. The damping ratio added from applying an exponential window was subtracted from the estimated
damping ratios output by the PLSCF algorithm.

For the MITD algorithm an unbiased Welch estimator with a blocksize of 512 samples, was used to compute the
correlation functions for all 35 measurement channels. The first 15 time lag values were removed from all correlation
functions to suppress measurement noise [26]. Exactly 90 time lag values from each of the 1225 correlation functions were
used as input into the MITD algorithm. At this point the correlation functions had almost fully decayed.

For the modal parameter estimates output by both algorithm, only poles originating from an under-damped system were
considered, i.e. having low damping and positive frequency. Furthermore, damping ratio estimates above 10% were discarded
since the damping ratio of the plexiglass plate does not exceed 3.5% for any of the modes of interest.

15.4 Results

The modal parameters estimated using the two algorithms are presented in the following. The stabilization diagrams are seen
in Figs. 15.1 and 15.2.

In the present work, when using the PLSCF algorithm, it was crucial that a representative number of references were
chosen and that the number of references were limited to only a few. The most clear stabilization diagram were obtained by
choosing three of the four corner points as references, which was also mentioned in Sect. 15.3. By choosing more references,
the number of spurious poles present in the stabilization diagrams would rise. It was attempted to use 35 references, which
rendered the stabilization diagram completely indecipherable for the AMA algorithm to interpret. This observation is related
to the fact that the number of eigenvalues estimated equals mNj, where m is the number of frequency lines and N; denotes the
number of references. By increasing the number of references more eigenvalues are estimated as a multiple of the number of
frequency lines. Therefore, if too many references (e.g. SVD) are used, equation condensation should be employed, while,
when only a few references are used equation condensation should not be required.

For the PLSCF algorithm nine modes were identified, which correspond to the number of modes used to simulate the
data. It is quite clear that the frequency component of the pole estimates stabilize for increasing model order and that barely
any spurious pole estimates are present. This is in line with previous observations, that very clear stabilization diagrams are
output, when using the PLSCF algorithm, that was presented in Sect. 15.2. Upon zooming onto the first two and closely
spaced modes in the same plot, it is seen, up to a model order of 20, that the model parameters are not stabilizing well on
the frequency axis. Above a model order of 50 it appears that the estimates are strongly frequency stable. In the intermediate
rage, model order ranging from 20 to 50, the frequency component of the model parameter estimates are slightly skewed
to the right, yielding higher frequency estimates. It should be clarified that in Fig. 15.1, the horizontal dashed black line
corresponds to the occurrence threshold that was described in step (4), see Sect. 15.2. Modal parameter estimates marked
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Fig. 15.1 Stabilization diagram overlaid by its probability mass function based on modal parameter estimates derived using the PLSCF algorithm
on simulated data. () circle — bins with pole estimates that are below the horizontal dashed black line and outside the white patched area; [J square
— poor MAC valued pole estimates; A triangle — stable pole estimates with similar MAC values
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Fig. 15.2 Stabilization diagram overlaid by its probability mass function based on modal parameter estimates derived using the MITD method on
simulated data. O circle — bins with pole estimates that are below the horizontal dashed black line and outside the white patched area; [ square —
poor MAC valued pole estimates; A triangle — stable pole estimates with similar MAC values

as red circles does not satisfy step (4) and step (7), while modal parameter estimates denoted as blue squares does not
satisfy step (5), see also Sect. 15.2. The remaining modal parameter estimates (and the bin they belong to), marked as green
triangles, are strongly frequency stable and have high MAC similarity. Mean values and standard deviations are computed
for the estimates in each of the combined bins.

When looking at Fig. 15.2 the amount of spurious information is abundant, and in direct contrast to what was seen Figure
in 15.1, where barely any spurious information was present. It is however seen that almost no spurious information is present
at the first four modes. It should be mentioned that the same nine modes that was found when using the PLSCF algorithm
were also found using the MITD algorithm. When zooming onto the first two modes, it is observed that below a model order
of 50 the frequency component of the pole estimates are more stable than those found when using the PLSCF algorithm. At
model orders above 50 it appears that the two algorithms produced similar results.
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Table 15.1 Mean values and standard deviations of the model parameter estimates output by the PLSCF algorithm. The relative difference on the
mean value in comparison to the true value are also reported

Mean Std True Rel. Diff. Mean
Mode [-] f [Hz] ¢ [%] f [Hz] ¢ [%] f [Hz] ¢ [%] f[%] ¢ [%] Count [-]
1 141.41 3.14 0.049 0.101 141.90 3.17 0.34 1.07 84
2 142.45 2.88 0.065 0.051 142.58 3.06 0.09 5.88 87
3 323.59 2.72 0.061 0.007 323.25 2.68 —0.11 —1.38 92
4 393.20 2.54 0.023 0.004 393.04 2.60 —0.04 2.38 93
5 408.95 2.50 0.025 0.016 408.73 2.53 —0.05 1.22 94
6 504.17 2.50 0.022 0.004 503.79 2.45 —0.08 —2.00 89
7 583.84 242 0.018 0.008 583.63 2.46 —0.04 1.75 94
8 712.05 2.39 0.056 0.029 712.01 242 0.00 1.40 87
9 799.69 2.18 0.038 0.044 800.09 2.22 0.05 1.58 76

Table 15.2 Mean values and standard deviations of the model parameter estimates output by the MITD algorithm. The relative difference on the
mean value in comparison to the true value are also reported

Mean Std True Rel. Diff. Mean
Mode [-] f [Hz] ¢ [%] f [Hz] ¢ [%] f [Hz] ¢ [%] f [%] ¢ [%] Count [-]
1 141.89 3.14 0.018 0.010 141.90 3.17 0.00 1.07 89
2 142.67 3.09 0.018 0.016 142.58 3.06 —0.07 —0.98 87
3 323.26 2.68 0.005 0.002 323.25 2.68 0.00 0.11 94
4 392.82 2.57 0.102 0.031 393.04 2.60 0.05 1.23 93
5 408.88 2.53 0.067 0.024 408.73 2.53 —-0.04 0.04 91
6 503.89 2.45 0.134 0.027 503.79 2.45 —0.02 0.04 93
7 583.57 2.50 0.291 0.139 583.63 2.46 0.01 —1.50 90
8 712.14 2.40 0.168 0.025 712.01 2.42 —0.02 0.99 96
9 800.03 2.26 0.700 0.336 800.09 2.22 0.01 —2.03 88

Both methods were able to output a large number of frequency and MAC stable modal parameter estimates for the nine
modes identified for different model orders. These estimates are now included in a quantitative study. In Tables 15.1 and 15.2,
the number of modal parameter estimates, their mean values and standard deviations are presented. Also the mean values are
compared to the true modal parameters that was used for the simulated dataset.

Upon comparing the results from the two Tables 15.1 and 15.2, it is seen that for the first three modes, the standard
deviations of the modal parameter estimates output by the PLSCF algorithm are highest. Quite the opposite is seen for the
last six modes, where the standard deviations of the modal parameter estimates output by the MITD algorithm are highest.
When comparing the mean values of the estimates to the true values, it is evident that the relative differences, in absolute
terms, are largest for the modal parameter estimates output by the PLSCF algorithm.

15.5 Discussion

We have established, that the mean values of the damping ratio estimates output by the PLSCF algorithm are further from
the true values, in comparison to the mean values of the damping ratio estimates output by the MITD algorithm. Although
the damping ratio estimates, in absolute terms, are largest for the modal parameter estimates output by the PLSCF algorithm,
it can not be concluded that the PLSCF algorithm consistently over- or underestimates the damping ratio estimates. Nor can
this be said about the damping ratio estimates output by the MITD algorithm. It appears that this bias error is dependent on
the mode in question. It is known that a bias error is introduced as a result of time discretization [25]. In other words, spectral
leakage is the result of applying a window in the time domain prior to using the Fourier transform. Therefore a bias error
is always present for any frequency domain modal parameter estimation method, including the PLSCF algorithm. However,
for methods operating in the time domain, including the MITD algorithm, there is also a bias error present. This bias error
is associated with the number of time lag values used in the correlation function estimates, whose optimum, is known to be
different for each mode [27]. Therefore, whether the PLSCF algorithm or the MITD algorithm are used, there will always
be a bias error present. The exponential window that was used in conjunction with the PLSCF algorithm, see Sect. 15.3, was
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Fig. 15.3 Frequency-damping ratio plot for the first mode using the modal parameters estimated from (a) PLSCF algorithm and (b) MITD
algorithm. The black + (plus) denotes the lower half of the modal parameter estimates while the represents the upper half of the

modal parameter estimates as seen in the stabilisation diagrams, Figs. 15.1 and 15.2

defined so that the correlation function value at the end of the measurement time was reduced to 0.01%. By increasing or
decreasing this value by a multiple of 10, no noticeable differences were observed in the modal parameter estimates. Also
for the MITD algorithm it was attempted to vary the number of time lag values used in the correlation function estimates
from 70 to 130, which had minimal impact on the modal parameter estimates.

The random error for the damping ratio estimates is not definitively lower whether the PLSCF or the MITD algorithm
are used. For instance high standard deviations are attributed to the damping ratio estimates for the fourth, seventh and the
ninth mode when using the MITD algorithm. The standard deviation associated with the damping ratio estimates, for the first
mode, is high when using the PLSCF algorithm. By taking a closer look at the frequency-damping ratio plot for this mode,
seen in Fig. 15.3, it is observed that the frequency and damping ratio estimates follow a trend. Upon further inspection it is
seen that the pole estimates for the upper half (grey cross) of the stabilization diagram have lower standard deviation than
those for the lower half (black plus). For the MITD algorithm the frequency and damping ratio estimates are neatly clustered,
but it is also observed that the upper half of the estimates are clustered better than the lower half. Since the random error is
dependent on the measurement duration, it was attempted to double the measurement time from 300 to 600 s, which would
allow twice the number of averages. This barely had any impact on the standard deviations of modal parameter estimates
output by either of the two algorithms.

It was mentioned in Sect. 15.2 and in Sect. 1