
Chapter 9
Extensions to NIFO and CRP to Estimate
Frequency-Independent Nonlinear Parameters

Michael Kwarta and Matthew S. Allen

Abstract The Nonlinear Identification through Feedback of the Output (NIFO) and Conditioned Reverse Path (CRP)
methods are a popular family of approaches for nonlinear system identification. They estimate the underlying linear
Frequency Response Function (FRF) as well as the parameters describing the mechanical system’s nonlinearities. However,
one troubling aspect is that the parameters obtained are complex numbers and typically are found to vary with frequency,
so post-processing must be employed to obtain physically reasonable parameters and an accurate estimate of the underlying
FRFs. This work proposes two methods (based on the H1 and H2 algorithms) which can be used in the estimation of the
linear FRF as well as frequency-independent nonlinear parameters. This paper evaluates the methods numerically using a
single degree of freedom system and exploring various methods for determining which nonlinear parameters to include in
the model.

Keywords NIFO methods · NIXO methods · Nonlinear system identification · Black-box methods · Nonlinear
parameters estimation

9.1 Introduction

The Nonlinear Identification through Feedback of the Output (NIFO) method and Conditioned Reverse Path (CRP) are
popular approaches for nonlinear system identification. They estimate the underlying linear Frequency Response Function
(FRF) as well as the parameters describing the mechanical system’s nonlinearities. The H1-based NIFO method was first
proposed in [1], while its twin algorithm, based on the H2 estimator, in [2]. Both NIFO algorithms have been successfully
used in the estimation of the linear frequency response together with the parameters describing system’s nonlinearity.
However, one troubling aspect is that the parameters obtained are complex numbers and typically are found to vary with
frequency, so post-processing must be employed to obtain physically reasonable parameters [3, 4].

This work proposes two methods (based on the H1 and H2 algorithms) which can be used in the estimation of the linear
FRF as well as frequency-independent nonlinear parameters. Since these two new methods allow for system identification
via augmenting the number of outputs, we call them NIXO methods – for Nonlinear Identification through eXtended Outputs.
The methods are first evaluated numerically using a single degree of freedom system. Moreover, a strategy for utilizing the
NIXO approaches in the black-box identification of a single degree of freedom mechanical system is presented.

In a future work, both NIXO methods will be employed experimentally to identify the physical parameters describing the
nonlinearity of a 3D printed beams for oscillations near their first resonance frequencies. The results will be then used to
compute the NNM backbone curve and compared to the solution obtained by another estimation algorithm and data collected
using the well-established testing approach.
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9.2 Derivation of NIFO and NIXO Methods

In this section, the theory behind the three different nonlinear system identification algorithms is presented. These three
algorithms are:

– H1- and H2-based NIFO methods that were previously proposed by Adams et al. [1, 2] (also known as the modified H1
and H2 algorithms),

– Two new H1- and H2-based algorithms dubbed Nonlinear Identification through eXtended Outputs (H1-NIXO and H2-
NIXO) and

– Two new H1- and H2-based algorithms dubbed Nonlinear Identification through eXtended Outputs with Linear Data
Provided (H1-NIXO-LDP and H2-NIXO-LDP).

The derivations start with steps common for all the algorithms, then they fork and focus on each method separately. For
simplicity, we consider a single degree of freedom (SDOF) mechanical system described with equations of motion (EOM)
defined in Eqs. (9.1) or (9.2), yet we believe that the algorithms can be generalized to MDOF systems.

mẍ + cẋ + kx + c2ẋ|ẋ| + k3x
3 = f (t), (9.1)

mẍ + cẋ + kx + c2ẋ
2 + k3x

3 = f (t), (9.2)

where m, c, k, c2 and k3 are real and constant parameters, x(t) is the response of the system excited for certain initial
conditions with a forcing function f (t). If the individual time functions are expressed as in (9.3), then Eqs. (9.1) or (9.2)
become equivalent to Eq. (9.4) with D(�) = k−m�2 + ic� and frequency–independent c2 and k3. Equation (9.4) is true for
every individual frequency �, where � ∈ {�1, 2�1, . . . , n�1}, n is the number of frequency samples and �1 is the lowest
of the frequencies considered.

x(t) = Re
{ n∑

k=1

Xk eik�1t
}

f (t) = Re
{ n∑

k=1

Fk eik�1t
}

ẋ(t)|ẋ(t)| = Re
{ n∑

k=1

dY k
2 eik�1t

}
∨ ẋ2(t) = Re

{ n∑
k=1

dY k
2 eik�1t

}

x(t)|x2(t)| = Re
{ n∑

k=1

Y k
3 eik�1t

}
∨ x3(t) = Re

{ n∑
k=1

Y k
3 eik�1t

}

(9.3)

D(�) X(�) + c2 dY2(�) + k3 Y3(�) = F(�), (9.4)

Using Navg spectral averages (obtained using e.g. a Hanning window) of signals x(t), f (t) and higher powers of x(t) and
ẋ(t), Eq. (9.4) can be written in the form shown in Eqs. (9.5) and (9.6). For SDOF systems, matrices X, dY2, Y3 and F have
size of 1 × Navg . Moreover, Eqs. (9.5) and (9.6) are valid for every individual k-th frequency sample, k ∈ {1, . . . , n}.

D(k�1) [X1, . . . , XNavg ] + c2 [dY2,1, . . . , dY2,Navg ] + k3 [Y3,1, . . . , Y3,Navg ] = [F1, . . . , FNavg ] (9.5)

D(�) X(�) + c2 dY2(�) + k3 Y3(�) = F(�) (9.6)

9.2.1 NIFO Algorithms

H1-Based NIFO Method (Modified H1 Algorithm)

The original NIFO estimator was first proposed in [1]. It can be obtained by rearranging Eq. (9.6) into the form presented
in Eq. (9.7), where the quantity H is a Frequency Response Function (H(�) = D−1(�)). The modified H1 algorithm is
based on Eq. (9.8), which is obtained by right-multiplying Eq. (9.7) by the matrix

[
FH −dYH

2 −YH
3

]
. Note that an equation

in the form of Eq. (9.8) can be written for every individual frequency.
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X = [
H c2H k3H

]
⎡
⎣

F
−dY2

−Y3

⎤
⎦ (9.7)

X
[
FH −dYH

2 −YH
3

] = [
H c2H k3H

]
⎡
⎣

F
−dY2

−Y3

⎤
⎦ [

FH −dYH
2 −YH

3

]

[
SXF −SXdY2 −SXdY3

]
︸ ︷︷ ︸

b

= [
H c2H k3H

]
︸ ︷︷ ︸

x̂

⎡
⎣

SFF −SFdY2 −SFY3

SdY2dY2 SdY2Y3

SY3Y3

⎤
⎦

︸ ︷︷ ︸
A

(9.8)
Herm. Mtrx

The H1-based NIFO algorithm results in multiple systems of linear equations of the form b = x̂A (each system
corresponds to a different frequency sample). Matrix A is square and for problems of our interest it is usually non-singular,
thus it might be possible to accurately estimate the frequency response function H(�) and parameters c2 and k3 through
solving Eq. (9.8).

Note that the nonlinear parameters c2 and k3 were introduced in Eqs. (9.1) or (9.2) as real and constant numbers. However,
they are computed as complex and possibly frequency-dependent, since some of the parameters in Eq. (9.8) are complex (as
already mentioned above) and the system of equations is solved for each frequency sample separately.

H2-Based NIFO Method (Modified H2 Algorithm)

The H2-based NIFO algorithm was first presented in [2]. It is derived by adding additional pseudo-outputs to Eq. (9.7).
These additional outputs, Xnl,1 and Xnl,2, correspond to the nonlinear terms in the EOM, as shown in Eq. (9.9). The modified
H2 algorithm is based on the formula presented in Eq. (9.10). It can be obtained through right-multiplying Eq. (9.9) by matrix[
XH XH

nl,1 XH
nl,2

]
. As shown in Eq. (9.10), the modification proposed in Eq. (9.9) is needed to overcome the issue of inverting

a rectangular matrix. Moreover, due to the cubic stiffness and quadratic damping nonlinearities, we can write: Xnl,1 = dY2
and Xnl,2 = Y3 and bring Eq. (9.10) to a form of Eq. (9.11). Detailed derivation of the modified H2 method is presented in
[2].

⎡
⎣

X
Xnl,1

Xnl,2

⎤
⎦ =

⎡
⎣

H c2H k3H

−1
−1

⎤
⎦

⎡
⎣

F
−dY2

−Y3

⎤
⎦ (9.9)

⎡
⎣

X
Xnl,1

Xnl,2

⎤
⎦[

XH XH
nl,1 XH

nl,2

]
=

⎡
⎣

H c2H k3H

−1
−1

⎤
⎦

⎡
⎣

F
−dY2

−Y3

⎤
⎦[

XH XH
nl,1 XH

nl,2

]

⎡
⎣

SXX SXXnl,1 SXXnl,2

SXnl,1Xnl,1 SXnl,1Xnl,2

SXnl,2Xnl,2

⎤
⎦ =

⎡
⎣

H c2H k3H

−1
−1

⎤
⎦

⎡
⎣

SFX SFXnl,1 SFXnl,2

−SdY2X −SdY2Xnl,1 −SdY2Xnl,2

−SY3X −SY3Xnl,1 −SY3Xnl,2

⎤
⎦ (9.10)Herm. Mtrx

U︷ ︸︸ ︷⎡
⎣

SXX SXdX2 SXX3

SdX2dX2 SdX2X3

SX3X3

⎤
⎦ =

X̂︷ ︸︸ ︷⎡
⎣

H c2H k3H

−1
−1

⎤
⎦

B︷ ︸︸ ︷⎡
⎣

SFX SFdX2 SFX3

−SdY2X −SdY2dX2 −SdY2X3

−SY3X −SY3X3

⎤
⎦ (9.11)

Herm. Mtrx

Hermitian Sub-matrix
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Summary of the modified H2 algorithm derivation is analogous to the one presented in section on its twin algorithm
– H1−basedNIFO. Nevertheless, one additional comment might be worth noting. Namely, the rows of matrices B and U
(ranging from the 2nd to the last) are almost the same. The rows of matrix B are rows of U, but multiplied by −1. This simple
observation can be used to save time spent on algorithm implementation. Using MATLAB notation we could write:

B(2:end, :) = -U(2:end, :);

9.2.2 Nonlinear Identification Through eXtended Outputs Algorithms

H1-Based NIXO method

The NIXO methods seek to form a larger linear system in which frequency independent parameters can be enforced. We
begin by right-multiplying Eq. (9.6) by FH to obtain Eq. (9.12), which is valid for every individual frequency line. Hence, it
is possible to express each of these equations the matrix form shown in Eq. (9.13). Note that the frequency sample number is
indicated in the quantities’ sub- or superscripts, e.g. SXF (�i) = S i

XF or D(�i) = Di .

D(�) XFH + c2 dY2FH + k3 Y3FH = FFH

D(�) SXF + c2 SdY2F + k3 SY3F = SFF (9.12)

⎡
⎢⎣

S 1
XF S 1

dY2F
S 1

Y3F

. . .
...

...

S n
XF S n

dY2F
S n

Y3F

⎤
⎥⎦

︸ ︷︷ ︸
SH1

XF

⎡
⎢⎢⎢⎢⎢⎣

D1
...

Dn

c2

k3

⎤
⎥⎥⎥⎥⎥⎦

=
⎡
⎢⎣

S 1
FF
...

S n
FF

⎤
⎥⎦

︸ ︷︷ ︸
SH1

FF

, (9.13)

where n stands for the number of frequency samples.
Unfortunately, Eq. (9.13) cannot simply be solved by inverting the matrix on the left because there are more unknowns than

equations. To be more precise we obtained 2n equations and 2n + pdamp + pstiff unknowns, since some of the parameters
in Eq. (9.13) are complex numbers in general. Naturally, pdamp and pstiff represent herein the number of the nonlinear
damping and stiffness terms in the equation of motion (9.1) or (9.2). In this particular example pdamp = 1 and pstiff = 1.

If the solution of the underdetermined system of equations exists – it is not unique. This can lead to inaccuracies in the
parameter estimation. The main concept behind the new H1 Nonlinear Identification through eXtended Outputs (H1-NIXO)
estimator is to overcome this indeterminacy by providing input and output data sets collected in vibration tests where the
system oscillates at multiple different amplitudes. Such data can be used to increase the number of equations in Eq. (9.13)
while keeping the number of unknowns fixed. The idea originates from two observations:

1. Parameters from Eqs. (9.1, 9.2), namely m, c, k as well as c2 and k3, define the mechanical system regardless of the
excitation type

2. Nonlinear response of the system occurs when it oscillates at large enough amplitudes. Hence, if the set of equations (9.13)
is put together, separately, for mechanical system oscillating at, say, two different amplitudes – it might be possible
(due to the nonlinearity) that these 4n real equations will be linearly independent. Since the number of real unknowns
(2n + pdamp + pstiff ) is kept constant - then this new (stacked) system of equations becomes overdetermined and thus
will typically have a unique solution.1

To define the algorithm mathematically, consider the same mechanical system subjected, separately, to multiple forcing
functions. This forcing functions have to be chosen such that they cause a response at multiple different displacement
magnitudes (e.g. they could be chosen as multiple swept sines of different forcing levels), see Eq. (9.14).

1 One cannot guarantee that the new equations will be linearly independent of those already provided, but if the nonlinearities are amplitude
dependent and sufficiently different amplitudes are used then this is likely to be the case.



9 Extensions to NIFO and CRP to Estimate Frequency-Independent Nonlinear Parameters 103

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

mẍ + cẋ + kx + c2ẋ|ẋ| + k3x
3 = fI (t)

mẍ + cẋ + kx + c2ẋ|ẋ| + k3x
3 = fII (t)

...

mẍ + cẋ + kx + c2ẋ|ẋ| + k3x
3 = fr(t)

, (9.14)

where r is the number of different forcing functions used to excite the mechanical system.
If we repeat the derivation presented above in this section we end up with r-times the number of equations presented in

Eq. (9.13) and an unchanged number of unknowns, with the final form given in Eq. (9.15).

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

SH1
XF,I

SH1
XF,II

...

SH1
XF,r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

D1
...

Dn

c2

k3

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

SH1
FF,I

SH1
FF,II

...

SH1
FF,r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.15)

Since some of the parameters in Eq. (9.15) are complex, the estimates of c2 and k3 are not guaranteed to be real numbers.
To overcome this issue, the real and imaginary parts of the unknowns should be estimated separately so that one can force the
nonlinear parameter values to be real. To do so, Eq. (9.15) should be brought to its equivalent form presented in Eq. (9.16).
The system of derived equations (9.16) is now overdetermined and the unknown parameters can be estimated by solving a
linear least squares problem.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Re{S 1
XF,I

} −Im{S 1
XF,I

} Re{S 1
dY2F,I

} Re{S 1
Y3F,I

}
Im{S 1

XF,I
} Re{S 1

XF,I
} Im{S 1

dY2F,I
} Im{S 1

Y3F,I
}

. . .
...

...

Re{S n
XF,I

} −Im{S n
XF,I

} Re{S n
dY2F,I

} Re{S n
Y3F,I

}
Im{S n

XF,I
} Re{S n

XF,I
} Im{S n

dY2F,I
} Im{S n

Y3F,I
}

Re{S 1
XF,II

} −Im{S 1
XF,II

} Re{S 1
dY2F,II

} Re{S 1
Y3F,II

}
Im{S 1

XF,II
} Re{S 1

XF,II
} Im{S 1

dY2F,II
} Im{S 1

Y3F,II
}

. . .
...

...

Re{S n
XF,II

} −Im{S n
XF,II

} Re{S n
dY2F,II

} Re{S n
Y3F,II

}
Im{S n

XF,II
} Re{S n

XF,II
} Im{S n

dY2F,II
} Im{S n

Y3F,II
}

...
...

...

Re{S 1
XF,r

} −Im{S 1
XF,r

} Re{S 1
dY2F,r

} Re{S 1
Y3F,r

}
Im{S 1

XF,r
} Re{S 1

XF,r
} Im{S 1

dY2F,r
} Im{S 1

Y3F,r
}

. . .
...

...

Re{S n
XF,r

} −Im{S n
XF,r

} Re{S n
dY2F,r

} Re{S n
Y3F,r

}
Im{S n

XF,r
} Re{S n

XF,r
} Im{S n

dY2F,r
} Im{S n

Y3F,r
}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Re{D1}
Im{D1}

...

Re{Dn}
Im{Dn}

c2
k3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Re{S 1
FF,I

}
Im{S 1

FF,I
}

...

Re{S n
FF,I

}
Im{S n

FF,I
}

Re{S 1
FF,II

}
Im{S 1

FF,II
}

...

Re{S n
FF,II

}
Im{S n

FF,II
}

...

Re{S 1
FF,r

}
Im{S 1

FF,r
}

...

Re{S n
FF,r

}
Im{S n

FF,r
}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.16)



104 M. Kwarta and M. S. Allen

H2-Based NIXO Method

To identify the nonlinear mechanical system using the new H2 Nonlinear Identification through eXtended Outputs (H2-
NIXO) estimator, bring Eq. (9.6) to a form of Eq. (9.17) and right-multiply it by matrix

[
XH dYH

2 YH
3

]
.

Equation (9.18) is valid for every individual frequency sample. Thus, it is possible to express each of these equations in a
matrix form shown in Eq. (9.19). As before the frequency sample number is indicated in the quantities’ sub- or superscripts,
e.g. SXX(�i) = S i

XX or D(�i) = Di .

[
D(�) c2 k3

]
⎡
⎣

X
dY2

Y3

⎤
⎦ = F (9.17)

[
D(�) c2 k3

]
⎡
⎣

X
dY2

Y3

⎤
⎦[

XH dYH
2 YH

3

] = F
[
XH dYH

2 YH
3

]

[
D(�) c2 k3

]
⎡
⎣

SXX SXdY2 SXY3

SdY2dY2 SdY2Y3

SY3Y3

⎤
⎦ = [

SFX SFdY2 SFY3

] ∣∣∣∣( )H �⇒
Herm. Mtrx

�⇒
⎡
⎣

SXX SXdY2 SXY3

SdY2dY2 SdY2Y3

SY3Y3

⎤
⎦

⎡
⎣

DH (�)

c2

k3

⎤
⎦ =

⎡
⎣

SXF

SdY2F

SY3F

⎤
⎦ (9.18)

Herm. Mtrx

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S 1
XX S 1

XdY2
S 1

XY3
. . .

...
...

S n
XX S n

XdY2
S n

XY3

S 1
dY2X

S 1
dY2dY2

S 1
dY2Y3

. . .
...

...

S n
dY2X

S n
dY2dY2

S n
dY2Y3

S 1
Y3X

S 1
Y3dY2

S 1
Y3Y3

. . .
...

...

S n
Y3X

S n
Y3dY2

S n
Y3Y3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

DH
1
...

DH
n

c2

k3

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S 1
XF
...

S n
XF

S 1
dY2F
...

S n
dY2F

S 1
Y3F
...

S n
Y3F

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.19)

To assure that the nonlinear parameters c2 and k3 are estimated as real numbers, the problem stated in Eq. (9.19) should
be separated into real and imaginary parts, as illustrated in the previous section. As with the prior algorithm, with H2-NIXO
we then obtain a linear least squares problem to solve to estimate the nonlinear system parameters.

9.2.3 Nonlinear Identification Through eXtended Outputs Algorithms with Linear Data
Provided

Two new nonlinear estimators are presented in the previous section. In addition to finding the values of the parameters
describing the nonlinearities, the algorithms also return estimates of the linear Frequency Response Function (FRF). Since
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linear experimental vibration analysis can be considered today as well–established, the linear FRF values could possibly be
treated as known (i.e. they could be obtained in a separate test where the structure vibrates at low enough amplitude). With
this assumption, we could modify the final equations obtained in the previous sections by bringing the FRF terms to the
RHS vector of known values. This simple observation reduces the number of unknowns – now the only unknown parameters
are c2 and k3. This also significantly reduces sizes of matrices in Eqs. (9.15), (9.16) and (9.19), which makes the algorithms
more efficient from the computational viewpoint. This is elaborated below.

H1-NIXO with Linear Data Provided

If the linear Frequency Response Function is known then Eq. (9.15) can be brought to the form shown in Eq. (9.20) where
quantities corresponding to Dj ’s are now placed in the RHS vector of known values. Note also that collecting data from
multiple vibration tests is no longer needed. The system of equations (9.20) is most likely overdetermined, since the number
of frequency samples (n ∼ 1000) is usually larger than the number of unknown polynomial terms (pdapmp, pstiff ∼ 10). In
case of pdapmp + pstiff > n (which is possible but unlikely), then the number of equations can be populated by providing
data collected in vibration tests where the mechanical system oscillates at multiple different amplitudes (as explained in one
of the previous sections).

⎡
⎢⎣

S 1
dY2F

S 1
Y3F

...
...

S n
dY2F

S n
Y3F

⎤
⎥⎦
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[
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]
=

⎡
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XF D1
...

S n
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XF Dn

⎤
⎥⎦

︸ ︷︷ ︸
b1

(9.20)

To enforce the algorithm to estimate the nonlinear parameters c2 and k3 as real numbers, Eq. (9.20) should be brought to
its equivalent real form shown in Eq. (9.21), where matrix A1 and vector b1 are defined in Eq. (9.20).

[
Re{A1}
Im{A1}

] [
c2

k3

]
=

[
Re{b1}
Im{b1}

]
(9.21)

H2-NIXO with Linear Data Provided

The derivation for this algorithm is analogous to that in the previous section. If the linear Frequency Response Function is
known then Eq. (9.19) can be brought to the form shown in Eq. (9.22) where quantities corresponding to Dj ’s are now placed
in the vector on the RHS. The system of equations (9.22) is always overdetermined.
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(9.22)
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To enforce the algorithm to estimate the nonlinear parameters c2 and k3 as real numbers, Eq. (9.22) should be brought to
its equivalent form presented in Eq. (9.21), where A1 and b1 are obviously replaced with A2 and b2, respectively. Matrix A2
and vector b2 are defined in Eq. (9.22).

9.3 Case Study

9.3.1 Mechanical System Description

The algorithms are evaluated using input and output signals collected during simulated experiments of a mechanical system
described by the Duffing equation (9.23). Values for the parameters were proposed in [1] and are given in Table 9.1. Auto-
and cross-spectra in every case study presented are obtained by applying 25-second-long Hanning windows with 51% of
overlap.

mẍ + cẋ + kx + k3x
3 = f (t) (9.23)

9.3.2 Forcing Signals Description

Input and output signals are generated by exciting the structure with two types of forcing functions:

Swept Cosine Forcing Signal

f (t) = F cos(�(t) t) �(t) = �st + �end − �st

tend − tst
(t − tst ) t ∈ [tst , tend ] (9.24)

Broad-Band Burst Random Forcing Signal

f (t) = F BurstRand(t) t ∈ [tst , tend ] (9.25)

9.3.3 Case Study 1: System Identification with Model Function Known À Priori

The NIXO and NIFO methods are first used to identify the mechanical system (9.23) with the model function known
beforehand. Forcing signals (both swept cosine and burst random) are defined in Tables 9.2 and 9.3. The results obtained are
presented in Tables 9.4, 9.5, 9.6, and 9.7 and discussed briefly at the end of this subsection.

9.3.4 Comments to Case Study 1

1. In the case studies explored here, the NIFO methods failed to estimate the linear frequency response function when the
input signal was swept cosine. However, if the system was excited with a burst random signal then NIFO estimated the
FRF of the underlying linear system to a satisfactory extent. The NIXO methods, on the other hand, succeed in finding
accurate enough estimates of the linear FRF regardless of the excitation type.

Table 9.1 Parameters describing
SDOF mechanical system with
cubic stiffness nonlinearity

m
[
kg

]
c

[ Ns
m

]
k

[ N
m

]
k3

[ N
m3

]

1 4 103 105
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Table 9.2 Values of parameters
characteristic to swept cosine and
burst random forcing functions

Swept Cosine:
�st

[
Hz

]
�end

[
Hz

]
tst

[
s
]

tend

[
s
]

0.01 15 0 1500

Burst Random:
tst

[
s
]
tend

[
s
]
�t

[
s
]

Burst Start Burst End

0 512.5 0.01 0% 100%

Table 9.3 Values of parameters shared by swept cosine and burst random forcing functions. Force amplitudes expressed in newtons, frequencies
expressed in hertz

Signal Type FI or F FII DF FO �
f ilt

1 �
f ilt

2 �
spect

1 �
spect

2 I/O Signals Results

Swept Cosine 5.0 0.1 – – – – 0.3 15 Table 9.4 Table 9.5

Burst Random 10.0 0.1 2 8 0.3 15 0.3 15 Table 9.6 Table 9.7

DF – Decimation Factor
FO – Butterworth Filter Order
�f ilt – cut-off frequency; �

f ilt

1 and �
f ilt

2 are lower and upper cut-off frequencies, respectively
�spect – auto- and cross-spectra are computed for frequency range (�

spect

1 , �
spect

2 )

2. The NIFO algorithms returned accurate k3 values away from the resonant frequency, while in the vicinity of the linear
resonance their estimations were wildly erroneous. The NIXO methods return cubic stiffness parameter as a single
frequency-independent value. Every NIXO algorithm succeeded in estimating k3 to a satisfactory extent except for H1-
NIXO–LDP. However, the accuracy of that method can be increased if data for higher excitation amplitudes is included
(as shown in [5]).

3. It is worth noting that (for the NIXO and NIXO–LDP algorithms) the real part of k3 found as a complex number matches
the value of the cubic nonlinear parameter estimated as a real number. Moreover, the real part of k3 is usually an accurate
estimate when the imaginary part is found as a much smaller number. For example, the results obtained with the NIFO
algorithms (with swept cosine used as the excitation) show that for off-resonant frequencies Im{k3} was much smaller than
Re{k3}. Thus, when an accurate parameter was found it typically was predominantly real. Additionally, this observations
can be used as one of the decision criteria in the black-box system identification.

9.3.5 Case Study 2(a): Black-Box System Identification – Impact of the Polynomial Degree

In this section, we propose a strategy to utilize the NIXO approaches to identify a single degree of freedom mechanical
system of unknown nonlinearity. The algorithms are tested to estimate the parameters of Eq. (9.23) presented in Table 9.1.
The model function used in the estimation process is given in Eq. (9.26).

Multiple tests, with different values of polynomial degree p and unknown ki parameters (i ∈ {2, . . . , p}), were conducted.
A swept cosine forcing function, defined in Tables 9.2, 9.3 and presented in Table 9.4, was used as the input signal. The results
obtained for the case where p = 6 are presented in Table 9.8.

mẍ + cẋ + kx + k2x|x| + k3x
3 + · · · + kpx|x|p−1 = f (t) (9.26)

The outcomes from this case study, obtained using NIXO methods, show that the cubic nonlinearity is most likely
dominant in the mechanical system’s response. Note that the cubic nonlinear stiffness term turned out to be the most
significant for the identification with a polynomial of sixth degree (see e.g. the last column in Table 9.8). The results obtained
with NIFO seem to be inconclusive.

Black-box system identification conducted for the remaining values of p (p ∈ {2, 3, . . . , 9}/{6}) is presented in [6].
It shows similar outcomes for the identification with a polynomial of up to a sixth degree. The analyses conducted for
polynomials of degree higher than 6 gave unclear results for both NIXO and NIFO algorithms. Hence, this approach would
be limited to smaller numbers of polynomial terms. To explore this further, a second analysis was conducted. This time,
the model function consisted of a cubic term and one additional nonlinear stiffness term only. The description and results
obtained in this case study are presented in the next subsection.
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Table 9.4 Case study with Swept Cosine used as a forcing function. Input/Output Signals

Signal Type FI or F FII DF FO �
f ilt

1 �
f ilt

2 �
spect

1 �
spect

2

Swept Cosine 5.000 0.100 – – – – 0.3 15
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9.3.6 Case Study 2(b): Black-box System Identification – Impact of the Additional Polynomial
Term

In the previous section, the results obtained correctly revealed that the stiffness nonlinearity in the mechanical system was
most likely cubic. That term was dominant when the model function was a polynomial of up to sixth degree. However, when
the model function (9.26) was assumed to be a polynomial of higher degree, the results did not give any insight into which
nonlinear terms were dominant and which terms could be eliminated from the model function (for details see [6]).

In this section, the results obtained using Eq. (9.27) as a model function are presented. This function assumes that the
nonlinearity in the system consists of a cubic term and one additional term only.

mẍ + cẋ + kx + k3x
3 + krx|x|p−1 = f (t) (9.27)
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Table 9.5 Case study with Swept Cosine used as a forcing function. Results

Signal Type FI or F FII DF FO �
f ilt

1 �
f ilt

2 �
spect

1 �
spect

2

Swept Cosine 5.000 0.100 – – – – 0.3 15
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Table 9.6 Case study with Burst Random forcing function. Input/Output Signals

Signal Type FI or F FII DF FO �
f ilt

1 �
f ilt

2 �
spect

1 �
spect

2

Burst Random 5.000 0.100 2 8 0.3 15 0.3 15
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Table 9.7 Case study with Burst Random forcing function. Results

Signal Type FI or F FII DF FO �
f ilt

1 �
f ilt

2 �
spect

1 �
spect
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The mechanical system is again subjected to the swept cosine excitation defined previously. Table 9.9 shows the outcomes
from the analysis for additional term power p = 9. Results obtained for the remaining powers, namely p ∈ {7, 8} can be
found in [6].

9.3.7 Comments to Case Study 2

A strategy to identify an SDOF mechanical system with unknown nonlinearity using NIXO methods was presented in this
section. A few comments on the results obtained are enumerated below.

1. In the first stage of the system identification process, NIXO methods using Eq. (9.26) as a model function were used. The
outcomes from this stage showed that a cubic nonlinear stiffness was present in the mechanical system. Additionally, the
nonlinear stiffness terms of powers lower than or equal to 6 were discovered to be less significant in the system’s response.

2. In the second stage of the proposed strategy, NIXO methods used the model function presented in Eq. (9.27). The results
from this stage showed that the cubic nonlinearity was also dominant over nonlinearities of higher powers.

3. NIFO methods did not work well when the mechanical system was excited with a swept cosine function. However, this
type of forcing can be used as an input signal for the system identification based on the NIXO algorithms. Time did not
allow exploring the use of broadband random forcing with NIFO, although the examples in the previous section showed
that NIFO was more satisfactory in that case, typically similar to the NIXO method.

9.4 Conclusion and Future Work

This paper presented several new methods that can be successfully used in the estimation of the linear FRF as well as
frequency-independent nonlinear parameters of a nonlinear system. The methods were first used in the system identification
of a single degree of freedom system with the nonlinearity known à priori. Additionally, a black-box identification scheme
utilizing the NIXO approaches was presented. Results were compared to those obtained using NIFO methods, which are
popular approaches for nonlinear system identification.

Based on the outcomes presented in this work, it can be said that the NIXO algorithms show certain advantages over
the NIFO approaches. First of all, the NIXO-based methods are not input-signal-sensitive. In the case studies used here,
the NIFO algorithms required the mechanical system to be excited with a random forcing function. Furthermore, when
considering black-box identification, NIXO methods turned out to be more effective than NIFO. The results returned by the
former family of methods clearly showed that the cubic nonlinearity was dominant in the system response. The outcomes
from the NIFO black-box identification did not show which nonlinear stiffness term was dominant in the system’s response.
Hence, they did not allow for making a confident decision on which of the nonlinear stiffness terms could be eliminated from
the model function.

In a future work, both NIXO methods will be employed experimentally to identify the physical parameters describing the
nonlinearity of a 3D printed beams for oscillations near their first vibration modes. The results will be then used to compute
the NNM backbone curve and compared to the solution obtained by another estimation algorithm and data collected using
the well-established testing approach.
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Structural Mechanics and Prognosis program managed by Dr. Jaimie Tiley. The authors would also like to thank Joseph Hollkamp from the Air
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