
Chapter 14
Reconciling the Difference Between Test and Real Environments:
Improving Fixture Design Based on Modal Strain

Scott A. Smith and Matthew R.W. Brake

Abstract With the recent push to make automobiles, aircraft, and other vehicles more fuel-efficient, the redesign of many
components are currently underway to reduce the conservativeness of the design with an intent to reduce weight. Laboratory
tests are performed to speed up the design qualification process. However, the fixtures used are typically rigid, which provides
insight into how a component responds and fails in a “‘fixed” base manner. Laboratory tests need to be able to reproduce the
same stresses and strains experienced to represent real environments. This work proposes that a fixture mimicking the local
stiffness and dynamics is required to emulate the actual environmental conditions. This work postulates that the local modal
displacements and strains need to match these local dynamics, and the best way to achieve this is through a truncated system.
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14.1 Approach

To investigate this theory, a simple Euler-Bernoulli beam model is truncated and spring-mass systems are attached at the
boundaries. Parameters for the spring-masses are optimized to match the first bending mode dynamics of the truncated and
full beams. The full beam is assumed to be the actual environment and is given as the analytical expression of a free-free
Euler-Bernoulli Beam of length 5L, given in Eq. 14.1 and shown in Fig. 14.1a. A truncated beam of length L with attached
spring-mass systems (Fig. 14.1b) is utilized as the representative system. For this system Eqs. 14.1a and 14.1b with the
appropriate length of L are the same, and Eq. 14.1c is modified to those given in Eq. 14.2. The beams are taken to have the
following properties: Modulus of Elasticity of 69 GPa, Density of 2700 kg/m3, and a 2 cm square cross-section.
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Fig. 14.1 Euler-Bernoulli beams studied; (a) full length and (b) truncated with spring-masses attached at the boundaries

F1 and F2 are solved by performing force balance at the boundaries in Fig. 14.1b. The equation of motion for the boundary
condition is given as:

M
d2zx

dt2
= k (�(x) − zx) (14.3)

Using Eqs. 14.3 and 14.2, and applying separation of variables, the steady state boundary becomes
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Using Eqs. 14.1a, 14.1b, and 14.4 the natural frequencies and mode shapes can be found as:

2 cos βL cosh βL − 2K1 cos βL sinh βL + 2K1 sin βL cosh βL
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14.2 Simulations

To optimize the springs and masses, an implementation of NSGA-II in Matlab’s global optimization toolbox is utilized. The
program is used to optimize the scaled mode shape (Eq. 14.6) or strain mode shape (Eq. 14.7) using the Modal Assurance
Criterion (MAC), Eq. 14.8, or Modal Strain Assurance Criterion (MSAC) when strain mode shape is used; and the relative
error between the frequency of the truncated beam to full length beam.
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Two cases are analyzed, symmetric (SSM) and asymmetric (ASM) spring-masses. The symmetric case is studied because
the truncated beam is assumed to be centered in the whole beam. The Pareto fronts from using the two different shapes are
shown in Fig. 14.2a, b. The asymmetric case allows for the springs and masses to vary independently, the Pareto fronts are
shown in Fig. 14.2c, d. As ASM did not converge to a reasonable error for frequency (minimum achieved was 120%) the
results from the symmetric cases were used to seed the first generation, the results are shown in Fig. 14.2e, f.

14.3 Conclusions

The conclusion of this study is that there is a possibility to truncate boundary conditions such that the dynamics seen by a
component can be matched. However, the use of optimization techniques need to be surveyed in more detail. Furthermore,
the applicability of other techniques such as transmission simulator or effective mass need to be assessed. These methods,
though, tend to return non-physical masses and stiffness matrices. Since, the overall goal is to make a fixture for testing, the
parameters need to have physical representatives. The method must be expanded to a 3D finite element model of a beam, so
that it may be applied to more complex structures such as the Box Assembly with Removable Component.
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Fig. 14.2 Pareto front and rank histograms of SSM (a) scaled and (b) strain mode shapes, ASM for (c) scaled and (d) strain mode shapes, and
ASM seeded with SSM for (e) scaled and (f) strain mode shapes



14 Reconciling the Difference Between Test and Real Environments: Improving Fixture Design Based on Modal Strain 157

Fig. 14.2 (continued)
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Fig. 14.2 (continued)
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