
Chapter 10
System Characterization and Design Using Mechanical
Impedance Representations

Alexandra C. Karlicek, Brandon J. Dilworth, and J. Gregory McDaniel

Abstract Vibration testing is a critical aspect in the qualification of fieldable hardware as dynamic environments are
typically design drivers, especially in the case of airborne and space-borne systems. However, when testing components
or small subassemblies, it is challenging to match the boundary conditions presented by the true installation interface,
which can greatly influence the outcome and inferences of a vibration test campaign. Strategically designed test fixtures,
which emulate the impedance of the next level of assembly, can more effectively emulate the boundary conditions present
in the fielded system. The objective of this paper is to present an approach to impedance matched fixture design, which
requires matching both the transfer and output impedances of the true system. The analyses presented within this paper
focus on techniques for matching the drive point impedance, which requires correct solutions for both the transfer and
output impedances. The impedance matching approach will utilize undamped lumped parameter systems and highlight the
advantages of characterizing the high and low frequency behavior. Additionally, closed form representations of these high
and low frequency characteristics will be presented for easily realizable 1D lumped parameter systems.

Keywords Vibration testing · Impedance-matching · Mechanical impedance · Fixture design · System realizability

10.1 Introduction

Component level vibration qualification testing is typically conducted in three mutually orthogonal axes on a vibration
shaker table. The input environment is normally specified as base driven input whose amplitudes are derived based on
various dynamic excitation sources that are applicable to the environment in which the unit under test will operate. Common
test practices dictate that the component test fixture shall provide a rigid boundary condition, and thus should not possess
dynamics within the frequency bandwidth that will be tested. Although this design approach may minimize the potential
for modal coupling between the test fixture and unit under test, it ultimately presents an unrealistic dynamic interface. An
illustration comparing the system environment and the laboratory excitation environment is shown in Fig. 10.1. The image
on the far left represents the true dynamic environment, where velocity at the base (v1) is not equal to the velocity at the
interface (v2). On the contrary, in the test configuration v1 ≈ v2 due to the aforementioned practice of designing rigid fixtures.

The issues encountered as a result of this unrealistic boundary condition include the potential for both under-testing
and over-testing across the excitation bandwidth. This phenomenon has been widely recognized in the environmental testing
community and is often referred to as the “impedance mismatch problem.” Various strategies for mitigating these issues have
been proposed which include testing techniques as well as fixture design. Test techniques include Scharton’s force limited
vibration testing [1] and Impedance Matched Multi-Axis Testing (IMMAT), as introduced by Daborn et al. [2]. Concepts for
fixture design include Scharton’s [3] multimodal design approach as well as the “N + 1” style test fixtures as investigated by
Edwards [4] and Hall [5].
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Fig. 10.1 Illustration of system and component test configurations detailing relevant interfaces

10.2 Statement

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.
This material is based upon work supported under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings,

conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views
of the U.S. Air Force.

10.3 Background

Generically speaking, mechanical impedance refers to the ratio of the excitation force to the velocity response. An expression
for the impedance of a system can be derived from the spatial model of the equation of motion for a viscously damped system,
which is described by Eq. (10.1) below, where [M], [C], and [K] are NxN mass, damping, and stiffness matrices, respectively
[6].

[M] {ẍ} + [C] {ẋ} + [K] {x} = {F(t)} (10.1)

Note that here N refers to the number of system equations, or number of degrees of freedom, of the system. Additionally,
{ẍ} , {ẋ} , and {x} are Nx1 vectors of time variant acceleration, velocity, and displacement responses while {F} is an Nx1

vector of time varying external excitation forces [6]. If {F(t)} =
{∼
F

}
eiωt , then the particular solution to (10.1) can be

represented by a solution of the form {x(t)} =
{∼
x
}

eiωt , where
∼
x and

∼
F represent complex amplitudes [6].

[
(iω)2 [M] + iω [C] + [K]

] {∼
x
}

eiωt =
{∼
F

}
eiωt (10.2)

This result can be rewritten in terms of the complex valued dynamic stiffness matrix, [D(ω)], which is equivalent to the
ratio of force to displacement.

[D (ω)]
{∼
x (ω)

}
=

{∼
F (ω)

}
(10.3)

When the left hand side of (10.3) is rewritten in terms of velocity, the impedance matrix [Z(ω)] is found to be [D(ω)]/(iω).

[D (ω)]

iω
iω

{∼
x (ω)

}
=

{∼
F (ω)

}
≡ [Z (ω)]

{∼
V (ω)

}
=

{∼
F (ω)

}
(10.4)
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Fig. 10.2 Illustration of system configuration for impedance derivations

As the stated objective is to better emulate the true dynamic environment, then a methodology must be developed such
that relative velocities v2/v1 presented by the system configuration, illustrated in the leftmost sketch of Fig. 10.1, match those
resulting from the impedance equivalent fixture depicted in the rightmost sketch of Fig. 10.1.

First, the system is broken into lumped element representations of the assembly and component, which includes the
mounting elements. This representation of the system is depicted in Fig. 10.2, where the assembly is denoted by Zassy and
the component is denoted by Zcomp. Here the assembly can be thought of as a two port mechanical system where the input,
output, and transfer impedances must be considered while the component has just one impedance to be considered.

For the assembly, Z11 is the input impedance with
∼
V 2 set to zero and Z22 is the output impedance with

∼
V 1 set to zero.

The reverse transfer impedance Z12 is
∼
F 1/

∼
V 2, where the input is clamped and

∼
F 1 is the force required to maintain

∼
V 1 equal

to zero. Similarly, Z21 is the forward transfer impedance
∼
F 2/

∼
V 1 and

∼
F 2 is the force required to clamp the output. These

relationships can be represented in matrix format as shown in (10.5).

⎧⎨
⎩

∼
F 1∼
F 2

⎫⎬
⎭ =

[
Z11 Z12

Z21 Z22

] ⎧⎨
⎩

∼
V 1∼
V 2

⎫⎬
⎭ (10.5)

The impedance of the component, as depicted in the rightmost sketch of Fig. 10.2 is simply
∼
F

+
2 /

∼
V

+
2 . When the component

is connected to the next level assembly there is no external forcing applied at the interface and thus
∼
F 2 = −∼

F
+
2 and

∼
V 2 = ∼

V
+
2 . These relationships result in the system Z22 being replaced by Z22 + Z2 in (10.5). Again, due to continuity at the

interface between the component and assembly the ratio of
∼
V 2/

∼
V 1 is represented by the ratio in (10.6).

∼
V 2
∼
V 1

= Z21

Z22 + Z2
(10.6)

Thus, in order to satisfy the condition that the dynamic behavior of the fixture match that of the higher level assembly
both the output impedance Z22 and the transfer impedance Z21 must be matched. The focus of this paper will be on matching
the drive point impedance, Zd, of the system, as this solution requires all four elements of the impedance matrix in Eq. (10.5)
to be properly identified.

Assuming that the force is applied at a single point,

{∼
F (ω)

}
has only one non-zero element. In other words

{∼
F (ω)

}
=

∼
Fd (ω) {en}, where {en} is a vector whose only non-zero element represents the nth degree of freedom at which the driving

force is applied. When this is substituted into (10.4) the nth element of the velocity vector

{∼
V (ω)

}
n

is the drive point

velocity,
∼
V d , and can be written as indicated in (10.7).

{∼
V (ω)

}
n

≡ ∼
V d (ω) =

(
[Z (ω)]−1

)
nn

∼
Fd (ω) (10.7)
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From (10.7) the drive point impedance can be expressed as shown in (10.8).

Zd (ω) ≡ 1(
[Z (ω)]−1)

nn

=
∼
Fd (ω)
∼
V d (ω)

(10.8)

Assuming that [Z] is invertible, its inverse can be found by dividing the adjugate of [Z] by the determinant of [Z].
Combining this property with (10.8), an equation for the drive point impedance in terms of basic matrix operations can be
written as shown in (10.9). It is clear from this representation that all four elements of (10.5) are required in order to evaluate
the drive point impedance, as the determinant of the [Z] is required.

Zd (ω) = det [Z]

adj [Z]nn

(10.9)

As the objective of the stated impedance matching problem is to design a test fixture that provides a more realistic
dynamic boundary condition, the system that satisfies the desired impedance relationship must be interpretable as a physically
buildable structure.

The conversion of a desired input-output relationship into a system of interconnected mechanical elements is known as
the mechanical realization problem [7]. Such an input-output relationship for a second order system is presented in Eq.
(10.10), where x is an nx1 vector of displacements, u is an mx1 vector of inputs, such as external forces, and F is the nxm
input influence matrix. The px1 output vector y can be written in terms of the output influence matrices of acceleration, Ha,
velocity, Hv, and displacement, Hd [7].

[M] {ẍ} + [C] {ẋ} + [K] {x} = [F ] {u(t)}
{y} = [Ha] {ẍ} + [Hv] {ẋ} + [Hd ] {x} (10.10)

Techniques for resolving the mechanical realization problem for undamped or proportionally damped systems are well
documented in the literature. These solution approaches, as detailed by Falk [8], O’Hara and Cunniff [9], and Garvey et
al. [10, 11], employ transformations of the mass, stiffness, and damping matrices to satisfy the mechanically realizable
constraint while preserving the desired input-output relationship.

Although the approach presented above offers a methodical process by which a mechanically realizable system with a
specified behavior can be derived, it assumes initial knowledge of the target system mass, stiffness, and damping matrices. A
similar body of work, known as inverse problems in vibration, utilizes specified frequency response (FRF) data to reconstruct
system matrices [12]. While this generalized class of problems is more applicable to the outlined drive point impedance
problem, it also relies heavily on evaluation of the system in terms of matrices, which can be computationally exhaustive.

As an alternative to matrix representations, closed form expressions for mechanical impedance can be derived using
analogies to electrical circuits. Under this framework the mechanical impedance of lumped elements representing mass (m),
stiffness (k), and damping (c) can be expressed as detailed in Eqs. (10.11), (10.12) and (10.13), as presented by Hixson [13].

Zmass (ω) = iωm (10.11)

Zspring (ω) = k

iω
(10.12)

Zdashpot = c (10.13)

The equivalent drive point impedance of a network can be expressed by evaluating the connectivity of individual elements
and appropriately summing their effects. The equivalent impedance of mechanical elements deemed to be in parallel
(Zp), i.e. having the same relative velocities between their connections, is simply a sum of the individual impedances.
For mechanical elements in series (Zs), i.e. having different relative velocities between their connections, the equivalent
mechanical impedance is the reciprocal of the summed reciprocal impedance of individual elements [13].
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Zp (ω) =
N∑

n=1

Zn (ω) (10.14)

1

Zs (ω)
=

N∑
n=1

1

Zn (ω)
(10.15)

Utilization of the rational form of the drive point impedance in order to perform system characterization is studied
within the electrical community. This field of study is known as electrical network synthesis, and utilizes the rational
expression of impedance or admittance, with fully defined polynomial coefficients, to determine system realizability and
derive representative electrical circuit architecture [14].

10.4 Analysis

The objective of this study is to develop a methodology for designing a test fixture that matches the dynamic behavior of
the next level of assembly in order to more accurately emulate the true boundary condition. As shown in the background
section, this requires matching the frequency dependent output and transfer impedances. This paper will focus on the drive
point impedance, as this metric encapsulates both aforementioned impedances.

The test fixture within this analysis will be represented by a lumped parameter, or discretized, model that could be used
as a basis for design. To derive this lumped parameter emulator, it is assumed that the frequency dependent drive point
impedance of the system of interest is available and that the low frequency, quasi-static behavior is captured. The magnitude
of this impedance data then becomes the target function, where the objective is to minimize the overall Root Mean Squared
Error (RMSE) between the target behavior and the analytically derived system behavior. This error minimization will be
accomplished through evaluation of the topological features of the drive point impedance curve, which includes behavior at
the extremes of the frequency band as well as maxima and minima.

The analysis approach to be explored within this paper focuses on undamped systems, as this solution will provide
matched resonances, anti-resonances and overall frequency dependent behavior. Results from undamped systems can be
extend to lightly damped systems, where a variety of damping models and can be explored to best fit the target drive point
impedance signature.

For a system with N modes there are a variety of N-DOF system architectures that can provide the appropriate number
of resonances. An array of architectures are considered as various configurations have the potential to provide a low error
impedance match. The simplest architecture is a 1D chain, in which the initial spring-mass system is connected to ground
and each subsequent spring-mass pair is connected to the N−1 spring mass pair. Other architectures include systems where
each mass is connected to all other masses as well as ground via spring elements (all connections), systems where each mass
in the chain is connected back to ground via spring elements (all grounded), and systems were some but not all masses in the
chain are connected to non-adjacent masses or ground using spring elements (partial connections). An example illustration
of the various architectures is provided in Fig. 10.3 for a three DOF system, where multiple partial connection systems are
shown to demonstrate the variety of manners in which this architecture can be achieved.

The expression for impedance of any N degree of freedom (N-DOF) mass-spring system can be written in fractional form,
using either Eq. (10.9) or Eqs. (10.11), (10.12), (10.13), (10.14) and (10.15), where the form of the polynomial expressions
in the numerator and denominator can be readily predicted. The generic form of this rational expression can be most readily
derived from consideration of (10.9), where each element of [Z] has the form iωm + k/iω, as indicated by (10.2) and (10.4).
Thus, the determinant of [Z] has even powers in ω, with the highest power of ω equal to 2N and the adjugate of [Z] has odd
powers in ω, with the highest power of ω equal to 2N−1. Substitution of this result into (10.9) yields the general expression
represented by Eq. (10.16), where the various coefficients are represented as generically as possible. Again, this result can
also be realized from utilization of Eqs. (10.11), (10.12), (10.13), (10.14) and (10.15), where matrix operations are not
required and thus computational advantages can be realized for large values of N.

| Zd (ω) |=
∑N

n=0 anω
2n

∑N−1
n=0 bnω2n+1

(10.16)
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Fig. 10.3 Sample illustration of system architectures shown using 3DOF system

When expanded, Eq. (10.16) can be rewritten for MDOF systems as shown in (17), where the highest and lowest powers
in both the numerator and denominator have been separated as their coefficients are of particular importance. For all of the
configurations presented in Fig. 10.3, the coefficients of the highest powers in both the numerator and denominator possess
only mass terms while the coefficients of the lowest powers possess only stiffness terms. The coefficients of the intermediate
powers, an and bn, are mixed coefficients containing combinations of both mass and stiffness elements.

| Zd (ω) |=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a0ω
2N+∑N−1

n=1 anω2n+aNω0

b0ω
2N−1+bN−1ω

1 for N ≡ 2

a0ω
2N+∑N−1

n=1 anω2n+aNω0

b0ω
2N−1+∑N−2

n=1 bnω2n+1+bN−1ω
1

for N ≥ 3

(10.17)

As stated above, the high frequency behavior is mass dominated while the low frequency behavior is stiffness dominated,
which is expressed mathematically as a0/b0 = f ({m}) and aN /bN − 1 = f ({k}). Utilizing these ratios as approximations
for impedance magnitude at the extremes of the frequency domain will yield equivalency expressions in terms of target
impedance modulus, frequency, and stiffness or mass, as shown in (10.18) and (10.19).

α = ∣∣Ztarget (ωmin)
∣∣ ∗ ωmin

∼= aN

bN−1

∼= f ({k}) (10.18)

β =
∣∣Ztarget (ωmax)

∣∣
ωmax

∼= a0

b0

∼= f ({m}) (10.19)

The expressions above, which are valid for any N-DOF lumped system, can be further refined for the 1D chain architecture
shown in the leftmost sketch of Fig. 10.3. This class of system is of particular interest as they are quite easily constructed and
thus lend themselves to be readily leveraged for fixture design. The more specific form of (10.17) for 1D chain architectures
is presented in (10.20). As indicated the a0 and b0 coefficients are products of the mn discrete masses while the aN coefficient
is a product of the kn stiffnesses. The bN−1 coefficient is slightly more complicated as it involves evaluation of all the possible
N−1 combinations. For example, when the expression for bN−1 is evaluated for the 3DOF chain illustrated in Fig. 10.3 the
result is k1k2 + k1k3 + k2k3.
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| Zdchain (ω) |=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∏N
n=1 mnω2N+∑N−1

n=1 ηnω2n+∏N
n=1 kn∏N−1

n=1 mnω2N−1+ω1
∑N

n=1
∏N

n = 1
n �= N

kn

f or N ≡ 2

∏N
n=1 mnω2N+∑N−1

n=1 ηnω2n+∏N
n=1 kn∏N−1

n=1 mnω2N−1+∑N−2
n=1 Hnω2n+1+ω1

∑N
n=1

∏N

n = 1
n �= N

kn

f or N ≥ 3

(10.20)

This result allows closed form representations of (10.18) and (10.19) to be written, where (10.21) holds exclusively for
1D chain architectures, and (10.22) is applicable to any of the topologies illustrated in Fig. 10.3.

α = ∣∣Ztarget (ωmin)
∣∣ ∗ ωmin

∼=
∏N

n=1 kn∑N
n=1

∏N

n = 1
n �= N

kn

(10.21)

β =
∣∣Ztarget (ωmax)

∣∣
ωmax

∼= mN (10.22)

In addition to assessing behavior at the extremes of the frequency band, the resonances and anti-resonances can be
obtained from the target dataset. There are a variety of approaches to obtaining these frequency values, however it is
recommended that established single-input-single-output (SISO) frequency domain modal fitting algorithms be utilized.
Application of these algorithms to the impedance modulus will yield anti-resonant frequencies while application of these
algorithms to the modulus of mobility, or 1/|Z|, will yield resonant frequencies. The number of identified resonant frequencies
corresponds to the number of degrees of freedom, or lumped masses, that the emulator architecture will possess.

The resonant and anti-resonant frequencies correspond to the roots of the numerator and denominator, respectively, of
Eq. (10.16). The knowledge of the roots and zeros, combined with the outputs of Eqs. (10.21) and (10.22) yields a set p
equations with p unknowns, for 1D chain architectures only. For polynomials up to order four, analytic expressions for the
roots can be found, and thus there are sufficient conditions by which closed form solutions can be found. This polynomial
order corresponds to a 4DOF system where the substitution ω2 = λ is made, such that the highest order in the numerator of
(10.20) is λ4

. As analytic solutions for the roots of a polynomial with order 5 or higher do not exist, this analytic solution
approach for system identification of 1D chains fails.

It is desired to evaluate 1D chains that possess more than 4DOF as well as systems of various architectures, thus a
numerical solution approach is required. The most obvious approach is to conduct an exhaustive search of the various
combinations of individual parameters where the impedance is calculated using Eq. (10.16) for the applicable system
architecture under evaluation. The objective of this exhaustive search would be to find the combination of parameters that
yields the lowest Weighted Root Mean Squared Error (WRMSE) between the target and calculated impedance modulus,
where the RMSE is weighted to reflect the fact that the low amplitude values corresponding to resonances are more critical
to match than the high amplitude values near anti-resonances.

Although this approach is very straightforward, it is rather limited, as large allocations of memory are required to compute
the output from the various combinations of parameters. For example, a 3DOF chain architecture system with six searchable
parameters would have 1012 possible combinations if 100 values were evaluated for each parameter. Each of these 1012

combinations must be computed at hundreds or thousands of frequency points, resulting in up to 1015 computations. Each
additional degree of freedom would result in an increase in the number of computations by a power of four, assuming
100 values are investigated for each element. Another shortcoming of exhaustive search is that magnitude of the WRMSE
decreases as the discretization of the parameters increases, thus driving the number of required combinations even higher if
the true minimum WRMSE is desired.

In order to reduce the number of computations for an exhaustive search it is proposed that Eq. (10.18) be leveraged to
determine the best combination of stiffness values to match the low frequency impedance behavior. Although this expression
is presented in generality, once a specific architecture is evaluated the coefficients a0 and b0 can be found, or for the case of
the 1D chain a closed form expression can be readily transcribed using (10.21).
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As the ratio of these variables has no mass or frequency dependence (i.e. scalar), the computational expense of this
calculation is quite low. The combination of stiffness values that yields the lowest WRMSE between the target and computed
α values are selected and the values for the lumped masses can then be found. The value of the Nth mass can be solved
for using Eq. (10.22) while the values of the remaining masses can be numerically solved for using a variety of analyses
including: (1) minimizing the error between the result of Eq. (10.16) and the target impedance modulus, (2) pole and zero
fitting of Eq. (10.16) or (3) solutions to the eigenvalue problem.

Although the numerical solution approaches call for exhaustive searching of the mass parameters, the utilization of
stiffness dominated low frequency behavior has decoupled the stiffness parameters from this search. As a result the number
of computations that are now required to minimize the error between the target and derived drive point impedances is
reduced by the length of the frequency vector, L ({ω}), times the length of the mass vector, L ({m}), times the length of the
stiffness vector, L ({k}), raised to the power of the number of springs, q. The reduction in the parameter search space by
L({k})q ∗ L ({m}) ∗ L ({ω}) will more efficiently yield low WRMSE impedance matches for multiple system architectures,
thus offering a more broad design space from which fixtures can be created.

10.5 Conclusion

A methodology for matching the drive point impedance has been proposed that leverages topological features of the
impedance curve, including maxima, minima, and behavior near extremes of the frequency band. This approach offers
distinct computational advantages as it decouples frequency dependence and mass parameters from the solution of the system
stiffness values. Additionally, a formulation has been proposed that allows for a rational expression to be readily transcribed
for both the high and low frequency behavior of easily constructed 1D chain systems. The computational advantages offered
by these formulations, particularly when utilized in conjunction with the non-matrix based derivation of the drive point
impedance, allows for an efficient assessment of multiple system architectures from which a broad design space for fixture
design is posed.
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