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Chapter 14
Incorporating Circulating Biomarkers into 
Clinical Trials

Filip Janku

Abstract  Knowing the cancer genomic profile with underlying druggable molecu-
lar alterations is important for the optimal choice of cancer therapy. However, 
molecular analysis of tumor DNA can be limited by the availability of the cancer 
tissue, which has to be obtained from therapeutic or diagnostic procedures. 
Molecular analysis of liquid biopsies utilizing the circulating tumor cell-free DNA 
offers a minimally invasive and low-risk method that can be performed at multiple 
time points for molecular analysis. Molecular testing of cell-free DNA can be used 
in multiple clinically useful applications, such as identification of molecular targets 
for cancer therapy, assessment of cancer prognosis, monitoring of response to can-
cer therapy, monitoring of tumor molecular profiles in real time, and study target 
engagement when developing new therapies.
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Key Points
•	 Liquid biopsies are minimally invasive and can provide tumor DNA for molecu-

lar testing.
•	 Molecular testing of cell-free DNA can help to determine cancer prognosis.
•	 Molecular testing of cell-free DNA isolated from blood or other body fluids can 

identify targets for cancer therapy.
•	 Serial molecular testing of cell-free DNA has potential as a tool for assessment 

of therapeutic response to cancer therapy.
•	 Serial molecular testing of cell-free DNA can be used to study clonal evolution 

and mechanisms of therapeutic resistance.
•	 Liquid biopsies have potential to be used in pharmacodynamic studies in clini-

cal trials.
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14.1  �Introduction

Selection of an optimal treatment strategy requires detailed analysis of the cancer 
genome and identification of molecular targets for cancer therapy in each individual 
patient [1, 2]. Molecular testing of tumor samples obtained from diagnostic or thera-
peutic procedures remains the current standard of care. However, this approach has 
significant limitations because of tumor heterogeneity and the  dynamic nature of 
tumor genotypes, which would mandate multiple biopsies from primary and meta-
static sites at multiple time points [3, 4]. This is hardly feasible because of medical, 
ethical, financial and logistic considerations. To overcome these limitations, novel 
minimally invasive methods to detect pertinent molecular alterations in tumor DNA 
associated with less risk to the patient and lower cost are being developed. Mandel 
and Métais in 1948 noted the presence of cell-free nucleic acids (cfNA) in human 
blood [5, 6]. However, it took about six decades before reports were published on 
detection of oncogenic aberrations in blood-derived cell-free DNA (cfDNA) in 
patients with cancer [7]. Fragments of cfDNA can be detected in plasma, urine, cere-
brospinal fluid (CSF), and other body fluids [5, 8–20]. These cfDNA fragments can 
be used for detection of underlying cancer-related molecular abnormalities, and such 
approach has become known as a liquid biopsy [12, 19, 21, 22]. In clinical trials, 
liquid biopsies can be used to identify targets for cancer therapy, to assess cancer 
prognosis, to assess efficacy of cancer therapy, to monitor cancer molecular profiles 
in real time and for assessment of target engagement. DNA or its fragments can enter 
the circulation by several distinct mechanisms, including release of nuclear and mito-
chondrial DNA from dying cells during either apoptosis or necrosis (Fig.  14.1). 
Other mechanisms of DNA release include autophagy and necroptosis [5, 23]. 
Fragments of cfDNA can vary in size substantially based on their mechanism of 
release. For instance, fragments of DNA released from apoptotic cells average around 

Red blood cells
Mutated

cell-free DNA

Wild-type
cell-free DNA

Cancer lesion

Circulating 
tumor cell

Fig. 14.1  Fragments of 
cell-free DNA and other 
sources of cancer DNA in 
the circulation

F. Janku



235

160–180 bp in length, while the fragments of DNA from necrotic cells are usually 
longer. The average lengths of cfDNA fragments from apoptotic and necrotic pro-
cesses, and their ratio, may be assessed as an important element of the DNA integrity 
index, which may have prognostic implications [24]. The cfDNA fragments are 
cleared from the circulation with half-lives ranging from 15 min to a few hours [21].

14.2  �Methods for Molecular Testing of cfDNA

Sample collection and processing times can impact DNA integrity and accuracy of 
cfDNA assessment [5, 25]. Plasma is the most frequent source of circulating cfDNA, 
which is preferred to serum due to lower level of high molecular contamination by 
non-cancerous cfDNA from lysis of normal leukocytes. Because timely processing is 
among the most important factors to maintain cfDNA integrity, cell-stabilizing blood 
collection tubes, which allow sample processing to be delayed for several days, have 
become increasingly popular for collection of blood samples intended for cfDNA 
analysis [5, 26, 27]. Other materials, such urine, CSF or other body fluids are less cel-
lular and arguably less prone to DNA degradation [10, 12, 18–20, 28].

The tumor-specific fraction also called circulating tumor DNA (ctDNA) of the 
total cfDNA can be identified by the presence of cancer-specific alterations, such as 
hot spot mutations, or through detection of cancer-specific epigenetic modifications 
such as methylation patterns [5, 9]. The tumor-specific fraction in plasma can vary 
from 0.01% to more than 90% [5]. Lower-stage tumors have lower levels of cfDNA 
shedding compared to advanced disease [29]. Therefore, highly sensitive methods 
are required for detection of cfDNA in early disease [29, 30].

Polymerase chain reaction (PCR) approaches, or next-generation sequencing 
(NGS), has dominated molecular testing of cfDNA [5]. PCR methods include ARMS-
Scorpion PCR (amplification refractory mutation system), PCR-SSCP (single-strand 
conformation polymorphism), ME-PCR (mutant enriched), MASA-PCR (mutant 
allele–specific amplification), PAP-A amplification (pyrophosphorolysis-activated 
polymerization allele-specific amplification), or RFLP-PCR (restriction fragment 
length polymorphism) or similar (Table 14.1) [31–36]. However, molecular testing of 

Table 14.1  Examples of methods for molecular testing of cell-free DNA

Methods for cell-free DNA testing
PCR Next generation gequencing

Digital PCR Amplicon-based NGS

Droplet digital PCR Tam-Seq
BEAMing Capture-based NGS
Quantitative PCR CAPP-Seq
ARMS-qPCR Safe-seq
ICE-COLD PCR Ultra-deep NGS
Idylla Digital sequencing
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cfDNA requires very high sensitivity to detect specific alterations with very low allele 
fractions. Therefore, novel methods using digital PCR such as droplet-based systems 
or the use of beads, emulsions, amplification, and magnetics (BEAMing), or microflu-
idic assays, are increasingly used [17, 21, 37–44]. The most significant limitation of 
PCR is its inability to simultaneously detect a large spectrum of aberrations.

Unlike PCR, NGS allows detection of multiple alterations across wider regions 
of the cancer genome. The specific regions of cfDNA can be analyzed by using 
targeted deep-sequencing techniques such as TAm-Seq (tagged amplicon deep 
sequencing), Ion AmpliSeq, Safe-Seq (safe-sequencing system), CAPP-seq (cancer 
personalized profiling by deep sequencing), digital sequencing or other methods [8, 
14, 45–49]. The most comprehensive techniques include whole-exome and whole-
genome sequencing of plasma samples; however, these approaches are less reliable 
in samples with lower content of ctDNA [5, 45, 50, 51]. The advantages of PCR-
based and NGS-based approaches are summarized in Table 14.2.

14.3  �Identification of Molecular Targets for Treatment

The feasibility of molecular testing of cfDNA was tested by comparing its concor-
dance with molecular testing of tumor tissue. In a pilot study of 18 patients with 
metastatic colorectal cancer who were candidates for surgical resection or radiofre-
quency ablation, oncogenic mutations (APC, TP53, PIK3CA, and KRAS) were 
assessed by direct sequencing in tumor tissue, and at least one mutation was identi-
fied in each unique tumor [21]. Subsequently, cfDNA isolated from plasma was 
tested with BEAMing digital PCR. The study demonstrated oncogenic mutations 
can be detected in cfDNA isolated from plasma in cancer patients.

Interesting insight about factors influencing concordance was offered by a study 
testing a cohort of patients with advanced breast cancer. First, there was 100% con-
cordance (34 of 34 cases) between BEAMing-detected PIK3CA mutations in plasma 
cfDNA and in tumor tissues in a cohort with simultaneous plasma and tumor collec-
tion; however, the concordance decreased to 79% in the second cohort of 60 patients 
when tumor samples and plasma cfDNA were obtained at different time points [39]. 
The relationship between concordance and time between specimen collection has 
been demonstrated by other studies. For instance, results of a single institution study 

Table 14.2  Possible applications for PCR vs. NGS

PCR NGS

Limited number of well-defined markers Broad molecular diagnostics
Serial monitoring of a limited number of 
known alterations

Detection of copy number variations and fusions

Detection of alterations causing adaptive 
resistance in scenarios when these 
mechanisms are well-understood and 
limited in number

Detection of adaptive resistance in scenarios 
when these mechanisms are either poorly 
understood or investigated or include a large 
number of scenarios
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in 168 patients with advanced cancers demonstrated that targeted digital NGS of 
plasma cfDNA misses known mutations in 4 major oncogenes (TP53, EGFR, 
PIK3CA and ERBB2) in 22–33% if the interval between tumor tissue and plasma 
acquisition is 6 months or less compared to 31% to 39% if the interval between 
tumor tissue and plasma acquisition is more than 6 months [52]. In a study of 157 
patients with advanced cancer that progressed on systemic therapy who were 
referred for treatment with experimental targeted therapies, a panel of 21 oncogenic 
mutations in the BRAF, EGFR, KRAS, and PIK3CA genes was assessed in plasma 
cfDNA by BEAMing technology. The results demonstrated acceptable concordance 
(BRAF, 91%; EGFR, 99%; KRAS, 83%; PIK3CA, 91%) with results of standard-of-
care mutation analysis of primary or metastatic tumor tissue obtained during clini-
cal care [38].

Thierry et al. tested KRAS and BRAF mutations in plasma-derived cfDNA from 
106 patients with metastatic colorectal cancer using allele-specific quantitative PCR 
and compared results to standard-of-care testing of tumor tissue and demonstrated 
for plasma testing 100% specificity and sensitivity for the BRAF V600E mutation 
and 98% specificity and 92% sensitivity for the common KRAS mutations [53].

Forshew et al. [49] tested the TAm-Seq method for identification and monitoring 
of oncogenic mutations in plasma cfDNA.  Investigators screened 5995 genomic 
bases in coding regions of TP53 and PTEN, and selected regions of EGFR, BRAF, 
KRAS, and PIK3CA for low-frequency mutations. The assay was able to detect 
mutations in cfDNA with sensitivity and specificity of >97%. Moreover,  in one 
patient with synchronous primary cancers of the bowel and ovary, disease relapse 
was identified as being derived from the original ovarian tumor. A plasma sample 
collected at relapse revealed the TP53 mutation originally found in the ovarian pri-
mary tumor, whereas the colorectal cancer-associated mutations were not detected.

Newman et al. [48] developed CAPP-Seq, an ultrasensitive NGS-based method 
for quantifying tumor-derived plasma cfDNA by targeting recurrently mutated 
regions in the cancer of interest. In patients with non-small cell lung cancer, the 
CAPP-Seq method was able to detect cfDNA in 100% of patients with stage II–IV 
disease and 50% of patients with stage I disease. The method specificity was 96% 
for mutant allele fractions as low as 0.02%.

In addition, we performed a series of comparative studies, which demonstrated 
that concordance for plasma and tumor tissue samples collected non-synchronously 
in common metastatic cancers ranges from 80% to >90% for digital PCR technolo-
gies and from about 70% to 80% for NGS [8, 37, 38].

In a prospective study published by Sacher et al. [17] in metastatic non-small cell 
lung cancer (NSCLC) it was demonstrated that ddPCR testing for KRAS and EGFR 
mutations has high sensitivity (64%–86%) and specificity (100%) for initiating 
mutations. In addition, molecular testing of plasma-derived cfDNA was associated 
with shorter processing  timelines compared to simultaneous molecular testing of 
tumor tissue.

Another study in patients with EGFR-mutated NSCLC previously treated with 
first generation EGFR tyrosine kinase inhibitors demonstrated that molecular test-
ing of plasma cfDNA before starting on third generation EGFR inhibitor 
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osimertinib reliably detects patients with EGFRT790M mutations who benefit from 
therapy with an objective response rate (ORR) of 63% [54]. However, in patients 
lacking plasma EGFRT790M mutations, the reported ORR to osimertinib was 46%, 
and the majority of patients with tumor shrinkage had EGFRT790M mutations detected 
in tumor tissue. These data suggest that molecular testing of cfDNA might be 
acceptable as an initial test; however, negative results for mutations of therapeutic 
interest may warrant tissue confirmation (Fig. 14.2).

Finally, novel targeted NGS approaches covering a larger portion of the genome 
expanded ctDNA molecular diagnostics to include tumor mutation burden (TMB) 
testing in order to predict efficacy of PD-L1-based immune checkpoint inhibitors 
[55]. Early data suggest that high TMB in plasma cfDNA is an actionable marker 
predicting favorable outcomes for immune checkpoint inhibitors in NSCLC.

14.4  �Assessment of Prognosis

The quantification of total and/or mutant cfDNA has been studied for prognosis 
assessment in various tumor types. Some studies demonstrated that, in cancer 
patients, higher levels of cfDNA are associated with higher risk of disease recur-
rence and progression [8, 21, 37, 38, 47, 52, 56–59]. In a study by Diehl et al. [21] 
in 18 colorectal cancer patients, the absence of cfDNA in plasma during the first 
follow-up visit after surgical resection was associated with 100% recurrence-free 
survival.

Early limited data suggested that persistence of TP53 mutations in plasma 
cfDNA of patients with stage II or III breast cancer that were in remission was asso-
ciated with higher likelihood of disease recurrence; however, the small sample size 
precluded any definitive conclusion [32]. In a very preliminary study in 11 colorec-
tal cancer patients who underwent surgery, primary tumors and corresponding 
plasma samples were screened for KRAS mutations and p16INK4a promoter 
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hypermethylation [34]. On follow up, these alterations were identified in plasma 
cfDNA only from patients with disease recurrence.

The amount of mutant cfDNA has been found to be of prognostic significance. 
Spindler et al. [58] demonstrated the prognostic value of the amount of total cfDNA 
and KRAS mutant cfDNA in a study of 108 patients with metastatic colorectal can-
cer treated with third-line cetuximab and irinotecan. Patients with higher cfDNA 
levels had shorter progression-free survival (PFS; 2.1 vs. 4.4 months; P = 0.0015) 
and overall survival (OS; 3.6 vs. 10.4 months; P < 0.0001) than patients with lower 
cfDNA levels. Similarly, patients with higher levels of KRAS-mutant cfDNA had 
shorter PFS (1.8 vs. 2.3 months; P = 0.008) and OS (2.1 vs. 5 months; P = 0.0005) 
than patients with lower levels of KRAS-mutant cfDNA.

The previously mentioned study, which evaluated BEAMing for the detection of 
21 mutations in BRAF, EGFR, KRAS, and PIK3CA in plasma cfDNA of 157 patients 
with advanced cancer, also examined the prognostic impact of the amount of 
mutated plasma cfDNA [38]. A higher percentage of mutant cfDNA (>1% [n = 67 
patients] vs. ≤1% [n = 33 patients]), irrespective of mutation type, was associated 
with a shorter OS (5.5 vs. 9.8 months; P = 0.001), which was confirmed in a multi-
variable analysis. Similarly, 41 patients with >1% of KRAS mutant (codon 12 or 13) 
cfDNA had a shorter median OS than 20 patients with ≤1% of KRAS mutant cfDNA 
(4.8 vs. 7.3 months; P = 0.008). Significant differences in OS were not observed for 
mutations in other examined genes, likely due to the small sample size.

In another study of 246 patients with advanced non-small-cell lung carcinoma 
(NSCLC) treated with platinum and vinorelbine chemotherapy, the patients with 
detectable plasma KRAS mutant (codon 12 or 13) cfDNA had a shorter median OS 
(4.8 vs 9.5  months; P  =  0.0002) and shorter median PFS (3.0 vs 5.6  months; 
P = 0.0043) than patients whose cancer expressed wild-type KRAS [59]. A multi-
variate analysis confirmed the independent prognostic value of KRAS mutant cfDNA 
in OS but not in PFS. Wang et al. [60] showed the negative prognostic effect of 
KRAS mutations (codon 12 or 13) in plasma cfDNA of 273 patients with advanced 
NSCLC. The median PFS of patients with a plasma KRAS mutation was 2.5 months, 
while that of patients with wild-type KRAS was 8.8 months (P < 0.001).

In a study of 44 pancreatic cancer patients, the 1-year survival rate was 0% in 
those with KRAS codon-12 mutations in cfDNA, and 24% in those with KRAS wild-
type in cfDNA (P < 0.005), and plasma KRAS mutation status was the only indepen-
dent prognostic factor (odds ratio, 1.51; 95% confidence interval [CI], 1.02–2.23) 
[36]. In 103 patients with melanoma receiving biochemotherapy, those with a BRAF 
mutation in serum cfDNA had significantly shorter OS than those that did not have 
the BRAF mutation in serum cfDNA (13 vs. 30.6 months, P = 0.039) [61].

The negative prognostic impact of increased levels of mutant cfDNA was sup-
ported by other studies in breast cancer, colorectal cancer, ovarian cancer, and other 
tumor types [62–65]. Furthermore, the presence of other tumor-related genomic 
cfDNA aberrations was associated with poor prognosis. Detection of loss of hetero-
zygosity and microsatellite instability in cfDNA was associated with worse progno-
sis for patients with breast cancer, ovarian cancer, melanoma, lung cancer, or other 
tumor types [66–69].
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14.5  �Efficacy Assessment and Monitoring

The liquid biopsy could be used as a minimally invasive way to predict and monitor 
therapy response in real time (Fig. 14.3) [5]. Arguably, because of the  relatively 
short half-life of cfDNA, its changes might indicate therapeutic response, or lack of 
there of, earlier than conventional imaging, which is typically done after several 
weeks or even months of therapy [70]. In addition, early data suggest that molecular 
testing of dynamic changes in ctDNA can help to differentiate progression from 
pseudo-progression in patients treated with immunotherapy [71].

In a study of 1060 patients with advanced NSCLC treated with gefitinib, EGFR 
mutations were detected in primary tumors and corresponding plasma samples [72]. 
ORR were 76.9% (95% CI, 65.4–85.5) for patients with detected mutations in both 
tumor and plasma and 59.5% (95% CI, 43.5–73.7) for patients with mutation in the 
tumor but not in plasma, which demonstrated that EGFR mutation status could be 
assessed in cfDNA and serve as a positive predictive biomarker for targeted therapy.

In contrast, another study assessed BRAF mutations in plasma cfDNA from 160 
patients with advanced cancer and known BRAF status from archival tumor samples 
[57]. Patients whose archival tumor samples had a BRAFV600 mutation (n  =  51) 
received therapy with a BRAF and/or MEK inhibitor. The time to treatment failure 
(TTF) of 13 patients with a BRAFV600 mutations in the tumor but not in plasma 
obtained before therapy was significantly longer than that of 38 patients whose 
baseline plasma cfDNA had a BRAFV600 mutation (13.1 vs. 3.0 months; P = 0.001). 
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The absence of BRAFV600–mutant cfDNA also was associated with longer TTF (HR, 
0.31; P = 0.004) in multivariate analysis.

Dynamic tracking of ctDNA was investigated in a prospective study of 52 
patients with metastatic breast cancer [40]. The plasma cfDNA was monitored to 
qualitatively and quantitatively assess disease progression and treatment response 
and compare with levels of circulating tumor cells (CTC), tumor marker cancer 
antigen 15-3 (CA15-3), and computed tomography (CT) imaging. The cfDNA was 
detected by identification of the same PIK3CA and TP53 mutations and structural 
variations as were found in the tumor tissues. The levels of cfDNA in plasma gener-
ally correlated well with the treatment response assessed by CT imaging (as defined 
by Response Evaluation Criteria in Solid Tumors) [73, 74]. However, two patients 
in this study had discordant correlations. In 10 of the 19 patients who experienced 
disease progression, the cfDNA levels increased at one or more consecutive time 
points, on average 5 months before progressive disease was observed on imaging. 
Moreover, the cfDNA was found to be a more accurate biomarker for monitoring 
metastatic disease than CTCs, CA 15-3, or CT imaging.

Another study with 72 patients with advanced NSCLC examined the dynamic 
changes in cfDNA EGFR mutations as a predictor of response to EGFR tyrosine-
kinase inhibitor targeted therapy [75]. Failure to clear plasma EGFR mutations after 
EGFR tyrosine kinase inhibitors (TKIs) was an independent predictor for shorter 
PFS (hazard ratio [HR] 1.97, P = 0.001) and OS (HR 1.82, P = 0.036). The EGFR 
mutations were detected by ddPCR in serial plasma samples of non-small cell lung 
cancer patients treated with erlotinib [76]. The study demonstrated the disappear-
ance of EGFR mutations in exon 19 and 21 and the emergence of EGFRT790M resis-
tance mutations several weeks before radiographic disease progression.

Other studies showed that patients with advanced cancers and decrease in ctDNA 
on therapy compared to those with no change or increase have favorable therapeutic 
outcomes such as TTF [8, 9, 19]. However, it remains unclear how to translate these 
findings to the individualized treatment of cancer patients.

Overall, dynamic tracking of ctDNA appears to be reliable in scenarios where 
the cancer is heavily dependent on the alterations included in ctDNA assays (e.g. 
testing for BRAF mutation in non-Langerhans malignant histiocytosis); however, 
ctDNA efficacy monitoring seems to be more complicated in tumors with more 
heterogeneous molecular profiles [18, 37].

14.5.1  �Molecular Profiling in Real-Time and Assessment 
of Target Engagement

Implementing principles of personalized medicine and targeted therapy into routine 
oncology practice provides an important shift in the treatment of advanced cancers. 
In metastatic disease, a chronic course is no longer unusual, and patients can survive 
for many years [77]. However, despite the significant initial therapeutic effect of 
targeted therapy, the vast majority of patients eventually develop resistance and 
experience tumor progression. The tumor adaptive resistance results from 
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acquisition of mutations in the targeted genes or signaling pathways of cancer cells 
under therapeutic selective pressure. The mutations causing resistance also can be 
present in the infrequent subclones of pretreatment tumor cells and can predict the 
further failure of targeted therapy [3, 5, 78, 79].

The mechanisms of resistance are often known; however, since routine multiple 
sequential biopsies are not performed, we have no tools to describe these mecha-
nisms at the level of an individual patient. Both intrinsic and adaptive resistance can 
occur because of pre-existing or acquired molecular abnormalities, such as emer-
gence of KRAS mutations on treatment with EGFR monoclonal antibodies in meta-
static colorectal cancer, or emergence of EGFRT790M mutations which  cause 
resistance to EGFR TKIs in non-small cell lung cancer [42, 54]. Lastly, ALK muta-
tions L1196M or C1156Y mediates adaptive resistance to crizotinib in NSCLC with 
ALK rearrangement, and mutations in NRAS, MEK, and BRAF amplification indi-
cate resistance to BRAF inhibitor vemurafenib in BRAF-mutant melanoma [80–82]. 
Because liquid biopsies can be obtained at low cost at multiple time points, they 
offer a useful tool for monitoring molecular changes associated with resistance to 
certain cancer therapies.

An example of emerging resistance mutations in response to targeted therapy is 
the acquisition of tumor KRAS mutations in codons 12, 13, or 61 in patients with 
advanced colorectal cancer treated with anti-EGFR monoclonal antibodies cetux-
imab or panitumumab [42, 43]. Two landmark studies have shown the possibility of 
detecting and monitoring these emerging KRAS mutations in patients with colorec-
tal cancer in cfDNA by using BEAMing technology [42, 43]. Testing of serum 
cfDNA from 28 colorectal cancer patients receiving panitumumab showed that 9 of 
24 patients whose tumor and cfDNA were initially KRAS wild-type had developed 
detectable cfDNA KRAS mutations [43]. Interestingly, multiple KRAS cfDNA 
mutations were detected in three individuals. The appearance of mutations gener-
ally occurred between 5 and 6 months following initiation of treatment. In the sec-
ond study, emergence of KRAS aberrations was found in tumor tissue samples from 
metastatic sites obtained after initiation of therapy [42]. Corresponding plasma 
samples also showed emergence of KRAS mutations in cfDNA, which may have 
occurred as early as 10 months before radiographic progression [42]. Furthermore, 
our group at MD Anderson Cancer Center, using BEAMing technology, reported 
acquired KRAS and/or EGFR ectodomain mutations in 44% (27/62) and 8% (5/62) 
of plasma samples from patients with advanced colorectal cancer treated with 
cetuximab or panitumumab, respectively [83]. KRAS codon 61 and 146 mutations 
were predominant (33% and 11%, respectively).

Even if the candidate-gene techniques to monitor emerging resistance mutations 
to various targeted therapeutics provide promising results, such approaches have 
substantial drawbacks, most notably the requirement for prior knowledge of mecha-
nisms of resistance and corresponding mutations. Application of unbiased 
approaches for detecting emergence of resistant cancer cell subclones using NGS 
technologies directly on the plasma samples could overcome these limitations. A 
proof-of-principle study by Murtaza et al. [45] monitored cancer clonal evolution 
and the acquisition of secondary resistance mutations to various anticancer treat-
ments in serial plasma samples from six patients with advanced breast, ovarian, or 
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lung cancer using unbiased whole-exome sequencing. Follow-up intervals were 
1–2 years, and the exome sequencing was performed on two to five plasma samples 
in each patient. The results revealed emergence of distinct secondary mutations, 
such as an activating mutation in PIK3CA after paclitaxel, a truncating mutation in 
RB1 after cisplatin, a truncating mutation in MED1 after tamoxifen and trastuzumab 
and a splicing mutation in GAS6 after subsequent treatment with lapatinib in the 
same patient, and an EGFR T790M mutation after treatment with gefitinib. The results 
of this study established that exome-wide analysis of cfDNA could complement 
standard biopsy to detect mutations associated with acquired resistance to therapeu-
tic agents in advanced cancers. However, it should be noted that the detected mutant 
allele fractions for the aberrations were rather high (3%–45%), which can limit the 
applicability of such an approach to a limited subset of patients.

Recently, molecular testing of cfDNA was tested as a tool to assess pharmacody-
namic endpoints in clinical trials. One of the examples was an early phase develop-
ment of a novel switch pocket KIT and PDGFR inhibitor ripretinib [84]. Serial 
collections of blood samples from patients treated with ripretinib showed signifi-
cant decrease in KIT-mutated ctDNA confirming on-target effects of therapy.

14.6  �Conclusions

Liquid biopsy offers an attractive tool for identification of molecular targets for 
cancer therapy, determination of prognosis, assessment of response to anticancer 
therapy, real-time monitoring of cancer molecular profiles, and assessment of target 
engagement. Liquid biopsies are increasingly accepted as a clinical tool to detect 
molecular targets for cancer therapy; however, the clinical utility of other applica-
tions, such as dynamic tracking during therapy, remain to be proven in prospective 
studies. Furthermore, cfDNA consists of both nonmalignant and tumor DNA, and 
the tumor DNA fraction can be relatively small. This issue increases the demand for 
higher sensitivity testing, which is associated with higher cost and often prevents 
some more comprehensive approaches such as whole-genome or -exome NGS.

Key Expert Opinion Points
•	 Knowing the cancer genomic profile with underlying druggable molecular alter-

ations is important for the optimal choice of cancer therapy.
•	 Molecular analysis of tumor DNA can be limited by the availability of the cancer 

tissue, which has to be obtained from therapeutic or diagnostic procedures.
•	 Molecular analysis of liquid biopsies utilizing the circulating tumor cell-free 

DNA offers a minimally invasive and low-risk method that can be performed at 
multiple time-points for molecular analysis.

•	 Molecular testing of cell-free DNA can be used in multiple clinically useful 
applications, such as identification of molecular targets for cancer therapy, 
assessment of cancer prognosis, monitoring of response to cancer therapy, moni-
toring of tumor molecular profile in real time and study target engagement when 
developing new therapies.
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