l‘)

Check for
updates

An Efficient Metaheuristic for the
Time-Dependent Team Orienteering
Problem with Time Windows

Krzysztof Ostrowski®™)

Faculty of Computer Science and Telecommunication,
Bialystok University of Technology, ul. Wiejska 45A, 15-001 Bialystok, Poland
k.ostrowski@pb.edu.pl

Abstract. The Time-Dependent Team Orienteering Problem with
Time Windows (TDTOPTW) is a combinatorial optimization problem
defined on graphs. The goal is to find most profitable set of paths in
time-dependent graphs, where travel times (weights) between vertices
varies with time. Its real life applications include tourist trip planning in
transport networks. The paper presents an evolutionary algorithm with
local search operators solving the problem. The algorithm was tested
on public transport network of Athens and clearly outperformed other
published methods achieving results close to optimal in short execution
times.

Keywords: Time-Dependent Team Orienteering Problem with Time
Windows - Evolutionary algorithm - Local search - Public transport
network

1 Introduction

The Time-Dependent Team Orienteering Problem with Time Windows (TDTO
PTW) belongs to the family of the Orienteering Problem (OP). The classic OP
is defined on a weighted graph with nonnegative profits associated to vertices
and nonnegative costs associated to edges. The goal of the OP is to find a path
between two given vertices, limited by total cost of visited edges and maximizing
total profit of visited vertices. The OP solution does not have to contain all
vertices (usually it is impossible because of total cost constraint) and each vertex
can be visited only once.

The Time-Dependent Orienteering Problem (TDOP) [12] is a generalization
of the classic OP and is defined on time-dependent graphs. In such graphs edge
costs (weights) are identified with travel times between vertices. More impor-
tantly, travel time between vertices depends on a moment of travel start (weights

The research was carried out as part of the research work number WZ/W1/1/19 at the
Bialystok University of Technology, financed from a subsidy provided by the Minister
of Science and Higher Education.

© Springer Nature Switzerland AG 2020

K. Saeed and J. Dvorsky (Eds.): CISIM 2020, LNCS 12133, pp. 402-414, 2020.
https://doi.org/10.1007/978-3-030-47679-3_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47679-3_34&domain=pdf
http://orcid.org/0000-0002-7120-396X
https://doi.org/10.1007/978-3-030-47679-3_34

An Efficient Metaheuristic for the TDTOPTW 403

are functions of time). Public transport networks are good examples of time-
dependent graphs (travel time determined by time-table). The purpose of the
TDOP is to find most profitable path between given two vertices (starting at a
given time) limited by total travel time.

The TDTOPTW [7] is an extension of the TDOP. The goal of the
TDTOPTW is to find a set of paths (of a given cardinality) maximizing total
collected profit. Each path has the same limit of total travel time and the same
start /end vertices. Any vertex can be included only once in a multi-path solu-
tion. Additionally each vertex has some visit time as well as time window, which
determines when a given vertex can be visited. Arriving too late makes it impos-
sible to visit a vertex while arriving too early means waiting for its opening. It
should be noted that time of edge traversals as well as time needed to visit
vertices and waiting time are all included in total travel time.

Problems from the OP family have many practical applications including
tourist trip planning [6,17], transport logistics and even DNA sequencing [3]. In
tourist trip planning each attraction (point of interest - POI) has some profit
(dependent on its popularity) and a time-window (opening hours). Finding an
attractive multi-day tour (of a limited duration) in a time-dependent transport
network (time-dependency: timetables and traffic) is equivalent to solving the
TDTOPTW.

1.1 Literature Review

Problems from the OP family are NP-hard [9] and exact algorithms can be
very time-consuming for larger graphs. For this reason most papers are devoted
to metaheuristics. Various approaches for the OP were based i.a. on greedy and
randomized construction of solutions [2], local search methods [4,20], tabu search
[8], ant-colony optimization [18] and genetic algorithms [19].

Most papers about the Time-Dependent versions of the OP are associated
with practical applications of the problem (trip planning in public transport
networks). LI [12] published the first article about the classic TDOP and solved
it with an exact dynamic programming algorithm. He obtained results for small
test instances.

Garcia et al. [6] presented the first paper describing application of the
TDTOPTW in POI and public transport network of San Sebastian. To solve
the problem the authors proposed Iterated Local Search method (ILS). How-
ever, they performed computations on average daily travel times and assumed
periodicity of public transport timetables.

Gavalas et al. [7] proposed an approach to the TDTOPTW which uses real
time-dependent travel times in a transport network of Athens. The authors intro-
duced two fast heuristics (TD_CSCR and TDSICSCR), which based on ILS and
vertex clustering, and made comparisons of a few methods. The authors cre-
ated 20 topologies and 100 tourist preferences combining into 2000 different test
cases.

Verbeeck et al. [21] developed new benchmark instances for the TDOP,
which model street traffic. The authors proposed an ant-colony approach, which

404 K. Ostrowski

achieved high quality results in a short execution time. Gunawan et al. [10]
modified Verbeeck’s benchmarks (discretization of time) and compared a few
approaches (adaptive ILS proved to be the most effective of them).

The author’s previous papers were devoted to metaheuristics for various prob-
lems from the OP family. Methods developed by the author (composition of
evolutionary algorithms and local search heuristics) proved successful on the OP
[14,15] as well as on TDOP benchmark instances [16] and on TDOPTW public
transport and POI network of Bialystok [17]. The algorithms achieved results
close to optimal and outperformed other methods: GRASP [2] and GLS [20]
(OP), ACS [21] and Adaptive ILS [10] (TDOP).

Recently a metaheuristic (tabu search4nonlinear programming) was pro-
posed to tackle a new variant of the problem: Orienteering Problem with Service
Time-Dependent Profits (OPSTP) [22]. In this variant vertex profits are not
constant (as in all previous problems) but change with time (in a non-linear
way), which is another aspect of time-dependency.

2 Problem Definition

Let G = (V, E) be a directed, weighted graph. In time-dependent graphs each
weight between vertices ¢ and j (i,7 € V) is identified with travel time between
these vertices and is a function w;;(t) dependent on the moment of travel start ¢.
Each vertex ¢ has a nonnegative profit p;, nonnegative visit time 7; and time win-
dows (opening time to; and closing time tc;) indicating its period of availability.

Given the time-dependent graph, moment of start ¢y, time limit 75,4, start
and end vertices (s and e) the purpose of Time-Dependent Team Orienteering
Problem with Time-Windows (TDTOPTW) is to find a set of m paths from s
to e starting at time ¢, which maximizes total profit of visited vertices and total
travel time of each path is limited by Tp,q4.. Each vertex (except s and e) can be
included only once and only in one path. For simplicity let’s assume that vertices
s and e (start and end point of the tour) have no profits, no visit time and no
windows (this is usually the case in practical applications).

TDTOPTW can be formulated as Mixed Integer Programming (MIP) prob-
lem. Let x;; is 1 iff a solution contains direct travel from ¢ to j and 0 otherwise.
Let ta; and tl; be arrival and leave time at/from vertex ¢ included in a solution.
The purpose of TDOP is to maximize formula 1 while satisfying Eqs. 2-7:

mazx Z Z(pi - Zij) (1)

eV jev
Zzsizzxie:m (2)
eV i€V
v (Z Ty = Z%‘z‘ <1) (3)
1€V \{s,e} jev jev

ty = to (4)

An Efficient Metaheuristic for the TDTOPTW 405

Voo (- tay = @i - (t 4 wi(th))) (5)
ieV,jeV\{e}
AVV(Iie : (tlz + wze(tli)) S Lie - (tO + Tmaz)) (6)
1€

v (@ij - ta; < @45 - te; N agj - tl; = 45 - (max(ta;, to;) + 1)) (7)
i€V \{s,e},jEV
Equation 2 guarantees that every path in a solution starts at vertex s and ends at
vertex e. Formula 3 indicates each vertex can be visited at most once and no path
ends in vertices other than s and e. Equation 4 guarantees that every path start
at time tg while formula 5 guarantees that leave/arrival times of subsequent
vertices are consistent with time-dependent weights. Constraint 6 means that
total travel time of every path cannot be more than 7,,,, while constraint 7
guarantees that time-windows are not violated.

3 Algorithm Description

To solve the TDTOPTW the author proposed an evolutionary algorithm with
local search methods embedded, which was developed from the method solving
the TDOP [16]. It uses both random and local search operators, 2-point heuristic
crossover, disturb operator and deterministic crowding as selection mechanism.
Path representation was used: subsequent genes indicate vertices visited. The
algorithm starts with a random population of feasible solutions.

3.1 Evaluation

Fitness function of a solution is the sum of profits of its paths. Contrary to the
author’s TDOP algorithm, infeasible solutions are not present in the population.
This is due to nature of the problem: additional time-window constraints and
presence of multiple paths in a single solution. Genetic operators don’t allow
solutions to violate time-windows and T},,4, constraints. In the future the author
may propose a fitness function for infeasible solutions, which takes into account
TDTOPTW specificity.

3.2 Crossover

In each iteration ¢, - Ps;.. individuals are selected and arranged in random pairs
(¢p - crossover probability, Ps;.. - population size). The basic procedure of heuris-
tic 2-point crossover (working on two single paths) as well as random parents
selection was based on TDOP algorithm. Heuristic crossover tries to exchange
fragments between successive common vertices of both paths in order to maxi-
mize fitness of the better child.

Each TDTOPTW solution contains m paths (instead of one) and for this rea-
son an adaptation was needed. For each path from parent A the algorithm applies
crossover with each path from parent B (m? single-path crossovers in total). After
each procedure the crossed paths are inserted back into parents and duplicate

406 K. Ostrowski

vertices are removed (if needed). From all options the algorithm chooses the
one which maximizes fitness of the better of two modified solutions (children).
The procedure is explained in Fig. 1. On the other hand, random crossover ver-
sion selects sub-paths and exchanged fragments randomly. Crossover specificity
is determined by ¢ parameter - it’s the probability of using heuristic crossover
(with 1 — ¢p, the probability of random version).

parent A: parent B:
Al: (1,5, 4,3,8,10,2,12,7) B1l:(1,17, 16, 3, 14,5,10,17,7)
A2: (1, 6,9, 14, 16, 11, 7) B2: (1, 8, 11, 15, 6, 20, 19, 7)

single crossover (Al and B1):
Al:(1,5,4,3,8,10,2,12,7)
B1: (1,17, 16, 3, 14,5, 10, 18, 7)

exemplary result (1...3 fragments exchange):
An: (1,17, g, 3, 8,10, 2,12, 7)
Bn: (1,5, 4, 3, 14,5, 10, 18, 7)

child A: child B:
An: (1,17, 3,8,10, 2,12, 7) Bn: (1, 5, 4, 3, 14, 10, 18, 7)
A2: (1, 6,9, 14, 16, 11, 7) B2: (1, 8, 11, 15, 6, 20, 19, 7)

Fig. 1. Exemplary crossover of two solutions (each consists of m = 2 paths). In the
example first path of parent A (A1) is crossed with first path of parent B (B1). There
are three possible fragment exchanges: between 1 and 3, between 3 and 10, between
10 and 7. First of them is presented and new paths (An and Bn) are created. Vertices
5 and 16 are removed from newly created paths due to vertices duplicates in newly
created solutions. Afterwards new paths are inserted into original parents and children
are formed. Heuristic crossover checks all crossing combinations between various paths
and all fragments exchanges.

3.3 Selection

After crossover children compete with their own parents for a place in the popu-
lation (survivor selection in the form of deterministic crowding [13]). For m =1
edit distance function used to determine pairs is the same as in [16]. For m > 1
a modified solution compete with its original version (they have m — 1 paths in
common and are similar). Such selection approach maintains diverse population
for longer enabling a more effective search before convergence.

3.4 Mutation

In each iteration my, - Ps;.e individuals are chosen for mutation (m,, - mutation
probability). Mutation include a few operators. Compared to TDOP solution,

An Efficient Metaheuristic for the TDTOPTW 407

new operator was added (move) and others were modified to operate on multi-
path solutions. Initially all m paths of the selected individual undergo 2-opt pro-
cedure, which exchanges two edges (connections) present in a path with another
two edges in order to reduce total travel time (Fig.2). Afterwards move oper-
ator tries to move a single vertex from one path to another (within the chosen
solution) in order to reduce the total travel time of the solution as much as
possible. All vertices are considered by mowve and if no option reduces the travel
time the solution is not modified. This operator helps to balance routes and is
presented in Fig. 3. Afterwards a vertex insertion or vertex deletion (heuristic or
random) is carried out: (probability of insertion/deletion is 0.5 each). The goal of
heuristic insert is to find a non-included vertex maximizing profit to travel time
increase ratio: all vertices, all insertion places and all sub-paths are considered.
An example of heuristic insert is given in Fig. 4. Heuristic deletion works a bit
analogically: it deletes a vertex minimizing profit to travel time decrease ratio.
Specificity of operators (random/heuristic) is steered by parameter my, which
is equal to the probability of usage heuristic insertion/deletion (analogically to
¢p, in crossover).

Fig. 2. Exemplary 2-opt operator on Euclidean plane. A solution is a cycle which starts
and ends in vertex s. Elimination of edge intersection in the cycle (exchanging red edges
for dashed edges) will reduce total length of the cycle by 9. The proposed algorithm
operates on time-dependent travel times (not distances) but this example was used for
simplicity. (Color figure online)

3.5 Disturb

In each iteration d, - Ps;,. individuals are chosen for disturb (d,, - disturb proba-
bility). Disturb is a different kind of mutation. It is executed way less often than
standard mutation but it can cause larger changes in individuals. The opera-
tor removes a path fragment (consisted of up to 10% of vertices) in a random
or heuristic way (it is steered by dj, parameter). The operator is destructive in
nature and should be used rarely but it’s usage can help escape local optima
and slightly improve results.

3.6 Operators Optimization

In time-dependent paths each modification (i.e. insertion of new vertex) requires
travel time recalculation for a path fragment after the modification point.

408 K. Ostrowski

S

Fig. 3. Exemplary move operator on Euclidean plane. A solution contains two paths
(black and red), both start and end in vertex s. Edge distances are marked near edges.
It can be seen that moving vertex x from black path to red path results in reduction
of total distance of two paths (reduction in black path (2) is larger than increase in
red path (1)). The proposed algorithm operates on time-dependent travel times (not
distances) but this example was used for simplicity. (Color figure online)

v1(10)@,
5.

N

S

Fig. 4. Exemplary heuristic insertion operator on Euclidean plane. The presented solu-
tion consists of two paths (black and red) starting and ending in s. Vertex profits are in
parenthesis and edge costs are marked near edges. The goal is to find new vertex and
insertion point (in any path), which maximize ratio of profit to cost increase. For v1
the ratio is 10/3, for v2 it’s 20/7 and for v3 it’s 5/2. Vertex v1 will be included in the
black path by the operator. The proposed algorithm operates on time-dependent travel
times (not distances) but this example was used for simplicity. (Color figure online)

An Efficient Metaheuristic for the TDTOPTW 409

In case of insert operator (which checks all possible insertion places for a new
vertex) naive searching would require n? time complexity (n - path size). How-
ever, determining best insertion place (in terms of travel time increase) for a
given vertex can be done in linear time with just one loop over a path. Let’s
assume that the path includes vertices 1,2,...,n and let t1,%s,...,t, be vertex
arrival times for this path. We want to insert new vertex x in the best place
(minimizing total travel time after insertion). This problem is equivalent of find-
ing earliest arrival time to vertex n (assuming that = was included). This can be
calculated recursively. Let EAT (k) be earliest arrival time to vertex k assuming
that vertex z was included in a path somewhere before k. Here are formulas (for
their simplicity there are no time-windows and visit times):

EAT(2) = t1 + w1z (t1) 4+ wea(ty + win(t1)) (8)

EAT(k) = MIN { EAT(k — 1) + wp—1x(EAT (k — 1)) })

tho1 + Wr—1z(tk—1) + War (tk—1 + Wr—12(tk—1))

The optimal solution of insertion x before vertex k is either:

1) inserting x optimally before vertex k — 1 and connect k£ — 1 and k directly

2) inserting « directly before vertex k (and after k — 1)

Out of these two options we choose one with earliest arrival time at vertex
k. Calculating it in one loop (from vertex 2 to n) we can obtain FAK (n) and
optimal insertion point in linear execution time.

Additional optimizations were also performed on time-consuming 2-opt oper-
ator. Precomputation of reversed path fragments is done to estimate fast if a
given 2-opt move is promising to perform. Details were presented in [16].

4 Experimental Results

Experiments were conducted on a computer with Intel Core i7 3.5 GHz processor
and the algorithm was implemented in C++. The algorithm was tested on public
transport and POI network of Athens (tests prepared by Gavalas et al. [7]). The
authors created 20 topologies and 100 tourist preferences combining into 2000
different test cases. Results presented in this section (profits and execution times)
are averaged over execution runs for all test cases. Gaps are expressed in percent
and illustrate relative differences between profits of EVO100 and other methods.
The author’s metaheuristic is compared to:

— Time-dependent heuristics (TD_CSCR, TDSICSCR) by Gavalas et al. [7] and
their version working on average travel times (AvgCSCR).

— ILS algorithm working on average travel times (AvgILS) by Garcia et al. [6]
and its time-dependent version (TD_ILS).

— Exact algorithm (based on branch-and-bound and dynamic programming
techniques) implemented by the author (marked as OPT).

Two versions of the evolutionary algorithm (with different population sizes) were
tested: EVO100 and EVO20. Parameter values were derived from the TDOP

410 K. Ostrowski

algorithm [16]. Originally parameter values were computed by automatic tuning
procedure - ParamILS [11,14]. Parameters Ny and Cy for EVO20 were scaled
down to 1000 and 100 accordingly. Version with reduced population size (20)
was chosen because its execution times were similar to other compared methods.
Parameters are given in Table 1.

Table 1. Parameters of the evolutionary algorithm

Param. | Value Description Param. | Value | Description

Psize 100/20 Population size mp 1 Mutation probab.

Ng 5000/1000 | Max. generations number | cp 1 Crossover probab.

Cy 500/100 | Max. generations number | dp 0.01 | Disturb probab.
Without improvement mp 1 Mutation heuristic coeff.

dp 0.8 Disturb heuristic coeff ch 0.8 Crossover heuristic coeff

Table 2. Experimental results for different numbers of paths (m). Gaps are expressed
in percent and illustrate relative differences between profits of EVO100 and other meth-
ods. Execution times are given in seconds. Max. trips duration: 5 hours, start at 10:00.

Method m=1 m=2 m=3 m=4 Exec.
Profit | Gap | Profit | Gap | Profit | Gap | Profit | Gap | Times
AvglLS 298.5 |13.4 | 561.9 | 16.0 |819.7 |13.1 |1078.7 | 14.5 | 0.02-0.26*
TD_ILS 326.3 | 5.3 |641.4 | 4.1 939.8 | 3.4 |1219.2|3.3 |0.02-0.38*
AvgCSCR |332.0 |3.6 |643.3 |3.9 933.7 | 4.1 |1209.3 4.1 |0.03-0.2*
TDSICSCR | 342.1 | 0.7 |657.9 | 1.7 946.5 | 2.8 |1219.1|3.3 |0.05-0.32*
TD_.CSCR |337.8 |1.9 |654.3 2.2 948.1 | 2.6 |1225.5|2.8 |0.04-0.26*
EVO20 343.6 1 0.3 |666.5 |0.4 966.3 | 0.7 |1248.9|1.0 |0.04-0.36
EVO100 344.5 1 0.0 1669.2 | 0.0 973.3 |0.0 |1261.1 /0.0 |0.66-7.6

OPT 344.6 |-0.1 | —0.1/—0.4**
*Other methods were executed on a different computer - times given for informa-
tive purposes.

**Because of long execution times optimal solutions for m = 2 were computed
only for preference number 205 (and all 20 topologies). Given gaps are differences
between OPT and both EVO versions.

In Table 2 experimental results for all methods are given. One can see that
the proposed evolutionary algorithm (both versions) clearly outperforms all other
methods. On average EVO20 is 1.5 and 1.8% better than the best of remaining
metaheuristics (TDSICSCR, and TD_CSCR) and the difference is about 2% for
m > 2. Gaps of other methods are even larger (3-16%). What is more, EVO20
achieves results close to optimal (average gap of 0.4% for m < 2) in a very short
execution time. Differences between the best algorithms gradually grow as m is
increased. Larger solution space (larger m) is explored more effectively by the

An Efficient Metaheuristic for the TDTOPTW 411

stronger version of the evolutionary algorithm (EVO100) and gaps between these
two versions rise from 0.3 to 1.0%. Better results by EVO100 (nearly optimal)
are achieved at the cost of increased execution time.

Table 3. Additional results (profits) obtained by EVO for longer trips (maximum
duration: 8 h, start time: 9:00).

Method m=1m=2 m=3 |m=4 |Exec. times
EVO20 | 560.2 |1069.4 | 1529.9 | 1957.6 | 0.07-0.7
EVO100 | 561.4 | 1074.8 | 1542.7 | 1976.2 | 0.9-16
OPT 561.5

In Table 3 results for longer trips are presented. For m = 1 both algorithm
versions achieve results very close to exact algorithm. As m gets larger EVO100
gains advantage over EVO20 (up to 1%). No optimal solutions are known for
m > 1 but these results are presented for future comparisons.

400 - 100
'.' 90
1300 2 80 05,
. p— o 2
1200 3
5 0 F
a o - - oy - o
1100 o Yo o g mm BT 50 ¢ £
S - s T B
v 40 7 ._g <)
= o
1000 30 B g S
g 58 &
20 o > >
900 2z2
10 =88
-‘= c _— =
SOoEE
800 0 aonn
VELIPP RSP PR RECPLE S &P '
Generation number 1 ,

Fig. 5. Exemplary runs of two algorithm versions: with and without crowding. Profit
of the best solution found so far and average population similarity are presented as a
function of generation number. Ps;.. = 20, m = 4, topology = 1, preference = 408.

In Fig.5 there is a comparison of two algorithm runs. One of them uses
deterministic crowding and the other uses random assignment of competition
pairs during survivor selection. Population similarity (based on longest common
subsequence metric) grows very fast without deterministic crowding - similarity
close to 100% signals convergence around one solution. Deterministic crowding
forces competition between more similar individuals, which enables to preserve
population diversity for longer and improve results in later generations (as seen

412 K. Ostrowski

in the figure). Usage of crowding improved average results by 1.4% for m = 4.
This method of selection proved to be very effective (compared to standard
parent selection methods) in the classic OP as well [14].

Table 4. Comparison of average results for different values of parameters: heuristic
crossover coefficient (¢p,) and heuristic mutation coefficient (my,). Relative profit losses
(in percent) to the best configuration (in bold) are given. Popul. size was 20 and m = 4.

Ch mp

0.0 /0.2 0.4/0.6/0.81.0
0.0/23.8/11.0/ 3.5 /1.4 0.8 |0.8
0.2/199/8.2 {2409 |05 |0.5
0.4|16.3/6.4 2.0 0.7 /0.3 |0.3
0.6 13654 |[1.6 |[0.5 (0.2 0.2
0.8/11.8/4.7 |1.3 /0.4 |0.1 |0.1
1.0/104 /4.1 11.2]0.3]0.0/0.1

In Table 4 the algorithm performance for different values of parameters is
presented. Heuristic crossover coefficient (cp) is the probability that a given
crossover will be heuristic (the probability of a random version of crossover is
1 — ¢p,). Parameter my, plays analogical role for mutation. It can be seen that
usage of heuristic crossover and local search during mutation has a very good
influence on results quality. The best profits are achieved for high values of my,
and medium /high values of ¢;. The algorithm isn’t very sensitive to changing
parameter values: almost half of parameter configurations in the table is less
than 1% worse than the best configuration.

5 Conclusions and Further Research

In this paper an effective algorithm solving the Time-Dependent Team Ori-
enteering Problem with Time Windows was presented. The described method
(evolutionary algorithm with local search heuristics) proved to be very effective
compared to other metaheuristics. It was confirmed that the presented approach
is efficient for various problems from the OP family. Test were conducted on
public transport and POI network of Athens and high-quality solutions were
achieved in a very short execution time. This signals potential application of the
algorithm in e-tourism. Further research will concentrate on adaptation of the
method to related problems: the Orienteering Problem with Time-Dependent
Profits [22], the Orienteering Problem with Hotel Selection [5] and the Stochas-
tic Orienteering Problem [1].

An Efficient Metaheuristic for the TDTOPTW 413

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Campbell, A.M., Gendreau, M., Barrett, W.T.: The orienteering problem with
stochastic travel and service times. Ann. Oper. Res. 186(1), 61-81 (2011)

. Campos, V., Marti, R., Sanchez-Oro, J., Duarte, A.: Grasp with path relinking for

the orienteering problem. J. Oper. Res. Soc. 156, 1-14 (2013)
Caserta, M., Voss, S.: A hybrid algorithm for the DNA sequencing problem. Dis-
crete Appl. Math. 163(1), 87-99 (2014)

. Chao, 1., Golden, B., Wasil, E.: Theory and methodology - a fast and effective

heuristic for the orienteering problem. Eur. J. Oper. Res. 88, 475-489 (1996)
Divsalar, A., Sorensen, K., Vansteenwegen, P., Cattrysse, D.: A memetic algorithm
for the orienteering problem with hotel selection. Eur. J. Oper. Res. 237(1), 29-49
(2014)

Garcia, A., Vansteenwegen, P., Arbelaitz, O., Souffriau, W., Linaza, M.T.: Inte-
grating public transportation in personalised electronic tourist guides. Comput.
Oper. Res. 40(3), 758-774 (2013)

Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G., Vathis, N.: Heuris-
tics for the time dependent team orienteering problem: application to tourist route
planning. Comput. Oper. Res. 62, 36-50 (2015)

Gendreau, M., Laporte, G., Semet, F.: A tabu search heuristic for the undirected
selective travelling salesman problem. Eur. J. Oper. Res. 106, 539545 (1998)
Golden, B., Levy, L., Vohra, R.: The orienteering problem. Naval Res. Logist. 34,
307-318 (1987)

Gunawan, A., Yuan, Z., Lau, H.C.: A Mathematical Model and Metaheuristics
for Time Dependent Orienteering Problem. Angewandte Mathematik und Opti-
mierung Schriftenreihe AMOS 14 (2014)

Hutter, F., Hoos, H.H., Leyton-Brown, K., Stutzle, T.: ParamILS: an automatic
algorithm configuration framework. J. Artif. Intell. Res. 36, 267-306 (2009)

Li, J.: Model and algorithm for Time-Dependent Team Orienteering Problem.
Commun. Comput. Inf. Sci. 175, 1-7 (2011)

Mahfoud, S.W.: Crowding and preselection revisited. In: Proceedings of the 2nd
International Conference on Parallel Problem Solving from Nature (PPSN II),
Brussels, Belgium, pp. 27-36. Elsevier, Amsterdam (1992)

Ostrowski, K.: Parameters tuning of evolutionary algorithm for the orienteering
problem. Adv. Comput. Sci. Res. 12, 53-78 (2015)

Ostrowski, K., Karbowska-Chilinska, J., Koszelew, J., Zabielski, P.: Evolution-
inspired local improvement algorithm solving orienteering problem. Ann. Oper.
Res. 253(1), 519-543 (2017)

Ostrowski, K.: Evolutionary algorithm for the Time-Dependent Orienteering Prob-
lem. Lect. Notes Comput. Sci. 10244, 50-62 (2017)

Ostrowski, K.: An effective metaheuristic for tourist trip planning in public trans-
port networks. Appl. Comput. Sci. 12(2) (2018)

Schilde, M., Doerner, K., Hartl, R., Kiechle, G.: Metaheuristics for the biobjective
orienteering problem. Swarm Intell. 3, 179-201 (2009)

Tasgetiren, M.: A genetic algorithm with an adaptive penalty function for the
orienteering problem. J. Econ. Soc. Res. 4(2), 1-26 (2001)

Vansteenwegen, P., Souffriau, W., Vanden Berghe, G., Oudheusden, D.V.: A guided
local search metaheuristic for the team orienteering problem. Eur. J. Oper. Res.
196(1), 118-127 (2009)

414 K. Ostrowski

21. Verbeeck, C., Sorensen, K., Aghezzaf, E.H., Vansteenwegena, P.: A fast solution
method for the time-dependent orienteering problem. Eur. J. Oper. Res. 236(2),
419-432 (2014)

22. Yu, Q., Fang, K., Zhu, N., Ma, S.: A matheuristic approach to the orienteering
problem with service time dependent profits. Eur. J. Oper. Res. 273(2), 488-503
(2019)

	An Efficient Metaheuristic for the Time-Dependent Team Orienteering Problem with Time Windows
	1 Introduction
	1.1 Literature Review

	2 Problem Definition
	3 Algorithm Description
	3.1 Evaluation
	3.2 Crossover
	3.3 Selection
	3.4 Mutation
	3.5 Disturb
	3.6 Operators Optimization

	4 Experimental Results
	5 Conclusions and Further Research
	References

