
Event Ordering Using Graphical Notation
for Event-B Models

Rahul Karmakar1(B) , Bidyut Biman Sarkar2, and Nabendu Chaki3

1 The University of Burdwan, Burdwan, India
rkarmakar@cs.buruniv.ac.in

2 Techno International, Rajarhat, Kolkata, India
bidyutbiman@gmail.com

3 University of Calcutta, Kolkata, India
nabendu@ieee.org

Abstract. System requirements are sometimes either too complex or
undefined. Event-B is a formal modeling method and is being used
increasingly to model various systems. Event-B models support atom-
icity decomposition and are quite useful for complex refinement struc-
tures. However, neither a Event-B model represents any explicit control
flows among the events, nor does it support links between the new events
during refinements. This work aims to model the Stop and Wait mecha-
nism for an Automatic Repeat Request (ARQ) protocol to analyze the
complexities due to communication errors during data re-transmissions.
The limitation is the lack of control flows among the events during suc-
cessive refinements. This has been graphically represented in this work
and embedded with Event-B notations for the atomicity decomposition of
the model. Finally, the successive refinements presented using an Event-B
model, has been validated using the Rodin tool. This leads to a successful
ARQ model.

Keywords: Event-B · Formal modeling · Stop and wait ARQ ·
RODIN tool · Atomicity decomposition · ERS diagram

1 Introduction

Model-based verification techniques describe the system behaviour in a mathe-
matical and unambiguous fashion [1]. Event-B modeling language is devised as
an extension of classical B methods, which has different applications in diverse
domains. It is a step by step process of system development. We start with an
abstract model and refine the model successively to meet the requirements. An
Event-B model has a static component called context, where we declare all the
sets, constants and axioms. The dynamic part is the machine that sees the con-
text. A machine has variables and invariants. The state changes of a machine are
defined by guards and actions, which is called event [2]. Rodin [3] is a tool support
for the validation of an Event-B model. The control flow between events cannot
be handled explicitly in Event-B as it does not accept ordering of the events.
c© Springer Nature Switzerland AG 2020
K. Saeed and J. Dvorský (Eds.): CISIM 2020, LNCS 12133, pp. 377–389, 2020.
https://doi.org/10.1007/978-3-030-47679-3_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47679-3_32&domain=pdf
http://orcid.org/0000-0002-6607-2707
http://orcid.org/0000-0003-3242-680X
https://doi.org/10.1007/978-3-030-47679-3_32


378 R. Karmakar et al.

However, it can be managed implicitly by Event-B. Event-B modeling allows to
refine a model incrementally. When a new event is introduced in a refinement
stage, we could not link externally between the new and the abstract event.
Atomicity decomposition of a model is supported by Event-B. The relationship
between the events (atomicity) is a very important aspect to maintain, when
we design a large and complex system. A case study on stop and wait for the
ARQ technique with atomicity decomposition of the model is presented in this
paper. It is a layer 2 flow control mechanism for data communication. Similar
applications are found using Event-B [4] and Petri Net [5]. The basic concept of
atomicity decomposition and model decomposition are explained below.

The atomicity decomposition technique is described with a brief overview.
Figure 1 represents the explicit relationship among the events A to F. Event A is
the abstract event and three events B, C and D are the children of A in the tree
like structure. The event B does not refine the event A and represented by the
dashed line. Events C and D refine the event A and the refinement relationship is
represented by the solid lines [6]. Another aspect of the diagram is that, it implies
event B will execute before event C and C will execute before event D. Thus,
the ordering among the events (B, C, D) is also represented by the diagram.
This ordering can be established by Event-B notations. The * between A and
C signifies multiple instances of C, which means event C can execute multiple
times. Different constructors can be used to represent event relationships. We
get some of the representations from Fig. 1. Event E and F are exclusive to each
other, which is represented by XOR constructor. Constructors like AND, OR can
also be used to represent the relationships between Events. We can decompose
the model with graphical notations and then implement the explicit ordering
using Event-B notations.

Fig. 1. Atomicity decomposition diagram.

Model decomposition technique decreases the complexity of large system and
represented in Fig. 2. The large model can be divided into sub-models and refined
individually. The events and variables are shared among the sub models for



Event Ordering Using Graphical Notation for Event-B Models 379

distributed and concurrent systems [7]. The shared event and variable are rep-
resented in Fig. 2. There are 3 events A, B, and C. Events X and Y share the
variables A and event Y and Z share the event B. The machine M is divided
into two submachine M1 and M2. Both the submachines share the event Y. This
paper present an Event-B modeling approach using a graphical notation intro-
duced as in Jackson System Development JSD [6]. This decomposition structure
is explained in [8,9]. We could incorporate explicit ordering between the events
using JSD graphical notations. This ordering has improved and enriched the con-
ventional Event-B modeling. Refinements are also represented by the graphical
structure. These two approaches help us to design the ARQ system in a more
flexible manner, especially when re-transmission takes place due to frame loss
or acknowledgement message loss. The paper is structured as follows, in Sect. 2
we present an overview of stop and wait ARQ technique. Section 3 presents a
brief survey of the related works. Section 4 presents the ERS of stop and wait for
ARQ in detail followed by some observations in Sect. 5. The concluding remarks
highlighting the potential of the proposed work in shaping up paths for future
research directions are presented in Sect. 6.

Fig. 2. Model decomposition

2 An Overview of ARQ Protocol and Requirements

Flow control is one of the important design issues in the data link layer when
the speed mismatch happens between the sender and receiver. It controls the



380 R. Karmakar et al.

rate of the frames transmitted to the receiver. Figure 3(a) represents the normal
operation of Stop and Wait for ARQ mechanism. The sender sends a packet and
waits for the acknowledgment from the receiver within a specified time to ensure
the successful transmission. The control variables S and R have the current value
of the frame either 0 or 1. Timeout is an important aspect of this technique. Sup-
pose the acknowledgment is not received within the specified time due to delayed
acknowledgment showed in Fig. 3(b) or lost acknowledgment showed in Fig. 3(d)
then the duplicate copy of the frame is sent by the sender after the timeout.
The duplicate frame is then discarded at the receiving end in case of delayed
acknowledgment showed in Fig. 3(b) and the duplicate acknowledgment is dis-
carded at the sender’s side in case of acknowledgment lost showed in Fig. 3(d).
The duplication is identified by the control variable values. Figure 3(c) represents
how transmission takes place when a frame is lost. The sender retransmits the
frame after the timeout and accepted by the receiver [10]. The whole operation
is represented using ERS in Sect. 4.

Fig. 3. Stop and Wait ARQ operation



Event Ordering Using Graphical Notation for Event-B Models 381

3 Related Work

There have been works [8] proposing additional structuring to augment Event-B
notation for atomicity decomposition of a complex refinement. Model decom-
position is also presented using some case studies. Event Refinement Structure
(ERS) was proposed by Butler [8]. It is a graphical notation based on JSD
[6]. The relationships between the events are presented graphically to imple-
ment the Event-B notations. A technique is proposed to decompose a machine
into sub-machines and those are refined independently. The paper addresses two
important aspects of system development using Event-B i.e., atomicity decompo-
sition and model decomposition using graphical notations. These are explained
in the section of this manuscript. Atomicity decomposition of the Multimedia
Protocol using Event-B is addressed in the paper [11]. It represents a protocol
of media Channel System that establishes, modify and closes the channel by
the communication parties. They also compared the model with the spin model
checker. Further decompositions are performed using guards and events instead
of sequential decomposition, which will be more useful for a complex system. No
automatic model builder is used in this work. The main goal of the BepiColombo
mission [7] had been to explore the planet Mercury. The whole system is con-
trolled by the Mission-Critical-Software (MCS). The MCS controls the earth
and also the device. It checks the Telecommand (TC) received from the earth
and then validates the TC. TC is a control message and there are many types
of TCs in the system. The atomicity, decomposition, and model decomposition
are implemented using Event-B to handle this complex system. They validate
the model using the RODIN tool. It shows how atomicity decomposition and
model decomposition are effectively used to handle the control behavior manu-
ally. A plug-in tool Event Refinement Structure (ERS) is developed [9]. This tool
automatically constructs the consistent Event-B model with control flows and
refinement relationships. A context-free grammar notation Augmented Backus
Normal Form (ABNF) is introduced to describe the ERS language syntax. Some
of the ABNF features are flow, par, child, constructor, etc. Altogether 19 trans-
lation rules from ERS to Event-B are formed. All the constructors like a loop,
logical XOR, replicator are also described. The development architecture is like;
they define the ERS language specification in the Eclipse Modelling Framework
(EMF) Meta-model. The source Meta-model is then transformed into the Event-
B EMF target meta-model. The transformation from the target meta-model to
Event-B is performed by a rule-based model-to-model transformation language
called Epsilon Transformation Language (ETL). The ERS tool is then com-
pared against the BepiColombo system [9] and the Multimedia Protocol [11].
It is found that the total proofs from the systems in [11] and [7] are substan-
tially reduced. Here, the ERS tool does not provide a graphical environment of
the ERS diagrams. The ERS diagrams are represented as an EMF model and
manipulated by the EMF structure editor. More translations rules can be imple-
mented for the ERS language. The improved version of the ERS tool provides a
graphical environment for the ERS [12]. The Generic Diagram Extension Frame-
work approach is proposed to transform ERS to Event-B. It has graphical and



382 R. Karmakar et al.

validation support for the model whereas the ERS tool needs another tool for
model validation. It is a Java-based tool useful for complex case studies and val-
idation of models. Authors claimed that more translation rules can be added in
the future to add application-specific guards, actions, and invariants in the ERS
environment without switching to Event-B editor. Another work [4], describes
the stop and wait (SAW) technique is implemented by Event-B and verified by
the UPPAAL model checker. They provide the mapping between Event-B to
UPPAAL. The SAW model is implemented manually by Event-B and checked
using RODIN then verifies the model using UPPAAL. The authors handle the
complexity of the protocol with a single machine. Different cases of retransmis-
sion of message and acknowledgment are not presented clearly. These cases can
be represented by the refinement steps. We find ERS as a very useful approach
to model a system requirement using Event-B, from many of the existing works
that we studied. The atomicity decomposition and model decomposition can be
applied to a communication protocol. Event-B is a formal method for system-
level modeling and analysis. This is often used to represent a system at different
abstraction levels and for formal verification of consistency between refinement
levels. However, there is no formal graphical representation for complex sys-
tem refinements. This paper represents the stop and wait technique with ERS
and establish the explicit ordering between events. Subsequently, these graphical
notations are translated to Event-B notations. This helps to handle the complex
behavior of the system effectively. The comparison of the complexity and flexi-
bility of the approach with the non-ERS design-based approach has been done
for justification.

4 Atomicity Decompositions of Stop and Wait Protocol

4.1 Abstract Specification: Basic Operations of SAW

This is the abstract representation of the Stop and Wait operations. The
requirement goal is to establish sequencing among the events and the
refinement relationships. The graphical representation of the abstract sys-
tem is represented in Fig. 4 with five events. As discussed in Sect. 1,
Sender Send Request, Receiver Receive Request, Receiver Send Ack and
Sender Receiver Ack refine the abstract event Stop and Wait ARQ and these
are in the sequence to complete the basic Stop and Wait ARQ operation i.e.
Sender Send Request is followed by Receiver Receive Request, followed by
Receiver Send Ack. The requirement properties can be established with the
rules given below. The ordering and refinement relationship between two events
are established by using subset property. The relation between set variable
of the abstract event and the concrete variable of the refined event can be
represented as:

Preceding Abstract Event (variable name is same as the event name) ⊆ Suc-
ceeding Refined Event (variable name is same as the event name) It may be
defined in Event-B by giving the same name of the variables with the events
and established as an invariant property [7]. These properties are held while



Event Ordering Using Graphical Notation for Event-B Models 383

designing the whole system. The sequencing and refinement relationships among
the events are showed in Fig. 4. This can be described as the Event-B prop-
erties 1 to 4 in Table 1. Property 1 ensures that the Sender Send Request
can send multiple request. Hence, the variable Sender Send Request is a
subset of the set Request. Four other scenarios are shown in Fig. 5(a), (b),
and 6(a), (b). The successful receiving of the request by the receiver is
checked. This decomposition is represented in Fig. 5(a) and in 5(b). The
Receiver Receive Fail event is used for the purpose. The event relationship
can be represented by the Event-B properties 5 and 7 in Table 1. The event
Sender Receive Fail is used when the sender did not receive the acknowledg-
ment sent by the receiver represented in Fig. 6(a) and (b). This relation can
be represented by Event-B properties 6 and 8 in Table 1. These two events
refine the abstract event Stop and Wait ARQ and are represented by solid lines
between them. The disjoint relationship between Receiver Receive Request and
Receiver Receive Fail can be established using the intersection property Event
X ∩ Event Y = ∅ and given as Event-B property 7. Property 8 established
the same relation between Sender Receive Ack and Sender Receive Fail.
The four events in Fig. 4, Sender Send Request, Receiver Receive Request,
Receiver Send Ack and Sender Receiver Ack refine the event Stop and Wait
ARQ. The refinement relationship between the Stop and Wait ARQ and

the Sender Send Request showed in Fig. 5(a) and 5(b) for successful sending of
request from sender to receiver can be modelled using Event-B machine given
below.

Fig. 4. Normal operations of stop and wait ARQ.

Fig. 5. (a)(b) Sender receives request or Sender receives fail.



384 R. Karmakar et al.

Fig. 6. (a)(b)Sender receives ACK or Sender receives ACK

Table 1. Variables and Properties

Variables Event relationship Properties (P)

Sender Send Request P1:Sender Send Request⊆Request

Receiver Receive Request P2:Receiver Receive Request⊆Sender Send Request

Receiver Send Ack P3:Receiver Send Ack⊆Receiver Receive Request

Sender Receive Ack P4:Sender Receive Ack⊆Receiver Send Ack

Receiver Receive Fail P5:Receiver Receive Fail⊆Sender Send Request

Sender Receive Fail P6:Sender Receive Fail⊆Receiver Send Ack

P7:Receiver Receive Request∩Receiver Receive Fail= ∅
P8:Sender Receive Ack∩Sender Receive Fail= ∅

Sender Send Request
refines
Stop and Wait ARQ
ANY
Request
WHERE
grd1: Req ∈ Request \ Sender Send Request
THEN
act1: Sender Send Request : = Sender Send Request ∪ Request
END

The Sender Send Request event refines Stop and Wait ARQ event. The Stop
and Wait ARQ system can send and receive multiple requests and acknowledge-
ments so Request and ACK are considered as sets and Request and Ack are used
as a parameter. The guard ensures that the event Sender Send Request has not
occurred with the current Request. The action of the event defines the inclu-
sion of the new Request to the variable Receiver Receive Request. The Event
relationship between Receiver Receive Request or Receiver Request Fail with
Stop and Wait ARQ showed in Fig. 5(a) and (b) can be represented below.

Receiver Receive Request
refines
Stop and Wait ARQ
ANY



Event Ordering Using Graphical Notation for Event-B Models 385

Request
WHERE
grd1: Request ∈ Sender Send Request \ (Sender Send Request
∪ Sender Receive Fail)
THEN
act1: Receiver Receive Request : = Receiver Receive Request ∪ Request
END

The guard ensured the event Sender Send Request is executed before Sender
Send Request or Sender Receive Fail event. The events can be modelled
towards successful receiving of the acknowledgment showed in Fig. 6(a) and 6(b)
from Receiver to Sender. This is given below.

Receiver Send Ack
refines
Stop and Wait ARQ
ANY
Ack
WHERE
grd1: Ack ∈ Receiver Receive Request \ Receiver Send Ack
THEN
act1: Receiver Send Ack : = Receiver Send Ack ∪ Ack
END

The Sender Receive Ack event can be modelled given below with Event-B nota-
tions.

Sender Receive Ack
Refines
Stop and Wait ARQ
ANY
Ack
WHERE
grd1: Ack ∈ Receiver Send Ack \ (Receiver Send Ack ∪ Receiver Receive Fail)

THEN
act1: Sender Receive Ack : = Sender Receive Ack ∪ Ack
END

Confirm sending and receiving by the Sender and Receiver: Four
new events Sender Ready, Timer Set,Req Seq No and Wait Ack are intro-
duced to complete the operation Sender Send Request depicted in Fig. 7. These
events will not refine the event Sender Send Request and represented with
dashed lines. The orderings among the events ensure the successful sending
the request from sender’s side to receiver. The Receiver Receive Request,
Receiver Send ACK and Sender Receive ACK events are represented in



386 R. Karmakar et al.

Fig. 7. Sender sends request to the receiver.

Fig. 8(a)(b) and 9. All the new events skip the refinements and their sequenc-
ing ensures the successful receiving the request by the receiver and Ack by the
sender.

Fig. 8. (a)(b)Receiver receives the request and Receiver sends the Ack

Fig. 9. Resend duplicate frame when ACK is lost (Regiment 1)

4.2 Refinement 1: Resending Request/Ack

As discussed in Sect. 2 all the resending scenarios of Request and Acknowledge-
ment are represented with the ERS diagram as a refinement of the previous
abstract model. Figure 10 represents resending of the old frame with three events
Sender Ready, Not Receive Within T ime and Resend Old Request. Only the
Resend Old Request event refines the Sender Receive Request. This relation-
ship between the events can be implemented by the subset relation between the
concrete variableResend old Requestwith the set variable Sender Receive Ack.
The resending of duplicate frame, when the acknowledgment is lost from
receiver to sender, is represented by the ERS notations in Fig. 11. There are
four events Sender Ready, Not Receive Within T ime, Receive Old ACK, and
Resend Old Request which skip the refinement and the Resend Old Request
refines the abstract event Sender Receive ACK. The refinement relationship



Event Ordering Using Graphical Notation for Event-B Models 387

between Resend Old Request and Sender Receive ACK can be represented
by the property Resend Old equest ⊆ Sender Receive ACK. The resending of
duplicate acknowledgment operation was discussed in Sect. 2. When a particu-
lar frame is not received in time or the duplicate frame is received, then the cor-
responding acknowledgment is resent. The ERS in Fig. 12 showed the operation
and the relationship between events. Receiver Ready and Not Receive Request
or Receive Old Request events did not refine the abstract event Receiver
Receive Ready and represented by dashed lines. The Resend ACK
event refines Receiver Receive Request and represented by the solid line. The
property is represented as Resend ACK ⊆ Receiver Receiver Request.

Fig. 10. Resend duplicate frame when ACK is lost (Regiment 1)

Fig. 11. Resend duplicate frame when ACK is delayed (Regiment 1)

Fig. 12. Resend duplicate ACK when the frame is lost



388 R. Karmakar et al.

5 Critical Observations

The atomicity decomposition is done at the stop and wait for the ARQ sys-
tem in the proposed approach. The system design represents all the events and
their relationship with graphical notations. This is the major contribution in this
work that has eased the process of elicitation and helps to understand the system
more unambiguously. This eventually helps efficient usage of formal notations to
represent and design a complex system. The orderings of events are represented
explicitly in this proposed methodology. All the refinement relationships between
events represented before system design. Besides, in the proposed extension of
the Event-B model, this technique helps to design the resending operations of
frames and acknowledgments more effectively. As for example, in Fig. 10, the
Sender Ready event does not refine the abstract event Sender Receive ACK.
The relationship is represented by the dashed lines and helps to covert the rela-
tions into Event-B notations. Relationships between events are represented by
invariant properties. All the ERS structures shown in Sect. 4 are converted into
Event-B notations. The model may be validated by the RODIN model checker.
This technique is more flexible and less complex than the ARQ protocol designed
using Petri Net because of the graphical representations of the events with the
order [5]. All the Event-B notations described above will make SAW system
modeling unambiguous and flexible.

6 Conclusions

The model, under evaluation, may further be decomposed into sub-models. The
events and variables could be decomposed accordingly. The ERS structure not
only establishes the atomicity decomposition of an Event-B model but is found
to be quite useful to detect wrong atomicity decompositions. It can be detected
using the proposed methodology because the system is represented graphically.
An appropriate tool-support may also be developed to provide a comprehensive
system to verify the event refinement structure automatically. The conversion of
the ERS notations into Event-B is done manually in the proposed work. A tool
may be developed in future for the automatic conversion of ERS into Event-B for
complex system modeling. The translation rules can be designed effectively for
the automatic development starting from a semi-formal requirements description
using the graphical notation used.

References

1. Baier, C., Katoen, J.-P.: Principles of model checking. MIT Press, Cambridge
(2008)

2. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

3. Jastram, M., Butler, M.: Rodin User’s Handbook: Covers Rodin v.2.8. CreateSpace,
Scotts Valley (2014)



Event Ordering Using Graphical Notation for Event-B Models 389

4. Filali, R., Bouhdadi, M.: Formal modeling and verification of time-constrained
ARQ protocols with Event-B. Int. J. Eng. Technol. 8, 1807–1816 (2016)

5. Best, E., Devillers, R., Koutny, M.: Petri Net Algebra. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-662-04457-5

6. Floyd, C.: A comparative evaluation of system development methods. In: Pro-
ceedings of the IFIP WG 8.1 Working Conference on Information Systems Design
Methodologies: Improving the Practice, pp. 19–54. North-Holland Publishing Co.
(1986)

7. Salehi Fathabadi, A., Rezazadeh, A., Butler, M.: Applying atomicity and model
decomposition to a space craft system in Event-B. In: Bobaru, M., Havelund,
K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 328–342.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-5 24

8. Butler, M.: Decomposition structures for Event-B. In: Leuschel, M., Wehrheim, H.
(eds.) IFM 2009. LNCS, vol. 5423, pp. 20–38. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00255-7 2

9. Salehi Fathabadi, A., Butler, M., Rezazadeh, A.: Language and tool support for
event refinement structures in Event-B. Formal Aspects Comput. 27(3), 499–523
(2014). https://doi.org/10.1007/s00165-014-0311-1

10. Forouzan, A.B.: Data Communications & Networking (sie). Tata McGraw-Hill
Education, New York (2007)

11. Salehi Fathabadi, A., Butler, M.: Applying Event-B atomicity decomposition to
a multi media protocol. In: de Boer, F.S., Bonsangue, M.M., Hallerstede, S.,
Leuschel, M. (eds.) FMCO 2009. LNCS, vol. 6286, pp. 89–104. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17071-3 5

12. Dghaym, D., Trindade, M.G., Butler, M., Fathabadi, A.S.: A graphical tool for
event refinement structures in Event-B. In: Butler, M., Schewe, K.-D., Mashkoor,
A., Biro, M. (eds.) ABZ 2016. LNCS, vol. 9675, pp. 269–274. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-33600-8 20

https://doi.org/10.1007/978-3-662-04457-5
https://doi.org/10.1007/978-3-642-20398-5_24
https://doi.org/10.1007/978-3-642-00255-7_2
https://doi.org/10.1007/978-3-642-00255-7_2
https://doi.org/10.1007/s00165-014-0311-1
https://doi.org/10.1007/978-3-642-17071-3_5
https://doi.org/10.1007/978-3-319-33600-8_20

	Event Ordering Using Graphical Notation for Event-B Models
	1 Introduction
	2 An Overview of ARQ Protocol and Requirements
	3 Related Work
	4 Atomicity Decompositions of Stop and Wait Protocol
	4.1 Abstract Specification: Basic Operations of SAW
	4.2 Refinement 1: Resending Request/Ack

	5 Critical Observations
	6 Conclusions
	References




