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Abstract The Ganges-Brahmaputra-Meghna (GBM) river system plays a key role 
in the survival and development of more than 670 million people in South Asia. 
The extreme flows of the GBM rivers also dictate the occurrences of floods and 
hydrological droughts in Bangladesh, which lies at the delta of this river system. This 
study was undertaken to assess the impacts of high-end climate change on the extreme 
flows as well as the mean monthly flows of these rivers at their downstream locations 
inside Bangladesh. SWAT Hydrological modeling tools were used to simulate future 
flows using climate projections collected from the CORDEX initiative. The mean 
monthly flows are likely to increase in most months of the future in the GBM rivers, 
and the increases are likely to be largest in the Ganges River compared to the other 
two rivers in terms of percentage changes. Flood flows and low flows are projected 
to increase in all three rivers. The frequency of occurrence of flood flows is likely to 
increase and that of low flows are likely to decrease, especially near the end of this 
century. The projections presented in this article can be useful in adaptation planning 
as well as in supporting discussions on mitigation policies. 

Keywords Climate change · Extreme flows · Ganges-Brahmaputra-Meghna 
(GBM) basins · SWAT model 

2.1 Introduction 

In conducting climate change impact assessments of river basins, the following 
modeling chain is usually adopted. First, climate models are used to project future 
meteorological variables for the desired years, typically for a duration of more than 
30 years. Thereafter, these projected data are preprocessed, namely, by downscaling
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and bias correction. Finally, these preprocessed data are used as forcing to different 
hydrological models that are set up over a selected river basin to simulate hydro-
logical variables for the future. In this chapter, all these elements of the modeling 
chain are briefly discussed, followed by an example of application of this modeling 
chain to assess the changes in future flows of the Brahmaputra River due to climate 
change. Climate models, also known as General Circulation Models (GCMs), are 
basically numerical weather prediction models that are run for a long time over a 
global domain at climatic scales of 30 years or more. Another difference of climate 
models from weather models is that while the atmospheric forcing of the weather 
models must be values as observed in reality, in the case of climate models, they can 
be different from the real-world scenario to investigate the response of the climate 
system to those different values. Since future forcings cannot possibly be known, 
a range of estimated values based on various possible scenarios are used to project 
future climates. A particular component of interest in these possible scenarios is the 
concentration of greenhouse gases in the atmosphere, which is the prime stimulant 
behind global warming. In the latest Fifth Assessment Report (AR5) of the Inter-
governmental Panel on Climate Change (IPCC), four Representative Concentration 
Pathways (RCPs) were defined based on four sets of socio-economic assumptions, 
namely, RCP2.6, RCP4.5, RCP6.0, and RCP8.5 (van Vuuren et al. 2011). RCP2.6 
represents the lowest amount of global warming while RCP8.5 represents the highest. 

The most common climate models at present are the Atmosphere–Ocean General 
Circulation Models (AOGCMs) which couple the atmosphere with the ocean, land, 
and sea ice. An advancement over the AOGCMs is Earth System Models (ESMs) 
which further includes various biogeochemical cycles such as the carbon cycle, 
nitrogen cycle, or the sulfur cycle. There are many GCMs available at present that 
have been developed in countries from all over the world. About 39 models partic-
ipated in the Coupled Model Intercomparison Project Phase 5 (CMIP5) (Taylor 
et al. 2012). Before running these models to project future climates, their parame-
ters are calibrated in such a way so that they can reliably simulate the historically 
observed climate. The better a climate model can simulate the climate of the past, 
the more reliable it is assumed to be for simulating the climate of the future. A major 
problem in using the outputs of GCMs for hydrological predictions is their coarse 
resolution. A typical GCM can have a horizontal resolution of 2°, which is about 
200 km near the equator. That means the outputs for a particular meteorological 
variable are provided as the spatially averaged values over an area of about 200 
× 200 km. Obviously mesoscale processes like precipitation vary widely within a 
short span of location and so reasonable projections of hydrological variables cannot 
be expected using precipitation data that is spatially averaged over such a large 
area. This is where the concept of downscaling comes into play, which can convert 
these coarse resolution GCM outputs into finer scale information. Downscaling can 
be done either statistically or dynamically. Statistical downscaling simply relates 
the GCM outputs of the historical period with locally observed data using a statis-
tical function and then uses this function to convert GCM outputs of the future 
at a local scale. Stationarity of the relationship between the GCM output and the 
local observation in the future period is therefore an inherent assumption of this
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process. On the other hand, dynamical downscaling is performed using Regional 
Climate Models (RCMs), which are very similar to GCMs. The difference is that 
the horizontal resolution of RCMs is very high (around 25–50 km or even less) 
and instead of running the models over the whole world, the RCMs are runover a 
limited area using lateral boundary conditions derived from the GCMs. Some of 
the most commonly used RCMs include the U.S. Regional Climate Model Version 
3 (RegCM3), UK Met Office Hadley Centre’s Regional Climate Model Version 3 
(HadRM3), German Regional Climate Model (REMO), and the European Centre-
Hamburg (ECHAM) model. Even though RCMs reduce the horizontal resolution of 
the climate simulations, simulated variables such as temperature and precipitation 
often show significant systematic biases. Using these values to simulate hydrolog-
ical variables are likely to propagate the errors into hydrological simulations. That 
is why RCM outputs are almost always bias corrected before being used as forcings 
to hydrological models. Several bias correction methods are available which vary in 
complexity. Similar to statistical downscaling, bias correction methods assume that 
the relationship between the RCM outputs of the historical period and the observed 
values will remain stationary in the future periods. Some of the commonly used bias 
correction methods are linear scaling, power transformation, variance scaling, delta 
change correction, and quantile mapping (Teutschbein and Seibert 2012). Hydro-
logical models are used to represent the hydrologic cycle and simulate its various 
components. The typical inputs required by these models are meteorological data 
such as precipitation, temperature and relative humidity, topographical information, 
soil information, land use/land cover information, and values of several parameters 
describing the hydrological processes of the study area. Hydrological models can 
generally be classified into three types: empirical models, conceptual models, and 
physically based models. Empirical models are data-driven models which are, as 
their name suggests, based on empirical relationships between various components 
of the hydrological cycle. Conceptual models use semi-empirical equations and have 
lumped parameters for describing hydrological processes. Physically based models 
use complex mathematical equations to calculate the different hydrological variables 
and use values of spatially distributed parameters. Examples of hydrological models 
include the Soil and Water Assessment Tool (SWAT), Variable Infiltration Capacity 
(VIC), Water–A Global Assessment and Prognosis (WaterGAP), and Joint UK Land 
Environment Simulator (JULES) (Kauffeldt et al. 2015). 

2.2 The Study Area 

The Brahmaputra is a transboundary river that has an annual average discharge of 
approximately 20,000 m3/s (Jian et al. 2009), making it the fourth largest river in the 
world in terms of average discharge. Its drainage area of 520,000 km2 encompasses 
China, India, Bhutan, and Bangladesh (Immerzeel 2008). It originates in southern 
Tibet of China and travels about 2900 km through China, India, and Bangladesh 
before ending in the Bay of Bengal (Gain et al. 2011). The climate of the northern
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Fig. 2.1 Location and details of the Brahmaputra River Basin 

part of the basin that is located over Tibetan Plateau with elevations above 3500 m 
is cold and dry. The remaining parts of the basin are mostly located on the low-
lying floodplains with elevations below 100 m. This southern part has a warm and 
humid tropical monsoon climate. The mean annual precipitation in the basin is around 
2300 mm and about 60–70% of this falls in the monsoon season (June to September). 
The Brahmaputra River Basin is shown in Fig. 2.1. 

2.2.1 Database and Methodology 

Daily precipitation and temperature data were collected from 11 different climate 
projections. The reason for using an ensemble of projections in climate change assess-
ments is that the climate models available at present often disagree with one another 
in the projected values of different variables at different locations. Therefore, by 
using an ensemble of projections instead of a single projection, the uncertainties that 
are inherent in the different GCMs and RCMs can be partly accounted for. The 11 
selected projections were generated using 10 GCMs of CMIP5 and later dynami-
cally downscaled using 3 RCMs by the Coordinated Regional Climate Downscaling 
Experiment (CORDEX) (Giorgi and Gutowski 2015). A list of the projections are
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Table 2.1 CORDEX—South 
Asia climate projections used 
in the study 

Institute GCM RCM 

CSIRO ACCESS1.0 CCAM-1391M 

CSIRO CCSM4.0 CCAM-1391M 

SMHI CNRM-CERFACS-CNRM-CM5 RCA4 

CSIRO CNRM-CM5 CCAM-1391M 

SMHI ICHEC-EC-EARTH RCA4 

CSIRO MPI-ESM-LR CCAM-1391M 

MPI-CSC MPI-M-MPI-ESM-LR REMO2009 

SMHI MPI-M-MPI-ESM-LR RCA4 

SMHI NOAA-GFDL-GFDL-ESM2M RCA4 

SMHI IPSL-CM5A-MR RCA4 

SMHI MIROC-MIROC5 RCA4 

given in Table 2.1. All the projections have a horizontal resolution of 0.5° and were 
bias corrected with a Multi-segment Statistical Bias Correction (MSBC) method as 
described in Grillakis et al. (2013). The MSBC method used here is of the family 
of quantile mapping correction methods. The reference dataset used for the bias 
correction was the WFDEI dataset (WATCH Forcing Data methodology applied to 
ERA-Interim data) (Weedon et al. 2014). 

The topographic information of the area was collected in the form of a Digital 
Elevation Model (DEM), namely, the hydrologically conditioned version of the 
Shuttle Radar Topography Mission (SRTM) DEM of 90 m resolution from the 
HydroSHEDS database of the United States Geological Survey. A global land 
use/land cover map of 300 m resolution called GlobCover prepared by the Euro-
pean Space Agency for the year 2009 was collected and the Digital Soil Map of The 
World prepared by the Food and Agriculture Organization of the United Nations was 
collected as soil information. Finally, observed discharges of the Brahmaputra River 
at Bahadurabad gauging station were collected from the Bangladesh Water Develop-
ment Board (BWDB) for the years 1980–2009. The location of the station is shown in 
Fig. 2.1. The Soil and Water Assessment Tool (SWAT) was used as the hydrological 
model. SWAT is a physically based, semi-distributed, watershed-scale, computation-
ally efficient, continuous-time hydrological model that operates on a daily time step. 
It divides a basin into sub-basins by overlaying a land use/land cover map, a soil map, 
and a DEM. The sub-basins are further divided into lumped units called hydrologic 
response units (HRU) which are the percentage of a sub-basin area that has a unique 
combination of soil, land use/land cover, and slope properties. Using moisture and 
energy inputs provided by the user, the model then predicts the hydrology at each 
HRU using a water balance equation which consists of daily precipitation, runoff, 
evapotranspiration, percolation, and return flow components. The generated flow of 
all the HRUs in a sub-basin is then summed together and routed through the channels,
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ponds, and reservoirs to the basin outlet. Detailed descriptions of the model can be 
found in Arnold et al. (1998). 

Using the collected DEM of the study area, the automatic watershed delineation 
command of SWAT defined a stream network and delineated the outline of the 
complete basin given the location of the basin outlet (Fig. 2.1). The SWAT model 
was run at a daily time step for all purposes, i.e., for calibration, validation, and simu-
lation of future discharges. The first 20 years (1980–1999) of the observed discharge 
data were used for calibration and the remaining 10 years (2000–2009) were used 
for validation. Calibration was done for only the SWAT parameters that were found 
to be the most sensitive to Brahmaputra River’s discharges by a separate tool called 
SWAT-CUP (Calibration and Uncertainty Program). Before simulating the future 
discharges of a particular climate projection, the SWAT model was calibrated and 
validated using the baseline period of that same climate projection. The Sequential 
Uncertainty Fitting II (SUFI-2) algorithm of SWAT-CUP was used for calibration. 

2.3 Results 

To analyze future river discharges, four time slices were considered. These are the 
baseline period (1980–2009), the 2020s (2010–2039), the 2050s (2040–2079), and 
the 2080s (2080–2099). The mean monthly discharges of the Brahmaputra River in 
these time slices are shown in Fig. 2.2 as boxplots. Each box includes data from all 
the 11 climate projections. Large uncertainties can be seen in the projections. Based 
on the change in median values of these boxes, the months from March to July will 
see an increase in mean monthly discharge for all future time slices. The months 
from September to December will see a decrease in mean monthly discharge for all 
future time slices. The largest increase for all three future time slices is in March, 
with values of 41, 86, and 147% during the 2020s, 2050s, and 2080s, respectively. 
The largest decrease for all three future time slices is predicted in December, with 
values of 13, 28, and 39% during the 2020s, 2050s, and 2080s, respectively.

Parametric frequency analyses were performed on the annual maxima and minima 
of the simulated discharges. The Generalized Extreme Value distribution and the 
Weibull distribution were used to fit the maxima and minima datasets, respectively. 
The return period curves as estimated by the parametric frequency analysis performed 
on the annual maxima are shown in Fig. 2.3. Four shaded regions, one per time 
slice, show the range of return periods estimated by the 11 climate projections. The 
uncertainty range in the annual maximum discharge is seen to increase with the return 
period. The solid lines show the ensemble means. Based on the ensemble means, 
the annual maximum discharges at different return periods are predicted to increase 
during the 2020s, 2050s, and 2080s compared to the baseline period and the increase 
is slated to be highest during the 2080s. For instance, the annual maximum discharge 
with a 100-year return period will increase by 47% during the 2080s compared to 
the baseline period.



2 Assessment of Climate Change Impacts on Floods and Low Flows … 25

Fig. 2.2 Mean monthly discharges of the Brahmaputra River at different time slices

Fig. 2.3 Return period curves of annual maximum discharges at different time slices
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Fig. 2.4 Return period curves of annual minimum discharges at different time slices 

Similarly, the return period curves as estimated by the parametric frequency anal-
ysis performed on the annual minima are shown in Fig. 2.4. Based on the ensemble 
means, the annual minimum discharges at different return periods will increase 
during the 2020, 2050, and 2080s compared to the baseline period and the increase 
is maximum during the 2080s. For instance, the annual minimum discharge with 
a 100-year return period will increase by 24% during the 2080s compared to the 
baseline period. 

2.4 Summary and Conclusions 

Using an ensemble of 11 bias corrected and downscaled climate projections to 
force the SWAT hydrological model, an assessment was made of the possible future 
changes of flows in the Brahmaputra River. Results show that the pre-monsoon 
months will see an increase and the post-monsoon months a decrease in mean monthly 
discharges for all future time slices. The month of March has been predicted to register 
the largest increase and December the largest decrease in mean monthly discharge 
compared to the other months. By the end of the century, floods are likely to become 
more frequent in the future and their magnitude is slated to become more severe. 
Low flows are projected to become less frequent in the future and their magnitude is 
likely to become less severe.
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