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1 Introduction

Parallel machines are characterized, by the number of processing elements, and the
different ways these processors can be interconnected. Since the prime reason for
using a parallel machine is to share the software workload, the configuration which
includes both the processors and the interconnection network mainly determines the
performance one can expect from the parallel machine. This ultimately dictates how
the machine scales, in relation to larger problem sizes and the resulting addition to
the processor count.

The interconnection networks are diverse in nature, dictated by performance
considerations, physical design, and implementation, and are collectively referred
to as the Processor Interconnect Topology. Historically the published literature
presents several references to processor interconnect topologies [5, 7]. Some of the
popular ones include the Shared Bus, Fully Connected Network, Linear Array, Ring,
Mesh, Tori, Grid, Cube, Tree, Fat Tree, Benes Network, and Hypercube among
others. The following sections look at some of them in detail, and also provide a
mathematical abstraction for representing them, and using them in analysis.

The computation in a higher level language program can be represented inter-
nally in a compiler, by a representation such as a three address form [15]. The
dependencies that exist between statements or instructions of the program, manifest
in two forms namely, Data Dependence and Control Dependence [17, 29]. Data
dependence exists between two instructions, when one of them reads a datum
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that the other has written. Control dependence exists between two instructions,
when the execution of one of them is conditional on the results produced by the
execution of the other. There are several mathematical representations available
to represent a program internally, but the Program Dependence Graph (PDG) is
a popular technique that captures these program artifacts [8]. PDG is a convenient
tool to partition a sequential program into parallel tasks [11, 12, 15, 16, 28]. While
detection of parallelism in software is a popular area of research, it is not central to
the topic we have chosen for our research work here. We start with the assumption
that the concurrent tasks are available and focus on the related problem of mapping
them to available processors. The main research goal is to find out if the choice of
a processor for a particular task makes a difference to the overall efficiency of the
mapping process.

The problem of assigning parallel tasks of a program, to processors of a
distributed system efficiently, is referred to here as the Task Assignment Problem.
An effective solution to this problem normally depends on the following criteria
namely, Load Balancing and Minimization of Communication Overhead. Load
Balancing is a process, where the computing resources of a distributed system
are uniformly loaded, by considering the execution times of the parallel tasks.
Existing load balancing strategies can be broadly classified as static and dynamic,
based on when the load balancing decision is made. In static methods, the load
balancing decision is taken at the task distribution time and the assignment of
tasks to processors remains fixed for the duration of their execution [27]. On the
other hand, the dynamic schemes are adaptive to changing load conditions and
tasks are migrated as necessary, to keep the system balanced. The latter scheme
is more sensitive to changing topological characteristics of the machine, especially
the communication overheads [20].

Minimization of communication overhead involves clustering the tasks carefully
on the target machine, so as to minimize the inter-task communication demands.
There are two factors influencing this decision namely, the communication gran-
ularity and the topological characteristics of the underlying distributed machine
[14]. Task assignment is not an easy problem to solve, since load balancing and
communication minimization are inter-related, and improving one adversely affects
the other. This is believed by many to be an NP Complete problem [2]. There are
solutions proposed in the literature based on Heuristics and other search techniques
[3]. However missing are efficient algorithms that are scalable, complete, and
deterministic.

Typically, mapping problems that involve binary relations could be represented
and studied by creating a model based on graphs. Topology representation is a
problem that can be modeled as a graph, with processors as nodes and edges
representing the processor connections. The tasks could also be represented as a
graph, with tasks as nodes and edges denoting the communication between them.
The solution would then be the mapping of the task nodes to the suitable nodes of
the processors. This would require solutions to several sub-problems such as the
following: How to gather the various properties of a graph, such as the node and
edge count, individual connections, clustering, weights, etc.? How do we capture
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graph similarities? The obvious way of course is by visual inspection, which works
for manageable sizes, but not for real world large graphs. Is it possible to solve this
problem, in a deterministic fashion? [26] is a good survey paper, on the topic of
graph comprehension and cognition.

This research work involves studying, and developing a methodology, to map
parallel tasks of any given program, to a suitable processor topology in linear
or near linear time. Subsequent sections provide more details of the findings,
including several algorithms, that produce task assignments, that are designed to
be progressively more efficient than the earlier algorithms.

In Sect. 1, we look at existing solutions to the task mapping problem, highlight
the deficiencies in the current solutions, and elaborate on the motivations for
pursuing our research work. In Sect. 2, we discuss the various popular ways of
connecting the processors of a distributed machine and a suitable mathematical
representation for each. Section 3 defines the Task Assignment Problem, which is
the topic of investigation in this work. In Section 4 we present the various mapping
algorithms proposed in this paper. In Sect. 5, we theoretically examine the fitness
of each algorithm, in terms of its run time complexity. In Sect. 6, the final section
of the paper, we conclude the paper by revisiting the motivations for taking up our
research work, and briefly summarizing our findings and contributions with some
ideas for extending the work for the future.

2 Related Works

Historically, researchers have used graphs to represent processor and network
topologies [31]. Such a graph has been used to compute robustness of a network,
towards corruptions related to noise and structural failures [1].

How do we capture both the topology and task details in a single graph? We
found several references on the topic of graph aggregation, and incremental graph
construction, subject to certain constraints. One such idea is a topological graph
constrained by a virtual diameter, signifying properties such as communication
[10]. However they do not provide implementation details. Researchers have used
the spectral filtering techniques for analyzing network topologies, using Eigen
vectors to group similar nodes in the topology, based on geography or other
semantic properties [9]. Comparing directed graphs, including those of different
sizes by aggregating nodes and edges, through deterministic annealing has been
studied [30]. Graph aggregation techniques based on multi-dimensional analysis for
understanding of large graphs have been proposed [25].

Graph Summarization is a process of gleaning information out of graphs
for understanding and analysis purposes. Most of the methods are statistical in
nature which use degree distributions, hop-plots, and clustering coefficients. But
statistical methods are plagued by the frequent false positive problem and so are
other methods. Analytical methodologies on the other hand are immune to such
limitations [25].
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Load Balancing on Distributed Systems has been studied extensively for a long
time, and a plethora of papers exist on this topic [4, 6, 20, 23, 24, 27]. However
load balancing is just one of the criteria that determines efficient performance
of a distributed application. It needs to be complemented with minimization of
communication overheads to see positive performance results.

Several researchers have tackled the task assignment problem before with
varying degree of success. One such solution to the problem, based on the genetic
algorithm technique in the context of a Digital Signal Processing (DSP) system has
been proposed [3]. Researchers have used duplication of important tasks among
the distributed processors to minimize communication overheads and generate
efficient schedules [2]. Methods using the Message Passing Interface (MPI), on to a
High Performance Computing (HPC) machine with Non-Uniform Memory Access
(NUMA) characteristics, using a user supplied placement strategy has been tried
by several groups with effective results [13, 14]. A few researchers have used both
load balancing and communication traits as criteria to drive the mapping decisions
[22]. They use dynamic profiling, to glean performance behavior of the application.
However dynamic profiling is heavily biased on the sample data used and in our
opinion, static analysis of the communication characteristics is a better technique
and should yield optimum results in most situations.

Besides the domain of Parallel Processing, are there other fields where the task
mapping problem has been explored? Assignment of Internet services based on the
topology and the traffic demand information is one such domain [21]. Mapping
tasks to processing nodes has also been studied at length, by researchers working in
the Data Management domain. Tasks in a Data Management System, are typically
characterized by data shuffling and join operations. This demands extra care in
parallelization besides static partitioning, such as migrating tasks to where data is
to realize maximum benefit [19]. Query processing is another area, where static
partitioning of tasks runs into bottlenecks, and the authors solve this by running
queries on small fragments of input data, whereby the parallelism is elastically
changed during execution [18]. However our solution to the mapping problem is
a general technique, and is not specific to the Data Management problem or the
Internet domain and should be easily adaptable here.

In this research work, we propose a mathematical representation, based on
directed graphs, to represent both the machine topology and the parallel task
profiles. These graphs are then read by our task mapper, to map the processors and
tasks. The following sections look at the problem and solutions in greater detail.

3 Processor Interconnection Topologies

Processors in a Multiprocessor machine can be interconnected in several interesting
ways that mainly affect how the resulting machine scales as processors are added.
It is important both from a problem representation and solution perspective, that we
study these topologies in some detail and understand them. We next discuss several
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popular processor interconnection topologies found in published literature, and
show with the help of diagrams, how each of these topologies could be represented
mathematically as directed graphs.

At one end of the spectrum is the Shared Bus, where at any given time, a single
communication is in progress. At the other end lies the Fully Connected Network,
where potentially at any given time, all the processors could be involved in private
communication. If the number of processors in the network is N , with a shared bus
we can only realize a bandwidth of O(1), but with a fully connected network, we
could extract a bandwidth of O(N) [5, 7]. There are several other topologies that
fall in between, and we will look at a few of them in the following paragraphs.

Figure 1a, b on page 471 illustrates a simple bus topology, for connecting
processors of a machine and its graph representation. Likewise a Linear Array
is a simple interconnection of processor nodes, connected by bidirectional links.
Figure 2a, b on page 471 represents linear topology and its corresponding graph.

A Ring or a Torus is formed from a Linear Array, by connecting the ends.
There is exactly one route from any given node to another node. Figure 3a on page
472 is an illustration of a topology organized in the form of a ring, which allows
communication in one direction between any pair of nodes. The associated Fig. 3b
on page 472 illustrates how the topology can be represented as a graph. The average
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Fig. 3 Ring bus (a) topology and its (b) graph

distance between any pair of nodes in the case of a ring is N/3 and in the case of a
Linear Array it is N/2, where N is the number of nodes in the network. We could
potentially realize a bandwidth of O(N), from such a connection.

Grid, Tori, and Cube are higher dimensional network configurations, formed out
of Linear arrays and Rings. Specifically they are K-ary, D-cube networks with
K nodes, in each of the D dimensions. These configurations provide a practical
scalable solution packing more processors in higher dimensions. To travel from any
given node to another, one crosses links across dimensions, and then to the desired
node in that dimension. The average distance traveled in such a network is D ∗
(2/3) ∗ K .

The most efficient of all the topologies in terms of the communication delays is
the fully connected network with edges, connecting all possible pairs of nodes. In
this connection topology, there is just the overhead introduced due to propagation,
but no additional overheads introduced by nodes that lie in the path between
any pair of nodes. However the implementation of such a topology is quite
complex. Figure 4a, b on page 473 represents the fully connected topology and
its corresponding graph.

Figure 5a, b on page 473 illustrates the Star topology and its graph, where there
is a routing node in the middle, to which the rest of the nodes in the machine are
connected. This configuration provides a solution that is somewhat less efficient in
time, but is less complex to implement.

Binary trees represent another efficient topology with logarithmic depth, which
can be efficiently implemented in practice. A network of N nodes offers an average
distance of N ∗ Log(N).

Based on the sample topologies presented earlier, it should be obvious to the
reader that any complex topology can be modeled as a graph. It should also be noted
that all graphs representing topologies, including those that are not fully connected,
should allow a path between any pairs of nodes, even though not directly connected,
by a route that passes through other intermediary nodes.
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Fig. 4 Fully connected (a) topology and its (b) graph

Fig. 5 Star (a) topology and its (b) graph

4 Task Assignment Problem

The problem of assigning parallel tasks of a program to the processing elements of
a suitable machine topology is referred to here as the Task Assignment Problem.
The characteristics of the machine relevant for the assignment, is captured in a
graph, which we refer to here, as the Processor Topology Graph (PTG). The nodes
of such a graph represent the processors and the edges represent the connections
between the processors. The nodes could include parameters that capture processor
characteristics, such as the clock rate. Similarly, the edge parameters could capture
the bandwidth details of the connection, both of which could serve to drive the
placement decisions. The communication details pertaining to the tasks can be
captured in another graph, which we refer to as the Task Communication Graph
(TCG). The nodes of the TCG represent the tasks and node parameters could
represent the computation cycles for the task. The edges denote the communication
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that exists between any pair of tasks and the edge parameters could represent
the volume of communication if any between the tasks concerned. Both the node
and edge parameters could provide input for the placement algorithms. A Task
Assignment Graph (TAG) captures the augmented information, from both the PTG
and TCG, that mainly conveys the task to processor mappings.

In summary, the task assignment problem could be defined as a selective process
whereby a particular processor is chosen among a list of available processors to
act as a host for executing a particular task. For clarification purposes, a task is
just a collection of executable instructions grouped together for the purpose of
convenience. We propose the following algorithms, to solve the Task Assignment
Problem:

1. Minima_Strategy: Uses a random mapping strategy
2. Maxima_Strategy: Provides a topology with direct connections between pro-

cessors
3. Dimenx_Strategy: Focuses on either the cycle or bandwidth requirement of

tasks
4. Dimenxy_Strategy: Considers both the task cycles and bandwidth requirement
5. Graphcut_Strategy: Creates subgraphs out of the topology and task graphs and

maps them
6. Optima_Strategy: Maps tasks to a virtual topology and then remaps to an actual

physical topology
7. Edgefit_Strategy: Sorts the edges of the topology and task graphs and maps the

best edges

The following subsections provide the details of each one of these algorithms.

5 Task Mapping Algorithms

This section provides algorithmic details of each of the algorithms which follows a
summary or objective of the algorithm.

1. Minima_Strategy Algorithm: This is a very simple scheme where in the list
of processors in PTG, as well as the list of tasks in the TCG are randomly
shuffled as a first step. Then the tasks in the shuffled TCG are assigned to
processors, in the shuffled PTG in a random fashion one-on-one. While this
scheme does not guarantee efficient task placements, we can definitely use the
result in comparisons, for measuring the effectiveness of other strategies.

Algorithm 1 on page 475 provides the steps required to implement the Minima
Strategy algorithm.

2. Task Mapping by Maxima_Strategy: The objective of this algorithm is to
provide a topology that produces maximum benefits to the set of tasks from a
topology standpoint. It achieves this by providing direct connections to the tasks



Efficient Graph Algorithms for Mapping Tasks to Processors 475

Algorithm 1 Minima_Strategy algorithm
1: procedure MINIMA_STRATEGY(PTG, T CG) � The Minima strategy routine
2: TAG ← MERGE_GRAPH(PTG, T CG)

3: TAG ← MINIMA_MAPPER(T AG)

4: return TAG

5: end procedure
6: procedure MINIMA_MAPPER(TAG) � Minima mapper routine
7: proc_list ← GET_PROC_NODE_LIST(T AG)

8: task_list ← GET_TASK_NODE_LIST(T AG)

9: map_list ← NEW_LIST()

10: len ← LIST_SIZE(task_list)
11: while len �= 0 do
12: map_list ← NEW_LIST()

13: proc ← CHOOSE_RANDOM(proc_list)
14: task ← CHOOSE_RANDOM_UNIQUE(task_list)
15: MAP_TASK(map_list, proc, task)
16: len ← LIST_SIZE(task_list)
17: end while
18: TAG ← MAP_TASKS_TO_PROCS(T AG,map_list)
19: TAG ← MERGE_NODE_AGGREGATES(T AG)

20: return TAG

21: end procedure
22: procedure MAP_TASK(map_list, proc, task) � Store the proc, task tuple in the map_list
23: tuple ← MAKE_TUPLE(proc, task)

24: ADD_TO_LIST(map_list, tuple)
25: end procedure

so that the communicating tasks need not experience router and other network
delays.

Algorithm 2 on page 476 provides the steps required to implement the
Maxima_Strategy algorithm.

3. Dimenx_Strategy algorithm: There are actually two sub-strategies here. One
that takes into consideration the task execution cycles and another that considers
the task communication bandwidth. Accordingly, the algorithm uses a depth-
first-listing of processors to achieve the first objective where the underlying
assumption is that processor connection is not important so we can afford to
map to processors that are farther apart in the topology. To achieve criteria two,
the algorithm maps tasks to a breadth-first-listing of processors since the direct
connection between processors would be required.

Algorithm 3 on page 477 provides the details necessary to implement
Dimenx_Strategy of mapping tasks to processors.

4. Dimenxy_Strategy algorithm:
The Dimenxy strategy algorithm tries to achieve two demands of the tasks at
the same time, by maximizing the computation part, and controlling the com-
munication overheads, by minimizing the communication to computation ratio,
through effective mapping of tasks to processors. Tasks are grouped into clusters
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Algorithm 2 Maxima_Strategy algorithm
1: procedure MAXIMA_STRATEGY(PTG, TCG) � Maxima strategy entry interface
2: TAG ← MATCH_TASK_GRAPH_SHAPE(PTG, T CG)

3: TAG ← MAXIMA_MAPPER(T AG)

4: return TAG

5: end procedure
6: procedure MATCH_TASK_GRAPH_SHAPE(PTG, T CG) � Create a machine topology to

match the task profile
7: TAG ← COPY_GRAPH(T CG)

8: graph_prof ile ← GET_GRAPH_NODE_EDGE_PROFILE(T CG)

9: max_lbw ← GET_MAX_LBW(PTG)

10: ADD_TO_PROFILE(graph_prof ile,max_lbw)

11: PTG ← UPDATE_GRAPH_NODE_EDGE_PROFILE(PTG, graph_prof ile)
12: TAG ← RECONSTRUCT_GRAPH(T AG,PTG)

13: return TAG

14: end procedure
15: procedure MAXIMA_MAPPER(TAG) � Mapper for the Maxima configuration
16: task_list ← GET_TASK_LIST(T AG)

17: proc_list ← GET_PROC_LIST(T AG)

18: map_list ← NEW_LIST()

19: for i ← 1, n − 1 do � All processor nodes and edges are maximal here, so pairing a task
to a process is trivial

20: task ← task_list[i]
21: proc ← proc_list[i]
22: pair ← MAKE_PAIR(task, pair)

23: ADD_TO_LIST(map_list, pair)
24: end for
25: TAG ← MAP_TASKS_TO_PROCS(T AG,map_list)
26: TAG ← MERGE_NODE_AGGREGATES(T AG)

27: return TAG

28: end procedure

referred to here as segments, based on their inherent nature, whether computation
or communication biased, and then mapped accordingly segmentwise.

Algorithm 5 on page 479 describes the Dimenxy_Strategy Algorithm for
generating the TAG.

5. Graphcut_Strategy algorithm:
Graphcut Strategy algorithm, creates subgraphs out of PTG and TCG that are
matching or similar from a shape perspective, and so can be easily mapped. It is
important to slice a graph only to the extent that we get subgraphs that are similar
in shape, and more amenable for mapping. The subgraphs are similar in shape,
in terms of the number of nodes constituting the subgraphs, and the number of
edges, and the number of edges incident and leaving the nodes of the concerned
subgraphs. One should be careful not to take this slicing too far, in which case
we can end up with a graph of just nodes, with no shape or edge information,
making the mapping decisions difficult.

Algorithm 7 on page 481 describes the Graphcut_Strategy Algorithm for
generating the TAG.
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Algorithm 3 Dimenx_Strategy algorithm
procedure DIMENX_STRATEGY(PTG, T CG) � strategy entry point

TAG_C ← MERGE_GRAPH(PTG, T CG)) � Create TAG based on task cycles
TAG_V ← MERGE_GRAPH(PTG, T CG)) � Create TAG based on task communication

volume
TAG_C ← DIMENX_MAPPER_CYC(T AG_C,PTG, T CG) � Create mappings based on

cycles
TAG_V ← DIMENX_MAPPER_VOL(T AG_V, PTG, T CG) � Create mappings based on

volume
pair ← MAKE_PAIR(T AG_C, T AG_V )

return pair

end procedure
procedure DIMENX_MAPPER_CYC(TAG,PTG, T CG)� Mapper uses the execution cycles of
the tasks as the basis for mapping decisions

proc_list_sorted ← GENERATE_DFS_LIST(PTG) � Create a depth first listing (DFS) of
processor nodes so that they are spaced apart

for i ← 0, n − 1 do
cyc ← GET_TASK_CYC(task_list[i])
ADD_TO_LIST(cyc_list, cyc)

end for
cyc_list_sorted ← RSORT_LIST(cyc_list) � Create an inverted sorted list of cycles
for i ← 0, n − 1 do � Create a sorted list of tasks

cyc ← cyc_list_sorted[i]
for j ← 0, n − 1 do

task ← task_list[j ]
task_cyc ← GET_TASK_CYC(task)

if cyc = task_cyc then
ADD_TO_LIST(task, task_list_sorted)

end if
end for

end for
map_list ← NEW_LIST()

for i ← 0, n − 1 do � Create the map with the best processor in the proc_list_sorted list
task ← task_list_sorted[i]
proc ← proc_list_sorted[i]
pair ← MAKE_PAIR(task, proc)

ADD_TO_LIST(map_list, pair)
end for
TAG ← MAP_TASKS_TO_PROCS(T AG,map_list) � map tasks to processors
TAG ← MERGE_NODE_AGGREGATES(T AG) � Compute node property values for fitness

calculation purposes
return TAG

end procedure
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Algorithm 4 Dimenx_Strategy algorithm (cont. . . )
procedure DIMENX_MAPPER_VOL(TAG,PTG, T CG) � Mapper uses the communication
volume of the tasks as the basis for mapping decisions

proc_list_sorted ← GENERATE_BFS_LIST(PTG) � Create a breadth first listing (BFS)
of processor nodes so that they are bunched together

for i ← 0, n − 1 do
vol ← GET_TASK_VOL(task_list[i])
ADD_TO_LIST(vol_list, vol)

end for
vol_list_sorted ← RSORT_LIST(vol_list) � Create an inverted sorted list of volumes
for i ← 0, n − 1 do � Create a sorted list of tasks

vol ← vol_list_sorted[i]
for j ← 0, n − 1 do

task ← task_list[j ]
task_vol ← GET_TASK_VOL(task)

if vol = task_vol then
ADD_TO_LIST(task, task_list_sorted)

end if
end for

end for
map_list ← NEW_LIST()

for i ← 0, n − 1 do � Create the map with the best processor in the proc_list_sorted list
task ← task_list_sorted[i]
proc ← proc_list_sorted[i]
pair ← MAKE_PAIR(task, proc)

ADD_TO_LIST(map_list, pair)
end for
TAG ← MAP_TASKS_TO_PROCS(T AG,map_list) � map tasks to processors
TAG ← MERGE_NODE_AGGREGATES(T AG) � Compute node property values for fitness

calculation purposes
return TAG

end procedure

6. Optima_Strategy algorithm:
The Optima_Strategy algorithm follows a two step process where the sorted
edges of the TCG are mapped to a virtual topology with no processor limitations.
Then the second mapping step is carried out using node sorted graphs of topology
and task graphs.

7. Edgefit_Strategy algorithm:
Edgefit_Strategy involves mapping the task edge with the highest communication
volume, with the topology edge with the highest bandwidth, and so on. This
seems like an easy task to achieve, but practically poses consistency issues,
because a task can only be mapped, to a single processor at any time. So an
extra post processing step is required, whereby inconsistent mappings have to be
sorted out.

Algorithm 11 on page 484 describes the Edgefit_Strategy Algorithm for
generating the TAG.
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Algorithm 5 Dimenxy_Strategy algorithm
1: procedure DIMENXY_STRATEGY(PTG, T CG) � The strategy entry point into the Dimenxy
2: TAG ← MERGE_GRAPH(PTG, T CG)

3: TAG ← DIMENXY_MAPPER(T AG,PTG, T CG) � Create mappings based on cycles
and volume

4: return TAG

5: end procedure
6: procedure DIMENXY_MAPPER(TAG,PTG, T CG) � Mapper that uses both the execution

cycles, and volume of communication of the tasks as the basis for mapping decisions
7: proc_list_df s ← GET_DFS_LIST(PTG) � Create a depth first listing (DFS) of

processors so that they are spaced apart
8: proc_list_bf s ← GET_BFS_LIST(PTG) � Create a depth first listing (BFS) of

processors so that they are bunched closer
9: task_list ← GET_TASK_LIST(T CG)

10: map_list ← NEW_LIST()

11: proc_df s_idx ← 0
12: proc_bf s_idx ← 0
13: for task ← task_list[0], task_list[n − 1] do � Create the map list
14:
15: task_type ← GET_TASK_TYPE(T CG, task)

16: if task_type =′ MAP ′
X then

17: proc ← proc_list_bf s[proc_bf s_idx]
18: edge ← MAKE_EDGE(task, proc)

19: ADD_TO_LIST(map_list, edge)
20: proc_bf s_idx ← proc_bf s_idx + 1
21: f lag ← IS_LAST_INDEX(proc_list_bf s, proc_bf s_idx)
22: if f lag �= 0 then
23: proc_bf s_idx ← 0
24: end if
25: else
26: proc ← proc_list_df s[proc_bf s_idx]
27: edge ← MAKE_EDGE(task, proc)

28: ADD_TO_LIST(map_list, edge)
29: proc_df s_idx ← proc_df s_idx + 1
30: f lag ← IS_LAST_INDEX(proc_list_df s, proc_df s_idx)
31: if f lag �= 0 then
32: proc_df s_idx ← 0
33: end if
34: end if
35: end for
36: TAG ← MAP_TASKS_TO_PROCS(T AG, task_proc_map) � Map tasks to processors
37: TAG ← MERGE_NODE_AGGREGATES(T AG) � Compute node property values for

fitness calculation purposes
38:
39: return TAG

40: end procedure
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Algorithm 6 Dimenxy_Strategy algorithm (cont. . . )
41: procedure CYC_TO_INS(T CG, node) � Converts cycles to an equivalent number of

instructions
42: IPC ← 1.2 � IPC number is chosen based on the modern processor trends
43: cyc ← GET_CYC(T CG, node)

44: ins ← cyc ∗ IPC

45: return ins

46: end procedure
47: procedure VOL_TO_INS(T CG, edge_list) � Converts volume to an equivalent number of

instructions
48: vol ← 0.0
49: for edge ← edge_list[0], edge_list[n − 1] do
50: vol ← vol + GET_VOL(T CG, edge)

51: end for
52: ins ← vol/128.0 � For normalization purposes we assume 128 bytes are equal to one

instruction
53: return ins

54: end procedure
55: procedure GET_TASK_TYPE(T CG, task) � Advice if the task is computation or

communication dominant
56: adv ← EMPTY_STRING()

57: node_list ← GET_NODE_LIST(T CG)

58: for node ← node_list[0], node_list[n − 1] do
59: if node = task then
60: edge_list ← GET_EDGE_LIST(T CG, node)

61: cyc ← CYC_TO_INS(T CG, node)

62: vol ← VOL_TO_INS(T CG, edge_list)
63: if cyc > vol then
64: adv =′ MAP ′

X

65: else
66: adv = ‘MAP ′

Y

67: end if
68: end if
69: end for
70: return adv

71: end procedure

We presented seven algorithms with varying degree of complexity in terms of
implementation and accordingly offer varying levels of performance. So which
algorithm offers maximum benefit for a particular scenario? Minima strategy is
simple to implement and may work well in many situations, especially when there
are few processors in the topology and a large number of tasks. Since Maxima
strategy uses direct connections between processors, it provides an upper limit on
the maximum performance level possible, for any combination of processors and
tasks. Dimenx and Dimenxy are good strategies to employ in situations, when both
the tasks cycles and bandwidth dictate performance. Graphcut, Optima, and Edgefit
are complex strategies to implement and run, and should be employed for complex
processor topologies and large task counts, where communication volumes and
bandwidth expectations are high. In such scenarios the extra time spent, in carefully
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Algorithm 7 Graphcut_Strategy algorithm
1: procedure GRAPHCUT_STRATEGY(PTG, T CG)
2: TAG ← MERGE_GRAPH(PTG, T CG)

3: TAG ← GRAPHCUT_MAPPER(T AG) returnTAG
4: end procedure
5: procedure GRAPHCUT_MAPPER(TAG,PTG, T CG) � The Graphcut mapper
6: subgraph_pair ← GRAPHCUT_CUT(PTG, T CG)

7: subgraph_list_ptg ← subgraph_pair[0]
8: subgraph_list_tcg ← subgraph_pair[1]
9: map_list ← GRAPHCUT_FIT(subgraph_list_ptg, subgraph_list_tcg)

10: for map_list ← list_of _map_list[0], list_of _map_list[n − 1] do
11: TAG ← MAP_TASKS_TO_PROCS(T AG,map_list)
12: TAG ← MERGE_NODE_AGGREGATES(T AG)

13: end for
14: return TAG

15: end procedure
16: procedure GRAPHCUT_CUT(PTG, T CG) � Create subgraphs and sort them based on

connected edges
17: subgraph_list_ptg ← MIN_CUT_GRAPH(PTG)

18: subgraph_list_tcg ← MIN_CUT_GRAPH(T CG)

19: subgraph_list_ptgs ← DEGREE_SORT_GRAPH(subgraph_list_ptg)
20: subgraph_list_tcgs ← DEGREE_SORT_GRAPH(subgraph_list_tcg)
21: pair ← MAKE_PAIR(subgraph_list_ptgs, subgraph_list_tcgs)
22: return pair

23: end procedure

Algorithm 8 Graphcut_Strategy algorithm (cont. . . )
24: procedure GRAPHCUT_FIT(subgraph_list_ptg, subgraph_list_tcg) � Fit the task and the

topology sub-graphs
25: map_list ← NEW_LIST()

26: for i ← 0, n − 1 do
27: subgraph_tcg ← subgraph_list_tcg[i]
28: subgraph_ptg ← subgraph_list_ptg[i]
29: map_list ← GRAPHCUT_FIT_SUBGRAPH(map_list, subgraph_ptg, subgraph_tcg)
30: end for
31: return map_list
32: end procedure
33: procedure GRAPHCUT_FIT_SUBGRAPH(map_list, subgraph_list_ptg, subgraph_list_tcg) �

Map nodes of the subgraph
34: tcg_nodes ← GET_NODE_LIST(subgraph_tcg)
35: ptg_nodes ← GET_NODE_LIST(subgraph_ptg)
36: for i ← 0, n − 1 do
37: pair ← MAKE_PAIR(tcg_nodes[i], ptg_nodes[i])
38: ADD_TO_LIST(map_list, pair)
39: end for
40: return map_list
41: end procedure
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Algorithm 9 Optima_Strategy algorithm
1: procedure OPTIMA_STRATEGY(PTG, T CG) � Optima strategy entry
2: TAG ← ADD_GRAPH(PTG, T CG)

3: TAG ← OPTIMA_MAPPER(T AG,PTG, T CG)

4: return TAG

5: end procedure
6: procedure OPTIMA_MAPPER(TAG,PTG, T CG) � Maps tasks to a virtual machine

topology followed by a remap to an actual topology
7: VAG ← MAP_VIRTUAL(T AG,PTG, T CG)

8: TAG ← MAP_PHYSICAL(T AG,VAG,PTG, T CG)

9: TAG ← MAP_SOLO_TASKS(T AG,PTG)

10: TAG ← UPDATE_NODE_VALUES(T AG)

11: return TAG

12: end procedure
13: procedure MAP_VIRTUAL(VAG,PTG, T CG) � Map tasks to a virtual topology where

there is no shortage of optimal processors
14: VAG ← INIT_DIGRAPH

15: psl ← EDGE_SORT_GRAPH(PTG,′ LBW ′,′ DSC′) � descending sort based on LBW
param

16: tsl ← EDGE_SORT_GRAPH(T CG,′ VOL′,′ DSC′) � descending sort based on VOL
param

17: for i ← 0, n − 1 do
18: ADD_TASK_NODE(VAG)

19: end for
20: for e ← 0, n − 1 do
21: ADD_TASK_EDGE(VAG)

22: end for
23: for i ← 0, n − 1 do
24: ADD_TOPOLOGY_NODE(VAG)

25: ADD_TOPOLOGY_NODE(VAG)

26: proc_edge ← psl[i]
27: task_edge ← tsl[i]
28: ADD_TOPOLOGY_EDGE(VAG,proc_edge)
29: VAG ← MAP_TASK_EDGE_TO_PROC_EDGE(VAG, task_edge, proc_edge)
30: end for
31: return VAG

32: end procedure

mapping tasks to the appropriate processors, translates to measurable performance
benefits and is definitely worth the effort.

6 Complexity Analysis of the Algorithms

In this section, we look at the complexity of the algorithms proposed in this paper.
We use the standard Big − O notation, which defines the upper bounds, on the
scalability of algorithms in general. The O on the left hand side in each of these
equations stands for the Big−O measure. The purpose of providing these equations
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Algorithm 10 Optima_Strategy algorithm (cont. . . )
33: procedure MAP_PHYSICAL(TAG,VAG,PTG, T CG) � Replace virtual processors with

real processors
34: PTG ← UPDATE_EDGE_VALUES(PTG) � Calculate aggregate bandwidth, volume and

deficit
35: T CG ← UPDATE_EDGE_VALUES(T CG)

36: proc_sort_list ← NODE_SORT_GRAPH(PTG,′ LBW ′,′ DSC′) � Sort processors and
tasks in the topology

37:
38: task_sort_list ← NODE_SORT_GRAPH(T CG,′ VOL′,′ DSC′)
39: pair_list ← NEW_LIST()

40: for index ← 0, n − 1 do � Create the pair list
41: proc ← proc_sort_list[index]
42: task ← task_sort_list[index]
43: pair ← MAKE_PAIR(task, proc)

44: LIST_ADD(pair_list, pair)
45: end for
46: VAG ← GRAPH_READ_PAIR_LIST(VAG,pair_list) � Add the mappings to VAG
47: TAG ← MERGE_GRAPH(T AG,VAG) � Merge the virtual and the assignment graph
48: TAG ← UPDATE_NODE_VALUES(T AG) � Aggregate values for fitness calculation
49: return TAG

50: end procedure

is mainly to acquaint the readers about the complexity of the algorithms presented
earlier and provide mathematically an expectation in terms of performance. In this
study we have focused on the time complexity of the algorithms using the Big −O

notation. Since we believe that the algorithms are moderate in their use of memory,
we chose not to discuss or analyze their space complexity behavior at this point.

1. Minima_Strategy: The algorithm is simple. It just maps every task in the set
randomly with a processor in the topology. So there is just one loop which picks a
task in sequence from the list of tasks and maps with a processor it has randomly
chosen from the list of processors. If you ignore the work done in generating
the lists from their corresponding graphs PTG and TCG, the complexity is just
O(N) where N is the number of tasks.

O(Minima) = O(N) (1)

where N is the number of tasks.
2. Maxima_Strategy: Initialization involves finding the maximum value of band-

width which means looping through the list of processor edges which translates
to a complexity of O(E) where E is the number of edges in the original topology.
It also involves creating a processor topology that produces the best results for
the given task set. This involves creating processor nodes and edges mimicking
the task graph. This means an additional complexity of O(N) where N is the
number of nodes in the task set. Another order of O(N2) where we are setting
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Algorithm 11 Edgefit_Strategy algorithm
1: procedure EDGEFIT_STRATEGY(PTG, T CG) � Edgefit strategy entry
2: TAG ← ADD_GRAPH(PTG, T CG)

3: TAG ← EDGEFIT_MAPPER(T AG,PTG, T CG)

4: return TAG

5: end procedure
6: procedure EDGEFIT_MAPPER(TAG,PTG, T CG) � Edgefit mapper entry
7: TAG ← MAP_GREEDY(T AG,PTG, T CG)

8: TAG ← BACKTRACK(T AG)

9: TAG ← BALANCE(T AG,PTG, T CG)

10: TAG ← ASSIGN_SOLO(T AG,PTG)

11: TAG ← UPDATE_NODE_VALUES(T AG)

12: return TAG

13: end procedure
14: procedure MAP_GREEDY(TAG,PTG, T CG) � Pair up the best graph edges in greedy

manner
15: proc_sort_list ← EDGE_SORT_GRAPH(PTG,′ LBW ′,′ DSC′)
16: task_sort_list ← EDGE_SORT_GRAPH(T CG,′ VOL′,′ DSC′)
17: pair_list ← NEW_LIST() � Create the pairings
18: for i ← 0, n − 1 do
19: proc_edge ← proc_sort_list[i]
20: task_edge_edge ← task_sort_list[i]
21: pair ← MAKE_PAIR(task_edge, proc_edge)
22: LIST_ADD(pair_list, pair)
23: end for
24: TAG ← GRAPH_READ_PAIR_LIST(T AG,pair_list)
25: TAG ← UPDATE_NODE_VALUES(T AG)

26: return TAG

27: end procedure

up direct edges between any pair of tasks for realizing the best communication
results.

O(Maxima) = O(N) + O(N2) + O(E) (2)

where N is the number of tasks, E is the number of topology edges.
3. Dimenx_Strategy: Finding the Dfs listing of all the processors in the topology

which involves looping through the nodes and for each node follow each direct
edge and visit them in turn which translates to an order of O(EN) where E is the
number of processor edges and N is the number of processor nodes. Finding a
descending order listing of all task nodes based on the execution cycles translates
to O(M2) when using a simple bubble sort where M is the number of task nodes.
Mapping processors to tasks is O(M) like before where M is the number of tasks.
So totally we have,

O(DimenxC) = O(EN) + O(M2) + O(M) (3)
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Algorithm 12 Edgefit_Strategy algorithm (cont. . . )
28: procedure BACKTRACK(TAG) � Ensure pairing consistency
29: map_list ← GET_TASK_MAP_LIST(T AG)

30: for i ← 0, n − 1 do
31: for j ← 0, n − 1 do
32: mapi ← map_list[i]
33: mapj ← map_list[j ]
34: if mapi �= mapj then
35: taski ← GET_TASK(mapi)

36: taskj ← GET_TASK(mapj)

37: if taski = taskj then
38: xbwi ← GET_XBW(mapi)

39: xbwj ← GET_XBW(mapj)

40: if xbwi ≤ xbwj then
41: ADD_MAP(T AG,mapi)

42: else
43: ADD_MAP(T AG,mapj)

44: end if
45: end if
46: end if
47: end for
48: end for
49: end procedure
50: procedure MIGRATE(TAG, task, current, proc_list) � Move task to a lightly loaded

processor
51: for target ← proc_list[0], proc_list[n − 1] do
52: ldt ← GET_TASK_LOAD(T AG, target)

53: ldc ← GET_TASK_LOAD(T AG, current)

54: if ldt < ldc then
55: MOVE_TASK(T AG, current, target)

56: return TAG

57: end if
58: end for
59: end procedure
60: procedure BALANCE(TAG) � Ensure load balance in the topology
61: proc_list ← GET_PROC_LIST(T AG)

62: for proc ← proc_list[0], procl ist[n − 1] do
63: task_list ← GET_TASK_LIST_FOR_PROC(T AG,proc)

64: f lag ← IS_LOAD_BALANCED(T AG, task_list)� Tasks per processor is used as the
load metric

65: if f lag �= 1 then
66: TAG ← MIGRATE(T AG, task, proc_list)
67: end if
68: end for
69: return TAG

70: end procedure
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where M is the number of tasks and N is the number of processors and E is the
number of processor edges.
Similarly when we use Volume as the reference we have a task edge sorting step
which is the only step that is different from above. So in total we have,

O(DimenxV ) = O(EN) + O(F 2) + O(M) (4)

where M is the number of tasks and N is the number of processors, E is the
number of processor edges, and F is the number of task edges.

4. Dimenxy_Strategy: Involves the generation of both the Dfs and Bfs listing of the
processors in the topology. As explained earlier, this translates to a complexity
of O(EN) each. Computing aggregate volumes is aggregating edge weights in
the task nodes which is of complexity O(F), where F is the number of edges in
the task graph. Sorting the task nodes based on their communication volumes is
a O(M) where M is the number of task nodes. Mapping is a O(M) order where
M is the number of task nodes.

O(Dimenxy) = O(EN) + O(F) + 2 ∗ O(M) (5)

where M is the number of tasks, N is the number of processors, E is the number
of processor edges, and F is the number of edges in the task graph.

5. Graphcut_Strategy: Graph cut step which is a O(EM) where E is the number
of edges and M is the number of nodes in the processor topology graph. Similarly
for the task graph this step is a O(FN) order of complexity. The sort of the list
of subgraphs of PTG is a worst case order of O(M2) where M is the number
of nodes in the processor topology. Similarly for tasks it is a O(N2) where
N is the number of task nodes. Matching the subgraphs and the nodes within
corresponding subgraphs is a O(N2) order where N is the number of task nodes.
So in total we have,

O(Graphcut) = O(EM) + O(FN) + O(M2) + 2 ∗ O(N2) (6)

where N is the number of tasks and M is the number of processors, E is the
number of processor edges and F is the number of task edges.

6. Optima_Strategy: Map virtual step involves building a virtual graph that has
the same number of processor nodes and number of edges equal to the number
of edges in the task graph. The mapping step involves going through the list of
task edges and mapping the virtual processors one on one. This translates to the
following, O(M)+2∗O(F) where M is the number of processor nodes and F is
the number of task edges. Mapping to a physical topology involves aggregating
edge properties to nodes in the topology and task graphs which translates to
O(E)+O(F) where E is the number of edges in PTG and F in T CG. Two node
sort operations of the PTG and T CG graphs are of order O(M2) and O(N2)

respectively, where M is the number of nodes in PTG and N the corresponding
number in T CG. Mapping edge is a O(NF) in the worst case where N is the
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number of task edges and F is the edges that involve a particular task node.
Totally this translates to

O(Optima) = O(M)+3∗O(F)+O(E)+O(M2)+O(N2)+O(NF) (7)

where N is the number of task nodes and M is the number of processor nodes, E
is the number of PTG edges and F the number of T CG edges.

7. Edgefit-Strategy: The edge sort steps of PTG and T CG are of order O(E2)

and O(F 2) as discussed earlier, where E is the number of processor edges and F

the number of task edges. Mapping of edges in greedy fashion is of order O(F),
where F is the number of edges in T CG. Backtrack which involves comparison
of one edge with another is a O(F 2) order where F is the number of edges in
the task graph. The T ask-per-processor (for load balancing) values gathering
step is a O(M), where M is the number of processors. Together they are 3 ∗
O(M). Migrate step involves finding a suitable processor for the migrating task
and its worst case order is O(M), where M is the number of processors. Balance
step involves sorting the processor graph once and looping till all processors are
balanced, and each time in the loop balance the load-balance checks are called.
This translates to O(M2)+O(M ∗ (4∗M)) and we have the following equation:

O(Edgef it) = O(E2) + O(F) + O(F 2) + 5 ∗ O(M2) (8)

7 Preliminary Results

This section gives some preliminary results on the performance of the various
algorithms, for a configuration that consists of a topology of 512 processors and
1024 tasks. This configuration was generated by a tool, where in the processors
connections were randomly chosen, as well as the bandwidth of the connections.
The topology is not a fully connected one, but all processors are connected,
with some of them with direct connections and others with indirect connections,
enabled by one or more intermediate processors. Similarly, the communicating tasks
and non-communicating tasks were randomly chosen, as also the volume of the
communication in the former case. The bandwidths across processor boundaries
were determined through simulation. The result has been captured in the form of
a table and a plot below. While the actual simulation values are not relevant for
this discussion, both the line bandwidth and task communication volumes were
randomly generated for this experiment and they were generated in the form of
a comma-separated-value files and stored as parameters in the appropriate graphs
such as the PTG or the TCG as relevant. The algorithms used these bandwidths to
guide the task placements and at the end they were evaluated based on the overall
bandwidth overheads they were able to achieve in the topology. Less overheads
mean better placement and translates to a better network/bandwidth efficiency.
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Detailed analysis, results, and plots are planned to be presented in a separate
work which is an extension to the present research.

Table 1 on page 488 lists the bandwidth overheads experienced by the algorithms
for an example configuration that involves a topology of 512 processors and 1024
tasks. As seen from the table, we see that MAXIMA configuration has achieved the
best/lowest overhead as expected along with OPTIMA. We also see that the highest
overhead for this particular experiment was grabbed by GRAPHCUT which needs
further study to determine the causes. The middle values are grabbed by the others.

Figure 6 on page 488 lists the bandwidth overheads experienced by the algo-
rithms for an example configuration that involves a topology of 512 processors
and 1024 tasks. The plot basically conveys the same information as the table in
a graphical format. And we can see that MAXIMA algorithm has done better than
the others in limiting the bandwidth overheads by mapping tasks and processors
effectively.

Table 1 Bandwidth
overheads experienced by the
algorithms

Sl. No. Algorithm Bandwidth overhead

1 MINIMA-512-1024 3.16

2 DIMENX-C-512-1024 3.16

3 DIMENX-B-512-1024 3.16

4 DIMENXY-512-1024 3.16

5 GRAPHCUT-512-1024 3.45

6 EDGEFIT-512-1024 3.16

7 OPTIMA-512-1024 2.45

8 MAXIMA-512-1024 2.45
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8 Conclusion

In this research work, we studied the problem of mapping parallel tasks of a
program to the processors of a multiprocessor machine. The problem is interesting
and challenging, since effective mapping depends on two criteria, namely the total
execution cycles consumed by each processor and the overall bandwidth provided
to the tasks by the topology. Effective use of processing resources of machine is
possible by distributing the tasks across multiple processors which also serves the
load balancing cause. To effectively use the bandwidth resources of a topology, more
work is required to effectively choose processors for the tasks. We characterized
this problem as the task assignment problem. We presented the following seven
algorithms to solve the problem, based on the mathematical abstraction of a
graph: Minima_Strategy, Maxima_Strategy, Dimenx_Strategy, Dimenxy_Strategy,
Graphcut_Strategy, Optima_Strategy, and Edgefit_Strategy. These algorithms read
the topology and task profiles, in the form of two weighted directed graphs namely,
the Processor Topology Graph (PTG) and the Task Communication Graph (TCG),
and generate a Task Assignment Graph (TAG), also a directed graph as output
with the required task to processor mappings. These algorithms are general and
are applicable to a wide range of machine architectures, including distributed mul-
tiprocessors such as NUMA. Future work involves characterizing these algorithms
based on their performance and development of a tool or infrastructure to study
and manage topologies and task profiles, as well as design custom topologies for
optimum performance.
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