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Abstract This chapter introduces the principles of item response theory (IRT) and
the latent regression model, also called population or conditioning model, which is
central for generating plausible values (multiple imputations) in PIAAC. Moreover,
it is illustrated how plausible values can reduce bias in secondary analyses compared
to the use of customary point estimates of latent variables by taking explanatory
variables into account. An overview of standard techniques for utilizing plausible
values (PVs) in the analyses of large-scale assessment data will be provided, and it
will be discussed how to calculate the different variance components for statistics
based on PVs, which play an important role in the interpretation of subgroup and
country differences.

The Programme for the International Assessment of Adult Competencies (PIAAC)
provides a rich international database that can be used by policymakers, stakehold-
ers, and educational researchers for examining differences in educational systems
and outcomes across countries, groups of test-takers within countries, and over
time for the measurement of trend. The PIAAC database includes measures of
cognitive domains, such as literacy, numeracy, and problem solving in technology-
rich environments (PS-TRE), as well as background information and non-cognitive
measures obtained from a background questionnaire (BQ). For each cognitive
domain and background variable, test-takers’ raw responses are available in addition
to proficiency estimates in the form of plausible values (PVs) for the cognitive
domains and item response theory (IRT)-based estimates for some of the non-
cognitive measures. For the computer-based assessment, two types of process data
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are included in the database as well—the number of actions (e.g. number of mouse
clicks when interacting with an item on the computer) and the total response time—
as well as the time to first action for each item. As we will see later in this chapter,
utilising a latent regression model is necessary to reduce bias in the estimation of
means and variances of the subgroups of interest. The source of this bias is the
fact that, while the domains measured are broad, we have a limited amount of
assessment time during which we can assess the respondent’s skills, and therefore
we need to resort to statistical techniques that will borrow information to correct for
the unreliability of measurements.

In order to facilitate broad domain coverage while limiting individual testing
time, which is aimed at reducing test-takers’ burden, the PIAAC data are based
on a variant of matrix sampling where different groups of respondents answered
different sets of items (see Chap. 2 in this volume). Therefore, it is not appropriate
to directly compare the group performance using conventional statistics such as the
total score. This would only be feasible if one made very strong assumptions—
for instance, that the different test forms are perfectly parallel and that there is
hardly any measurement error. Since this is almost never the case, conventional
scoring methods show several limitations, such as ignoring the variability and
dissimilarities of proficiencies of subgroups. These limitations can be overcome in
part by using IRT scaling where respondents as well as items can be characterised
on a common scale, even if not all respondents take identical sets of items (e.g. in
adaptive testing). This makes it possible to describe performance distributions in a
population or subpopulation and to estimate the relationships between proficiencies
and background variables.

As stated above, to improve the statistical properties of the group-level profi-
ciency estimates, PIAAC uses PVs, which are multiple imputations. These impu-
tations are drawn from a posterior distribution that is the result of combining
information from the cognitive assessment and the BQ. To compute PVs, a latent
regression model, also called population or conditioning model, is estimated that
combines an IRT model with an explanatory model regressing proficiency on
background data. In this model, which is tailored for use in large-scale assessments,
IRT item parameter estimates are fixed to values from previous item calibrations,
and the background variables are used as predictors.

The remainder of this chapter is organised as follows: First, we describe the IRT
model and the scaling of item parameters. This is followed by a description of the
latent regression model used for generating the PVs in PIAAC. It will be illustrated
how the use of PVs can reduce bias (by accounting for measurement error) in
secondary analyses and lead to more accurate results. It will also be described how
PVs can be used appropriately in statistical analyses to avoid errors and biases when
analysing the PIAAC data. Moreover, we will give an outlook on how the predictive
power of the population model can be improved by including information from
process data obtained from computer-based assessments.
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3.1 1IRT Scaling

3.1.1 IRT Models and Calibration of Item Parameters

The proficiency values 6 for the PIAAC cognitive domains literacy, numeracy, and
PS-TRE cannot be directly observed, as each respondent provides only a small
number of answers, and respondents will only answer a subset of the domains.
Hence, we do not have a very accurate picture on the individual level, but we
have a large number of responses on the level of the 5000, or so, respondents per
country (see the national sample requirements based on the PIAAC test design in
Chap. 2 in this volume). Even if a person takes a long test, a case can be made that
we never directly observe variables such as reading ability, general intelligence, or
neuroticism, but that we rather observe only behavioural indicators that we believe
are related to underlying individual differences.

In addition, tasks such as literacy items differ with respect to how well they
measure aspects of literacy and in terms of how difficult they are on average. IRT is
a model that takes into account interindividual differences as well as differences
between items, and can be used to derive estimates that represent proficiencies
on the one hand, and parameters representing features of the tasks, such as item
difficulty, as well as discrimination, which can be described as the ability of an item
to differentiate between high- and low-proficient respondents.

Latent variable or IRT models can disentangle differences between items from
differences between test-takers and therefore have a number of advantages when it
comes to statistical analyses of data from assessments such as PIAAC. Interested
readers are referred to van der Linden and Hambleton (2016) for an overview of
IRT, and to Rutkowski et al. (2014) for a handbook that describes in great detail the
methods used in PIAAC, but also in student assessments such as the Programme for
International Student Assessment (PISA), the Trends in International Mathematics
and Science Study (TIMSS), and the Progress in International Reading Literacy
Study (PIRLS). IRT is used to estimate the proficiency values as well as the item
parameters in PIAAC using the two-parameter logistic model (2PLM; Birnbaum
1968) for items with two response categories and the generalised partial credit
model (GPCM; Muraki 1992) for items with more than two response categories.

The 2PLM is a mathematical model for the probability that an individual will
respond correctly to a particular item depending only on the following parameters:
the individual’s ability or proficiency (the person parameter) and the difficulty and
discrimination of the particular item (the item parameters). This probability is given
as a function of the person parameter and the two item parameters and can be written
as follows:

exp (Da; (6 — Bi))

P(X :X|9,ﬂi,0ﬁ)= 1+exp(Dal (9_/3!)) (31)
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with X € {0,1} and X = 1 indicating a correct response to a binary coded item.
The 6, B; are real-valued parameters, commonly referred to as ability and difficulty
parameters, respectively, and «; is the discrimination or slope parameter (similar
to a factor loading). D > 0 is a positive constant of arbitrary size, often either 1.0
or 1.7, depending on the parameterisation used in the software implementation; in
PIAAC, D took on the value of 1.7. Note that for «; > 0 (a commonly made, but not
necessary, assumption in IRT), this is a monotone increasing function with respect to
0; that is, the conditional probability of a correct response increases as 6 increases.

For polytomous items, the GPCM is used. This is a generalisation of the 2PLM
for responses to items with two or more ordered response categories and reduces
to the 2PLM when applied to dichotomous responses. For an item i with m; + 1
ordered categories, x € {0, ...,m;}, the GPCM can be written as

exp {>_;_; Da; (0 — Bir)}
Yaloexp{Xr_; Dai (6 — Bir)}

where B; = (Bi1, ..., Bim) are the category threshold parameters. For only two
categories, there is only a single threshold parameter that is equivalent to the item
difficulty in the 2PLM.

A central assumption of the 2PLM and the GPCM, and most IRT models, is
conditional independence (sometimes referred to as local independence). Under
this assumption, item response probabilities depend only on 6 and the specified
item parameters. There is no dependence on any demographic characteristics of the
respondents, on responses to any other items presented on the test, or on the survey
administration conditions. Moreover, the 2PLM assumes unidimensionality—that
is, a single latent variable (0) accounts for the performance on the full set of
items. This enables the formulation of the following joint probability of a particular

P(X=x|0,B; ;) = (3.2)

response pattern x = (x, ..., X,) across a set of n items:
n
P(xl0.B.a)=[]P (X=uxi0.8; ) (3.3)
i=1
where 8 = (B¢, ...,B,) and & = («1, ...,®,).When replacing the hypothetical

response pattern with the scored observed data, the above function can be viewed as
a likelihood function that is to be maximised with respect to the item parameters. To
do this, it is assumed that respondents provide their answers independently of one
another and that the student’s proficiencies are sampled from a distribution, f(6).
The (marginal) likelihood function for i.i.d. respondents j = 1, ..., J and locally
independent responses x; = (xyj, ..., Xpj) can be written as

J n
P(X|B,a) = ]_[/ (HP(X :xijle,ﬁi,ai)> f(0)de. (3.4)
j=1 i=1
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Typically, the marginal log likelihood function, L = log P(X| B,a), is maximised
using customary approaches such as the EM algorithm (Dempster et al. 1997).
The item parameter estimates obtained by maximising this function are used as
fixed constants in the subsequent estimation of the latent regression model. This
is a convenient choice that enables using fixed parameter linking across groups,
as the item parameters are typically found by maximising the likelihood for a
sample of respondents drawn from all countries. While PISA used only 500 students
per country up until the 2012 cycle, PIAAC, as well as previous international
adult assessments, such as the International Adult Literacy Survey (IALS) and
the Adult Literacy and Lifeskills Survey (ALL), and PISA since 2015, use all
available data in this item calibration, and the resulting item parameters represent the
evidence on item difficulties and item discrimination parameters aggregated across
all participating countries.

To ensure that the IRT model provides adequate fit to the observed data, different
types of model checks are applied. One of these checks is the evaluation of the fit of
the estimated item parameters to the observed empirical data. To assess differences
in item fit across countries, or relative to previously calibrated parameters, the
country-specific mean deviation (MD) and the root mean square deviation (RMSD)
were computed for each item in each group of interest (i.e. the different country and
language groups in PIAAC). For simplicity, the MD and RMSD are presented here
for dichotomous variables only:

MD = f (Po (6) — Pe (0)) f (6)db (3.5)

RMSD = \// (Py (0) — P, (0))f (6)do (3.6)

Po(0) — P.(0)) describes the deviation of the pseudo-counts-based (‘observed’)
item characteristic curve from its model-based expected counterpart for a given
ability level 0, and f(0) is the density of ability distribution at this ability level.
More details can be found in Yamamoto et al. (2013). MD and RMSD both quantify
the magnitude and direction of deviations in the observed data from the estimated
item characteristic curves. The MD is more sensitive to deviations of observed item
difficulties than the RMSD. The RMSD is more sensitive to the deviations of both the
item difficulties and discriminations (Yamamoto et al. 2013). In PIAAC, MD values
between —0.1 and 0.1 and RMSD values smaller than 0.1 indicated acceptable item
fit.
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3.1.2 Treatment of Missing Values

Because of the matrix sampling and the multistage testing (MST) design in PIAAC,
the treatment of different types of missing values in the IRT scaling had to be
considered.

1. Missing by design: Items that were not presented to each respondent due to the
matrix sampling design (structural missing data) do not contribute information
to respondents’ cognitive skills and were excluded from the likelihood function
of the IRT model.

2. Not reached items: Missing responses at the end of an item block or cluster
(see Chap. 2 in this volume) were treated as if they were not presented due to
the difficulty of determining if the respondent was unable to finish these items
or simply abandoned them. Hence, these missing responses were also excluded
from the likelihood function of the IRT model.

3. Omitted responses: Any missing response to an item that was administered to
a particular respondent and that was followed by a valid response (whether
correct or incorrect) was defined as an omitted response. Omitted responses in
the paper-based assessment (PBA) were treated as incorrect responses and added
information to the estimation. In the case of the computer-based assessment
(CBA), where response times and the number of actions per item were available,
nonresponses due to little or no interaction were treated differently from nonre-
sponses after some interaction with the item took place. More specifically:

(a) If a respondent spent less than five seconds on an item (a threshold defined
in the literature on response latencies; see Setzer and Allspach 2007; Wise
and DeMars 2005; Wise and Kong 2005) and showed only 0-2 actions,
the nonresponse was considered not attempted and therefore excluded from
estimation (similar to missing by design and not reached items).

(b) In all other cases, omitted responses were treated as incorrect and included
in the estimation. More precisely, if a respondent spent less than five seconds
on an item but showed more than 0-2 actions, or if a respondent spent more
than five seconds on an item (independent of the number of actions), these
not observed responses were treated as incorrect responses.

Nonresponse in cases of refusal to participate or an inability to provide a written
response due to a physical disability was considered as not related to the cognitive
proficiencies and was therefore not included in the estimation.

3.1.3 Scaling, Linking, and Measurement Invariance

The IRT scaling in PIAAC had to provide a valid, reliable, and comparable scale for
each cognitive domain to allow for meaningful group comparisons and stable trend
measures. More precisely, the scaling needed to achieve the following goals:
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— Linking across different sets of items and delivery modes (paper- and computer-
based assessments) to provide a common scale for each cognitive domain for
the international comparison of the average proficiencies of countries within the
PIAAC cycle.

— Linking PIAAC to previous educational adult surveys (IALS and ALL) to
provide a common scale for the measurement of trends.

— Examining and establishing the extent to which comparability or invariance of
the item parameters across countries, languages, and surveys can be assumed.
Only if the majority of item parameters are common (i.e. have the same
characteristics) across different groups can it be assumed that the same construct
is measured and groups can be compared with regard to that construct.

— Examining and establishing stable item parameters and sufficient model-data
fit to achieve sufficient reliability of the measures to allow for accurate group
comparisons. This can only be achieved by treating differential item functioning
(DIF) and other sources of systematic error (such as translation deviations
or technical issues) through the estimation of group-specific or unique item
parameters or the exclusion of particular items.

3.1.3.1 Scaling and Linking Through Common Item Parameters

To create a common scale across countries, languages, and administration modes
(paper- and computer-based modes) within one assessment cycle and across surveys
over time, common sets of items must be used and linked together in the test
design. More precisely, certain items were administered in both the paper-based
and the computer-based branch in PIAAC (note that this pertains to literacy and
numeracy items, as problem solving was available only for the CBA) as well as in
different booklets/modules. Moreover, 60 items of the literacy and numeracy items
administered in PIAAC came from IALS and ALL (note that numeracy was first
introduced in ALL).

The initial IRT scaling was based on a large joint dataset including the data from
prior large-scale adult skill surveys (IALS and ALL) and the data from PIAAC
Round 1 (22 countries). A mixed 2PLM and GPCM IRT model was applied in the
form of a multiple group model for a concurrent calibration of the PIAAC (and
IALS and ALL) items across countries. More precisely, the IRT scaling accounted
for country-by-language-by-cycle groups and estimated common (or international)
item parameters across all groups. The same item difficulty and slope parameters
were assumed for all groups in a first step using equality constraints in the IRT
modelling.

By retaining as many common, international item parameters as possible, a
high level of comparability of the IRT scales was maintained across countries,
administration modes, and surveys. However, the appropriateness of the fit of these
common item parameters to the empirical data had to be examined for each country
and language in a subsequent step of the scaling as described in the next section.
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3.1.3.2 Balancing Measurement Invariance and Model Fit Through
Common and Unique Item Parameters

To ensure validity and accuracy of the measurement, the fit of the estimated common
item parameters to the empirical data was examined through item fit statistics
(RMSD and MD) as described above. Item-by-country interactions in the form of
misfitting item parameters were examined and either treated by assigning unique
(or country- and language-specific) item parameters—by relaxing the equality
constraints in the scaling model—or excluded from the scaling, depending on the
source of misfit (see procedures outlined in Glas and Jehangir 2014; Glas and
Verhelst 1995; Oliveri and von Davier 2011, 2014; Yamamoto, 1997).

If the misfit was due to errors in the administration that were unable to be fixed,
such as translation errors, items were excluded from the scaling in the affected
groups. In case of group-level differential item functioning (DIF), unique item
parameters were estimated for a particular country and language or a group of
countries that showed DIF in the same direction. In the latter case, the unique
item parameter was different from the international one, but common for the group
of countries that showed similar patterns of DIF (those item parameters could
be referred to as partially common). This approach was favoured over dropping
the group-specific item responses for these items from the analysis in order to
retain information from these responses. While the items with group-specific DIF
treated with unique item parameters no longer contribute to the international set
of comparable item parameters, they continue to contribute to the reduction of
measurement uncertainty for the specific country and language group(s).

For countries participating in PIAAC Rounds 2 and 3 (i.e. at different time points
but using the same instruments), the common item parameters obtained from the
joint calibration of PIAAC Round 1, TALS, and ALL data were fixed, and their fit
was evaluated as described above. Through this approach, the different countries
participating in PIAAC at different time points were linked through a common scale
for each domain, and their results were made comparable.

While establishing a high level of comparability (in terms of a high percentage
of invariant parameters across countries) of the PIAAC scale was one of the main
goals of PIAAC, achieving good model—data fit for sufficient measurement accuracy
for each of the participating countries and language groups was important as well.
An increasing number of unique item parameters will increase the model—data fit but
decrease the measurement invariance across the relevant comparison groups. Hence,
a balance between these two goals had to be achieved. In PIAAC, the majority of
items received international item parameters common to all or almost all countries,
while unique item parameters had to be estimated for a subset of items providing
a comparable and reliable scale for group-level comparisons (more details can be
found in Yamamoto et al. 2013, Chap. 17).
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3.1.3.3 Software

The software used for the IRT scaling, mdltm (von Davier 2005), provides marginal
maximum likelihood estimates (MML) obtained using customary expectation—
maximisation methods (EM), with optional acceleration. Furthermore, it imple-
ments an algorithm that monitored DIF measures and that automatically generated
a suggested list of group-specific item treatments for the estimation of unique
parameters for an individual country-by-language group or multiple country-by-
language groups that showed the same level and direction of DIF. The international
and national calibrations were conducted simultaneously for all countries—that is,
all estimated item parameters (common and unique) are on a common scale. During
the item calibration, sample weights standardised to represent each country equally
were used.

3.2 Latent Regression Model

In the latent regression model, the posterior distribution of the proficiency variable
(0) is assumed to depend on the cognitive item responses (X) as well as on a number
of predictors (Y) obtained from the BQ (such as gender, education, occupation,
employment status, etc.). Both the item parameters from the IRT scaling stage and
the estimates from the latent regression analysis are needed to generate plausible
values.

3.2.1 The Latent Regression Model

The regression uses the BQ variables to predict the proficiency variable 8. It is
assumed that

6 ~N(yI, X (3.7)

The latent regression parameters I' and ¥ are estimated conditional on the previ-
ously determined item parameter estimates. I" is the matrix of regression coeffi-
cients, and ¥ is a common residual variance—covariance matrix.

The latent regression model of ® on Y withI" = (y, s=1,..., 8,1 =0,...,
L),Y=(ly; ...,y.),and ® = (0, ..., ) can be written as follows:

0 = vs0 + Vs1y1 + -+ VsLYL t & (3.8)

where & is an error term.
The residual variance—covariance matrix is given by the following equation:



36 L. Khorramdel et al.

T=00"-TI(YY)ri (3.9)

The conditional distribution from which plausible values for each respondent j are
drawn can be written as follows:

P (0jlxj.y;. I. %) (3.10)

Using standard rules of probability, this posterior probability of proficiency can be
represented as follows:

P(9j|xj,yj, I, %)« P(xj|9j,yj, r.x)P(0ly;.T. x) G
= P (x;10;) P (0)1y;, T ¥) |

where 6; is a vector of scale values (these values correspond to the performance
on each of the three cognitive domains literacy, numeracy, and PS-TRE), P(x;|6;)
is the product over the scales of the independent likelihoods induced by responses
to items within each scale, and P(6;]y;, I, ¥) is the multivariate joint density of
proficiencies of the scales, conditional on the observed value y; of BQ responses
and item parameters I and X. As described above, the item parameters are assumed
to be fixed constant in the estimation.

An expectation—-maximisation (EM) algorithm is used for estimating I and X;
the basic method for the single scale case is described in Mislevy (1985). The
EM algorithm requires the computation of the mean and variance of the posterior
distribution in the equation above.

3.2.2 Generating Plausible Values

After the estimation of the regression parameters (I" and X) is complete, plausible
values are randomly drawn in a three-step process from the joint distribution of the
values of I" for all sampled respondents:

1. First, a value of I" is drawn from a normal approximation to P(I",X|x;,y;) that
fixes T at the value ¥ (Thomas 1993).

2. Second, conditional on the generated value of I' (and the fixed value of ¥ = b)) ),
the mean m;”, and variance X;” of the posterior distribution of 6 are computed
using the same methods applied in the EM algorithm.

3. In the third step, the 6 are drawn independently from a multivariate normal
distribution with mean m;” and variance X ;7.

These three steps were repeated ten times, producing ten independent PVs of 6 for
each sampled respondent in each administered cognitive domain. Each set of PVs
is equally well designed to estimate population parameters; however, multiple PVs
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are required to appropriately represent the uncertainty in the domain measures (von
Davier et al. 2009).

Because the presence of extensive background information related to respon-
dents’ cognitive skills is necessary to implement any method for the imputation of
proficiency scores, cases where respondents did not answer a sufficient number of
background questions (< 5 BQ items) were considered as incomplete cases and not
used in the latent regression model. These cases did not receive plausible values.

Respondents who provided sufficient background information but did not
respond to a minimum of five items per domain (<2% of cases in PIAAC) were
not included in a first run of the latent regression to obtain unbiased regression
parameters (I" and X). In a second run of analysis, the regression parameters
were treated as fixed to obtain plausible values for all cases, including those with
fewer than five responses to cognitive items. This procedure aimed at reducing the
uncertainty of the measurement.

3.2.3 Overview of the Analytic Steps in the Latent Regression
Model

The latent regression modelling in PIAAC involves multiple steps. Some involve a
comprehensive analysis across all participating countries to establish international
scales of literacy proficiency variables, ensuring internationally comparable results,
and some involve utilising country-specific models in order to reduce bias and
support country-level analyses of explanatory variables:

1. IRT scaling: Estimation of IRT-based common and unique item parameters
(slopes and difficulties) for dichotomous and polytomous items using the 2PLM
and GPCM as described in the section above.

2. Contrast coding of the BQ items, by contrasting each level as well as a code for
missing (omitted) and routed (skipped by design) responses for each variable,
creating a very large number of contrast-coded variables.

3. Principal component analyses of the contrast-coded variables to reduce the
number of variables needed in the model and to remove collinearity. Principal
components were extracted, explaining 80% of the variance represented by
the background questions to avoid overparameterisation. The use of principal
components also served to incorporate information from examinees with miss-
ing responses to one or more background variables. Note that the principal
component analysis was conducted separately for each country based on inter-
national variables (collected by every participating country) as well as national
background variables (country-specific variables in addition to the international
variables).

4. Latent regression analysis with IRT item parameter estimates (X) treated as
fixed values and the principal components of the BQ variables as predictors
(Y) for estimating the latent regression parameters I' (regression coefficients)
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and )" (residual variance—covariance matrix). Note that latent regression models
are estimated separately for each country to take into account the differences
in associations between the background variables and the cognitive skills. The
regression model for each country consisted of two steps:

(a) First, the model was estimated on a dataset that excluded cases with fewer
than five responses to cognitive items to estimate the regression parameters
(T" and ).

(b) Second, the model was applied to the full dataset, including cases with fewer
than five responses to cognitive items but with the regression parameters (I"
and )") fixed to the values obtained in the first step.

This ensured that the population model was calculated based on cases that
included a reasonable amount of information in the domain of interest, avoiding
the potential bias from poorly measured cases, while at the same time being able
to then calculate scores for all respondents, regardless of the amount of cognitive
information collected.

5. Plausible values (PVs) are randomly drawn from the resulting posterior distri-
bution for all sampled respondents in a three-step process described below. A
total of ten plausible values are independently drawn for each respondent per
cognitive domain. Note that paper-based respondents have PVs only for the
literacy and numeracy domains that were administered to them (i.e. paper-based
respondent did not receive any PS-TRE items and hence did not receive PVs for
PS-TRE). Also note that respondents with an insufficient amount of background
information (i.e. less than five BQ items) did not receive PVs. The PVs that were
made available in the public use file (PUF) can be used in secondary analyses of
the PIAAC data.

3.2.3.1 Software

The software DGROUP (Rogers et al. 2006) was used to estimate the latent regres-
sion model and generate plausible values. In PIAAC, a multidimensional variant
of the latent regression model was used that is based on Laplace approximation
(Thomas 1993).

3.3 Analyses with Plausible Values

As outlined above, PVs are based on a latent regression model that was specifically
designed to estimate population characteristics. They should never be used to draw
inferences at the individual level, as they are not a substitute for test scores for
individuals. When the underlying population model is correctly specified, PVs will
provide consistent estimates of population characteristics, even though they are not
generally unbiased estimates of the proficiencies of individuals (von Davier et al.
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2009). Moreover, if PVs are correctly used in statistical analyses, the accuracy of
derived test statistics enables fair and meaningful group-level inferences. In the
following, we explain how PVs are used properly.

First, it is important to remember that the proficiency values 6 for the cognitive
domains cannot be directly observed and that latent variable (IRT) models had to be
used to make inferences about these latent variables. Hence, we follow the approach
taken by Rubin (1987) and treat the latent variable 6 as missing information. Any
statistic #(6,y), for example, a scale or composite subpopulation sample mean, is
approximated by its expectation given the observed data (x,y):

FEY)=E[t(0,7)Ix.7]= ft(é, y)p(01x.5)do (3.12)

It is possible to approximate 7+ using PVs instead of the unobserved 6 values. For
any respondent, the value of 6 used in the computation of ¢ is replaced by a PV.

Second, Rubin (1987) argued that this process should be repeated several times so
that the uncertainty associated with the imputation can be quantified. For example,
the average of multiple estimates of ¢, each computed from a different set of PVs,
is a numerical approximation of # in the above equation; the variance among them
reflects uncertainty due to not observing 6. It should be noted that this variance
does not include any variability due to sampling from the population. This sampling
variance is another important component of the total error variance of any statistic
calculated in surveys.

To obtain a variance estimate for the proficiency means of each country and other
statistics of interest, a replication approach (see, e.g. Johnson 1989; Johnson and
Rust 1992) was used to estimate the sampling variability as well as the imputation
variance associated with the plausible values. Variance estimates are crucial in
the comparison of proficiencies across groups. In surveys such as PIAAC, several
variance components are integrated into the estimate of variances, for example, the
variance of the mean of literacy in a country.

The correct use of PVs to compute any statistics for an arbitrary function T
and the computation of the different variance components are described in the
following:

1. Calculate the statistic of interest using the first PV (i.e. the vector of the first PV
across respondents). Call this 77.

2. Calculate the sampling variance of 7. Call this SVar(T}).

3. Repeat steps 1 and 2 for each of the remaining PVs obtaining 7> through Ty,
and SVar(T,) through SVar(Typ), thus obtaining 7, and SVar, foru=1, ...,10.

4. The statistic of interest, or 7, would be the average of T} to T1¢:

YT
10

T (3.13)

5. The sampling variance of T is the average of SVar(T1) to SVar(T1p):
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21140:1 Svar,

SVar(T) = 10

(3.14)
This sampling variance reflects uncertainty due to sampling from the popula-
tion (i.e. the selection of a subset of respondents from the total population). This
is potentially the largest contributor to the uncertainty of the estimated statistic.
6. The imputation variance is Var(T; to T1o) * (11/10):

Var(T) =

10 2
Yo (Tu = T) (g) ais)

10 -1 10

This imputation variance is related to the lack of precision of the measurement
instrument and reflects uncertainty because the respondents’ proficiencies 6 are
only indirectly observed through x and y. This variance component is captured
(approximately) by the variability of the PVs.

7. The overall error variance of T is sampling variance + imputation variance.
An example of partitioning the error variance in the two error components
(i.e. sampling and measurement error) is provided in the PIAAC Technical
Report (Yamamoto et al. 2013, Chap. 17). The standard errors, or the square
root of the overall error variance of the statistic T, can be used to evaluate
the magnitude of the statistic. This error variance plays an important role in
interpreting subpopulation results and in comparing the performances of two or
more subpopulations or countries.

3.3.1 Software Tools

Different software tools based on STATA, R, SPSS, or SAS are available for utilising
PVs in analysis using the procedures described above. They will be introduced and
illustrated on practical examples in other chapters in this volume.

3.4 Why Plausible Values Should Be Used for Secondary
Data Analyses

Plausible values (PVs) are multiple imputed proficiency values obtained from
a latent regression or population model. PVs are used to obtain more accurate
estimates of group-level proficiency than would be obtained through an aggregation
of point estimates (Mislevy 1991; Mislevy and Sheehan 1987; Thomas 2002; von
Davier et al. 2006, 2009). The aim is to reduce uncertainty and measurement error
for quantities used in the analyses of large-scale surveys aiming at valid group-
level comparisons rather than optimal point estimates for individual test-takers. In
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contrast to tests that are concerned with the measurement of skills of individuals
(e.g. for the purposes of diagnosis or selection and placement), PIAAC aims to
provide group-level test scores to describe populations and subpopulations. Usually,
the amount of measurement error can be reduced by increasing the number of
items for each individual. However, PIAAC uses matrix sampling as well as MST
for the test design, resulting in the test-taker responding to a subset of items
only. The reasons for this design are described in more detail in Chap. 2 of this
volume. Thus, the survey solicits relatively few responses from each respondent
while maintaining a wide range of representation of the constructs when responses
are aggregated. In other words, the PIAAC test design facilitates the estimation
of population characteristics more efficiently, while the individual measurement
accuracy is reduced.

The IRT scaling in PIAAC solves the problem of the comparability of groups
responding to different set of items by placing both the items and the proficiencies
on the same scale. Point estimates of the proficiencies obtained from the IRT scaling
could lead to seriously biased estimates of population characteristics due to the
uncertainty in the measurement (Wingersky et al. 1987). Therefore, PIAAC provides
PVs obtained from the latent regression model, thereby ensuring that the group-
level effects are properly controlled for in the regression, thus eliminating this bias
in group-level comparisons while reducing measurement error.

3.4.1 An Example Using Plausible Values and Background
Data

We will use a simulated dataset to exemplify the limitations encountered when
aggregating individual ‘scores’ for reporting group-level results and the advantages
of using an approach as described in this chapter where IRT is implemented in
combination with population modelling to obtain PVs. We will also illustrate some
of the risks incurred when not using the PVs properly.

The advantage of using a simulated dataset is that we know the exact values (the
‘truth’) on which we based our simulation, and therefore we can test whether our
proposed methods give us the right results.

For our example, we generated data from nine different hypothetical proficiency
groups, each responding to different sets and combinations of a total of 56 items. We
chose 56 items, as this is the number of items in the PIAAC numeracy domain. The
56 items were grouped into seven blocks or subsets of eight items each. Each item
is included in one, and only one, of the subsets. We chose the seven subsets with
eight items each, as this would allow us to experiment with the amount of items that
each individual would be asked to respond to, similar to the design implemented in
PIAAC, even if not exactly the same.

Table 3.1 above shows descriptive statistics for the item discrimination and
difficulty of the simulated item pool. The statistics are presented overall and block
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Table 3.1 Descriptive statistics of item parameters used in the simulation

Discrimination Difficulty
Block Average Minimum Maximum Average Minimum Maximum
A 1.19 0.57 1.50 —0.13 —1.72 1.51
B 0.94 0.50 1.47 —0.63 —1.72 0.22
C 1.09 0.76 1.39 0.22 —1.51 1.94
D 0.90 0.55 1.38 0.05 —1.71 1.45
E 1.00 0.68 1.44 0.12 —1.98 1.72
F 0.70 0.56 0.91 —0.69 —1.79 1.86
G 1.05 0.53 1.43 0.56 —0.68 1.74
Overall 0.98 0.50 1.50 —0.07 —1.98 1.94

Table 3.2 Descriptive statistics of the simulated samples

Group | Mean | Standard deviation | Number of blocks
0 1 2 3 4 5 6 7

1 1.02 | 0.76 760 | 2036 | 2103 | 1977 | 2049 2095 | 1946 | 2034
2 0.75 10.76 724 12080 | 2042 | 2067 | 1942 2023 |2065 | 2057
3 0.50 | 0.75 745 12022 | 2015 | 2058 | 2029 | 2031 |2029 | 2071
4 0.26 | 0.75 737 12036 | 2055 | 2024 |2030 2035 |2085 | 1998
5 0.01 | 0.76 716 | 2122 [2026 | 2055 | 1957 2032 |2028 | 2064
6 —0.26 | 0.76 797 12069 | 1987 |2077 | 1970 | 1930 |2148 | 2022
7 —0.51 | 0.75 678 | 2041 | 2053 |2030 |2038 2016 |2052 | 2092
8 —0.76 | 0.76 752 11988 | 2052 | 2080 |2037 2007 |2011 | 2073
9 —1.01 | 0.75 725 12035 [ 2042 | 2019 |2052 2097 |2007 | 2023

by block. While these are not exactly the item parameters of the numeracy item
pool, they resemble them closely enough for the purposes of this simulation.

The nine simulated proficiency groups ranged in average ‘true’ ability between
—1.01 and 1.02, each with a standard deviation of 0.75-0.76. They go from a high
average proficiency group (Group 1) to a low average proficiency group (Group 9),
with Groups 4, 5, and 6 being of about average proficiency.

In total, we generated 15,000 respondents for each one of these proficiency
groups, and each of these respondents was simulated to respond to all items, or
a subset of 6, 5, 4, 3, 2, or 1 block of eight items each. To further test the strength
of the statistical model described in this chapter, we deleted the responses for about
5% of the cases in the simulated sample. This was done to test what would happen
if we used these models to estimate the ability of groups of respondents who did
not respond to any of the items in the assessment, and all we knew was their group
membership.

Table 3.2 above shows descriptive statistics (mean and standard deviation) for
each of the subgroups and the number of cases that responded to a particular number
of blocks from the simulated assessments.

We then calculated item parameters using the combined simulated sample of
135,000 cases. The items were calibrated using Parscale Version 4.1 (Muraki and
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Bock 1997), and these item parameters were used to assign scores to each of the
respondents using the following methods:

(a) Expected a posteriori (EAP)

(b) Maximum likelihood estimates (MLE)

(c) Warm’s maximum likelihood estimates (WML)

(d) Plausible values taking into account group membership (PV1)
(e) Taking the average of ten plausible values (PVA)

Please note that PVA scores are not (!) recommended, and they are shown in this
simulation to illustrate their deficiency as a group-level score. The EAP, MLE, and
WML scores were computed using Parscale Version 4.1. The PVs were computed
using Dgroup (Rogers et al. 2006). The syntax for Dgroup was generated using the
windows interface DESI (Gladkova et al. 2006). Notice also that for the purpose of
this example, we will use only the first plausible value, although the proper way to
work with these is to compute the statistics with each of these and report the average
of these statistics, and the variance associated with them, as is explained later in this
chapter.

The results of the simulation by proficiency group are presented in Table 3.3.
In particular, notice in the panel where means are presented. While we are able to
reproduce relatively well the group means using the MLE, WML, PV1, and PVA
scores, the mean of the EAP scores show a consistent regression towards the overall
mean. Notice also in the panel where the standard deviations are shown for the
different groups that the PV1 consistently reproduces the standard deviation of the
generating scores, whereas the EAP and PVA consistently underestimates them, and
the MLE and WML consistently overestimated them.

The results from the simulation by number of blocks taken (each block consisting
of eight items) are presented in Table 3.4. Notice in the means panel that we are not
able to estimate the means using the EAP, MLE, or WML scores for those who
did not take any items. However, the average overall score is reproduced with the
PV1 and consequently the PVA scores. Then, looking at standard deviation panel,
we see that the EAP and PVA underestimate the standard deviation as we use fewer

Table 3.3 Summary statistics of estimated means and standard deviations by proficiency group

Means Standard deviation
Group | Theta | EAP |MLE | WML |PV1 |PVA | Theta| EAP| MLE | WML PV1 | PVA
1.02/ 0.89| 1.00/ 1.01, 1.02, 1.02/0.76 |0.72 0.85 |0.85 |0.75|0.66
0.75| 0.65| 0.73| 0.73| 0.74| 0.74/0.76 1 0.730.85 | 0.85 |0.76 | 0.67
0.50| 0.44| 049 049 050 0.50/0.75 0.740.85 0.85 |0.76 | 0.67
026 0.24| 026/ 026 026 0.26/0.75 0.740.83 1 0.83 |0.76 | 0.67
0.01| 0.01| 0.01| 0.00 0.00 0.000.76 0.75/0.85 0.84 |0.76 | 0.68
—-0.26| —0.22 | —0.24 | —0.24 | —0.25| —0.25/0.76 |0.74 1 0.84 1 0.84 |0.750.67
—0.51| -0.45 —0.50 | —0.51 | —=0.51| —0.51/0.75 |0.74 1 0.84 1 0.84 |0.75 0.67
-0.76 | —0.68 | —0.74 | —0.76 | —0.77 | —0.76 | 0.76 |0.75 1 0.85 1 0.85 |0.76  0.67
—1.01|-0.89 | —0.98| —1.00| —1.02| —1.01 /0.75 |0.73 1 0.83 1 0.83 |0.750.67
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Table 3.4 Summary statistics of estimated means and standard deviations by number of blocks

Means Standard deviation

Number of

blocks Theta | EAP | MLE | WML | PV1 |PVA |Theta| EAP| MLE| WML | PV1|PVA
0 0.00 —0.01| 0.00|0.99 1.00| 0.69
1 0.00/ 0.00/ 0.00/ 0.00, 0.00/ 0.00/1.00 {0.83]1.05 |1.13 |1.00 0.87
2 —0.01/ 0.00, 0.00, —0.01| 0.00/ 0.00/1.01 |0.91|1.08 1.09 |1.01/0.93
3 0.00/ 0.00/ 0.00/ 0.00, 0.00/ 0.00/1.00 [0.93]1.06 |1.05 |0.99 0.94
4 0.00/ 0.00/ 0.01| 0.00, 0.00/ 0.00/1.01 {0.97]1.07 |1.06 |1.01/ 0.97
5 —0.01| -0.01| —0.01| —0.01| —0.01| —0.01|1.01 |0.97|1.06 | 1.05 |1.01|0.97
6 0.00/ 0.01| 0.01| 0.01, 0.01] 0.01/0.99 [0.96]1.04 |1.02 |0.99 0.96
7 0.00/ 0.00/ 0.00/ 0.00, 0.00/ 0.00/0.99 [0.97]1.04 |1.02 |0.99 0.97

items, and even if all 56 items are used, the standard deviation is underestimated. On
the other hand, the MLE and WML scores consistently overestimate the standard
deviation. The only score type that estimates the means and standard deviations
consistently, regardless of the number of items used in the estimation, is the PV1
score.

As can be seen from the tables presented above, we are able to reliably reproduce
the mean and standard deviation for groups of different abilities, regardless of the
proficiency level with respect to the average item difficulty, and also regardless of
the number of items that are administered, to the extreme of being able to estimate
the mean and standard deviation of the proficiency even in the case when no items
are administered, and all we know is the group membership of the respondent.

3.5 Summary and Outlook

PIAAC uses a latent regression model to estimate plausible values (PVs) by incor-
porating item responses and background data. These can be used by researchers,
policymakers, and stakeholders to conduct research in the area of adult com-
petencies (including literacy, numeracy, and problem solving in technology-rich
environments) and their relation to economy and society. The latent regression
model uses item parameters of test items obtained from IRT scaling as fixed values
and background variables obtained using a principal component analysis of contrast-
coded background questionnaire items as predictors.

PVs are multiple imputations that are randomly drawn from the posterior
proficiency distribution resulting from this modelling approach and are designed
to facilitate comparisons at the group level to describe population and group-level
characteristics. They should never be used to draw inferences at the individual
level. PIAAC provides ten plausible values for each cognitive domain for all
respondents with sufficient background information (i.e. responses to five or more
BQ items). PVs provide less biased and more accurate measures than point estimates
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can for group-level comparisons and allow consistent estimates of population
characteristics. If used correctly in statistical analyses as described above, they
provide fair and meaningful results and subgroup comparisons and allow variance
estimation accounting for measurement and sampling error.

In the first cycle of PIAAC, the latent regression model is based on item
parameters and background variables only. However, the modelling approach can
be improved in future cycles by including process or logfile data, such as response
times and the number and sequence of actions (mouse clicks and interactions of the
respondent with the test item), which are available in the computer-based assessment
branch (e.g. Shin et al. 2018). Especially, since future PIAAC cycles will likely
move the current paper-based assessment branch to a tablet administration mode
(at least for the majority of test-takers), process data will be available for even
more respondents. Moreover, more simulation-based tasks might be developed to
better assess life-relevant skills and new aspects of the PIAAC framework (such
as adaptive problem solving in the second cycle of PIAAC). Including additional
process data information into the latent regression model may further decrease
the bias related to measurement error and increase the accuracy of PVs (von
Davier et al. 2019), especially at the extreme ends of the proficiency scale and
for lower-performing countries and subgroups (Shin et al. 2018). However, the
option of including additional variables in the already extensive latent regression
model is challenged by the problem of overparameterisation and requires careful
considerations and additional research before being considered for operational
procedures (von Davier et al. 2019).
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