
Chapter 23
On Transverse Shear Strains Treatment in
Nine-Node Shell Element MITC9i

Krzysztof Wiśniewski and Ewa Turska

Abstract This chapter concerns a nine-node quadrilateral shell element MITC9i
based on the Reissner-Mindlin kinematics and Green strain, which is developed from
the potential energy functional extended to include drilling rotationsWisniewski and
Turska (2018).
We test an alternative treatment of the transverse shear strains in this element moti-
vated by results of the Curved cantilever test of Wisniewski and Turska (2019). In
the originalMITC9i element, these strains are sampled using the 2×3 and 3×2-point
schemes, with all sampling points in the element’s interior. In the tested MITC9i2
element, analogous schemes are used, but 8 of the sampling points are located at the
element’s boundaries. Both elements use the same MITCi transformations.
Several numerical examples are provided to characterize the performance of
MITC9i2 compared with two other nine-node elements MITC9i and 9-EAS11.

Key words: 9-node shell element MITC9i · Two-level approximations of strains ·
Transverse shear strains · Corrected shape functions · Patch tests · Robustness to
shape distortions

23.1 Introduction

The basic (unmodified) nine-node element is excessively stiff and sensitive to shape
distortion, therefore, several techniques have been proposed to mitigate these prob-
lems.
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1. One of the first methods was Selective Reduced Integration (SRI) (Pawsey and
Clough, 1971), which uses different integration schemes for various parts of the
strain energy. The strain components are computed at different points, which
restricts the range of application of this method.

2. To overcome this problem, two-level approximations of strains were proposed
in which strain components are sampled at selected points and interpolated over
the element’s domain to allow a uniform 3× 3 Gauss integration. This method
is know as either the Assumed Strain (AS) method (Huang and Hinton, 1984,
1986; Huang, 1989) or theMixed Interpolation of Tensorial Components (MITC)
method (Bathe and Dvorkin, 1986; Bucalem and Bathe, 1993). When applied
to transverse shear strains, also as the Assumed Natural Strain (ANS) method,
e.g. for the nine-node elements in Jang and Pinsky (1987); Bischoff and Ramm
(1997).

In this chapter we consider our nine-node shell element designated MITC9i of
Wisniewski and Turska (2018). The original nine-node MITC9 element has good
accuracy but does not pass the five-element patch test of Robinson and Blackham
(1979) even for regular meshes, i.e. with straight edges and central positions of
side nodes and the interior node. In Wisniewski and Panasz (2013), we proposed
improved transformations, which resolved this problem for membrane strains. An
extension to bending/twisting and transverse shear strains was given in Wisniewski
and Turska (2018).

Another problem concerning nine-node elements is to pass the patch test for the
mesh distorted by shifts of mid-side and central nodes, see Sect. 23.4.1 for details.
Instrumental in solving this problem are the so-called Corrected Shape Functions
(CSF) of Celia and Gray (1984), where they are tested for an eight-node (serendipity)
element for the Laplace equation (heat conduction) and the 4× 4 integration rule.
We extend them to shells in Wisniewski and Turska (2018), so the MITC9i shell
element passes this test for parallel shifts of the midside nodes and arbitrary shifts
of the central node. The CSF were shown to be beneficial for several other types of
nine-node elements in Panasz et al (2013); Wisniewski and Turska (2019).

In this chapter the focus is on the      transverse shear strains in theMITC9i element. This
is motivated by theCurved cantilever test ofWisniewski and Turska (2019) Sect. 5.2,
in which the EAS11/DISP/ANS shell element (our implementation) had performed
slightly better than MITC9i. We attribute this to the treatment of transverse shear
strains and, for this reason, now, we implement the ANS method in our MITC9i
shell element and check how this affects its overall performance - the tested element
is designated MITC9i2. Note that for the transverse shear strains, the ANS method
of Jang and Pinsky (1987) is identical to the proposed earlier AS method of Huang
and Hinton (1986), see the comment in Jang and Pinsky (1987) p. 2390.
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23.2 Shell Equations with Drilling Rotation

23.2.1 Two-field Functional

In the present work, we use a two-field extended shell functional depending on
displacements and three-parameter rotations,

F2(χ,Q0) �
∫
B

W(C)dV +Fext+Fdrill(χ,Q0), (23.1)

where χ is the deformation function and Q0 ∈ SO(3) is the rotation tensor. The strain
energy densityW depends on the right Cauchy-Green deformation tensor C � FTF,
where F � ∇χ is the deformation gradient. Fext is the potential of external loads.
The last component in Eq. (23.1) is added to incorporate the drilling rotation using
the penalty method,

Fdrill �
1
2

∫
M

γc2 dA, c �
1
2
[(F0t2) · (Q0t1)− (F0t1) · (Q0t2)], (23.2)

where c is the (1,2) component of the Rotation Constraint (RC) equation

skew(QT
0 F0) = 0

and γ ∈ (0,∞) is the regularization parameter. For the second-order shell kinematics
based on the RC equation (see Wisniewski and Turska 2002). Note that F0 and Q0
are associated with the reference (middle) shell surface at the initial configuration,
and t1 and t2 are the tangent vectors of the local Cartesian basis on this surface.

23.2.2 Reissner-Mindlin Kinematics

The initial configuration of the shell is parameterized by the natural coordinates
ξ,η ∈ [−1,+1] on the reference (middle) surface, and the normal coordinate z ∈
[−h/2,+h/2], where h is the initial shell thickness, see Fig. 23.1. For the deformed
configuration, we use the Reissner-Mindlin kinematical assumptions,

x(ξ,η,z) = x0(ξ,η)+ z Q0(ξ,η)t3(ξ,η), (23.3)

where x is a position vector at an arbitrary z and x0 at z = 0. Besides, t3 is the unit
normal vector in the initial configuration. The rotation tensor Q0 is parameterized
by the canonical rotation vector ψ,

Q0(ψ) � I+ sinω
ω

ψ̃ +
1− cosω

ω2 ψ̃2, (23.4)
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Fig. 23.1 The reference sur-
face (z = 0) of nine-node shell
element.

X

0 Y

Z

�=-1

�=-1
�=+1

�

zt
3

�=+1

�

surface z=0

0

c

where ω = ‖ψ‖ = √ψ ·ψ ≥ 0 and ψ̃ � ψ × I. This form of Q0 is used only within
a load step; in the rotation update scheme devised to handle large rotations it is
combined with quaternions.

The deformation function χ : x = χ(X)maps the initial (non-deformed) configura-
tion of a shell onto the current (deformed) one. Let us write the deformation gradient
as follows:

F � ∂x
∂X =

∂x
∂ξ

J−1, (23.5)

where ξ � {ξ,η,z} and the Jacobian matrix J � ∂X/∂ξ . The right Cauchy-Green
deformation tensor is C � FTF and the Green strain is defined as E � 1

2 (C−C0),
where C0 � C|x=X = I. The Green strain can be linearized in z,

E(z) ≈ E0+ z E1, (23.6)

where the 0th order strainE0 includes themembrane components ε and the transverse
shear components γ/2 while the 1st order strain E1 includes the bending/twisting
components κ. The transverse shear part of E1 is typically neglected, i.e. κα3 ≈ 0
(α = 1,2). By Eq. (23.3), the normal shell strains ε33 and κ33 are equal to zero and
in the current work are recovered from the plane stress condition. For details on
formulation of our shell finite elements (see Wisniewski, 2010; Wisniewski et al,
2010).

23.3 Characteristics of MITC9i2 Shell Element

A formulation of the MITC9i2 element is similar to that of the MITC9i element
described in Wisniewski and Turska (2019). It also uses the Corrected Shape Func-
tions (CSF), which are an important ingredient of the element’s formulation, enabling
passing some of the patch tests for distorted elements. Essential in this chapter is
a treatment of the transverse shear strains, which differs the tested MITC9i2 from
MITC9i.
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23.3.1 Corrected Shape Functions for Nine-node Shell Element

The standard isoparametric shape functions for a nine-node element are derived
for the side nodes 5,6,7 and 8 located exactly between the corner nodes and the
central node 9 exactly at the element’s center. When these nodes are shifted from the
middle positions then the parametric lines (ξ=const. or η=const.) are distorted, see
e.g. Figs. 13a and 20 in Panasz et al (2013), and the element’s accuracy deteriorates.

To alleviate this problem, the Corrected Shape Functions (CSF) were proposed
in Celia and Gray (1984) with six shifts parameters α,β,γ,ε,θ,κ ∈ [−1,+1], see
Fig. 23.2b. In that paper they are tested for an eight-node (serendipity) element for
the Laplace equation (heat conduction) and the 4×4 integration rule. We extended
the application range of these functions by considering the nine-node element for
plane elasticity with the 3× 3 integration, Wisniewski and Panasz (2013); Panasz
et al (2013).

The CSF for the nine-node element are defined in two steps. First, the CSF of the
8-node element are defined, which account for shifts of the midside nodes and, next,
the basis function for the central node 9 is added hierarchically to them as follows:

Ni(ξ,η) = N̄i(ξ,η)− N̄i(θ,κ)N9(ξ,η), i = 1, ...,8,

N9 �
(ξ2−1)(η2−1)
(θ2−1)(κ2−1) ,

(23.7)

where N̄i(θ,κ) � N̄i(ξ = θ,η = κ), see Celia and Gray (1984), Eq. (20). When the
shift parameters are equal to zero then the CSF of Eq. (23.7) reduce to the standard
isoparametric shape functions.

The shift parameters are computed as proportional to the distance in the physical
space, and to determine them, we solve 4 equations with 1 unknown for the midside
nodes and 2 equations with 2 unknowns for the central node. These equations are
nonlinear but are solved only once, so the time overhead is insignificant.
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Fig. 23.2. Nine-node element: a) Numbering and naming of nodes, b) Shift parameters for
Corrected Shape Functions (CSF).
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InWisniewski and Turska (2018), several extensions of this method of calculating
the shift parameters are presented, to enable the use of the CSF to nine-node shell
elements located in 3D space; we refer the reader interested in details to this paper.
We implemented these extensions in all our nine-node elements. The CSF enable to
pass some of the patch tests for elements distorted by shifts of midside and central
nodes, see Sect. 23.4.1.

23.3.2 Alternative Version of MITCi Method for Transverse Shear
Strains

We consider the MITC (Mixed Interpolation of Tensorial Components) method,
which is also called the ANS (Assumed Natural Strain) method in the literature.
The “MITCi” stands for the improved MITC method proposed for 2D elements in
Wisniewski and Panasz (2013), and based on modified transformations enabling
passing the patch test for a regular mesh. They were directly used to the membrane
strains ε of the shell element MITC9i in Wisniewski and Turska (2018); analogous
transformations for the bending/twisting strains κ and the transverse shear strains γ
of this element were given and tested therein.

The transverse shear strains γ are treated in the MITC9i element using the two-
level approximations and the following transformation steps:

1. The representations in the reference Cartesian basis are transformed to the co-
basis at the element center to obtain the COVc components,

γξ = jTc γref, (23.8)

where j � [Jαβ] (α,β = 1,2) is a 2 × 2 sub-matrix of J, and the subscript c
designates its value at the element center. Note that the components yielded by
jc instead of j are not exactly the covariant components; that’s why we designate
them by “COVc”.

2. The two-level approximations of the COVc components are performed,

γξ

MITC−→ γ̃ξ , (23.9)

which involves sampling and interpolation, which are described in detail below.
3. The approximated COVc components γ̃ξ are transformed back from the co-basis

at the element center to the reference Cartesian basis,

γ̃ref = j−Tc γ̃ξ . (23.10)

The transformations of the first and the third steps are reciprocal and without the
second step we would obtain γ̃ref = γref . Note that the elemental basis can serve as
the reference Cartesian basis.
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Let us consider the second step of Eq. (23.9), which involves sampling and
interpolation, and describe it separately for MITC9i and for MITC9i2. We consider
only γ31ξ ; an analogous reasoning applies to γ32ξ . In both elements, a =

√
1/3.

23.3.2.1 Scheme of MITC9i

A basis of the sampling strategy used in MITC9i is the scheme, which uses the
2×3-point scheme for 31 (see Fig. 23.3a) and the 3×2-point scheme for γ32, totally
12 sampling points. Their position coincides with the integration points for the
Selective Reduced Integration (SRI) of strain energy terms of Pawsey and Clough
(1971), Table I. They were subsequently used in the MITC element of Bucalem and
Bathe (1993) and in the 9-AS element of Panasz and Wisniewski (2008). Note that
this sampling does not guarantee continuity of the transverse shear strain components
between two adjacent elements.

The transverse shear strains are interpolated as follows:

γ̃31ξ (ξ,η) =
∑
i

Ri(ξ,η)(γ31ξ )i, γ̃32ξ (ξ,η) =
∑
i

Ri(ξ,η)(γ32ξ )i, (23.11)

where i= A,B,C,D,E,F is the index of sampling points. The interpolation functions
Ri are defined as:

1. for γ31ξ , the points of Fig. 23.3a are used (2 points in the ξ-direction),

RA(ξ,η) = 1
4 (1− ξ

a )
[(ηb )2− η

b

]
, RB(ξ,η) = 1

4 (1+ ξ
a )
[(ηb )2− η

b

]
,

RC(ξ,η) = 1
4 (1+ ξ

a )
[(ηb )2+ η

b

]
, RD(ξ,η) = 1

4 (1− ξ
a )
[(ηb )2+ η

b

]
,

RE (ξ,η) = 1
2 (1+ ξ

a )
[
1−(ηb )2

]
, RF (ξ,η) = 1

2 (1− ξ
a )
[
1−(ηb )2

]
.

(23.12)

2. for γ32ξ , analogous points are used (2 points are in the η-direction), and analogous
interpolation functions to these of Eq. (23.12) but with ξ and η interchanged.

To reduce the number of evaluations, we proposed a so-called improved sampling
strategy for our previous element 9-AS (Panasz and Wisniewski, 2008) and we use
it also in MITC9i. The sampling and numerical integration are considered together,
which simplifies the code and yields a more efficient implementation.

To explain the method, let us consider γ31ξ , for which the sampling points and
the integration points are shown in Fig. 23.3a. We see that both these types of points
are located at the same η ∈ {−b,0,+b}, where b =

√
3/5. Because, the 3× 3 Gauss

integration evaluates γ31ξ at these values of η, no sampling in the η-direction is
needed, and we can sample and interpolate γ31ξ only in the ξ-direction,

γ̃31ξ (ξ,η) = RL1(ξ)γ31ξ (−a,η) +RL2(ξ)γ31ξ (+a,η), (23.13)

where
RL1(ξ) = 1

2

(
1− ξ

a

)
, RL2(ξ) = 1

2

(
1+

ξ

a

)
, (23.14)

 γ
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Fig. 23.3 2× 3-point sam-
pling schemes for γ31ξ : a)
in MITC9i (b =

√
3/5), b) in

MITC9i2 (b = 1)
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The two sampling lines are shown in Fig. 23.3a, where L1 is located at = −a and
L2 at ξ = a (a =

√
1/3).

23.3.2.2 Sampling in MITC9i2

In the tested MITC9i2 element, we use the ANS scheme of Jang and Pinsky (1987);
Bischoff andRamm (1997), which for transverse shear strains is exactly as the scheme
proposed earlier within theASmethod inHuang andHinton (1986), see the comment
in Jang and Pinsky (1987) p. 2390. It uses the 2× 3-point scheme for γ31 and the
3× 2-point scheme for γ32, but now the value b = 1 is used, so 8 sampling points
are located at element’s edges, see Fig. 23.3b. The value of a =

√
1/3 is the same as

used in MITC9i. The transverse shear strains are interpolated as in Eq. (23.11) and
the interpolation functions Ri are defined as in Eq. (23.12), but now b = 1 should be
used. Note that the improved sampling strategy of Eqs. (23.13)-(23.14), which was
used in MITC9i, cannot be used here.

23.4 Numerical Examples

In this section, we present numerical tests of the nine-node shell element MITC9i2,
which is a modified version of the MITC9i of Wisniewski and Turska (2018) with
an alternative transverse shear part described in Sect. 23.3.2. The formulation of this
element and the reference elements are characterized in Table 23.1; other FEs are
also used for comparison in examples. All the shell elements are of the Reissner-
Mindlin type and have 6 dofs/node; the drilling rotation is incorporated as specified
in eqs. (23.1)-(23.2), for more details see Sects. 2 and 5 of Wisniewski and Turska
(2018). Note that in all these elements:

1. the Corrected Shape Functions (CSF) are implemented in the version extended
to shells in Wisniewski and Turska (2018), Sect. 4,

2. the 3×3Gauss integration is used, which yields a correct rank (6 zero eigenvalues)
of the elements.

ξ
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Table 23.1
Formulation of nine-node shell elements with drilling rotation.

Element Strains
membrane ε bending κ transverse shear γ

Tested element
MITC9i2 MITCi MITCi ANS of

Jang and Pinsky (1987)
Reference elements

MITC9i MITCi MITCi MITCi
Wisniewski and Turska (2018)

9-EAS11a EAS11 DISPb ANS of
Bischoff and Ramm (1997), Jang and Pinsky (1987)

Wisniewski and Turska (2019)
a In Wisniewski and Turska (2019), this element is designated 9-EAS11/DISP/ANS.
b DISP - strain is not modified.

These elements were derived by ourselves using the automatic differentiation pro-
gram AceGen of Korelc (2002), and were tested within the finite element program
FEAP of R.L. Taylor (Zienkiewicz and Taylor, 1989); the use of these programs
is gratefully acknowledged. Our parallel multithreaded (OMP) version of FEAP is
described in Jarzebski et al (2015).

23.4.1 Patch Tests

We run the five-element patch test of Robinson and Blackham (1979), but also for the
mesh distorted by shifts of selected mid-side and central nodes marked in Fig. 23.4.
The membrane and bending patch tests are performed as described in Macneal and
Harder (1985); the transverse shear test is performed for the load case defined for a
nine-node plate in Huang and Hinton (1984), see Shearing case in Fig. 2b therein.
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Four cases of nodal shifts are considered, see Fig. 23.4: (A) zero shifts (i.e. a
regular mesh as in Robinson and Blackham, 1979), (B) arbitrary shifts of node 25,
(C) parallel shifts of nodes 21-24, and (D) perpendicular shifts of nodes 21-24, for
which edges of the central element become curved.Wemonitor the level of errors for
the analysis with and without the CSF, for more details see Wisniewski and Turska
(2018). The conclusions pertaining to performance of the tested MITC9i2 element
are as follows:

1. Membrane patch test. MITC9i2 performs exactly as MITC9i, because its mem-
brane part is identical. As shown in Wisniewski and Turska (2018), MITC9i
passes Case A even for standard shape functions (no CSF), needs the CSF to pass
Case B and C, and fails for Case D even with the CSF. The 9-EAS11 element
performs better, and passes this test for all cases of nodal shifts using the standard
shape functions, see Wisniewski and Turska (2019).

2. Bending patch test. For the standard shape functions (no CSF), MITC9i2 passes
it for Case A but fails for the other cases. With the CSF, MITC9i2 passes Case
B and C; but not D. Recall from Wisniewski and Turska (2019) that the CSF are
indispensable also for MITC9i and 9-EAS11, as they enable passing Case B and
C, though not D.

3. Transverse shear patch test. MITC9i2 passes it for all cases of shifts using the
standard shape functions, i.e. the CSF in not needed.

Concluding, we see that MITC9i2 performs similarly to MITC9i, though the errors
for the bending patch test and Case D, which is failed, are one order smaller than for
MITC9i and the same as for 9-EAS11.

23.4.2 Curved Cantilever

The curved cantilever is fixed at one end and loaded by a moment Mz at the other,
see Fig. 23.5. The data is as follows: E = 2×105, ν = 0, width b = 0.025 and radius
of curvature R = 0.1. The FE mesh consists of 6 nine-node elements, which have
either regular (Fig. 23.5a) or distorted shape (Fig. 23.5b); a definition of distortions
is given in Koschnick et al (2005) p. 245. For the distorted mesh, this test is very

a)

x

z

y

A

Mz
b

R

b)

x

z

y

A

Fig. 23.5. Curved cantilever and two meshes: (a) regular and (b) distorted.
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demanding. The side and central nodes of elements are not shifted so the CSF do
not affect this test.

In Wisniewski and Turska (2019), Sect. 5.2, we established that the shell element
9-EAS11/DISP/ANS (designated 9-EAS11 in the current chapter) performs slightly
better than the MITC9i shell element in this test (when the RBF is not used); now we
check how the ANS method applied to transverse shear part affects the performance
of MITC9i.

The shell thickness h is varied in the range [10−2,10−6], and the moment is
assumed as Mz = (R/h)−3, so the solution of a linear problem should remain con-
stant. The analytical solution for the curved beam subjected to uniform bending is
uy = MzR2/(EI) = 0.024, where I is the moment of inertia.

The displacement uy at pointA obtained by a linear analysis are shown in Fig. 23.6,
where, for the vertical axis, we use either (a) the standard scale or (b) the logscale,
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Fig. 23.6. Curved cantilever. Displacement uy at point A for the distorted mesh and diminishing
thickness. γ =G. a) log-standard scale, b) log-log scale to enable comparisons with Fig. 6 of
Koschnick et al (2005).
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to enable comparisons with Fig. 6 of Koschnick et al (2005). Additionally, the
displacements in Fig. 23.6a are scaled by the analytical solution to quantify the
decline of accuracy. We conclude this test as follows:

1. For the regular mesh, the solutions for all tested elements are represented by the
horizontal line, which is close to the analytical value. Neither one of the tested
elements locks for this mesh despite the curved geometry.

2. For the distorted mesh, all the tested elements lock for R/h > 100, and the drop
of accuracy for R/h > 1000 becomes unacceptable. In the acceptable range, the
most accurate is MITC9i2, then 9-EAS11 and MITC9i.

3. Comparing the displacementsuy of our Fig. 23.6b and Fig. 6 of Koschnick et al
(2005) (in both these figures the log-log scale is used, and the displacements
are not scaled by the analytical solution), we conclude that the element MITC9i2
performs in this test slightly better than Q2-ANS/EAS.

23.4.3 Homogeneous circular shell

The circular shell is shown in Fig. 23.7. The geometrical data is as follows: radius
R = 1000 mm, thickness h = 100 mm and length L = 100 mm, see Wagner and
Gruttmann (2019). One straight boundary is clamped while the other straight one
is free and loaded by the distributed force P = 100 N/mm. Note that R/h = 10, i.e.
this shell is thick. The stresses are reported at θ = π/4, using the user’s procedure
implemented by ourselves in FEAP to define a direction for the strain/stress output
in 2D and 3D.

In the circumferential direction, we use either 20 nine-node shell elements or 40
elements of other types. One element is used in the 0Y direction.

For a similar 2D problem in the X0Z-plane and the plane stress condition applied
in the 0Y direction, there exists an analytical stress solution of Timoshenko and
Goodier (1951), Sect. 31. The analytical expression (in polar coordinates) for the
shear stress is

Fig. 23.7 Homogeneous
circular shell. Geometry.
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σrθ (z,θ) = − 1
d

[
r +

a2b2

r3
− 1

r
(a2+ b2)

]
(P cosθ), (23.15)

where z ∈ [−h/2,h/2], r = R+ z, a = R− h/2, b = R+ h/2, and

d = a2− b2+ (a2+ b2) log(b/a).

Note that an integral over the thickness of the underlined terms is equal to 1, i.e. they
characterize a distribution of the shear stress but not its maximum value. The shear
stress σrθ at the cross-section θ = π/4 is shown in Fig. 23.8.

The above analytical solution is verified using our 2D 4-node enhanced strain
element (EADG4). In the 2D mesh, we use 16 elements in the radial direction
(fictive layers of equal thickness) and 40 elements in the circumferential direction.
The stress in Eq. (23.15) does not depend on material constants, but in the FE
analyses we have to use some values. We assumed E = 3.8 ·105N/mm2 and ν = 0.3,
but for other values, the obtained stress is the same. The shear stress at θ = π/4 is
shown in Fig. 23.8, and it perfectly matches the analytical σrθ . Both stresses are
slightly non-symmetric w.r.t. z = 0 due to the curved geometry.

Regarding the Reissner-Mindlin shell elements, the stress resultants are available
as a standard in this class of elements, while stresses must be additionally computed.
When the shell is curved, we have to specify the orientation vector in an input, and
use the shell director to define a basis for the stress resultants’ output. In the current
example, we use the orientation vector tangent to the reference surface in the X0Z-
plane. Having the transverse shear stress resultant N31, we compute a distribution of
the transverse shear stress S13 and its maximum as follows:

Fig. 23.8 Homogeneous
circular shell. Distribution
of transverse shear stress at
θ = π/4.
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S31(z) = 3
2h

[
1−2

( z
h

)2]
N31, maxS31 = S31(z = 0). (23.16)

This standard formula does not account for the shell curvature, so it is symmetric
w.r.t. z = 0, see Fig. 23.8. The maximum values for the two versions of the MITC9i
shell element are given in Table 23.2.

Table 23.2
Homogeneous circular shell. Transverse shear stress resultant
and transverse shear stress at θ = π/4.

Element Stress resultant Max stress S31

N31 by Eq. (23.15)b

MITC9i2 69.955 1.049
MITC9i 70.13 1.052

Ref. P cos(π/4) 70.71 -

Remark 23.1. To include the curvature in a simple way, we note that the resultant
N31 corresponds to the term (P cosθ) in Eq. (23.15) and use the underlined terms in
that equation as the distribution function. Then the transverse shear is defined as

S31(z) = − 1
d

[
r +

a2b2

r3
− 1

r
(a2+ b2)

]
N31. (23.17)

A difference between the value of N31 from Table 23.2 and P cos(π/4) = 70.71
causes only a small deviation from the exact non-symmetric distribution yielded by
Eq. (23.15).We also see that, compared to the value P cos(π/4)= 70.71, the resultant
N31 for MITC9i is slightly more exact than for MITC9i2.

The displacement components in the 0X and 0Z direction (u,v) at the straight free
boundary obtained for several types of FEs are given in Table 23.3. For all tested
nine-node elements, the displacements are almost identical, differing at most by the
last digit of the v-displacement. Additionally, the solutions obtained using our 4-node

Table 23.3
Homogeneous circular shell. Displacements at the straight free boundary.

Element u-displacement v-displacement

Tested nine-node shell elements
MITC9i2, MITC92, 9-EAS11 2.4843 1.5796

Reference elements
2D 4-node EADG4 2.4786 1.5779

Solid-shell 8-node, ours as in Klinkel et al (2006) 2.4745 1.5732
Shell 4-node HW47 (Wisniewski and Turska, 2012) 2.4847 1.5784
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shell element HW47 of Wisniewski and Turska (2012) and our implementation of
the 8-node solid-shell element of Klinkel et al (2006) are provided.

23.4.4 Twisted Beam

The initial geometry of the beam is shown in Fig. 23.9; it is twisted but the initial
strain is equal to zero (Macneal and Harder, 1985). The beam is clamped at one
end and loaded by the out-of-plane force Py at the other. The data is as follows:
E = 2.9× 107, ν = 0.22, the length L = 12, the width w = 1.1 and the twist is 90◦.
We use the 2×12-element mesh of nine-node FEs and a very small shell thickness
h = 0.0032.

The results of a linear analysis for Py = 10−6 are given in Table 23.4, where the
displacement uy ×103 at point A is presented. The results for MITC9i2 are slightly

Table 23.4
Twisted beam. Displacement for linear analysis.

Element uy ×103

MITC9i2 1.2953
MITC9i 1.2948
9-EAS11 1.2952

9 (unmodified) 0.1176
Beam theory (Belytschko et al, 1989) 1.2940

better than forMITC9i and 9-EAS11; they all are a little above the beam theory value.
These results are for the regularization parameter for the drilling RC γ = G/1000;
we tested also γ = G, and the difference was negligible. For this very thin shell, a
solution for the unmodified element 9 is very locked (10 times too small), while
application of such techniques as the MITC and the EAS is clearly beneficial.

The non-linear load-deflection curves obtained by the arc-length method are
shown in Figs. 23.10 and 23.11, where the displacement uz and uy at point A are
shown, respectively. The initial ΔPy = 10−4 and the regularization parameter for the
drilling RC γ = G/1000.

Fig. 23.9 Twisted beam.
Geometry and out-of-plane
force Py .

Py

A

X

Y

Z
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Fig. 23.10 Non-linear twisted
beam. Displacement uz for
out-of-plane force.
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Fig. 23.11 Non-linear twisted
beam. Displacement uy for
out-of-plane force.
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In Fig. 23.10, which is more indicative, there is almost no difference between the
curves for MITC9i2 and MITC9i, and the curve for MITC9i2 nearly coincides with
that for the 4-node element HW47 of Wisniewski and Turska (2012). The curve for
9-EAS11 is a little stiffer; it is the curve most to the right after a turning point. As the
shell is very thin, similarity of these solutions confirms quality of all these elements.

This example can also be calculated using the load control but the arc-length
method enables comparison of the lengths of steps for particular elements. The
largest steps are for MITCi2, then for MITC9i and the shortest for 9-EAS11. For
9-EAS11, the initial 0.5ΔPy was used because the element diverged for ΔPy .
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23.4.5 Pinched Hemispherical Shell with Hole

A hemispherical shell with an 18o hole is loaded by two pairs of equal but opposite
external forces P applied along the 0X and 0Y axes, see Fig. 23.12. Because of
a double symmetry, a quarter of the hemisphere is modeled. In this test, the shell
undergoes an almost in-extensional deformation and, because it is very thin (thickness
h = 0.01), the membrane locking can manifest itself strongly.

The non-linear solutions were obtained using the Newton method; the inward
displacement at point A for the 8× 8-element mesh is shown in Fig. 23.13. The
differences in solutions are very small; the curves for 9-EAS11 and MITC9i2 fully
coincide, while MITC9i is minimally stiffer. On the other hand, we were able to run
MITC9i with ΔP = 0.2 for which the other two elements diverged; thenΔP = 0.1was
used. Hence, in this test MITC9i performs better than MITC9i2 and 9-EAS11.

Fig. 23.12 Pinched hemi-
spherical shell with hole.
Geometry and load.
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Fig. 23.13. Pinched hemispherical shell with hole. Nonlinear solutions for 8×8 mesh,γ=G/1000.
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23.5 Final remarks

We developed a nine-node quadrilateral shell element MITC9i2 with the transverse
shear part different than in the MITC9i element. In both these elements, the 2× 3
and 3× 2-point sampling schemes were used, where in the new element 8 of the
sampling points are located at element’s boundaries. Five numerical examples are
computed and their results can be summarized as follows:

1. Patch tests: The membrane and transverse shear patch tests are passed by
MITC9i2, with no difference compared to MITC9i. Regarding the bending patch
test, MITC9i2 with the CSF passes it for Case B and C of nodal shifts, again there
is no difference compared to MITC9i. Similarly to the other nine-node elements,
MITC9i2 fails the bending patch test with curved elements’ edges (Case D of
nodal shifts) though the level of errors is one order lower than for MITC9i.

2. Curved cantilever:MITC9i2 is slightlymore accurate than 9-EAS11 andMITC9i.
Results of this test for the EAS11/DISP/ANS element in Wisniewski and Turska
(2019) provided the motivation to modify the transverse shear part of MITC9i,
and the new MITC9i2 performs in this test better than MITC9i indeed.

3. Homogeneous circular shell: Displacements yielded by MITC9i2 are equally
accurate as by the other elements, while the transverse shear stress resultant N31

is slightly less accurate than by MITC9i.
4. Twisted beam: In the linear tests, MITC9i2 is slightly more accurate thanMITC9i

and 9-EAS11. In the nonlinear test, MITC9i2 andMITC9i perform almost identi-
cally, 9-EAS11 is a little stiffer and requires smallerΔP for the arc-length method
than the other elements.

5. Pinched hemisphere: In this nonlinear test, MITC9i2 and 9-EAS11 are equally
exact, while MITC9i is minimally stiffer, although the differences are very small.
On the other hand, MITC9i is more robust, as the Newton method runs with
ΔP = 0.2 for which the other two elements diverge.

Generally, these preliminary results demonstrate that the tested element MITC9i2 is
of a very good quality. In the linear tests, it is slightly more accurate than MITC9i,
but in the nonlinear tests, MITC9i seems to have a larger radius of convergence
and to be more robust. Further tests are required before a conclusion is drawn as to
whether MITC9i2 should replace our best so far MITC9i element.
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