
Chapter 2
New Hamiltonian Semi-analytical Approach for
3D Solution of Piezoelectric Smart Composites

Orlando Andrianarison and Ayech Benjeddou

Abstract This chapter addresses the development of a new semi-analytical Lagran-
gian-Hamiltonian method for the three-dimensional solution of piezoelectric smart
composite plates. It is based on the analytic state space symplectic Hamiltonian ap-
proach to fulfil the electromechanical multilayer interface continuity constraints and
two-dimensional in-plane finite element (FE) numerical discretization to deal with
arbitrary boundary conditions (BC) on the composite lateral edges. The originality of
the proposed semi-analytical solution is that the latter feature (arbitrary BC handling)
is reached through a mechanical displacements-electric potential primary variables-
based Lagrangian formalism, while the solution accuracy feature is reached through
a primary and dual (transverse stresses and electric displacement) variables-based
partial mixed Hamiltonian formalism. The transformation of the Lagrangian FE
discretized formulation to a state space Hamiltonian one is made through the Leg-
endre transformation. The proposed methodology is applied to the static actuation
and sensing of piezoelectric hybrid laminated composite plates subjected to various
BC. The obtained results comparison to reference ones of various benchmarks solu-
tions, for non classical BC (cantilever), multilayer composite layups (angle-ply) and
electromechanical loadings (uniform), from the open literature shows good com-
putational convergence (coarse mesh), low cost (few FE degrees of freedom) and
high accuracy (exact through-the-thickness) of the present new Hamiltonian semi-
analytical solutions. Thus, the provided tabulated numerical results can be used
safely for benchmarking other closed-form, numerical or semi-analytical solutions.
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2.1 Introduction

Structural elements made of composite materials are already being used for a
long time in various fields of engineering. The range of their applications covers
several branches of industries such as aircraft and automotive constructions, med-
ical equipment or marine and civil engineering. Nowadays, the research activities
on composites mostly evolve to the integration (surface-bonding or embedding)
of the so-called smart materials. Among the latter, the piezoelectric sensors and
actuators are being widely used thanks to their undeniable advantages, like excellent
electromechanical coupling properties, low cost fabrication, design flexibility and,
most importantly, applicability in vibration control, health monitoring and damage
prognosis of load-carrying structures.

Over the past few decades, considerable efforts have been devoted to the devel-
opment of theories and numerical modelling of smart piezoelectric laminated com-
posites and structures (Benjeddou, 2000; Kapuria et al, 2010; Li, 2020). It appears
that the main issues are the computational cost and accuracy. Indeed, it is a fact that
they are anisotropic and three-dimensional (3D) in nature. Thus, their accurate elec-
tromechanical modelling requires appropriate descriptions of their mechanical and
electrical variables, particularly through the thickness direction. The compatibility
and equilibrium conditions at the interfaces state that an efficient modelling of such
structures must deal with the so-called interface continuity (IC) constraints; namely,
the continuity of the transverse (out-of-plane) mechanical stresses and electric dis-
placement through the interfaces of the laminate. Among the numerous models and
tools available in the literature, only few can cope with these specific features; nev-
ertheless, natural theoretical frameworks to deal with these requirements are the
full/hybrid (Sze and Pan, 1999) and partial (Carrera et al, 2010) mixed ones.

Analytically, the mixed state space method (SSM) that uses the mechanical dis-
placements and electric potential variables, augmented with the transverse stresses
and electric displacement as independent variables (Benjeddou and Deü, 2001), is
a good example of partial-mixed frameworks. However, it is limited by the a priori
fulfilment of the boundary conditions (BC) and cross-ply laminate schemes so that
it is not usable for realistic BC other than the full simply-supported (SS) ones. The
practical cantilever (clamped-free) BC have been considered (Leung et al, 2008) an-
alytically through the exact symplectic approach, which review (Lim and Xu, 2010)
shows other solutions for various BC combinations with the classical SS ones. Al-
ternative approaches to the purely analytical ones are the so-called semi-analytical
solutions (Wu and Liu, 2016) which combine in-plane numerical discretization,
such as the finite element (FE) method, and through-the-thickness analytical meth-
ods, such as the SSM. Only the authors’ earlier work (Andrianarison and Benjeddou,
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2012) was cited, in the previous review (Wu and Liu, 2016), in the category of state
space-FE semi-analytical solutions for the quasi-3D analysis of smart composites
and functionally graded materials. Another type of semi-analytical methods was also
suggested in Benedetti et al (2010) for the 3D analysis of damaged structures, mod-
elled by the numerical dual boundary element method, with bonded piezoelectric
sensors, modelled by the analytical SSM.

Numerically, 3D full/hybrid (Sze and Pan, 1999) and mixed FE are suitable but
expensive, due to the thinness of the multilayer plies that often requires fine meshes.
Partial-mixed variational formulations (VF) that use the mechanical displacements
and electric potential, augmented with the transverse stresses and transverse elec-
tric displacement through Lagrange multipliers, are a good alternative for reducing
the number of independent variables (Benjeddou and Andrianarison, 2005). By re-
taining the primary variables along with their dual ones, the aforementioned mixed
formulations share a commonmathematical issue: theymust be able to satisfy the so-
called Brezzi-Babuška (BB) inf-sup conditions (Boffi et al, 2013). This saddle-point
property of the mixed VF in general is of crucial importance in the effectiveness
of such formulations. To tackle this issue, a Layer-Wise (LW) mixed least-square
framework was presented in Moleiro et al (2015) for example. Another option that
permits to deal with the special requirements of the smart laminated composites
modelling is to use the semi-analytical approach that combines an analytical mixed
SSM through-the-thickness and a numerical discretization of the reference plane.
Its major advantages are the significant reduction of the computational cost and the
increase of the solution accuracy. The starting point of the retained semi-analytical
method consists in decomposing the 3D volume into a reference two-dimensional
(2D) in-plane domain and a one-dimensional transverse direction, in combination
with the application of the method of separation of variables. The high-order 3D
partial differential equilibrium equations are then solved exactly along the trans-
verse direction thanks to the SSM, whereas a weak solution is searched in the
reference plane. Therefore, the main issue of semi-analytical methods concerns the
chosen numerical method to discretize the 2D in-plane problem. For example, the
method developed in Shan et al (2018) aims at applying the scaled boundary FE
method to the static bending of a piezoelectric beam. In Zhou et al (2020), the
traditional FE method is used to compute the deformation of general curved beams
under various BC. A similar approach is presented in Zhou et al (2015) where a
state space-FE semi-analytic approach is used to study the cylindrical bending of
a straight cantilever beam. Under plane strain conditions of elasticity (cylindrical
bending), the 3D governing equations transform into a two-point boundary value
problem (BVP) so that a numerical method can be bypassed for the benefit of an
analytic method such as the eigenfunction expansion. This is done in Zhang and
Wang (2018) where the axisymmetric static deformation of a piezoelectric cylinder
under arbitrary BC is investigated in the framework of a Hamiltonian symplectic
superposition approach. Through the literature review in the ongoing section, the
partial mixed VF, assorted with the semi-analytical approach, therefore constitutes a
suitable framework for modeling piezoelectric smart composites. Indeed, this allows
a straightforward fulfilment of the laminate transverse stresses and electric displace-
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ment IC without cumbersome manipulations (Khandelwal et al, 2013) as for the
equivalent single–layer or LW classical 2D models.

Alternatively to the classical Lagrange-type formulations, the partial mixed VF
presented in Andrianarison and Benjeddou (2012) has been derived in the framework
of theHamiltonian formalism after a Legendre transformation. The latter allowed the
natural introduction of the transverse stresses and electric displacement as primary
variables, and maked the final partial differential equations (PDE) lower in order,
compared to the Lagrange-type formulations. Besides, the Hamiltonian formalism
allowed transforming, in a systematic way, the equations of 3D piezoelectricity (4th
order PDE) into first-order linear ordinary differential equations (ODE) for which the
coordinate in the thickness direction is the only independent geometric parameter.
This feature appears to be interesting in the perspective of developing efficient nu-
merical tools for multilayer smart composites since the propagator matrix approach,
used for the analytical mixed SSM, can then be exploited. Thus, the resulting model
simplifies considerably the computational treatment of the IC, leading potentially
to accurate predictions of the detailed response characteristics, such as the through-
the-thickness distributions of the state variables. However, recasting the classical VF
into a mixed one has also some inevitable drawbacks. As a matter of fact, by incor-
porating the transverse stresses and electric displacement as dual variables into the
VF, the question of the proper treatment of the BC arises for realistic ones other than
SS. Indeed, the use of the SSM to compute the through-the-thickness distributions
of the state variables implicitly requires that the final matrix is square so that its
exponential function can be used. This requirement determines the well-posedness
of this approach and explains why the VF in Andrianarison and Benjeddou (2012) is
only efficient for the theoretical SS BC; indeed, it can be shown that the problem is
well-posed if and only if the number of primal and dual variables to be constrained
on a given edge is equal, as is the case for the well-known Navier-type analytical
solutions.

In summary, according to the above discussion, it appears that the use of the
partial mixed VF is relevant since it makes possible the fulfilment of the IC condi-
tions when needed. However, the corresponding numerical models are non-standard
and must be used with care due to the BB stability conditions. Moreover, the use
of the Hamiltonian framework in combination with the partial Legendre transfor-
mation offers a good compromise between high needs of computer resources of
LW approaches and complexities of the 3D full mixed VF. Therefore, the purpose
of this chapter is to present a new partial-mixed VF where the above mentioned
drawbacks are circumvented by choosing a new set of dual stress-like variables that
coincide with the out-of-plane nodal transverse stresses-like resultants. This can
be seen as one of the main original contributions of the present work. Moreover,
a semi-analytic procedure is retained to solve the problem in the thickness direc-
tion. This is done through a 2D FE discretization of the mechanical displacements
and electric potential on the plate reference plane only and the mixed SSM is used
to compute the through-the-thickness distributions of the dependent variables. The
proposed approach is then used to compute the 3D static solutions of piezoelec-
tric multi-layered composite plates with symmetric and anti-symmetric lamination
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schemes as well as non-standard edges BC of cantilever type. Both sensor and ac-
tuator configurations are analysed and some tabulated results are given for future
reference in view of validating other numerical solutions. It is worthy to mention
that the validation benchmarks choice is guided by the need to show that the pro-
posed new semi-analytic FE-state space symplectic Hamiltonian methodology can
solve problems of realistic BC, multilayer composites layups and electromechanical
loads other than the classical SS, cross-ply and trigonometric ones, which are the
limitations of earlier semi-analytic and analytic proposed 3D solutions in the open
literature. This can be seen as another original contribution of the present work.

The chapter is structured in four subsequent sections. First, Sect. 2.2 describes the
in-hand problem and related notations. Then, Sect. 2.3 is devoted to the derivation
of the new mixed Hamiltonian semi-analytical solution. Next, Sect. 2.4 provides
few benchmarking examples to illustrate the effectiveness of the presented approach.
Finally, conclusions and perspectives close the chapter.

2.2 Problem and Notations

Consider a 3D linear piezoelectric body that occupies a simply connected domain Ω
to which a Cartesian global coordinate system (O,x,y,z) is attached. It is bounded by
a sufficiently regular surface Γ = ∂Ω, with outward unit vector n, and is subjected
to a known surface traction vector F on ΓF and a scalar electric surface charge Q
on ΓQ, where ΓF and ΓQ are parts of its boundary Γ. The latter can also support an
imposed scalar electric potential ϕ̃ on Γϕ , so that Γϕ ∪ΓQ = Γ and Γϕ ∩ΓQ = ∅, and
a mechanical displacements vector ũ on Γu , so that Γu ∪ΓF = Γ and Γu ∩ΓF = ∅.
For simplicity, the body loads are not considered. Besides, in the following, an
underlined variable represents a vector while a doubled underlined one is used for
a matrix. Also a tilted quantity is an applied (imposed) one and a bold parameter
represents a tensor.

The electromechanical equations, describing the above stated static problem, are
(Benjeddou, 2000) the:

• Cauchy’s and Gauss’ equilibrium equations{
Divσ = 0
DivD = 0

in Ω (2.1)

where σ and D are the Cauchy linear stress tensor and electric displacement
(induction) vector. ‘Div’ represents the divergence operator.

• Mechanical strains-displacements and electric fields-potential relations⎧⎪⎪⎨⎪⎪⎩
ε =

1
2

(
Gradu+GradTu

)
E = −Gradϕ

in Ω (2.2)
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with ε and E being the engineering Lagrange linear strain tensor and electric field
vector. u and ϕ are the mechanical displacements vector and electric potential.
‘Grad’ denotes the gradient operator.

• Converse and direct e-form piezoelectric constitutive equations{
σ = CEε− eTE

D = eε+ εεE
in Ω (2.3)

where CE , e and εε are the elastic stiffness (at constant electric field), stress
piezoelectric and dielectric (at constant strains) matrices; here, σ and ε are the
engineering (in the Voigt notations) stress and strain vectors.

• Dirichlet (essential) BC {
u = ũ on Γu
ϕ = ϕ̃ on Γϕ

(2.4)

• Neumann (natural) BC {
σn = F on ΓF

DTn = −Q on ΓQ
(2.5)

where σ is the matrix representing the stress tensor.

In order to formulate the reference problem in a generalized way, the following
generalized displacement U, strain S, stress T and load G vectors are introduced
(Benjeddou and Andrianarison, 2005)

U =
{

u
ϕ

}
; S =

{
ε
−E

}
; T =

{
σ
D

}
; G =

{
F
−Q

}
(2.6)

As a consequence, the piezoelectric constitutive equations (2.3) rewrite as this gen-
eralized Hooke’s elastic law-like form

T = CS (2.7)

with C being the constitutive behaviour generalized matrix (Andrianarison and
Benjeddou, 2012).

It should be noticed that the negative sign before the electric field in the gener-
alized strain vector in (2.6) is introduced in order to get a symmetric piezoelectric
constitutive behaviour matrix in (2.7), as the initial equations in (2.3) are not sym-
metric. The equilibria equations (2.1) and gradient relations (2.2) are reformulated
as: {

LTT = 0

LU = S
in Ω (2.8)

where L is the linear 3D derivation matrix defined as



2 New Hamiltonian semi-analytical approach. . . 21

LT =

⎡⎢⎢⎢⎢⎢⎢⎣
∂x 0 0 0 ∂z ∂y 0 0 0
0 ∂y 0 ∂z 0 ∂x 0 0 0
0 0 ∂z ∂y ∂x 0 0 0 0
0 0 0 0 0 0 ∂x ∂y ∂z

⎤⎥⎥⎥⎥⎥⎥⎦
with ∂i,i = x,y,z standing for partial derivation with respect to i. Moreover, the
Dirichlet and Neumann BC are re-stated as:{

U = Ũ on ΓU = Γu ∪Γϕ
Tn =G on ΓG = ΓF ∪ΓQ (2.9)

Here, the generalized stress tensor 4th order matrix T is so that TT =
[
σ D

]
.

In summary, the strong form linear static BVP in hand was reduced to find
U that satisfies Eqs. (2.7)-(2.9). Worth noticeable is that for practical problems
having complex geometries, loadings and BC, closed-form solutions to this BVP are
unreachable. Hence, numerical solution techniques, built in the framework of VF,
are necessary.

2.3 New Mixed Hamiltonian Semi-analytical Solution

In the context of multilayer composite structures modelling, the issue of enforcement
of the IC conditions is a difficult task. Straightforward fulfilment of the transverse
stresses and electric displacement IC constraints at the laminate interfaces is usu-
ally done in the framework of a mixed VF. Therefore, thanks to a partial Legendre
transformation, a four-field partial-mixed VF has been established (Andrianarison
and Benjeddou, 2012) so that it inherits the algebraic properties of Hamiltonian ma-
trices, making easy its numerical implementation. However, the detailed inspection
of this partial-mixed VF shows that it suffers from inconsistencies when dealing
with arbitrary BC. Namely, one can show that for BC other than SS, there is not
any more a one to one correspondence between the primary and conjugate nodal
variables to be constrained at the discretized level. Hence, in order to overcome
this drawback, the here developed approach follows two steps: in the first one, the
classical generalized displacement-type VF is stated at the continuum level; then, the
FE discretization and enforcement of the prescribed essential BC are made for the
mechanical displacements and electric potential. In the second step, the Hamiltonian
formalism and Legendre transformation are used to recast the Lagrange formulation
into a mixed one so that the mixed SSM can be used to deal with the IC constraints
enforcement at the layered composite interfaces.

The starting point in the derivation of the new VF is to state that the linear
generalized constitutive equation (2.7) is resulting from this generalized quadratic
strain energy density E (S)

E (S) = 1
2

STCS (2.10)
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through this derivation with respect to the generalized strains vector

T = dE
dS (2.11)

Then, the Lagrange functional associated to Eqs. (2.8)-(2.9) is defined as

L(U) =
∫
Ω

E (S)dΩ−
∫
ΓG

UTGdΓ (2.12)

and has to be stationary for the admissible solutions∫
Ω

δE (U)dΩ−
∫
ΓG

δUTGdΓ = 0 (2.13)

Usual techniques of variational calculus can be used to show that Eq. (2.13)
enforces Eqs. (2.7)-(2.8) as Euler-Lagrange equations as well as Neumann BC (2.9)b
as natural ones provided that the enlarged displacement vector U is searched as
kinematically admissible on ΓU i.e. U = Ũ on ΓU (essential BC).

In the case of a layered body with adjoining laminae perfectly bonded together
and without internal electrodes, the generalized displacement vector,

U =
{
ux,uy,uz,ϕ

}T
,

and transverse surface traction vector,

Tz =
{
σxz,σyz,σzz,Dz

}T
,

should be continuous through the laminate interfaces so that these IC conditions
hold [

U
]
= 0 ;

[
Tz

]
= 0 (2.14)

with [∗] denoting the jump in the value of the enclosed quantity * across an interface.
Now, following the procedure described in Andrianarison and Benjeddou (2012),

the generalized strains vector (2.8) is   split into thickness (z),

Sz =
{
γxz,γyz,εzz,−Ez

}T
and in-plane (p),

Sp =
{
εxx,εyy,γxy,−Ex,−Ey

}T
,

contributions as
Sz =

U+D
1
U ; Sp = D

2
U (2.15)

where



2 New Hamiltonian semi-analytical approach. . . 23

U = ∂U
∂z

; D
1
=

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 ∂x 0
0 0 ∂y 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ; D
2
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∂x 0 0 0
0 ∂y 0 0
∂y ∂x 0 0
0 0 0 ∂x
0 0 0 ∂y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Next,      the above partition leads to this similar decomposition of the generalized

piezoelectric constitutive equation (2.7){Tp

Tz

}
=

⎡⎢⎢⎢⎢⎣
C

pp
C

pz

CT

pz
C
zz

⎤⎥⎥⎥⎥⎦
{ Sp

Sz

}
(2.16)

with
Tp =

{
σxx,σyy,σxy,Dx,Dy

}T
standing for the in-plane generalized stress vector. It should be noticed here that the
original generalized Hooke’s matrix coefficients of Eq. (2.7) need to be reorganized
in compliance with components re-ordering for defining the in-plane and thickness
generalized strain and stress vectors used in Eqs. (2.15)-(2.16).

Now, substituting Eq. (2.16) into (2.10), and having in mind generalized strains-
displacements relation (2.8), provides this decomposed generalized strain energy
density into thickness, in-plane and their coupling contributions

E (U, U) = 1
2

[
ST
pC

pp
Sp +2ST

pC
pz

Sz +ST
z C

zz
Sz

]
(2.17)

After that, when considering the thickness and in-plane partitions of the general-
ized strains, as in Eq. (2.15), this explicit expression of (2.17) is obtained

E (U, U) = 1
2

UTDT

2
C

pp
D
2
U+UTDT

2
C

pz
D
1
U+ 1

2
UTDT

1
C
zz

D
1
U

+ UTDT

2
C

pz
U+UTDT

1
C
zz
U+ 1

2
UTC

zz
U

(2.18)

And the variational equation (2.13) becomes∫
Ω

δE (U, U)dΩ−
∫
ΓG

δUTGdΓ = 0 (2.19)

The generalized displacements are now postulated in this separated in-plane (x,y)
and thickness (z) coordinates dependence

U(x,y,z) = N(x,y)U∗(z) (2.20)
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where, the 2D shape functions of the in-plane interpolation matrix, N(x,y), are
constructed in practice using the well-known isoparametric Lagrange interpolation
and the nodal amplitudes, U∗(z), are to be determined.

Similarly, the body domain and its boundary can be separated, respectively, as
Ω(x,y,z) = Σp(x,y)×Σz and ΓG = ΣGp ×∂Σz with Σz = [zb,zt ] referring to the whole
thickness having zb and zt as bottom and top coordinates. This allows to rewrite the
VF (2.19) as

δ

∫
Σz

[
1
2

U∗T
(
K

1
+K

4
+2K

6

)
U∗+U∗T

(
K

3
+K

5

)
U∗
+
1
2
U∗T K

2
U∗
+

]
dz

−
[
δU∗T L̂

]zt
zb
= 0 (2.21)

where
U∗
=
dU∗

dz
and the pre-integrated in-plane matrices and vector are

K
1
=

∫
Σp

NTDT

2
C

pp
D
2
NdΣ K

2
=

∫
Σp

NTC
zz

NdΣ

K
3
=

∫
Σp

NTDT

1
C
zz

NdΣ K
4
=

∫
Σp

NTDT

1
C
zz

D
1
NdΣ

K
5
=

∫
Σp

NTDT

2
C

pz
NdΣ K

6
=

∫
Σp

NTDT

2
C

pz
D
1
NdΣ

L̂ =
∫
ΣG
p

NTGdΣ (2.22)

Now, performing an integration by parts with respect to the nodal variables δ U∗(z)
and allowing the resulting variational equation to be satisfied for arbitrary virtual
nodal variables δU∗, this second-order ODE system is obtained⎧⎪⎪⎨⎪⎪⎩

−K
2
�U∗
+
(
K

3
+K

5
−KT

3
−KT

5

)
U∗
+
(
K

1
+K

4
+K

6
+KT

6

)
U∗ = 0

K
2
U∗
+
(
KT

3
+KT

5

)
U∗ = L̂ for z = {zb,zt }

(2.23)

As can be seen from Eq. (2.23), the quantity

L̂∗
=K

2
U∗
+
(
KT

3
+KT

5

)
U∗

can be formally assimilated to a nodal generalized stress vector resultant thanks to
the definition of the load vector L̂. It is also to be noticed that the essential BC have
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been enforced at this stage and U∗(z) now refers to the unconstrained degrees of
freedom (DOF). The system of coupled ODE (2.23) can usually be solved in the
framework of quadratic eigenvalue problem of gyroscopic type through a standard
linearisation procedurewhich leads to a first-orderODE.However, to obtain the latter,
a more systematic and elegant approach based on Legendre-Fenchel transformation
of Hamiltonian systems is here adopted. For this purpose, the construction of the
extended mixed Hamiltonian formulation first requires the determination of the dual
or conjugate variable associated to U∗. This is achieved by deriving this discretized
generalized energy density, already used in the VF (2.21),

E ∗(U∗, U∗) = 1
2

U∗T
(
K

1
+K

4
+2K

6

)
U∗+U∗T

(
K

3
+K

5

)
U∗
+
1
2
U∗T K

2
U∗ (2.24)

with respect to U∗ so that the conjugate variable P∗
z has this expression

P∗
z =
∂E ∗

∂ U∗ =K
2
U∗
+
(
KT

3
+KT

5

)
U∗ (2.25)

By replacing the matrices in (2.25) by their expressions obtained after (2.22), it
is easy to show that the conjugate nodal variables vector P∗

z actually coincides with
the out-of-plane nodal transverse stresses resultant, namely

P∗
z =

∫
Σp

[
NT

(
C
zz

N U∗
+C

zz
ND

1
U∗+CT

pz
ND

2
U∗
)]

dΣ

=

∫
Σp

NT

(
CT

pz
Sp +C

zz
Sz

)
dΣ

≡
∫
Σp

N(x,y)TTzdΣ (2.26)

Next, Eq. (2.25) is solved for U∗ so that:

U∗
=K−1

2
P∗
z −K−1

2

(
KT

3
+KT

5

)
U∗ (2.27)

Now, the elimination of U∗ from the generalized strain energy density functional (2.24),
combined with a Legendre transformation defined as,

H ∗(U∗,P∗
z) = P∗T

z
U∗ −E ∗(U∗, U∗) (2.28)

leads to this explicit expression of the earlier Hamiltonian energy density functional
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H ∗(U∗,P∗
z) =

1
2

P∗T
z K−1

2
P∗
z −P∗T

z K−1
2
(KT

3
+KT

5
)U∗

− 1
2

U∗T
[
K

1
+K

4
+K

6
+KT

6
−(K

3
+K

5
)K−1

2
(KT

3
+KT

5
)U∗

] (2.29)

Thus, using (2.28), the    Lagrangian VF (2.21) transforms into this Hamiltonian one

δ

∫
Σz

[
P∗T
z

U∗ −H ∗(U∗,P∗
z)
]

dz−
[
δU∗T L̂

]zt
zb
= 0 (2.30)

Now, expliciting the variation in (2.30), combined with an integration by parts
with regards to δ U∗, gives∫
Σz

[
δP∗T

z
U− δU∗T Pz − δU∗T

(
∂H ∗

∂U∗

)
− δP∗T

z

(
∂H ∗

∂P∗T
z

)]
dz+

[
δU∗T

(
P∗
z − L̂

)]zt
zb
= 0

(2.31)

After grouping together the terms relative to the same virtual nodal variables, the
previous equation turns into the following one∫

Σz

δU∗T
(
−P∗ − ∂H

∗

∂U∗

)
dΣz +

∫
Σz

δP∗T
z

(
U∗ − ∂H

∗

∂P∗
z

)
dz = 0 (2.32)

∀
(
δU∗,δP∗

z

)
/P∗

z = L̂ on z = {zb,zt }

Now, the expression (2.29) of H ∗ is substituted in Equation (2.32), leading to

k=NL∑
k=1

zk+1∫
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[
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z
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(
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U∗+AT

k
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z

)
+ δP∗T

z

(
−D

k
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z +A

k
U∗
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dz = 0

(2.33)

where, NL is the number of layers and the layer-dependent matrices are given by

D
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2

(
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3
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5

)
Hence, thanks to the     arbitrariness of δU∗ and δP∗

z , Eq. (2.33) leads to this first-order
ODE system for the k-th layer⎧⎪⎪⎨⎪⎪⎩

U∗

P∗
z

⎫⎪⎪⎬⎪⎪⎭ =
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−A

k
D
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B
k

AT

k

⎤⎥⎥⎥⎥⎦
{U∗

P∗
z

}
(2.34)
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It is worth mentioning from Eq. (2.34) that the number of dual nodal generalized
stress resultantsP∗

z variables is now equal to the number of unconstrained N primary
nodal generalized displacements U∗ ones so that Equation (2.34) is actually a 2N
linear system with 2N unknowns. Besides, it can be readily shown that the system
matrix of (2.34) is of Hamiltonian type since it satisfies the following identity for a
given layer k

JH
k
=
(
JH

k

)T
(2.35)

with

H
k
=

⎡⎢⎢⎢⎢⎣
−A

k
D
k

B
k

AT

k

⎤⎥⎥⎥⎥⎦ ; J =
⎡⎢⎢⎢⎢⎣

0 I

−I 0

⎤⎥⎥⎥⎥⎦ (2.36)

Furthermore, the diagonalization of the Hamiltonian matrix H
k
is reached using

the eigen solutions,
{
μ
k
;Ψ

k

}
of the following Hamiltonian eigenvalue problem

H
k
Ψ

k
=Ψ

k
Diag

(
μ
k

)
(2.37)

As it can be noticed, tr
(
H

k

)
= 0 (tr is the trace operator) so that the spectrum of

the eigenvalue problem can be partitioned as

Diag
(
μ
k

)
=

⎡⎢⎢⎢⎢⎣
Diag

(
μ+
k

)
0

0 −Diag
(
μ+
k

)⎤⎥⎥⎥⎥⎦ ; μ+k ∈ C/Re
(
μ+
k

)
> 0 (2.38)

Similarly, the eigen matrix splits into two parts as

Ψ
k
=
[
Ψ+

k
Ψ−

k

]
(2.39)

Where, each of its bloc matrices satisfies the following symplectic-orthogonality
relation

ΨiT

k
JΨj

k
= −

(
Ψj

k
JΨi

k

)T
= δi jI (2.40)

Further on, considering this generalized state vector Z∗
k =

{
U∗ P∗

z

}T
k
, and mak-

ing use of its modal projection as Π∗
k =Ψ

k
Z∗
k , the Hamiltonian eigenvalue problem

(2.37) and the symplectic-orthogonality relation (2.40) allow to recast Eq. (2.37)
into a diagonal form so that its general solution writes, for a given layer k, as

Z∗
k =Ψ

k
Diag

(
eμk

z )Λk (2.41)

Where, the unknown layer-dependent coefficients vectors Λk are determined with
the help of the IC constraints together with the BC on top and bottom surfaces of
the composite, thereby completing the resolution of Eq. (2.35). Clearly this solution
is of analytic type and hence the capacity to account for the exact satisfaction of the



28 Orlando Andrianarison and Ayech Benjeddou

IC as well as the BC on the top and bottom of the composite is expected. Finally,
the formulation of the problem in terms of the state vector Z∗

k allows to use the
well-known mixed SSM to compute the solution throughout the whole thickness.
The case of a layered composite is then treated through a propagator matrix which
maps the state vector on the bottom to any height while satisfying the IC and BC
(see Andrianarison and Benjeddou, 2012, for more details).

2.4 Benchmarking Examples

In this section, several numerical examples are investigated to test the stability and
accuracy of the proposed method. The focus is made here on open literature bench-
marks that provide tabulated results for non-classical BC (cantilever), multilayer
composite layups (angle-ply) and electromechanical loads (uniform). The aim is to
avoid, as much as possible, graphical (curves)-induced comparison errors and exact,
closed-form and earlier solutions limitations to SS BC, cross-ply composite layups
and trigonometric electromechanical loads. Such classical benchmarks are abundant
in the open literature and have been already analysed in an earlier work (Andria-
narison and Benjeddou, 2012). It is worthy to mention that tabulated results for the
abovementioned non-classical configurations are rather seldom in the open literature
and related benchmarks choice is very limited. Therefore, a numerical convergence
analysis is first performed through the test-case of a cantilever PVDF bimorph, that
is clamped on the edge x = 0 and free elsewhere. The actuator configuration is fur-
thermore considered and the results are compared with reference 3D FE solutions.
Next, the assessment of the accuracy of the method is obtained by analysing the
bending of a PZT angle-ply composite plate under sensor configuration for which
the cantilever and SS BC are successively analysed.

Before we proceed to the presentation of the benchmarking examples, it is worth-
while to show how the BC are actually taken into account in the numerical procedure.
Let us consider the case of configuration where a mechanical force is applied
on the top surface and a   zero potential is applied on both lower and upper surfaces
(Fig. 2.1a). We recall that,     at the final stage of the aforementioned Hamiltonian VF,
a 2N algebraic system is obtained after the mechanical displacement variables are
constrained in agreement with the actual lateral BC, that is

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
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(2.42)

where index m (resp. e) refers to mechanical (resp. electric) type variables.

 a     sensor



2 New Hamiltonian semi-analytical approach. . . 29

𝑥
𝑦

𝑧

F◦

b a

H

Multilayer composite

Piezoelectric layer

𝑧
𝐴(𝑥, 𝑦)

Refer
ence

(𝑥, 𝑦)
plane

(a) Geometry and electromechanical loads of a piezo-
electric multilayer composite
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Fig. 2.1. Geometry and FE-SSM semi-analytical point 3D solution for a piezoelectric multilayer
plate

As soon as the electric potential is fixed on the bottom and top surfaces, the second
equation of (2.42) can be solved for the electric displacement nodal unknowns in
terms of the mechanical nodal unknowns ub so that

Pb
e =H−1

ϕpe

(
ϕt −H

ϕu
ub +H

ϕϕ
ϕb +H

ϕpm

Pb
m

)
(2.43)

Next, combining equation (2.43) with the third equation of (2.42) allows us to
solve ub as the solution of(

H
pmu

−H
pmpe

H−1
ϕpe

H
ϕu

)
ub = Pt

m−
(
H

pmpe
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−
(
H
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pmpe
H−1

ϕpe
H

ϕϕ

)
ϕb −H

pmpe
H−1

ϕpe
ϕt (2.44)

Once ub are determined, all other nodal variables on the lower surface are easily
recovered recursively and the solution through-the-thickness of the plate is computed
with the help of the propagator matrix.

2.4.1 Numerical Convergence Analysis

In this first example, a piezoelectric cantilever bimorph (Fig. 2.2) under uniform
electric load is investigated using the proposed method. It is made of two-ply PVDF
identical layers with outward opposite polarities to obtain a bending actuator. The
bimorph total thickness is h = 1mm whereas the length is a = 100mm and the width
is b = 5mm. The actuator configuration is considered here so that a uniform electric
potential Φ̄ = 1V is applied on the top surface. The edge BC of the bimorph are
assumed clamped on the edge x = 0; that is ux |x=0 = uy |x=0 = uz |x=0 = 0 and free
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Fig. 2.2 Bimorph actuator
configuration

𝑥

𝑦

𝑧

𝑀 (𝐿, 0, 0)

elsewhere. Thematerial properties of the PVDF layers used in this numerical example
are (Tzou, 1993): E1 = E2 = E3 = 2GPa, ν12 = ν13 = ν23 = 0.29,G12 = G13 = G23 =
1GPa, e31 = e32 = 0.046C/m2, e33 = e24 = e15 = 0.0, εS11 = ε

S
22 = ε

S
33 = 106.2pF/m.

Some selected references are given here for comparison. The results in Tahani
and Naserian-Nik (2013); Phung-Van et al (2015); Li et al (2014); Vidal et al (2011)
were obtained through 3D FE, 2D plate isogeometric FE, plate B-Spline finite point
and refined shell FE methods, respectively. These reference solutions are used here
to analyse the behaviour of the present semi-analytical solution in terms of accuracy,
stability and convergence. The variables are thus evaluated in specific in-plane
locations along the bimorph where their values are compared with those obtained by
the references. Therefore, the static deflection of the bimorph at those specific points
are given in Table 2.1 for the here implemented Q4 FE different mesh discretizations.
It can be seen that the results obtained with the present approach agree very well
with the 3D FEM solution as given in Tahani and Naserian-Nik (2013) and are
more accurate than those of the other 2D methods (isogeometric FE of Phung-Van
et al (2015), B-spline finite point of Li et al (2014) and refined shell FE of Vidal
et al (2011)). Besides, it is clear that the convergence of the present semi-analytical
approach is very rapid as the reference values are reached for the five evaluation
points with a maximum relative deviation of less than 1.5% using a coarse mesh
of 16 (8x2) in-plane FE (Fig. 2.3). Moreover, the through-the-normalized (Z = z/h)
thickness distributions of the non-dimensional transverse stresses

(σ̃xz,σ̃zz) = (σxz,σzz)× a
Φ̄e31

and the non-dimensional transverse electric displacement

D̃z =
Dz

e31
×106

displayed in Figs. 2.4 and 2.5 confirm that the IC constraints are satisfied.
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Table 2.1
Transverse displacement (uz ×10−7 m) at point (xmm, 0, 0) for a PVDF bimorph actuator

Solution method Mesh Point location x (mm)
20 40 60 80 100

Present (2D Q4 FE-SSM) 4×2 0.125 0.505 0.99 1.75 2.815
6×2 0.131 0.532 1.140 2.054 3.210
8×2 0.134 0.543 1.223 2.183 3.434
10×2 0.134 0.543 1.225 2.183 3.435
12×2 0.134 0.543 1.224 2.183 3.435

Error3D (%)b −1.47 −0.55 −0.65 −0.55 0.73
3D H8 FE 5×1×2 0.136 0.546 1.232 2.193 3.410
(Tahani and Naserian-Nik, 2013)a

2D plate quadratic isogeometric FE 101×6 0.138 0.550 1.236 2.201 3.443
(Phung-Van et al, 2015)
Error3D (%)b 1.47 0.97 0.73 0.36 0.32
2D plate B-Spline finite point 5×4 0.137 0.551 1.241 2.207 3.449
(Li et al, 2014)
Error3D (%)b 0.74 0.92 0.73 0.64 1.14
2D refined shell Q8 FE 5×1 0.137 0.551 1.241 2.207 3.449
Vidal et al (2011)
Error3D (%)b 0.73 0.91 0.73 0.64 1.14

a The numerical values are obtained from non-dimensional quantities in Tahani and Naserian-Nik
(2013)
b The errors are computed with respect to 3D FE results

Fig. 2.3 Deflection conver-
gence plots at different axial
positions for the PVDF bi-
morph actuator
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Fig. 2.4. Through-thickness distributions of non-dimensional transverse stresses in the PVDF
bimorph actuator
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Fig. 2.5. Through-thickness distribution of D̃z in the PVDF bimorph actuator

Table 2.2 shows the results relative to the bimorph tip deflection when different
voltages are applied. They are compared with those of 2D B-spline finite point
approach (Li et al, 2014) and with the theoretical and experimental data provided by
Tzou (1989). First, the observed relatively high deviations of the numerical results
with respect to the experimental ones can be explained by the stiffer clamping BC
numerical reperesentation compared to the softer actual ones, and by the non-realistic
(electromechanical isotropic behaviour, nil elastic Poisson’s ratio and piezoelectric

Table 2.2
Tip deflection (uz ×10−7m) of the PVDF bimorph for different applied voltages

Method Voltage (V)
10 40 80 130 160 200

Present (10×2) 3.460 13.771 27.407 45.433 54.703 68.228
Error∗exp(%) 5.33 10.48 12.37 13.06 9.22 7.91
Experiment (Tzou, 1989) 3.285 12.465 24.390 40.185 50.085 63.225
Classical beam theory (Tzou, 1989) 3.450 13.800 27.600 44.850 55.200 69.000
Error∗exp(%) 5.02 10.71 13.16 11.61 10.21 9.13
2D B-spline finite point (Li et al, 2014) 3.449 13.797 27.794 44.841 55.188 68.986
Error∗exp(%) 4.99 10.6 13.96 11.59 10.19 9.11

∗ The errors are computed with respect to the experimental results
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coupling coefficients, etc.) PVDF available material data. Then, it can be seen that
the results obtained with the present method match well the theoretical ones obtained
in Tzou (1989) and are the closest to the experimental values, in particular for the
last two highest actuation voltages (see Fig. 2.6). To assess the computational cost, a
comparison of different models in terms of the    number of DOF is presented in Table 2.3
when the   convergence is reached. It can be observed that the present 2D Q4 FE-SSM
semi-analytical 3D solution is the cheapest (lowest total DOF) and, as expected, its
characteristics are closer to the 3D FE solution in terms of cost (total non-nil DOF)
and accuracy (relative deviation, see Table 2.1).

Table 2.3
Computational cost (out of clamped nodes and DOF) comparison of the present 3D semi-analytic
solution with others for the PVDF bimorph actuator

Method FE Free nodes Mechanical Electrical Total
(free DOF) (non nil DOF) (non nil DOF)

Present 3D semi-analytical 16 24 72 24 96
(Q4 FE-SSM)
3D H8 FE 10 30 90 24 114
(Tzou, 1993)
2D refined shell Q8 FE 5 25 175 10 185
(Vidal et al, 2011)
2D plate B-Spline finite point 20 25 125 50 175
(Li et al, 2014)

Fig. 2.6 Bimorph tip deflec-
tion under different actuation
voltages
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2.4.2 Square Cantilever PZT Angle-ply Composite Plate

A (20cm×20cm) six-layer cantilever plate, made of T300/976Graphite-Epoxy (GE)
and piezoceramic (PZT-G1195N) materials, is considered (Pablo et al, 2009). The
BC are thus ux |x=0 = uy |x=0 = uz |x=0 = 0. The GE composite is bonded by PZT
layers on its bottom and top surfaces and each of its laminae is of equal thickness
(see Fig. 2.1a). The composite plate total thickness is fixed as h = 1 mmwhereas that
of each PZT layer is 0.1mm. The anti-symmetric (as) laminate angle-ply sequence is
considered; that is [PZT/−θ/θ]as where θ (here 45◦) is the fiber orientation angle of
the ply. Thematerial properties are summarized in Table 2.4. It should be noticed that
the PZT-G1195N material properties given in Pablo et al (2009) are unrealistically
considered as elastically isotropic whereas those in Benjeddou et al (2002) are
realistically anisotropic (transverse-isotropic). The simulation is conducted for both
datasets in order to show the influence of the unrealistic assumption of PZT isotropic
elastic behaviour. Besides, only the sensor configuration is considered in this test-
case; that is, a uniform mechanical pressure of amplitude p◦ = 100N/m2 is applied
on the upper surface whereas a zero equipotential voltage is imposed on the plate
bottom and top surfaces. Table 2.5 shows that the present semi-analytical approach
is able to recover, with −0.18% of relative deviation for the same mesh, the 2D FE
solution (Pablo et al, 2009) based on the classical plate theory and without electric
DOF. Besides, it is clear that the unrealistic behaviour assumption for the PZT-
G1195N greatly overestimates its realistic anisotropic (transverse-isotropic) one.
Indeed, the converged tip deflection computed using the former over estimates by

Table 2.4
Material properties of the PZT composite plate (ε ◦ = 8.85×10−12C/Nm2)

Pablo et al (2009) Benjeddou et al (2002) Benjeddou et al (2002)

Property T300/976 GE PZT-G1195N Property T300/976 GE Property PZT-G1195N

E1,GPa 150 63.0 E1,GPa 150 C11,GPa 148
E2,GPa 9.0 63.0 E2,GPa 9.0 C22,GPa 148
E3,GPa 9.0 63.0 E3,GPa 9.0 C33,GPa 131
G12,GPa 7.1 24.2 G12,GPa 7.1 C12,GPa 76.2
G13,GPa 7.1 24.2 G13,GPa 7.1 C13,GPa 74.2
G23,GPa 2.5 24.2 G23,GPa 2.5 C23,GPa 74.2
ν12 0.3 0.3 ν12 0.30 C66,GPa 35.9
ν23 0.3 0.3 ν23 0.30 C44,GPa 25.4
ν13 0.3 0.3 ν13 0.30 C55,GPa 25.4
d31, pmV−1 0.0 -254 e31,C/m2 0.0 e31,C/m2 -2.1
d32, pmV−1 0.0 -254 e32,C/m2 0.0 e32,C/m2 -2.1
d33, pmV−1 0.0 374 e33,C/m2 0.0 e33,C/m2 9.5
d15, pmV−1 0.0 584 e15,C/m2 0.0 e15,C/m2 9.2
d24, pmV−1 0.0 584 e24,C/m2 0.0 e24,C/m2 9.2
εT11, nFm

−1 0.0 15.3 εS11/ε ◦ 3.5 εS11/ε ◦ 460
εT22, nFm

−1 0.0 15.3 εS22/ε ◦ 3.0 εS22/ε ◦ 460
εT33, nFm

−1 0.0 15.0 εS33/ε ◦ 3.0 εS33/ε ◦ 235
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Table 2.5
Tip deflection uz (mm) at point (0.2m, 0, 0) of cantilever PZT composite plate under uniform
pressure

Method Mesh Isotropic PZT Transverse-Isotropic PZT
(Pablo et al, 2009) (Benjeddou et al, 2002)

2D plate FE (Pablo et al, 2009) 6×6 2.750 a −
Present (2D Q4 FE-SSM) 6×6 2.745 (−0.18%) 1.408
(deviation) 8×8 2.748 (−0.07%) 1.410

10×10 2.748 (−0.07%) 1.410
a This numerical value is estimated from Fig. 4 of Pablo et al (2009) and may be subjected to
inaccuracies

94.89% that obtained using the latter (see the last line and column values of Table
2.5).

2.4.3 Square SS PZT Angle-ply Composite Plate

The same PZT composite plate investigated in Subsect. 2.4.2 is considered here.
However, the plate is here supposed to be under SS-2 BC defined as uy = uz = 0
at x = {0,a} and ux = uz = 0 at y = {0,b}. The PZT-G1195N electro-mechanical
properties given in Table 2.4 (Pablo et al, 2009) are retained. Both symmetric (s)
and anti-symmetric stacking sequences are considered; that is [PZT/−θ/θ]as and
[PZT/−θ/θ]s with θ = 45◦.

Table 2.6 shows that the present semi-analytical approach is able to predict accu-
rate results with relative deviations of −0.03% for the symmetric and 0.06% for the
anti-symmetric 45◦ stacking with regards to the meshless Radial Point Interpolation
Method (RPIM) presented in Liu et al (2004). It can be also observed that the central
deflection is higher for all anti-symmetric layups and increases with decreasing the
ply angle. Moreover, the through-the-normalized (Z = z/H,H = h+2hp) thickness
distributions of the non-dimensional transverse shear stres ˜s σxz = σxz ×( /ap◦) and

Table 2.6
Central point deflection (×10−5m) of a SS PZT composite plate under uniform pressure

Stacking sequence θ (◦) 2D Plate meshless RPIM Present
(Liu et al, 2004) (2D FE Q4-SSM)

(15×15) (8×8) (10×10)
[PZT/−θ/θ]as 15 7.222 7.235 (0.18%) 7.235 (0.18%)
[PZT/−θ/θ]as 30 6.542 6.537 (−0.08%) 6.537 (−0.08%)
[PZT/−θ/θ]as 45 6.217 6.221 (0.06%) 6.221 (0.06%)
[PZT/−θ/θ]s 45 6.038 6.036 (−0.03%) 6.036 (−0.03%)

H
H
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the non-dimensional transverse electric displacement D̃z = Dz/e31 displayed in Figs.
2.7 and 2.8 confirm that the IC constraints are satisfied.
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Fig. 2.7. [PZT/−45◦/45◦]as SS composite plate under uniform pressure
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Fig. 2.8. Through-the-normalized thickness distribution of σ̃xz in the [PZT/−45◦/45◦]s SS
composite plate under uniform pressure

2.5 Conclusions and Perspectives

This chapter presented a new mixed Hamiltonian semi-analytical 3D static analysis
solution. It is based on Lagrangian 2D in-plane FE discretization, allowing arbi-
trary edges BC, and mixed Hamiltonian VF, single-layer symplectic solution and
propagator matrix through the thickness of the multilayer smart composite, allow-
ing automatic satisfaction of the IC constraints. This combination of in-plane La-
grangian and through-the-thickness Hamiltonian formalisms, through the Legendre
transformation, and the use of the nodal transverse stresses and electric displacement
resultants as dual independent variables are the main originalities of the presented
research work. It is applied to the analysis of multilayered piezoelectric structures
static actuation and sensing and the comparison of the results with various reference
solutions shows its rapid convergence and high accuracy. Moreover, the results also
show that the present method is able to take into account realistic BC such as clamped
and free edges, as well as non-classical multilayer composites stacking sequences
such as symmetric and anti-symmetric angle-ply layups.

This work focused on presenting the detailed derivation of the new mixed Hamil-
tonian semi-analytic 3D solution with application to the static actuation and sensing
of multilayered piezoelectric smart composites. It is worthwhile to investigate its
extension to vibration and dynamic analyses.
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