
Chapter 10
Development of a Method for Determining One
of the Additional Elastic Moduli of Curvilinear
Rods

Elena A. Ivanova and Valentina A. Timoshenko

Abstract In this paper we suggest a method for determining one of the additional
elastic moduli in curvilinear rod theory. The method is based on the comparison
of the analytical solution of the problem of static curvilinear rod bending with the
numerical solution of the corresponding 3D problem. The method can be used for
rods with any section shape and any microstructure.
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10.1 Introduction

The rod model has been known for a long time and is widely used in engeneering
analysis. However, there are still a lot of unsolved problems in the rod theory. An
overview of investigations in modern rod theory can be found in Ghuku and Saha
(2017). The research of statics, dynamics and stability of curvilinear rods is one
of the most significant research directions (Ghuku and Saha, 2016; Satō, 1959;
Tarn and Tseng, 2012; Sugiyama et al, 2006; Shiva Shankar and Vijayarangan, 2006;
Gummadi and Palazotto, 1998; Erkmen and Bradford, 2009; Pippard, 1990; François
et al, 2010). It is well known that two approaches are used for the formulation of
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the rod theory equations. They are the asymptotic one Berdichevskii (1981); Rubin
(2000); Tiba and Vodak (2005); Meunier (2008); Jurak and Tambača (2001) and the
direct one Svetlitsky (2000, 2005); Zhilin (2006, 2007); Altenbach et al (2006, 2012,
2013). If we consider the asymptotic approach, the formulae for the elastic moduli
are obtained during the formulation of the basic equations, and this is an advantage
of the approach. On the other hand, it is evident that if the rod has a complex
configuration or complex internal structure, the use of mentioned approach becomes
quite problematic. For the direct approach, the complexity of the configuration and
internal structure do not influence the formulation of the basic equations, but in
this case the determination of the elastic moduli becomes the separate research. A
method for determining the elasticmoduli and in the simpliest cases the elasticmoduli
themselves are well known for straight rods. The situation is completely different
with curvilinear rods. In addition to those elastic moduli that straight rods have, there
are several additional elastic moduli in curvilinear rod theory Zhilin (2006, 2007);
Altenbach et al (2006, 2012, 2013). The additional moduli can be neglected if the
rod is thin enough. But the additional elastic moduli can be important in the case of
thick rods. Consequently, the development of a method for their determination is an
important problem. In this paper we suggest the method for determining one of the
additional elastic moduli of curvilinear rods.

10.2 Basic Equations of the Linear Theory of Curvilinear Rods

In this section we consider the basic equations of the linear theory of curvilinear
rods, which has been suggested in Zhilin (2006, 2007) and further developed in
Altenbach et al (2006, 2012, 2013). The model of the curvilinear rod is the directed
curve. Reference configuration is defined by the position vector r(s), where s is the
coordinate along the curve. Further we consider two triples: natural triple t, n, b
and additional triple d1, d2, d3. Vectors t, n and b are the unit vectors of tangent,
normal and binormal respectively. The triple of mutually perpendicular unit vectors
d1, d2, d3 associated with the cross-section of the rod. Vector d3 coincides with the
direction of targent vector t, and vectors d1, d2 are placed in the cross-section plane
(see Fig. 10.1).

In the linear theory the motion equations are

T′+ ρ0f = ρ0 K1, M′+ t×T+ ρ0m = ρ0 K2. (10.1)

Fig. 10.1 The directed curve
and position of the triple
vectors in the cross-section
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Here the prime represents the derivative with respect to the spatial coordinate, the
dot represents the time derivative, T and M are the force and the moment in the
cross-section, ρ0 is the linear density of mass in the reference configuration, f and
m are the external force and the external moment per unit mass, K1 and K2 are the
linear momentum vector and the angular momentum vector per unit mass.

The kinetic energy per unit mass is

K = 1
2

v ·v+v ·Θ1 ·ω+ 1
2
ω ·Θ2 ·ω, (10.2)

where v is the velocity vector, ω is the angular velocity vector, Θ1 and Θ2 are the
inertia tensors per unitmass. The tensorsΘ1 andΘ2 are time independent in the linear
theory, but can be dependent on the spartial coordinate. The linear momentum vector
and the angular momentum vector per unit mass are defined as partial derivatives
of the kinetic energy per unit mass with respect to the velocity and angular velocity
vectors respectively:

K1 =
∂K
∂v = v+Θ1 ·ω, K2 =

∂K
∂ω
= v ·Θ1+Θ2 ·ω. (10.3)

The linear density of mass ρ0 and the inertia tensors per unit length ρ0Θ1, ρ0Θ2
are

ρ0 =

∫
(F)
ρ(3)μdF , ρ0Θ1 = −E×

∫
(F)
ρ(3)a μdF , ρ0Θ2 =

∫
(F)
ρ(3)

(
a ·aE−aa

)
μdF ,

(10.4)
with

μ = 1+
1

Rc
n ·a.

Here ρ(3) is the mass density per unit volume, F is a cross-section area, E is the unit
tensor, Rc is the radius of curvature, a is a vector, which connects the centre and
some point of the cross-section (see Fig. 10.1).

The internal energy is the quadratic form of the deformation vectors in the linear
theory:

ρ0U = 1
2
E ·A ·E+E ·B ·Φ+ 1

2
Φ ·C ·Φ. (10.5)

Here U is the internal energy per unit mass, E is the vector of extension-shear
deformation, Φ is the vector of bending-twisting deformation, A, B, C are the
elasticity tensors. Tensor A is responsible for extension and transverse shear, tensor
C is responsible for bending and twisting, tensorB characterizes themutual influence
of the extension-shear deformations and the bending-twisting deformations. If we
consider the straight rod and the natural twisting is absent, the tensor B is equal
to zero. The tensors A, B, C are time independent in the linear theory, but can be
dependent on spartial coordinate. The deformation vectors are

E = u′+ t×ψ, Φ = ψ ′, (10.6)
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whereu is the displacement vector,ψ is the rotation vector. The constitutive equations
have the form

T = ∂(ρ0U)
∂E = A ·E+B ·Φ, M = ∂(ρ0U)

∂Φ
= E ·B+C ·Φ. (10.7)

The elasticity tensors have the following structure for curvilinear rods without the
natural twisting:

A = A1d1d1+ A2d2d2+ A3d3d3,

C = C1d1d1+C2d2d2+C3d3d3,

B = 1
Rc

[
(B23d2d3+B32d3d2)cosα+ (B13d1d3+B31d3d1)sinα

]
+

1
Rt

(B1d1d1+B2d2d2+B3d3d3),

(10.8)

where Rt is the radius of torsion, α is an angle between the vectors d1, d2 and the
vectors n, b (see Fig. 10.1). Other scalar coefficients in Eq. (10.8) represent the
elastic moduli. The elastic moduli Ak and Ck are determined during the experiments
with straight rods. The elastic moduli Bi j can be determined during the experiments
with plane curvilinear rods. The elastic moduli Bk can be determined during the
experiments with spatially curved rods.

We need formulae relating the characteristics of stress-strain state of the rod
and the three-dimensional body for interpretation of the data from physical and
numerical experiments. In the linear theory the force and moment vectors in the
cross-section of the rod are the integral characteristics of stress in cross-section of
the three-dimensional body. The corresponding formulae are generally accepted.
Different authors determine the relationships between the kinematic characteristics
differently. In considered theory for comparison of the kinematic characteristics we
use the assumption that the linear momentum vector and the angular momentum
vector of the rod and the three-dimensional body must be the same. The mentioned
relationships are easily integrated over time, as a result we get the relationship
between the displacement vector, the rotation vector and the integral characteristics
of the displacement vector of three-dimensional body. This way we get the following
relationships:

T =
∫
(F)

t ·τ dF , M =
∫
(F)

a×(t ·τ)dF ,

ρ0 (u+Θ1 ·ψ) =
∫
(F)
ρ(3)u(3) μdF , (10.9)

ρ0 (u ·Θ1+Θ2 ·ψ) =
∫
(F)
ρ(3)a×u(3) μdF .
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Here τ is the stress tensor, u(3) is the displacement vector in the 3D-theory. Eq. (10.9)
form the method of the numerical experiment.

10.3 Formulation and Solution of the Model Problem

The aim of this research is to formulate the model problem, which solution provides
the opportunity of determination of the elastic modulus B32. In this section we
discuss the formulation and numerical solution of the model problem within the rod
theory, the formulation of the corresponding problem within the 3D-theory and the
relationships that allow us to compare the solutions of mentioned problems.

We consider the plane curvilinear rod, which has a form of 3/4 of the circle with
the radius R. We also assume that the principal axes of inertia of the cross-section
coincide with the vectors of the natural triple. This way α = 0, Rt =∞. It is obviously
that the use of cylindrical coordinate system r , θ, z (see Fig. 10.2) is convenient for
the model problem. The following relationships occur:

s = rθ, d1 = n = −er , d2 = b = k, d3 = t = eθ, Rc = −R. (10.10)

We consider the static deformation of the rod. One end of the rod is rigidly fixed
and another end is loaded only by the moment, which deforms the rod without taking
it out the plane. External forces and moments distributed along the length of the rod
are absent. In the rod theory we formulate this problem as

T′ = 0, M′+ t×T = 0, E = u′+ t×ψ, Φ = ψ ′,
T = A ·E+B ·Φ, M = E ·B+C ·Φ, (10.11)
u|s=0 = 0, ψ |s=0 = 0, T|s=0 = 0, M|s=l = M0k,

where M0 is the external moment. Taking into account the structure of the tensors
from Eq. (10.8), we obtain the solution of Eq. (10.11):

u = unn+ut t, ψ = ψbb, (10.12)

where

Fig. 10.2 The natural triple
and the cylindrical coordinate
system
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un = M0R2

(
C2−

B2
32

R2A3

)−1 (
1− B32

R2A3

) (
1− cos

s
R

)
,

ut = M0R2

(
C2−

B2
32

R2A3

)−1 (
s
R
−
(
1− B32

R2A3

)
sin

s
R

)
, (10.13)

ψb = M0s

(
C2−

B2
32

R2A3

)−1
.

From Eqs. (10.12), (10.13), it follows that the rod is deformed in the plane and the
solution depends on three elastic moduli. These moduli are the extension elastic
modulus A3, the bending elastic modulus C2 and the additional elastic modulus B32.
It is important that the solution of the model problem depends on only one unknown
elactic modudus. If the elastic modulus B32 = 0, Eq. (10.13) simplifies and has the
form

uc
n =

M0R2

C2

(
1− cos

s
R

)
,

uc
t =

M0R2

C2

( s
R
− sin

s
R

)
,

ψc
b
=

M0s
C2
.

(10.14)

Comparison of the solutions of Eqs. (10.13) and (10.14) shows that the elastic
modulus B32 has an effect on the solution of the problem and also provides the effect
of the elastic modulus A3.

Figure 10.3 illustrates the formulation of the corresponding problem in 3D-theory.
We consider the body, which is 3/4 of the hollow cylinder. The height of the cylinder
is b, the difference between the internal and external raduii is a, the radius of the
midline, i.e. the line passing through the centres of the sections, is equal to the
radius R of the rod. The surface of the cylinder θ = 0 is rigidly fixed. There is a
distributed load on the surface θ = 3π/2, which causes the resultant force equal to
zero and the resultant moment M0. The other cylinder surfaces are free. As a result

s = 0

M0

d1

d2

x

y

b/2

a/2−a/2

−b/2

a

Fig. 10.3. Boundary conditions and the local coordinate system in the cross-section
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of numerical solution we determine the displacement field u(3) in the cylindrical
coordinate system:

u(3) = u(3)r er +u(3)θ eθ +u(3)z k. (10.15)

Taking into account Eqs. (10.4), (10.9) and writing vector a (see Fig. 10.3) as

a = xd1+ yd2, (10.16)

we get the following integral relationships between the components of the displace-
ment and rotation vectors in the rod theory and the components of the displacement
vector in the 3D-theory

un = − 1
ab

a
2∫

− a
2

b
2∫

− b
2

u(3)r

(
1− x

R

)
dxdy,

ut =
1

ab

(
1− a2

12R2

)−1 a
2∫

− a
2

b
2∫

− b
2

u(3)θ

(
1− x2

R2

)
dxdy, (10.17)

ψb = − 1
abR

(
1− a2

12R2

)−1 a
2∫

− a
2

b
2∫

− b
2

u(3)θ

(
1+

12Rx
a2

) (
1− x

R

)
dxdy.

Thus, if we get the numerical solution of the 3D-problem, we can calculate
components un, ut and ψb in current cross-section of the rod using Eq. (10.17).
After their substitution into Eq. (10.13), we get three expessions for determining the
elastic modulus B32. From the theoretical point of view the value of the modulus
B32 should be independent of the choice of the expression. This value also should
be independent of the cross-section position. However, the elastic modulus B32
depends on the position of the cross-section and the chosen equation in fact. It is
the reason why the choice of the method for determining the elastic modulus B32 is
very important. We choose the method with respect to the less dependency on the
cross-section position.

10.4 Method for Determining the Elastic Modulus B32

In this section we consider three methods for determining the elastic modulus B32.
For better presentation of the difference between the methods for determining the
elastic modulus we perform the calculations for the body, which is not very similar
to the rod. This body has the radius of the midline R = 0,5 m, its cross-section is
the square with the sides length a = b = 0,2 m. We choose the steel with Young’s
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modulus E = 2 ·1011 N/m2 and Poisson’s ratio ν = 0.33 as a material. For the chosen
body:

A3 = Ea2 = 8 ·109 N, A3R2 = 2 ·109 Nm2, C2 =
Ea2

12
= 2.67 ·107 N. (10.18)

In this section and further all values of the elastic moduli are in the SI. The
externalmoment equals M0 = 150000N·m.The calculations are donewith a software
application ABAQUS. We use cubic finite element with the side length 0,005 m.
The investigation of the convergence shows that the numerical solution converges
even for coarse mesh. Decrease of the mesh element length increases the accuracy
of the calculations of the integrals from Eq. (10.17). We use the displacements and
rotation angles from Eq. (10.17) in three cross-sections θ = 3π/4, θ = π, θ = 5π/4 (it
also is necessary to consider the cross-section θ = π/2 for one calculation series) for
determining the elastic modulus B32. The choice of the cross-sections is explained
by the fact that their positions are quite far from each other and the boundaries (see
Fig. 10.4).

• The first method uses the coefficient(
C2−

B2
32

R2A3

)−1 (
1− B32

R2A3

)
.

According to Eq. (10.13), there are two ways to calculate the mentioned coeffi-
cient. The first one uses the value of the component un in the cross-section s∗
as (

C2−
B2
32

R2A3

)−1 (
1− B32

R2A3

)
=

un(s∗)
M0R2(1− cos(s∗/R)) (10.19)

and the second one uses the value of the difference ut −Rψb in the cross-section
s∗ as

Fig. 10.4 The position and an-
gles of chosen cross-sections
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C2−

B2
32

R2A3

)−1 (
1− B32

R2A3

)
=

Rψb(s∗)−ut (s∗)
M0R2 sin(s∗/R) . (10.20)

The calculation results are presented in Table 10.1. Obviously we cannot calculate
the coefficient using the values ut − Rψb , but the way of calculation using the
values of the component un is highly accurate. However, solving Eq. (10.19)
we obtain complex values of the modulus B32, the imaginary parts of which are
comparable to the real parts. It means that this method of determining the elastic
modulus B32 is unacceptable.

• The second method supposes the use of the coefficient(
C2−

B2
32

R2A3

)−1
.

According to Eq. (10.13), this coefficient can be calculated in three ways. The
first one uses the value of the component ψb in the cross-section s∗ as(

C2−
B2
32

R2A3

)−1
=
ψb(s∗)
M0Rs∗

, (10.21)

the second one uses the value of the component ut in the cross-section with
s∗ = πR as (

C2−
B2
32

R2A3

)−1
=

ut (s∗)
M0R2s∗

, (10.22)

and the third one uses the value of the sum un+ut in the cross-section s∗ = πR/2,
i.e. the cross-section, where

1− cos
s
R
= sin

s
R
,

as

Table 10.1

Coefficient values

(
C2 −

B2
32

R2A3

)−1 (
1− B32

R2A3

)
Cross-section Using un Error, using un Using ut −Rψb Error, using ut −Rψb

3π/4 3, 67 ·10−8 0, 90% 4, 8 ·10−8 52, 84%
π 3, 65 ·10−8 0, 41% - -

5π/4 3, 59 ·10−8 1, 31% 1, 48 ·10−8 52, 84%
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C2−

B2
32

R2A3

)−1
=

un(s∗)+ut (s∗)
M0Rs∗

. (10.23)

The calculation results are presented in Table 10.2. It is evident that the way
based on the use of the values of the component ψb is highly accurate. The value
calculated using the sum un + ut corresponds the general tend to decreasing of
the value as the cross-section gets closer to the fixed end. The coefficient value
calculated using the component ut is smaller than other values, and we suppose
it to be questionable.
From the theoretical point of view the elastic modulus B32 can be positive or
negative. It is clear that the suggested method allows us to determine the absolute
value of modulus B32. In Table 10.3 we present positive values of the modulus
B32. An analysis of the results shows that the method for determining the elastic
modulus B32 using Eq. (10.21) allows us to obtain the values, which slightly
depend on the choice of the cross-section. Thus this method is acceptable. It has
the only disadvantage that we cannot determine the sign of the elastic modulus
B32.

• The third method uses the values of the coefficient(
1− B32

R2A3

)
.

According to Eq. (10.13), we can calculate this coefficient in three ways. The first
one consists in the use of the ratio un/ut in the cross-section s∗ as

Table 10.2

Coefficient values

(
C2 −

B2
32

R2A3

)−1
Cross-section Using un +ut Using ut Using ψb Error, using ψb

π/2 3, 91 ·10−8 - - -
3π/4 - - 4, 08 ·10−8 1, 18%
π - 3, 76 ·10−8 4, 14 ·10−8 0, 18%

5π/4 - - 4, 17 ·10−8 1, 00%

Table 10.3

The elastic modulus B32 calculated using

(
C2 −

B2
32

R2A3

)−1
Cross-section Using un +ut Using ut Using ψb Error, using ψb

π/2 4, 67 ·107 - - -
3π/4 - - 6, 56 ·107 5, 99%
π - 1, 19 ·107 7, 05 ·107 1, 04%

5π/4 - - 7, 32 ·107 4, 95%



10 A Method for Determining an Elastic Modulus of Curvilinear Rods 181

1− B32

R2A3
=

un(s∗) s∗
R
[
ut (s∗)(1− cos(s∗/R))+un(s∗)sin(s∗/R)] , (10.24)

the second one consists in the use of the ratio un/ψb in the cross-section s∗ as

1− B32

R2A3
=

un(s∗) s∗
R2ψb(s∗)

[
1− cos(s∗/R)] (10.25)

and the third one consists in the use of the ratio ut/ψb in the cross-section s∗ as

1− B32

R2A3
=

[
Rψb(s∗)−ut (s∗)

]
s∗

R2ψb(s∗)sin(s∗/R) . (10.26)

The calculation results are presented in Table 10.4. It is evident that the way based
on the use of the ratio ut/ψb is unacceptable at all. Others demonstrate the same
dependency of the cross-section choice, but give different average values of the
coefficient.
The results of calculation of the elastic modulus are presented in Table 10.5. An
analysis of the results shows the noticeable difference between the values of the
modulus B32 calculated using the ratio un/ut and the values calculated using the
ratio un/ψb . The substitution of the average values into the coefficient(

C2−
B2
32

R2A3

)−1

Table 10.4
Coefficient values

(
1− B32

R2A3

)
Cross-section Using un/ut Error, using un/ut Using un/ψb Error, using un/ψb Using ut/ψb

3π/4 0, 981 1, 54% 0, 899 2, 02% 1, 18
π 0, 970 0, 47% 0, 883 0, 21% -

5π/4 0, 946 2, 01% 0, 860 2, 31% 0, 36

Table 10.5
The elastic modulus B32, calculated using

(
1− B32

R2A3

)
Cross-section Using un/ut Error, using un/ut Using un/ψb Error, using un/ψb

3π/4 3, 85 ·107 43, 6% 2, 02 ·108 15, 44%
π 5, 91 ·107 13, 4% 2, 35 ·108 1, 58%

5π/4 10, 7 ·107 56, 9% 2, 79 ·108 17, 02%



182 Elena A. Ivanova and Valentina A. Timoshenko

shows that this expression is positive if the modulus B32 is calculated using the
ratio un/ut , and the expression is negative if we substitute the values calculated
using the ratio un/ψb . Consequently, the way of determining the modulus B32
using the ratio un/ψb is unacceptable.

Thus the only method for determining the sign of the elastic modulus consists in
determining this modulus using the ratio un/ut . From Table. 10.5 we see that this
way gives the values dependent on the cross-section choice. However, the average
value B32=6,82 is close to the average value B32 = 6,98 which is calculated
using the components ψb . The relative difference between them is equal to 2,32%.

10.5 Discussion

As a result of our study we conclude that considered model problem can be used
for determining the elastic modulus B32 by the numerical experiment. The best of
considered methods for determining this modulus is the method which uses Eq.
(10.21). We can also use the method based on Eq. (10.24) for additional verification
and determining the sign of modulus B32.

In Zhilin (2007) the author considers the method for determining the elastic
modulus B32, based on the solution of a problem of the deformation of a closed
circular rod under the action of a uniformly distributed radial load. The balance
equations have the form

T′+ f n = 0, M′+ t×T = 0. (10.27)

Due to axial symmetry the solution has the following structure:

u = unn, ψ = 0,

E = Et t, Φ = 0,

T = A3Et t, M = B32
Rc

Etb.

(10.28)

This model problem is interesting with the fact that the corresponding 3D-problem
allows to find the analytical solution in the case if the height of the cylinder is small
enough to allow us to consider the stress-strain state to be plane. The conparison of
the 1D-problem solution and the 3D-problem solution leads to the simple formula
B32 = C2.

The calculated above value of B32 coincides with B32 = C2 in an order of magni-
tude. However, the calculated value is about 2,5 times higher. Taking into account
the specifics of the model problem considered in Zhilin (2007) and the fact that
three-dimensional body used in our study is not very similar to the rod, we can
consider the coincidence of the results as quite good.

7. 10 7. 10



10 A Method for Determining an Elastic Modulus of Curvilinear Rods 183

The developed method can be used for determining the elastic modulus B32 in
the case of curvilinear rods, which have different shapes of the cross-section and the
arbitrarily complex internal structure.
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