Chapter 7 ®
Pushing the Limits of Parallel Discrete Qs
Event Simulation for SystemC

Rainer Domer, Zhongqi Cheng, Daniel Mendoza, and Emad Arasteh

7.1 Introduction

The IEEE standard SystemC language [13] is widely used for the specification,
modeling, validation, and evaluation of electronic system level (ESL) models. The
Accellera Systems Initiative maintains not only the official SystemC language
definition, but also provides an open source proof-of-concept library that can be used
to simulate SystemC design models [1]. However, implementing the classic scheme
of discrete event simulation (DES), this reference simulator runs sequentially and
cannot utilize the parallel computing resources available on multi- and many-core
processor hosts. This severely limits the execution speed of SystemC simulation.

In order to provide faster execution, parallel discrete event simulation (PDES) [8,
12] techniques can be applied. While significant obstacles exist specifically for the
SystemC language [7], many parallel simulation approaches have been proposed [5,
11, 19,21-24]. Beyond these synchronous PDES techniques, out-of-order PDES [6]
is even more aggressive. By localizing the simulation time to individual threads and
carefully handling events at different times, the simulator engine can issue threads
in parallel and ahead of time, following a partial ordering without loss of accuracy.
This results in better exploitation of the available parallelism and thus maximum
simulation speed.

The Recoding Infrastructure for SystemC (RISC) project described in this paper
implements out-of-order PDES for the IEEE SystemC language as open source.
Specifically, RISC provides a dedicated SystemC compiler and corresponding out-
of-order parallel simulator [2, 8, 16]. Compared to the other approaches, RISC
automatically analyzes the SystemC source code, identifies all potential race condi-

R. Domer (04) - Z. Cheng - D. Mendoza - E. Arasteh
Center for Embedded and Cyber-Physical Systems, University of California, Irvine, CA, USA
e-mail: doemer@uci.edu

© The Author(s) 2021 97
J.-J. Chen (ed.), A Journey of Embedded and Cyber-Physical Systems,
https://doi.org/10.1007/978-3-030-47487-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47487-4_7&domain=pdf
mailto:doemer@uci.edu
https://doi.org/10.1007/978-3-030-47487-4_7

98 R. Domer et al.

tions, and then instruments the model to prevent any conflicts. This transformation
does not require any manual recoding or application-specific knowledge.

We share our RISC proof-of-concept implementation with the EDA community
as an open source software project in order to facilitate evaluation, promote parallel
SystemC simulation, and achieve fruitful collaboration [3, 4].

7.2 RISC Framework

While the RISC software framework may be used for many other analysis and
transformation tasks on SystemC models, parallel simulation is the main purpose.
To perform semantics-compliant parallel simulation with out-of-order scheduling,
we introduce a dedicated SystemC compiler that works hand in hand with a new
simulator. This is in contrast to the traditional SystemC simulation flow where
a SystemC-agnostic C++ compiler includes the SystemC headers and links the
design model directly against the Accellera reference library.

As shown in Fig. 7.1, the RISC compiler acts as a frontend that processes the
input model and generates an intermediate model with special instrumentation for
conflict-free parallel execution. The instrumented model is then linked against the
extended RISC SystemC library by the target compiler (a regular C++ compiler,
such as GNU gcc or Intel icpc) in order to produce the output executable model.
Out-of-order parallel simulation is then performed simply by running the generated
executable model.

From the user perspective, we simply replace the regular C++ compiler with the
SystemC-aware RISC compiler (which in turn calls the underlying C++ compiler).
Otherwise, the overall SystemC validation flow remains the same as the traditional
tool flow. Simulation is just faster due to the parallel execution. Note also that this
process is fully automated. No user interaction or manual code transformation is
necessary.

Input Model Instrumented Model Executable

" Model
j\ RISC Compiler SX;:,T]C '\ Target Compiler
systemc.h
N Segment Graph Source Code | |_| Model Cit || Out-of-Order
7| Conflict Analysis || Instrumentation —par.cpp Compiler
Model.cpp ~—_

Parallel
RISC

Simulation

Fig. 7.1 RISC tool flow for out-of-order parallel simulation of SystemC models [16]

7 Pushing the Limits of Parallel Discrete Event Simulation for SystemC 99
7.2.1 RISC Compiler

In order to produce a safe parallel model, the RISC compiler performs three major
tasks, namely segment graph construction, conflict analysis, and finally source code
instrumentation.

7.2.1.1 Segment Graph Construction

A segment graph (SG) [6] is a directed graph that represents the source code seg-
ments executed during the simulation between scheduling steps. More specifically,
every segment is associated with a corresponding scheduler entry point, namely
a wait statement in SystemC. All other statements in the SystemC source code
become part of those segment nodes where they are executed when the wait
statement resumes its execution.

The segment graph construction is a fully automatic but complex process which
we will not describe here (see [6] for detailed coverage). However, the RISC
compiler must parse the SystemC input model first into an Abstract Syntax Tree
(AST). Since SystemC is a syntactically regular C++- code, RISC relies here on the
ROSE compiler infrastructure [18]. The ROSE internal representation (IR) provides
RISC with a powerful C/C++ compiler foundation that supports AST generation,
traversal, analysis, and transformation.

As illustrated with the RISC software stack shown in Fig. 7.2, the RISC compiler
then builds a SystemC IR on top of the ROSE IR which accurately reflects the
SystemC structures, including the module and channel hierarchy, port connectivity,
and other SystemC-specific constructs. On top of the SystemC IR, the compiler
architecture then builds the Segment Graph generator and data structures, as well as
all other RISC analysis and transformation functions.

7.2.1.2 Conflict Analysis

The segment graph data structure serves as the foundation for segment conflict
analysis. At run time, the scheduler in the simulator must ensure that every parallel
thread to be issued has no conflicts with any other threads currently in the READY

Fig. 7.2 Software stack of

the RISC compiler [8] RISC

Segment Graph

SystemC IR
ROSE IR
C/C++ Foundation

100 R. Domer et al.

and RU N queues. For this we use the RISC compiler to detect any possible conflicts
between these threads already at compile time.

Potential conflicts in SystemC include data hazards, event hazards, and timing
hazards, all of which may exist among the segments executed by the threads
considered for parallel execution. Again, we refer to [6] for a detailed discussion
of these hazards and their static or dynamic detection in RISC. However, we note
that if the hazards would be ignored, this would lead to race conditions at run time
and jeopardize the correctness of the SystemC simulation.

7.2.1.3 Source Code Instrumentation

As a result of the conflict analysis, the RISC compiler generates a set of conflict
and timing tables that describe all possible hazards between any two threads. Using
this conservative conflict information, the simulator can then at run time quickly
determine by a simple table look-up whether or not it is safe to issue a given thread
in parallel or ahead of time.

As shown above in Fig.7.1, the RISC compiler and simulator work closely
together. The compiler performs conservative conflict analysis and passes the
analysis results to the simulator which then can make safe scheduling decisions
quickly.

To pass information from the compiler to the simulator, we use automatic source
code instrumentation. That is, the intermediate model generated by the compiler
contains instrumented (automatically generated) code which the simulator can then
safely rely on.

At the same time, the RISC compiler also instruments the SystemC wait
statements with corresponding segment ID and furnishes user-defined channels with
automatic protection against race conditions among communicating threads.

7.2.2 RISC Simulator

The RISC simulator supports out-of-order discrete event simulation (OoO PDES)
[6] for fast SystemC simulation. In OoO PDES, we break the strict order of time (the
synchronous barrier) by localizing time stamps to each thread. Since each thread has
its own time stamp, the OoO PDES scheduler relaxes the event and simulation time
updates, allowing more threads (at different simulation cycles) to run in parallel
and ahead of time. This results in a higher degree of parallelism and thus higher
simulation speed. We are using advanced static compile-time analysis to identify
all such potential conflicts. Based on this information (a simple table look-up is
sufficient), the OoO PDES scheduler can then at run time quickly decide whether or
not a set of threads has any conflicts with each other.

7 Pushing the Limits of Parallel Discrete Event Simulation for SystemC 101

Top mp
q1

q2

|
sDaaln legln legOut
din

DataCut lmgin lmgOuet
dout

Fig. 7.3 Module hierarchy visualization of a SystemC model of a Canny edge detector [17]

7.2.3 RISC Analysis and Transformation Tools

As an example of other SystemC analysis tools built on top of RISC, visual
[17] enables the user to visualize the SystemC module hierarchy. It supports a
graphical user interface implemented with the Gtk API and renders a specified
SystemC source file’s module hierarchy, which is drawn using the Cairo APIL
The tool obtains module data from the SystemC IR in the RISC software stack
which contains information about nested modules and thus can recursively iterate
through nested lists of child modules in order to obtain enough information to
visualize the hierarchy of the entire SystemC source file. The input SystemC source
file may contain thousands of lines of code which can make manually drawing a
representation of the modules, ports, and channels described by the code a difficult
and time-consuming task. Thus the visual tool was created to address this issue.
It can automatically generate a visual representation of a SystemC model in a very
short period of time. Figure 7.3 shows the module visualization of a Canny edge
detector application.

7.3 Experiments

We will now evaluate the performance of the RISC simulator. The following
experiments show the speedup on an Intel Xeon Phi™ Coprocessor 5110P many-
core architecture. The coprocessor contains 60 cores where each core has a
vectorization unit of 512 bit. To obtain unambiguous measurements, we turn CPU
frequency scaling off for all experiments.

7.3.1 Mandelbrot Renderer

The Mandelbrot renderer is a parallel video application to compute the Mandelbrot
set. Basically, the device under test (DUT) hosts a number of renderer units. Each

102 R. Domer et al.

Speedup Mandelbrot Renderer
(60 Cores with each 4 Hyper Threads)

250
200 - - _ . =o=seq.simd |
2 (M)
3150 1 F -(J-par
100 | (N)
par.simd
- (NxM)

50 - f
0 5,-.;;=l’.;.——- — ~ : v

1 2 4 8 16 32 64 128 256
Number of Slices

Fig. 7.4 Speedup of the Mandelbrot Renderer [20]

unit computes a different slice of the Mandelbrot image. At compile time, the user
defines how many slices are available.

Figure 7.4 shows the simulation results [20]. Due to the minimal communication
needs in this application, highest speedups are reached. The vectorization unit with
512 bit can execute up to eight double-precision floating-point operations in parallel.
A speedup M of 6.9x is achieved. The thread-level parallelization increases strongly
on the 60 cores with a speedup N of 50x. Afterwards, the speed slows down due to
the 60 physical cores and use of hyper-threads. Notably, the combination of the
thread and data level parallelization N x M generates a speedup of up to 212x.

7.4 RISC Open Source Project

We make the Recoding Infrastructure for SystemC (RISC) described in this article
freely available online as a software artifact [9]. Generally, an artifact is a software
program together with an applicable data set and test suite that accompanies a
research publication for the purpose of independent evaluation.! The point here is
that the proposed algorithms and data structures are made available as proof-of-
concept implementation and can be used and evaluated by others. Experimental
results may be replicated and validated. The proposed approach can also be
compared against related work and in the presence of source code even be extended.
Otherwise, great challenges are posed in repeatability [15].

IBecause of its importance, artifact evaluation has been adopted as integral part of the review
process in several computer science areas, such as Software Engineering and Programming
Languages [10, 14].

7 Pushing the Limits of Parallel Discrete Event Simulation for SystemC 103

Specifically, the presented RISC compiler and simulator are available as open
source on the web [2] and can be used without restrictions (BSD license terms).
RISC can be downloaded in both source code and binary format.

7.4.1 Open Source Code and Documentation

In its current version [4], the RISC open source package consists of approximately
162,000 lines of code and includes the C++ source code for the RISC compiler and
simulator, Linux build scripts and installation instructions, as well as comprehensive
documentation of the compiler and simulator APIs and tool manual pages. Example
SystemC models, such as an abstract DVD player and the Mandelbrot renderer, and
a regression test bench are included as well.

Given a suitable Linux platform,? the RISC source code package can be
easily installed and then tested. After downloading and adjusting the installation
Makefile, a simple make all command builds and installs the RISC frame-
work and runs several demo examples. The user can then fully evaluate the software
with other SystemC examples and even extend our proof-of-concept implementation
with new features.

7.4.2 Binary Image for “Plug-and-Play” Evaluation

For a quick test run without compilation and installation, we also provide a Docker
container [3] for using RISC in “plug-and-play” fashion. The Docker image contains
RISC (and all needed libraries) in binary format and allows the user to test it with
just a few Linux commands, as shown in Fig. 7.5.

bash# docker pull ucirvinelecs/risc
bash# docker run -it ucirvinelecs/risc
[dockeruser]# cd demodir

[dockeruser]# make test

Fig. 7.5 Linux commands to use RISC in a Docker container

ZRed Hat Enterprise and CentOS Linux version 6 and 7 are verified to work.

104 R. Domer et al.

7.5 Conclusion

The Recoding Infrastructure for SystemC (RISC) provides an automatic compiler-
based framework to analyze and simulate IEEE SystemC models in parallel. In
particular, we have introduced the RISC compiler and simulator. Using automatic
conflict analysis based on segment graph (SG) abstraction, OoO PDES can execute
threads safely in parallel and out-of-order (ahead of time) and thus achieves
fastest simulation speed but nevertheless maintains the classic SystemC modeling
semantics. In order to foster collaboration in the EDA community, we provide the
RISC framework as a free open source artifact for full evaluation and possible
extension.

For the future, we intend to expand our open source efforts and hope to involve
other members of the EDA community to use, evaluate, and extend the RISC
framework.

Acknowledgments This work has been supported in part by substantial funding from Intel
Corporation for two projects titled “Out-of-Order Parallel Simulation of SystemC Virtual Platforms
on Many-Core Architectures” and “Scaling the Recoding Infrastructure for Parallel SystemC
Simulation.” The authors thank Intel Corporation for the valuable support.

References

—

. Accellera Systems Initiative, Core SystemC Language and Examples. http://accellera.org/
downloads/standards/systemc

2. Center for Embedded and Cyber-physical Systems, Recoding Infrastructure for SystemC
(RISC). http://www.cecs.uci.edu/~doemer/risc.html

3. Center for Embedded and Cyber-physical Systems, RISC Docker Container. https://hub.
docker.com/r/ucirvinelecs/risc050/

4. Center for Embedded and Cyber-physical Systems, RISC Release version 0.5.0. http://www.
cecs.uci.edu/~doemer/risc.html#RISC050

5. W. Chen, X. Han, R. Domer, Multi-core simulation of transaction level models using the
system-on-chip environment. IEEE Des. Test Comput. 28(3), 20-31 (2011)

6. W. Chen, X. Han, C.W. Chang, G. Liu, R. Domer, Out-of-order parallel discrete event
simulation for transaction level models. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
33(12), 1859-1872 (2014). https://doi.org/10.1109/TCAD.2014.2356469

7. R. Domer, Seven obstacles in the way of standard-compliant parallel SystemC simulation.
IEEE Embed. Syst. Lett. 8(4), 81-84 (2016). https://doi.org/10.1109/LES.2016.2617284

8. R. Domer, G. Liu, T. Schmidt, Parallel simulation, in Handbook of Hardware/Software
Codesign ed. by S. Ha, J. Teich (Springer, Dordrecht, 2017), pp. 1-32

9. R. Domer, Z. Cheng, D. Mendoza, A. Dingankar, RISC: recoding infrastructure for SystemC,
open source framework for parallel simulation, in Workshop on Open-Source EDA Technology
(WOSET) at ICCAD (2018)

10. Evaluate Collaboratory, Artifact Evaluation. http://evaluate.inf.usi.ch/artifacts

11. P. Ezudheen, P. Chandran, J. Chandra, B.P. Simon, D. Ravi, Parallelizing SystemC kernel
for fast hardware simulation on SMP machines, in PADS ’09: Proceedings of the 2009
ACM/IEEE/SCS 23rd Workshop on Principles of Advanced and Distributed Simulation (2009),
pp- 80-87

http://accellera.org/downloads/standards/systemc
http://accellera.org/downloads/standards/systemc
http://www.cecs.uci.edu/~doemer/risc.html
https://hub.docker.com/r/ucirvinelecs/risc050/
https://hub.docker.com/r/ucirvinelecs/risc050/
http://www.cecs.uci.edu/~doemer/risc.html#RISC050
http://www.cecs.uci.edu/~doemer/risc.html#RISC050
https://doi.org/10.1109/TCAD.2014.2356469
https://doi.org/10.1109/LES.2016.2617284
http://evaluate.inf.usi.ch/artifacts

12.
13.

14.

15.

16.

17.

18.

19.

20.

2

—_

22.

23.

24.

Pushing the Limits of Parallel Discrete Event Simulation for SystemC 105

R. Fujimoto, Parallel discrete event simulation. Commun. ACM 33(10), 30-53 (1990)

IEEE Computer Society, IEEE Standard 1666-2011 for Standard SystemC Language Reference
Manual (IEEE, New York, 2011)

S. Krishnamurthi, Artifact Evaluation Process. http://www.artifact-eval.org/

S. Krishnamurthi, J. Vitek, The real software crisis: repeatability as a core value. Commun.
ACM 58(3), 34-36 (2015). https://doi.org/10.1145/2658987

G. Liu, T. Schmidt, Z. Cheng, D. Mendoza, R. Démer, RISC compiler and simulator, release
V0.5.0: out-of-order parallel simulatable SystemC subset. Technical Report, CECS-TR-18-03,
Center for Embedded and Cyber-physical Systems, University of California, Irvine (2018)

D. Mendoza, R. Domer, A tool for visualization of SystemC models. Technical Report, CECS-
TR-17-06, Center for Embedded and Cyber-physical Systems, University of California, Irvine
(2017)

D.J. Quinlan, ROSE: compiler support for object-oriented frameworks. Parallel Process. Lett.
10(2/3), 215-226 (2000)

C. Roth, S. Reder, H. Bucher, O. Sander, J. Becker, Adaptive algorithm and tool flow for
accelerating SystemC on many-core architectures, in Digital System Design (DSD), 17th
Euromicro Conference (2014)

T. Schmidt, G. Liu, R. Domer, Exploiting thread and data level parallelism for ultimate parallel
SystemC simulation, in Proceedings of the Design Automation Conference (DAC) (2017)

. R. Sinha, A. Prakash, H.D. Patel, Parallel simulation of mixed-abstraction SystemC models on

GPUs and multicore CPUs, in Proceedings of the Asia and South Pacific Design Automation
Conference (ASPDAC) (2012)

N. Ventroux, T. Sassolas, A new parallel SystemC kernel leveraging manycore architectures,
in Proceedings of the Design, Automation and Test in Europe (DATE) Conference (2016)

J.H. Weinstock, R. Leupers, G. Ascheid, D. Petras, A. Hoffmann, SystemC-link: parallel
SystemC simulation using time-decoupled segments, in Proceedings of the Design, Automation
and Test in Europe (DATE) Conference (2016)

D. Yun, J. Kim, S. Kim, S. Ha, Simulation environment configuration for parallel simulation
of multicore embedded systems, in Proceedings of the Design Automation Conference (DAC)
(2011), pp. 345-350

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://www.artifact-eval.org/
https://doi.org/10.1145/2658987
http://creativecommons.org/licenses/by/4.0/

	7 Pushing the Limits of Parallel Discrete Event Simulation for SystemC
	7.1 Introduction
	7.2 RISC Framework
	7.2.1 RISC Compiler
	7.2.1.1 Segment Graph Construction
	7.2.1.2 Conflict Analysis
	7.2.1.3 Source Code Instrumentation

	7.2.2 RISC Simulator
	7.2.3 RISC Analysis and Transformation Tools

	7.3 Experiments
	7.3.1 Mandelbrot Renderer

	7.4 RISC Open Source Project
	7.4.1 Open Source Code and Documentation
	7.4.2 Binary Image for ``Plug-and-Play'' Evaluation

	7.5 Conclusion
	References

