Chapter 10 ®
Compilation for Real-Time Systems Qs
a Decade After PREDATOR

Heiko Falk, Shashank Jadhav, Arno Luppold, Kateryna Muts,
Dominic Oehlert, Nina Piontek, and Mikko Roth

10.1 Introduction

PREDATOR was a collaborative research project running from February 2008 until
January 2011 that was funded by the European 7th Framework Programme under
the lead of Reinhard Wilhelm, Saarland University, Germany. It was concerned
“with embedded systems that are characterized by efficiency requirements on the
one hand and worst-case constraints on the other. [...] Embedded systems with
critical constraints need off-line guarantees for the satisfaction of these constraints.
Unfortunately, it can be observed that in computer system design, the gap between
average-case and worst-case behavior increases rapidly. This entails a decreasing
precision of performance analysis results.” Therefore, PREDATOR proposed “a
new research and design discipline that looks at predictability and efficiency in a
synergistic manner and that involves all levels of abstraction and implementation in
embedded system design” [6, 34].

These different abstraction levels were reflected by the project’s scientific work
packages. WP1 (led by Luca Benini, University of Bologna, Italy) dealt with
predictable and efficient hardware architectures. Both functional and power models
of a predictable architecture were developed and their sensitivity to architectural
parameters that influence predictability and their costs were analyzed. WP2 (lead:
Peter Marwedel, University of Dortmund, Germany) focused on compiler and code
generation techniques for a single application task. Here, optimizations that are
aware of hard real-time constraints and of Worst-Case Execution Times (WCET)
were proposed; multi-objective trade-offs between real-time guarantees and energy
consumption or code size were envisioned. WP3 was led by Giorgio Buttazzo

H. Falk (24) - S. Jadhav - A. Luppold - K. Muts - D. Oehlert - N. Piontek - M. Roth
Institute of Embedded Systems, Hamburg University of Technology (TUHH), Hamburg,
Germany

e-mail: Heiko.Falk @tuhh.de

© The Author(s) 2021 151
J.-J. Chen (ed.), A Journey of Embedded and Cyber-Physical Systems,
https://doi.org/10.1007/978-3-030-47487-4_10


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47487-4_10&domain=pdf
mailto:Heiko.Falk@tuhh.de
https://doi.org/10.1007/978-3-030-47487-4_10

152 H. Falk et al.

(Scuola Superiore Sant’ Anna, Pisa, Italy) and targeted the coordination of multiple
application tasks. Off-line and online coordination techniques were investigated
such that guarantees on tasks’ response times were derived under simultaneous
optimization of resource usage. In the context of WP4 (lead: Lothar Thiele,
ETH Ziirich, Switzerland), distributed embedded systems were considered and the
modular analysis of Multi-Processor Systems on Chip (MPSoC) with respect to
performance and predictability was investigated. Finally, cross-layer aspects of the
design and analysis of predictable and efficiency were considered in WP5 (lead:
Reinhard Wilhelm).

Overall, PREDATOR was a high-quality collaborative effort that produced many
seminal results in the field of designing predictable and efficient hardware and soft-
ware architectures. On the occasion of Peter Marwedel’s 70th anniversary, this arti-
cle surveys the results in the area of compilers for real-time systems that have been
achieved under his leadership within PREDATOR. The foundational character of this
project is highlighted by providing an overview over code optimizations and analy-
ses proposed in the past decade since PREDATOR was executed. These recent works
directly base on challenges identified during and on results produced by PREDATOR.

Section 10.2 puts the state-of-the-art in compilation for real-time systems by the
end of PREDATOR in a nutshell. Recent developments that integrate task coordi-
nation into compiler optimizations are described in Sect. 10.3. The combination of
system-level analysis and code generation techniques for parallel multi-core systems
is the subject of Sect. 10.4. Section 10.5 discusses multi-objective compiler opti-
mizations that are able to adhere to real-time constraints, and Sect. 10.6 concludes
this article and provides an outlook over future work.

10.2 Challenges and State-of-the-Art in WCET-Aware
Compilation During PREDATOR

A program’s WCET stands for its maximal possible execution time, irrespective of
possible input data and of initial states of the hardware architecture. For the design
of hard real-time systems, the WCET is a critical design parameter, since it allows
to reason about whether a program always meets its deadline or not. However, the
exact computation of a program’s WCET is infeasible in general so that conservative
WCET estimates are used instead. In the domain of hard real-time systems, such
WCET estimates are usually produced by static timing analysis tools, e.g., aiT [1].
During PREDATOR’’s single-task activities carried out within Work Package WP2,
such a timing analyzer was tightly integrated into a compiler framework. This
allowed the compiler to perform WCET analyses in a fully automated fashion during
code generation. The WCET data gathered this way constitutes a precise worst-case
timing model inside the compiler which contrasts sharply with standard compilers
that focus on average-case scenarios and that do not feature any timing models at
all. The resulting WCET-aware C Compiler WCC [8] finally exploits this precise
timing model in dedicated WCET-aware, single-task code optimizations.



10 Compilation for Real-Time Systems a Decade After PREDATOR 153

However, modern real-time systems do not consist of only a single task—they are
multi-task systems instead where tasks are preempted and scheduled according to an
operating system’s scheduling policy. Thus, the design of a timing predictable multi-
task system includes the consideration of all tasks’ end-to-end latencies including
blocking times due to preemptions, i.e., the tasks’ Worst-Case Response Times
(WCRT). Based on the tasks’ WCRTS, a subsequent schedulability analysis can be
used to determine whether all tasks definitely meet their respective deadlines. Since
WCETs are characterized by the behavior of machine code for a given processor
architecture, and since WCRTSs and schedulability analyses rely on given WCET
values and mostly depend on task-level scheduling properties, there is a natural link
between compilers and operating systems: the former generate the machine code
that the latter have to schedule. This link was already identified during PREDATOR:

Challenge #1

“The compiler [...] will apply optimizations not for each individual task in
isolation, but will consider all tasks of the entire system in a holistic view.
Furthermore, it is planned to take the individual scheduling policies [...] into
account” [5].

Plazar et al. proposed a software-based cache partitioning for real-time multi-
task systems [29]. Cache partitioning is able to make the behavior of instruction
caches more predictable, since each task of a system is assigned to a unique cache
partition. The tasks in such a system can only evict cache lines residing in the
partition they are assigned to. As a consequence, multiple tasks do not interfere with
each other any longer w.r.t. the cache during context switches. This allows to apply
static WCET analysis for each individual task of the system in isolation. The overall
WCET of a multi-task system using partitioned caches is then composed of the
WCETs of the single tasks given a certain partition size, plus the overhead required
for scheduling and context switching. Until the completion of PREDATOR, an
integration of schedulability analyses and a consideration of individual scheduling
policies during compilation could not be realized due to a shortage of time.

In the context of performance analysis for massively parallel multi-core archi-
tectures, PREDATOR proposed a modular approach where a WCET analysis is
performed for each application per individual processor core in isolation. By
exploiting how often each core accesses the shared bus that connects all cores in
a given MPSoC architecture, the additional timing interference that each processor
core exhibits due to temporarily blocked bus accesses is estimated. According
to PREDATOR’s design rules for predictable architectures [38], TDMA-arbitrated
shared buses were considered during modular performance analysis. In the end,
upper timing bounds of all applications running on all processor cores are derived
in a modular fashion which allows to reason about schedulability for such parallel
multi-core systems [30].



154 H. Falk et al.

Various execution models for the applications running on such an MPSoC
architecture were considered. In the so-called Dedicated Access Model, applications
are structured into three distinct phases: acquisition, execution, and replication.
Only during the first and the latter, a task is allowed to access the shared bus
in order to fetch input data or to write back computed results, resp. Since the main
execution phase of a task is free of shared bus accesses, it cannot suffer from
delays induced by other cores which allows for a very precise timing analysis.
In the General Access Model, accesses to the shared bus can happen anytime
during acquisition, replication, and execution. Thus, a timing analysis becomes
more pessimistic here [31].

As the precision of timing analysis for MPSoCs thus strongly depends on the
execution behavior of tasks, mechanisms enforcing well-suited and predictable
access patterns to shared buses would be advantageous.

Challenge #2

“One new possibility to reduce the effect of (timing) interactions [. . .] is the use of
traffic shapers. It is an open problem to include these units into a system-wide per-
formance analysis that considers computation and communication resources” [5].

However, PREDATOR did not come up with approaches addressing this challenge.

PREDATOR explicitly considered the trade-off between predictability where hard
constraints on a system’s resource usage must be met versus the efficiency of a
system in the average case.

Challenge #3

“We will develop models capturing various optimization objectives within the
compiler, e.g. code size or energy dissipation [. . .]. Novel optimization strategies are
designed in order to minimize an objective other than WCET, under simultaneous
adherence to real-time constraints” [5].

Since the WCC compiler featured a detailed WCET timing model right from
the project start, and since modeling code size at the assembly code level is trivial
from a compiler’s point of view, it was obvious to consider trade-offs between
these two objectives in the beginning. For this purpose, simple heuristics for the
optimization Procedure Cloning were proposed where WCETs were minimized as
long as the resulting code sizes did not exceed a user-provided threshold [19]. Later,
WCC was coupled with an instruction set simulator allowing to perform dynamic
profiling during compilation. Furthermore, data from an instruction-level energy
model [32] was also integrated. This way, the compiler was able to simultaneously
model WCET, code size, ACET, and energy consumption of generated machine
code.



10 Compilation for Real-Time Systems a Decade After PREDATOR 155

These models were used to determine Pareto-optimal sequences of compiler
optimizations. It is a well-known problem that the order in which a compiler
applies its optimizations can have a significant impact on the quality of the finally
generated code. In the context of PREDATOR, a stochastic evolutionary multi-
objective algorithm [20, 21] found optimization sequences that trade pairs of
objectives, i.e., (WCET, ACET) and (WCET, code size), resp. True multi-objective
code optimizations that inherently model and consider different criteria at the same
time during code generation have, however, not been investigated in depth during
PREDATOR.

10.3 Integration of Task Coordination into WCET-Aware
Compilation

Many architectures are equipped with fully software-controllable secondary mem-
ories. These are memories that are tightly integrated with the processor to achieve
the best possible performance. These Scratchpad Memories (SPMs) can be accessed
directly and are therefore in general well-suited for optimizations regarding energy
consumption and execution times.

SPMs turned out to be ideal for WCET-centric optimizations, since their timing
is fully predictable. The WCC compiler exploits SPMs for WCET minimization by
placing assorted parts of a program into a scratchpad memory. During PREDATOR,
an Integer-Linear Program (ILP) originally proposed by Suhendra et al. [33] was
extended towards a single-task SPM allocation where binary decision variables x;
are used per basic block b;. b; is moved from main memory onto the scratchpad
memory if x; equals 1. The overall goal of this ILP is to find an assignment of
values to the variables x; such that the resulting SPM allocation leads to the minimal
WCET of the whole task. Constraints are added to the ILP that model the task’s
internal program structure. For each basic block b; and each successor b, of b; in
the task’s Control Flow Graph (CFG), a constraint is set up bounding the WCET ¢;
of b;:

Ci = Csucc + COSi main_mem — aiN; * X; (10.1)

This constraint states that the WCET c¢; of a path starting in b; must be larger than
the WCET cgy. of any of the successors of b;, plus the contribution of b; to the
WCET itself with b; located in main memory (cost; main_mem), minus the potential
gain when moving b; from main memory onto the scratchpad memory. Additional
constraints in the ILP model loops and function calls. The limited available capacity
of the SPM is considered as well as the additional overhead due to long-distance
jumps from the main memory to the SPM or back. In the end, the WCET of an
entire task is represented in the ILP model by a variable c:;';tiyn which models the

WCET of the path starting at the task’s entry point, i.e., at its main function [7].



156 H. Falk et al.

This basic ILP model turned out to be very powerful and flexible so that it served
as the basis for the optimization of multi-task systems. For this purpose, all tasks of
a multi-task application were modeled in the ILP as described above. As a conse-
quence, the ILP variables c; associated with the entry points of the tasks 7; describe
a safe upper bound of the tasks’ WCETs. An early work [22] towards PREDATOR’s
Challenge #1 on optimization of multi-task systems under consideration of schedul-
ing policies integrated Joseph’s schedulability analysis [15] into this multi-task ILP.

For priority-based scheduling, a task 7;’s WCRT r; is the maximum possible
time interval between the activation of a task and its end, including penalties due to
preemptions by higher-priority tasks. The tasks’ WCRTSs are computed as follows:

i1
Tj
i =cCj — 10.2
rj c,—}-Z[Th—‘*ch ( )
h=0
Eq. (10.2) accumulates the net WCET c; of task 7; and the penalties due to
tasks 7o, ..., 7j— having higher priority than t;. Each such high-priority task tj

preempts 7; a total of {;—j—l times where 7}, denotes a task’s period. For each

preemption of t; by 5, the higher-priority task’s WCET ¢, is considered.
However, it is not straightforward to integrate Eq. (10.2) into an optimization’s
ILP, since both the WCETs c¢;, and the WCRTs r; are ILP variables so that the
multiplication of IV%-I by ¢y, is infeasible. In order to solve this problem, an integer
variable p; j is added to the ILP for every combination of low- and high-priority
tasks 7; and 75, resp. p; , denotes the timing penalty that is added to 7;’s WCRT

due to preemptions by 7. Using these variables, Eq. (10.2) can be rewritten to:

j—1
ri=ci+Y Pjn (10.3)
h=0

In order to model p; j, the following linearization scheme is applied: If r; is
lower than or equal to 7’s period Tj, T; can be preempted at most once by z, thus
leading to p;» = 1% cp. If 7; is greater than 7}, but lower than or equal to 2 * Ty,
Dj.h = 2% ¢y results, etc. In general, it has been proven that

Theorem 10.1 If t; is preempted at least N times by ty,, then pjj > (N + 1) x ¢p,
must hold.

Such so-called conditional constraints can efficiently be translated into ILP in
Eq. [25]. A natural upper bound for the number N of preemptions of t; by 7 is

D; . .. .
{T—h’—‘ where D; denotes task 7;’s deadline. Thus, the conditional constraints from

Theorem 10.1 are added to the ILP for all values of N withO < N < {?—h’—‘ —1and

for all pairs of low- and high-priority tasks z; and t;, resp. Finally, the schedulability
of the entire multi-task set is ensured during this ILP-based optimization by adding
constraints



10 Compilation for Real-Time Systems a Decade After PREDATOR 157
rj < Dj (10.4)

such that the WCRT of each task 7; must be within its respective deadline.

While this work is a first step towards schedulability-aware compiler
optimization, it suffers from a couple of limitations: First, the task model only
supports fixed-priority scheduling and periodic tasks. Second, preemption costs due
to the execution of an actual scheduler and context switching overheads are not
considered. Finally, the number of constraints of the ILP proposed in [22] grows
quadratically with the size of the task set, and it depends on the actual values for
tasks’ deadlines and periods.

The consideration of Liu and Layland’s schedulability test [18] helped to
overcome the limitation to fixed priorities:

.
u:Zﬁfl (10.5)
j

Eq.(10.5) states that a system that is scheduled with dynamic priorities using
Earliest Deadline First (EDF) is schedulable if and only if the system load u is
less than or equal to 1. Due to the already linear nature of Eq. (10.5), it is easy to
integrate this schedulability test into an ILP [22].

The relaxation of strictly periodic task sets required to use an event-based task
model supporting arbitrary task activation patterns and deadlines [24]. For this
purpose, the ILP described above has been extended by support for density and
interval functions 1 and €, resp., as originally proposed by Gresser [10] and later
taken up by Albers et al. [2]. In this approach, an arbitrary kind of task activation
pattern can be characterized by the density function 7 that denotes the maximum
number of events (i.e., task activations) in some time interval Ar. The interval
function € models the inverse behavior and returns the minimal time interval At
in which n tasks are activated. This task model provides a high flexibility so that
periodical multi-task systems, periodical systems with jitter or bursts, or systems
with fully arbitrary task activations can be modeled in the optimization’s ILP.

The consideration of an actual scheduler’s overhead for context switching can be
added to the ILP-based framework described above by introducing an implicit task
1o with the highest priority into the multi-task system. 7y represents the periodically
executed scheduler, and by considering an actual scheduler’s WCET c¢g and its
period Tp, it can smoothly be integrated into the optimization framework [23].

As an alternative to Joseph’s schedulability test (cf. Eq. (10.2)), Baruah proposed
the so-called processor demand test [3]. It states that a multi-task system is
schedulable if and only if the amount of required computation time is less than
or equal to the amount of available computation time:

At =Y [0 (At = D;)* (cj +0j)] (10.6)
Vrj



158 H. Falk et al.

According to the event-based task model described above, At denotes one time
interval to be analyzed. n;j(At — D;) returns the number of activations of task t;
that happen within At and that must be finished before the deadline D;. Each task
activation is multiplied by the task’s respective maximum computational demand,
i.e., its WCET plus additional preemption overheads o;.

Since Eq.(10.6) is linear, it can directly be added to our multi-tasking ILP
model for each task ;. This schedulability test has to be modeled for all possible
time intervals Ar. The maximal interval to be considered is regularly given by the
task set’s hyperperiod. Checking all possible intervals At up to the hyperperiod is
practically infeasible. Fortunately, task preemptions can only occur if a new task is
ready for execution for many real-life scheduling policies like, e.g., EDF. Thus, the
schedulability test from Eq. (10.6) has to be modeled in the ILP only at the points of
discontinuity of the task set’s density functions . Finally, one constraint needs to be
added that ensures that the system’s overall load due to periodically repeating task
activations stays below 100%. It is also possible to extend this approach towards
fixed-priority scheduling, and the resulting ILP model grows only linearly with
the number of events that have to be analyzed, in contrast to the quadratic nature
inherent to [22, 24].

Figure 10.1 shows the effect of our ILP-based multi-task SPM allocation on
schedulability of task sets featuring 8 tasks. We randomly selected 20 different
task sets from TACLeBench [9]. Task periods were also randomly determined using
UUniFast [4] and adjusted [39]. For each task set, periods were assembled such
that the entire system has an approximate initial load of 0.8, 1.0, ..., 2.2 i.e.,
8 different system loads are evaluated per task set. Task deadlines were chosen
uniform randomly between 0.8 and 1.2 times the task’s period. Furthermore, a jitter
of up to 1% of each task’s period was chosen uniform randomly. Our evaluation
considered an ARM-based architecture with access latencies for main memory and
SPM of 6 and 1 clock cycles, resp. The scratchpad size was set to 40% of each task
set’s total size.

—~
x 100 [~ N
~
£
8
;}‘
)
L 50 N
s
<
=
=1
Q
=
&
0 T \ \

1 1 1 1 1
0.8 1.0 1.2 1.4 1.6 1.8 2.0 22

Initial System Load

Unoptimized (DMS) [ ILP-optimized (DMS) | Unoptimized (EDF) ILP-optimized (EDF)

Fig. 10.1 Evaluation of schedulability-aware SPM allocation for 8 tasks



10 Compilation for Real-Time Systems a Decade After PREDATOR 159

Figure 10.1 shows the schedulability of the task sets for the given initial system
loads, using Deadline-Monotonic Scheduling (DMS) and Earliest Deadline First
(EDF). The green and orange bars show the percentage of schedulable systems
without any optimization applied, while the purple and yellow bars represent the
schedulability after our ILP-based multi-task SPM allocation.

For an initial system load of 0.8, all task sets are schedulable, irrespective of the
considered scheduling policy or whether the SPM allocation was applied or not. This
is not surprising, since the considered systems feature sufficient idle times so that
valid schedules are always found. The situation changes when considering higher
initial system loads that range from 1.0 up to 2.2. In these scenarios, no task set
was schedulable in an unoptimized state where the scratchpad memories were not
used at all. However, our multi-task optimization is able to turn the vast majority of
initially unschedulable task sets schedulable. For DMS scheduling, our ILP-based
optimization achieves rates of schedulable task sets ranging from 100% (initial
system loads of 1.0 and 1.2) to still 75% for an initial system load of 2.2. For EDF
scheduling, the percentages of finally schedulable task sets are slightly smaller—
they range from 95% (initial system load of 1.0) to 75% again. The time required
to solve our ILPs is moderate. The whole compilation, analysis, and optimization
process using a modern ILP solver like, e.g., gurobi required less than 6 CPU
minutes on average over all considered task sets.

10.4 Analysis and Optimization of Multi-Processor Systems
on Chip

To address PREDATOR Challenge #2 on analyzing and shaping the communication
traffic for MPSoC architectures, it is important to understand when events happen
in a multi-core architecture which potentially influences the cores’ timing behavior.
For this purpose, modular performance analyses use so-called request functions «
which are very similar to the density function n from Sect. 10.3. In the context
of MPSoCs, however, such functions characterize how often a processor core
requests the shared bus of a multi-core architecture within a certain interval
of time. Usually, such functions are provided at a very abstract level assuming
execution models consisting of, e.g., the aforementioned acquisition, execution,
and replication phases. For a precise analysis when each core attempts to access
a shared hardware resource, it is, therefore, beneficial to extract request functions at
the machine code level [14, 27].

For a precise and tight MPSoC performance analysis, both lower and upper
bounds of resource requests are generated. Positions within the machine code
executed on the different cores are identified where timing-relevant requests are
generated, i.e., where shared hardware resources are accessed. Based on the code’s
Control Flow Graph (CFG), all possible sub-paths inside the code that feature these
identified positions have to be considered. For this purpose, the well-known Implicit



160 H. Falk et al.

150 20 T

z gz |—a

8 8 15

g 100 g

[ [

s S 10

5 2

g 50 g

s Z 5

Z Z

0 | | | 0 | |
0 5,000 10,000 15,000 0 500 1,000 1,500
At [Clock Cycles] At [Clock Cycles]

(a) (b)

Fig. 10.2 Extracted request functions for selected benchmarks. (a) Compressdata. (b)
binarysearch

Path Enumeration Technique (IPET) [17] has been modified to find the maximum
number of requests potentially occurring in a given time interval along any path of a
program. An algorithm has been proposed [27] that provides bounds on the number
of requests for time intervals Az of a program’s runtime under consideration of
all possible paths inside the CFG. This algorithm can be parameterized to trade
precision of the generated request functions versus required execution time by
varying the number of sampling points, i.e., the granularity of time intervals At
considered by the algorithm.

Examples of lower (¢~) and upper (a™¥) request functions generated for
two selected benchmarks compressdata and binarysearch are shown in
Fig. 10.2. The vertical distance between the lower and upper functions shows the
variation of the number of produced requests. For example, compressdata
can terminate with solely 82 shared bus accesses in total, or with up to 131.
For binarysearch, both the lower and upper request functions converge to a
common value, since each possible path through the program’s code covers an
identical number of bus requests. Only the points in time when these events occur
differ.

Figure 10.3 shows the influence of the number of considered sampling points
on the precision of the upper request function @™ of compressdata. The finest-
possible granularity, i.e., At = 1 clock cycle, leads to 131 samples in total and to
a very smooth and precise result. When reducing the granularity such that only 50
samples are considered, the resulting request function has a clearly visible stepwise
shape. However, the resulting function for 50 samples always dominates the most
precise function so that no unsafe results are produced. For the highest precision
with 131 samples, our algorithm requires 48 CPU seconds. In contrast, the time
required to generate the request function for compressdata decreases down to
10 CPU seconds if 50 sampling points are considered.



10 Compilation for Real-Time Systems a Decade After PREDATOR 161

150
g
% 100 |-
&
bS]
o)
e 50|
z
ot (50 Sample Points)
‘ ‘ ‘ | a* (131 (Max) Sample Points)
0

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000
At [Clock Cycles]

Fig. 10.3 Request functions for compressdata with different precision levels

Number of Requests

At [Clock Cycles]

Fig. 10.4 Request functions o and delivery functions S

While request functions « denote the resource demand of a task w.r.t. shared bus
accesses, so-called delivery functions 8 model the available capacity of a shared
hardware resource during modular performance analysis [12, 35]. The relationship
between both types of functions is illustrated in Fig. 10.4. The maximal horizontal
distance between o™ and S represents the maximum delay dp,x a task exhibits due
to blocked shared bus requests. In the figure, a task requests 2 bus accesses during
interval lengths of 3 clock cycles. However, the bus can deliver the desired capacity
only within 13 clock cycles. Thus, a blocking time of 10 clock cycles results from
Fig.10.4.

If a compiler could modify the generated code such that a task’s request function
is shifted towards the rightmost end of Fig. 10.4, its blocking time gets reduced
which in turn probably decreases WCRTSs and improves schedulability for the entire
MPSoC system. This approach was investigated by a Master’s Thesis [28] where
instruction scheduling was exploited. Locally within basic blocks, those instruc-
tions requesting shared bus accesses were postponed by scheduling independent
instructions in front of them. If this succeeds for all program paths of a given length



162 H. Falk et al.

At (e.g., for At = 3 in Fig. 10.4), then the request functions are actually shifted
as intended. This work revealed that compilers can be enabled to systematically
reduce blocking times this way. For MPSoC task sets generated from the MRTC [11]
and UTDSP [37] benchmark collections, blocking time reductions of up to 22.5%
were reported. A solely local rescheduling of instructions, however, suffers from
the inherent limitation that there is not too much potential for postponing shared bus
accesses within a single basic block. Thus, maximal WCRT reductions of only up
to 7.3% were achieved.

This basic idea to reshape bus requests at the code level is also pursued in
currently ongoing work. By transforming the behavior of a task, its request function
is modified such that its traffic will match a required profile. This is done by
inserting additional machine instructions into the code, i.e., NOPs. Therefore, this
approach does not rely on specific hardware or on operating systems that realize
traffic shaping. Instead, the notion of code-inherent traffic shaping is introduced.
If the places where to insert such additional instructions in a task’s CFG are
carefully chosen, parts of its request function that do not fit to a given access
profile can be shaped systematically, even without necessarily increasing the task’s
WCET. For this purpose, two shaping algorithms using a greedy heuristic and an
evolutionary algorithm have been designed which support various kinds of Leaky
Bucket shapers [36].

The effectiveness of code-inherent shaping is depicted in Fig. 10.5 by means of
MRTC’s select benchmark. Based on a Leaky Bucket that generates a stepwise
shaping profile, a delivery function g is assumed such that only half of the requests
originally issued by the task within 1000 clock cycles can be fulfilled. It can be seen
that the systematic insertion of a total of 408 NOP instructions results in a shaped
request function that always stays below this delivery function. For this particular
select task, its WCET increases from originally 36,019 clock cycles up to 50,317
clock cycles. While this WCET increase by 40% seems disadvantageous at a first
glance, it is absolutely acceptable if the task still meets its deadline and if the shaped
request function enables schedulability of the entire MPSoC task set.

—— a* (Original)
2 3 o (Shaped) i
S B
=
S5
Q
~
= 20 =
5
O
E o] e |
z o
0 | | | | | | |
0 200 400 600 800 1,000 1,200 1,400

At [Clock Cycles]

Fig. 10.5 Traffic shaping of select with B(Af) being 50% of a(At) for At = 1000



10 Compilation for Real-Time Systems a Decade After PREDATOR 163

10.5 Multi-Objective Compiler Optimizations Under
Real-Time Constraints

The simultaneous consideration of multiple optimization objectives by a compiler
according to PREDATOR Challenge #3 can, to some extent, already be achieved
using ILP-based techniques, even though ILPs only allow for one objective func-
tion to be maximized or minimized. PREDATOR’s distinction between efficiency
requirements on the one hand and worst-case constraints on the other hand naturally
suggests to model critical constraints that must always be fulfilled as inequations
in an ILP. Efficiency requirements are then modeled by an ILP’s objective function
and get optimized in addition to the satisfaction of critical constraints. This way,
it is rather straightforward to turn the multi-task scratchpad memory allocation
described in Sect. 10.3 into a multi-objective WCET-, schedulability- and energy-
aware optimization.

The schedulability tests from Eq.(10.4) or (10.6) are mandatory constraints
in the SPM allocation’s ILP model. Using an energy model like, e.g., [32], the
energy consumption e; of each basic block b; can be characterized in dependence
of the ILP’s binary decision variables x;. By combining these block-level energy
values with profiling-based information about the blocks’ execution frequencies,
the overall energy consumption e; of task 7; can be modeled. Multiplying these
task-level energy values with the tasks’ activation functions n; (cf. Sect. 10.3) over
the entire task set’s hyperperiod H yields an expression that models the energy
dissipation of the complete multi-task system and that thus can be minimized under
simultaneous adherence to the ILP’s schedulability constraints:

minZnJ- (H)*e;j (10.7)
J

Evaluation results for randomly generated sets of 6 tasks are depicted in Fig. 10.6,
the experimental setup is the same as described in Sect. 10.3. Figure 10.6a shows the
task sets’ schedulability for their respective initial system loads, again using DMS
and EDF scheduling. As can be seen, the multi-objective ILP is able to turn more
than 95% of all task sets schedulable for initial system loads of up to 1.6. For higher
initial loads, schedulability was still achieved for more than 70% of all task sets.

Simultaneously, considerable energy reductions compared to systems that do not
use the SPM were achieved, cf. Fig. 10.6b. For initial system loads of up to 1.8, the
task sets’ energy dissipation was reduced down to less than 70%. For higher initial
system loads, the resulting energy consumption still ranges from 71 to 77%.

Another common additional optimization goal is to meet code size requirements.
Code compression might be used to meet code size constraints in embedded
systems. However, the performance overhead of such techniques might be critical
for real-time systems that must adhere to strict timing constraints. In the context
of PREDATOR Challenge #3, we thus recently considered compiler-based code
compression for hard real-time systems for the very first time [26]. This approach



164 H. Falk et al.

—
[
(=]
[
|

100 |~ N

W
S
[
|

50 - a

Schedulable Systems [%]

Rel. Energy Consumption [%]

(=]

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1.0 1.2 14 1.6 1.8 2.0 22 1.0 1.2 14 1.6 1.8 2.0 22
Initial System Load Initial System Load

Multi-Objective ILP (DMS)  Multi-Objective ILP (EDF)
(a) (b

Fig. 10.6 Evaluation of multi-objective schedulability- and energy-aware SPM allocation for 6
tasks. (a) Schedulability. (b) Energy consumption

exploits lossless asymmetric compression algorithms [13] where a computationally
demanding and highly effective code compression is performed at compile time,
while the decompression is computationally lightweight so that it is feasible to
perform it at runtime.

In the proposed approach, complete binary executable functions are selected
and compressed by the WCC compiler and the resulting bit stream is added to the
executable code produced by the compiler. Furthermore, the executable is extended
by specifically tailored code for the decompression of the selected functions.
Upon execution of a program optimized this way, all compressed functions are
decompressed in one go during the program’s start. For this purpose, a processor’s
scratchpad memory is used as a buffer that finally holds all decompressed functions.
These functions are then directly executed from the SPM.

This approach trades code size reductions due to the selection of functions to be
compressed with the decompression overheads in terms of WCET which should be
as small as possible. For this purpose, an ILP is proposed whose binary decision
variables x; encode whether function f; is compressed or not.

For each function f; that might be compressed, its original, uncompressed code
size Sl.orlg and its Worst-Case Execution Time C;mg are pre-computed. Assuming
that f; would be compressed, the corresponding values Sl.C M and Cl.C oM can also
be pre-determined. For the WCET analysis of a potentially compressed function
fi, the decompression routine is added by the compiler, and the loops therein
are precisely annotated with upper iteration bounds for the decompression of the
currently considered function f; in order to support the WCET analyzer aiT. Based
on this data, the impact of f;’s compression on the entire program’s code size A S;
and Worst-Case Execution Time AC; can be expressed in the ILP.

ILP constraints ensure that the decompressed functions fit in the available SPM,
that the entire program never gets larger due to the inserted decompression routine,
and that the WCET increases of all functions always stay below a user-provided



10 Compilation for Real-Time Systems a Decade After PREDATOR 165

100 |- .

50 - .

Relative WCETSs and Code Sizes [%]

0 T T T 1 1 I
cjpeg_transupp epic gsm gsm_dec gsm_enc mpeg2

Benchmark
Final WCET [ Final Code Size | Code Size of Decompressor

Fig. 10.7 Evaluation of compiler-based WCET-aware code compression for MediaBench

threshold AC' ™Mt Under these constraints, the ILP finally minimizes the entire
program’s code size by selecting appropriate functions f; for compression.

For six large-sized benchmarks from MediaBench [16], the effects of the
proposed compiler-based code compression for an Infineon TriCore architecture
are depicted in Fig.10.7. For each considered benchmark, the diagram shows
the resulting relative WCETs and code sizes, as well as the code size of the
decompression routine added by the compiler. The 100% baseline of Fig. 10.7
denotes the WCETSs and code sizes of the original, unoptimized benchmarks, resp.
For the ILP-based selection of functions to be compressed, the threshold AC!mit
was set to 0.5 so that maximum WCET increases by 50% were still accepted by the
optimization.

As can be seen from Fig. 10.7, the finally obtained WCET increases are way
below this user-provided upper bound. For epic and mpeg2, the WCETs degrade
only marginally by 0.6% and 0.5%, resp. The WCETs of the other benchmarks
increase between 3.5% and 14.1% only. In contrast to this, our approach achieves
rather large code size reductions. After the optimization of gsm_dec, its executable
occupies only 73% of its original memory space. For all other benchmarks, an even
higher degree of compression was achieved that reduces code sizes by more than
a half. This way, the code size of cjpeg transupp was reduced to 42% of its
original size, and a maximal reduction down to only 13% of the original code size
was achieved for mpeg2. Finally, Fig. 10.7 shows that adding extra code to the
generated binaries for the decompression routine is worthwhile, since this overhead
is over-compensated by the achieved overall code size reductions. As can be seen,
the code size overhead due to the decompressor varies between 2% (gsm, gsm_enc
and mpeg2) up to 15% (cjpeg_ transupp) only, compared to the benchmarks’
original code size.



166 H. Falk et al.

10.6 Conclusions

This article presented a survey of work done in the field of compiler techniques
for real-time systems in the authors’ group during the past 10 years. Origin of
all these activities was the collaborative research project PREDATOR funded by
the European 7th Framework Programme. During this project, seminal work was
carried out in order to design predictable yet efficient embedded systems. A couple
of scientific challenges has been identified that have initially been considered
during PREDATOR and that, due to their complexity, required continuous research
effort over many years even after the end of this collaborative research project.
This article summarized these compiler-centric activities and their corresponding
scientific challenges:

Challenge #1: Integration of task coordination into WCET-aware compilation
Challenge #2:  Analysis and optimization of Multi-Processor Systems on Chip
Challenge #3:  Predictable multi-objective compiler optimizations

Despite the advances in the field of compilation for real-time systems achieved
in the past years, we expect that a continuation of this effort is necessary in
the future. This is motivated by the trend towards massively parallel embedded
real-time systems on the one hand, which still requires dedicated analyses and
optimizations that are capable to support current and future many-core architectures.
On the other hand, the simultaneous trade-off of various optimization objectives and
the corresponding systematic exploration of the design space is still an unsolved
problem for optimizing compilers. Last but not least, another important driver for
future research is the increasing complexity of the involved system- and code-level
analyses and optimizations which needs to be managed to obtain automated design
tools that are usable in practice even for highly sophisticated and massively parallel
systems.

Acknowledgments Parts of the work surveyed in this article received funding from Deutsche
Forschungsgemeinschaft (DFG) under project No. 200265263 and 380772147. Other parts
received funding from the European Union’s 7th Framework Programme under grant agreement
No. 216008 (PREDATOR) and from the Horizon 2020 research and innovation programme under
grant agreement No. 779882 (TEAMPLAY).

References

1. AbsInt Angewandte Informatik GmbH, aiT: worst-case execution time analyzers (2020). http://
www.absint.com/ait

2. K. Albers, F. Slomka, An event stream driven approximation for the analysis of real-time
systems, in Proceedings of the 16th Euromicro Conference on Real-Time Systems (ECRTS)
(2004). https://doi.org/10.1109/EMRTS.2004.1311020


http://www.absint.com/ait
http://www.absint.com/ait
https://doi.org/10.1109/EMRTS.2004.1311020

10

3

4

V)]

10.

11.

12.

13.

14.

15.

16.

17.

20.

21.

Compilation for Real-Time Systems a Decade After PREDATOR 167

. S.K. Baruah, Dynamic- and static-priority scheduling of recurring real-time tasks. Real-Time
Syst. 24, 93-128 (2003). https://doi.org/10.1023/A:1021711220939

. E. Bini, G.C. Buttazzo, Measuring the performance of schedulability tests. Real-Time Syst. 30,
129-154 (2005). https://doi.org/10.1007/s11241-005-0507-9

. European Commission, Grant Agreement for FP7-ICT-216008 PREDATOR (2007)

. European Commission, Design for predictability and efficiency (2017). https://cordis.europa.
eu/project/rcn/85432

. H. Falk, J.C. Kleinsorge, Optimal static WCET-aware scratchpad allocation of program code,
in Proceedings of the 46th Design Automation Conference (DAC) (2009). https://doi.org/10.
1145/1629911.1630101

. H. Falk, P. Lokuciejewski, A compiler framework for the reduction of worst-case execution
times. Real-Time Syst. 46, 251-300 (2010). https://doi.org/10.1007/s11241-010-9101-x

. H. Falk, S. Altmeyer, P. Hellinckx, et al., TACLeBench: a benchmark collection to support

worst-case execution time research, in Proceedings of the 16th International Workshop on

Worst-Case Execution Time Analysis (WCET) (2016). https://doi.org/10.4230/OASIcs.WCET.

2016.2

K. Gresser, An event model for deadline verification of hard real-time systems, in Proceedings

of the 5th Euromicro Workshop on Real-Time Systems (ECRTS) (1993). https://doi.org/10.1109/

EMWRT.1993.639067

J. Gustafsson, A. Betts, A. Ermedahl, B. Lisper, The Milardalen WCET benchmarks: past,

present and future, in Proceedings of the 10th International Workshop on Worst-Case Execution

Time Analysis (WCET) (2010). https://doi.org/10.4230/OASIcs. WCET.2010.136

R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, R. Ernst, System level performance

analysis — the SymTA/S approach, in IEE Proceedings — Computers and Digital Techniques

(2005). https://doi.org/10.1049/ip-cdt:20045088

A. Hidayat, FastLZ — free, open-source, portable real-time compression library (2007). http://

fastlz.org

M. Jacobs, S. Hahn, S. Hack, WCET analysis for multi-core processors with shared buses and

event-driven bus arbitration, in Proceedings of the 23rd International Conference on Real-Time

Networks and Systems (RTNS) (2015). https://doi.org/10.1145/2834848.2834872

M. Joseph, P.K. Pandya, Finding response times in a real-time system. Comput. J. 29, 390-395

(1986). https://doi.org/10.1093/comjnl/29.5.390

C. Lee, M. Potkonjak, W.H. Mangione-Smith, MediaBench: a tool for evaluating and

synthesizing multimedia and communications systems, in Proceedings of the 30th Annual

International Symposium on Microarchitecture (1997). https://doi.org/10.1109/MICRO.1997.

645830

Y.T.S. Li, S. Malik, Performance analysis of embedded software using implicit path enumer-

ation, in Proceedings of the Design Automation Conference (DAC) (1995). https://doi.org/10.

1145/217474.217570

. C.L. Liu, J.W. Layland, Scheduling algorithms for multiprogramming in a hard-real-time
environment. J. ACM (1973). https://doi.org/10.1145/321738.321743

. P. Lokuciejewski, H. Falk, P. Marwedel, WCET-driven, code-size critical procedure cloning,

in Proceedings of the 11th International Workshop on Software and Compilers for Embedded

Systems (SCOPES), Munich (2008), pp. 21-30

P. Lokuciejewski, S. Plazar, H. Falk, P. Marwedel, L. Thiele, Multi-objective exploration

of compiler optimizations for real-time systems, in Proceedings of the 13th International

Symposium on Object/Component/Service-oriented Real-time Distributed Computing (ISORC)

(2010). https://doi.org/10.1109/ISORC.2010.15

P. Lokuciejewski, S. Plazar, H. Falk, P. Marwedel, L. Thiele, Approximating Pareto optimal

compiler optimization sequences — a trade-off between WCET, ACET and code size. Softw.

Pract. Exp. (2011). https://doi.org/10.1002/spe.1079


https://doi.org/10.1023/A:1021711220939
https://doi.org/10.1007/s11241-005-0507-9
https://cordis.europa.eu/project/rcn/85432
https://cordis.europa.eu/project/rcn/85432
https://doi.org/10.1145/1629911.1630101
https://doi.org/10.1145/1629911.1630101
https://doi.org/10.1007/s11241-010-9101-x
https://doi.org/10.4230/OASIcs.WCET.2016.2
https://doi.org/10.4230/OASIcs.WCET.2016.2
https://doi.org/10.1109/EMWRT.1993.639067
https://doi.org/10.1109/EMWRT.1993.639067
https://doi.org/10.4230/OASIcs.WCET.2010.136
https://doi.org/10.1049/ip-cdt:20045088
http://fastlz.org
http://fastlz.org
https://doi.org/10.1145/2834848.2834872
https://doi.org/10.1093/comjnl/29.5.390
https://doi.org/10.1109/MICRO.1997.645830
https://doi.org/10.1109/MICRO.1997.645830
https://doi.org/10.1145/217474.217570
https://doi.org/10.1145/217474.217570
https://doi.org/10.1145/321738.321743
https://doi.org/10.1109/ISORC.2010.15
https://doi.org/10.1002/spe.1079

168

22.

23.

24.

25.

26.

217.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

H. Falk et al.

A. Luppold, H. Falk, Code optimization of periodic preemptive hard real-time multitasking
systems, in Proceedings of the 18th International Symposium on Real-Time Distributed
Computing (ISORC) (2015). https://doi.org/10.1109/ISORC.2015.8

A. Luppold, H. Falk, Schedulability aware WCET-optimization of periodic preemptive hard
real-time multitasking systems, in Proceedings of the 18th International Workshop on Software
& Compilers for Embedded Systems (SCOPES) (2015). https://doi.org/10.1145/2764967.
2771930

A. Luppold, H. Falk, Schedulability-aware SPM allocation for preemptive hard real-time
systems with arbitrary activation patterns, in Proceedings of Design, Automation and Test in
Europe (DATE) (2017). https://doi.org/10.23919/DATE.2017.7927149

A. Luppold, D. Oehlert, H. Falk, Evaluating the performance of solvers for integer-linear
programming. Tech. Rep., Hamburg University of Technology (2018). https://doi.org/10.
15480/882.1839

K. Muts, A. Luppold, H. Falk, Compiler-based code compression for hard real-time systems,
in Proceedings of the 22nd International Workshop on Software and Compilers for Embedded
Systems (SCOPES) (2019). https://doi.org/10.1145/3323439.3323976

D. Oehlert, S. Saidi, H. Falk, Compiler-based extraction of event arrival functions for real-time
systems analysis, in Proceedings of the 30th Euromicro Conference on Real-Time Systems
(ECRTS) (2018). https://doi.org/10.4230/LIPlcs.ECRTS.2018.4

N. Piontek, Instruktionsscheduling fiir harte Multi-Core Echtzeitsysteme mit gemeinsam
genutztem Datenbus. Masters Thesis, Hamburg University of Technology (TUHH) (2018)

S. Plazar, P. Lokuciejewski, P. Marwedel, WCET-aware software based cache partitioning for
multi-task real-time systems, in Proceedings of the 9th International Workshop on Worst-Case
Execution Time Analysis (WCET) (2009). https://doi.org/10.4230/0ASIcs. WCET.2009.2286
A. Schranzhofer, R. Pellizzoni, J.J. Chen, L. Thiele, M. Caccamo, Worst-case response time
analysis of resource access models in multi-core systems, in Proceedings of the Design
Automation Conference (DAC) (2010). https://doi.org/10.1145/1837274.1837359

A. Schranzhofer, J.J. Chen, L. Thiele, Timing analysis for TDMA arbitration in resource
sharing systems, in Proceedings of 16th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS) (2010). https://doi.org/10.1109/RTAS.2010.24

S. Steinke, M. Knauer, L. Wehmeyer, P. Marwedel, An accurate and fine grain instruction-level
energy model supporting software optimizations, in Proceedings of the International Workshop
on Power And Timing Modeling, Optimization and Simulation (PATMOS). Yverdon-Les-Bains
(2001)

V. Suhendra, T. Mitra, A. Roychoudhury, T. Chen, WCET centric data allocation to scratchpad
memory, in Proceedings of the 26th IEEE Real-time Systems Symposium (RTSS) (2005). https://
doi.org/10.1109/RTSS.2005.45

The PREDATOR Consortium, PREDATOR - design for predictability and efficiency (2011).
https://www.predator-project.eu

L. Thiele, S. Chakraborty, M. Naedele, Real-time calculus for scheduling hard real-time
systems, in The 2000 IEEE International Symposium on Circuits and Systems. Proceedings.
ISCAS 2000 Geneva, vol. 4 (2000), pp. 101-104

J.S. Turner, New directions in communications (or which way to the information age?). IEEE
Commun. Mag. (1986). https://doi.org/10.1109/MCOM.1986.1092946

UTDSP Benchmark Suite (2019). http://www.eecg.toronto.edu/$\sim$corinna/DSP/
infrastructure/UTDSP.html


https://doi.org/10.1109/ISORC.2015.8
https://doi.org/10.1145/2764967.2771930
https://doi.org/10.1145/2764967.2771930
https://doi.org/10.23919/DATE.2017.7927149
https://doi.org/10.15480/882.1839
https://doi.org/10.15480/882.1839
https://doi.org/10.1145/3323439.3323976
https://doi.org/10.4230/LIPIcs.ECRTS.2018.4
https://doi.org/10.4230/OASIcs.WCET.2009.2286
https://doi.org/10.1145/1837274.1837359
https://doi.org/10.1109/RTAS.2010.24
https://doi.org/10.1109/RTSS.2005.45
https://doi.org/10.1109/RTSS.2005.45
https://www.predator-project.eu
https://doi.org/10.1109/MCOM.1986.1092946
http://www.eecg.toronto.edu/$sim $corinna/DSP/infrastructure/UTDSP.html
http://www.eecg.toronto.edu/$sim $corinna/DSP/infrastructure/UTDSP.html

10 Compilation for Real-Time Systems a Decade After PREDATOR 169

38. R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, C. Ferdinand, Memory
hierarchies, pipelines, and buses for future architectures in time-critical embedded systems.
Trans. Comput.-Aid. Des. Integr. Circuits Syst. 28, 966-978 (2009). https://doi.org/10.1109/
TCAD.2009.2013287

39. J. Xu, A method for adjusting the periods of periodic processes to reduce the least common
multiple of the period lengths in real-time embedded systems, in Proceedings of the Interna-
tional Conference on Mechatronic and Embedded Systems and Applications (MESA) (2010).
https://doi.org/10.1109/MESA.2010.5552058

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


https://doi.org/10.1109/TCAD.2009.2013287
https://doi.org/10.1109/TCAD.2009.2013287
https://doi.org/10.1109/MESA.2010.5552058
http://creativecommons.org/licenses/by/4.0/

	10 Compilation for Real-Time Systems a Decade After Predator
	10.1 Introduction
	10.2 Challenges and State-of-the-Art in WCET-Aware Compilation During Predator
	10.3 Integration of Task Coordination into WCET-Aware Compilation
	10.4 Analysis and Optimization of Multi-Processor Systems on Chip
	10.5 Multi-Objective Compiler Optimizations Under Real-Time Constraints
	10.6 Conclusions
	References


