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Abstract. Efficient job scheduling on data centers under heterogeneous
complexity is crucial but challenging since it involves the allocation of
multi-dimensional resources over time and space. To adapt the com-
plex computing environment in data centers, we proposed an innovative
Advantage Actor-Critic (A2C) deep reinforcement learning based app-
roach called A2cScheduler for job scheduling. A2cScheduler consists of
two agents, one of which, dubbed the actor, is responsible for learn-
ing the scheduling policy automatically and the other one, the critic,
reduces the estimation error. Unlike previous policy gradient approaches,
A2cScheduler is designed to reduce the gradient estimation variance and
to update parameters efficiently. We show that the A2cScheduler can
achieve competitive scheduling performance using both simulated work-
loads and real data collected from an academic data center.

Keywords: Job scheduling - Cluster scheduling - Deep reinforcement
learning - Actor critic

1 Introduction

Job scheduling is a critical and challenging task for computer systems since it
involves a complex allocation of limited resources such as CPU/GPU, memory
and IO among numerous jobs. It is one of the major tasks of the scheduler in
a computer system’s Resource Management System (RMS), especially in high-
performance computing (HPC) and cloud computing systems, where inefficient
job scheduling may result in a significant waste of valuable computing resources.
Data centers, including HPC systems and cloud computing systems, have become
progressively more complex in their architecture [15], configuration (e.g., spe-
cial visualization nodes in a cluster) [6] and the size of work and workloads
received [3], all of which increase the job scheduling complexities sharply.

The undoubted importance of job scheduling has fueled interest in the
scheduling algorithms on data centers. At present, the fundamental schedul-
ing methodologies [18], such as FCFS (first-come-first-serve), backfilling, and
priority queues that are commonly deployed in data centers are extremely hard
and time-consuming to configure, severely compromising system performance,
flexibility and usability. To address this problem, several researchers have pro-
posed data-driven machine learning methods that are capable of automatically
learning the scheduling policies, thus reducing human interference to a minimum.
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Specifically, a series of policy based deep reinforcement learning approaches have
been proposed to manage CPU and memory for incoming jobs [10], schedule
time-critical workloads [8], handle jobs with dependency [9], and schedule data
centers with hundreds of nodes [2].

Despite the extensive research into job scheduling, however, the increasing
heterogeneity of the data being handled remains a challenge. These difficulties
arise from multiple issues. First, policy gradient DRL method based scheduling
method suffers from a high variance problem, which can lead to low accuracy
when computing the gradient. Second, previous work has relied on used Monte
Carlo (MC) method to update the parameters, which involved massive calcula-
tions, especially when there are large numbers of jobs in the trajectory.

To solve the above-mentioned challenges, we propose a policy-value based
deep reinforcement learning scheduling method called A2cScheduler, which can
satisfy the heterogeneous requirements from diverse users, improve the space
exploration efficiency, and reduce the variance of the policy. A2cScheduler con-
sists of two agents named actor and critic respectively, the actor is responsible
for learning the scheduling policy and the critic reduces the estimation error. The
approximate value function of the critic is incorporated as a baseline to reduce
the variance of the actor, thus reducing the estimation variance considerably [14].
A2cScheduler updates parameters via the multi-step Temporal-difference (TD)
method, which speeds up the training process markedly compared to conven-
tional MC method due to the way TD method updates parameters. The main
contributions are summarized as below:

1. This represents the first time that A2C deep reinforcement has been suc-
cessfully applied to a data center resource management, to the best of the
authors’ knowledge.

2. A2cScheduler updates parameters via multi-step Temporal-difference (TD)
method which speeds up the training process comparing to MC method due
to the way TD method updates parameters. This is critical for the real
world data center scheduling application since jobs arrive in real time and
low latency is undeniably important.

3. We tested the proposed approach on both real-world and simulated datasets,
and results demonstrate that our proposed model outperformed many existing
widely used methods.

2 Related Work

Job Scheduling with Deep Reinforcement Learning. Recently, researchers
have tried to apply deep reinforcement learning on cluster resources manage-
ment. A resource manager DeepRM was proposed in [10] to manage CPU and
memory for incoming jobs. The results show that policy based deep reinforce-
ment learning outperforms the conventional job scheduling algorithms such as
Short Job First and Tetris [4]. [8] improves the exploration efficiency by adding
baseline guided actions for time-critical workload job scheduling. [17] discussed
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Fig. 1. A2cScheduler job scheduling framework.

heuristic based method to coordinate disaster response. Mao proposed Decima
in [9] which could handle jobs with dependency when graph embedding technique
is utilized. [2] proved that policy gradient based deep reinforcement learning can
be implemented to schedule data centers with hundreds of nodes.

Actor-Critic Reinforcement Learning. Actor-critic algorithm is the most
popular algorithm applied in the reinforcement learning framework [5] which falls
into three categories: actor-only, critic-only and actor-critic methods [7]. Actor-
critic methods combine the advantages of actor-only and critic-only methods.
Actor-critic methods usually have good convergence properties, in contrast to
critic-only [5]. At the core of several recent state-of-the-art Deep RL algorithms
is the advantage actor-critic (A2C) algorithm [11]. In addition to learning a
policy (actor) m(a|s;8), A2C learns a parameterized critic: an estimate of value
function v, (s), which then uses both to estimate the remaining return after k
steps, and as a control variate (i.e. baseline) that reduces the variance of the
return estimates [13].

3 Method and Problem Formulation

In this section, we first review the framework of A2C deep reinforcement learning,
and then explain how the proposed A2C based A2cScheduler works in the job
scheduling on data centers. The rest part of this section covers the essential
details about model training.

3.1 A2C in Job Scheduling

The Advantage Actor-critic (A2C), which combines policy based method and
value based method, can overcome the high variance problem from pure policy
gradient approach. The A2C algorithm is composed of a policy 7 (a;|s¢; 0) and a
value function V (s;; w), where policy is generated by policy network and value is
estimated by critic network. The proposed the A2cScheduler framework is shown
in Fig.1, which consists of an actor network, a critic network and the cluster
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environment. The cluster environment includes a global queue, a backlog and
the simulated machines. The queue is the place holding the waiting jobs. The
backlog is an extension of the queue when there is not enough space for waiting
jobs. Only jobs in the queue will be allocated in each state.

The Setting of A2C

— Actor: The policy 7 is an actor which generates probability for each possible
action. 7 is a mapping from state s; to action a;. Actor can choose a job
from the queue based on the action probability generated by the policy 7.
For instance, given the action probability P = {p1,...,pn} for N actions, p;
denotes the probability that action a; will be selected. If the action is chosen
according to the maximum probability (action = arg maX;c (o, N,ieN+ Pi)s the
actor acts greedily which limits the exploration of the agent. Exploration is
allowed in this research. The policy is estimated by a neural network m(als, 6),
where a is an action, s is the state of the system and 6 is the weights of the
policy network.

— Critic: A state-value function v(s) used to evaluate the performance of the
actor. It is estimated by a neural network 9(s, w) in this research where s is
the state and w is the weights of the value neural network.

— State s; € S: A state s; is defined as the resources allocation status of the
data center including the status of the cluster and the status of the queue at
time t. The states S is a finite set. Figure 2 shows an example of the state in
one time step. The state includes three parts: status of the resources allocated
and the available resources in the cluster, resources requested by jobs in the
queue, and status of the jobs waiting in the backlog. The scheduler will only
schedules jobs in the queue.

— Action a; € A: An action a; = {a;}¥ denotes the allocation strategy of jobs
waiting in the queue at time ¢, where N is the number of slots for waiting
jobs in the queue. The action space A of an actor specifies all the possible
allocations of jobs in the queue for the next iteration, which gives a set of N+1
discrete actions represented by {0, 1,2,..., N} wherea; =i(Vi € {1,...,N})
means the allocation of the i*” job in the queue and a; = @ denotes a void
action where no job is allocated.

— Environment: The simulated data center contains resources such as CPUs,
RAM and I/0. Tt also includes resource management queue system in which
jobs are waiting to be allocated.

— Discount Factor v: A discount factor v is between 0 and 1, and is used to
quantify the difference in importance between immediate rewards and future
rewards. The smaller of 7, the less importance of future rewards.

— Transition function P : S x A — [0,1]: Transition function describes the
probabilities of moving between current state to the next state. The state
transition probability p(si11]s:, at) represents the probability of transiting to
S¢r+1 € S given a joint action a; € A is taken in the current state s; € S.

— Reward function r € R = S x A — (—00,+00): A reward in the data
center scheduling problem is defined as the feedback from the environment
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Fig. 2. An example of the tensor representation of a state. At each iteration, the deci-
sion combination of number of jobs will be scheduled is 27°*@%obs | which has exponen-
tial growth rate. We simplify the case by selecting a decision from decision_domain =
{0,1,..., N}, where N is a fixed hyper-parameter, decision = ¢ denotes select i'" job,
and deciston = 0 denotes no job will be selected.

when the actor takes an action at a state. The actor attempts to maximize
its expected discounted reward

Ry = E(r} +’Y7"§+1 +..) = (Z Y Tt-i—k) E(r{ + vRit1).

The agent reward at time t is deﬁned as ry = ——T_ , where T} is the runtime
J
for job j.

The goal of data center job scheduling is to find the optimal policy 7* (a
sequence of actions for agents) that maximizes the total reward. The state value
function Q™ (s, a) is introduced to evaluate the performance of different policies.
Q7 (s,a) stands for the expected total reward with discount from current state
s on-wards with the policy 7, which is equal to:

Q™ (s¢,a1) = Ex(Ry|st,a¢) = Ex(re +7Q7(s',a"))
_7"t+'YZP7r $)Q(s',a’), (1)

s'eS

where s’ is the next state, and a’ is the action for the next time step.

Function approximation is a way for generalization when the state and/or
action spaces are large or continuous. Several reinforcement learning algorithms
have been proposed to estimate the value of an action in various contexts such
as the Q-learning [16] and SARSA [12]. Among them, the model-free Q-learning
algorithm stands out for its simplicity [1]. In Q-learning, the algorithm uses a
Q-function to calculate the total reward, defined as @ : S x A — R. Q-learning
iteratively evaluates the optimal Q-value function using backups:

Q(s,a) = Q(s,a) + afr + ymax, Q(s',a’) — Q(s,a)], (2)
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where a € [0,1) is the learning rate and the term in the brackets is the temporal-
difference (TD) error. Convergence to Q™ is guaranteed in the tabular case
provided there is sufficient state/action space exploration.

The Loss Function for Critic. Loss function of the critic is utilized to update
the critic network parameters.

L(w;) = E(r + ’Ymaffa'Q(S/a as wi—1) — Q(s, a; wz’))Z» (3)

where s’ is the state encountered after state s. Critic update the parameters of
the value network by minimizing critic loss in Eq. 3.

Advantage Actor-critic. The critic updates state-action value function
parameters, and the actor updates policy parameters, in the direction suggested
by the critic. A2C updates both the policy and value-function networks with
the multi-step returns as described in [11]. Critic is updated by minimizing the
loss function of Eq.3. Actor network is updated by minimizing the actor loss
function in equation

L(67) = Vg logm (a¢|si;0") A (se, a0, w;), (4)

where 6; is the parameters of the actor neural network and w; is the parameters of
the critic neural network. Note that the parameters 6; of policy and w; of value
are distinct for generality. Algorithm 1 presents the calculation and update of
parameters per episode.

3.2 Training Algorithm

The A2C consists of an actor and a critic, and we implement both of them using
deep convolutional neural network. For the Actor neural network, it takes the
afore-mentioned tensor representation of resource requests and machine status
as the input, and outputs the probability distribution over all possible actions,
representing the jobs to be scheduled. For the Critic neural network, it takes as
input the combination of action and the state of the system, and outputs the a
single value, indicating the evaluation for actor’s action.

4 Experiments

4.1 Experiment Setup

The experiments are executed on a desktop computer with two RTX-2080 GPUs
and one i7-9700k 8-core CPU. A2cScheduler is implemented using Tensorflow
framework. Simulated jobs arrive online in Bernouli process. A piece of job trace
from a real data center is also tested. CPU and Memory are the two kinds of
resources considered in this research.
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Algorithm 1. A2C reinforcement learning scheduling algorithm

Input: a policy parameterization 7(a|s, )
Input: a state-value function parameterization 9(s, w)
Parameters: step sizes a’ > 0,a% >0
Initialization: policy parameter 6 € R? and state-value function weights w €
RY( e.g., to 0.001)
Output: The scheduled sequence of jobs|[1..n]
Loop forever (for each episode):
Initialize S (state of episode)
Loop while S is not terminal (for each time step of episode):
A ~7(]5,0)
Take action A, observe state S’, reward R
§— R+~0(S",w)—9(S,w) (If S is terminal, then 9 (S',w) = 0)
w—w+aVéVo(S,w)
0 —0+a°5Vinm(AlS,0)

S <9
Table 1. Performance comparison when model converged.
Job rate
0.9 0.8
Type Random Tetris SJF A2cScheduler Random Tetris SJF A2cScheduler

Slowdown|5.50 £+ 0.00 |2.90 4+ 0.001.81 + 0.00[2.03 +0.01 6.2+ 0.00 |3.25+ 0.00[2.52 +0.00 {2.30 4+ 0.05
Complete [12.51 + 0.00{8.61 + 0.00(7.42 4+ 0.00 |7.20 +0.01 (14.21 + 0.00/8.50 + 0.00/6.50 + 0.00 6.20 + 0.04
time

Waiting |8.22 £+ 0.00 [3.32+0.002.21 £+ 0.00 |2.20+0.01 [9.15+0.00 2.10 4 0.00{1.93 £ 0.00/2.12 £ 0.005
time

The training process begins with an initial state of the data center. At each
time step, a state is passed into the policy network 7. An action is generated
under policy 7. A void action is made or a job is chosen from the global queue and
put into the cluster for execution. Then a new state is generated and some reward
is collected. The states, actions, policy and rewards are collected as trajectories.
Meanwhile, the state is also passed into the value network to estimate the value,
which used to evaluate the performance of the action. Actor in A2cScheduler
learns to produce resource allocation strategies from experiences after epochs.

Table 2. Performance comparison when model converged.

Job rate
0.7 0.6
Type Random Tetris SJF A2cScheduler Random  |Tetris SJF A2cScheduler

Slowdown |5.05 £+ 0.00 (3.32£0.00 |2.1440.00/1.91 £+ 0.02 |3.22+ 0.00(1.82 £ 0.00|1.56 £ 0.00/1.36 £+ 0.04
Complete [13.15+0.00/10.02 4 0.00|7.66 = 0.00/6.10 £ 0.03 |10.0 £ 0.00|5.50 £ 0.00|5.50 £ 0.00/5.50 £ 0.04
time

Waiting [8.32+0.00 |4.51+0.00 |2.53 +0.00/1.82 4+ 0.03 |8.32 4+ 0.00/1.48 £ 0.00(1.48 + 0.00/1.50 &+ 0.003
time
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4.2 Evaluation Metrics

Reinforcement learning algorithms, including A2C, have been mostly evaluated
by converging speed. However, these metrics are not very informative in domain-
specific applications such as scheduling. Therefore, we present several evaluation
metrics that are helpful for access the performance of the proposed model.
Given a set of jobs J = {J1,...,jn}, where i job is associated with arrival
time t¢, finish time tzf , and execution time 5.
tf—12 ci

Average Job Slowdown. The slowdown for it" job is defined as s; = T =%,

where ¢; = t{ —t¢ is the completion time of the job and ¢; is the duration of the

t n
= i=1
slowdown metric is important because it helps to evaluate normalized waiting

time of a system.

n o .f a
job. The average job slowdown is defined as 5449 = % ) 21 qti =15 7. The
i=1 ‘

Average Job Waiting Time. For the i*" job, the waiting time t,,; is the time
between arrival and start of execution, which is formally defined as t,,; = ] —¢{.

4.3 A2cScheduler with CNIN

We simulated the data center cluster containing N nodes with two resources:
CPU and Memory. We trained the A2c¢Scheduler with different neural networks
including a fully connected layer and Convolutional Neural Networks (CNN).
In order to design the best performance neural networks, we explore different
CNN architectures and compare whether it converges and how is the converge
speed with different settings. As shown in Table3, fully connected layer (FC
layer) with a flatten layer in front did not converge. This is because the state
of the environment is a matrix with location information while some location
information lost in the flatten layer when the state is processed. To keep the
location information, we utilize CNN layers (16 3 * 3-filters CNN layer and 32
3 *3-filters CNN layer) and they show better results. Then, we explored CNN
with max-pooling and CNN with flattening layer behind. Results show both of
them could converge but CNN with max-pooling gets poorer results. This is
due to some of the state information also get lost when it passes max-pooling
layer. According to the experiment results, we decide to choose the CNN with
a flattening layer behind architecture as it converges fast and gives the best
performance.

4.4 Baselines

The performance of the proposed method is compared with some of the main-
stream baselines such as Shortest Job First (SJF), Tetris [4], and random policy.
SJF sorts jobs according to their execution time and schedules jobs with the



914

shortest execution time first; Tetris schedules job by a combined score of pref-
erences for the short jobs and resource packing; random policy schedules jobs
randomly. All of these baselines work in a greedy way that allocates as many
jobs as allowed by the resources, and share the same resource constraints and

S. Liang et al.
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Fig. 3. A2C performance with a job arrival rate =0.7

Table 3. Performances of different network architectures.

Architecture Converge | Converging speed | Converging epochs
FC layer No N.A N.A.

Conv3-16 Yes Fast 500

Conv3-32 Yes Slow 1100

Conv3-16 + pooling | Yes Fast 700

Conv3-32 + pooling | Yes Fast 900

take the same input as the proposed model.
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Fig. 4. A2C performance with real world log data

Table 4. Results of job traces.

Type Random | Tetris SJF A2cScheduler
Slowdown | 3.52+0.00| 1.824+0.00 | 1.61 +0.00 | 1.01 £+ 0.02
cT™ 10.24+0.00 | 5.55+0.00 | 5.51 +0.00 | 2.58 £ 0.01
wT* 6.32+£0.00 | 1.25+0.00 | 1.21 +0.00 | 0.01 £ 0.02

4.5 Performance Comparison

915

Performance on Synthetic Dataset. In our experiment, the A2c¢Scheduler
utilized an A2C reinforcement learning method. It is worth to mention that
the model includes the option to have multiple episodes in order to allow us
to measure the average performance achieved and the capacity to learn for each
scheduling policy. Algorithm 1 presents the calculation and update of parameters
per episode. Figure 3 shows experimental results with synthetic job distribution

as input.

Figure 3(a) and Figure 3(b) present the rewards and averaged slowdown when
the new job rate is 0.7. Cumulative rewards and averaged slowdown converge



916 S. Liang et al.

around 500 episodes. A2cScheduler has lower averaged slowdown than random,
Tetris and SJF after 500 episodes. Figure 3(c) and Figure 3(d) show the average
completion time and average waiting time of the A2cScheduler algorithm versus
baselines. As we can see, the performance of A2cScheduler is the best comparing
to all the baselines.

Table 1, 2 present the steady state simulation results at different job rates.
We can see the A2cScheduler algorithm gets the best or close to the best perfor-
mance regrading slowdown, average completion time and average waiting time
at different job rates ranging from 0.6 to 0.9.

Performance on Real-world Dataset. We ran experiments with a piece of
job trace from an academic data center. The results were shown in Fig.4. The
job traces were preprocessed before they are trained with the A2cScheduler.
There was some fluctuation at the first 500 episodes in Fig. 4(a), then it started
to converge. Figure4(b) shows the average slowdown was better than all the
baselines and close to optimal value 1, which means the average waiting time
was almost 0 as shown in Fig. 4(d). This happens because there were only 60 jobs
in this case study and jobs runtime are small. This was an case where almost no
job was waiting for the allocation when it was optimally scheduled. A2cScheduler
also gains the shortest completion time among different methods from Fig. 4(c).
Table 4 shows the steady state results from a real-world job distribution running
on an academic cluster. A2cScheduler gets optimal scheduling results since there
is near 0 average waiting time for this jobs distribution. Again, this experimental
results proves A2cScheduler effectively finds the proper scheduling policies by
itself given adequate training, both on simulation dataset and real-world dataset.
There were no rules predefined for the scheduler in advance, instead, there was
only a reward defined with the system optimization target included. This proven
our defined reward function was effective in helping the scheduler to learn the
optimal strategy automatically after adequate training.

5 Conclusion

Job scheduling with resource constraints is a long-standing but critically impor-
tant problem for computer systems. In this paper, we proposed an A2C deep
reinforcement learning algorithm to address the customized job scheduling prob-
lem in data centers We defined a reward function related to averaged job wait-
ing time which leads A2cScheduler to find scheduling policy by itself. Without
the need for any predefined rules, this scheduler is able to automatically learn
strategies directly from experience and thus improve scheduling policies. Our
experiments on both simulated data and real job traces for a data center show
that our proposed method performs better than widely used SJF and Tetris for
multi-resource cluster scheduling algorithms, offering a real alternative to cur-
rent conventional approaches. The experimental results reported in this paper
are based on two-resource (CPU/Memory) restrictions, but this approach can
also be easily adapted for more complex multi-resource restriction scheduling
scenarios.
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