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Abstract. Unsupervised feature selection is an important task in
machine learning applications, yet challenging due to the unavailability
of class labels. Although a few unsupervised methods take advantage of
external sources of correlations within feature groups in feature selection,
they are limited to genomic data, and suffer poor accuracy because they
ignore input data or encourage features from the same group. We pro-
pose a framework which facilitates unsupervised filter feature selection
methods to exploit input data and feature group information simultane-
ously, encouraging features from different groups. We use this framework
to incorporate feature group information into Laplace Score algorithm.
Our method achieves high accuracy compared to other popular unsuper-
vised feature selection methods (∼30% maximum improvement of Nor-
malized Mutual Information (NMI)) with low computational costs (∼50
times lower than embedded methods on average). It has many real world
applications, particularly the ones that use image, text and genomic data,
whose features demonstrate strong group structures.

Keywords: Unsupervised feature selection · Feature groups · L1,1

norm minimisation.

1 Introduction

Feature selection is an important task in preparing high dimensional data for
machine learning tasks. It improves the prediction accuracy and simplicity of
the learning models and reduces the computational costs. Unlike deep learning
methods, feature selection identifies the important features that can be inter-
preted by the humans when explaining AI decisions (E.g.: genes related to cer-
tain diseases [12]). Feature selection methods are of two types, supervised and
unsupervised, based on the availability of class labels in data. Among them,
unsupervised feature selection has wide applicability because data in most real
world scenarios are unlabelled. For example, there is a vast amount of text and
image data in the web, yet the label information, such as the subject of a tweet,
the topic of an image is only rarely available. Due to the unavailability of labels,
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unsupervised approach is more challenging than the supervised approach and
achieving good accuracy remains a challenge.

Many unsupervised feature selection methods evaluate features using
instance-feature data alone, which is available in the form of the data matrix [9,
14]. In contrast, recent work shows that features can be grouped according to
various criteria and this group information can improve the usefulness of the
feature selection [17]. For example, the nearby pixels in images can be grouped
together considering the spatial locality to improve selection of pixels for image
analysis. The words in document datasets can be grouped according to their
semantics [13] to improve selection of words for document analysis. Genes in
genomic data can be grouped using Gene Ontology information [3] to improve
bio-marker identification for disease prediction and drug discovery. We show that
considering this group structure can enable selection of a better feature subset
in real world applications. In Sect. 4, we illustrate this using a concrete text data
example.

In contrast to supervised feature selection [11], little work exist in unsuper-
vised feature selection which exploits feature group information. The existing
ones are limited to genomic data in which feature selection is limited to simple
methods such as selecting the centroids of feature groups [3]. They do not use
group information in combination with instance-feature data, which is also useful
for feature selection. Hierarchical Unsupervised Feature Selection (HUFS) [17]
uses feature group information together with instance-feature data to improve
feature selection accuracy and is applicable for different data types. Like many
state of the art feature selection methods, HUFS is also an embedded approach,
yet embedded methods do not have a significant advantage in unsupervised
feature selection due to the unavailability of class labels. Compared to embed-
ded methods, filter methods are fast and produce more generic solutions [15].
Consequently, they are still popular in applications such as bio-marker identifi-
cation [12] and have growing interest in big data applications [7,16,20].

We propose a framework which helps incorporating feature group information
into unsupervised filter feature selection methods. To demonstrate the usefulness
of our approach, we incorporate feature group information into Laplace Score
(LS) algorithm [9], a well established feature selection method which achieves
good accuracy with very low computational costs. We mathematically show
that the proposed feature selection objective can be represented as a standard
quadratic optimisation problem, such that standard optimisation algorithms can
be used to solve the optimisation problem. However, quadratic programming
optimisation algorithms are slow and cannot scale to larger problems which are
typically encountered, hence we also propose a greedy optimisation method,
Group Laplace Score (GLS ), which is faster than quadratic optimisation algo-
rithms, yet show comparable performance. Through extensive experiments we
show that GLS achieves high clustering performance with low computational
costs, compared to existing feature selection methods. Our main contributions
are as follows.
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– We propose a framework which facilitates unsupervised filter feature selection
methods to exploit the knowledge about feature groups to achieve higher
clustering performance.

– We use the proposed framework to incorporate feature group information into
LS algorithm and propose a new feature selection algorithm, GLS.

– We experimentally show that GLS obtains significantly higher clustering per-
formance than the existing feature selection algorithms.

2 Related Work

Many unsupervised feature selection methods, both similarity preserving (fil-
ter) [9,19] and embedded [6,8,10,14] methods, are based on input data alone
and rarely take the advantage of the external sources of knowledge about fea-
ture group structures. The feature groups used by some feature selection meth-
ods are also formed with input data [15,18]. Some domain specific unsupervised
methods [3] are proposed for selecting genes from different gene groups, yet
they do not combine group based feature selection with instance-feature data
which is also useful for feature selection. In contrast, HUFS uses feature group
information to improve the instance-feature data based feature selection and is
applicable for different data types. However, HUFS encourages features from
the same group which is not effective in most real world applications [11]. In
contrast, our method encourages features from different groups and we exper-
imentally show that our method outperforms HUFS in terms of accuracy and
efficiency. Compared to HUFS, our method requires less parameter tuning too.

3 Preliminaries

This section discusses some frequently used definitions and terms in the paper.
X ∈ R

n×m is the input data matrix, where n is the number of instances and
m is the number of features in X. F is the set of all features in X, S ⊆ F is
the selected feature subset, fi ∈ F the ith feature in X and k is the number
of features to be selected. Gi is the set of features in ith feature group and r is
number of groups. Given a matrix A ∈ R

n×m, ai,j , is its element in ith row and
jth column. L1,1 norm of A, ‖A‖1,1 =

∑n
i=1

∑m
j=1 |ai,j |.

Definition 1. The feature indicator matrix, U ∈ R
m×m, is a diagonal matrix

whose ith diagonal entry, ui,i = ui = 1 if the ith feature in X is selected into S
and ui,i = ui = 0 otherwise. ui,j = 0 (∀ i �= j).

Definition 2. Given that S is the selected feature subset and Gi is the set of
features in ith feature group, wi = No. of features in S and Gi

No. of features in S = |S∩Gi|
|S| .
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d1 d2 d3 d4 d5 d6

Bank 13 10 0 0 0 1
Patient 0 0 20 0 0 0
Cell 0 0 0 16 0 0
Google 0 1 0 0 13 0
Class B B H H T T

(a) Example text dataset. Column
(di): a document/instance, Row:
a word/feature, Class: document
type, B: Business, H: Health, T:
Technical

(b) Cluster results for {Bank, Patient, Google}

(c) Cluster results for {Bank, Patient, Cell}

Fig. 1. Feature selection in the text dataset in Example 1

4 Motivation and Background

In this section, we demonstrate the importance of external feature group infor-
mation for feature selection accuracy, using Reuters (RT) text dataset [1] as
a concrete example. As the complete dataset is too large, we select only some
instances and feature values which are helpful for the discussion.

Example 1: Figure 1a shows a part of the RT dataset in which the words
are the features and documents (di) are the instances. Feature values represent
the occurrence frequency of each word in each document. Each document is one
of the three types: Business, Health, Technical, but in the unsupervised feature
selection, the algorithm is not provided this. The feature selection problem is to
select three features which achieves the best clustering performance.

The features which result in small distances between the same class instances
and large distances between different class instances help the same class instances
to get clustered together. For example, with respect to “Bank”, business doc-
uments have lower distances between each other and large distances with the
rest (Manhattan distance of 3 between d1 and d2 and 13 between d1 and d5).
Therefore, “Bank” discriminates business documents from the rest. Similarly,
“Google” and “Patient” discriminate some technical (d5) and health (d3) docu-
ments. {Bank, Patient, Google} collectively discriminate between different class
instances from one another. Figure 1b shows the k-means (k = 3) cluster assign-
ments for this feature subset. Only d4 is assigned to a wrong cluster and cluster
purities are 1,1, and 0.67. Clustering performance in terms of NMI [9] is 0.74.

In contrast, no feature in {Bank, Patient, Cell} discriminates between busi-
ness and technical documents and “Patient” and “Cell” cause large distances
between the health documents, the same class instances, leading to poor cluster-
ing performance. Figure 1c shows that d4, d5, d6 are assigned to wrong clusters,
resulting in impure clusters (cluster purities of 1, 1, and 0.5) compared to the
previous case. Clustering performance in terms of NMI is 0.65. Therefore, {Bank,
Patient, Google} is better compared to {Bank, Patient, Cell}. However, “Cell”
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d1 d2 d3 d4 d5 d6

d1

d2

d3

d4

d5

d6

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 0 0
−1 2 0 0 0 −1
0 0 1 0 0 −1
0 0 0 1 0 −1
0 0 0 0 1 −1
0 −1 −1 −1 −1 4

⎤
⎥⎥⎥⎥⎥⎥⎦

(a) Laplace Matrix (L)

b p c g
b
p
c
g

⎡
⎢⎢⎣

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎤
⎥⎥⎦

(b) G

b p c g
b
p
c
g

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦

(c) U for {Bank,
Patient, Cell}

b p c g
b
p
c
g

⎡
⎢⎢⎣

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎤
⎥⎥⎦

(d) G′ for {Bank,
Patient, Cell}

Fig. 2. Matrices for the dataset in Example 1. b: Bank, p: Patient, c: Cell, g: Google

and “Google” have very similar feature value distributions, and class labels are
not available for feature selection. Therefore, “Cell” and “Google” cannot be
differentiated from one another using instance feature data alone. We show this
using LS algorithm, which selects the features which best preserve the locality
structure of the instances, as a concrete example.

LS Algorithm: Given that A is the adjacency matrix between the instances,
D is the degree matrix and L is the Laplace matrix such that L = D − A, the
Laplace score of a feature f , lf = f̃T Lf̃

f̃T Df̃
, where f̃ = f −μf and μf is the mean of

f . LS objective for selecting k features is shown in Eq. (1). LS algorithm achieves
this by selecting the features with k minimum Laplace scores. Figure 2a shows L
for RT dataset, assuming a 1-Nearest Neighbour A. Laplace scores for “Bank”,
“Cell”, “Patient” and “Google” are 0.39, 1.06, 1.06 and 1.1, respectively. The
selected feature subset is therefore {Bank, Cell, Patient}, which is not optimal.

min
S

∑

f̃∈S

f̃T Lf̃

f̃T Df̃
subject to |S| = k (1)

Using Feature Group Information: Consider using Wordnet [13] as an
external source of knowledge for Example 1. Wordnet shows a high semantic
similarity (0.7) between “Cell” and “Patient”, and low similarity between other
feature pairs (0.1 between “Google” and “Bank”). Three feature groups can
be created based on semantic similarity. Group 1: {Bank}, Group 2: {Patient,
Cell}, Group 3: {Google}. Encouraging features from different groups results in
{Bank, Patient, Google}, which is optimal. This is because semantically similar
words tend to occur in similar types of documents. Consequently, words from
different groups discriminate different types of documents from one another and
result in lower distances between the same type of documents. For example, given
“Patient”, selecting “Google” (from a different group), results in a lower distance
between d3 and d4 than selecting “Cell” (from the same group). Opposed to
“Cell”, “Google” also discriminates between business and technical documents.
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5 Proposed Method

We propose a framework which facilitates the unsupervised filter feature selec-
tion methods to encourage features from different groups and use this framework
to incorporate feature group information into LS algorithm. When the feature
groups have different importance levels based on factors such as group size and
group quality, more features are encouraged from the groups with higher impor-
tance. Proposed feature selection objective can be solved using quadratic opti-
misation methods, but we also propose a greedy approach, GLS, which achieves
the same performance faster. In this paper, we focus on non-overlapped groups,
yet the proposed method can easily be extended to overlapped groups as well.

Modelling Feature Group Information: We define G ∈ R
m×m, the feature

group matrix. If fi, fj ∈ F are in the same group, gi,j = gj,i = 1. Otherwise
gi,j = gj,i = 0. ∀i = 1, . . . , m, gi,i = 0. G for Example 1 is shown in Fig. 2b.
Multiplying G by U twice makes the rows and columns of G corresponding to
the unselected features all zeros. This results in G′ = UGU ∈ R

m×m, feature
group matrix of the features in S. The number of zeros in G′ increases when
the features in S are from different feature groups and all the elements in G′

≥ 0. Therefore, given that k features are to be selected, to encourage features
from different feature groups, our objective is to select U to minimise ‖UGU‖1,1

subject to ‖U‖1,1 = k.
Figure 2c and d show U and G′ when S = {Bank, Patient, Cell}, for which

‖G′‖1,1 = 2. When S = {Bank, Patient, Google} U is a diagonal matrix where
diag(U) = [1, 1, 0, 1], G′ ∈ R

4×4 is a matrix of all zeros and ‖G′‖1,1 = 0. This
shows that ‖UGU‖1,1 is minimal when the features are selected from different
groups. When the feature groups have different importance levels, to encourage
more features from the groups with higher importance, we set gi,j = gj,i = 1

αi

(instead of 1), where αi is the weight of Gi.

Input Data Based Feature Selection: We next propose a common frame-
work to combine group based feature selection with any unsupervised filter fea-
ture ranking method. Let Q be a diagonal matrix, where, qi,i = li, where li is the
feature score of fi, in terms of its capability to preserve the sample similarity.
Q′ = UQU is the feature score matrix for selected features in S. Q′ is a diagonal
matrix in which q′

i,i = li if fi ∈ S and q′
i,i = 0 otherwise. Given that li ≥ 0, ∀ i,

the feature selection objective is to select U to minimise or maximise ‖UQU‖1,1

subject to ‖U‖1,1 = k. Minimisation or maximisation is decided based on the
algorithm used to compute li.

Theorem 1 shows that Laplace score is always non-negative and eligible for Q.
Consequently, Eq. (1) can be reformulated as minimising ‖UQU‖1,1 subject to
‖U‖1,1 = k, where li = Laplace score of fi. For example, in Example 1, diag(Q)
= [0.39, 1.06, 1.06, 1.1]. When S = {Bank, Patient, Cell}, diag(Q′) = [0.39, 1.06,
1.06, 0] and ‖Q′‖1,1 = 2.51. When S = {Bank, Patient, Google}, diag(Q′) =
[0.39, 1.06, 0, 1.1] and ‖Q′‖1,1 = 2.55. Therefore, minimal ‖UQU‖1,1 is achieved
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for {Bank, Patient, Cell}, the same feature subset selected by LS algorithm. For
the rest of the paper, we assume li is computed using Laplace score, therefore
minimise ‖UQU‖1,1. Maximisation is equivalent to minimising -‖UQU‖1,1.

Theorem 1. Given that li is the Laplace score of fi ∈ F , li ≥ 0, ∀ i = 1, · · · ,m.

Proof. Because L and D are positive definite. Refer to this link1 for the proof.

Feature Selection Objective: The feature selection objective which combines
both group based feature selection and input data based feature selection is
shown in Eq. (2). λ is a user defined parameter. In this paper, we assign a fixed
value for λ. In future, we plan to iteratively decide λ value for each feature
selected. Based on Theorem 2, we reformulate Eq. (2) into Eq. (3).

min
U

‖UQU‖1,1 + λ ‖UGU‖1,1 subject to ‖U‖1,1 = k (2)

min
U

‖U(Q + λG)U‖1,1 subject to ‖U‖1,1 = k (3)

Theorem 2. Given λ ≥ 0, ‖UQU‖1,1 + λ ‖UGU‖1,1 = ‖U(Q + λG)U‖1,1

Proof. Because ui,j , qi,j , gi,j ≥ 0 ∀ i, j. Refer to this link (See footnote 1) for
the proof.

Given u = [u1, · · · , um]T , where ui is the ith diagonal element of U , Theorem 3
shows that ‖U(Q + λG)U‖1,1 can be reformulated as a quadratic function of u.
Therefore, to solve Eq. (3), we use two approaches: (1) Standard Quadratic
Programming (QP) methods (2) Greedy method (GLS algorithm). As the QP
method, we use the MATLAB inbuilt “fmincon” function with “interior point”
method, but omitted the details due to space limitations. Please refer to this link
(See footnote 1) for details. The greedy method showed comparable accuracy to
QP method, yet faster. Therefore, in this paper, we focus on the greedy method.

Theorem 3. Given that H = Q + λG, and u as defined above, ‖UHU‖1,1 =
uT Hu = h(u), that is ‖UHU‖1,1 is a quadratic function of u.

Proof. Please refer to this link (See footnote 1) for the proof.

Greedy Method: As discussed, ‖U(Q + λG)U‖1,1 = ‖UHU‖1,1 = h(u). At
each Iteration t, GLS selects a feature, ft, such that ft = argminfx∈S′

t−1
h(ut)−

h(ut−1), where ut−1 and ut are the selected feature indicator vectors (u) after
Iteration (t − 1) and t, respectively and S′

t−1 is the unselected feature subset
after Iteration t−1. According to Theorem 4, this is equivalent to selecting ft =
argminfx∈S′

t−1
lx + λwi

αi
, where fx is any feature in S′

t−1, lx is the Laplace score

of fx, Gi the feature group of fx, αi is the weight of Gi, wi = |St−1∩Gi|
St−1

and
St−1 is the selected feature subset after Iteration t − 1. Therefore, as shown in
Algorithm 1, GLS selects fx to minimise this quantity (Line 5), which avoids
complex matrix multiplication operations.
1 https://sites.google.com/view/kushani/publications.

https://sites.google.com/view/kushani/publications
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Algorithm 1: GLS algorithm
input : Dataset (X), Requested feature count (k), Group weights (α1 · · · αr)
output: Selected feature subset (S)

1 S′ ← F in X; S ← ∅; fCount ← 0; n1 · · · nr ← 0;

2 while fCount < k do
3 for x ∈ S′ do
4 i ← Group index of Gi where x ∈ Gi;
5 scorex ← lx + λwi

αi
;

6 end
7 fmin ← argminx∈S′ scorex;
8 S ← S + fmin; S′ ← S′ − fmin;
9 j ← Group index of Gj where fmin ∈ Gj ;

10 nj++; wj ← nj

|S| ; fCount++;

11 end
12 return S;

Theorem 4. Given that St−1, S′
t−1, ut−1, ut, fx ∈ S′

t−1, lx, wi and αi are as
defined above, argminfx∈S′

t−1
h(ut) − h(ut−1) = argminfx∈S′

t−1
lx + λwi

αi
.

Proof. Refer to this link (See footnote 1) for the proof.

Example 1 Revisited: We apply GLS for Example 1, given the feature groups
created in Sect. 4. λ = 1, αi = 1 ∀ = i. GLS first selects “Bank” which has the
minimum Laplace score (0.39). In Iteration 2, for all remaining features, wi = 0.
Therefore, GLS selects “Patient” or “Cell”, which has next minimum Laplace
score (1.06). Assume it selects “Patient”. In Iteration 3, for “Cell” and “Google”,
wi = 0.5 and 0, respectively and li + λ wi

αi
= 1.56 and 1.1, respectively. GLS

selects “Google” which has minimal feature score. Therefore, the selected feature
subset is {Bank, Patient, Google}, which is optimal according to Sect. 4.

Computation Complexity Analysis: Given F and S are as defined in Sect. 3,
time complexity for computing the Laplace score is O(|F |). The complexity of the
iterative group based feature selection (Line 2–11 in Algorithm 1), is O(|S||F |).
As |S| << |F |, the time complexity of GLS is linear to |F |.

6 Experimental Evaluation

In this section, we discuss the experimental results obtained by GLS algorithm.

Datasets: We evaluate GLS, using real datasets, which are benchmark datasets
used to test group based feature selection. Table 1 shows a summary of them.
Yale, ORL and COIL20 have a 32× 32 pixel map and USPS a 16× 16 pixel map.
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Feature Grouping: To introduce spatial locality information, which is not
available from the input data matrix alone, we partition the pixel map of an
image into p×p non overlapping squares. Each square is a feature group. Default
p for USPS is 2 and 4 for other image datasets. In text data, pairwise semantic
similarities between the words are found using WordNet [13] and words are
clustered based on the similarity values, using spectral clustering. We use only
2,468 words, available in WordNet. Genes in genomic data are clustered based
on Gene Ontology information as discussed in [3]. Number of groups is set to
0.04 of the original feature set based on the previous findings for MT dataset [3].

Table 1. Dataset description. m: # features, n: # instances, c: # classes

Dataset m n c Type Dataset m n c Type

Multi-Tissue (MT) [2] 1,000 103 4 Genomic Yale [5] 1,024 165 15 Image

CNS [2] 989 42 5 Genomic ORL [5] 1,024 400 40 Image

DLBCL-B [2] 661 180 3 Genomic COIL20 [4] 1,024 1,440 20 Image

Multi-B [2] 5,565 32 4 Genomic USPS [4] 256 9,298 10 Image

Reuters (RT) [1] 3,068 294 6 Text

Baselines: As baselines, we use LS algorithm and Spectral Feature Selection
SPEC [19] as similarity preserving methods and Multi Cluster Feature Selection
(MCFS) [6], Robust Unsupervised Feature Selection (RUFS) [14] and HUFS
as embedded methods. RUFS has proven high performance compared to many
existing embedded methods and HUFS uses feature group information similar
to our method. RUFS and MCFS use two different approaches to control feature
redundancy (L2,1 norm vs. L1 norm). k-medoid (KM) [3] is specific for genomic
datasets, therefore, we use it with genomic data only. For HUFS, we consider
the complete pixel hierarchy as described in [17].

Evaluation Criteria: We consider the clustering performance as the measure
of feature selection accuracy and evaluate it in terms of NMI [9]. k-means is the
cluster method used. It is run 20 times and we report the average NMI. SD is
the standard deviation of NMI obtained for the 20 iterations. Average accuracy
of an algorithm in a dataset is the average of the NMIs obtained for all the
selected feature numbers in that dataset. We select features up to the point all
algorithm accuracies converge. Algorithm run times are measured in seconds.

Experimental Setup: We split each dataset, 60% instances for training set
and 40% for test test, using stratified random sampling method and remove
the class labels from both. We perform feature selection on the training dataset
and evaluate the clustering performance of the test set, using only the selected
feature subset. By default, αi = 1 for all feature groups and λ = 1.



814 K. Perera et al.

Table 2. Comparison of the clustering performances of different algorithms. Row 1:
maximum NMI of each algorithm for each dataset. The highest maximum NMI for
each dataset is in bold letters. Row 2 (±): SD corresponding to maximum NMI. Row 3
(x): the number of features at which the maximum NMI is achieved. Row 4: Algorithm
rankings in terms of average accuracy (1 corresponds to the highest average accuracy)

Yale ORL COIL20 USPS RT MT CNS DLBCL-B Multi-B

GLS 0.69
±0.01

0.82
±0.01

0.78
±0.01

0.62
±0.00

0.34
±0.03

0.76
±0.00

0.71
±0.04

0.49
±0.02

0.74
±0.00

(400) (450) (200) (200) (40) (20) (15) (200) (40)

1 1 1 1 1 1 1 1 1

LS 0.67
±0.02

0.82
±0.01

0.78
±0.01

0.63
±0.01

0.31
±0.04

0.64
±0.00

0.62
±0.07

0.5
±0.02

0.69
±0.00

(300) (900) (850) (150) (35) (120) (120) (180) (50)

3 5 5 2 2 5 5 4 3

SPEC 0.67
±0.02

0.82
±0.01

0.78
±0.01

0.62
±0.00

0.31
±0.03

0.68
±0.03

0.59
±0.06

0.48
±0.03

0.42
±0.00

(900) (850) (750) (240) (40) (100) (50) (180) (10)

2 6 4 6 3 6 6 2 7

MCFS 0.67
±0.01

0.82
±0.01

0.78
±0.01

0.62
±0.00

0.32
±0.04

0.76
±0.00

0.66
±0.04

0.27
±0.04

0.71
±0.01

(750) (750) (450) (240) (85) (60) (130) (180) (15)

4 3 3 3 4 2 3 3 2

RUFS 0.67
±0.02

0.82
±0.01

0.78
±0.01

0.62
±0.00

0.22
±0.01

0.74
±0.05

0.69
±0.05

0.37
±0.07

0.66
±0.00

(1000) (700) (350) (240) (5) (30) (10) (300) (50)

6 2 2 5 6 4 2 7 4

HUFS 0.67
±0.02

0.81
±0.01

0.77
±0.01

0.62
±0.00

0.28
±0.04

0.63
±0.00

0.58
±0.03

0.34
±0.07

0.57
±0.00

(1000) (650) (900) (240) (90) (140) (110) (240) (55)

5 4 6 4 5 3 4 5 6

KM - - - - - 0.68
±0.02

0.41
±0.02

0.17
±0.05

0.57
±0.02

(30) (20) (280) (75)

7 7 6 5

Experiment 1 evaluates the clustering performance of different algorithms
for different numbers of selected features. Experiment 2 evaluates the cluster-
ing performance of GLS in text and genomic data, for αi = |Gi|

|F | and αi = 1 ∀ i.
This tests the effect of group weights on clustering performance. Experiment
3 executes each feature selection algorithm 100 times and reports the log value
of the average run time to evaluate the algorithm efficiency. Experiment 4
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performs feature selection in image datasets for p = 2, 4, 8, 16. This tests the
effect of the group size on the clustering performance. Experiment 5 runs GLS
for λ ∈ [-1, 3]. This tests the effect of λ on the clustering performance.

(a) Execution time of
different algorithms

(b) Different feature group
sizes: p × p (p = 2,4,8,16)

(c) Different λ values

Fig. 3. GLS execution time and accuracy variation for different settings for COIL20

Experimental Results: Table 2 shows that GLS achieves the highest NMI
over baselines in 7 out of 9 datasets. In ORL and COIL20, GLS achieves the
highest NMI with a smaller number of features than baselines. In all datasets,
GLS has the highest average accuracy (rank 1), yet the rankings of baselines vary
across the datasets. GLS ’s average NMI gain over SPEC in Multi-B dataset is
∼30%, which is its maximum NMI gain over baselines. Maximum NMI gain of
GLS over the NMI obtained by the complete feature set is 3%, 1%, 1%, 2%,
10%, 11%, 4%, 12% and 24% for Yale, ORL, COIL20, USPS, RT, MT, CNS,
DLBCL-B and Multi-B respectively. GLS ’s average accuracy gains for αi = |Gi|

|F |
over αi = 1 are 0.3% and 3% in RT and DLBCL-B datasets, respectively. Due
to space limitations, we omit the results graphs for Experiment 1 and 2. Please
refer to this link (See footnote 1) to see all the results graphs. GLS also has the
lowest SD for clustering performance for 7 out of 9 datasets. Figure 3a shows
that GLS has only little increase of run time than LS, which is significantly low
compared to embedded methods. For COIL20 dataset, the run time of GLS is
∼50, ∼20 and ∼70 times lower than the run time of MCFS, RUFS and HUFS.
Figure 3b shows that compared to large and small feature groups (p = 2, 16),
GLS performance for medium sized groups (p = 4, 8) is high. According to
Fig. 3c, clustering performance is less sensitive to λ for λ > 0, yet significantly
low for λ ≤ 0.

Evaluation Insights: Compared to baselines, GLS consistently shows high
clustering performance for all the datasets (highest average accuracy in all
datasets and maximum accuracy in 7 out of 9 datasets), with low computa-
tional costs (∼50 times lower run time than embedded methods on average). In
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all datasets, GLS achieves higher accuracy than using the complete feature set,
with a comparatively smaller number of features. Higher accuracy obtained by
weighted feature groups show that in some cases, knowledge about the impor-
tance level of different feature groups improves the accuracy of GLS. Low SD
values for NMI show that GLS produces more stable clusters and more pre-
cise performance results than the baselines. Medium sized groups achieve higher
accuracy because large and small groups more resemble the case of no groupings.
This demonstrates the contribution of feature group information to achieve high
accuracy. Low accuracy for λ ≤ 0 supports our hypothesis that selecting features
from the same group is less effective than selecting from different groups. Less
parameter tuning is required for GLS as its accuracy is less sensitive to λ (> 0).

7 Conclusion

We propose a framework which facilitates exploiting feature group information
by unsupervised feature selection methods and use this framework to incor-
porate feature group information into LS algorithm. We show that compared
to baselines, the proposed method achieves high clustering performance for the
datasets with feature group structures with low computational costs and requires
less parameter tuning. Our future work includes using the proposed framework
for unsupervised feature selection methods other than the LS algorithm.
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