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Abstract. Function identification is a preliminary step in binary analy-
sis for many applications from malware detection, common vulnerability
detection and binary instrumentation to name a few. In this paper, we
propose the Code Action Network (CAN) whose key idea is to encode the
task of function scope identification to a sequence of three action states
NI (i.e., next inclusion), NE (i.e., next exclusion), and FE (i.e., function
end) to efficiently and effectively tackle function scope identification,
the hardest and most crucial task in function identification. A bidirec-
tional Recurrent Neural Network is trained to match binary programs
with their sequence of action states. To work out function scopes in a
binary, this binary is first fed to a trained CAN to output its sequence of
action states which can be further decoded to know the function scopes
in the binary. We undertake extensive experiments to compare our pro-
posed method with other state-of-the-art baselines. Experimental results
demonstrate that our proposed method outperforms the state-of-the-art
baselines in terms of predictive performance on real-world datasets which
include binaries from well-known libraries.

Keywords: Cyber security + Function scope identification - Machine
learning - Deep learning

1 Introduction

In computer security, we often encounter situations where source code is not
available or impossible to access and only binaries are accessible. In these sit-
uations, binary analysis is an essential tool enabling many applications such as
malware detection, common vulnerability detection [9], and etc. Function iden-
tification is usually the first step in many binary analysis methods. This aims to
specify function scopes in a binary and is a building block to a diverse range of
application domains including binary instrumentation [5], vulnerability research
[10] and binary protection structures with Control-Flow Integrity. In both binary
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analysis and function identification, tackling the loss of high-level semantic struc-
tures in binaries which results from compilers during the process of compilation
is likely the most challenging problem.

There have been many effective methods for dealing with the function iden-
tification problem from heuristic solutions (statistical methods for binary anal-
ysis) to complicated approaches employing machine learning or deep learning
techniques. In an early work, Kruegel et al. [4] through his research which lever-
aged statistical methods with control flow graphs concluded that the task of
function start identification can be trivially solved for regular binaries. How-
ever, later research in [14] argued that this task is non-trivial and complex in
some specific cases wherein it is too challenging for heuristics-based methods
to discover all function boundaries. Other influential works and tools that rely
on signature database and structural graphs include IDA Pro, Dyninst, (Binary
Analysis Platform) BAP, and Nucleus [1]. Andriesse et al. [1] has recently pro-
posed a new signature-less approach to function detection for stripped binaries
named Nucleus which is based on structural Control Flow Graph analysis. More
specifically, Nucleus identifies functions in the intraprocedural control flow graph
(ICFG) by analyzing the control flow between basic blocks, based on the obser-
vation that intraprocedural control flow tends to use different types and patterns
of control flow instructions than inter-procedural control flow.

Machine learning has been applied to binary analysis and function identifica-
tion in particular. The seminal work of [11] modeled function start identification
as a Conditional Random Field (CRF) in which binary offsets and a number
of selected patterns appear in the CRF. Since the inference on a CRF is very
expensive, though feature selection and approximate inference were adopted to
speed up this model, its computational complexity is still very high. ByteWeight
[2] is another successful machine learning based method for function identifica-
tion aiming to learn signatures for function starts using a weighted prefix tree,
and recognizes function starts by matching binary fragments with the signa-
tures. Each node in the tree corresponds to either a byte or an instruction, with
the path from the root node to any given node representing a possible sequence
of bytes or instructions. Although ByteWeight significantly outperformed dis-
assembler approaches such as IDA Pro, Dyninst and Binary Analysis Platform
(BAP), it is not scalable enough for even medium-sized datasets [12].

Deep learning has undergone a renaissance in the past few years, achiev-
ing breakthrough results in multiple application domains such as visual object
recognition [3], language modeling [13], and software vulnerability detection
[6-8]. The study in [12] is the first work which applied a deep learning technique
for the function identification problem. In particular, a bidirectional Recurrent
Neural Network (Bidirectional RNN) was used to identify whether a byte is
a start point (or end point) of a function or not. This method was proven to
outperform ByteWeight [2] while requiring much less training time. However,
to address the boundary identification problem with [12], a simple heuristic to
pair adjacent function starts and function ends was used (see Section 5.3 in that
paper). Consequently, this approach is not able to efficiently utilize the context
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information of consecutive bytes and machine instructions in a function and
the pairing procedure might lead to inconsistency since the networks for func-
tion start and end were trained independently. Furthermore, this method cannot
address the function scope identification problem, the hardest and most essential
sub problem in function identification, wherein the scope (i.e., the addresses of
all machine instructions in a function) of each function must be specified.

Inspired from the idea of a Turing machine, we imagine a memory tape con-
sisting of many cells on which machine instructions of a binary are stored. The
head is first pointed to the first machine instruction located in the first cell. Each
machine instruction is assigned to an action state in the action state set {NI,
NE, FE} depending on its nature. After reading the current machine instruction
and assigning the corresponding action state to it, the head is moved to the
next cell and this procedure is halted as we reach the last cell in the tape (see
Sect. 3.1). Eventually, the sequence of machine instructions in a given binary is
translated to the corresponding sequence of action states. Based on this incen-
tive, in this paper, we propose a novel method named the Code Action Network
(CAN) whose underlying idea is to equivalently transform the task of func-
tion scope identification to learning a sequence of action states. A bidirectional
Recurrent Neural Network is trained to match binary programs with their cor-
responding sequences of action states. To predict function scopes in any binary,
the binary is first fed to a trained CAN to output its corresponding sequence of
action states on which we can then work out function scopes in the binary. The
proposed CAN can tackle binaries for which there exist external gaps between
functions and internal gaps inside functions wherein each internal gap in a func-
tion does not contain instructions from other functions. By default, our CAN
named as CAN-B operates at the byte level and can cope with all binaries that
satisfy the aforementioned condition. However, for the binaries that can be fur-
ther disassembled into machine instructions, another variant named as CAN-M
is able to operate at the machine instruction level. CAN-M can efficiently exploit
the semantic relationship among bytes in an instruction and instructions in a
function as well as requiring much shorter sequence length compared with the
Bidirectional RNN in [12] which also works at the byte level. In addition, our
proposed CAN-B and CAN-M can directly address the function scope identifica-
tion task, hence inherently offering the solution for other simpler tasks including
the function start/end/boundary identifications.

We undertake extensive experiments to compare our proposed CAN-B and
CAN-M with state-of-the-art methods including IDA, the Bidirectional RNN,
ByteWeight no-RFCR and ByteWeight on the dataset used in [2,12]. The exper-
imental results show that our proposed CAN-B and CAN-M outperform the
baselines on function start, function end and function boundary identification
tasks as well as achieving very good performance on function scope identifica-
tion and also surpass the Nucleus [1] on this task. Our proposed methods slightly
outperform the Bidirectional RNN proposed in [12] on the function start and
end identification tasks, but significantly surpass this method on the function
boundary identification task — the more important task. This demonstrates the
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capacity of our methods in efficiently utilizing the contextual relationship car-
ried in consecutive machine instructions or bytes to properly match the function
start and end entries for this task. As expected, our CAN-M obtains the best
predictive performances on most experiments and is much faster than the Bidi-
rectional RNN proposed in [12]. Particularly, CAN-M takes about 1 hour for
training with 20,000 iterations which is nearly 4 times faster than the Bidirec-
tional RNN proposed in [12] using the same number of iterations for training
and the same number of bytes for handling input. This is due to the fact that
CAN-M operates at the machine instruction level, while the Bidirectional RNN
proposed in [12] operates at the byte level.

We also do error analysis to qualitatively compare our CAN-M and CAN-B
with the baselines. We observe that there are a variety of instruction styles for
the function start and function end (e.g., in the experimental dataset, there are
a thousand different function start styles and function end styles). In their error
analyses, Shin et al. [12] and Bao et al. [2] mentioned that for functions which
encompass several function start styles or function end styles, their proposed
methods tend to make mistakes in predicting the function start or end bytes with
many false positives and negatives. However, it is not the case for our proposed
methods, since we further observe that for the functions which contain more
than one function start style or function end style which account for 98.38% and
28% of the testing set respectively, our proposed CAN-M has 0.24% and 1.09%
false positive rates respectively.

2 The Function Identification Problem

This section discusses the function identification problem. We begin with defini-
tions of the sub problems in the function identification problem, followed by an
example of source code in the C language and its binaries compiled with opti-
mization levels O1 using gecc on the Linux platform for the x86-64 architecture.

2.1 Problem Definitions

Given a binary program P, our task is to identify the necessary information (e.g.,
function starts, function ends) in its n functions {f1,..., f,} which is initially
unknown. Depending on the nature of information we need from {fi, ..., fn}, we
can categorize the task of function identification into the following such problems.

Function Start/End/boundary Identification. In the first problem, we
need to specify the set S = {s1, ..., s, } which contains the start instruction byte
for each of the corresponding functions in {fi, ..., fn}. If a function (e.g. f;) has
multiple start points, s; will be the first start instruction byte for f;. In the
second problem, we need to identify the set E = {ey, ..., e, } which contains the
end instruction byte for each of the corresponding functions in {f1,..., fn}. If
a function (e.g. f;) has multiple exit points, e; will be the last end instruction
byte for f;. In the last problem, we have to point out the set of (start, end) pairs
SE = {(s1,€e1), .., (Sn,€n)} which contains the pairs of the function start and
the function end for each of the corresponding functions in {fi, ..., fn}-
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Function Scope Identification. This is the hardest problem in the func-
tion identification task. In this problem, we need to find out the set
{(frs1s s fr.e1) s s (Frosms ooy fre, )t which specifies the instruction bytes in
each function f1, ..., f, in the given binary program P. Here we note that because
functions may be not contiguous, the instruction bytes (fis,, ..., fie;) may also
be not contiguous. It is apparent that the solution of this problem covers the
three aforementioned problems. Since our proposed CAN addresses this problem,
it inherently offers solutions for the other problems.

2.2 Running Example

In Fig. 1, we show an example of a short source code fragment for a function in
the C programming language, the corresponding assembly code in the machine
instruction and corresponding hexadecimal mode of the binary code respectively,
which was compiled using gcc with the optimization level O1 for the x86-64
architecture on the Linux platform. We further observe that in real binary code,
the patterns for the entry point vary over a wide range and can start with
push, mov, movsz, inc, cmp, or, and, etc. In the example, the assembly code
corresponding with the optimization level O1 on Linux has three ret statements.
Furthermore, in real binary code, the ending point of a function can vary in
pattern beside the ret pattern. These make the task of function identification
very challenging. For the challenges of the function scope identification task, we
refer the readers to [2,12] and the discussions therein.

int bubbleSort (int arr[], int n) bubblesort: Oxded bubbleSort:
{ :  cmp E5%, Ox4ed: 83fe0l
. i jle 0x4£0:  Te3a
if (n <= 1) : lea r8d, dword ptr [rsi - 1] 0x4f2: 448d46EF
return 1; : test  ZEd, ZEd 0x4£6: 45850
. L ¢ jmp 0x4fb:  eb20
int i, j, temp; : mov edx, dword ptr [rdi + rax*4] 0xdfd: 8b1487
for (i = 0; 1 < n-1; i++) : mov ecx, dword ptr [rdi + rax*! + 1] 0x500: 8b4c8704
: emp edx, ecx 0x504: 39ca
. : . N i ile 0x506:  7e07
for (j = 0; j < n-i-1; j++) : mov dword ptr [rdi + rax*i], ecx 0x508:  890c87
if (arr[j] > arr[j+11)
{ i Jle Tef2
int temp = arrl[jl; i mov eax, 800000000
" . i jmp 0x ebdl
arr[j]l = arr[j+11; : mov eax, 0x

801000000
arr[j+1] = temp; : ret 0x c3
} 1 mov eax, 0x532: 800000000

return ioret 0x537: ¢
; 1 mov eax, 0x538:  b800000000

} : ret 0x53d: c3

Fig. 1. Example source code of a function in the C language programming (Left), the
corresponding assembly code (Middle) with some parts omitted for brevity and the
corresponding hexadecimal mode of the binary code (Right).

3 Code Action Network for the Function Identification
Problem

3.1 Key Idea

In what follows, we present the key idea of our CAN. In a binary, there are exter-
nal gaps between functions as well as internal gaps inside a non-contiguous func-
tion. The external gaps might contain data, jump tables or padding-instruction
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bytes which do not belong to any function (e.g., additional instructions gener-
ated by a compiler such as nop, int3). The internal gaps in general might contain
data, jump tables or instructions from other functions (e.g., nested functions).
We further assume that the internal gaps do not contain any instruction from
other functions. It means that if there exist functions nested in a function, our
CAN ignores these internal functions. However, we believe that the nested func-
tions are extremely rare in real-world binaries. For example, in the experimental
dataset, we observe that there are only 506 nested functions over the total of
757,125 functions (i.e., the occurrence rate is 0.067%).

The key idea of CAN is to encode the task of function scope identification to a
sequence of three action states NI (i.e., next inclusion), NE (i.e., next exclusion),
and FE (i.e., function end). With the aforementioned assumption, the binaries
of interest consist of several functions and the functions in a binary do not
intermingle, that is, each function only contains its machine instructions, data,
or jump-tables and do not contain any machine instruction of other functions.
Each function can be therefore viewed as a collection of bytes where each byte is
from a machine instruction of this function (i.e., instruction byte) or data/jump-
tables inside this function (i.e., non-instruction byte). To clarify how to proceed
over a binary function given a sequence of action states, let us imagine this

NEo»| F32 || <ins-byte
NI-» F33 || <-ins-byte

= Function 3

N raa | [ < insbyte
FE "; F35 || < ins-byte

NE—» Gl || < pad-ins-byte ) [newiee |
NE--oal P11 || <-ins-byte | [ Function 1.1
NE-- -/ || <-non-ins-byte |
NI ’J F13 | [ <«ins-byte | F| Function 1.2
NE--—»| | | <-non-ins-byte |
FE - » F15 || <ins-byte | | Function 1.3
NE--»[ G2 || < pad-ins-byte |
NE >\\ | | <-non-ins-byte \
NI P21 || <ins-byte |
Nl F220 | ( <-ins-byte 1 —| Function 2
FE-»[ F23 || <insbyte | _
NI P31 | | <ins-byte \

J

|

|

J

'\
J
|
]

Fig. 2. (The left-hand figure) The key idea of Code Action Network. Assume that
we have a sequence of instruction bytes in three functions where the functions may
not be contiguous and there exist gaps between the functions. The Code Action Net-
work transforms this sequence of instruction bytes to those of action states (i.e., NI,
NE, and FE). (The right-hand figure) The architecture of the Code Action Network.
Each output value takes one of three action states NI, NE, or FE. The Code Action
Network will learn to map the input sequences of items (i1, iz, ...,1;) to the target out-
put sequence (yi1,y2,...,y:) with the loss L; at each time step ¢t. The h represents
for the forward-propagated hidden state (toward the right) while the g stands for the
backward-propagated hidden state (toward the left). At each time step ¢, the predicted
output o¢ can benefit from the relevant information of the past from its h and the
future from its g.
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binary program including many instruction and non-instruction bytes as a tape
of many cells wherein each cell contains a instruction or non-instruction byte and
a pointer firstly points to the first cell in the tape. The action state NI includes
the current instruction or non-instruction byte in the current cell to the current
function and moves the pointer to the next cell (i.e., the next instruction or
non-instruction byte). The action state NE excludes the current instruction or
non-instruction byte in the current cell from the current function and moves the
pointer to the next cell. The action state FE counts the current instruction or
non-instruction byte in the current cell, ends the current function, starts reading
a new function, and moves the pointer to the next cell.

To further explain how to transform a binary program to a sequence of action
states, we consider an example binary code depicted in Fig.2 (the left-hand
figure). Assume that we have a sequence of instruction and non-instruction bytes,
which belong to Function 1, Function 2 and Function 3, respectively where the
functions may be not contiguous and there exist gaps between the functions (e.g.,
the gap between Function 1 and Function 2 includes the padding-instruction
byte (pad-ins-byte) G2 and the non-instruction (non-ins-byte) byte G3). The
pointer of CAN firstly points to G1, labels this padding-instruction byte (pad-
ins-byte) as NE since G1 does not belong to any function, and moves to the
instruction byte F11. The instruction byte F11 is labeled as NI since it belongs
to the function Function 1. The pointer then moves to the non-instruction byte
F12 which can come from a jump-table or data and labels it as NE because F12
does not belong to any function. After that, the pointer moves to the instruction
byte F13 and the non-instruction byte F14 subsequently. F13 and F14 are then
labeled as NI and NE respectively since F13 belong to the function Function
1 while F14 does not belong to any function, and the pointer moves to the
instruction byte F15 and labels it as FE since it is the end of the function
Function 1 and we need to start reading the new function (i.e., the function
Function 2). The pointer subsequently moves to the instruction byte G2 and the
non-instruction G3 which can come from a jump-table or data and labels them
as NE since they do not belong to any function. The pointer then traverses across
the instruction bytes F21, F22, F23 and labels them as NI, NI, FE. The pointer
now starts reading the new function (i.e., the function Function 3). This process
is repeated until the pointer reaches the last instruction or non-instruction byte
and we eventually identify all functions.

It is worth noting that if binaries can be disassembled and a function in these
binaries can be thus viewed as a collection of instructions and non-instructions,
we can perform the aforementioned idea at the machine instruction level wherein
each cell in the tape represents an instruction or non-instruction of a binary.
The advantages of performing the task of function identification at the machine
instruction level include: i) the sequence length of the bidirectional RNN is sig-
nificantly reduced and ii) the semantic relationship among bytes in a machine
instruction and machine instructions can be further exploited. As a consequence,
the gradient exploding and vanishing which often occur with long RNNs can be
avoided and the model is easier to train while obtaining higher predictive per-
formance and much shorter training times as shown in our experiments.
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3.2 Preprocess Input Statement

Byte Level and Machine Instruction Level. To process data for the byte
level, we simply take the raw bytes in the text segment of the given binary and
input them to CAN-B. To process data for the machine instruction level, we first
use Capstone! to disassemble the binaries and preprocess the machine instruc-
tions obtained from the text segment of a binary before inputting them to CAN-
M. This preprocessing step aims to work out fixed length inputs from machine
instructions. For each machine instruction, we employ Capstone to detect entire
machine instructions, then eliminate redundant prefixes to obtain core parts
that contain the opcode and other significant information (see our Supplemen-
tary Material for details, available at https://app.box.com/s/iq9u8r).

3.3 Code Action Network Architecture

Training Procedure. The Code Action Network (CAN) is a multicell bidi-
rectional RNN whose architecture is depicted in Fig.2 (the right-hand figure)
where we assume the number of cells over the input is 2. Our CAN takes a
binary program B = (i, s, ..., 1;) including ! instructions (non-instructions) for
CAN-M or instruction bytes (non-instruction bytes) for CAN-B and learns to
output the corresponding sequence of action states Y = (y1,y2,...,y:) where
each yy takes one of three action states NI (i.e., yx = 1), NE (i.e., yx = 2), or
FE(i.e., yr = 3). The computational process of CAN is as follows:

. . hl
h,lC = tanh(HTh}€71 +UTig); g,lC = tanh(GTg,lch1 + Vle); hi = ta,nh(HTh%71 + WT[g’f D
k

h} h?
g =tanh(G gl + R"[ F]); 0, =ST[ k] pi, = softmax (o)
gk 8k
where k = 1,...1, h{, b3, g/, = g§, g/, = g are initial hidden states and
6= (U, V,W, H, G, R,S) is the model. We further note that py, k = 1,...,1
is a discrete distribution over the three labels NI, NE, and FE.
To find the best model 6*, we need to solve the following optimization
problem:
max Y logp(Y|B) (1)
(B,Y)eD
where D is the training set including pairs (B,Y) of the binaries and their
corresponding sequence of action states.
Because oy, is a function (lossy summary) of i1.;, we further derive logp(Y | B)
as:

l l

logp (Y | B) =) logp (yk | yik—1,i14) = Y logp (v | ok)
k=1 k=1

! www.capstone-engine.org.
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Substituting back to the optimization problem in Eq. (1), we arrive the fol-
lowing optimization problem:

Z Zlogp Yk | ox)

(B,Y)eD k=1

where p(yi | ox) is the yi-th element of the discrete distribution py or in other
words, we have p(yx | 0r) = Pk,ys-

Testing Procedure. In what follows, we present how to work out the func-
tion scopes in a binary using a trained CAN. The machine instructions/non-
instructions for CAN-M or instruction/non-instruction bytes for CAN-B in the
testing binary are fed to the trained model to work out the predicted sequence
of action states. This predicted sequence of action states is then decoded to the
function scopes inside the binary. As shown in Fig. 3, the binary in Fig.2 when
inputted to the trained CAN outputs the sequence of action states NE, NI, ...,
NI, FE and is later decoded to the scopes of the functions Function 1, Function 2
and Function 3.

Function 1.1  Function 1.2 Function 1.3 Function 2 Function 3

NE NI NE NI NE FE NE NE NI NI FE NI NI NI NI FE ...

Fig. 3. The testing procedure of our Code Action Network. The sequence of machine
instructions/non-instructions or instruction bytes/non-instruction bytes in a binary
program is fed to the trained Code Action Network to work out the sequence of action
states. Subsequently, the sequence of action states is decoded to the set of functions in
this binary.

4 Experiments

In this section, firstly, we present the experimental results of our proposed Code
Action Network for the machine instruction level (CAN-M) and the byte level
(CAN-B) compared with other baselines including IDA, ByteWeight (BW) no-
RFCR, ByteWeight (BW) [2], the Bidirectional RNN (BRNN) [12] and Nucleus
[1]. Secondly, we perform error analysis to qualitatively investigate our proposed
methods. We also investigate the model behaviour of our CAN-M with various
RNN cells and with different size for hidden states (see in our Supplementary
Material, available at https://app.box.com/s/iq9u8r).
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4.1 Experimental Dataset

We used the dataset from [2,12], which consists of 2,200 different binaries includ-
ing 2,064 binaries obtained from the findutils, binutils, and coreutils packages and
compiled with both icc and gcce for Linux at four optimization levels 00, O1,
02, and O3. The remaining binaries for Windows are from various well-known
open-source projects which were compiled with Microsoft Visual Studio for the
x86 (32 bit) and the x86-64 (64 bit) architectures at four optimization levels Od,
01, 02, and Ox.

4.2 Experimental Setting

We divided the binaries into three random parts; the first part contains 80%
of the binaries used for training, the second part contains 10% of the binaries
used for testing, and the third part contains 10% of the binaries for validation.
For CAN-M, we used a sequence of 250 hidden states for the x86 architecture
and 125 hidden states for the x86-64 architecture where the size of hidden states
is 256. For CAN-B, akin to the Bidirectional RNN in [12], we used a sequence
length of 1,000 hidden states for the x86 and x86-64 architectures. We employed
the Adam optimizer with the default learning rate 0.001 and the mini-batch
size of 32. In addition, we applied gradient clipping regularization to prevent
the over-fitting problem when training the model. We implemented the Code
Action Networks in Python using Tensorflow, an open-source software library
for Machine Intelligence developed by the Google Brain Team.

4.3 Experimental Results

Code Action Network Versus Baselines. We compared our CAN-M and
CAN-B using the Long Short Term Memory (LSTM) cell and the hidden size of
256 with IDA, the Bidirectional RNN (BRNN), ByteWeight (BW) no-RFCR and
ByteWeight (BW) in the task of function start, function end, function bound-
ary and function scope identification. For the well-known tool IDA as well as
the Bidirectional RNN, ByteWeight no-RFCR, and ByteWeight methods, we
reported the experimental results presented in [2] and [12]. Obviously, the task
of function scope identification wherein we need to specify addresses of machine
instructions in each function is harder than that of function boundary identifica-
tion. To compute the function scope results, given a predicted function by CAN
variants, we considered their start and end instructions for CAN-M and start
and end bytes for CAN-B, and then evaluated measures (e.g., Precision, Recall,
and F1 score) based on this pair. In addition, in the function scope identifica-
tion task, a pair is counted as a correct pair if all predicted bytes or machine
instructions accompanied with this pair forms a function that exactly matches
to a valid function in the ground truth. In contrast, in the function boundary
identification task, we only require the start and end positions of this pair to be
correct.
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The experimental results in Table1 show that our proposed CAN-M and
CAN-B achieved better predictive performances (i.e., Recall, Precision, and F1
score) compared with the baselines in most cases (PE x86, PE x86-64, ELF x86
and ELF x86-64). For the function boundary identification task, our CAN-B and
CAN-M significantly outperformed the baselines in all measures, especially for
CAN-M. Interestingly, the predictive performance of our proposed methods on
the harder task of function scope identification was higher or comparable with
that of the baselines on the easier task of function boundary identification. In
comparison with the Bidirectional RNN proposed in [12], our proposed methods
slightly outperform it on the function start and function end identification tasks,
but significantly surpass this method on the function boundary identification
task - the more important task. This result demonstrates the capacity of our
methods in efficiently utilizing the contextual relationship carried in consecutive
machine instructions or bytes to properly match the function start and end
entries for this task. Regarding the amount of time taken for training, our CAN-
M took approximately 3,490 s for training in 20,000 iterations, while our CAN-
B and the Bidirectional RNN using the same number of iterations with the
sequence length 1,000 took about 12,030 seconds (i.e., roughly four times slower).
This is due to a much smaller sequence length of CAN-M compared with CAN-B
and the Bidirectional RNN.

Code Action Network Versus Bidirectional RNN, ByteWeight and
Nucleus. We also compared the average predictive performance for case by case
including the function start, function bound and function scope identifications
of our CAN-M and CAN-B using the hidden size of 256 and LSTM cell with
the Bidirectional RNN, ByteWeight, and Nucleus in both Linux and Windows
platforms. For Nucleus [1], we reported the experimental results reported in that
paper. The experimental results in Table 2 indicate that our CAN-M and CAN-B
again outperformed the baselines, while CAN-M obtained the highest predictive
performances in all measures (Recall, Precision and F1 score).

4.4 Error Analysis

For a qualitative assessment, we performed error analysis of our CAN-M and
CAN-B for all cases including PEx86, PEx64, ELFx86 and ELFx64.

At the machine instruction level, we observed that there are 4,714, 4,464,
3,320 and 8,147 different types of machine instructions for function start while
there are 1,926, 5,523, 9,082 and 11,421 different types of machine instructions
for function end in the PEx86, PEx64, ELFx86 and ELFx64 datasets respec-
tively. At byte level, we found that there are 91, 49, 41 and 53 different types of
instruction bytes for function start while there are 166, 125, 133 and 126 differ-
ent types of bytes for function end in the PEx86, PEx64, ELFx86 and ELFx64
datasets respectively. Obviously, these diverse ranges in the function start and
function styles make the task of function identification really challenging. In all
four cases (PEx86, PEx64, ELFx86 and ELFx64), the compilers in use often add
padding between functions such as nop, int3.
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We summarize some observations for our methods performance as follows:

— Shin et al. [12] and Bao et al. [2] commonly mentioned that for the functions
that contain either several function start or function end styles inside, their
models tend to confuse in determining the true start or end points, hence
offering many false positives. This is due to a high level of ambiguity in
the start or end entries for these functions. However, it is not the case for
our proposed CAN-M and CAN-B. For example, at the machine instruction
level with PE x86, we found that the functions which contain more than one
function start style or function end style account for 98.38% and 28.00% of
the testing set and when predicting these functions, our proposed CAN-M
has 0.28% false negative rate and 0.24% false positive rate as well as 1.56%
false negative rate and 1.09% false positive rate.

— Our proposed methods also share the same behavior as the method in [12]
in predicting some first and last items in an input sequence, that is, the
CAN-M and CAN-B sometimes offer false positives and negatives when pre-
dicting some first and last instructions or bytes in an input sequence. More
specifically, if an input sequence involves several functions, the start of the
first function and the end of the last function are more likely to be predicted
incorrectly. This is possibly due to the scarcity of context before or after
them. For example, at the machine instruction level with PE x86, we record
that there is about 2.39% of input sequences which contain function ends at
some first and last input items. When predicting these function end entries,
our proposed CAN-M obtains 21.21% false positive rate and 27.27% false
negative rate.

Table 1. Comparison of our Code Action Network and baselines (Best in bold, second
best in underline). Noting that f.s, f.e, f.b and f.sc stand for func. start, func. end, func.
boundary and func. scope while R, P, and F1 represent Recall, Precision and F1 score
respectively.

Task Architectures‘ ELF x86 ELF x86-64 PE x86 PE x86-64
Methods R P F1 R P F1 R P F1 R P F1
IDA 58.34% | 70.97% | 64.04% | 55.50% | 74.20% | 63.50% | 87.80% | 94.67% | 91.11% | 93.34% | 98.22% | 95.72%
BW no-RFCR | 96.17% | 98.36% | 97.25% | 97.57% | 99.11% | 98.33% | 92.13% | 96.75% | 94.38% | 96.22% | 97.74% | 96.97%
BW 97.94% | 98.41% | 98.17% |98.47% | 99.14% | 98.80% | 95.37% | 93.78% | 94.57% | 97.98% | 97.88% | 97.93%
) BRNN 99.06% | 99.56% | 99.31% | 97.80% | 98.80% | 98.30% | 98.46% | 99.01% | 98.73% | 99.09% | 99.52% | 99.30%

CAN-B 99.23% | 99.41% | 99.32% | 98.19% | 99.05% | 98.62% | 98.95% | 99.53% | 99.24% | 99.20% | 99.46% | 99.33%
CAN-M 99.35% |99.61% |99.48% | 98.02% | 99.34% | 98.68% | 99.52% |99.67% |99.59% | 99.05% |99.53% | 99.29%

BRNN 97.87% | 98.69% | 98.28% | 95.03% | 97.45% | 96.22% | 98.35% | 99.24% | 98.79% |99.20% | 99.28% |99.24%
(f-e) CAN-B 99.16% | 99.38% | 99.27% |98.34% | 99.20% |98.77% | 98.82% | 99.39% | 99.10% | 99.15% | 99.30% | 99.22%
CAN-M 99.30% | 99.56% |99.43% | 97.97% | 99.29% | 98.63% |99.56% | 99.71% |99.64% | 99.12% |99.31% | 99.21%

DA 56.53% | 70.63% | 62.80% | 53.46% | 72.84% | 61.66% | 87.10% | 93.93% | 90.39% | 93.24% | 98.11% | 95.61%

BW no-RFCR | 90.58% | 92.85% | 91.70% | 91.59% | 93.17% | 92.37% | 90.48% | 95.03% | 92.70% | 91.35% | 92.87% | 92.10%

(£:b) BW 92.29% | 92.78% | 92.53% | 92.52% | 93.22% | 92.87% | 93.91% | 92.30% | 93.10% | 93.13% | 93.04% | 93.08%
BRNN 95.34% | 97.75% | 96.53% | 89.91% | 94.85% | 92.31% | 95.27% | 97.53% | 96.39% | 97.33% | 98.43% | 97.88%

CAN-B 98.08% | 98.29% | 98.18% |96.45% | 97.24% |96.84% | 97.81% | 98.36% | 98.08% |97.89% | 98.27% |98.08%

CAN-M 98.43% | 98.68% |98.55% | 96.13% | 97.34% | 96.73% | 98.99% |99.14% |99.06% | 97.63% | 98.39% |98.01%

(F.5¢) CAN-B 98.03% | 98.25% | 98.14% |96.28% | 97.10% |96.69% | 97.75% | 98.31% | 98.03% | 97.83% | 98.22% |98.02%

CAN-M 98.40% | 98.65% | 98.52% | 95.94% | 97.21% | 96.57% | 98.97% | 99.12% | 99.05% | 97.52% | 98.28% | 97.90%
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Table 2. Comparison with the baselines (the Bidirectional RNN, ByteWeight and
Nucleus) using average scores for all architectures (x86 and x86-64) for both Linux and
Windows of our Code Action Network. The experimental results for Nucleus are from
the original paper using the same dataset (Best performance in bold, second best in

underline).

Tasks Function Start Function Bound Function Scope
Methods Recall Precision F1 Recall Precision F1 Recall Precision F1
Nucleus 94% 96% 94.99% 88% 96% 91.83% 88% 96% 91.83%

ByteWeight 97.44% | 97.30% | 97.37% | 92.96% | 92.84% | 92.90% - - -
Bidirectional RNN| 98.60% | 99.22% | 98.92% | 94.46% | 97.14% | 95.78% - - -

CAN-B 98.89% | 99.36% |99.12% |97.56% | 98.04% |97.80% |97.47% | 97.97% |97.72%
CAN-M 98.99% | 99.54% (99.26% 97.80% | 98.39% (98.09% 97.71% | 98.32% [98.01%

5 Conclusion

In this paper, we have proposed the novel Code Action Network (CAN) for
dealing with the function identification problem, a preliminary and significant
step in binary analysis for many security applications such as malware detec-
tion, common vulnerability detection and binary instrumentation. Specifically,
the CAN leverages the underlying idea of a multicell bidirectional recurrent neu-
ral network with the idea of encoding the task of function scope identification to
a sequence of three action states NI (i.e., next inclusion), NE (i.e., next exclu-
sion), and FE (i.e., function end) in order to tackle function scope identification,
the hardest and most crucial task in function identification. The experimental
results show that the CAN can achieve state-of-the-art performance in terms of
efficiency and efficacy.
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