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Abstract. In this paper, we consider survival analysis with right-
censored data which is a common situation in predictive maintenance
and health field. We propose a model based on the estimation of two-
parameter Weibull distribution conditionally to the features. To achieve
this result, we describe a neural network architecture and the associated
loss functions that takes into account the right-censored data. We extend
the approach to a finite mixture of two-parameter Weibull distributions.
We first validate that our model is able to precisely estimate the right
parameters of the conditional Weibull distribution on synthetic datasets.
In numerical experiments on two real-word datasets (METABRIC and
SEER), our model outperforms the state-of-the-art methods. We also
demonstrate that our approach can consider any survival time horizon.
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1 Introduction

Time-to-event analysis, also called survival analysis, is needed in many areas.
This branch of statistics which emerged in the 20th century is heavily used
in engineering, economics and finance, insurance, marketing, health field and
many more application areas. Most previous works and diverse literature app-
roach time-to-event analysis by dealing with time until occurrence of an event
of interest; e.g. cardiovascular death after some treatment intervention, tumor
recurrence, failure of an aircraft air system, etc. The time of the event may nev-
ertheless not be observed within the relevant time period, and could potentially
occur after this recorded time, producing so called right-censored data. The main
objective of survival analysis is to identify the relationship between the distri-
bution of the time-to-event distribution and the covariates of the observations,
such as the features of a given patient, the characteristics of an electronic device
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or a mechanical system with some informations concerning the environment in
which it must operate. The Weibull distribution could be used as lifetime distri-
butions in survival analysis where the goal would be to estimate its parameters
taking account the right-censored data. Several previous works focused on the
estimation of a Weibull distribution with right-censored data (see Bacha and
Celeux [1], Ferreira and Silva [2] and Wu [3]).

Among the first estimators widely used in this field is the Kaplan-Meier
estimator [4] that may be useful to estimate the probability that an event of
interest occurs at a given point in time. However, it is limited in its ability
to estimate this probability adjusted for covariates; i.e. it doesn’t incorporate
observations’ covariates. The semi-parametric Cox proportional hazards (CPH)
[5] is used to estimate covariate-adjusted survival, but it assumes that the sub-
ject’s risk is a linear function of their covariates which may be too simplistic
for many real world data. Since neural networks can learn nonlinear functions,
many researchers tried to model the relationship between the covariates and the
times that passes before some event occurs, including Faraggi-Simon network [6]
who proposed a simple feed-forward as the basis for a non-linear proportional
hazards model to model this relationship. After that, several works focused on
combining neural networks and survival analysis, notably DeepSurv [7] whose
architecture is deeper than Faraggi-Simon’s one and minimizes the negative log
Cox partial likelihood with a risk not necessarily linear. These models use multi-
layer perceptron that is capable to learn non-linear models, but it is sensitive
to feature scaling which is necessary in data preprocessing step and has limita-
tions when we use unstructured data (e.g. images). There is a number of other
models that approach survival analysis with right-censored data using machine
learning, namely RandomForest Survival [8], dependent logistic regressors [9]
and Liao’s model [10] who are capable of incorporating the individual observa-
tion’s covariates. This paper proposes a novel approach to survival analysis: we
assume that the survival times distribution are modeled according to a finite
Mixture of Weibull distributions (at least one), whose parameters depends on
the covariates of a given observations with right-censored data. As Luck [11], we
propose a deep learning model that learns the survival function, but we will do
this by estimating the Weibull’s parameters. Unlike DeepHit [12] whose model
consists on discretizing the time considering a predefined maximum time horizon.
Here, as we try to estimate the parameters, we can model a continuous survival
function, and thus, estimate the risk at any given survival time horizon. For this
purpose, we construct a deep neural network model considering that the survival
times follow a finite mixture of two-parameter Weibull distributions. This model,
which we call DeepWeiSurv tries to estimate the parameters that maximize
the likelihood of the distribution. To prove the usefulness of our method, we
compare its predictive performance with that of state-of-the art methods using
two real-world datasets. DeepWeiSurv outperforms the previous state-of-the-art
methods.
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2 Weibull Mixture Distribution for Survival Analysis

2.1 Survival Analysis with Right-Censored Data

Fig. 1. Weibull distribution right-censored at tc = 2 with x ∈ [0, 1] uniformly dis-
tributed. In this figure, the parameters of the law are independent with regard to x.
(Color figure online)

Let X = {(xi, ti, δi)|i ≤ n} be a set of observations with xi ∈ R
d, the ith

observation of the baseline data (covariates), ti ∈ R its survival time associated,
and δi indicates if the ith observation is censored (δi = 0) or not (δi = 1).
As can be seen in Fig. 1, a blue point represents an uncensored observation
(xi, ti, δi = 1) and a red point represents a censored observation (xi, ti, δi = 0).
In order to characterize the distribution of the survival times T = (ti|xi)i≤n, the
aim is to estimate, for each observation, the probability that the event occurs
after or at a certain survival time horizon tSTH defined by:

S(ti|xi) = P (ti ≥ tSTH |xi). (1)

Note that, tSTH may be different to the censoring threshold time tc. An alterna-
tive characterization of the distribution of T is given by the hazard function λ(t)
that is defined as the event rate at time t conditional on survival at time t or
beyond. Literature has shown that λ(t) can be expressed as follows: λ(t) = f(t)

S(t) ,
f(t) being the density function.

Instead of estimating the S(ti|xi), it is common to estimate directly the
survival time t̂i. In this case, we can measure the quality of estimations with the
concordance index [13] defined as follows:

Cindex =

∑
i,j 1ti>tj .1t̂i>t̂j

.δj
∑

i,j 1ti>tj .δj
. (2)
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Cindex is designed to calculate the number of concordant pairs of observations
among all the comparable pairs (i, j) such that δi = δj = 1. It estimates the
probability P(t̂i > t̂j |ti > tj) that compares the rankings of two independent
pairs of survival times ti, tj and associated predictions t̂i, t̂j .

2.2 Weibull Distribution for Censored Data

From now, we consider that T follows a finite mixture of two-parameter Weibull
(at least a single Weibull) distributions independently from xi (i.e. S(ti|xi) =
S(ti)). In this case, we have the analytical expressions of S and λ with respect
to the mixture parameters. This leads to consider a problem of parameters esti-
mation of mixture of Weibull distributions with right-censored observations. Let
y = (yi)i = (ti, δi)i.

Single Weibull Case. Here, we are dealing with a particular case where T
follows a single two-parameter Weibull distribution, W (β, η), whose parameters
are β > 0 (shape) and η > 0 (scale). We can estimate these parameters by
solving the following likelihood optimization problem:

β̂, η̂ = argmax
β,η

{LL(β, η|y} =
n∑

i=1

δilog[(Sβ,η.λβ,η)(ti)]+(1−δi)log[Sβ,η(tc)] (3)

where:
Sβ,η(t) = exp[−(

t

η
)β ],

λβ,η(t) = (
β

η
)(

t

η
)β−1

(4)

and tc being the censoring threshold time. LL is the log-likelihood of Weibull
distribution with right-censored data. To be sure that the LL is concave, we
make a choice to consider that the shape parameter β is greater than 1 (β ≥ 1).

Mixture Case. Now, we suppose that T follows Wp = [(W (βk, ηk)), (αk)]k=1..p

a mixture of p Weibull distributions with its weighting coefficients (
∑

k αk = 1,
αk ≥ 0). In statistics, the density associated is defined by:

fWp
=

∑

k

αkfβk,ηk
=

∑

k

αkSβk,ηk
λβk,ηk

. (5)

Thus, the log-likelihood of Wp can be written as follows:

LL(β, η, α|y) =
n∑

i=1

δilog
[∑

k αk(Sβk,ηk
.λβk,ηk

)(ti)
]

+(1 − δi)log
[∑

k αkSβk,ηk
(tc)

]
.

(6)
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In addition to the mixture’s parameters (βk, ηk)k=1...p, we need to estimate
the weighting coefficients (αk) considered as probabilities. Therefore, we estimate
the tuple (α, β, η) by solving the following problem:

(β̂, η̂, α̂) = argmax
β,η,α

{LL(β, η, α|(ti, δi)i)} (7)

Knowing Weibull’s mean formula μ and given that the mean of a mixture is
a weighted combination of the means of the distributions that form this mixture
(more precisely, μ =

∑
k αkμk), the mean lifetime can thus be estimated as

follows:
μ = α̂.diag(η̂).Γ (1 +

1

β̂
)T (8)

where Γ is the Gamma function. μ can be used as the survival time estimation
for the computation of the concordance index (with t̂i = μi = μ when the
parameters of the distribution are independent from xi).

3 Neural Network for Estimating Conditional Weibull
Mixture

We now consider that the Weibull mixture’s parameters depend on the covariates
x= (xi). We propose to use a neural network to model this dependence.

3.1 Model Description

We name gp the function that models the relationship between xi and the param-
eters of the conditional Weibull mixture:

gp : Rd → R
p×3

xi �→ (α, β, η) (9)

where α = (α1, ..αp) and (β, η) = ((β1, .., βp), (η1, .., ηp)). Note that, when p = 1,
it is no more required to estimate α. This function is represented by the network
named DeepWeiSurv described in Fig. 2. Hence, our goal is to train the network
to learn gp and thus (β̂, η̂) the vector of parameters that maximize the likelihood
of the time-to-event distribution (α̂ as well if p > 1). DeepWeiSurv is therefore
a multi-task network. It consists of a common sub-network, a classification sub-
network (clf ) and a regression sub-network (reg). The shared sub-network takes
as an input the baseline data x of size n and compute a latent representation of
the data z. When p > 1, clf and reg take z as an input towards producing α̂ and
(β̂, η̂) respectively. For reg sub-network, we use ELU (with its constant = 1) as an
activation function for both output layers. We use this function to be sure that we
have enough gradient to learn the parameters thanks to the fact that it becomes
smooth slowly unlike ReLU function. However the codomain of ELU is ]−1,∞[,
which is problematic given the constraints on the parameters mentioned in the
previous section (β ≥ 1 and η > 0). To get around this problem, the network
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Fig. 2. The architecture of DeepWeiSurv

will learn β̂off = β̂ + 2 and η̂off = η̂ + 1 + ε. The offset is then applied in the
opposite direction to recover the parameters concerned. For the classification
part we need to learn α ∈ R

p. To ensure that
∑

k αk = 1 and αk ∈ [0, 1],
we use a softmax activation in the output layer of clf. For each 1 ≤ k ≤ p,
clf produces, αk = (α1k, ...αnk) where αik is such that: P̂ ({Y = ti}) = αik

with Y ∼ W (βk, ηk) and P̂ a probability estimate, whereas reg outputs βk =
(β1k, ..βnk) and ηk = (η1k, ...ηnk). Otherwise, i.e. p = 1, we have α1 = 1, thus
we don’t need to train clf.

Fig. 3. Computational graph of Loss

To train DeepWeiSurv, we minimize the following loss function:

Loss = −LL(β, η, α|y) =
(6)

LL1.Δ
T + LL2.(1Rn − Δ)T (10)
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where Δ is the vector of event indicators and:

LL1 = log[α̂.SΛβ̂,η̂(T )] and LL2 = log[α̂.Sβ̂,η̂(tc)] (11)

with:

SΛβ̂,η̂(t) =

⎛

⎝
(Sβ1,η1 .λβ1,η1)(t1) ... (Sβ1,η1 .λβ1,η1)(tn)

... ... ...
(Sβp,ηp

.λβp,ηp
)(t1) ... (Sβp,ηp

.λβp,ηp
)(tn)

⎞

⎠ (12)

and

Sβ̂,η̂(tc) =

⎛

⎝
Sβ1,η1(tc)

...
Sβp,ηp

(tc)

⎞

⎠ (13)

LL1 exploits uncensored data, whereas LL2 exploits censored observations by
extracting the knowledge that the event will occur after the given censoring
threshold time tc. Figure 3 is an illustration of the computational graph of our
training loss: the inputs are the covariates x, the real values of time and event
indicator (t,Δ) and the outputs are the estimates (α̂, β̂, η̂).

3.2 Experiment on SYNTHETIC Dataset

Fig. 4. −LLpred and −LLreal values for each studied case

The main objective in this section is to validate mathematically Deep-
WeiSurv, that is, to show that this latter is able to estimate the parameters.
For this purpose, we perform an experiment on a simulated data. In this exper-
iment, we treat the case of a single Weibull distribution (αp=1 = 1) and a mix-
ture of 2 Weibull distributions (αp=2 = (0.7, 0.3)) using three different functions:
f1 (linear), f2 (quadratic), f3 (cubic). For each function fi we generate T i

p=1
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∼ W (βi
1, η

i
1) and T i

p=2 ∼ Wp=2(βi
0.7, η

i
0.7, β

i
0.3, η

i
0.3). We compare the predicted

likelihood with the real, and optimal one. These two likelihoods are equal when
the estimated parameters correspond to the real ones. Let X be a vector of 10000
observations generated from an uniform distribution U[0,1]. Here we select 50%
of observations to be right censored at the median of survival times tm (δi = 0
if ti > tm). We set the parameters to be the following functions:
⎛
⎜⎜⎜⎜⎜⎜⎝

β1
1

η1
1

β1
0.7

η1
0.7

β1
0.3

η1
0.3

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

3 2
2 1
2 1
1 2
1 2
3 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(
X
1

)

⎛
⎜⎜⎜⎜⎜⎜⎝

β2
1

η2
1

β2
0.7

η2
0.7

β2
0.3

η2
0.3

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

2 1 1
1 2 1
2 2 1
1 3 1
1 1 2
1 0 2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

⎛
⎝

X2

X
1

⎞
⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

β3
1

η3
1

β3
0.7

η3
0.7

β3
0.3

η3
0.3

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

2 0 1 1
1 1 0 1
2 0 1 1
1 1 0 1
1 2 0 1
3 2 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

⎛
⎜⎜⎝

X3

X2

X
1

⎞
⎟⎟⎠

The bar plot in Fig. 4 displays the predicted likelihood −LLpred of each dis-
tribution and their real one −LLreal. We notice that the real value and predicted
one of each case are very close to each other which means that the model can
identify very precisely the parameters of the conditional distributions. Now, we
test DeepWeisurv on the real-world datasets.

4 Experiments

We perform two sets of experiments based on real survival data: METABRIC
and SEER. We give a brief descriptions of the datasets below; Table 1 gives
an overview on some descriptive statistics of both real-word datasets. We train
DeepWeiSurv on real survival datasets. We compare the predictive performance
of DeepWeiSurv with that of CPH [5] which is the most-widely used model
in the medical field and DeepHit [12] that seems to achieve outperformance
over previous methods. These models are also tested in the same experimental
protocol as DeepWeiSurv.

METABLNCSRIC. METABRIC (Molecular Taxonomy of Breast Cancer
International Consortium) dataset is for a Canada-UK project that aims to
classify breast tumours into further subcategories. It contains gene expressions
profiles and clinical features used for this purpose. In this data, we have 1981
patients, of which 44.8% were died during the study and 55.2% were right-
censored. We used 21 clinical variables including tumor size, age at diagnosis,
Progesterone Receptor (PR) status etc. (see Bilal et al. [14]).

SEER. The Surveillance, Epidemiology, and End Results (SEER1) [15] Program
provides information on cancer statistics during 1975–2016. We focused on the
patients (in total 33387) recorded between 1998 and 2002 who died from a breast
cancer BC (42.8%) or a heart disease HD (49.6%), or who were right-censored

1 https://seer.cancer.gov.

https://seer.cancer.gov
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(57.2% and 50.4% respectively). We extracted 30 covariates including gender,
race, tumor size, number of malignant of benign tumors, Estrogen Receptor
status (ER), PR status, etc. For evaluation we separated the data into two
datasets with respect of the death’s cause (BC & HD) while keeping censored
patients in both of them.

Table 1. Descriptive statistics of real-world datasets

Datasets No. uncensored No. censored No. features

Qualitative Quantitative

METABRIC 888 (44.8%) 1093 (55.2%) 15 6

SEER BC 9152(42.8%) 12221 (57.2%) 23 11

SEER HD 12014 (49.6%) 12221 (50.4%)

4.1 Network Configuration

DeepWeiSurv is consisted of three blocks: the shared sub-network which is a
4-layer network, 3 of which are fully connected layers (128, 64, 32 nodes respec-
tively) and the remain is a batch normalization layer, the second and the third
block (reg, clf respectively) consisted of 2 fully connected layers (16, 8 nodes)
and 1 batch normalization layer. Added to that, the network finishes by one
softmax layer and two ELU layers as outputs. The hidden layers are activated
by ReLU function. DeepWeiSurv is trained via Adam optimizer and learning
rate of 10−4. DeepWeiSurv is implemented in a PyTorch environment.

4.2 Experimental Protocol

We applied 5-fold cross validation: the data is randomly splitted into training
set (80% and 20% of which is reserved for validation) and test set (20%). We
use the predicted values of the parameters to calculate the mean lifetime μ and
then Cindex defined by Eq. (2). This latter is calculated on the validation set.
We tested DeepWeiSurv with p = 1 and p = 2 (we tested higher values of p, but
without better performance).

4.3 Results

Table 2 displays the Cindex results of the experiments realized on SEER and
METABRIC datasets. We can observe that, for METABRIC, DeepWeiSurv’s per-
formances exceed by far that of DeepHit and CPH. For the SEER data, Deep-
WeiSurv with p = 1 outperfoms CPH (in BC and HD cases) and has a slight
improvement over DeepHit especially for SEER HD data but without a signifi-
cant difference (their confidence intervals did overlap). However, the improvement
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Table 2. Comparison of Cindex performance tested on METABRIC and SEER (mean
and 95% confidence interval)

Algorithms Datasets

METABRIC SEER BC SEER HD

CPH 0.658 (0.646−0.671) 0.833 (0.829−0.838) 0.784 (0.779−0.788)

DeepHit 0.651 (0.641−0.661) 0.875 (0.867−0.883) 0.846 (0.842−0.851)

DeepWeiSurv (p=1) 0.805 (0.782−0.829) 0.877 (0.864−0.891) 0.857 (0.85−0.866)

DeepWeiSurv (p=2) 0.819 (0.812−0.837) 0.908 (0.906−0.909) 0.863 (0.86−0.868)

of DeepWeiSurv with p = 2 over all the other methods is highly statistically sig-
nificant. We suspect that the good performances of DeepWeiSurv comes from its
ability to learn implicitly the relationship between the covariates and the param-
eters without making any restrictive assumption.

4.4 Censoring Threshold Sensitivity

In the previous experiments the survival time horizon and the censoring thresh-
old coincide, but it is not always the case. Since DeepWeiSurv predicts the
conditional Weibull distributions with respect to the covariates, it is able to
consider any survival time horizon given a censoring threshold. We add another
experiment on METABRIC2 dataset where we assess DeepWeiSurv (p = 2)
performance with respect to censoring threshold time tc. The aim of this exper-
iment, is to check if DeepWeiSurv can handle data in highly censored setting
for different survival time horizons. For this purpose, we apply the same exper-
imental protocol as before, but changing the censoring threshold. We do this
for some values of tc far below than that used in the previous experiment (tc =
tMETABRIC = 8940). This values, expressed in quantiles3, are carefully selected
in order to have a significant added portion (compared to that of the adjacent
value that precedes) of censored observations. As an observation may change
from a censored status to an uncensored status by changing the threshold of
censorship and vice versa, for each value of censoring threshold time tc we there-
fore have a new set of observed events OEtc = {(ti, δi)‖δi = 1 if ti < tc else 0}
(i.e. comparable events, and this contributes to the calculation of Cindex). The
training set, as it is selected, contains ref = 866 censored observations. Table 3
gives the number of censored and uncensored observations of each selected value
of tc. For each value of tc, we apply the 5-fold cross validation and then calcu-
late the average Cindex for every survival time horizons tSTH . The results are
displayed in Fig. 5.

2 We have chosen METABRIC dataset because of its small size compared to that of
SEER dataset in order to avoid long calculations.

3 We choose this values by using the quantiles of the survival times vector T .



Estimation of Conditional Mixture Weibull Distribution 697

Table 3. Distribution of training set’s observations (censored/uncensored) for each
selected censoring threshold.

tc No. censored No. uncensored Added portion (w.r.t ref)

q0.5 1026 558 160

q0.45 1127 457 261

q0.35 1248 336 382

q0.25 1338 246 472

Fig. 5. The average of Cindex w.r.t survival time horizon tSTH for every selected thresh-
old tc.

Each curve in Fig. 5 represents the scores calculated for a given censoring
threshold tc in different survival time horizons tSTH in x-axis. We can notice
that the average score decreases when tc decreases which is expected because we
have less and less of uncensored data which means that it becomes more and
more difficult to model the distribution of survival times. However, DeepWeiSurv
still performing well in highly censored setting.

5 Conclusion

In this paper, we described a new approach, DeepWeiSurv, to the survival anal-
ysis. The key role of DeepWeiSurv is to predict the parameters of a mixture of
Weibull distributions with respect to the covariates in presence of right-censored
data. In addition to the fact that Weibull distributions are known to be a good
representation for this kind of problem, it also permits to consider any survival
time horizon given a censoring threshold. Experiments on generated databases
show that DeepWeiSurv converges to the real parameters when the survival time
data follows a mixture of Weibull distributions whose parameters are a simple
function of the covariates. On real datasets, DeepWeiSurv clearly outperforms
the state-of-the-art approaches and demonstrates its ability to consider any sur-
vival time horizon.



698 A. Bennis et al.

References

1. Bacha, M., Celeux, G.: Bayesian estimation of a Weibull distribution in a highly
censored and small sample setting. INRIA (1996)

2. Ferreira, L.A., Silva, J.L.: Parameter estimation for Weibull distribution with
right censored data using EM algorithm. Eksploatacja i Niezawodność 19, 310–
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