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Abstract. We propose an innovative approach to finding experts for
community question answering (CQA). The idea is to recommend
answerers, who are credited the highest expertise under question tags
at routing time. The expertise of answerers under already replied ques-
tion tags is intuitively discounted by accounting for the observed tags,
votes and temporal information of their answers. Instead, the discounted
expertise under not yet replied tags is predicted via a latent-factor repre-
sentation of both answerers and tags. These representations are inferred
by means of Gibbs sampling under a new Bayesian probabilistic model
of discounted user expertise and asking-answering behavior. The devised
model unprecedentedly explains the latter two CQA aspects as the result
of a generative process, that seamlessly integrates probabilistic matrix
factorization and network behavior characterization. An extensive com-
parative experimentation over real-world CQA data demonstrates that
our approach outperforms several-state-of-the-art competitors in recom-
mendation effectiveness.

1 Introduction

Expert recommendation [17] enables the timely sharing of high-quality knowl-
edge for community question answering (CQA) [16]. Unfortunately, despite sev-
eral previous research efforts, expert recommendation still remains problematic
for various reasons. Firstly, question-answering (QA) communities are inherently
time-evolving [21], with new users (both askers and answerers) joining daily and
the existing users changing their interests and behavior (such as, e.g., long-term
inactive users, who turn into active participants). Hitherto, expert recommen-
dation has been studied, mostly by ignoring the temporal information of posts.
Accordingly, the devised approaches are suitable neither to deal with the natural
drift of users’ interests over time, nor to promote short-term answerers (i.e., users
with a limited recent answering history). This is a severe limitation, that low-
ers the effectiveness of expert recommendation, since the recommended experts
may no more reply to questions matching initially-relevant and already-outdated
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interests. In addition, short-term answerers would likely not be recommended at
all, being their expertise gained in a far too short time period for such users to
build a solid reputation as actual experts. Secondly, there is no common agree-
ment on the choice of the discriminative content features to capture answer-
ers’ expertise. In most studies, the latter is inferred from the raw text of their
answers, suitably weighted by the respective votes from the QA community. Tags
are mainly ignored or, alternatively, incorporated into post contents as in [20].
However, tags are more insightful, concise and explicit user-generated explana-
tions of both post meaning and topical expertise, with respect to the general top-
ics inferrable from the textual post contents [19]. Thirdly, supplementing content
features with further auxiliary data (e.g., networks of user interactions) for more
effective expert recommendation involves devising a plausible joint processing
of such information. Hitherto, both sources of information have been combined
mainly through simplistic schemes such as, e.g., linear interpolation [17].

In this paper, we propose a new collaborative approach to recommending
question-specific experts in QA communities. The expertise of answerers is deter-
mined from the tags, votes and temporal information of their answers as well
as the asking-answering relationships in the targeted QA community. More pre-
cisely, answer tags are employed to capture and represent the topical expertise
of answerers. Votes indicate the degree to which answerers are publicly acknowl-
edged within the QA community as experts under the tags of the respective
answers. Posting time allows for discounting [8] earlier answers of responders, so
that to account for the natural drift of their interests over time, without penal-
izing short-term answerers. Besides, asking-answering interactions inform the
identification of experts, since repliers to expert askers are likely to be expert as
well. Essentially, for each posted question, the intuition behind the presented
approach consists in recommending answerers, who are credited the highest
degree of expertise under the tags of the particular question at routing time.
In particular, the expertise of answerers under already replied tags is intuitively
determined by means of the votes and temporal information of their answers to
the questions labelled with such tags. Instead, the unknown expertise of answer-
ers under not yet replied tags is predicted through a latent-factor generative
model of temporally-discounted user expertise and asking-answering behavior.
Under such a model, Bayesian probabilistic matrix factorization [15] and the sta-
tistical formalization of asking-answering are seamlessly integrated. This allows
for explaining both the expertise of users and their behavioral patterns as the
result of a generative process, that is governed by a certain number of latent fac-
tors. These are estimated via a MCMC algorithm, that implements the derived
mathematical details of Gibbs sampling inference under the devised model.

Extensive tests over real-world CQA data show that our approach overcomes
several state-of-the-art competitors in recommendation effectiveness.

This paper proceeds as follows. Notation and preliminaries are introduced
in Sect. 2. The devised model is developed in Sect. 3. Expertise prediction for
recommendation and posterior inference are covered in Sect. 4. The experimental
evaluation of our approach is presented in Sect. 5. Finally, conclusions are drawn
in Sect. 6, where future research is also previewed.
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2 Preliminaries

A question-answering (QA) community D can be formalized as a triple D �
〈U ,T ,G〉, where

– U = {u1, . . . , uN} is a set of N users;
– T = {t1, . . . , tM} is a set of M tags;
– G = 〈V ,A〉 is a directed communication network shaped by user interaction

behavior, with V ⊆ U and A ⊆ U × U being the set of nodes and edges,
respectively.

The generic user u ∈ U can ask questions and/or provide answers. In
order to capture the expertise of u, we focus on her answering history au =
{au,1, . . . , au,Nu

}. au is the time sequence of Nu replies from u to as many
questions posted by other users of D. The arbitrary answer au,h ∈ au (with
h = 1, . . . , Nu) is associated with a respective timestamp tsu,h, an explicative
set of tags tu,h ⊆ T and a vote score su,h. tsu,h indicates when au,h was posted.
For any two answers au,hi

, au,hj
∈ au, hi < hj iff tsu,hi

< tsu,hj
. Timestamps

are useful for reasonably dealing with the drift of the interests and skills of u,
across the respective answering history au, by means of gradual forgetting [8].
The latter consists in estimating the expertise of u from the whole answering
history au, so that the earlier answers are realistically considered to be outdated
and, thus, less informative of her current interests and skills. The tags in tu,h

are an insightful description of the actual themes covered by au,h
1. In princi-

ple, tu,h is a more accurate representation of the both the intended meaning of
au,h and the topical expertise of u, in comparison with the more general topics
inferrable from the textual content of au,h [19]. For this reason, the wording of
au,h is disregarded and, consequently, the computational burden of processing
very large amounts of raw text is avoided. su,h indicates the acknowledged degree
of expertise gained by u with regard to the question answered through au,h and,
by extension, under each tag within tu,h.

At the current timestamp now , the expertise of all users in U under the tags
of T is summarized by matrix E(now). Its generic entry E

(now)
ut quantifies the

expertise of user u under tag t at time now as the below weighted average

E
(now)
ut =

∑
au,h∈au

su,h · δt,tu,h
· w

(now)
u,h

∑
au,h∈au

δt,tu,h
· w

(now)
u,h

(1)

In Eq. 1, δt,tu,h
is 1 iff t ∈ tu,h for some h (with h = 1, . . . , Nu), and 0

otherwise. If δt,tu,h
= 0 for each h = 1, . . . , Nu, E

(now)
ut is assumed to be 0, which

corresponds to an unknown or missing value. Besides, w
(now)
u,h = e−λ(now−tsu,h) is

a weighting scheme, that implements gradual forgetting by exponential ageing.
Intuitively, the earlier answers are not ignored in the estimation of the current
expertise of u under t. Rather, their contribution to E

(now)
ut exponentially decays

1 Answers retain the tags attached to the respective questions.



44 G. Costa and R. Ortale

according to the respective timestamps. Remarkably, such a modeling choice
does not penalizes the expertise of those users with a short replying history
(such as new users or mostly inactive users with a recent answering history),
without discarding the old answers of long-term answerers. Notice that w

(now)
u,h

is parameterized by the decay rate λ. The latter determines how rapidly the
contribution of answers to user expertise decays over time. Essentially, larger
values of λ imply a faster decay of earlier answers.

As a supplement to the information from the answering history of users, their
asking-answering interactions are also captured as edges of G. More precisely,
an edge ui → uj from a responder ui to an asker uj belongs to A, if ui answered
at least one question posted by uj . By an abuse of notation, we also write G to
denote the adjacency matrix associated with the asking-answering graph. The
generic entry Gij is 1 iff ui → uj ∈ A and 0 otherwise.

2.1 Problem Statement

Given a question q, let tq be the set of tags attached to q by the asker. Also,
assume that now is the time, when q is routed to the answerers. We aim to
recommend q to targeted users, with the highest acknowledged expertise in the
tags of tq at time now , who are most likely to reply with high-quality answers.

Unfortunately, in the context of the generic QA community D, E(now) and
G are generally very sparse. Consequently, the expertise of users under specific
tags within tq may not be known. In this paper, we exploit latent-factor mod-
eling to predict the unknown values of E(now), that correspond to the current
expertise of answerers under the various adopted tags. Thus, experts can be
simply recommended from a list of answerers, ranked by their average expertise
under the tags attached to q.

Hereinafter, to avoid cluttering notation, we will write E to mean E(now).

3 The ENGAGE Model

ENGAGE (timE-evolviNG tAG-based Expertise) is a Bayesian generative latent-
factor model of temporally-discounted expertise and asking-answering behavior
in QA communities. Under ENGAGE, the matrices E and G of a QA community
D are the result of a probabilistic generative process, that is ruled by K latent
factors. These are captured by embedding users and tags in a K-dimensional
latent space, through the seamless integration of Bayesian probabilistic matrix
factorization [15] and the statistical modeling of the asking-answering behavior.

Formally, each user u ∈ U is associated with a column vector Lu ∈ R
K

The k-th entry of Lu (with k = 1, . . . ,K) is a random variable representing
the unknown degree to which the k-th latent factor explains the expertise of
u. Analogously, each tag t ∈ T is associated with a column vector Ht ∈ R

K .
The k-th entry of Ht (with k = 1, . . . , K) is a random variable representing
the unknown extent to which the k-th latent factor is inherently characteristic
of t. The latent-factor representation of all users and tags is collectively denoted
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as L ∈ R
K×N and H ∈ R

K×M , respectively. The data likelihood (i.e., the
conditional distribution over the entries of E and G) is

Pr(E|L,H, α) =
∏

u∈U

∏

t∈T

N (Eut;μu,t, α
−1)δut (2)

Pr (G|L, β) =
∏

ui→uj∈A

N (Gij ;μui,uj
, β−1) (3)

with

μu,t = LT
u · Ht and μui,uj

= LT
ui

Luj

In the above Eq. 2 and Eq. 3, N (·|μ, α−1) is the Gaussian distribution having
mean μ and precision α. In particular, according to Eq. 2, the current expertise
of answerers under the adopted tags is centered around the intuitive explana-
tion provided by the dot product of the respective latent-factor representations.
δut is 1 iff Eut > 0 (i.e., if the expertise of u under t is actually acknowledged)
and 0 otherwise. Equation 3 seamlessly incorporates the supplementary informa-
tion regarding the asking-answering interactions of users. Specifically, according
to Eq. 3, the asking-answering interactions are centered around the degree of
agreement between the involved users. This provides a valuable contribution to
the identification of experts, since those users, who answer questions from other
users with a high expertise, are also likely to have gained a high expertise.

The latent-factor representations of users and tags stem from multivariate
Gaussian prior distributions parameterized, respectively, by ΘL = {μL , ΛL}
and ΘH = {μH , ΛH }. In turn, such parameters are drawn from the below
Gaussian-Wishart prior distributions (hereinafter indicated as NW) [2]

Pr(ΘX |Θ0) = N
(
μX ;μ0, [β0ΛX ]−1

)
· W (ΛX ; ν0,W0)

where X ∈ {L,H}, W (ΛX ; ν0,W0) denotes the Wishart distribution [2]
and Θ0 = {μ0, β0, ν0,W0} is a set of hyperparameters.

The conditional (in)dependencies among the random variables under
ENGAGE are shown by means of plate notation in Fig. 1a. Notice that unshaded
nodes correspond to latent factors, whereas shaded nodes correspond to observed
magnitudes. The generative process modeled by ENGAGE performs the realiza-
tion of the observed random variables (i.e., the individual entries of E and G)
according to the conditional (in)dependencies of Fig. 1a as detailed in Fig. 1b.

4 Model Inference

Under ENGAGE, the experts for a given question q are found by ranking users
based on a recommendation score, that involves the latent-factor representations
of users and tags. The recommendation score is introduced in Sect. 4.1. The
inference of the latent-factor representations is discussed in Sect. 4.2.
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Fig. 1. Graphical representation of ENGAGE (a) and its generative process (b).

4.1 Answerer Ranking for Recommendation

The rank of an answerer u ∈ U in the list of experts for q is determined by the
score Puq of her acknowledged/predicted expertise. Puq is computed by averag-
ing the current expertise of u under the individual tags of tq. This requires to
distinguish between two alternative cases. Let t be an adopted tag of tq. If the
expertise of u under t is acknowledged, Eut can be directly used in the definition
of Puq. Otherwise, if the expertise of u under t is an unknown entry of E, then
Eut is suitably predicted by resorting to the latent-factor representations of u
and t under ENGAGE. Accordingly, Puq = 1

|tq|
∑

t∈tq
Êut, where Êut is defined

in the below Eq. 4, so that to incorporate the current expertise of u under t
according to the two above cases.

Êut =

{
Eut if Eut > 0
1
S

∑S
s=1

(
L(s)

u

)T

· H
(s)
t if Eut = 0

(4)

In Eq. 4, S is the number of samples of both Lu and Ht, which are
respectively referred to as L(s)

u and H
(s)
t (with s = 1, . . . , S). Assume that

Θ = {L,H} ∪ ΘL ∪ ΘH . In principle, all samples L(s)
u and H

(s)
t are to be

drawn from the posterior distribution Pr(Θ|E,G, α, β,Θ0). However, the lat-
ter is analytically intractable. Therefore, the generic L(s)

u and H
(s)
t are drawn

through approximate posterior inference, as described in Sect. 4.2.

4.2 Approximate Posterior Inference

A well-known technique for approximate stochastic inference [14] is Gibbs sam-
pling. The latter defines a (first-order) Markov chain, whose stationary distribu-
tion eventually approaches the true posterior distribution Pr(Θ|E,G, α, β,Θ0).
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This is accomplished by means of reiterated transitions from the current sample
of the model parameters Θ to a new one. More precisely, at the generic tran-
sition, each parameter θ ∈ Θ is sequentially sampled from the respective full
conditional Pr(θ|Θ−θ,E,G, α, β,Θ0). This is the conditional distribution over
θ, given all other parameters Θ − θ, the (hyper)parameters Θ0 as well as the
observations E and G.

The derived full conditional distributions over the individual parameters of
ENGAGE are reported next, along with the algorithm designed to perform Gibbs
sampling inference.

Parameters Lu and Ht. Due to the conjugacy between the multivariate Gaussian
distribution on Lu (with unknown parameters ΘL ) and the Gaussian-Wishart
prior on ΘL , the full conditional on Lu is a multivariate Guassian distribution,
i.e.,

Lu ∼ N
(

μ
∗(u)
L ,

[
Λ

∗(u)
L

]−1
)

(5)

where

Λ
∗(u)
L = ΛL + α

∑

t∈T

δutHtH
T
t + β

∑

u∈U

LuLT
u

μ
∗(u)
L =

[
Λ

∗(u)
L

]−1
[

α
∑

t∈T

δutHtEut + β
∑

v∈U

LvGuv + ΛLμL

]

Likewise, because of the conjugacy between the multivariate Gaussian distri-
bution on Ht (with unknown parameters ΘH ) and the Gaussian-Wishart prior
on ΘH , the full conditional on Ht is a multivariate Guassian distribution, i.e.,

Ht ∼ N
(

μ
∗(t)
H ,

[
Λ

∗(t)
H

]−1
)

(6)

with

Λ
∗(t)
H = ΛH + α

∑

u∈U

δutLuLT
u

μ
∗(t)
H =

[
Λ

∗(t)
H

]−1
[

α
∑

u∈N

LuδutEut + ΛH μH

]

Parameters ΘL and ΘH . For each X ∈ {L,H}, the conditional distribution
over ΘX = {μX ,ΛX } is the below Gaussian-Wishart distribution [6, pp. 178]

Pr(μX,ΛX |X,Θ0) =N (μX |μ∗
X , [(β0 + c)ΛX ]−1)

· W(ΛX |ν0 + c,W ∗
X ) (7)

where c is the number of columns within matrix X and

μ∗
X =

β0μ0 + cX

β0 + c
; SX =

1
c

c∑

i=1

(Xi − X)(Xi − X)T ; X =
1
c

c∑

i=1

Xi

[W∗
X ]−1 = W0c

−1 + cSX +
β0c

β0 + c
(μ0 − X)(μ0 − X)T
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Algorithm 1: Pseudo code of the Gibbs sampling algorithm
Input: α, β, Θ0 = {μ0, β0, ν0, W 0} and H;

Output: samples L(s)
u , H

(s)
t with s = 1, . . . , S;

1 Initialize L(0) and H (0);
2 for h = 1, . . . , H do

3 Draw Θ
(h )
L ∼ Pr(Θ

(h )
L |L, Θ0) through Eq. 7;

4 Draw Θ
(h )
H ∼ Pr(Θ

(h )
H |H , Θ0) through Eq. 7;

5 for each u ∈ U do

6 Draw L(h)
u ∼ N

(
μ

∗(u)
P ,

[
Λ

∗(u)
P

]−1
)

through Eq. 5;

7 end
8 for each t ∈ T do

9 Draw H
(h)
t ∼ N

(
μ

∗(t)
H ,

[
Λ

∗(t)
H

]−1
)

through Eq. 6;

10 end

11 end

Gibbs Sampling. Algorithm 1 sketches the pseudo code of the sampler, designed
to implement approximate posterior inference under ENGAGE. After a prelimi-
nary initialization (line 1), the sampler enters a loop (lines 2–11), whose generic
iteration h embraces two steps. Θ

(h)
L and Θ

(h)
H are drawn at the first step (lines 3–

4), being functional to draw L(h)
u and H

(h)
t at the second step (lines 5–10).

The maximum number H of iterations is established, by following the widely-
adopted convergence-criterion in [12]. This allows the Markov chain behind the
Gibbs sampler to reach its equilibrium after an initial burn-in period. As a
consequence, the S samples used in Eq. 4, can be drawn when convergence is
met (i.e., after the burn-in period, in which samples are instead still sensible to
the preliminary initialization).

5 Experimental Evaluation

We comparatively investigated the recommendation effectiveness of ENGAGE.

5.1 Data Set

All experiments were conducted on Stack Overflow2 [1,16], i.e., a real-world QA
community for sharing knowledge on computer programming. More precisely,
we formed our training and test sets from an anonymized and quarterly dump3

of all Stack Overflow data, produced by its users within a time interval ranging
from Jan 1, 2015 to July 31, 2015. Such a dump is publicly released by the
Stack Exchange network under the Creative Commons BY-SA 4.0 licence. More
precisely, as far as the training set is concerned, we retained all those tags that
were adopted at least 50 times in the time interval from Jan 1, 2015 to June
31, 2015. Further, we considered all those users, who provided more than 80

2 https://stackoverflow.com/.
3 https://archive.org/download/stackexchange.

https://stackoverflow.com/
https://archive.org/download/stackexchange
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posts [20] in the same period. The selected tags and users, along with their
answers, the respective questions, timestamps and votes were included into the
training set. Overall, the latter consists of 3, 376 users, 40, 382 questions, 60, 968
answers. Regarding the test set, we focused on a collection Q of questions (with
|Q| = 1, 357), that were posted by the users in the training set in a later time
interval from July 1, 2015 to July 31, 2015. These questions are labelled with
tags and answered by answerers in the training set. We chose such users, their
answers to the questions of Q, the respective timestamps and votes as the test
set. As a whole, the latter consists of 1, 357 questions, 3, 376 users, 3, 771 answers.

5.2 Competitors

We contrasted ENGAGE against a selection of various competitors.
Votes [17] ranks answerers based on the mean of the difference between the

positive and negative votes of their answers as well as the average percentage of
the positive votes.

InDegree [3] ranks answerers by their respective numbers of best answers.
The state-of-the art model in [19], hereinafter called TER (Tag-based Expert

Recommendation), infers user expertise from the factorization of the user-tag
matrix. The latter is built, so that the generic entry reflects the expertise of an
answerer under a tag, as captured by averaging the votes of her answers marked
by that tag. Unlike ENGAGE, TER ignores both the drift of users’ interests over
time and their asking-answering behavior.

TEM [20] is a state-of-the art joint model of topics and expertise. Essentially,
under TEM, tags are incorporated into the textual content of posts, in order
to infer the topical interests of users. The specific expertise of users under the
different topics is explicitly captured.

CQARank [20] combines the user topical interests and expertise under TEM
with the link analysis of the asking-answering interaction graph, in order to
enhance the inference of user topical expertise.

Both TEM and CQARank disregard the drift of users’ interests over time.

5.3 Recommendation Effectiveness

We comparatively assessed the recommendation performance of ENGAGE
through several evaluation metrics. Let q ∈ Q be a generic question of the
test set. Assume that R

(q)
and R(q) are, respectively, the ground-truth and the

recommended list of experts for q. Essentially, R
(q)

is the list of users, who actu-
ally answered q, ranked by the known scores of their answers. Instead, the users
in R(q) are ranked by the recommendation score of Sect. 4.1. R(q) = |R(q)| is the
size of R(q). R

(q)
i denotes the user at position i of R(q). R

(q)
best indicates the rank

of the best answerer. The adopted evaluation metrics are enumerated next.

– Precision at top R(q) (Precision(q)@R(q)) [9] is the correctness of R(q), i.e., the
fraction of top-R(q) recommended experts, who are ground-truth answerers.
More precisely,
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Precision(q)@R(q) =
|R(q) ∩ R

(q)|
R(q)

– Recall at top R(q) (Recall (q)@R(q)) [9] is the coverage of R(q), i.e., the fraction
of ground-truth answerers in the top-R(q) recommended experts. Specifically,

Recall (q)@R(q) =
|R(q) ∩ R

(q)|
|R(q)|

– nDCG [10] (normalized Discounted Cumulative Gain) measures the goodness
of the ranking of the recommended experts, based on their position in R(q).
This is accomplished by accumulating expert relevance to question q along
R(q), so that the relevance of higher-ranked experts is suitably discounted.
Formally, nDCG(q) = DCG(q)

IDCG(q) , where

DCG(q) = s
(q)
1 +

R(q)
∑

i=2

s
(q)
i

log2i

In the above equation, s
(q)
i represents the relevance of R

(q)
i to q (according to

thumbs-up/down). IDCG(q) is the DCG(q) value of the ideal ranking.
– Accuracy (Acc(q)) [22] measures the quality of the best-answer’s rank, i.e.,

Acc(q) =
R(q) − R

(q)
best

R(q) − 1

Larger values of the above measures denote a higher recommendation effec-
tiveness. Table 1 summarizes the average values of such measures over the whole
set Q of questions for all competitors. The reported results were found by adopt-
ing the following empirical settings. In all tests, the time decay factor λ was fixed
to 0.2. The number K of latent factors was set to 15. The number S of samples
used in Eq. 4 was set to 200. The overall number H of iterations for Algorithm 1
was fixed to 1, 000, in compliance with the convergence-criterion in [12]. Addi-
tionally, for each q ∈ Q, the number R(q) of recommended answerers for q was
set to 10.

By looking at Table 1, it is evident that ENGAGE overcomes all tested com-
petitors. In particular, the lower effectiveness of Votes and InDegree is due to the
fact that both focus only on the importance of users, without accounting for their
specific discounted expertise. TER is a state-of-the art competitor, that captures
the tag-based expertise of answerers. Nonetheless, TER is still less effective than
ENGAGE for two main reasons. Firstly, TER does not account for the drift of
users’ interests over time. Secondly, TER does not exploit any auxiliary informa-
tion from the communication network, that is shaped by the asking-answering
behavior. The latter is instead conveniently used, under ENGAGE, in order to
more accurately inform the latent factor representation of users and tags. TEM
and CQARank are two state-of-the-art competitors, that use tags to capture top-
ical expertise. However, their effectiveness is penalized with respect to ENGAGE,



Collaborative Recommendation of Temporally-Discounted Tag-Based 51

Table 1. Recommendation effectiveness of the compared approaches

Competitor Precision@10 Recall@10 nDCG Accuracy

Votes 0.2658 0.3880 0.7849 0.5618

InDegree 0.3379 0.4656 0.8235 0.5788

TER 0.3639 0.4803 0.8157 0.6161

TEM 0.3567 0.5066 0.8291 0.6548

CQARank 0.3896 0.5153 0.8348 0.6803

ENGAGE 0.4113 0.5379 0.8561 0.6952

since tags are mixed up with the textual content of posts, rather then being used
as user-generated explanations of their topical expertise. Moreover, neither TEM
nor CQARank discount the expertise of users, in order to account for the drift of
their interests over time.

6 Conclusions and Further Research

We proposed a new latent-factor approach to expert recommendation in QA
communities. The idea is to infer the time-evolving expertise of users from the
tags of the answered questions, the votes and posting time of the respective
answers as well as the asking-answering behavior of the CQA users. A thor-
ough experimentation on real-world CQA data showed the overcoming recom-
mendation effectiveness of our approach with respect to several state-of-the-art
competitors.

It is interesting to explore the impact of alternative implementations of
gradual forgetting on recommendation effectiveness. In this regard, temporal
hyperbolic discounting [21] is a viable choice. Finally, three further lines of
innovative research involve studying the incorporation of, respectively, user
roles [5,7,13,18], exposure [11] to posted questions as well as the recent gen-
erative models of text corpora (such as, e.g., [4]) for more effective expert
recommendation.

References

1. Anderson, A., et al.: Discovering value from community activity on focused ques-
tion answering sites: a case study of stack overow. In: Proceedings of ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 850–858
(2012)

2. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York
(2006)

3. Bouguessa, M., Dumoulin, B., Wang, S.: Identifying authoritative actors in
question-answering forums: the case of Yahoo! answers. In: Proceedings of ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
866–874 (2008)



52 G. Costa and R. Ortale

4. Costa, G., Ortale, R.: Document clustering meets topic modeling with word embed-
dings. In: Proceedings of SIAM International Conference on Data Mining (2020)

5. Costa, G., Ortale, R.: Mining overlapping communities and inner role assignments
through Bayesian mixed-membership models of networks with context-dependent
interactions. ACM Trans. Knowl. Disc. Data 12(2), 18:1–18:32 (2018)

6. DeGroot, M.: Optimal Statistical Decisions. McGraw-Hill, New York (1970)
7. Fu, C.: Tracking user-role evolution via topic modeling in community question

answering. Inf. Process. Manage. 56(6), 102075 (2019)
8. Gama, J., et al.: A survey on concept drift adaptation. ACM Comput. Surv. 46(4),

44:1–44:37 (2014)
9. Herlocker, J.L., et al.: Evaluating collaborative filtering recommender systems.

ACM Trans. Inf. Syst. 22(1), 5–53 (2004)
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