
Off-Policy Recommendation System
Without Exploration

Chengwei Wang1,3, Tengfei Zhou3, Chen Chen1,3(B), Tianlei Hu1,3,
and Gang Chen2,3

1 The Key Laboratory of Big Data Intelligent Computing of Zhejiang Province,
Zhejiang University, Hangzhou, China

{rr,cc33,htl}@zju.edu.cn
2 CAD and CG State Key Lab, Zhejiang University, Hangzhou, China

cg@zju.edu.cn
3 College of Computer Science and Technology, Zhejiang University,

Hangzhou, China
zhoutengfei@zju.edu.cn

Abstract. Recommendation System (RS) can be treated as an intel-
ligent agent which aims to generate policy maximizing customers’ long
term satisfaction. Off-policy reinforcement learning methods based on
Q-learning and actor-critic methods are commonly used to train RS.
Though these methods can leverage previously collected dataset for sam-
pling efficient training, they are sensitive to the distribution of off-policy
data and make limited progress unless more on-policy data are collected.
However, allowing a badly-trained RS to interact with customers can
result in unpredictable loss. Therefore, it is highly desirable that the off-
policy method can stably train an RS when the off-policy data is fixed
and there is no further interaction with the environment. To fulfill these
requirements, we devise a novel method name Generator Constrained
Q-learning (GCQ). GCQ additionally trains an action generator via
supervised learning. The generator is used to mimic data distribution and
stabilize the performance of recommendation policy. Empirical studies
show that the proposed method outperforms state-of-the-art techniques
on both offline and simulated online environments.

1 Introduction

Recommender System (RS) is one of the most important applications in artificial
intelligence [15,20]. An intelligent RS can significantly reduce users’ searching
time, greatly enhance their shopping experience and bring considerable profits
to vendors.

From the Reinforcement Learning (RL) perspective, RS is an autonomous
agent that intelligently learns the optimal recommendation behavior over time to
maximize each user’s long term satisfaction through interacting with its environ-
ment. This offers us the opportunity to solve the recommendation task on top of

Supported by the National Key R&D Program of China (No. 2017YFB1201001).

c© Springer Nature Switzerland AG 2020
H. W. Lauw et al. (Eds.): PAKDD 2020, LNAI 12084, pp. 16–27, 2020.
https://doi.org/10.1007/978-3-030-47426-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47426-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-47426-3_2

Off-Policy Recommendation System Without Exploration 17

the recent RL advancement. Considering that a previously collected customers’
feedback dataset is often available for recommendation tasks, many researchers
adopt the off-policy RL methods to extract patterns from the data [4,21,23].

Off-policy RL algorithms are often expected to fully exploit off-policy
datasets. Nevertheless, these methods can break down when the datasets are not
collected by learning agents. Theoretically, [2] points out that Bellman updates
could diverge with off-policy data. The divergence issue would surely invalidate
the performance of DQN agents. [12,16] find that in off-policy learning, the fix-
point of Bellman updates may have poor quality even if the update converges.
Empirically, [9] shows that off-policy agents perform dramatically worse than the
behavioral agent when trained by the same numerical algorithm on the same
dataset. Moreover, many researchers observe that these methods can still fail
to learn the optimal strategy even when training data are deliberately selected
by effective experts. All these observations suggest that off-policy methods are
unstable to static datasets.

The instability of off-policy methods is highly undesirable in training an RS.
One would hope that the RS has learned sound policies before deploying into
a production environment. If its performance turns out to be unpredictable,
deploying the RS would be risky. To stabilize off-policy methods, one can com-
pensate for the performance of the RS by online feedbacks. That is, allow the off-
policy agent to interact with customers and use the customers’ feedbacks to sta-
bilize its performance. In practice, collecting user’s feedback is time-consuming,
and deploying an unstable RS to interact with customers would greatly reduce
their satisfaction. As a result, designing a stable off-policy RL method for RS
which has reasonable performance for any static training set without further
exploration, is a fundamental problem.

As indicated in [9,14], the instability issue of off-policy methods results from
exploration error which is a fundamental problem with off-policy reinforcement
learning. exploration error usually behaves as the value function is erroneously
estimated on unseen state-action pairs. The exploration error can be unbound-
edly large, even if the value function can be perfectly approximated [9]. Moreover,
it can accumulate during the training iterations [14]. It may misguide the train-
ing agent and make the agent take over-optimistic or over-pessimistic decisions.
As a result, the training process becomes unstable and potentially diverging
unless new data is collected to remedy those errors.

In this paper, we propose a novel off-policy RL method for RS to diminish the
exploration error. Our method can learn recommendation policy successfully from
large static datasets without further interacting with the environment. exploration
error results from a mismatch in the distribution of data induced by the recommen-
dation policy and the distribution of customers’ feedback contained in the training
data [9]. The proposed Generator Constrained deep Q-learning (GCQ) utilizes a
neural generator to simulate customers’ possible feedbacks. This generative model
is combinedwith aQ-networkwhich select the highest valued action to form recom-
mendation policy. Furthermore, to reduce the decision time, we design the genera-
tor’s architecture based onHuffmanTree.We show thatwith the generator pruning
unlikely actions, the decision complexity can be reduced to O(log |A|) where |A| is
the number of actions, namely the number of items.

18 C. Wang et al.

2 Off-Policy Recommendation Problem

A typical recommendation process can be formulated as a Markov Decision Pro-
cess (MDP) (S,A, r, P, γ) which is defined as follows.

– State space S: The state su
t = {u, i1, . . . ict

} contains the active user u and
his/her chronological clicked items.

– Action space A: The action space is the item set.
– Reward r(su, au): Reward is the immediate gain of the RS after action au.

r(su, au) =

{
1 if user u clicks item au

0 otherwise
(1)

– Transition probability P (su
t+1|su

t , au
t): The state transits as follows.

su
t+1 =

{
su

t ∪ {au
t } if user u clicks item au

t

su
t otherwise

– Discount rate γ: γ ∈ [0, 1] is a hyperparameter. It is the tradeoff between
the immediate reward and long term benefits.

The off-policy recommendation problem can be formulated as follows. Let
B = {(su

t , au
t , su

t+1, r
u
t)} be the dataset collected by a unknown behavior pol-

icy. Construct a recommendation policy π : S → A such that the accumulated
reward is maximized. For notation simplicity, we may omit the superscript of
su, ru, au in the following section.

3 Preliminaries

3.1 Q-Learning

Q-learning learns the state-action Q-function Q(s, a), which is the optimal
expected cumulative reward when the RS starts in state s and takes action
a. The optimal policy π can be recovered from the Q-function by choosing the
maximizing action that is π(s) = arg maxa∈A Q(s, a). The Q-function is a fix
point of the following Bellman iteration:

Qk+1(st, at) = rt + γ max
a

Qk(st+1, a). (2)

with (st, at, st+1, rt) sampled from B. The above update formula is called Q-
learning in reinforcement learning literature. According to [9,14], Q-learning
may have unrealistic value on unobserved state-action pairs, which results in
large exploration error and makes the performance of an RS unstable.

Off-Policy Recommendation System Without Exploration 19

3.2 Batch Constrained Q-Learning

To cope with the exploration error, [14] proposes the Batch Constrained
Q-Learning (BCQ) method. BCQ avoids exploration error by explicitly con-
straining an agent’s candidate actions in the training set. Specifically, BCQ esti-
mates the Q-function by the following batch constrained Bellman update.

Qk+1(st, at) = rt + γ max
(st+1,a)∈B

Qk(st+1, a). (3)

where “(st+1, a) ∈ B” means that there exist state s′ and reward r′ such that
(st+1, a, s′, r′) ∈ B. Due to the sparsity of recommendation dataset, for most
observed state s, there exists at most one action a such that (s, a) ∈ B. Thus,
for most state-action pairs, the BCQ update (3) can be simplified to the following
iteration

Qk+1(st, at) = rt + γQk(st+1, at+1). (4)

Such iteration implicitly assumes that the observed action at+1 is optimal for
state st+1, which is unrealistic because users’ feedbacks are noisy.

4 Methodology

4.1 Generator Constrained Q-Learning

To prevent BCQ from overfitting into noisy data, we propose a new off-policy
RL algorithm named Generator Constrained Q-learning (GCQ). GCQ utilizes a
neural generator to recover the distribution of observed dataset. Then, the Q-
function is updated on a candidate set sampled from the generator. Specifically,
the main iteration of GCQ can be formulated as follows.{

Ak = {ai ∼ gθk
(a|st+1)}c

i=1

Qk+1(st, at) = rt + γ max {Qk(st+1, a)|a ∈ Ak}.
(5)

where (st, at, st+1, rt) is a randomly sampled tuple from B and gθ(·|s) is a neural
generator which gives the conditional probability of actions. The size of candidate
set c is a hyperparameter of GCQ method. When c is fixed to n, the number of
items, GCQ becomes Q-Learning method.

Since the state space of RS is large, it is impossible to compute the Q-function
of each state-action pairs. To handle the difficulty, we approximate the unknown
Q-function by a deep neural network Qθ(s, a) a.k.a deep Q-net where θ is its
parameter.

4.2 Architecture of State Encoder

Obviously, both Q-net and generator need an encoder to extract features from a
state s = {u, i1, . . . iT }. According to [3], a shared encoder generalizes better than
multiple task-specified encoders. Therefore, we use the same encoder for Q-net
Qθ(s, ·) and generator gθ(·|s). We depict the structure of encoder in Fig. 1(a).

20 C. Wang et al.

Fig. 1. Neural architectures of proposed networks

Embedding Layer. The embedding layer maps a user or an item to correspon-
dent semantic vector. Formally, Let U ∈ R

m×d and V ∈ R
n×d be the embedding

matrix of user and item respectively. The embedding vector of user u and item
i can be expressed as follows.

pu = U[u], qi = V[i] (6)

where we use X[k] to denote k-th row of matrix X.

Residual Recurrent Layer. The layer transforms the sequence su = {u, i1, . . .
iT } into hidden states. In the field of sequence modeling, GRU [6] and LSTM
[10] are arguably the most powerful tools. However, both recurrent structures
suffer from gradient vanishing/exploding issues for long sequences. Inspired by
that residual network has stable gradients [19], we proposed a variant of GRU
cell with residual structure. Specifically, we use the following recurrent to map
the state s into hidden states {ht}t=T

t=0 .

ht =

{
pu if t = 0
ht−1 + W · GRUCell(ht−1, qit

) otherwise
(7)

where pu is the embedding vector of user u, qit
is the embedding vector of item

it, and W is an alignment matrix.

Fast Attention Layer. The layer utilizes attention mechanism to aggregate
hidden states {ht}t=T

t=0 into a feature vector e. For efficiency, we adopt a faster
linear attention mechanism instead of the common tanh-based ones [7]. The
linear attention has two stages. Stage one: compute the signal matrix Ct via
the following recurrence.

Ct =

{
h0h

�
0 if t = 0

(1 − αt)Ct−1 + αthth
�
t if t > 0

(8)

Off-Policy Recommendation System Without Exploration 21

where αt = σ(Wαht) is the forget gate and Wα its parameter. Stage two:
output encoding feature via

e = CT hT . (9)

The output vector e is the encoded feature vector of s.

4.3 Architecture of Q-Net

Considering that actions with high cumulative rewards shall have close correla-
tions with the current state, we use the inner product of the two object’s feature
vectors to model the Q-function, that is

Qθ(s, a) = (e)�qa (10)

where qa = V[a] is the embedding vector of action a.

4.4 Architecture of Generator

Since Huffman tree uses shorter codes for more frequent items, it results in
a faster sampling process and is widely used in NLP tasks [17,18]. To reduce
training time, we build a novel neural structure based on Huffman tree. The
proposed structure is depicted in Fig. 1(b). The Huffman tree is built according
to the popularity of items f which is defined by

fi =
#ocurri∑n
i=1 #ocurri

(11)

with #ocurri being the occurrence number of item i. We assign Huffman code to
each node of the tree by the following rules: (a) encode root node by b0 = 0; (b)
for a node with code b0b1 . . . bj , encode its left child by b0b1 . . . bj0 and right child
by b0b1 . . . bj1. Let zb0:k ∈ R

d be an embedding vector of a tree node with code
b0:k. For an item a with code b0:j , its generating probability can be computed
as follows.

gθ(a|s) =
j−1∏
k=0

(
σ(z�

b0:k
e)

)bk+1 (
1 − σ(z�

b0:k
e)

)1−bk+1︸ ︷︷ ︸
σn(b0:k+1)

(12)

According to above equation, computing gθ(a|s) involves calculating O(j) sig-
moid functions where j is the length of a’s Huffman code. Since the expected
length of Huffman codes is O(log |A|), the time complexity for computing gθ(a|s)
is O(d log |A|). Similarly, sampling from gθ(a|s) is equivalent to sample O(j) sig-
moids which has expected time complexity O(d log |A|).
Remark 1. The recommendation policy of GCQ can be derived by selecting an
optimal action which has highest Q-value among a candidate set, that is

π(s) = arg max
a∈A

Qθ(s, a) s.t. A = {ai ∼ gθ(a|s)}c
i=1 (13)

The recommendation policy can be executed in O(d log |A|) flops.

22 C. Wang et al.

4.5 Parameter Inference

Loss Function of the Generator. We use the negative log-likelihood of the
generator to evaluate the performance of the generator.

nll(θ) = − 1
|B|

∑
(s,a)∈B

log gθ(a|s). (14)

Loss Function of the Q-Net. According to the framework of fitted
Q-iteration [1], the loss function of Q-net is the mean square error between
the Q-net and its bellman update, namely

qloss(θ) = (Qθ(s, a) − r + γ max {Qθ′(s′, a)|a ∈ A})2 (15)

where A = {ai ∼ gθ′(a|s′)}c
i=1 is the candidate set and (s, a, s′, r) ∈ B.

Algorithm 1: Generator Constrained Deep Q-Learning
input : Replay Buffer B, size of candidate set c, regularizer λ, number of

iterations K, discount rate γ, learning rate η
1 tree = BuildHoffmanTree(B)
2 θ0 =InitializeParameters(tree)

3 for (k = 0; k < K; k + +) do
4 (s, a, s′, r) = GetRandomSample(B)

5 A = {ai|ai ∼ gθk (a|s′), i ≤ c}
6 Q̂ = r + γ max {Qθk(s′, ai)|ai ∈ A}

7 qloss = 1
2

(
Q̂ − Qθ(s, a)

)2

8 nll = − log gθ(a|s)
9 jointloss = qloss + λnll

10 dθk = (Qθk(s, a) − Q̂)∇Qθk (s, a) − λ
gθk

(a|s)∇gθk(a|s)
11 θk+1 = θk − ηdθk

12 end

Joint Inference. Since the Q-net and the generator share the same encoder,
We jointly train them via iteratively minimizing the following loss.

min
θ

qloss(θ) + λnll(θ) (16)

where λ > 0 is a tuning parameter controlling the balance of mean square
loss and log-likelihood. The joint loss can be optimized via stochastic gradient
descent, as showed in Algorithm 1.

Off-Policy Recommendation System Without Exploration 23

5 Experiments

In this section, we compare the performance of proposed GCQ method with
state-of-the-art recommendation methods. We assess the performance of con-
sidered methods on both real-world offline datasets and simulated online envi-
ronments. Besides, empirical studies on the hyperparameter sensitivities and
computing time are conducted on several datasets. The baseline methods are
listed as follows.

– MF [13]: It utilizes the latent factor model to predict the unknown ratings.
– W&D [5]: W&D uses wide & deep neural architecture to learn nonlinear

latent factors.
– GRU4Rec [11]: It applies GRU to model click sequences.
– DQN: It recommends items by a deep Q-net. For fairness, We set the Q-net

to the same one as the proposed method.
– DDPG [8]: DDPG utilizes deterministic policy gradient descent to update

parameters.
– DEERS [22]: It tries to incorporate a user’s negative feedback via sampling

from the unclicked items.

5.1 Experiment Settings

We use three publicly available datasets: MovieLens 1M (M1M), MovieLens 10M
(M10M) and Amazon 5-core grocery and gourmet food (AMZ) to compare the
considered methods. These datasets contain historical ratings of items with scor-
ing timestamps. Now according to timestamps, we can transform the datasets
into replay buffers of the form {(su

t , au
t , su

t+1, r
u
t)}.

For simplicity, we set the dimension of user embedding, the dimension of
item embedding, and the dimension of hidden states of the proposed neural
architectures to the same value d. We call d the model dimension. We set the
model dimension d = 150, the discount factor γ = 0.9, the size of sampling size
c = 50, and the regularizer λ = 0.1 as default. All these hyperparameters are
chosen by cross-validation. The hyperparameters of baseline methods are set to
default values.

5.2 Offline Evaluation

According to the temporal order, we use the top 70% tuples in the derived replay
buffers for training and hold out the remaining 30% for testing. In an offline envi-
ronment, we cannot obtain the immediate reward of the recommendation policy.
As a result, we cannot use the cumulative reward to evaluate the performance
of the compared learning agents. Considering that a Q-net Qθ(s, a) with high
cumulative reward shall assign large value to clicked items and give small value
the ignored ones, Qθ(s, a) can be viewed as a scoring function which ranks the
clicked items ahead of ignored ones. Thus, we can use the ranking metric such
as Recall@k and Precision@k to evaluate the compared methods.

24 C. Wang et al.

Table 1. Offline Recall@k of compared methods

M1M M10M AMZ

Reca@1 Reca@5 Reca@10 Reca@1 Reca@5 Reca@10 Reca@1 Reca@5 Reca@10

DQN 0.0088 0.0416 0.0770 0.0052 0.0248 0.0429 0.0445 0.1877 0.3091

GRU4Rec 0.0079 0.0308 0.0540 0.0054 0.0235 0.0373 0.2735 0.4568 0.543

MF 0.0086 0.0324 0.0561 0.0074 0.0262 0.0439 0.2517 0.4359 0.5224

W& D 0.0069 0.0313 0.0519 0.0055 0.0238 0.0389 0.3734 0.5405 0.5982

DEERS 0.0048 0.0257 0.0461 0.0037 0.0193 0.0373 0.2926 0.6013 0.7176

DDPG 0.0083 0.0353 0.0596 0.0045 0.0210 0.0344 0.2359 0.4160 0.4743

GCQ 0.0110 0.0495 0.0897 0.0054 0.0270 0.0539 0.3764 0.6015 0.6747

Table 2. Offline Precision@k of compared methods

M1M M10M AMZ

Prec@1 Prec@5 Prec@10 Prec@1 Prec@5 Prec@10 Prec@1 Prec@5 Prec@10

DQN 0.1543 0.1462 0.1396 0.0734 0.0754 0.0722 0.0523 0.0489 0.0432

GRU4Rec 0.1223 0.1043 0.0910 0.0922 0.0732 0.0588 0.3309 0.1263 0.0798

MF 0.1187 0.0920 0.0807 0.1207 0.0907 0.0695 0.3133 0.1220 0.0779

W& D 0.0992 0.0862 0.0740 0.1074 0.0836 0.0641 0.4539 0.1559 0.0920

DEERS 0.0770 0.0789 0.0757 0.0539 0.0582 0.0585 0.3414 0.1680 0.1110

DDPG 0.1598 0.1313 0.1155 0.0727 0.0679 0.0580 0.3016 0.1277 0.0791

GCQ 0.1789 0.1658 0.1547 0.0930 0.0931 0.0930 0.4703 0.1829 0.1092

To reduce randomness, we run each model five times and report their average
performances in Table 1 and Table 2. From the tables, we can see that GCQ consis-
tently outperforms DQN. Since the two methods share the same Q-net, such result
shows that GCQ has a lower exploration error during the learning process. GCQ
also has higher accuracy than DEERS. The reason is that the proposed encoder
is more expressive than DEERS’s GRU based one. Compared with DDPG, our
GCQ consistently has better accuracy. This is because the policy-gradient-based
method DDPG has higher variances during the learning process. Both Table 1
and Table 2 exhibit that GCQ outperforms non-RL methods, namely MF, W&D
and GRU4Rec. These results demonstrate that taking the long term reward into
consideration can improve the accuracy of recommendation.

5000 10000 15000
(a) M1M

0

0.5

1

1.5

2

2.5

C
um

ul
at

iv
e

R
ew

ar
d

DQN GCQ DEER DDPG

5000 10000 15000
(b) M10M

0

0.5

1

1.5

2

5000 10000 15000
(c) AWZ

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 2. Cumulative rewards of compared methods v.s. number of iterations

Off-Policy Recommendation System Without Exploration 25

Table 3. Computational time of compared methods

DQN DDPG DEER GCQ

M1M 116.2 (s) 120.5 129.1 86.1

M10M 1175.7 1219.2 1306.3 870.9

AWZ 139.9 145.2 155.5 103.7

The computational time of compared RL methods is recorded in Table 3. The
table exhibits that GCQ takes significantly less computational time in handling
the benchmark datasets. This is because GCQ only takes O(log |A|) flops to
make a recommendation decision while the decision complexities of other baseline
methods are O(|A|).

5.3 Online Evaluation

To simulate online environment, we train a GRU to model users’ sequential
decision processes. The GRU takes a user, the user’s last clicked 20 items, and a
candidate item as input. Then, it outputs the click probability of the candidate
item. Such a simulation GRU is widely used in evaluating the online performance
of RL-based recommender agent [22]. We split the datasets into the front 10%,
the middle 80% and the tail 10% sub-datasets by temporal order. The front
sub-dataset is used for initializing the learning agents. The middle sub-dataset
is utilized for training the simulation GRU. The simulator will be validated on
the tail sub-dataset. After training, we find that the simulator has classification
accuracy greater than 75%. Therefore, the simulator quite precisely models a
user’s click decision. After the simulator is trained, we collect the simulated
responses of users and then obtain cumulative reward.

The cumulative reward curves are reported in Fig. 2. From the figure, we
find that GCQ yields much higher cumulative rewards than baseline methods.
Its superior performance results from the smaller exploration error and better
encoder structure. These figures also show that GCQ is more stable than the
baseline methods. This confirms that GCQ has a lower exploration error during
the learning process.

5.4 Model Stability

We find that the most important hyperparameters include: the model dimen-
sion parameter d which controls the model complexity of GCQ; and the size of
candidate set c which controls exploration error.

We report Precision@10 of GCQ under different settings of d in Fig. 3(a).
Figure 3(b) records Precision@10 of GCQ under different values of c. The exper-
imental results in Fig. 3(a)(b) fluctuate within an acceptable range. This demon-
strates the performance of our model is stable.

26 C. Wang et al.

M1M M10M AMZ
(a) Precision@10 under different model dimensions

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
d=16
d=32
d=64
d=128
d=256

M1M M10M AMZ
(b) Precision@10 under different candidate size

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
c=30
c=60
c=90
c=120
c=150

Fig. 3. Precision@10 of GCQ under different settings of hyperparameters

6 Conclusion

We proposed a novel Generator Constrained Q-learning technique for recom-
mendation tasks. GCQ reduce the decision complexity of Q-net from O(|A|) to
O(log |A|). In addition, GCQ enjoys lower exploration error through better char-
acterization of observed data. Further, GCQ employs a new multi-layer encoder
to handle long sequences through attention mechanism and skip connection.
Empirical studies demonstrate GCQ outperforms state-of-the-art methods both
in efficiency and accuracy.

References

1. Antos, A., Szepesvári, C., Munos, R.: Fitted Q-iteration in continuous action-space
MDPs. In: NeurIPS (2008)

2. Baird, L.: Residual algorithms: reinforcement learning with function approxima-
tion. In: Machine Learning Proceedings 1995, pp. 30–37. Elsevier (1995)

3. Bonadiman, D., Uva, A., Moschitti, A.: Effective shared representations with mul-
titask learning for community question answering. In: ACL (2017)

4. Chen, M., Beutel, A., Covington, P., Jain, S., Belletti, F., Chi, E.: Top-k off-policy
correction for a reinforce recommender system. In: WSDM (2019)

5. Cheng, H.-T., Levent Koc, H., et al.: Wide & deep learning for recommender
systems. In: Proceedings of the 1st Workshop on Deep Learning for Recommender
Systems, pp. 7–10. ACM (2016)

6. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recur-
rent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

7. de Brebisson, A., Vincent, P.: A cheap linear attention mechanism with fast lookups
and fixed-size representations. arXiv preprint arXiv:1609.05866 (2016)

8. Dulac-Arnold, G., et al.: Deep reinforcement learning in large discrete action
spaces. arXiv preprint arXiv:1512.07679 (2015)

9. Fujimoto, S., Meger, D., Precup, D.: Off-policy deep reinforcement learning without
exploration. arXiv preprint arXiv:1812.02900 (2018)

10. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: Continual prediction
with LSTM (1999)

http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1609.05866
http://arxiv.org/abs/1512.07679
http://arxiv.org/abs/1812.02900

Off-Policy Recommendation System Without Exploration 27

11. Hidasi, B., Karatzoglou, A., et al.: Session-based recommendations with recurrent
neural networks. arXiv:1511.06939 (2015)

12. Kolter, J.Z.: The fixed points of off-policy TD. In: Advances in Neural Information
Processing Systems, pp. 2169–2177 (2011)

13. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8), 30–37 (2009)

14. Kumar, A., Fu, J., et al.: Stabilizing off-policy Q-learning via bootstrapping error
reduction. arXiv:1906.00949 (2019)

15. Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item col-
laborative filtering. IEEE Internet Comput. 1, 76–80 (2003)

16. Munos, R.: Error bounds for approximate policy iteration. ICML 3, 560–567 (2003)
17. Peng, H., Li, J., Song, Y., Liu, Y.: Incrementally learning the hierarchical softmax

function for neural language models. In: AAAI (2017)
18. Rong, X.: word2vec parameter learning explained. arXiv:1411.2738 (2014)
19. Zaeemzadeh, A., Rahnavard, N., Shah, M.: Norm-preservation: why residual net-

works can become extremely deep? arXiv preprint arXiv:1805.07477 (2018)
20. Zhang, S., Yao, L., Sun, A., Tay, Y.: Deep learning based recommender system: a

survey and new perspectives. CSUR 52(1), 1–38 (2019)
21. Zhao, X., Zhang, L., Ding, Z., et al.: Deep reinforcement learning for list-wise

recommendations. arXiv:1801.00209 (2017)
22. Zhao, X., Zhang, L., Ding, Z., et al.: Recommendations with negative feedback via

pairwise deep reinforcement learning. In: SIGKDD (2018)
23. Zheng,G., Zhang, F., Zheng, Z., et al.: DRN: a deep reinforcement learning frame-

work for news recommendation. In: WWW (2018)

http://arxiv.org/abs/1511.06939
http://arxiv.org/abs/1906.00949
http://arxiv.org/abs/1411.2738
http://arxiv.org/abs/1805.07477
http://arxiv.org/abs/1801.00209

	Off-Policy Recommendation System Without Exploration
	1 Introduction
	2 Off-Policy Recommendation Problem
	3 Preliminaries
	3.1 Q-Learning
	3.2 Batch Constrained Q-Learning

	4 Methodology
	4.1 Generator Constrained Q-Learning
	4.2 Architecture of State Encoder
	4.3 Architecture of Q-Net
	4.4 Architecture of Generator
	4.5 Parameter Inference

	5 Experiments
	5.1 Experiment Settings
	5.2 Offline Evaluation
	5.3 Online Evaluation
	5.4 Model Stability

	6 Conclusion
	References

