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Abstract. Personalized recommendation has yield immense success in
predicting user preferencewith heterogeneous implicit feedback (HIF), i.e.,
various user behaviors. However, existing studies consider less about the
temporal dynamics and repeated patterns of HIF. They simply suppose:
(1) a hard rule among user behaviors (e.g., add-to-cart must come before
purchase and after view); (2) merge repeated behaviors into one (e.g., view
several times is considered as view once only), thus failing to unveil user
preferences from their real behaviors. To ease these issues, we, therefore,
propose a novel end-to-end neural framework – TDRB, which automati-
cally models the Temporal Dynamics and Repeated Behaviors to assist in
capturinguser preference, thus achievingmore accurate recommendations.
Empirical studies on three real-world datasets demonstrate the superiority
of our proposed TDRB against other state-of-the-arts.

Keywords: Temporal dynamics · Repeated behaviors · Heterogeneous
implicit feedback · Recommendation

1 Introduction

Recommender systems have recently become prominent tools to provide person-
alized services for customers, so as to alleviate the information overload prob-
lem [3]. A number of recommenders [2,3,10,11] have been proposed to help infer
users’ potential interests based on their heterogeneous implicit feedback (HIF).
Taking e-commerce as an example, the recommenders mainly leverage users’
historical behaviors of various types (e.g., view, click, add-to-cart, purchase) to
help predict what product to purchase afterwards. In this scenario, purchase is
the target behavior, which directly reflects users’ preference towards products.
In contrast, view, click, add-to-cart are auxiliary behaviors to indirectly suggest
users’ taste over products to some extent. Both target and auxiliary behaviors
benefit for user preference inference, possibly with different degrees.
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Fig. 1. Runing examples for sequential user behaviors on products in e-commerce,
where (a) depicts the real sequential behaviors towards products; (b) illustrates the
hard rule based sequential behaviors on products.

Running Example. To illustrate, Fig. 1(a) depicts real user behaviors on prod-
ucts in an e-commerce system (e.g. Amazon), where two essential character-
istics are noted: (1) Temporal dynamics: users perform sequential behaviors
over products with different orders, indicating different behavior patterns. For
instance, Bob and Alice prefer add-to-cart before purchase, whilst Ella directly
buys the ‘Coat’ after click without add-to-cart. (2) Repeated behaviors: users
may perform certain behaviors several times over products, reflecting a rein-
forced preference to some degree. For example, Alice clicks twice to check details
before she makes the purchase decision; Ella may be quite satisfied with the
quality after purchasing the ‘Coat’ and directly buy another one for her friend.

The above examples highlight the presence of temporal dynamics and
repeated behaviors in user-item interactions, which could potentially facilitate
to model user preference, thus achieving better recommendations. They, how-
ever, are not well investigated by existing HIF based studies: (1) most meth-
ods [1,5,11–14] directly ignore the temporal dynamics. They only model the
influence of limited types of user behaviors (e.g., only view and purchase) via a
weighted combination, which heavily restricts the generability of these methods;
(2) although several approaches [2,10] notice the temporal dynamics, they simply
pre-define a hard rule to order various user behaviors, thus failing to capture the
real temporal dynamics. For instance, they assume that add-to-cart must come
before purchase and after click. In Fig. 1(b), all users share the same behavior
pattern based on the hard rule: click → add-to-cart → purchase regardless of
what their real behaviors are; and (3) none of them considers the repeated user
behaviors. They merely merge the duplicated user-item interactions by keeping
the earliest one. In Fig. 1, click twice is only treated as click once for Alice. In
this sense, there’s much room left to better exploit the temporal dynamics and
repeated behaviors in HIF based recommendation.

In this paper, we, therefore, propose a novel end-to-end neural framework
– TDRB, which exploits both Temporal Dynamics and Repeated Behaviors to
truly uncover user behavior patterns, thus capturing user preference over items
in a more accurate manner. Specifically, TDRB is composed of three modules,
(1) Target Module employs outer product and a convolutional neural network
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to directly learn expressive and high-order user-item correlation (i.e., user prefer-
ence over items) regarding to the target behavior (e.g., purchase); (2) Auxilary
Module aims to assist target module in predicting user preference over items.
It uses gated recurrent units to accurately model the temporal dynamics and
repeated patterns of auxiliary behaviors that happen before its corresponding
target behavior; and (3) Fusion Module devises three strategies (i.e., MLP [6],
Attention mechanism [9] and Outer product) to seamlessly integrate both target
and auxiliary behaviors for a more accurate user preference estimation.

To conclude, our main contributions lie in three folds: (1) to the best of our
knowledge, we are the first to exploit temporal dynamics and repeated behaviors
in HIF based recommendation; (2) we propose a novel end-to-end neural frame-
work – TDRB, which delicately models the temporal dynamics and repeated
behaviors for user preference prediction, thus achieving high-quality recommen-
dation; and (3) extensive experiments on three real-world datasets show the
superiority of our proposed TDRB, which significantly beats state-of-the-arts
with a lift of 27.91%, 61.32% w.r.t. HR and NDCG on average, respectively.

2 Related Work

The heterogenous implicit feedback (HIF)-based recommenders can be broadly
classified into conventional recommenders and deep learning-based recom-
menders.

Conventional Recommenders. Early works solely leverage target behavior
for the recommendation. For example, Rendle et al. proposed BPRMF [15]
to maximize the difference of user preference over items with and without
target behavior. After that, many variants have been proposed based upon
BPRMF, such as GBPR [11], ABPR [12] and eALS [5]. However, they all fail
to fully exploit the HIF by taking into account target behaviors only. Later,
some researchers attempted to employ auxiliary behaviors (e.g., view, click) in
addition to target behavior for the performance-enhanced recommendation. For
instance, Qiu et al. designed TBPR/BPRH [13,14] to utilize purchase, view
and like for trinity preference ranking. Ding et al. proposed VALS [1] by fusing
purchase with view through manually pre-defined weights. GcBPR [3] resolved
the data sparsity problem by generating target behavior from a linear regres-
sion of auxiliary behaviors. Yin et al. devised SPTF [18] to overcome the issue
of heavy skewness of the interaction distribution w.r.t. different types of HIF.
Nevertheless, these methods all ignore the temporal dynamics and repeated pat-
terns of user behaviors for the recommendation. Furthermore, most of them only
consider limited types of auxiliary behaviors, thus restricting their generability.
Afterwards, Loni et al. proposed McBPR [10] to capture the temporal dynamics
by a pre-defined hard rule (e.g., add-to-cart must occur before purchase and after
click), as illustrated in Fig. 1(b). Undoubtedly, the proposed hard rule cannot
truly express the temporal dynamics and repeated user behaviors.

Deep Learning-Based Recommenders. Deep learning has made great break-
throughs in various related areas, such as image recognition [4] and natural
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language processing [19]. Being capable of capturing the non-linearity of user-
item interactions, they have been widely applied to the recommendation with
HIF [6,7]. Similar to conventional recommenders, early deep learning-based rec-
ommenders only model user preference with target behavior, such as NCF [6].
Soon afterwards, He et al. further designed ConvNCF [7] to use an outer product
and convolutional neural network (CNN) to learn high-order correlations among
user-item interactions. Later, some studies turn to fuse both target and auxiliary
behaviors. Wen et al. [17] devised a neural framework to capture both linear-
ity and non-linearity of heterogeneous behaviors through. Recently, Gao et al.
developed a neural model named NTMR [2] encoding a hard rule-based order for
heterogeneous user behaviors, that is, add-to-cart must appear before purchase
and after view. All of these methods mentioned above, however, fail to model the
temporal dynamics and repeated behavior for a high-quality recommendation.

Note that, there are also some works model the temporal dynamics of
item sequences, instead of user behavior sequences. For instance, GRU4rec [8],
NARM [9] and SLRC [16] model the temporal dynamic of repeated purchased
items for next item recommendation, which is out of our scope, i.e., exploiting
temporal dynamics of repeated behaviors for general item recommendation.

3 The Proposed TDRB

This section presents the proposed neural framework – TDRB for heterogeneous
implicit feedback (HIF)-based recommendation. It fully exploits the temporal
dynamics and repeated behaviors to capture user preference in a more accurate
fashion, thus achieving high-quality recommendation.

3.1 Problem Formulation

Notations. Let u, i, f, a denote user u, item i, target behavior f and auxiliary
behavior a, respectively; P, Q, O are user, item and auxiliary behavior embed-
ding matrices; pu, qi, oa denote the corresponding embedding vectors for u, i, a.
Throughout this paper, we use bold uppercase letter to denote a matrix (e.g.,
P) and bold lowercase letter (e.g., pu) to denote a vector.

Data Segmentation. Most existing studies [1,6,7] consider less about the
temporal dynamics of user behaviors, and always merge the repeated (both
target and auxiliary) behaviors by remaining the earliest one. However, we
contend that the temporal dynamics are capable of reflecting user behavior
patterns, and the repeated behaviors may indicate a reinforced user prefer-
ence. Hence, we conduct data segmentation to simulate the real scenario bet-
ter. Given all behaviors between (u, i) pair ordered by time, for example,
B(u, i) = {a1, a2, a3, f, a4, f, f}, we first split them into m sequences by target
behavior, e.g., S1(u, i) = {a1, a2, a3, f}, S2(u, i) = {a4, f} and S3(u, i) = {f},
such that each sequence consists of one target behavior and all the auxiliary
behaviors before it if available. m is the number of target behaviors in B(u, i).
We then feed all the segmented sequences, e.g., S1(u, i), S2(u, i) and S3(u, i),
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Fig. 2. The overall framework of our proposed TDRB, which is composed of three
modules: (1) target module in the upper left corner; (2) auxilary module in the bottom
left corner; and (3) fusion module in the bottom center. The three different fusion
strategies (i.e., MLP, Attention and Outer product) are depicted on the right side.

between (u, i) pair for model training, to estimate the preference score of u over
i, i.e., ŷui, and generate a personalized ranking list with top-N items based on
the preference scores. By doing so, the temporal dynamics and repeated (both
target and auxiliary) behaviors can be preserved to the utmost.

3.2 Different Modules of TDRB

The overall framework of TDRB is illustrated by Fig. 2, mainly composed of
three modules, namely (1) Target Module directly captures the high-order user-
item correlation from the perspective of target behavior through the outer prod-
uct and convolutional neural network (CNN) [7]; (2) Auxiliary Module utilizes
gated recurrent units to encode temporal dynamics and repeated patterns of aux-
iliary behaviors, so as to enhance target module; and (3) Fusion Module unifies
both target and auxiliary behaviors via three different strategies (i.e., MLP,
Attention and Outer product) for high-quality recommendation. As mentioned
in Data Segmentation, there are m segmented sequences for a (u, i) pair. For ease
of presentation, we take one segmented sequence S(u, i) = {a1, a2, . . . , as, f} as
an example to demonstrate different modules of TDRB. Note that S(u, i) has
and only has one target behavior, but may contain multiple auxiliary behaviors
as well as repeated auxiliary behaviors.
Target Module. It aims to directly model u’s preference over i regarding the
target behavior f . We first project u and i into dense embedding space by,

pu = PT vu,qi = QT vi (1)

where pu,qi ∈ R
1×32 are dense embeddings for u, i; vu,vi are one-hot sparse

vectors for u, i. Different from existing neural recommenders [5,6] combining user
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and item embeddings via a simple concatenation or element-wise product, we
are inspired by [7] to utilize outer product above the user and item embedding
layers. It results in a 2D interaction map, which is more expressive and capable
of capturing the high-order user-item correlation, given by,

ψ(pu,qi) = pu ⊗ qi (2)

where ⊗ denotes outer product operation; ψ(pu,qi) ∈ R
32×32 denotes the inter-

action map. Thanks to the superior capability of extracting local relations of
graph features, we then apply a CNN on the interaction map, so as to fully
capture the latent features of ψ(pu,qi).

The structure of CNN is fine-tuned based on literature [7]. To be more spe-
cific, it has 5 hidden layers and 32 feature maps for each hidden layer. We
set the kernel size as 2 * 2 and the stride to be 2. Hence, the feature dimen-
sion is halved layer by layer. The input for the first layer is a 2D matrix, i.e.,
ψ(pu,qi) ∈ R

32×32, and its output is a 3D tensor. For the rest layers, both input
and output are 3D tensors. The element el

x,y,k of the xth row and yth column of
feature map in the kth filter f for layer l is defined as,

el
x,y,k = ϕ(bl +

∑1

a=0

∑1

b=0
e2x+a,2y+b · f l

1−a,1−b,k) (3)

where f l
1−a,1−b,k ∈ R

2×2×32 if l = 1; otherwise f l
1−a,1−b,k ∈ R

2×2×32×32 when
1 < l ≤ 5; bl denotes bias; k is the number of kernels; ϕ(x) denotes the activation
function (ReLU [8]). The final output of target module can be defined by Eq. (4),
where gθ denotes CNN with parameters θ = {b, f}.

ytar = gθ(ψ(pu,qi)) (4)

Auxiliary Module. Auxiliary behaviors (i.e., view, click) could indirectly
reflect user inclination, thus benefiting for a better recommendation. Hence,
the auxiliary module mainly takes advantage of auxiliary behaviors for a more
fine-grained user preference inference. Existing studies either ignore the tem-
poral dynamics of auxiliary behaviors [1,3,13,14], or pre-define a hard rule to
order them [2,10]. Besides, all of them overlook the repeated behaviors. To ease
this issue, we consider to accommodate the real auxiliary behavior sequence
Sa(u, i) = {a1, a2, . . . , as}, which can be obtained by removing the target behav-
ior f from the segmented sequence S(u, i). The gated recurrent units (GRU) [8]
are applied to help model the temporal dynamics and repeated patterns encoded
in the auxiliary behavior sequence Sa(u, i), as GRU has proven to be more adap-
tive and stable with fewer parameters in comparison with recurrent neural net-
work (RNN) and long short term memory (LSTM) [8].

Given Sa(u, i) = {a1, a2, . . . , as} as input, we project each auxiliary action
at in the sequence into dense embedding space, given by,

oat
= OT vat

(5)

where oat
∈ R

1×32 is the embedding vector of at; vat
is the one-hot vector for

at. The embedding of each auxiliary behavior is then considered as the input of
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GRU at each time step. In this case, if any duplicated auxiliary behaviors exist
in Sa(u, i), their embeddings will be fed into GRU repeatedly, so as to reinforce
their influence automatically. Specifically, at time state t, the hidden state ht of
GRU is updated as follows,

ht = (1 − z) ◦ ht−1 + z ◦ τ(oatUh + (ht−1 ◦ r)Wh + bh) (6)

where τ(x) is the tanh activation function; ◦ is the multiplication between a
vector and a scalar; z = σ(oatUz+ht−1Wz+bz) and r = σ(oatUr+ht−1Wr+br)
are the update gate and reset gate of GRU, respectively; δ = {Uz,Wz, bz, br, bh}
is the parameter set of GRU. The last hidden state at time step s is supposed to
be the output yaux, i.e., yaux = hs, which represents the influence of auxiliary
behaviors on user preference. As the input sequence Sa(u, i) is ordered by time
and may contain repeated behaviors, the auxiliary module is capable of better
capture temporal dynamics and repeated patterns of user behaviors. Note that,
if there is only target behavior and no auxiliary behaviors between u and i, i.e.,
S(u, i) = {f} and Sa(u, i) = ∅, we set oat

as an all-zero vector.

Fusion Module. It aims to automatically incorporate the influence of both
target (i.e., ytar) and auxiliary (i.e., yaux) behaviors for a more comprehensive
modeling on u’s preference towards i, i.e., ŷui. Three different fusion strategies
are thus devised for a better exploration as introduced below.

(1) MLP: a straightforward way is to adopt MLP on the concatenated ytar and
yaux, as shown in the upper right corner of Fig. 2. Following [6], we imple-
ment MLP with a tower structure, halving the layer size for each successive
higher layer. Hence the estimated preference score ŷui is,

ŷui = ζout(ζl(...ζ2(ζ1(ψ(ytar,yaux)))...)) (7)

where ζout and ζl denote the output layer and the lth layer in MLP.
(2) Attention: it fuses ytar and yaux by distinguishing their weights in an

automatic fashion, as shown in the center right of Fig. 2. The attention
weights w ∈ R

1×2 and ŷui are calculated by Eq. (8), where ξ(x) is the
softmax function; φϑ(x) is the regression function.

w = [w1, w2] = ξ(
∑k

x vx
key · [yx

aux,yx
tar]),

ŷui = φϑ(w1 ◦ ytar + w2 ◦ ytar)
(8)

(3) Outer product: similar as described in the target module, it utilizes outer
product with CNN to capture and extract more expressive and high-order
correlation between ytar and yaux, shown in the bottom right corner of
Fig. 2. The user preference score ŷui is re-defined as follows,

ŷui = φϑ(gθ1(ψ(ytar,yaux))) (9)

Optimization. Following state-of-the-arts [3,7,15], we formulate top-N rec-
ommendation as a pair-wise ranking problem, where user u prefers positive
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item i (with target behavior) to negative item j (without target behavior).
Hence, we sample triplet Ds = {(u, i, j)} for training and keep the sample
ratio between items i, j as 1 : 1. Finally, we minimize the objective function
shown in Eq. (10), where Θ is the set of model parameters to update.

L =
∑

(u,i,j)∈Ds

− ln σ(ŷui − ŷuj) + λΘ||Θ||2 (10)

4 Experiments and Analysis

We conduct extensive experiments on three real-world datasets with the goal of
answering four research questions: (RQ1) Does modeling temporal dynamics and
repeated behaviors enhance the performance of TDRB? (RQ2) How do different
fusion strategies affect the performance of TDRB? (RQ3) Does the proposed
TDRB outperform state-of-the-art algorithms?

4.1 Experiment Setup

Datasets. Three real-world datasets are used for evaluation: Xing1,
Taobao20142 and Taobao20173. In particular, Xing records the data from a
job-hunting website and Taobao2014/2017 are obtained from Taobao (www.
taobao.com.). They are different in three aspects: (1) Xing is much denser than

Table 1. Statistics of the two utilized datasets

Datasets #Users #Items #Records Density #Behaviors Behavior types

Xing 459 5,932 12,343 0.453% 4 click, bookmark,
remove, reply

Taobao2014 1,569 811,063 1,052,488 0.082% 4 click, collect,
add-to-cart,
payment

Taobao2017 17,793 309,250 803,939 0.014% 4 click, favorite,
add-to-cart, buy

Fig. 3. Length distribution of the auxiliary behavior sequence.

1 https://github.com/recsyschallenge/2016/.
2 https://tianchi.aliyun.com/dataset/dataDetail?dataId=46.
3 https://tianchi.aliyun.com/dataset/dataDetail?dataId=649.

www.taobao.com
www.taobao.com
https://github.com/recsyschallenge/2016/
https://tianchi.aliyun.com/dataset/dataDetail?dataId=46
https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
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Taobao2014/2017, as shown in Table 1; (2) in regard to the behavior types, in
Xing reply is the target behavior; click, bookmark and remove are the auxil-
iary behaviors; and in Taobao2014, payment is the target behavior; click, collect
and add-to-cart are the auxiliary behaviors; whilst in Taobao2017, the target
behavior is buy and the auxiliary behaviors include click, favorite, add-to-cart ;
and (3) the distributions among the three datasets w.r.t. the length of auxiliary
behavior sequences (i.e., Sa(u, i)) is quite different, as depicted in Fig. 3. The
length of most sequences (above 90%) ranges from 1 to 4 on Taobao2014, whilst
in Xing and Taobao2017, most sequences (90% or so) are shorter than 3. To
balance the quantity and quality of each dataset, we filter out users with less
than 3 target behaviors and items with less than 6, 2, 10 target behaviors for
Xing, Taobao2014, and Taobao2017, respectively. The statistics of the processed
datasets are summarized in Table 1.

Evaluation Protocols. We adopt the widely-used leave-one-out for evalua-
tion [1,5–7]. For each user, we hold out her latest interaction as the test set; the
second latest as validate set; and utilize the remaining data as the train set. In
order to improve the test efficiency, we follow the common strategy [6,7], by ran-
domly sampling 999 negative items that user has not performed target behavior
on, and rank the test item among the 1000 items. HR@N and NDCG@N [6] are
adopted to evaluate the ranking performance, where N = {5, 10, 20}.

Comparison Methods. We compare TDRB with the following state-of-the-
arts, including (1) MostPopular is a non-personalized method that recom-
mends the most popular items w.r.t. target behaviors to users; (2) BPRMF [15]
is a pair-wise learning algorithm based on MF, which only considers the influence
of target behavior on user preference prediction; (3) McBPR [10] is the multi-
channel based BPR, which divides heterogeneous behaviors into different chan-
nels; (4) ConvNCF [7] is a deep learning-based recommender adopting outer
product and CNN to learn high-order correlations among embedding dimen-
sions; (5) NMTR [2] is a recently proposed deep learning-based recommender
that utilizes a pre-defined hard rule to order different types of behaviors, that
is, add-to-cart/bookmark shows before purchase/reply and after click.
Parameter Settings. The optimal parameter settings for all the comparison
methods are achieved by the empirical study or suggested by the original papers.
For a fair comparison, we set the embedding size and hidden state size to 32; a
grid search in [10−3, 10−2, 10−1, 1, 10, 102] is applied to find out the best settings

Fig. 4. Impacts of modeling temporal dynamics and repeated behaviors on TDRB.
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for the regularization coefficient to avoid over-fitting; the learning rate for updat-
ing all embeddings (i.e., P,Q,O) is tuned in the range of [5−4, 5−3, 5−2]; and
for other neural network parameters, it is tuned within [10−4, 10−3, 10−2, 10−1].
For all methods besides MostPop and BPRMF, we pretrain the user and item
embeddings via BPRMF. For our proposed TDRB, it is implemented with Ten-
sorflow and optimized with Adagrad optimizer.

4.2 Impacts of Temporal Dynamics and Repeated Patterns (RQ1)

To study the impacts of modeling temporal dynamics and repeated patterns, we
compare three variants of TDRB: (1) TDRBop is our proposed TDRB adopt-
ing outer product with CNN as the fusion strategy; (2) TDRBw/o rb down-
grades TDRBop by merging the repeated behaviors and only keeping the ear-
liest one; (3) TDRBw/o rb&td is the degraded version of TDRBw/o rb, which
utilizes a hard rule to order the non-repeated behaviors, that is, click →
collect/favorite/bookmark → add-to-cart/remove → payment/buy/reply.

The results are demonstrated in Fig. 4, where two major findings can be
noted. First of all, the performance of TDRBw/o rb is generally worse than that of
TDRBop on the three datasets, implying the benefit of modeling repeated behav-
iors for a more accurate recommendation. Note that the performance improve-
ments on Taobao2014 and Xing are much larger than those on Taobao2017.
This may be attributed to their different distributions w.r.t. the lengths of aux-
iliary behavior sequence. As shown in Fig. 3, the average length of sequences on
Taobao2014 (10) and Xing (3) is longer than that on Taobao2017 (2), Second,
by ordering various behaviors via a hard rule, TDRBw/o rb&td is underperformed
by TDRBw/o rb especially on Taobao2017, which validates the assumption that
the hard rule cannot truly reflect user behaviors, thus failing to capture the real
temporal dynamics. To sum up, the fact that TDRBop achieves the best per-
formance firmly supports the effectiveness of modeling temporal dynamics and
repeated behaviors on recommendations.

To further explore the effectiveness of our data segmentation (Sect. 3.1), that
is, whether the segmentation will break the original temporal dynamics of the
behavior sequences. This is because that a specific target behavior may be not
only affected by the auxiliary behaviors in its corresponding segmented sequence
S(u, i), and also those behaviors far from it. Hence, we compare TDRBop with
TDRBpre, which utilizes all behaviors in previous sequences to help predict the
target behavior in the current sequence; As shown in Fig. 5, TDRBop performs

Fig. 5. Impacts of different fusion strategies on TDRB.
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comparably to TDRBpre of the three datasets, and even achieves better perfor-
mance on Taobao2017. This helps verify that: (1) the target behavior is highly
affected by the auxiliary behaviors within the same sequence, whilst less influ-
enced by those behaviors far from it; and (2) our data segmentation benefits for
accurate recommendation by filtering out potential noise.

4.3 Impacts of Different Fusion Strategies (RQ2)

To further exam the impacts of different fusion strategies on TDRB, three vari-
ants are compared: (1) TDRBmlp uses MLP to fuse the influence of target and
auxiliary behaviors; (2) TDRBatn employs the attention mechanism to distin-
guish the importance of target and auxiliary behaviors; (3) TDRBop adopts
outer product (with CNN) to integrate target and auxiliary behaviors. Figure 5
depicts the performance on the three datasets. We can observe that TDRBmlp

achieves the worst performance in comparison with the other two variants. By
automatically distinguishing the saliency of target and auxiliary behaviors, the
performance of TDRBatn far exceeds that of TDRBmlp, suggesting the efficiency
of attention mechanism. It, however, is outperformed by TDRBop, validating
the superiority of both (a) outer product on encoding expressive and high-order
user-item correlation; and (b) CNN on capturing the abstract graph features.

4.4 Comparative Results (RQ3)

Table 2 reports the performance of all the comparison methods on the three
datasets w.r.t. HR@N and NDCG@N , where N = {5, 10, 20}. We summarize
the major findings as below.

(1) MostPop, as the only non-personalized recommender, performs the worst
among all the comparisons across the three datasets, which indicates the essence
of personalization in recommendation; (2) The deep learning-based recom-
menders (e.g., ConvNCF, TDRB) generally outperform the conventional recom-
menders (e.g., BPRMF, McBPR), demonstrating the superiority of deep learning
advances over conventional methods; (3) Regarding to the conventional recom-
menders, McBPR with the incorporation of both target and auxiliary behaviors
performs better than BPRMF on Xing, whilst it underperforms BPRMF on the
two Taobao datasets. This might be explained as: the hard rule used to order
heterogeneous behaviors in McBPR cannot truly reflect the temporal dynamics
of user behaviors, thus introducing noises and hurting the performance. Similar
trends can be observed on the performance comparison between the two deep
learning-based recommenders: ConvNCF and NMTR. Only target behavior is
exploited by ConvNCF; whilst NMTR adopts a hard rule to integrate both tar-
get and auxiliary behaviors; (4) Overall, our proposed TDRB achieves the best
performance across the three datasets. The significant enhancements, with a
lift of 27.91% and 61.32% w.r.t. HR and NDCG on average, demonstrate the
effectiveness of modeling temporal dynamics and repeated behaviors.
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Table 2. The performance of all comparison methods, where the best performance of
the baselines is marked with ‘*’; the performance of TDRB (i.e., TDRBop that performs
the best among all variants of TDRB) is highlighted in bold; ‘Improve’ indicates the
improvements that TDRB achieves relative to the ‘*’ results.

Datasets Methods HR@5 NDCG@5 HR@10 NDCG@10 HR@20 NDCG@20

Xing MostPop 0.0021 0.0021 0.0065 0.0035 0.0065 0.0035

BPRMF 0.4203 0.2603 0.6928 0.3483 0.8213 0.3824

McBPR 0.4204* 0.2607* 0.7037* 0.3518* 0.8714* 0.3953*

ConvNCF 0.4117 0.2545 0.6492 0.3309 0.8257 0.3766

NMTR 0.4031 0.2546 0.4749 0.2777 0.5882 0.3063

TDRB 0.7058 0.5467 0.8845 0.6043 0.9825 0.6304

Improve 70.92% 109.70% 25.69% 71.77% 12.86% 59.47%

Taobao 2014 MostPop 0.0057 0.0031 0.0229 0.0081 0.0229 0.0081

BPRMF 0.6533 0.4595 0.6832 0.4699 0.6851 0.4704

McBPR 0.6564 0.4552 0.6908* 0.4670 0.6953* 0.4681

ConvNCF 0.6596* 0.4782* 0.6838 0.4865* 0.6870 0.4873*

NMTR 0.5876 0.4135 0.6195 0.4244 0.6214 0.4249

TDRB 0.9343 0.8385 0.9509 0.8441 0.9521 0.8444

Improve 41.64% 75.34% 27.35% 73.50% 36.93% 35.71%

Taobao 2017 MostPop 0.0233 0.0131 0.0425 0.0186 0.0425 0.0186

BPRMF 0.5879 0.3951 0.8852 0.4914 0.9949* 0.5206

McBPR 0.5772 0.3818 0.8859 0.4815 0.9947 0.5104

ConvNCF 0.6066* 0.4127* 0.8863* 0.5033* 0.9944 0.5321*

NMTR 0.4338 0.2660 0.6930 0.3499 0.8533 0.3910

TDRB 0.7826 0.6391 0.9520 0.6945 0.9944 0.7058

Improve 29.01% 55.85% 6.90% 37.98% −0.05% 32.64%

5 Conclusions and Future Work

This paper proposes a novel neural framework TDRB, which exploits the tem-
poral dynamics and repeated behaviors to further enhance the accuracy of het-
erogeneous implicit feedback based recommendation. Being equipped with three
core modules (i.e., Target, Auxilary and Fusion), TDRB is capable of better
modeling user preference, thus achieving superior recommendation performance.
Extensive empirical studies on three real-world datasets validate the effective-
ness of our proposed TDRB. For future work, we intend to explore more values
of the repeated behaviors for the next item recommendation.
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