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Abstract. Automatic identification of duplicate bug reports is a critical
research problem in the software repositories’ mining area. The aim of
this paper is to propose and compare amalgamated models for detecting
duplicate bug reports using textual and non-textual information of bug
reports. The algorithmic models viz. LDA, TF-IDF, GloVe, Word2Vec,
and their amalgamation are used to rank bug reports according to their
similarity with each other. The amalgamated score is generated by aggre-
gating the ranks generated by models. The empirical evaluation has been
performed on the open datasets from large open source software projects.
The metrics used for evaluation are mean average precision (MAP), mean
reciprocal rank (MRR) and recall rate. The experimental results show
that amalgamated model (TF-IDF + Word2Vec + LDA) outperforms
other amalgamated models for duplicate bug recommendations. It is also
concluded that amalgamation of Word2Vec with TF-IDF models works
better than TF-IDF with GloVe. The future scope of current work is to
develop a python package that allows the user to select the individual
models and their amalgamation with other models on a given dataset.
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1 Introduction

Software bug reports can be represented as defects or errors’ descriptions iden-
tified by software testers or users. These are generated due to the reporting of
the same defect by many users. These duplicates cost futile effort in identifi-
cation and handling. Developers, QA personnel and triagers consider duplicate
bug reports as a concern. It is crucial to detect duplicate bug reports as it helps
in reduced triaging efforts. The effort needed for identifying duplicate reports
can be determined by the textual similarity between previous issues and new
report [13]. Various approaches have been proposed to automate duplicate bug
reports’ detection. In early approaches, NLP [16], machine learning [1,10,20],
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information retrieval [19], topic analysis [1,9], deep learning [3], and combina-
tion of models [3,23] have been applied. Figure 1 shows the hierarchy of most
widely used sparse and dense vector semantics [7].

Fig. 1. Vector Representation in NLP

Our study has combined sparse and dense vector representation approaches
to generate amalgamated models for duplicate bug reports’ detection. The one
or more models from LDA, TF-IDF, GloVe and Word2Vec are combined to cre-
ate amalgamated similarity scores. The similarity score presents the duplicate
(most similar) bug reports to bug triaging team. The proposed models takes
into consideration textual information (description); and non-textual informa-
tion (product and component) of the bug reports. TF-IDF signifies documents’
relationships [16]; the distributional semantic models, Word2Vec and GloVe, use
vectors that keep track of the contexts, e.g., co-occurring words.

LDA presents relationships between documents by transforming into a lower
dimensional space. An amalgamated score is computed by merging the similarity
scores from individual approaches. Thus, this score makes the basis for top k
duplicate bug recommendations. The empirical evaluation has been performed
on three datasets, namely, Apache, Eclipse, and KDE [17] with bug reports as
discussed in Table 1. The effectiveness of the proposed approach is evaluated
by three established performance metrics, viz. mean average precision (MAP),
recall-rate@k, and mean reciprocal rank (MRR).
This study investigates and contributes into the following items:

– An empirical analysis of amalgamated models to rank duplicate bug reports.
– Effectiveness of amalgamation of models.
– Statistical significance and effect size of proposed models.

The paper has been divided into eight sections. The following section
describes related work in detail. In third section, dataset and steps followed
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in pre-processing as given in [19] have been explained. The fourth section elab-
orates the methodology followed. The fifth section provides the insights into
evaluation metrics. The sixth section discusses the results generated from the
proposed models. The seventh section presents the threats to validity. In the
final section, the paper is concluded and directions for future work are provided.

2 Related Work

Extensive research has been conducted in the area of detecting the duplicate
bug reports automatically. Several methods have been developed focusing on
these research areas [1,5,10,23]. A TF-IDF model has been proposed by mod-
eling a bug report as a vector to compute textual features similarity [12]. An
approach based on n-grams has been applied for duplicate detection [21]. All
of the above methods are primary term-based methods and can diagnose the
lexical duplicate bug reports. In addition to using textual information from the
bug reports, the researchers have witnessed that additional features also support
in the classification or identification of duplicates bug report.

The first study that combined the textual features and non-textual features
derived from duplicate reports was presented by Jalbert and Weimer [6]. In
year 2008, the execution traces were combined with textual information by
Wang et al. [22]. In recent times, software engineering has witnessed the shift
in the research focus towards the usage of Vector space models (VSMs). Word
embedding is one of the most popular representation of document vocabulary.
A method was proposed to use software dictionaries and word list to extract the
implicit context of each issue report [1].

It has also been researched that Latent Dirichlet Allocation (LDA) provides
great potential for detecting duplicate bug reports [5,9]. A combination of LDA
and n-gram algorithm outperforms the state-of-the-art methods has been sug-
gested Zou et al. [24]. Recently, deep learning technique for duplicate bug reports
has been proposed by Budhiraja et al. [3]. Although in prior research many mod-
els have been developed and a recent trend has been witnessed to ensemble the
various models. There exists no research which amalgamated the statistical, con-
textual, and semantic models to identify duplicate bug reports.

3 Dataset and Pre-processing

3.1 Dataset

A collection of bug reports that are publicly available for research purposes
has been proposed by Sedat et al. [17]. The repository1, presented three defect
datasets extracted from Bugzilla in “.csv” format [17]. It contains the datasets
for open source software projects: Apache, Eclipse, and KDE. The datasets con-
tain information about approximately 914 thousands of defect reports over a

1 https://zenodo.org/record/400614#.XaNPt-ZKh8x, last accessed: March 2020.

https://zenodo.org/record/400614#.XaNPt-ZKh8x
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period of 18 years (1999–2017) to capture the inter-relationships among dupli-
cate defects. Descriptive statistics are illustrated in Table 1. The dataset contains
two categories of feature viz. textual and non-textual. The textual information is
description given by the users about the bug i.e. “Short desc”. The non-textual
information is presented by the features viz. “Product” and “Component”, “Pri-
ority”, “Bug severity”, “Version”, “Bug status”, “current status” and “duplicate
list”. From these non-textual features “Product” and “Component” are used as
filter, and “duplicate list” is used to create the ground truth for evaluation of
the metrics.

Table 1. Dataset description

Project Apache Eclipse KDE

# of reports 44,049 503,935 365,893

Distinct id 2,416 31,811 26,114

Min report opendate 2000-08-26 2001-02-07 1999-01-21

Max report opendate 2017-02-10 2017-02-07 2017-02-13

# of products 35 232 584

# of components 350 1486 2054

3.2 Pre-processing of Textual Features

Pre-processing and term-filtering were used to prepare the corpus from the tex-
tual features. In further processing steps, the sentences, words and characters
identified in pre-processing were converted into tokens and corpus was prepared.
The corpus preparation included conversion into lower case, word normalisation,
elimination of punctuation characters, and lemmatization.

4 Methodology

The flowchart shown in Fig. 2 depicts the approach followed in this paper.

4.1 Latent Dirichlet Allocation

The bug reports textual information is the perfect example of the unstructured
data as the content is written in natural language and LDA has emerged as
efficient approach for pattern identification from unstructured data [18]. In this
paper, LDA has been applied for querying the corpus data and identifying the
latent patterns and the heuristic parameters proposed by Arun et al. [2] and Cao
et al. [4] were used for deciding the topic count.
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Fig. 2. Overall Methodology

4.2 Term Frequency-Inverse Document Frequency

The main idea behind the Term Frequency-Inverse Document Frequency (TF-
IDF) is that the count of a term’s occurrence in documents may be used to
differentiate the documents. The weighted scheme for TF-IDF was adopted for
representing one entity’s significance relative to the other entities in the pre-
pared corpus. The weight of an entity increases proportionally with a count of
occurrences for a word in the document.

TF is document’s local component measuring a normalized frequency of term
occurrence; whereas the global component is represented by the inverse docu-
ment frequency (IDF), i.e., log[((1 + nd)/(1 + dfi, j)] + 1.

4.3 Word2Vec

Word2Vec is capable of capturing context of a word in a document, semantic and
syntactic similarity, relation with other words, etc. Two variants of Word2Vec
models namely, continuous bag-of-words (CBOW) and skip-gram are available.
Both are capable to capture interactions between a centered word and its context
words differently.

For a word vector r̂ (predicted) and a word vector wt (target), softmax func-
tion is applied to find the probability of the target word as given in Eq. 1.

P (wt|r̂) =
exp(wt, r̂)∑

w∈W exp(w′ , r̂)
(1)

Here W is the set of all target word vectors, where exp(wt, r̂) computes the
compatibility of the target word wt with the context r̂. In this paper, gensim
implementation of word2vec (skip-gram) pre-trained Google News corpus (3 bil-
lion running words) word vector model (3 million 300-dimension English word
vectors) is used.
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4.4 Global Vectors for Word Representation

Global Vectors for word representation (GloVe) is an unsupervised learning algo-
rithm that combines the features of two model families, namely the global matrix
factorization and local context window methods [8]. In this paper, GloVe used
Google News pre-trained model to reduce the error between the dot product of
(any two) word embedding vectors to the log of the co-occurrence probability.
GloVe is based on matrix factorization on the word-context matrix. The model
can be represented as in Eq. 2. In this, w and w̃ are word vectors.

F (wi, wj , w̃k) =
Pik

Pjk
(2)

Where i, j, and k are three words and the ratio Pik/Pjk depends upon them.

4.5 Proposed Amalgamated Model

It has been identified that even the established similarity recommendation mod-
els such as NextBug [15] does not produce optimal and accurate results. There-
fore, the current study created amalgamated models those merge one or more
approaches viz. LDA, Word2Vec, GloVe and TF-IDF. The similarity scores vec-
tor (S1, S2, S3, S4) for k most similar bug reports is captured from individual
approaches as shown in Fig. 2. Since the weights obtained for individual method
have their own significance; therefore a heuristic ranking method is used to com-
bine and create a universal rank all the results. The ranking approach assigns
new weights to each element of the resultant similarity scores vector from the
individual approach and assign it equal to the inverse of its position in the vector
as in Eq. 3.

Ri =
1

Positioni
(3)

Once all ranks are obtained for each bug report and for each model selected,
the amalgamated score is generated by summation of the ranks generated as
given in Eq. 4, the ranks would be zero for left out models. It creates a vector of
elements less than or equals to nk, where k is number of duplicate bug reports
returned from each model and n is number of models being combined.

S = (R1 + R2 + R3 + R4) ∗ PC (4)

Where S is amalgamated score (rank) of each returned bug report and R1,
R2, R3, and R4 are the ranks returned from LDA, Word2Vec, GloVe, and TF-
IDF, respectively as given in Eq. 3. Here PC is the product & component score
and works as a filter. For instance, if two bug reports belong to same product
and component then their similarity depend on the document similarity score.
But if they belong to different product and component, then they are unlikely
to be similar even if their document similarity score is high, thus made zero.
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5 Evaluation Metrics

The evaluation metrics used to evaluate the one or more amalgamation of models
are: recall-rate@k; mean average precision (MAP); and mean reciprocal rank
(MRR). These metrics have been frequently used in recommendation systems to
solve software engineering tasks [5,6,9,15,19].

5.1 Recall-Rate@k

Recall-rate is used to check the usefulness of top k recommendation. For a query
bug q, it is defined as given in Eq. 5 as suggested by previous researchers [5,19,
23].

RR(q) =

{
1, if ifS(q) ∩ R(q) �= 0
0, otherwise

(5)

Given a query bug q, S(q) is ground truth and R(q) represents the set of
top-k recommendations from a recommendation system.

5.2 Mean Average Precision (MAP)

MAP is defined as the mean of the Average Precision (AvgP ) values obtained
for all the evaluation queries given in MAP =

∑|Q|
q=1

AvgP (q)
|Q| . In this equation,

Q is number of queries in the test set.

5.3 Mean Reciprocal Rank (MRR)

Mean Reciprocal Rank (MRR) is calculated from the reciprocal rank values
of queries. MRR(q) =

∑|Q|
i=1 ReciprocalRank(i) calculates the mean reciprocal

rank and RR is calculated as in ReciprocalRank(q) = 1
indexq

.

6 Results and Discussion

This section presents the results of the empirical evaluation. For evaluation of
results, we used a Google Colab2 machine with specifications as RAM: 24 GB
Available; and Disk: 320 GB.

The amalgamated models compares the incoming query bug report against
the already existing resolved bug report database and return the top-k duplicate
bugs. The current research implements the algorithms in Python 3.5 and used
“nltk”, “sklearn”, “gensim” [14] packages for model implementation. The default
values of the parameters of the algorithms were used. The values of k has been
taken as 1, 5, 10, 20, 30, and 50 to investigate the effectiveness of proposed
approach.
2 https://colab.research.google.com.

https://colab.research.google.com
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The current study has investigated the proposed models in comparison with
the other combination of established approaches for duplicate bug report rec-
ommendation. For the empirical validation of the results, the developed models
have been applied to open bug report data (discussed in Sect. 3) consisting of
three datasets of bug reports. The datasets were divided into train and test data.
In the open source software (OSS) bug repository datasets, one of the column
contained the actual duplicate bug list i.e. if a bug report actually have duplicate
bugs then the list is non-empty otherwise it is empty (‘NA’). This list worked
as ground truth to validate the evaluation parameters. All the bug reports with
duplicate bug list are considered as test dataset for validation of the amalga-
mated models. The number of bug reports for test dataset for Apache, Eclipse,
and KDE projects were 2,518, 34,316, and 30,377, respectively. The training
dataset was used to convert the existing textual information into the vector rep-
resentation for the models. The test data was used to detect the duplicate bug
reports from the train dataset considered resolved. This helped to identify the
duplicate bug reports and evaluate the models.

Table 2. Mean average precision of individual and amalgamated models using all
dataset.

Models Apache Eclipse KDE

TF-IDF 0.076 0.108 0.045

Word2Vec 0.115 0.171 0.132

GloVe 0.060 0.105 0.094

LDA 0.012 0.029 0.008

TF-IDF + LDA 0.149 0.127 0.082

TF-IDF + GloVE 0.138 0.128 0.098

TF-IDF + Word2Vec 0.144 0.173 0.126

TF-IDF + Word2Vec + LDA 0.161 0.166 0.158

TF-IDF + GloVe + LDA 0.163 0.123 0.130

6.1 Empirical Analysis

The empirical analysis of the proposed ensemble model has been performed on
OSS datasets. The models take textual information from training dataset and
create vocabulary to be used for finding the duplicates of test bug reports.

Apache Dataset. Apache dataset is smallest dataset of three datasets and
contains 44,049 bug reports. These bug reports are generated for 35 products
and 350 components. Figures 3(a) and 3(b) show that the amalgamation of mod-
els produces more effective results than the individual established approaches.
Table 2 represents MAP values for the models. For the results, it is revealed that
not all combinations produces good results.
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Eclipse Dataset. The dataset of Eclipse contained 503,935 bug reports, and
31,811 distinct ids. It includes 232 products and 1486 components bug reports.
Due to large dataset the random sampling of the full dataset was performed to
select 10% of the dataset. The values of recall rate and MRR are presented in
Figs. 3(c) and 3(d) respectively. The results obtained reveal that the amalga-
mated score has better value as compared to the scores obtained from individual
approaches.

(a) RR of Apache
Dataset

(b) MRR of Apache
Dataset

(c) RR of Eclipse
Dataset

(d) MRR of Eclipse
Dataset

(e) RR of KDE (f) MRR of KDE

Fig. 3. Performance of (a)–(b) Apache dataset, (c)–(d) Eclipse dataset, (e)–(f) KDE
dataset

KDE Dataset. This dataset contains 365,893 bug reports of 584 products
out of which 2054 were used. Due to large dataset the random sampling of the
full dataset was performed to select 10% of the dataset. The evaluation metrics
obtained from this dataset are depicted in Fig. 3(e) and 3(f).

6.2 Effectiveness of Amalgamation of Models

The results have demonstrated the superiority of the amalgamated models to
identify the duplicate report as compared to individual approaches. Figure 3
shows the comparative performance of the proposed approach and the estab-
lished approaches with parameter k varying for all the datasets. Further, it has
been revealed that for two datasets Apache and KDE, the amalgamated model
(TF-IDF + Word2Vec + LDA) produced the best results. Whereas for Ecilpse
dataset a amalgamated model (TF-IDF + LDA) generated better than model
(TF-IDF + Word2Vec + LDA). Another, conclusion from the results is that
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Word2Vec individually is also very powerful to detect the duplicate reports.
This study proposes the amalgamated model of TF-IDF + Word2Vec + LDA,
that outperform other amalgamated models. It has also been concluded that
Word2Vec and its combination produces better results as compared to GloVe.

6.3 Statistical Significance and Effect Size

To establish the obtained results of the proposed model, we performed the
Wilcoxon signed-rank statistical test to compute the p-value, and measured
the Cliff’s Delta measure [11], and Spearman correlation. Table 3(a) depicts the
interpretation of Cliff’s Delta measure. By performing the Shapiro-Wilk test, the
normality of the results was identified. Since it turned out to be non-Gaussian,
non-parametric test Spearman correlation was applied to find out the relation-
ship between the results of different approaches.

Table 3. Statistical significance and effect size

(a) Interpretation of Cliff’s Delta Scores [11]

Effect Size Cliff’s Delta (δ)

Negligible −1.00 ≤ δ < 0.147

Small 0.146 ≤ δ < 0.330

Medium 0.330 ≤ δ < 0.474

Large 0.474 ≤ δ ≤ 1.00

(b) p-value of Wilcoxon

signed-rank test, Cliff’s Delta

and Spearman’s correlation

coefficient comparing the

metrics of amalgamated

(TF-IDF + Word2Vec + LDA)

model with TF-IDF for

Apache dataset

Metrics Spearman’s r Cliff’s Delta p-value

Recall 0.99 0.4032 0.00051

MRR 0.99 0.8244 0.00043

Table 3(b) presents the p-value, Cliff’s Delta measure and Spearman’s cor-
relation coefficient of amalgamated (TF-IDF + Word2Vec + LDA) model with
TF-IDF in terms of two metrics for Apache dataset and KDE, respectively.
The TF-IDF model has been compared with the amalgamated approach as TF-
IDF has been presented as benchmark model in most of the previous studies.
Table 3(b) presents that the results have a positive correlation, whereas there
is a medium or large effect size, which means improvement is happening by
amalgamation of models.

7 Threats to Validity

Internal Validity. The dataset repository contains the bug reports that contains
dataset till the year 2017. The threat is that the size of textual information is
small for each bug report. But, the current work applied the well-established
methods of natural language processing to preparing the corpus from these large
datasets. Therefore, we believe that there would not be significant threats to
internal validity. While using LDA, a bias may have been introduced due to
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the choice of hyper-parameter values and the optimal number of topic solutions.
However, to mitigate this, the selection of the optimal number of topic solutions
was done by following a heuristic approach as suggested by Arun et al. [2] and
Cao et al. [4].

External Validity. The generalization of results may be another limitation of this
study. The similarity score was computed by following a number of steps and
each of these steps has a significant impact on the results. However, verification of
results is performed using open source datasets to achieve enough generalization.

8 Conclusion

The main contribution of this paper is an attempt to amalgamate the estab-
lished natural language models for duplicate bug recommendation using bug
textual information and non-textual information (product and component). The
proposed amalgamated model combines the similarity scores from different mod-
els namely LDA, TF-IDF, Word2Vec, and GloVe. The empirical evaluation has
been performed on the open datasets from three large open source software
projects, namely, Apache, KDE and Eclipse. From the validation, it is evident
that for Apache dataset the value of MAP rate increased from 0.076 to 0.163,
which is better as compared to the other models. This holds true for all three
datasets as shown in experimental results. Similarly, the values of MRR for amal-
gamated models is also high relative to the other individual models. Thus, it can
be concluded that amalgamated approaches achieves better performance than
individual approaches for duplicate bug recommendation. This study proposes
the amalgamated model (TF-IDF + Word2Vec + LDA), that outperform other
amalgamated models.

The future scope of current work is to develop a python package that allows
the user to select the individual models and their amalgamation with other
models on a given dataset. This would also allow the user to select combination
of textual and non-textual features from dataset for duplicate bug detection.
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