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Abstract. Neural networks have been investigated as models for sur-
vival data using a training criterion similar to that of the Cox propor-
tional hazards model, a criterion not designed for clinical prediction. In
this paper, we develop a new survival learning algorithm where a neu-
ral network ensemble minimizes the integrated Brier score. We compare
the results obtained with this method to a standard implementation of
random survival forests in R and to an ensemble of linear units.
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1 Introduction

Neural networks (NNs) have been discussed for clinical use and survival analysis
starting in the mid 90s, but early works had serious shortcomings [1]. Many
survival deep learning models have now been proposed [2–8], with a clear focus on
regularization and validation. Predictive accuracy of these NN models are usually
assessed with the C-index [9] or the Brier score [10]. Limitations remain for
clinical applications: these NNs have loss functions that don’t measure predictive
accuracy, and they are not well suited for high-dimensional data. In this work, we
propose a new survival learning algorithm which combines predictions from an
ensemble of NN models minimizing the integrated Brier score, optionally with
L1 penalization. We compare this procedure to the state-of-the-art ensemble
approach which is the Random Survival Forest [11], and to a baseline ensemble of
linear units that maximize partial likelihood under L1 penalization. To evaluate
performance in the high-dimensional setting, we created different survival data
sets by adding non-informative covariates to the well-known Primary Biliary
Cirrhosis (PBC) dataset [12].

2 Probabilistic Survival Model

The health status of a patient is measured until a certain event occurs or until
he is lost to follow-up. Let the random variables T and C be the time-to-event
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and the censoring time, respectively. We define X = min(T,C) as the observed
follow-up time and δ = 1(X=T ) as the event indicator. We assume noninformative
and independent censoring for T and C [13]. The survival function of T is defined
by S(t) = P [T > t] (t ≥ 0), the hazard function by λ(t) = − (

d
dtS(t)

)
/S(t), and

the cumulative hazard function by Λ(t) =
∫ t

0
λ(s)ds; we have S(t) = exp(−Λ(t)).

To take into account that some patients are not susceptible to the event of
interest, we use an improper survival function S(t) such as limt→∞ S(t) = ε
where ε (0 < ε < 1) is the tail defect; we then have Λ(t) ≤ − ln ε. Broadly speak-
ing, the random variable T takes the value ∞+ for non-susceptible patients.
In this context, we consider an improper semi-parametric model given by
S(t | Z) = exp

{
− θ exp[φ(Z)]

[
1 − A(t)exp[ψ(Z)]

] }
where Z = (Z1; . . . ;Zp)

is a p-dimensional vector of covariates, where A(t) can be any function decreas-
ing with time from one to zero, and where θ is a positive parameter. This type
of model is a useful alternative to the standard Cox model which allows to inves-
tigate survival effects evolving in time. Here, φ(Z) and ψ(Z) are two risk func-
tions that correspond to the long-term effect (linked to the tail defect) and the
short-term effect (linked to the time-to-event survival distribution for suscepti-
ble patients), respectively. The tail defect is given by ε = exp[−θ exp(φ(Z))].
We define θ and A(t) based on the Nelson-Aalen estimator of the cumula-
tive hazard rate, noted H(t), as follows. We set θ = max{H(t)} and, given
H−(t) = max{H(t)1(H(t)<θ)} and H∗(t) = H(t)1(H(t)<θ) + H−(t)1(H(t)=θ), we
set A(t) = 1 − θ−1H∗(t). Moreover, for small values of ψ(Z), S(t|Z) can be
re-expressed as a time-dependent proportional hazard model [14].

2.1 Neural Network Architecture Proposal

We propose to model the risk functions φ(Z) and ψ(Z) with a NN having a p-
dimensional input and a two-dimensional output (o3,1; o3,2). The network, shown

in Fig. 1A, is described by oa,b = ha

(
wa,b,0 +

∑10
j=1 wa,b,joa−1,j

)
for layers a =

2, 3, and by o1,b = h1,b

(
w1,b,0 +

∑p
j=1 w1,b,jzj

)
for layer 1. We use h1(x) =

h2(x) = selu(x), a scaled exponential linear unit [15], and h3(x) = 5 tanh(x),
a scaled hyperbolic tangent. The resulting survival function is noted Ŝ(t|Z). A
variant of the network, where input variables are subjected to L1 penalization,
is described in Fig. 1B. In this case, the equation for the first layer is given by
o1,b = φ1

(
w1,b,0 +

∑p
j=1 w1,b,jo0,j

)
with o0,j = w0,jzj , where w0,j is the weight

of the jth unit of the penalization layer (note that these units have no bias term).
We base the loss function of the network on the integrated Brier score [16],

defined by IBS = 1
τ

∫ τ

0
BS (t) dt where τ = max(Xiδi) is the time of the last

uncensored event, and where BS (t) is the Brier score at time t, a pointwise
mean square error between Ŝ(t|Z) and what is observed. The observation vari-
able takes value 1 if the event did not occur up to time t, value 0 if the event did
occur, and it does not exist in case of censoring. To account for this third case, the
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Fig. 1. A) Three layered NN. B) Modified NN with penalization layer.

error is weighted by the inverse probability of censoring. Thus, we have BS(t) =
1
n

∑n
i=1

{[
Ŝ (t|Zi)

]2
Ĝ−1(Xi)1(Xi≤t,δi=1) +

[
1 − Ŝ (t|Zi)

]2
Ĝ−1(t)1(Xi>t)

}
. The

function Ĝ(t) is the nonparametric Kaplan-Meier estimate of the censoring distri-
bution. The square root

√
BS(t) represents the deviation between the predicted

outcome and the true event status. In the modified network, a penalization term
λ1

∑p
j=1 |w0,j | is added to the IBS, where λ1 is the penalization parameter.

2.2 Classical Approaches

The baseline model (ensemble of linear units) that we use in our experiments
is derived from the hazard λ(t|Z) = ν(t)eφ(Z), with ν(t) a baseline hazard, and
from the partial likelihood function L =

∏n
i=1 eφ(Zi)δi/

(∑n
j=1 eφ(Zj)1(Xj≥Xi)

)
.

Model parameters in φ(Z) are adjusted to maximize L. Equivalently, we can min-
imize � = −∑n

i=1

(
φ(Zi)δi − ∑n

j=1 φ(Zj)1(Xj≥Xi)

)
, that is the negative partial

log-likelihood. We use � as the loss for each unit of the ensemble. Applications
of NNs to survival analysis have also focused on minimizing � or its variants.

Random Survival Forest (RSF) is one of the most effective machine learning
approaches for survival prediction. Broadly speaking, the RSF builds a series of
binary decision trees from which a final prediction is obtained by combining the
predictions from each individual tree. These latter tree-based learners are non-
parametric approaches that partition recursively the predictor space into disjoint
sub-regions that are homogeneous according to the outcome of interest. These
partitions are obtained from a splitting criterion, usually the logrank statistic,
that can be expressed as a score test from the partial likelihood function.

3 Experiment

3.1 Simulated Dataset

The PBC dataset has n = 312 observations and p = 17 covariates. To test the
capacity of the models to select relevant covariates, we generated two modified
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versions of the PBC dataset. For the second version, we added 500 uninforma-
tive variables (each of them, for every patient, generated randomly following an
uniform distribution on the interval 0–1), resulting in a dataset with p = 517
covariates. For the third version, we added 5000 uninformative variables in the
same manner instead of 500, resulting in a dataset with p = 5017 covariates.

3.2 Models

We tested four models on the dataset: a survival NN ensemble (SNNE), a SNNE
with L1 penalization (SNNE-L1), a RSF, and an ensemble of linear units (base-
line). The survival random forest model is generated with the rfsrc function
(with default values) from the R package randomForestSRC. We implemented
the three other models in Python with Keras and TensorFlow. The ensemble
method comprises bagging with 1000 bootstrap samples for all four models.

The prediction of NN ensembles for a patient is the average of the survival
curves Ŝ(t|Z) from every network where the patient was out-of-bag. Note that
H(t), θ, A(t), Ĝ(t) and τ are computed in-bag. The process is similar for the
baseline model: the survival estimate for each bootstrap sample is given by
Ŝ(t|Z) = [K(t)]exp[h(w1,0+

∑p
j=1 w1,jw0,jzj)] , where w1,j for j = 0, . . . , p are the

weights of the linear unit, where w0,j are the penalization weights, and where
K(t) = exp[−H(t)] is the Fleming-Harrington estimator.

For the SNNE model, we normalized the inputs (in-bag) and we used the
Glorot uniform initializer. We then trained each NN for 200 epochs with mini-
batches (size 32) with the default Adam optimizer, and we selected the best
weights with 15% in-bag validation. In addition, for the SNNE-L1 model, we used
λ1 = 0.01 and we initialized the penalization layer with a uniform distribution
(0.95–1.05 interval). For the baseline model, we used the same training setup
(with λ1 = 0.01 for penalization), expect that we used the batch mode of training
(no validation set), because � is not a sum of individual error terms (mini-batches
with validation have not been studied in the literature for partial likelihood).

Table 1. Out-of-bag prediction error, computed with τ = 4191 (time of the last uncen-
sored event). SNNE-L1 shows best performance (values highlighted in bold). These
values do not include the penalization term for the SNNE-L1 and baseline models.

Model IBS (p = 17) IBS (p = 517) IBS (p = 5017)

SNNE 0.1217 0.1545 0.1898

SNNE-L1 0.1151 0.1310 0.1316

RSF 0.1252 0.1550 0.1855

Baseline 0.2270 0.1956 0.2147

The out-of-bag IBS for all models and for the three datasets is given in
Table 1. The SNNE yields a slightly lower IBS value that the RSF, but this
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advantage is lost in the presence of uninformative variables. The SNNE-L1 has
the overall best performance. The baseline model performs notably worse that
the other models due to batch training without validation.

Fig. 2. Survival stratification for A) SNNE model, B) SNNE-L1 model, C) RSF
model, D) baseline model (solid curve for low-risk group, dashed curve for mid-risk
group, dotted curve for high-risk group)

To highlight the differences between models, we stratified the out-of-bag sur-
vival estimates (for the second version of the PBC dataset) into three groups
based on the survival probability value at the time of the last uncensored event:
patients in the upper quartile form the low-risk group, patients in the interquar-
tile range form the mid-risk group, and patients in the lower quartile form the
high-risk group. The groupwise survival curves obtained with each model are
shown in Fig. 2. Despite having similar performance, the SNNE and RSF mod-
els have very noticeably different survival curves, with the RSF model having
more pessimistic survival for the low-risk group and more optimistic survival for
the high-risk group. The SNNE-L1 model makes a compromise between SNNE
and RSF for the survival of the low-risk group, whereas it predicts low sur-
vival for the high-risk group, like SNNE. The baseline model generates survival
curves that clearly display the proportional hazards assumption, and its predic-
tions show a trend similar to those of RSF: survival is pessimistic in the low-risk
group and optimistic in the high-risk group.

Our results indicate that there is potential in using NNs for survival predic-
tion based on the integrated Brier score. In particular, they allow penalization
strategies via modifications of the loss function. We showed that this strategy is
well suited to situations where few relevant predictors are expected.
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4 Conclusion

In this paper, We have shown that an ensemble of NNs provides a valuable tool
for survival prediction in high dimensional setting. The proposed strategy shows
better predictive performance than survival random forests on the PBC dataset.
The originality of the proposed model lies in its choice of loss function to train
an NN ensemble with regularization. Future work will evaluate the interest of
such approach in ultra-high dimensional genomics datasets.
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