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Abstract. The Al community today has renewed concern about the
social implications of the models they design, imagining the impact of
deployed systems. One thrust has been to reflect on issues of fairness
and explainability before the design process begins. There is increasing
awareness as well of the need to engender trust from users, examining
the origins of mistrust as well as the value of multiagent trust modelling
solutions. In this paper, we argue that social Al efforts to date often
imagine a homogenous user base and those models which do support
differing solutions for users with different profiles have not yet examined
one important consideration upon which trusted AI may depend: the risk
profile of the user. We suggest how user risk attitudes can be integrated
into approaches that try to reason about such dilemmas as sacrificing
optimality for the sake of explainability. In the end, we reveal that it
is challenging to be satisfying the myriad needs of users in their desire
to be more comfortable accepting Al solutions and conclude that trade-
offs need to be examined and balanced. We advocate reasoning about
these tradeoffs concerning user models and risk profiles, as we design the
decision making algorithms of our systems.
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1 Introduction and Background

This position paper argues that deciding how to design Al systems which will be
accepted by human users is a process where the specific profile of the user needs
to be considered. We frame this discussion in terms of engendering trust in AT and
advocate for reasoning about user risk profiles, when deciding whether to sac-
rifice accuracy for explainability. We note that several researchers have already
suggested that differing user profiles may come into play, when studying mistrust
in AL For example, Salem et al. [20] assessed trust in robots as the participants’
willingness to cooperate with the robot when it makes several unusual and usual
requests. The nature of the task and the participant’s personality were both con-
sidered to be deciding factors. Rossi et al. in [18,19] delved further into which
aspects of personality may be necessary: agreeableness, conscientiousness, stable
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emotionality all suggested higher disposition for assuming benevolence and thus,
a tendency to adopt a trusting stance. Extroverts were also more likely to trust a
robot. How trusted agents differ from trusted humans is another theme. De Melo
et al. [15,16] indicate that humans experience less guilt when dealing with agent
partners than humans, and also reveal that humans are concerned when agents
adopt different values during bargaining. That humans are less tolerant of mis-
takes made by AI agents than by humans has also been observed [25]. These
papers draw out some of the differing emotional reactions to Al from users. A
final paper that helps to emphasize the importance of considering personalized
solutions, when developing Al approaches that consider human acceptance, is
that of Anjomshoae et al. [1]. This work draws out the critical value of providing
explanations to non-experts but also reveals that few proposals have addressed
the significant concern of personalization and context-awareness. Indeed, with-
out sufficient explanation, users may ascribe unfounded mental states to robots
that are operating on their behalf [10], so that it is essential to address explain-
ability well. Increased confidence can also arise with sufficient explanation [17],
which allows the receiver to perceive the sender’s state of mind.

The fact that risk profiles may hold the key to determining how to design
our systems is a theme that emerges from the work of Mayer et al. [14] explor-
ing organizational trust. The authors suggest that perceived trustworthiness is
comprised of the components of benevolence (belief in wanting good), integrity
(adhering to desired principles) and ability (having necessary skills). They raise
the point that risk-taking actions may influence future perceptions of trustwor-
thiness.

2 Desiderata for Trusted Al

As outlined in [4], there are a variety of reasons why individuals and organi-
zations may be concerned about employing Al solutions for decision making.
These include issues of fairness, explainability, ethics and safety. One question
to consider is whether multiple concerns can be addressed simultaneously, with
any of the efforts today to adjust our AI solutions in order to engender trust.
For instance, are current approaches to address issues of fairness for Al systems
in use also helping to increase transparency? We return to discuss the challenge
of taking multiple concerns into consideration at once, towards the end of the
paper.

The proposal of [4] is to make better use of existing frameworks for modelling
agent trustworthiness, precisely in order to compare competing proposals for
enabling trusted Al solutions for users. Trust modelling algorithms can identify
less reliable sources either by learning from direct experience, together with a
prediction of future behaviour or by interpreting reports received from other
agents in the environment, judged according to their inherent reliability. The
authors sketch how the use of trust modelling, injected into an environment for
judging competing explanations from differing sources, can assist in determining
which overall consensus is most dependable. This may be effective for settings
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such as gauging the value of supervised learning. A specific proposal outlining
how to integrate trust modelling into a system aimed at promoting trusted Al
is not offered in this short paper. The paper at least argues that not all efforts
to address anyone of the desiderata (fairness, accountability, transparency) are
equally valuable, and some comparisons are thus necessary.

Our view, however, is that for any attempt to improve outcomes regarding
even one of these concerns, there will be a tradeoff. Furthermore, ultimately, user
preferences should determine how those tradeoffs are modelled, and thus which
competing goal should take precedence. One researcher with the desire to identify
user needs for the sake of improved acceptance from users is Kambhampati [12].
References such as [22] suggest that planning and explainability should go hand
in hand. Which kinds of explanations provide the best outcomes depend at times
on the perceived model differences of the users [26]. There is also an effort to
describe problems in a space of plan interpretability [2] where the computational
capability of the observer is an issue. Agents can opt to make intentions clear to
users or to obfuscate. Explicable planning can be viewed as an effort to minimize
the distance from the plan expected by the human as well [2] so that mappings
of plan distances need to be estimated and reasoned with. True human-aware
planning [22] makes adjustments during the plan generation process itself, effec-
tively beginning to reason about trading off the cost and computation time of
plans in a way that serves the human observer best. In essence, the main tradeoff
is between sacrificing optimality against the cost of an explanation. What would
be especially valuable to consider are different ways in which these sacrifices can
be decided based on the particular user at hand and their specific preferences.
One relevant dimension that we choose to explore here is that of the user’s risk
attitude.

3 Reasoning with Differing User Preferences for Trusted
Al

In order to support our position that it is valuable for efforts towards trusted Al
to consider specific risk preferences of users, we offer three primary arguments.
The first two arguments are framed within the context of research which suggests
that agents should adopt less optimal but safer plans in scenarios where users
opt to observe the plans or the execution of plans of intelligent agents [12].
The first argument opens up the process of requesting observability, clarifying
that despite a user’s initial risk profile, they may progressively update their
preferences about the Agent’s plan and its need for explainability. The second
argument distinguishes the concept of user trust in an agent’s plan and the notion
of user’s inherent risk profile. We outline how cautious users may still prefer less
safe plans under certain circumstances. After discussing how risk profiles can
influence trusted AI solutions for explainability, we then briefly explain how
fairness decisions may also be influenced by risk profiles of users, as our third
argument. We conclude with suggested steps forward to continue to map out
user-specific approaches for engendering user trust.
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3.1 Game-Theoretic Reasoning

We are considering one especially relevant starting point for framing an avenue to
integrate reasoning about user preferences as the detailed proposal of [21], which
reflects on the kind of costs that users may need to bear within the setting of a
game-theoretic model of trust. Interestingly, the risks associated with robots or
humans, making certain decisions with respect to their partnership for executing
the real-world plan are discussed within this paper as well. The framework at
least suggests that each user may have differing preferences, so that decisions
about actions such as observing the Robot or not will incur costs that users
may willingly opt to endure, again with certain consequences of doing so with
respect to optimality. Borrowing a similar game-theoretic framework, we begin
to study how user risk profiles may end up suggesting differing outcomes for
the trusted Al effort. Our game-theoretic framework for studying AI behaviour
under assumptions of risk is as follows.

We first note that in the model of [21], the Robot has a model of the Human’s
assessment of the Robot. The Human has an option to monitor the Robot’s
behaviour and stop execution if needed. Since meta-models of human behaviour
may be challenging to learn and interpret, we recast the goals and constraints of
each actor based on the risk profiles of the humans and also use the word Agent
instead of Robot to represent the Al entity. Finally, we re-imagine the cost of
inconvenience for the Human as the risk that the Human takes for allowing
the Agent to create and execute the plan. We believe that the success of a
plan will depend on the explainability, i.e. how well the Human understands the
solution given by the Agent. The Agent should have a cost of explainability.
Our framework, outlined below, assumes that the Human arrives with a known
general risk profile and that the Agent primarily aims to avoid the cost of not
achieving the goal at hand. This formulation thus moves beyond the more vague
concept of Human mental model, which [21] assumes to be the basis for the
Agent’s reasoning. For now, we imagine that explainability incurs an additional
computational cost, beyond that of making or executing a plan. Our framework
proceeds as follows.

1. Agent is the artificial intelligence agent who has the following properties:

(a) Agent is uncertain of Human’s risk assessment of the Agent but knows
that their risk profile of the Human is the space of all possible risk profiles.
Thus, it has a perceived risk profile that we denote as R .

(b) Agent has plan m,. Agent incurs some cost for not achieving the goal.

2. Human is the human actor who requests some information from the Agent.

(a) Human has a risk profile RH.

(b) If Human believes a plan is risky, it can observe and stop at any time. It
incurs the cost of observing the partially executed plan and a cost of the
inconvenience of not achieving goal.

(¢) Human has non zero cost of observation.

(d) Human is rational, i.e. they only stop execution if the plan is too risky.
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3. Plan
(a) A plan 7, is a set of sequential decisions made by the agent. 7, is the
safest plan that satisfies all of the models of R and 7, satisfies none.

The Human has following strategies: Observe, stop execution at that time
(So,~E); observe at some time but not stop the execution (S g); not observe
and not stop (S~o,g); and not observe and stop at any time(Swo ~g).

The payoffs for the Human and Agent for a plan are given in Table 1. Note
there is a negative sign as the actor incurs a penalty equal to the cost. These
calculations are based on the following utilities.

1. Agent
(a) Cost of making plan is CA ().
(b) Cost of explaining is Cg (7).
(c) We can say that C4(m,) > Cp(m,) i.e. cost of explaining a plan is greater
than cost of making the plan.
(d) Cost of explaining until a partial plan (7,,) will be less than cost of explain-
ing entire plan (7,) i.e., Ca(7,) > Ch(7,)
(e) Cost of not achieving goal (G) is Cé. We can assume that the safest plan
doesn’t have a cost of failure i.e., CG‘fl = 0 when 7, = 7,.
2. Human
(a) Cost of observing the plan until some plan (7,) has been executed is
CH (7).
(b) Cost of observing at the end is CH ().
(¢) Cost of not achieving goal is Cg.
C’g = 0 when 7, = 7,.
(d) Risk of executing a plan (r,) is R ().
We can assume that there is no risk in the safest plan i.e., RY (7,) = 0.

(e) Risk of executing a full plan (m,) is more than that of a partial plan (7,)
ie. RE(m,) > R (7).

Table 1. Normal form game matrix for our formulation. The top line is the human’s
payoff and the bottom line is the agent’s payoff.

So,~E S~0o,~E S~0,.E So.E

mp | —CH (7p) — C -cd —RH (mp) —CH(#p) — RE (np — 7p)
—Cp(mp) — C& — Cp(ip) | —Cp(mp) — C& | —Cp(mp) — Cgi(mp) | —Ch(mp) — Cf (wp)

s | —CH(xs) NA 0 —CH(xs)
—Cp(rs) — Ch(rs) —Cp(ms) — Ch(ms) | —CPh(ms) — Ch(ms)

Note that, if the Human completely trusts the system (m, = 7,), then the
Nash Equilibrium is when the Human selects S~o.g, i.e. the plan is executed
without observing. If the Human completely distrusts the system (m, = ), then
the Nash Equilibrium is when the Human selects S<o ~g, i.e. they do not exe-
cute the plan without observing. In the discussion that follows, we explore how
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a Human’s risk profile can influence the Agent’s reasoning (moves in the game),
equating the risk profile with certain assumptions about whether to require
explainability.

1. Risk Averse: In this case, we can assume that R (r,) > CH (7)) + Cg, ie.
it is riskier to let any plan run its course without observing. The human will
prefer either So g or So, g. In order for the goal to be achieved, the Agent’s
costs C’Gf‘ > Cg(m,) — Ch (), ie. the cost of achieving the goal must at least
be greater than the cost of explaining the rest of the task.

2. Risk Taking: It is most important to get to the goal R (r,) < CZ. In this
case, the Agent does not need to change its strategy. However, the Xgent can
make a more explainable plan to start with such that the Human does not
need to observe at all.

We begin to sketch one way in which the Agent’s decision procedure could
be represented. The Agent needs to reason about whether to execute its plan at
hand or to adjust its plans based on the user’s perceived risk profile. The Agent
will focus on explainability at the expense of accuracy (i.e. optimality), with a
risk-averse human. It may forgo attempts at explainability to promote accuracy
if the user is more risk-seeking. One interesting question is whether the Agent
believes it can achieve the kind of explainability desired by the Human. The
reasoning could proceed in the following fashion. If the Agent believes that the
plan is more difficult to explain than it is worth trying to do so, it could inte-
grate a kind of mixed-initiative dialogue with the user, asking for more direction.
The Agent may view this as a scenario where the user’s risk threshold may be
exceeded, if that Agent proceeds with the plan at hand. The Human could be
presented with options to either dismiss the Agent’s execution of actions on its
behalf (take manual control) or could instruct the Agent to begin reformulating
a new plan from the current state (making more of an effort with the explain-
ability). This procedure is intended to give more agency to the Human, and to
prevent unintended outcomes that the Human’s risk profile suggests should be
avoided.

One interesting option is to have the Agent reflect on whether it should con-
tinue to execute its plan, each time a new step is taken. Such a decision procedure
could be run as follows. At each decision element p; € 7, the Agent reflects on
whether the cost of achieving its goal is more than the cost of explanation. If
S0, it prompts the user. The user’s risk profile can then be progressively learned
during the dialogue as well. If the user opts to observe an execution, this can
cause the Agent to increase its belief that the user is risk-averse. If the user
proceeds for some time without requesting any observations, the Agent may opt
to reduce its view of the user as risk-averse.

We view the primary decision-making of the Agent in a cycle of execution
as one of assessing R (7) as R (7) > CH(n) + Gg and increasing the cost

by cost = cost + Cé(w). When steps of a plan have begun executing without a
request for observability from the user, the Agent can reduce R (its view of
the Human’s risk profile); likewise, as Humans engage in observing, the Agent
may increase its belief that the Human is risk-averse.
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3.2 Distinguishing Trust and Risk Averseness

In Sengupta et al.’s [21] model, the human H has three strategies, to only observe
the planning process (OP), to only observe the execution process (OE), or to not
observe the robot at all (NO-OB). They argue that it is the Human’s lack of trust
in the Agent, which causes the Agent to opt for a safer plan (abandoning one
which may be more accurate but also riskier). We note that while risk averseness
of a user can translate into a distinct consideration for an Agent to reason about
explaining its actions, it is also valuable to consider distinguishing between the
Human’s trust of the Agent and their inherent risk profile. In Sengupta et al.’s,
original model, the trust boundary of the Human is derived to ensure that the
Agent will never execute the risky plan. However, in some situations, the risky
plan might be desired by the Human, as it incurs a lower cost. Thus, the Human
chooses a mixed strategy ¢ = [qp, qE, (1 — gp — qg)]T over the actions OP, OE
and NO-OB respectively. For the risky plan to be worth executing, the expected
utility given trust boundary ¢ has to be higher for 7, than for 7, by a. a € (0, 1]
and we must consider the cost of execution of the plan Ca ()

B [U(m,)] < B[U(m,)] x o iee.

(=Cp(ms) = Cg(ms)) < (=Cp(mp) = Cg(mp) — CZ) x ap O
+(=Cp(mp) = Ci(ip) — C5) X am

G
+(_C£(7Tp) - Cé(ﬂ'p)) x(1=qp—qr)) X
If the Agent knows the user’s risk profile and trust boundary, using the
above equation would enable reasoning about whether the risky plan is worth
executing instead of the safe plan. It is important to note, however, that while
the user’s risk profile (obtained through some initial questionnaire, for instance)
is relatively stable, the user’s trust boundary (determined by noticing how often
they observe the planning process or execution) is constantly changing. If a user
observes the Agent planning or executing a risky plan, for instance, then their
trust in the Agent may be lowered. If a user observes the Agent executing a safe
plan, their trust in the Agent may increase. As such, a progressive update of the
model of the Human is necessary for the Agent’s decision procedure. But merely
relying on a modelling of the Human’s trust may cause the Agent to be overly
cautious in its planning.

4 Fairness and Explainability

In the previous section, we studied how designing for trusted AI may require
reasoning about differing preferences from users with respect to accuracy and
explainability. In this section, we delve further into the consideration of fairness,
as another pillar of trusted Al for which distinct user risk profiles may suggest
alternative designs for reasoning about costs and tradeoffs. We begin by explor-
ing further the kinds of concerns that exist today regarding the fairness of Al
systems used for decision making. We reflect on whether solutions for fairness
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can also satisfy a desire for explainability. We then discuss how to reason about
individual preferences when trying to balance these two considerations. One view
is that risk-averse individuals may be willing to accept systems that have been
demonstrated to be fair, even if the methods for achieving this fairness cannot
be fully explained.

As motivation for this position about tradeoffs for trusted AI, consider the
case where an organization is running Al algorithms in order to make decisions
on whether to hire a new employee. One might imagine setting the risk profile of
the organization initially to be extremely risk-averse with respect to investment
in fairness. This means that a solution that has inadequately considered fairness
is problematic, as it could result in the organization being charged with dis-
crimination. Consider as well the context where the hiring decisions are derived
from modelling various features of successful employees in the past so that the
solution is data-driven machine learning. In this case, the data used for training,
as well as the reasoning about which features constitute an ideal employee, must
both be under the microscope with respect to fairness. Now suppose that cases
of clear discrimination do not arise, but that explanations for failing to hire a
particular individual are desired, and these are difficult to articulate clearly, as
they are tied to some sophisticated deep learning methodology. One might imag-
ine being disappointed in the failure of explainability, but willing to put up with
this consequence, if the required fairness has at least been attained. We begin
with the first observation that the concern at hand may be with respect to the
fairness of the data or with respect to the decision-making algorithm, which is
making use of the data that is provided.

There are three major approaches towards achieving fairness in decision-
making algorithms. We can modify the input data distribution to reduce bias at
the source and thus train our model on the cleaner data. This method is called
pre-processing. An alternate approach is to instead regulate the loss function
of the classifier by adding fairness measures as regularization terms. This helps
to control the tradeoff between fairness and the overall accuracy of the system.
[9] showed that machine learning models amplified representation disparity over
time and proposed to alter the loss function to minimize the worst-case risk
for the minority groups. Notice that in the above approaches, we need to have
access to the underlying data, which is not possible in many cases. Thus, in an
alternative approach, one may first use the original data to train a classifier and
then generate another classifier. This new classifier is independent of the original
data and is created using just the original classifier and the protected attribute.
However, we then need to ensure that the new classifier is fair by some definition
of fairness. This approach is referred to as post-processing. One way to formalize
this idea was proposed by [8], where they learn a probability distribution which
controls whether to change the value of the predicted output from the original
classifier or to keep it the same. The probability distribution is learnt by solving
an optimization problem, which ensures that the desired fairness constraints are
met while keeping the accuracy close to that of the original classifier.
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Even if we have a user who is risk-averse with respect to explainability, there
may be different options for addressing their needs. [6] uses crowd-sourcing in the
form of Amazon Mechanical Turks to provide insights on how different styles of
explanation impact people’s fairness judgment of ML systems. They show people
certain explanations of a model and ask them to differentiate between global
explanations (describing the whole model) and local explanations (justifying a
particular decision). They argue that it depends on the kinds of fairness issues
and user profiles and that there is no one-size-fits-all solution for an effective
explanation. Finally, they show that individuals’ prior positions on algorithmic
fairness also influence how they react to explanations. They argue for providing
personalized forms of explanations to users. The authors do not, however, provide
specific insights into how this personalization can be achieved.

Tradeoffs and Alternative Definitions for Fairness

In order to map out a decision procedure to respect user preferences with
respect to fairness, the same concerns of Kambhampati and his coauthors
[12,21,22], namely tradeoffs between accuracy and explainability, seem to arise.
The point is that efforts to examine the success of the classification algorithm,
with respect to the data on which it has been trained, may fail to consider bias,
so that obtaining what appears to be well-respected performance accuracy, may
still reflect critical failure with respect to fairness. A small example here helps
to draw out why this might be the case.

Imagine we have a task to determine if a student will be successful in grad-
uate school using some test scores. For simplicity, let us assume that students
belong to two demographic groups. Students of one demographic group might
be in the majority. If for certain reasons, students belonging to this majority
demographics have higher scores (they are rich and give exams multiple times)
than the students in the minority group. Therefore a classifier trained to get the
best accuracy might more often reject the students belonging to the minority
group. Thus, a more accurate solution does not mean a fair solution. Optimizing
for average errors fits the majority error. We can obtain Pareto improvements
by using group memberships. Current models tend to be inherently designed to
be more accurate and not fair. They pick up the bias present in the data and,
in some cases, amplify it [27]. [5] showed that if we have to satisfy even a single
fairness criterion, we will sacrifice on the utility (accuracy).

We note as well that in some cases, users may not be risk-averse regarding
fairness (e.g. they believe that this is not an issue for their particular applica-
tion), while they may instead be much less forgiving of a failure to explain (e.g.
unwilling to run software in their firm which cannot be justified to sharehold-
ers). For these individuals, the cost profile has changed and, all of this still needs
to be considered against the primary aim of producing a system that provides
important overall accuracy.

It is also important to note that there are alternate definitions of fairness,
so that any effort to achieve this aim for trusted AI, may need to be attuned
to a more precise measurement. Three widely used ways of modelling fairness
are disparate impact, individual fairness or equalized odds. It may, therefore, be
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important to determine which of these considerations is paramount for the user,
for their given context, before proceeding to reason about how best to design
and where the tradeoffs between costs are best determined. Our discussion below
also points out some challenges in achieving each of these differing perspectives,
to date. Disparate Impact is measured by Pr(Y = 1|4 = 0)/Pr(Y = 1/A =
1) <=t, where t is a threshold value, Y represents an outcome (1 is a positive
event) and A represents the protected attribute (0 is the minority/protected
class). Thus, it means that the probability of the classification event (getting
admitted) should be independent of the protected attribute (race). For our sce-
nario of admission to graduate school, getting admitted should, for instance,
be independent of race. This measure may not ensure fairness, however, as the
notion permits that we accept qualified applicants in the demographic A = 1
but unqualified individuals in A = 0, as long as the percentages of acceptances
match. In addition, demographic parity may cripple utility in cases where the
target variable Y is correlated with A. Individual Fairness [7] defines the notion
that similar individuals should be treated similarly. How best to frame this met-
ric is currently unresolved. Equalized Odds measure was defined by [8]. The
constraint requires that the classifier(represented by Y) has equal true (y=1)
and false (y=0) positive rates across the two demographics A=0 and A=L1.
Pr(Y =1A=0,C =y) =Pr(Y =1A=1,C =y),y € 0,1 C represents
the true label present in the dataset. However, equalized odds enforces that the
accuracy is equally high in all demographics, punishing models that perform well
only on the majority.

5 Acquiring and Updating User Risk Profiles

A question to resolve is how best to represent a user’s risk profile. A broad
classification of the user as risk-averse or risk-seeking would enable an initial step
forward with the reasoning proposed in this paper, namely to vary the outcomes
of algorithms aiming to achieve trusted Al. We argue that it is desirable to make
these adjustments. Any effort to model a user requires decisions along several
fronts per the longstanding field of user modeling [13]: representing the user
(what to model and how to represent), deciding when to update the user model,
deciding how to reason with the user model to adjust an intelligent agent’s
decision making and how to acquire the user model. It is only the first of these
elements that we have focused on so far.

Some research has explored the methods best able to elicit user risk profiles
[3]. These authors mention a suggestion that individuals attempt to maximize
some specific utility functions, as well. They ultimately caution against using
conclusions within one limited context in order to predict what users will prefer
in other scenarios. The fact that users may deviate from expected utility theory
is also mentioned in the work of [11]. These authors then suggest that solutions
for eliciting preferences should be able to function well, for cases where users
are instead of making decisions based on cumulative prospect theory [24]. One
element sketched in this paper is an expected minimax regret (EMR) heuristic,
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leading to the selection of queries for the user based on maintaining the low-
est expected pairwise maximum regret, between pairs of possible decisions. It is
therefore quite important to acknowledge the challenges of acquiring an effective
representation of a user’s risk profile, in order to then reason with that informa-
tion when making higher-level decisions about how best to respect the various
elements of trusted Al. One critical point is the fact that user risk profiles are not
static, but may dynamically change as the user can experience various outcomes.
Moreover, user risk profiles may also be quite varied, depending on the specific
context. This point has been acknowledged well already in the multiagent trust
modelling community, where trying to engender trust in a user may need to differ
considerably, depending on which features are most important to that user (e.g.
quality or cost, for e-commerce transactions) [23]. While the work above rein-
forces the point that it is important to develop complex strategies for properly
determining the risk profiles of users, it is still the case that if some risk attitudes
were known, Al system choices could be adjusted to increase acceptability from
users.

6 Conclusion and Future Work

This paper proposes new directions for addressing trustworthiness of Al, pre-
senting a particular viewpoint for designing future Al systems. We reveal that
there are tradeoffs when aiming for trusted Al, that user risk profiles matter and
can be integrated into decisions about how to design our systems, and that we
should be considering solutions where different costs are more central, depending
on the user. We have also reflected on basic considerations of accuracy, explain-
ability and fairness, revealing that distinct needs and definitions may be at play;
we have also sketched the process for reasoning about costs and risk profiles.
While we comment on how broad, straightforward classification of user risk pro-
files enable an initial solution, we also acknowledge that this consideration is
considerably more complex, requiring a collection of more complex reasoning
processes.

The most obvious first step for future work is to expand upon representing
user risk aversion, reflecting further on how these profiles are best known or
acquired, and allowing finer-grained distinctions (for example, enabling users to
be risk-averse in certain specified contexts, and more forgiving for other tasks
being executed by the AI system). We have sketched only one small proposal
for designing Al systems based on risk profiles and costs; ours is embedded in
the game-theoretic analysis. Future work should proceed to calibrate gains for
trusted Al using our approach. We should also consider many other desiderata
of Al systems and continue to determine how decisions made by Al systems can
be modulated by these considerations in a way that is faithful to individual user
needs. We also acknowledge that reasoning more broadly about user preferences
rather than risk profiles per se might open up a deeper set of approaches. But
our position is that focusing on risk aversion as the critical element which may
require sacrificing accuracy for explainability (or other trusted AI concerns) is
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a very powerful and effective stand-in,! one that shows promise as we continue
our dialogue with those invested in securing better acceptance of Al from non-
experts.
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