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Abstract. We aim at demonstrating the influence of diversity in the
ensemble of CNNs on the detection of black-box adversarial instances
and hardening the generation of white-box adversarial attacks. To this
end, we propose an ensemble of diverse specialized CNNs along with
a simple voting mechanism. The diversity in this ensemble creates a
gap between the predictive confidences of adversaries and those of clean
samples, making adversaries detectable. We then analyze how diversity
in such an ensemble of specialists may mitigate the risk of the black-box
and white-box adversarial examples. Using MNIST and CIFAR-10, we
empirically verify the ability of our ensemble to detect a large portion
of well-known black-box adversarial examples, which leads to a signifi-
cant reduction in the risk rate of adversaries, at the expense of a small
increase in the risk rate of clean samples. Moreover, we show that the
success rate of generating white-box attacks by our ensemble is remark-
ably decreased compared to a vanilla CNN and an ensemble of vanilla
CNNs, highlighting the beneficial role of diversity in the ensemble for
developing more robust models.

1 Introduction

Convolutional Neural Networks (CNNs) are now a common tool in many com-
puter vision tasks with a great potential for deployement in real-world applica-
tions. Unfortunately, CNNs are strongly vulnerable to minor and imperceptible
adversarial modifications of input images a.k.a. adversarial examples or adver-
saries. In other words, generalization performance of CNNs can be significantly
dropped in the presence of adversaries. While identifying such benign-looking
adversaries from their appearance is not always possible for human observers,
distinguishing them from their predictive confidences by CNNs is also challeng-
ing since these networks, as uncalibrated learning models [1], misclassify them
with high confidence. Therefore, the lack of robustness of CNNs to adversaries
can lead to significant issues in many security-sensitive real-world applications
such as self-driving cars [2].
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Fig. 1. A schematic explanation of ensemble of specialists for a 3-classes classifica-
tion. On the left, a generalist (h(.)) trained on all 3 classes. In the middle and on the
right, two specialist binary-classifiers h1(.) and h2(.) are trained on different subsets
of classes, i.e. respectively (red,green) and (red, blue). A black-box attack, shown by
a black star, which fools a generalist classifier (left), can be classified as different
classes by the specialists, creating diversity in their predictions. Moreover, generation
of a white-box adversarial example by the specialists can create two different fool-
ing directions toward two unlike fooling classes. The fooling directions (in term of
derivatives) are shown by black arrows in zoomed-in figures. Such different fooling
directions by the specialists can harden the generation of high confidence white-box
attacks (Sect. 3). Thus, by leveraging diversity in an ensemble of specialists, without the
need of adversarial training, we may mitigate the risk of adversarial examples. (Color
figure online)

To address this issue, one line of thought, known as adversarial training,
aims at enabling CNNs to correctly classify any type of adversarial examples
by augmenting a clean training set with a set of adversaries [3–7]. Another line
of thought is to devise detectors to discriminate adversaries from their clean
counterparts by training the detectors on a set of clean samples and their adver-
sarials ones [4,8–10]. However, the performance of these approaches, by either
increasing correct classification or detecting adversaries, is highly dependent on
accessing a holistic set containing various types of adversarial examples. Not only
generating such a large number of adversaries is computationally expensive and
impossible to be made exhaustively, but adversarial training does not necessarily
grant robustness to unknown or unseen adversaries [11,12].

In this paper, we aim at detecting adversarial examples by predicting them
with high uncertainty (low confidence) through leveraging diversity in an ensem-
ble of CNNs, without requiring a form of adversarial training. To build a diverse
ensemble, we propose forming a specialists ensemble, where each specialist is
responsible for classifying a different subset of classes. The specialists are defined
so as to encourage divergent predictions in the presence of adversarial examples,
while making consistent predictions for clean samples (Fig. 1). We also devise
a simple voting mechanism to merge the specialists’ predictions to efficiently
compute the final predictions. As a result of our method, we are enforcing a gap



Toward Adversarial Robustness 3

between the predictive confidences of adversaries (i.e., low confidence predic-
tions) and those of clean samples (i.e., high confidence predictions). By setting
a threshold on the prediction confidences, we can expect to properly identify
the adversaries. Interestingly, we provably show that the predictive confidence
of our method in the presence of disagreement (high entropy) in the ensemble
is upper-bounded by 0.5 + ε′, allowing us to have a global fixed threshold (i.e.,
τ = 0.5) without requiring fine-tuning of the threshold. Moreover, we analyze
our approach against the black-box and white-box attacks to demonstrate how,
without adversarial training and only by diversity in the ensemble, one may
design more robust CNN-based classification systems. The contributions of our
paper are as follows:

– We propose an ensemble of diverse specialists along with a simple and com-
putationally efficient voting mechanism in order to predict the adversarial
examples with low confidence while keeping the predictive confidence of the
clean samples high, without training on any adversarial examples.

– In the presence of high entropy (disagreement) in our ensemble, we show
that the maximum predictive confidence can be upper-bounded by 0.5 + ε′,
allowing us to use a fixed global detection threshold of τ = 0.5.

– We empirically exhibit that several types of black-box attacks can be effec-
tively detected with our proposal due to their low predictive confidence (i.e.,
≤ 0.5). Also, we show that attack-success rate for generating white-box adver-
sarial examples using the ensemble of specialists is considerably lower than
those of a single generalist CNN and a ensemble of generalists (a.k.a pure
ensemble).

2 Specialists Ensemble

Background: For a K-classification problem, let us consider training set of
{(xi,yi)}N

i=1 with xi ∈ X as an input sample along with its associated ground-
truth class k, shown by a one-hot binary vector yi ∈ [0, 1]K with a single 1 at
its k-th element. A CNN, denoted by hW : X → [0, 1]K , maps a given input to
its conditional probabilities over K classes. The classifier hW(·)1 is commonly
trained through a cross-entropy loss function minimization as follows:

min
W

1
N

N∑

i=1

L(h(xi),yi;W) = − 1
N

N∑

i=1

log hk∗(xi), (1)

where hk∗(xi) indicates the estimated probability of class k∗ corresponding to
the true class of given sample xi. At the inference time, the threshold-based
approaches like our approach define a threshold τ in order to reject the instances
with lower predictive confidence than τ as an extra class K + 1:

d(x|τ) =

{
argmaxk hk(x), if maxk hk(x) > τ

K + 1, otherwise
. (2)

1 For convenience, W is dropped from hW(·).



4 M. Abbasi et al.

(a) CIFAR-10 FGS fooling matrix (b) The expertise domains of “Airplane” class

Fig. 2. (a) Fooling matrix of FGS adversaries for CIFAR-10, which is computed from
5000 randomly selected FGS adversaries (500 per class). Each row shows the fooling
rates (in percentage) from a true class to other classes (rows and columns are true and
fooling classes, respectively). (b) An example of forming expertise domains for class
“Airplane”: its high likely fooled classes (in yellow zone) and less likely fooled classes
(in red zone) are forming two expertise domains. (Color figure online)

2.1 Ensemble Construction

We define the expertise domain of the specialists (i.e. the subsets of classes) by
separating each class from its most likely fooled classes. We later show in Sect. 3
how separation of each class from its high likely fooling classes can promote
entropy in the ensemble, which in turns leads to predicting adversaries with low
confidence (high uncertainty).

To separate the most fooling classes from each other, we opt to use the
fooling matrix of FGS adversarial examples C ∈ R

K×K . This matrix reveals
that the clean samples from each true class have a high tendency to being fooled
toward a limited number of classes not uniformly toward all of them (Fig. 2(a)).
The selection of FGS adversaries is two-fold; their generation is computationally
inexpensive, and they are highly transferable to many other classifiers, meaning
that different classifiers (e.g. with different structures) behave in similar manner
in their presence, i.e. fooled to the same classes [13–15].

Using each row of the fooling matrix (i.e. ci), we define two expertise domains
for i-th true class so as to split its high likely fooling classes from its less likely
fooling classes as follows (Fig. 2(b)):

– Subset of high likely fooling classes of i: Ui = ∪{j} if cij > μi, j ∈
{1, . . . , K}

– Subset of less likely fooling classes of i: Ui+K = {1, . . . , K} \ Ui,

where μi =
∑K

j=1 cij (average of fooling rates of i-th true class). Repeating the
above procedure for all K classes makes 2K subsets (expertise domains) for a
K classification problem. Note that the duplicated expertise domains can be
removed so as to avoid having multiple identical expertise domains (specialists).

Afterwards, for each expertise domain, one specialist is trained in order to
form an ensemble of specialist CNNs. A generalist (vanilla) CNN, which trained
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on the samples belonging to all classes, is also added to this ensemble. The
ensemble involving M ≤ 2K + 1 members is represented by H = {h1, . . . , hM},
where hj(·) ∈ [0, 1]K is j-th individual CNN mapping a given input to conditional
probability over its expert classes, i.e. the probability of the classes out of its
expertise domain is fixed to zero.

2.2 Voting Mechanism

To compute the final prediction out of our ensemble for a given sample, we
need to activate relevant specialists, then averaging their prediction along with
that of the generalist CNN. Note that we cannot simply use the generalist CNN
to activate specialists since in the presence of adversaries it can be fooled, then
causing selection (activation) of the wrong specialists. In Algorithm 1, we devise a
simple and computationally efficient voting mechanism to activate those relevant
specialists, then averaging their predictions.

Algorithm 1. Voting Mechanism
Input: Ensemble H = {h1, . . . , hM}, expertise domains U = {U1, . . . , UM}, input x
Output: Final prediction h̄(x) ∈ [0, 1]K

1: vk(x) ← ∑M
j=1 I

(
k = argmaxK

i=1 hj
i (x)

)
, k = 1, . . . , K

2: k∗ ← argmaxK
k=1 vk(x)

3: if vk∗(x) = �M
2

�
4: Hk∗ ← {hi ∈ H | k∗ ∈ Ui}
5: h̄(x) ← 1

|Hk∗ |
∑

hi∈Hk∗ hi(x)

6: else
7: h̄(x) ← 1

M

∑
hi∈H hi(x)

8: return h̄(x)

Let us first introduce the following elements for each class i:

– The actual number of votes for i-th class by the ensemble for a given sample
x: vi(x) =

∑M
j=1 I

(
i = argmax{1,...K} hj(x)

)
, i.e. it shows the number of the

members that classify x to i-th class.
– The maximum possible number of votes for i-th class is �M

2 � ≤ K +1. Recall
that for each row, we split all K classes into two expertise domains, where
class i is included in one of them. Considering all K rows and the generalist,
we end up having at maximum K + 1 subsets that involve class i.

As described in Algorithm 1, for a given sample x, if there is a class with
its actual number of votes equal to its expected number of votes, i.e. vi(x) =
�M

2 �, then it means all of the specialists, which are trained on i-th class, are
simultaneously voting (classifying) for it. We call such a class a winner class.
Then, the specialists CNNs voting to the winner class are activated to compute
the final prediction (lines 3–5 of Algorithm 1), producing a certain prediction
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(with high confidence). Note that in the presence of clean samples, the relevant
specialists in the ensemble are expected to do agree on the true classes since
they, as strong classifiers, have high generalization performance on their expertise
domains.

If no class obtains its maximum expected number of votes (i.e. �i, vi(x) =
�M

2 � ), it means that the input x leads the specialists to disagree on a winner
class. In this situation, when no agreement exists in the ensemble, all the mem-
bers should be activated to compute the final prediction (line 7 of Algorithm 1).
Averaging of the predictions by all the members leads to a final prediction with
high entropy (i.e. low confidence). Indeed, a given sample that creates a dis-
agreement (entropy) in the ensemble is either a hard-to-classify sample or an
abnormal sample (e.g. adversarial examples).

Using the voting mechanism for this specialists ensemble, we can create a gap
between the predictive confidences of clean samples (having high confidence) and
those of adversaries (having low confidence). Finally, using a threshold τ on these
predictive confidences, the unusual samples are identified and rejected. In the
following, we argue that our voting mechanism enables us to set a global fixed
threshold τ = 0.5 to perform identification of adversaries. This is unlike some
threshold-based approaches [10,16] that need to tune different thresholds for
various datasets and their types of adversaries.

Corollary 1. In a disagreement situation, the proposed voting mechanism
makes the highest predictive confidence to be upper-bounded by 0.5 + ε′ with
ε′ = 1

2M .

Proof. Consider a disagreement situation in the ensemble for a given x, where
all the members are averaged to create h̄(x) = 1

M

∑
hj∈H hj(x). The highest

predictive confidence of h̄(x) belongs to the class that has the largest number of
votes, i.e. m = max[v1(x), . . . , vK(x)]. Let us represent these m members that are
voting to this class (k-th class) as Hk = {hj ∈ H | k ∈ Uj}. Since each individual
CNNs in the ensemble are basically uncalibrated learners (having very high
confident prediction for a class and near to zero for the remaining classes), the
confidence probability of k-th class of those excluded members from Hk (those
that do not vote for k-th class) can be negligible. Thus, their prediction can
be simplified as h̄k(x) = 1

M

∑
hj∈Hk

hj
k(x) + ε

M ≈ 1
M

∑
hj∈Hk

hj
k(x) (the small

term ε
M is discarded). Then, from the following inequality

∑
hj∈Hk

hj
k(x) ≤ m,

we have 1
M

∑
hj∈Hk

hj
k(x) ≤ m

M (I).
On the other hand, due to having no winner class, we know that m < �M

2 �
(or m < M

2 + 1
2 ), such that by multiplying it by 1

M we obtain m
M < 1

2 + 1
2M (II).

Finally considering (I) and (II) together, it derives 1
M

∑
hj∈Hk

hj
k(x) < 0.5+

1
2M . For the ensemble with a large size, e.g. likewise our ensemble, the term
ε′ = 1

2M is small. Therefore, it shows the class with the maximum probability
(having the maximum votes) can be upper-bounded by 0.5 + ε′. �
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3 Analysis of Specialists Ensemble

Here, we first explain how adversarial examples give rise to entropy in our ensem-
ble, leading to their low predictive confidence (with maximum confidence of
0.5+ε′). As well, we examine the role of diversity in our ensemble, which harden
the generation of white-box adversaries.

In a black-box attack, we assume that the attacker is not aware of our
ensemble of specialists, thus generates some adversaries from a pre-trained
vanilla CNN g(·) to mislead our underlying ensemble. Taking a pair of an input
sample with its true label, i.e. (x, k), an adversary x′ = x + δ fools the model g
such that k = argmax g(x) while k′ = argmax g(x′) with k′ 	= k, where k′ is one
of those most-likely fooling classes for class k (i.e. k′ ∈ Uk). Among the special-
ists that are expert on k, at least one of them does not have k′ in their expertise
domains since we intentionally separated k-th class from its most-likely fooling
classes when defining its expertise domains (Sect. 2.1). Formally speaking, denote
those expertise domains comprising class k as follows Uk = {Uj | k ∈ Uj} where
(I) Uj 	= Ui ∀Ui, Uj ∈ Uk and (II) k′ /∈ ∩ Uk. Therefore, regarding the fact that
(I) the expertise domains comprising k are different and (II) their shared classes
do not contain k′, it is not possible that all of their corresponding specialists
models are fooled simultaneously toward k′. In fact, these specialists may vote
(classify) differently, leading to a disagreement on the fooling class k′. So, due
to this disagreement in the ensemble with no winner class, all the ensemble’s
members are activated, resulting in prediction with high uncertainty (low confi-
dence) according to Corollary 1. Generally speaking, if {∩ Uk} \ k is a small or
an empty set, harmoniously fooling the specialist models, which are expert on
k, is harder.

In a white-box attack, an attacker attempts to generate adversaries to
confidently fool the ensemble, meaning the adversaries should simultaneously
activate all of the specialists that comprise the fooling class in their expertise
domain. Otherwise, if at least one of these specialists is not fooled, then our
voting mechanism results in adversaries with low confidence, which can then
be automatically rejected using the threshold (τ = 0.5). In the rest we bring
some justifications on the hardness of generating high confidence gradient-based
attacks from the specialists ensemble.

Instead of dealing with the gradient of one network, i.e. ∂h(x)
∂x , the attacker

should deal with the gradient of the ensemble, i.e. ∂h̄(x)
∂x , where h̄(x) computed

by line 5 or line 7 of Algorithm. 1. Formally, to generate a gradient-based adver-
sary from the ensemble for a given labeled clean input sample (x,y = k), the
derivative of the ensemble’s loss, i.e. L(h̄(x),y) = − log h̄k(x), w.r.t. x is as
follows:

∂L(h̄(x),y)
∂x

=
∂L

∂h̄k(x)
∂h̄k(x)

∂x
= − 1

h̄k(x)︸ ︷︷ ︸
β

∂h̄k(x)
∂x

= β
1

|Hk|
∑

hi∈Hk

∂hi
k(x)
∂x

. (3)
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Initially Hk indicates the set of activated specialists voting for class k (true label)
plus the generalist for the given input x. Since the expertise domains of the acti-
vated specialists are different (Uk = {Uj | k ∈ Uj}), most likely their derivative
are diverse, i.e. fooling toward different classes, which in turn creates perturba-
tions in various fooling directions (Fig. 1). Adding such diverse perturbation to a
clean sample may promote disagreement in the ensemble, where no winner class
can be agreed upon. In this situation, when all of the members are activated,
the generated adversarial sample is predicted with a low confidence, thus can be
identified. For the iterative attack algorithms, e.g. I-FGS, the process of generat-
ing adversaries may continue using the derivative of all of the members, adding
even more diverse perturbations, which in turn makes reaching to an agreement
in the ensemble on a winner fooling class even more difficult.

4 Experimentation

Evaluation Setting: Using MNIST and CIFAR-10, we investigate the perfor-
mance of our method for reducing the risk rate of black-box attacks (Eq. 5) due
to of their detection, and reducing the success rate of creating white-box adver-
saries. Two distinct CNN configurations are considered in our experimentation:
for MNIST, a basic CNN with three convolution layers of respectively 32, 32, and
64 filters of 5×5, and a final fully connected (FC) layer with 10 output neurons.
Each of these convolution layers is followed by a ReLU and 3 × 3 pooling filter
with stride 2. For CIFAR-10, a VGG-style CNN (details in [17]) is used. For
both CNNs, we use SGD with a Nesterov momentum of 0.9, L2 regularization
with its hyper-parameter set to 10−4, and dropout (p = 0.5) for the FC lay-
ers. For the evaluation purposes, we compare our ensemble of specialists with a
vanilla (naive) CNN, and a pure ensemble, which involves 5 vanilla CNNs being
different by random initialization of their parameters.

Evaluation Metrics: To evaluate a predictor h(·) that includes a rejection
option, we report a risk rate ED|τ on a clean test set D = {(xi,yi)}N

i=1 at
a given threshold τ , which computes the ratio of the (clean) samples that are
correctly classified but rejected due to their confidence less than τ and those that
are misclassified but not rejected due to a confidence value above τ :

ED|τ =
1
N

N∑

i=1

(
(I[d(xi|τ) 	= K + 1] × I[argmax h(xi) 	= yi])

+ (I[d(xi|τ) = K + 1] × I[argmax h(xi) = yi])
)

.

(4)

In addition, we report the risk rate EA|τ on each adversaries set, i.e. A =
{(x′

i,yi)}N ′
i=1 including pairs of an adversarial example x′

i associated by its true
label, to show the percentage of misclassified adversaries that are not rejected
due to their confidence value above τ :

EA|τ =
1

N ′

N ′∑

i=1

(I[d(x′
i|τ) 	= K + 1] × I[argmax h(x′

i) 	= yi]) . (5)
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4.1 Empirical Results

Black-box Attacks: To assess our method on different types of adversaries, we
use various attack algorithms, namely FGS [5], TFGS [7], DeepFool (DF) [18],
and CW [19]. To generate the black-box adversaries, we use another vanilla
CNN, which is different from all its counterparts involved in the pure ensemble–
by using different random initialization of its parameters. For FGS and T-FGS
algorithms we generate 2000 adversaries with ε = 0.2 and ε = 0.03, respectively,
for randomly selected clean test samples from MNIST and CIFAR-10. For CW
attack, due to the high computational burden required, we generated 200 adver-
saries with κ = 40, where larger κ ensures generation of high confidence and
highly transferable CW adversaries.

Figure 3 presents risk rates (ED|τ) of different methods on clean test samples
of MNIST (first row) and those of CIFAR-10 (second row), as well as their corre-
sponding adversaries EA|τ , as functions of threshold (τ). As it can be seen from
Fig. 3, by increasing the threshold, more adversaries can be detected (decreasing
EA) at the cost of increasing ED, meaning an increase in the rejection of the
clean samples that are correctly classified.

To appropriately compare the methods, we find an optimum threshold that
creates small ED and EA collectively, i.e. argminτ ED|τ + EA|τ . Recall that, as
corollary 1 states, in our ensemble of specialists, we can fix the threshold of our
ensemble to τ∗ = 0.5. In Table 1, we compare the risk rates of our ensemble
with those of pure ensemble and vanilla CNN at their corresponding optimum
thresholds. For MNIST, our ensemble outperforms naive CNN and pure ensemble
as it detects a larger portion of MNIST adversaries while its risk rate on the clean
samples is only marginally increased. Similarly, for CIFAR-10, our approach can
detect a significant portion of adversaries at τ∗ = 0.5, reducing the risk rates

(a) MNIST test data (b) MNIST FGS (c) MNIST TFGS

(d) CIFAR-10 test data (e) CIFAR-10 FGS (f) CIFAR-10 TFGS

Fig. 3. The risk rates on the clean test samples and their black-box adversaries as the
function of threshold (τ) on the predictive confidence.
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Table 1. The risk rate of the clean test set (ED|τ∗) along with that of black-box
adversarial examples sets (EA|τ∗) are shown in percentage at the optimum threshold
of each method. The methods with the lowest collective risk rate (i.e. EA + ED) is
underlined, while the best results for the two types of risk considered independently
are in bold.

Task Methods Adversaries

FGS TFGS CW DeepFool

EA / ED EA / ED EA / ED EA / ED

MNIST Naive CNN 48.21 / 0.84 28.15 / 0.84 41.5 / 0.84 88.68 / 0.84

Pure ensemble 24.02 / 1.1 18.35 / 1.1 28.5 / 1.1 72.73 / 1.1

Specialists ensemble 18.58 / 0.73 18.05 / 0.73 24 / 0.73 54.24 / 0.73

CIFAR-10 Naive CNN 59.37 / 12.11 23.47 / 12.11 51.5 / 12.11 28.81 / 12.11

Pure ensemble 36.59 / 18.5 8.37 / 13.79 4.0 / 13.79 7.7 / 18.5

Specialists ensemble 25.66 / 21.25 4.21 / 21.25 3.5 / 21.25 6.02 / 21.25

on adversaries. However, at this threshold, our approach has higher risk rate on
the clean samples than that of two other methods.

White-box Attacks: In the white-box setting, we assume that the attacker
has full access to a victim model. Using each method (i.e. naive CNN, pure
ensemble, and specialists ensemble) as a victim model, we generate different
sets of adversaries (i.e. FGS, Iterative FGS (I-FGS), and T-FGS). A successful
adversarial attack x′ is achieved once the underlying model misclassifies it with
a confidence higher than its optimum threshold τ∗. When the confidence for an
adversarial example is lower than τ∗, it can be easily detected (rejected), thus
it is not considered as a successful attack.

We evaluate the methods by their white-box attacks success rates, indicating
the number of successful adversaries that satisfies the aforementioned conditions
(i.e. a misclassification with a confidence higher than τ∗) during t iterations of
the attack algorithm. Table 2 exhibits the success rates of white-box adversaries
(along with their used hyper-parameters) generated by naive CNN (τ∗ = 0.9),

Table 2. Success rate of white-box adversarial examples (lower is better) generated
by naive CNN, pure ensemble (5 generalists), and specialists ensemble at their corre-
sponding optimum threshold. An successful white-box adversarial attack should fool
the underlying model with a confidence higher than its optimum τ∗.

MNIST CIFAR-10

Methods Adversaries

FGS T-FGS I-FGS FGS T-FGS I-FGS

ε=0.2 ε=0.2 ε=2×10−2 ε=3×10−2 ε=3×10−2 ε=3×10−3

Naive CNN 89.94 66.16 66.84 86.16 81.38 93.93

Pure ensemble 71.58 50.64 48.62 42.65 13.96 45.78

Specialists ensemble 45.15 27.43 13.63 34.1 7.43 34.20
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pure ensemble (τ∗ = 0.9), and specialists ensemble (τ∗ = 0.5). For the bench-
mark datasets, the number of iterations of FGS and T-FGS is 2 while that of
iterative FGS is 10. As it can be seen in Table 2, the success rates of adversar-
ial attacks using ensemble-based methods are smaller than those of naive CNN
since diversity in these ensembles hinders generation of adversaries with high
confidence.

Fig. 4. Gray-box CW adversaries
that confidently fool our specialists
ensemble. According to the defini-
tion of adversarial example, how-
ever, some of them are not actu-
ally adversaries due to the signifi-
cant visual perturbations.

Gray-box CW Attack: In the gray-box
setting, it is often assumed that the attacker
is aware of the underlying defense mecha-
nism (e.g. specialists ensemble in our case)
but has no access to its parameters and
hyper-parameters. Following [20], we evalu-
ate our ensemble on CW adversaries gener-
ated by another specialists ensemble, com-
posed of 20 specialists and 1 generalist for 100
randomly selected MNIST samples. Evalua-
tion of our specialists ensemble on these tar-
geted gray-box adversaries (called “gray-box
CW”) reveals that our ensemble provides low
confidence predictions (i.e. lower than 0.5)
for 74% of them (thus able to reject them)
while 26% have confidence more than 0.5 (i.e.
non-rejected adversaries). Looking closely at
those non-rejected adversaries in Fig. 4, it can be observed that some of them can
even mislead a human observer due to adding very visible perturbation, where
the appearance of digits are significantly distorted.

5 Related Works

To address the issue of robustness of deep neural networks, one can either
enhance classification accuracy of neural networks to adversaries, or devise detec-
tors to identify adversaries in order to reject to process them. The former class
of approaches, known as adversarial training, usually train a model on the
training set, which is augmented by adversarial examples. The main difference
between many adversarial training approaches lies in the way that the adver-
saries are created. For example, some [3,5,7,21] have trained the models with
adversaries generated on-the-fly, while others conduct adversarial training with a
pre-generated set of adversaries, either produced from an ensemble [22] or from a
single model [18,23]. With the aim detecting adversaries to avoid making wrong
decisions over the hostile samples, the second category of approaches propose
the detectors, which are usually trained by a training set of adversaries [4,8–
10,24,25].
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Notwithstanding the achievement of some favorable results by both cate-
gories of approaches, the main concern is that their performances on all types of
adversaries are extremely dependent on the capacity of generating an exhaustive
set of adversaries, which comprises different types of adversaries. While making
such a complete set of adversaries can be computationally expensive, it has been
shown that adversely training a model on a specific type of adversaries does not
necessarily confer a CNN robustness to other types of adversaries [11,12].

Some ensemble-based approaches [26,27] were shown to be effective for mit-
igating the risk of adversarial examples. Strauss et al. [26] demonstrated some
ensembles of CNNs that are created by bagging and different random initial-
izations are less fooled (misclassify adversaries), compared to a single model.
Recently, Kariyappa et al. [27] have proposed an ensemble of CNNs, where they
explicitly force each pair of CNNs to have dissimilar fooling directions, in order
to promoting diversity in the presence of adversaries. However, computing sim-
ilarity between the fooling directions by each pair of members for every given
training sample is computationally expensive, results in increasing training time.

6 Conclusion

In this paper, we propose an ensemble of specialists, where each of the specialist
classifiers is trained on a different subset of classes. We also devise a simple vot-
ing mechanism to efficiently merge the predictions of the ensemble’s classifiers.
Given the assumption that CNNs are strong classifiers and by leveraging diver-
sity in this ensemble, a gap between predictive confidences of clean samples and
those of black-box adversaries is created. Then, using a global fixed threshold,
the adversaries predicted with low confidence are rejected (detected). We empir-
ically demonstrate that our ensemble of specialists approach can detect a large
portion of black-box adversaries as well as makes the generation of white-box
attacks harder. This illustrates the beneficial role of diversity for the creation
of ensembles in order to reduce the vulnerability to black-box and white-box
adversarial examples.
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