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Preface

We are particularly pleased to present this volume containing the collected work
prepared for and presented at the Canadian AI 2020 conference, the 33rd Canadian
Conference on Artificial Intelligence, held during May 13–15, 2020. The Canadian AI
conference is one of the longest running AI conferences, running first biennially from
1976 to 2000, then annually ever since. This volume continues to show the thriving
vitality and leadership of the Artificial Intelligence (AI) scene in Canada. The 2020
conference was supposed to take place in Ottawa, where Canadian AI had taken place
roughly every 10 years (1990, 2001, and 2010). However, the spread of Covid-19 had a
massive impact on conferences throughout the world in the spring and summer of
2020, and the Canadian AI conference was moved to a virtual, fully online format.

We received 145 submissions to the main conference, the highest number for a
Canadian AI conference since at least 2008. Most submissions were reviewed by three
Program Committee members, although a few got only two, or up to five reviews.
Based on the recommendations of the Program Committee, 31 submissions were
accepted as long papers (12 pages), and an additional 24 submissions were accepted as
short papers (6 pages). The selected papers cover a wide range of topics, including
machine learning, pattern recognition, natural language processing, knowledge repre-
sentation, cognitive aspects of AI, ethics of AI, and other important aspects of AI
research. They reflect some of the most recent and trending topics such as adversarial
learning and reinforcement learning, as well as applications of AI to various problems
in healthcare, social media and network analysis, affective computing, anomaly
detection, or processing of sensor data. In addition, the Graduate Student Symposium,
co-chaired by Pooya Moradian Zadeh and James Wright, ran its own selection process.
From 30 submissions, they selected 8 for oral presentations, 4 of which are included at
the end of this volume. In addition, David Nadeau from Innodata Labs organized an
Industry Session on the topic “Industrial AI: A day in the life of an AI practitioner.”We
thank David, James, and Pooya for organizing these sessions and selecting the relevant
contributions.

The contributions selected for this volume owe much to the work of the Program
Committee and additional reviewers, who volunteered their time and worked dutifully
to complete their reviews (mostly) on time, and provided additional feedback during
the discussion to inform the final acceptance decisions. The conference would of course
not exist without the contributions provided by the 385 authors and co-authors who
submitted their work. We also thank the authors of the accepted papers for their efforts
finalizing the camera-ready version of their papers and preparing their online
presentations.

Three keynotes enriched the program of the conference, given by leading figures
from the field: Giuseppe Carenini from the University of British Columbia, Csaba
Szepesvári from the University of Alberta, and Pascal Poupart from the University of
Waterloo. The conference also included a tutorial on “Reinforcement Learning” by



Pierre-Luc Bacon from Université de Montréal. We thank Pierre-Luc, Pascal, Csaba,
and Giuseppe for volunteering their time and for their contribution to the program
of the conference.

Canadian AI is sponsored by the Canadian Artificial Intelligence Association
(CAIAC). We gratefully acknowledge the support of the Executive Committee of
CAIAC: Leila Kosseim, XinWang, Richard Khoury, Denilson Barbosa, and Ziad Kobti.
We also thank Fabrizio Gotti, who did a wonderful job designing and maintaining the
conference website. Canadian AI was collocated with the 17th Conference on Computer
and Robot Vision (CRV 2020). We wish to acknowledge the many constructive dis-
cussions we had with the CRV co-chairs Liam Paul and Michael S. Brown, as well as
Michael Jenkin and Steven Waslander from the Canadian Information Processing and
Pattern Recognition Society, while preparing the move to a virtual conference. Last but
not least, we are extremely grateful to the general chairs of AI-CRV 2020, Marina
Sokolova and Chris Drummond, for their help with planning and organization before
and after the move to virtual conferences.

Finally we thank the sponsors who provided and maintained their financial support
through the tribulations of this complicated season: Carleton University, The
University of Ottawa (Office of Vice-President Research, Faculty of Medicine and
Faculty of Engineering), Huawei, Innodata, Compusult, and Tenera Care.

March 2020 Cyril Goutte
Xiaodan Zhu
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Toward Adversarial Robustness
by Diversity in an Ensemble

of Specialized Deep Neural Networks

Mahdieh Abbasi1(B), Arezoo Rajabi2, Christian Gagné1,3,
and Rakesh B. Bobba2

1 IID, Université Laval, Québec, Canada
mahdieh.abbasi.1@ulaval.ca

2 Oregon State University, Corvallis, USA
3 Mila, Canada CIFAR AI Chair, Quebec city, Canada

Abstract. We aim at demonstrating the influence of diversity in the
ensemble of CNNs on the detection of black-box adversarial instances
and hardening the generation of white-box adversarial attacks. To this
end, we propose an ensemble of diverse specialized CNNs along with
a simple voting mechanism. The diversity in this ensemble creates a
gap between the predictive confidences of adversaries and those of clean
samples, making adversaries detectable. We then analyze how diversity
in such an ensemble of specialists may mitigate the risk of the black-box
and white-box adversarial examples. Using MNIST and CIFAR-10, we
empirically verify the ability of our ensemble to detect a large portion
of well-known black-box adversarial examples, which leads to a signifi-
cant reduction in the risk rate of adversaries, at the expense of a small
increase in the risk rate of clean samples. Moreover, we show that the
success rate of generating white-box attacks by our ensemble is remark-
ably decreased compared to a vanilla CNN and an ensemble of vanilla
CNNs, highlighting the beneficial role of diversity in the ensemble for
developing more robust models.

1 Introduction

Convolutional Neural Networks (CNNs) are now a common tool in many com-
puter vision tasks with a great potential for deployement in real-world applica-
tions. Unfortunately, CNNs are strongly vulnerable to minor and imperceptible
adversarial modifications of input images a.k.a. adversarial examples or adver-
saries. In other words, generalization performance of CNNs can be significantly
dropped in the presence of adversaries. While identifying such benign-looking
adversaries from their appearance is not always possible for human observers,
distinguishing them from their predictive confidences by CNNs is also challeng-
ing since these networks, as uncalibrated learning models [1], misclassify them
with high confidence. Therefore, the lack of robustness of CNNs to adversaries
can lead to significant issues in many security-sensitive real-world applications
such as self-driving cars [2].
c© Springer Nature Switzerland AG 2020
C. Goutte and X. Zhu (Eds.): Canadian AI 2020, LNAI 12109, pp. 1–14, 2020.
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2 M. Abbasi et al.

Fig. 1. A schematic explanation of ensemble of specialists for a 3-classes classifica-
tion. On the left, a generalist (h(.)) trained on all 3 classes. In the middle and on the
right, two specialist binary-classifiers h1(.) and h2(.) are trained on different subsets
of classes, i.e. respectively (red,green) and (red, blue). A black-box attack, shown by
a black star, which fools a generalist classifier (left), can be classified as different
classes by the specialists, creating diversity in their predictions. Moreover, generation
of a white-box adversarial example by the specialists can create two different fool-
ing directions toward two unlike fooling classes. The fooling directions (in term of
derivatives) are shown by black arrows in zoomed-in figures. Such different fooling
directions by the specialists can harden the generation of high confidence white-box
attacks (Sect. 3). Thus, by leveraging diversity in an ensemble of specialists, without the
need of adversarial training, we may mitigate the risk of adversarial examples. (Color
figure online)

To address this issue, one line of thought, known as adversarial training,
aims at enabling CNNs to correctly classify any type of adversarial examples
by augmenting a clean training set with a set of adversaries [3–7]. Another line
of thought is to devise detectors to discriminate adversaries from their clean
counterparts by training the detectors on a set of clean samples and their adver-
sarials ones [4,8–10]. However, the performance of these approaches, by either
increasing correct classification or detecting adversaries, is highly dependent on
accessing a holistic set containing various types of adversarial examples. Not only
generating such a large number of adversaries is computationally expensive and
impossible to be made exhaustively, but adversarial training does not necessarily
grant robustness to unknown or unseen adversaries [11,12].

In this paper, we aim at detecting adversarial examples by predicting them
with high uncertainty (low confidence) through leveraging diversity in an ensem-
ble of CNNs, without requiring a form of adversarial training. To build a diverse
ensemble, we propose forming a specialists ensemble, where each specialist is
responsible for classifying a different subset of classes. The specialists are defined
so as to encourage divergent predictions in the presence of adversarial examples,
while making consistent predictions for clean samples (Fig. 1). We also devise
a simple voting mechanism to merge the specialists’ predictions to efficiently
compute the final predictions. As a result of our method, we are enforcing a gap
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between the predictive confidences of adversaries (i.e., low confidence predic-
tions) and those of clean samples (i.e., high confidence predictions). By setting
a threshold on the prediction confidences, we can expect to properly identify
the adversaries. Interestingly, we provably show that the predictive confidence
of our method in the presence of disagreement (high entropy) in the ensemble
is upper-bounded by 0.5 + ε′, allowing us to have a global fixed threshold (i.e.,
τ = 0.5) without requiring fine-tuning of the threshold. Moreover, we analyze
our approach against the black-box and white-box attacks to demonstrate how,
without adversarial training and only by diversity in the ensemble, one may
design more robust CNN-based classification systems. The contributions of our
paper are as follows:

– We propose an ensemble of diverse specialists along with a simple and com-
putationally efficient voting mechanism in order to predict the adversarial
examples with low confidence while keeping the predictive confidence of the
clean samples high, without training on any adversarial examples.

– In the presence of high entropy (disagreement) in our ensemble, we show
that the maximum predictive confidence can be upper-bounded by 0.5 + ε′,
allowing us to use a fixed global detection threshold of τ = 0.5.

– We empirically exhibit that several types of black-box attacks can be effec-
tively detected with our proposal due to their low predictive confidence (i.e.,
≤ 0.5). Also, we show that attack-success rate for generating white-box adver-
sarial examples using the ensemble of specialists is considerably lower than
those of a single generalist CNN and a ensemble of generalists (a.k.a pure
ensemble).

2 Specialists Ensemble

Background: For a K-classification problem, let us consider training set of
{(xi,yi)}N

i=1 with xi ∈ X as an input sample along with its associated ground-
truth class k, shown by a one-hot binary vector yi ∈ [0, 1]K with a single 1 at
its k-th element. A CNN, denoted by hW : X → [0, 1]K , maps a given input to
its conditional probabilities over K classes. The classifier hW(·)1 is commonly
trained through a cross-entropy loss function minimization as follows:

min
W

1
N

N∑

i=1

L(h(xi),yi;W) = − 1
N

N∑

i=1

log hk∗(xi), (1)

where hk∗(xi) indicates the estimated probability of class k∗ corresponding to
the true class of given sample xi. At the inference time, the threshold-based
approaches like our approach define a threshold τ in order to reject the instances
with lower predictive confidence than τ as an extra class K + 1:

d(x|τ) =

{
argmaxk hk(x), if maxk hk(x) > τ

K + 1, otherwise
. (2)

1 For convenience, W is dropped from hW(·).
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(a) CIFAR-10 FGS fooling matrix (b) The expertise domains of “Airplane” class

Fig. 2. (a) Fooling matrix of FGS adversaries for CIFAR-10, which is computed from
5000 randomly selected FGS adversaries (500 per class). Each row shows the fooling
rates (in percentage) from a true class to other classes (rows and columns are true and
fooling classes, respectively). (b) An example of forming expertise domains for class
“Airplane”: its high likely fooled classes (in yellow zone) and less likely fooled classes
(in red zone) are forming two expertise domains. (Color figure online)

2.1 Ensemble Construction

We define the expertise domain of the specialists (i.e. the subsets of classes) by
separating each class from its most likely fooled classes. We later show in Sect. 3
how separation of each class from its high likely fooling classes can promote
entropy in the ensemble, which in turns leads to predicting adversaries with low
confidence (high uncertainty).

To separate the most fooling classes from each other, we opt to use the
fooling matrix of FGS adversarial examples C ∈ R

K×K . This matrix reveals
that the clean samples from each true class have a high tendency to being fooled
toward a limited number of classes not uniformly toward all of them (Fig. 2(a)).
The selection of FGS adversaries is two-fold; their generation is computationally
inexpensive, and they are highly transferable to many other classifiers, meaning
that different classifiers (e.g. with different structures) behave in similar manner
in their presence, i.e. fooled to the same classes [13–15].

Using each row of the fooling matrix (i.e. ci), we define two expertise domains
for i-th true class so as to split its high likely fooling classes from its less likely
fooling classes as follows (Fig. 2(b)):

– Subset of high likely fooling classes of i: Ui = ∪{j} if cij > μi, j ∈
{1, . . . , K}

– Subset of less likely fooling classes of i: Ui+K = {1, . . . , K} \ Ui,

where μi =
∑K

j=1 cij (average of fooling rates of i-th true class). Repeating the
above procedure for all K classes makes 2K subsets (expertise domains) for a
K classification problem. Note that the duplicated expertise domains can be
removed so as to avoid having multiple identical expertise domains (specialists).

Afterwards, for each expertise domain, one specialist is trained in order to
form an ensemble of specialist CNNs. A generalist (vanilla) CNN, which trained
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on the samples belonging to all classes, is also added to this ensemble. The
ensemble involving M ≤ 2K + 1 members is represented by H = {h1, . . . , hM},
where hj(·) ∈ [0, 1]K is j-th individual CNN mapping a given input to conditional
probability over its expert classes, i.e. the probability of the classes out of its
expertise domain is fixed to zero.

2.2 Voting Mechanism

To compute the final prediction out of our ensemble for a given sample, we
need to activate relevant specialists, then averaging their prediction along with
that of the generalist CNN. Note that we cannot simply use the generalist CNN
to activate specialists since in the presence of adversaries it can be fooled, then
causing selection (activation) of the wrong specialists. In Algorithm 1, we devise a
simple and computationally efficient voting mechanism to activate those relevant
specialists, then averaging their predictions.

Algorithm 1. Voting Mechanism
Input: Ensemble H = {h1, . . . , hM}, expertise domains U = {U1, . . . , UM}, input x
Output: Final prediction h̄(x) ∈ [0, 1]K

1: vk(x) ← ∑M
j=1 I

(
k = argmaxK

i=1 hj
i (x)

)
, k = 1, . . . , K

2: k∗ ← argmaxK
k=1 vk(x)

3: if vk∗(x) = �M
2

�
4: Hk∗ ← {hi ∈ H | k∗ ∈ Ui}
5: h̄(x) ← 1

|Hk∗ |
∑

hi∈Hk∗ hi(x)

6: else
7: h̄(x) ← 1

M

∑
hi∈H hi(x)

8: return h̄(x)

Let us first introduce the following elements for each class i:

– The actual number of votes for i-th class by the ensemble for a given sample
x: vi(x) =

∑M
j=1 I

(
i = argmax{1,...K} hj(x)

)
, i.e. it shows the number of the

members that classify x to i-th class.
– The maximum possible number of votes for i-th class is �M

2 � ≤ K +1. Recall
that for each row, we split all K classes into two expertise domains, where
class i is included in one of them. Considering all K rows and the generalist,
we end up having at maximum K + 1 subsets that involve class i.

As described in Algorithm 1, for a given sample x, if there is a class with
its actual number of votes equal to its expected number of votes, i.e. vi(x) =
�M

2 �, then it means all of the specialists, which are trained on i-th class, are
simultaneously voting (classifying) for it. We call such a class a winner class.
Then, the specialists CNNs voting to the winner class are activated to compute
the final prediction (lines 3–5 of Algorithm 1), producing a certain prediction
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(with high confidence). Note that in the presence of clean samples, the relevant
specialists in the ensemble are expected to do agree on the true classes since
they, as strong classifiers, have high generalization performance on their expertise
domains.

If no class obtains its maximum expected number of votes (i.e. �i, vi(x) =
�M

2 � ), it means that the input x leads the specialists to disagree on a winner
class. In this situation, when no agreement exists in the ensemble, all the mem-
bers should be activated to compute the final prediction (line 7 of Algorithm 1).
Averaging of the predictions by all the members leads to a final prediction with
high entropy (i.e. low confidence). Indeed, a given sample that creates a dis-
agreement (entropy) in the ensemble is either a hard-to-classify sample or an
abnormal sample (e.g. adversarial examples).

Using the voting mechanism for this specialists ensemble, we can create a gap
between the predictive confidences of clean samples (having high confidence) and
those of adversaries (having low confidence). Finally, using a threshold τ on these
predictive confidences, the unusual samples are identified and rejected. In the
following, we argue that our voting mechanism enables us to set a global fixed
threshold τ = 0.5 to perform identification of adversaries. This is unlike some
threshold-based approaches [10,16] that need to tune different thresholds for
various datasets and their types of adversaries.

Corollary 1. In a disagreement situation, the proposed voting mechanism
makes the highest predictive confidence to be upper-bounded by 0.5 + ε′ with
ε′ = 1

2M .

Proof. Consider a disagreement situation in the ensemble for a given x, where
all the members are averaged to create h̄(x) = 1

M

∑
hj∈H hj(x). The highest

predictive confidence of h̄(x) belongs to the class that has the largest number of
votes, i.e. m = max[v1(x), . . . , vK(x)]. Let us represent these m members that are
voting to this class (k-th class) as Hk = {hj ∈ H | k ∈ Uj}. Since each individual
CNNs in the ensemble are basically uncalibrated learners (having very high
confident prediction for a class and near to zero for the remaining classes), the
confidence probability of k-th class of those excluded members from Hk (those
that do not vote for k-th class) can be negligible. Thus, their prediction can
be simplified as h̄k(x) = 1

M

∑
hj∈Hk

hj
k(x) + ε

M ≈ 1
M

∑
hj∈Hk

hj
k(x) (the small

term ε
M is discarded). Then, from the following inequality

∑
hj∈Hk

hj
k(x) ≤ m,

we have 1
M

∑
hj∈Hk

hj
k(x) ≤ m

M (I).
On the other hand, due to having no winner class, we know that m < �M

2 �
(or m < M

2 + 1
2 ), such that by multiplying it by 1

M we obtain m
M < 1

2 + 1
2M (II).

Finally considering (I) and (II) together, it derives 1
M

∑
hj∈Hk

hj
k(x) < 0.5+

1
2M . For the ensemble with a large size, e.g. likewise our ensemble, the term
ε′ = 1

2M is small. Therefore, it shows the class with the maximum probability
(having the maximum votes) can be upper-bounded by 0.5 + ε′. �
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3 Analysis of Specialists Ensemble

Here, we first explain how adversarial examples give rise to entropy in our ensem-
ble, leading to their low predictive confidence (with maximum confidence of
0.5+ε′). As well, we examine the role of diversity in our ensemble, which harden
the generation of white-box adversaries.

In a black-box attack, we assume that the attacker is not aware of our
ensemble of specialists, thus generates some adversaries from a pre-trained
vanilla CNN g(·) to mislead our underlying ensemble. Taking a pair of an input
sample with its true label, i.e. (x, k), an adversary x′ = x + δ fools the model g
such that k = argmax g(x) while k′ = argmax g(x′) with k′ 	= k, where k′ is one
of those most-likely fooling classes for class k (i.e. k′ ∈ Uk). Among the special-
ists that are expert on k, at least one of them does not have k′ in their expertise
domains since we intentionally separated k-th class from its most-likely fooling
classes when defining its expertise domains (Sect. 2.1). Formally speaking, denote
those expertise domains comprising class k as follows Uk = {Uj | k ∈ Uj} where
(I) Uj 	= Ui ∀Ui, Uj ∈ Uk and (II) k′ /∈ ∩ Uk. Therefore, regarding the fact that
(I) the expertise domains comprising k are different and (II) their shared classes
do not contain k′, it is not possible that all of their corresponding specialists
models are fooled simultaneously toward k′. In fact, these specialists may vote
(classify) differently, leading to a disagreement on the fooling class k′. So, due
to this disagreement in the ensemble with no winner class, all the ensemble’s
members are activated, resulting in prediction with high uncertainty (low confi-
dence) according to Corollary 1. Generally speaking, if {∩ Uk} \ k is a small or
an empty set, harmoniously fooling the specialist models, which are expert on
k, is harder.

In a white-box attack, an attacker attempts to generate adversaries to
confidently fool the ensemble, meaning the adversaries should simultaneously
activate all of the specialists that comprise the fooling class in their expertise
domain. Otherwise, if at least one of these specialists is not fooled, then our
voting mechanism results in adversaries with low confidence, which can then
be automatically rejected using the threshold (τ = 0.5). In the rest we bring
some justifications on the hardness of generating high confidence gradient-based
attacks from the specialists ensemble.

Instead of dealing with the gradient of one network, i.e. ∂h(x)
∂x , the attacker

should deal with the gradient of the ensemble, i.e. ∂h̄(x)
∂x , where h̄(x) computed

by line 5 or line 7 of Algorithm. 1. Formally, to generate a gradient-based adver-
sary from the ensemble for a given labeled clean input sample (x,y = k), the
derivative of the ensemble’s loss, i.e. L(h̄(x),y) = − log h̄k(x), w.r.t. x is as
follows:

∂L(h̄(x),y)
∂x

=
∂L

∂h̄k(x)
∂h̄k(x)

∂x
= − 1

h̄k(x)︸ ︷︷ ︸
β

∂h̄k(x)
∂x

= β
1

|Hk|
∑

hi∈Hk

∂hi
k(x)
∂x

. (3)
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Initially Hk indicates the set of activated specialists voting for class k (true label)
plus the generalist for the given input x. Since the expertise domains of the acti-
vated specialists are different (Uk = {Uj | k ∈ Uj}), most likely their derivative
are diverse, i.e. fooling toward different classes, which in turn creates perturba-
tions in various fooling directions (Fig. 1). Adding such diverse perturbation to a
clean sample may promote disagreement in the ensemble, where no winner class
can be agreed upon. In this situation, when all of the members are activated,
the generated adversarial sample is predicted with a low confidence, thus can be
identified. For the iterative attack algorithms, e.g. I-FGS, the process of generat-
ing adversaries may continue using the derivative of all of the members, adding
even more diverse perturbations, which in turn makes reaching to an agreement
in the ensemble on a winner fooling class even more difficult.

4 Experimentation

Evaluation Setting: Using MNIST and CIFAR-10, we investigate the perfor-
mance of our method for reducing the risk rate of black-box attacks (Eq. 5) due
to of their detection, and reducing the success rate of creating white-box adver-
saries. Two distinct CNN configurations are considered in our experimentation:
for MNIST, a basic CNN with three convolution layers of respectively 32, 32, and
64 filters of 5×5, and a final fully connected (FC) layer with 10 output neurons.
Each of these convolution layers is followed by a ReLU and 3 × 3 pooling filter
with stride 2. For CIFAR-10, a VGG-style CNN (details in [17]) is used. For
both CNNs, we use SGD with a Nesterov momentum of 0.9, L2 regularization
with its hyper-parameter set to 10−4, and dropout (p = 0.5) for the FC lay-
ers. For the evaluation purposes, we compare our ensemble of specialists with a
vanilla (naive) CNN, and a pure ensemble, which involves 5 vanilla CNNs being
different by random initialization of their parameters.

Evaluation Metrics: To evaluate a predictor h(·) that includes a rejection
option, we report a risk rate ED|τ on a clean test set D = {(xi,yi)}N

i=1 at
a given threshold τ , which computes the ratio of the (clean) samples that are
correctly classified but rejected due to their confidence less than τ and those that
are misclassified but not rejected due to a confidence value above τ :

ED|τ =
1
N

N∑

i=1

(
(I[d(xi|τ) 	= K + 1] × I[argmax h(xi) 	= yi])

+ (I[d(xi|τ) = K + 1] × I[argmax h(xi) = yi])
)

.

(4)

In addition, we report the risk rate EA|τ on each adversaries set, i.e. A =
{(x′

i,yi)}N ′
i=1 including pairs of an adversarial example x′

i associated by its true
label, to show the percentage of misclassified adversaries that are not rejected
due to their confidence value above τ :

EA|τ =
1

N ′

N ′∑

i=1

(I[d(x′
i|τ) 	= K + 1] × I[argmax h(x′

i) 	= yi]) . (5)
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4.1 Empirical Results

Black-box Attacks: To assess our method on different types of adversaries, we
use various attack algorithms, namely FGS [5], TFGS [7], DeepFool (DF) [18],
and CW [19]. To generate the black-box adversaries, we use another vanilla
CNN, which is different from all its counterparts involved in the pure ensemble–
by using different random initialization of its parameters. For FGS and T-FGS
algorithms we generate 2000 adversaries with ε = 0.2 and ε = 0.03, respectively,
for randomly selected clean test samples from MNIST and CIFAR-10. For CW
attack, due to the high computational burden required, we generated 200 adver-
saries with κ = 40, where larger κ ensures generation of high confidence and
highly transferable CW adversaries.

Figure 3 presents risk rates (ED|τ) of different methods on clean test samples
of MNIST (first row) and those of CIFAR-10 (second row), as well as their corre-
sponding adversaries EA|τ , as functions of threshold (τ). As it can be seen from
Fig. 3, by increasing the threshold, more adversaries can be detected (decreasing
EA) at the cost of increasing ED, meaning an increase in the rejection of the
clean samples that are correctly classified.

To appropriately compare the methods, we find an optimum threshold that
creates small ED and EA collectively, i.e. argminτ ED|τ + EA|τ . Recall that, as
corollary 1 states, in our ensemble of specialists, we can fix the threshold of our
ensemble to τ∗ = 0.5. In Table 1, we compare the risk rates of our ensemble
with those of pure ensemble and vanilla CNN at their corresponding optimum
thresholds. For MNIST, our ensemble outperforms naive CNN and pure ensemble
as it detects a larger portion of MNIST adversaries while its risk rate on the clean
samples is only marginally increased. Similarly, for CIFAR-10, our approach can
detect a significant portion of adversaries at τ∗ = 0.5, reducing the risk rates

(a) MNIST test data (b) MNIST FGS (c) MNIST TFGS

(d) CIFAR-10 test data (e) CIFAR-10 FGS (f) CIFAR-10 TFGS

Fig. 3. The risk rates on the clean test samples and their black-box adversaries as the
function of threshold (τ) on the predictive confidence.
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Table 1. The risk rate of the clean test set (ED|τ∗) along with that of black-box
adversarial examples sets (EA|τ∗) are shown in percentage at the optimum threshold
of each method. The methods with the lowest collective risk rate (i.e. EA + ED) is
underlined, while the best results for the two types of risk considered independently
are in bold.

Task Methods Adversaries

FGS TFGS CW DeepFool

EA / ED EA / ED EA / ED EA / ED

MNIST Naive CNN 48.21 / 0.84 28.15 / 0.84 41.5 / 0.84 88.68 / 0.84

Pure ensemble 24.02 / 1.1 18.35 / 1.1 28.5 / 1.1 72.73 / 1.1

Specialists ensemble 18.58 / 0.73 18.05 / 0.73 24 / 0.73 54.24 / 0.73

CIFAR-10 Naive CNN 59.37 / 12.11 23.47 / 12.11 51.5 / 12.11 28.81 / 12.11

Pure ensemble 36.59 / 18.5 8.37 / 13.79 4.0 / 13.79 7.7 / 18.5

Specialists ensemble 25.66 / 21.25 4.21 / 21.25 3.5 / 21.25 6.02 / 21.25

on adversaries. However, at this threshold, our approach has higher risk rate on
the clean samples than that of two other methods.

White-box Attacks: In the white-box setting, we assume that the attacker
has full access to a victim model. Using each method (i.e. naive CNN, pure
ensemble, and specialists ensemble) as a victim model, we generate different
sets of adversaries (i.e. FGS, Iterative FGS (I-FGS), and T-FGS). A successful
adversarial attack x′ is achieved once the underlying model misclassifies it with
a confidence higher than its optimum threshold τ∗. When the confidence for an
adversarial example is lower than τ∗, it can be easily detected (rejected), thus
it is not considered as a successful attack.

We evaluate the methods by their white-box attacks success rates, indicating
the number of successful adversaries that satisfies the aforementioned conditions
(i.e. a misclassification with a confidence higher than τ∗) during t iterations of
the attack algorithm. Table 2 exhibits the success rates of white-box adversaries
(along with their used hyper-parameters) generated by naive CNN (τ∗ = 0.9),

Table 2. Success rate of white-box adversarial examples (lower is better) generated
by naive CNN, pure ensemble (5 generalists), and specialists ensemble at their corre-
sponding optimum threshold. An successful white-box adversarial attack should fool
the underlying model with a confidence higher than its optimum τ∗.

MNIST CIFAR-10

Methods Adversaries

FGS T-FGS I-FGS FGS T-FGS I-FGS

ε=0.2 ε=0.2 ε=2×10−2 ε=3×10−2 ε=3×10−2 ε=3×10−3

Naive CNN 89.94 66.16 66.84 86.16 81.38 93.93

Pure ensemble 71.58 50.64 48.62 42.65 13.96 45.78

Specialists ensemble 45.15 27.43 13.63 34.1 7.43 34.20
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pure ensemble (τ∗ = 0.9), and specialists ensemble (τ∗ = 0.5). For the bench-
mark datasets, the number of iterations of FGS and T-FGS is 2 while that of
iterative FGS is 10. As it can be seen in Table 2, the success rates of adversar-
ial attacks using ensemble-based methods are smaller than those of naive CNN
since diversity in these ensembles hinders generation of adversaries with high
confidence.

Fig. 4. Gray-box CW adversaries
that confidently fool our specialists
ensemble. According to the defini-
tion of adversarial example, how-
ever, some of them are not actu-
ally adversaries due to the signifi-
cant visual perturbations.

Gray-box CW Attack: In the gray-box
setting, it is often assumed that the attacker
is aware of the underlying defense mecha-
nism (e.g. specialists ensemble in our case)
but has no access to its parameters and
hyper-parameters. Following [20], we evalu-
ate our ensemble on CW adversaries gener-
ated by another specialists ensemble, com-
posed of 20 specialists and 1 generalist for 100
randomly selected MNIST samples. Evalua-
tion of our specialists ensemble on these tar-
geted gray-box adversaries (called “gray-box
CW”) reveals that our ensemble provides low
confidence predictions (i.e. lower than 0.5)
for 74% of them (thus able to reject them)
while 26% have confidence more than 0.5 (i.e.
non-rejected adversaries). Looking closely at
those non-rejected adversaries in Fig. 4, it can be observed that some of them can
even mislead a human observer due to adding very visible perturbation, where
the appearance of digits are significantly distorted.

5 Related Works

To address the issue of robustness of deep neural networks, one can either
enhance classification accuracy of neural networks to adversaries, or devise detec-
tors to identify adversaries in order to reject to process them. The former class
of approaches, known as adversarial training, usually train a model on the
training set, which is augmented by adversarial examples. The main difference
between many adversarial training approaches lies in the way that the adver-
saries are created. For example, some [3,5,7,21] have trained the models with
adversaries generated on-the-fly, while others conduct adversarial training with a
pre-generated set of adversaries, either produced from an ensemble [22] or from a
single model [18,23]. With the aim detecting adversaries to avoid making wrong
decisions over the hostile samples, the second category of approaches propose
the detectors, which are usually trained by a training set of adversaries [4,8–
10,24,25].
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Notwithstanding the achievement of some favorable results by both cate-
gories of approaches, the main concern is that their performances on all types of
adversaries are extremely dependent on the capacity of generating an exhaustive
set of adversaries, which comprises different types of adversaries. While making
such a complete set of adversaries can be computationally expensive, it has been
shown that adversely training a model on a specific type of adversaries does not
necessarily confer a CNN robustness to other types of adversaries [11,12].

Some ensemble-based approaches [26,27] were shown to be effective for mit-
igating the risk of adversarial examples. Strauss et al. [26] demonstrated some
ensembles of CNNs that are created by bagging and different random initial-
izations are less fooled (misclassify adversaries), compared to a single model.
Recently, Kariyappa et al. [27] have proposed an ensemble of CNNs, where they
explicitly force each pair of CNNs to have dissimilar fooling directions, in order
to promoting diversity in the presence of adversaries. However, computing sim-
ilarity between the fooling directions by each pair of members for every given
training sample is computationally expensive, results in increasing training time.

6 Conclusion

In this paper, we propose an ensemble of specialists, where each of the specialist
classifiers is trained on a different subset of classes. We also devise a simple vot-
ing mechanism to efficiently merge the predictions of the ensemble’s classifiers.
Given the assumption that CNNs are strong classifiers and by leveraging diver-
sity in this ensemble, a gap between predictive confidences of clean samples and
those of black-box adversaries is created. Then, using a global fixed threshold,
the adversaries predicted with low confidence are rejected (detected). We empir-
ically demonstrate that our ensemble of specialists approach can detect a large
portion of black-box adversaries as well as makes the generation of white-box
attacks harder. This illustrates the beneficial role of diversity for the creation
of ensembles in order to reduce the vulnerability to black-box and white-box
adversarial examples.
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Abstract. The study of information spread in social networks has appli-
cations in viral marketing, rumour modelling, and opinion dynamics.
Often, it is crucial to identify a small set of influential agents that maxi-
mize the spread of information (cases which we refer to as being budget-
constrained). These nodes are believed to have special topological prop-
erties and reside in the core of a network. We introduce the concept of
nucleus decomposition, a clique based extension of core decomposition of
graphs, as a new method to locate influential nodes. Our analysis shows
that influential nodes lie in the k-nucleus subgraphs and that these nodes
outperform lower-order decomposition techniques such as truss and core,
while simultaneously focusing on a smaller set of seed nodes. Examining
different diffusion models on real-world networks, we provide insights as
well into the value of the degree centrality heuristic.

1 Introduction

With the rise of big data tools and platforms, it has become easier to mine social
networks. One topic of particular interest is the study of information spread
through a network. Finding influential agents is often key, either to stem the
spread of harmful content or to facilitate influence maximization for such posi-
tive aims as spreading HIV awareness among homeless youths [24] or increasing
revenue with viral marketing [4].

Many approaches have been developed to locate influencers and track the
spread of their communications to peers. The NP-hard optimization problem
known as influence maximization [8] looks to find a set of n nodes that, when
“activated”, can spread information maximally throughout a given network
under a given information diffusion model (see Li et al. for a survey of approxi-
mate algorithms for influence maximization [12]). Other heuristics consider prop-
erties of a given node such as its degree, as well as information about its local
graph structure (for example, avoid nodes at the fringes of a graph that have a
high degree but weakly connected neighbours [14]).

Two classes of topology-based heuristics to locate influential nodes are cen-
trality based methods and subgraph decomposition methods. Centrality methods
c© Springer Nature Switzerland AG 2020
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consider the degree of a node (degree centrality), the length of shortest paths
from a node to all other nodes (closeness centrality), or the number of times
a node occurs in the shortest paths (betweenness centrality). By contrast, [10]
and [13] argue that less connected but strategically placed nodes may be better
candidates for disseminating information. They turn to k-core [20] and k-truss
decompositions [5], which identify subgraphs having high degree or many trian-
gles, respectively (details in the next section). Simulation studies have found
that k-core methods outperform some centrality based measures [10] and that
k-truss methods, in turn, outperform k-core methods [13].

In this paper, we focus on scenarios where organizations have a limited bud-
get to expend when engaging with potential influencers, and thus locating a small
seed set of agents is paramount. Our main contribution is the evaluation of a new
method for budget-constrained seed set selection based on nucleus decomposi-
tion [19]. A k-nucleus is a generalization of graph decomposition methods, and
it has been observed that k-nuclei often overlap with the densest parts of k-cores
and k-trusses. Using four real datasets, we compare the effectiveness of topology
based methods – k-nucleus decomposition, k-truss, k-core and degree central-
ity – under three popular information diffusion models: Independent Cascade
[8], Linear Threshold [7], and Susceptible-Infectious-Recovered (SIR) [15]. We
further show that degree centrality, an often ignored heuristic, can perform as
well as the nucleus in some cases, as long as sufficiently many high-degree nodes
(e.g., as many as there are in a maximal k-nucleus) are selected. This observa-
tion is in contrast to prior work that only used the nodes with the highest degree
in the network as influencers, which was not as effective as using core or truss
decomposition [13]. Finally, we show that topology based methods often perform
on par with an approximation algorithm that solves the underlying influence
maximization problem (IMM [22]). Our analysis enables practitioners to better
choose heuristics according to their choice of information diffusion model and to
consider k-nucleus decomposition and degree centrality as important algorithms
in their arsenal.

2 Methods

We start by describing the methods included in our study, followed by a discus-
sion of the diffusion models. Let G(V,E) be an undirected graph that models
the underlying social network with |V | nodes and |E| edges. Let v ∈ V be a node
in G and let e ∈ E be an edge in G. Finally, let k be a positive integer.

2.1 Graph Decomposition Methods

k-core Decomposition [20]: A k−core is a largest connected subgraph of G
where each node has degree at least k. Each node v ∈ V can be assigned a core
value c(v) that equals k if v belongs to a k−core but not a (k + 1)−core. Using
this concept, the influential nodes are those with the largest value of c(v). To
find a k-core subgraph, we repeatedly remove nodes with a degree of less than
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k and their adjacent edges. Since removing edges reduces the degree of some of
the remaining nodes, whenever a node is removed, we decrement the degree of
the affected nodes, and we continue until all the remaining nodes have a degree
at least k. The time complexity of this method is O(|V | + |E|) since a node or
an edge can be removed at most once.

k-truss Decomposition [5]: This method expands on k-core decomposition by
considering triangles, i.e., cycles of length 3. A k-truss is a largest subgraph of
G where each edge is contained in at least k − 2 triangles within the subgraph.
Each edge e can be assigned a truss number te that equals k if e belongs to a
k-truss but not a (k +1) truss. Furthermore, the truss number tv for a node v is
equal to the maximum edge truss of the edges adjacent to v. Using this concept,
the influential nodes are those with the largest value of tv. To find a k-truss, we
follow a similar methodology as that for k-core decomposition. However, instead
of removing nodes directly, we repeatedly remove edges that are not part of at
least k − 2 triangles, and we output the connected components that remain at
the end (time complexity O(|E|1.5)).
k-nucleus Decomposition [19]: This method generalizes k-truss and k-core
decomposition by finding subgraphs of cliques. Let r and s be two positive inte-
gers such that r < s. Let Kr be an r-clique, i.e., a clique with r nodes. Intuitively,
a k-(r, s)-nucleus is a maximal subset of smaller r-cliques, each of which is part
of many larger s-cliques. Formally, let χ be a set of s-cliques Ks in G. Let Kr(χ)
be a set of smaller r-cliques Kr in some S ∈ χ. The χ-degree of an r-clique
u ∈ Kr(χ) is the number of larger s-cliques in χ that contain u. χ-connected:
Two Kr, call them u and u′, are χ- connected if there exists a sequence of
r-cliques u = u1, u2, ..., uk = u′ in Kr(χ) such that for each i, some s-clique
S ∈ χ contains ui∪ui+1. Finally, we define a k-(r, s) nucleus as a maximal union
χ of s-cliques Ks such that the χ-degree of any r-clique u ∈ Kr(χ) is at least k
and any r-clique pair u, u′ ∈ Kr(χ) is χ-connected.

Setting r = 1 and s = 2 allows us to recover the definition of k-core from
k-(r, s) nucleus. To see this, observe that any node is a 1-clique, and any edge is
a 2-clique. Thus, the χ degree of a 1-clique is the degree of the node, and, by the
χ-connected property, we simply get a set of edges connecting nodes of degree
at least k. Similarly, setting r = 2 and s = 3 reduces to k-truss decomposition.
Triangles are 3-cliques, and we get a set χ that is part of at least k triangles.

Let RT (Kr) and RT (Ks) be the time complexity of enumerating all Kr ∈ G
and all Ks ∈ G, respectively. The complexity of nucleus decomposition was
shown to be bounded by O(RT (Ks) + RT (Kr)) [19]. In this paper, we con-
sider k-(3, 4) nucleus decomposition as complexity grows rapidly for K4 and
above. From now on, we refer to a k-(3, 4) nucleus as k-nucleus for simplicity1.
As in k-core and k-truss decomposition, each node can be assigned a nucleus
value n(v) that equals k if v belongs to a k-nucleus but not a (k + 1)-nucleus.

1 [19] showed that (3, 4)-nucleus provides high-quality outputs in terms of density and
network hierarchy; e.g., it finds both small sets of high density and large sets of low
density.
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The influential nodes are those with the largest value of n(v). Some nodes of a
k + 1 core are part of a k-truss and some nodes of a k + 1-truss are part of a
nucleus. Figure 1 illustrates a graph and the corresponding 3-core, 2-trusses and
1-nuclei. The entire graph is a maximal 3-core (as each node has at least three
edges). In the 3-core, there are two 2-trusses and two 1-nuclei. Note that the
nuclei and trusses are smaller and identify denser subgraphs than the core.

2.2 Information Diffusion Models

Independent Cascade (IC) Model [8]: In this model, nodes that are activated
can influence their neighbours. Activation proceeds one step at a time. Each
directed edge (v, v′) : v → v′ in the underlying graph has a threshold value
pv,v′ ∈ [0, 1] denoting the propagation probability of information from v to v′. We
begin with a set of nodes that are initially assumed to be active. The information
then flows as follows. At time t, any active node v ∈ V has a chance to activate
an inactive child node v′ with probability pv,v′ . If v succeeds then v′ becomes
active in step t + 1. If multiple parents of v′ are active at the same time, their
activation attempts are arbitrarily sequenced at time t. v only gets one chance to
activate v′ and cannot activate v′ in subsequent rounds. The process terminates
when no more activations are possible.

Fig. 1. Comparison of subgraph decompositions

Linear Threshold Model (LT) [7]: In this model, a node is influenced by
every incoming neighbour v′ with a weight bv′,v ∈ [0, 1]. Each v ∈ V also has
a threshold θv ∈ [0, 1], which represents the minimum pressure that has to be
exerted on v to activate it. v is activated iff the sum of the weights of the active
neighbours of v is greater than a threshold θv:

∑
v′→v,v′active bv′,v ≥ θv. The

information flow proceeds in discrete steps (from t = 0), with a seed set of active
nodes S. For each neighbour v of v′ ∈ S ⊆ V , we check the threshold condition.
If a node satisfies its condition, it is activated in the next step. The algorithm
continues until no more activations occur.

Susceptible Infected Recovered (SIR) Model [9]: In this model, a node
can be in one of three states: Susceptible (S): not yet infected; Infected (I): can
spread information to the rest of the population; Recovered (R): after a node
has been infected for some period of time, it is considered to be immune and
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cannot further spread the information. To examine the spreading power of a
set of nodes, we initially set these nodes as infected, and we set all other nodes
as susceptible. Then, at each time step t of the process, every infected node
can infect its susceptible neighbours with probability β (called infection rate),
and afterwards, it can recover with probability γ (called recovery rate). A node
cannot directly pass from state I to state R during the same time step. The
process ends when no more nodes can be infected.

3 Results

We now explore the performance of k-core, k-truss, k-nucleus and degree central-
ity in locating influential nodes using four real-world social networks. We start by
showing that k-nucleus decomposition identifies fewer nodes as being influential.
We then show that despite being lower in number, the nucleus nodes have similar
or better information spreading power than those identified by other methods.
We also show that the nodes selected by nucleus decomposition are robust to
low diffusion rates under the IC and SIR models. Finally, we show that choosing
a sufficient number of high degree nodes can work well as the nucleus, and these
topology based methods often perform on par with an approximation algorithm
that solves the underlying influence maximization problem.

Table 1. Properties of datasets and their subgraph decompositions.

Dataset Nodes Edges τ kmax vmax

Nucleus Truss Core Nucleus Truss Core

WikiVote 7,115 88,750 0.00720 15 19 49 37 80 332

Slashdot 81,871 545,671 0.00074 26 34 54 65 77 118

Epinions 131,828 841,372 0.00540 97 105 121 112 135 149

EuEmail 265,214 420,045 0.00970 13 18 37 56 62 292

3.1 Datasets

We use four publicly available datasets [11]. Slashdot is a technology news
website whose users form a signed social network as they can tag each other
as “friend” or “foe”. Epinions is a trust-based (who-trusts-whom) network
between members of the Epinions.com product review website. WikiVote is
a dataset showing who voted for whom in the Wikipedia election for member-
ship. EuEmail is a “who talked to whom” network with an edge between two
nodes, A and B, meaning A sent an email to B.

To compute subgraph decompositions, we use the code from [19], avail-
able at http://sariyuce.com/nucleus-master.zip. Table 1 summarizes the datasets
and the properties of the corresponding k-core, truss and nucleus decomposi-
tions (vmax is the number of nodes in the maximal subgraph of order kmax).

http://sariyuce.com/nucleus-master.zip
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The dataset statistics we report are the number of nodes and edges, and the
inverse of the largest eigenvalue of the corresponding adjacency matrix, τ . It
is known that epidemic spreading can be achieved by setting the propagation
probabilities to be at least τ [3]. Below this threshold, the number of affected
nodes decreases exponentially.

3.2 Subgraph Decomposition Properties

For the subgraph decompositions, Table 1 shows the largest values of k, denoted
as kmax, that gave a non-empty core, truss and nucleus, and the number of
nodes that were identified as influential, i.e., the number of nodes belonging to
the kmax-cores, trusses and nuclei, denoted by vmax. As shown in Table 1, the
number of maximal nucleus nodes (vmax) is smaller than the number of maximal
truss nodes, which is smaller than the number of maximal core nodes. This is
expected as truss decomposition relies on triangles and nucleus decomposition
relies on cliques, which are increasingly stricter criteria. Furthermore, Table 2
reports the overlap between influential nodes identified by the different decom-
positions. Many nodes are common among the three decompositions. In fact,
the entire kmax-nucleus is often a subset of a kmax-truss or kmax-core subgraph.
This was also seen in our illustrative example in Fig. 1.

3.3 Analyzing Trust

Two datasets, Epinions and Slashdot, contain ground truth about who trusts
whom in the network. This allows us to explore the contextual properties of our
subgraphs. These two graphs have directed edges with binary edge weights: An
edge from A to B has a weight of one if A marks B as a “friend” and zero if A
marks B as a “foe”. Only 15% of edges in Epinions are foe edges, and 23% of
edges in Slashdot are foe edges. We assume that individuals trust their friends
but not their foes. This is important in the context of influence maximization
because, in practice, influential people are generally those who are trusted by
others.

Table 2. Overlap among various selected sets: N is the maximal set of Nucleus
nodes, T is the maximal set of Truss nodes, C is the maximal set of Core nodes, D
is the set of top 100 Degree centrality nodes, and IIC,τ is the set of nodes (number of
nodes equal to the size of N) found by IMM under the IC model at τ . The left table
is the percentage overlap with N and the right is the percentage overlap with D.

Dataset N ∩ T N ∩ C N ∩ T ∩ C Dataset C ∩ D T ∩ D N ∩ D IIC,τ ∩ D

WikiVote 100% 94.6% 94.6% Wikivote 19% 15% 38.8% 5.4%

Slashdot 96.9% 96.9% 96.9% Slashdot 5.9% 3.9% 24.6% 23.1%

Epinions 100% 100% 100% Epinions 0% 0% 0% 29.5%

EuEmail 71.4% 100% 71.4% Euemail 6.8% 3.2% 33.9% 53.57%
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Table 3. Average trust metrics for Slashdot and Epinions.

Dataset Subgraph Trusted by In degree Out degree Reputability (in %)

Slashdot Whole 5.159 6.665 6.665 77.4

Core 176.0 186.4 180.9 95.0

Truss 180.7 191.2 185.5 96.2

Nucleus 183.3 191.1 194.1 96.8

Epinions Whole 5.444 6.382 6.392 49.0

Core 177.4 183.1 239.3 96.9

Truss 182.3 188.5 245.3 96.8

nucleus 191.5 197.4 254.3 96.9

Table 3 presents the following statistics for the entire graphs and for their
respective maximal core, truss and nuclei: the average number of nodes that
trust a given node, the average node in and out degrees, and the average node
reputability, defined as the percentage of nodes who trust the given node v and
the node v’s in-degree. We see that higher-order decompositions are more densely
connected and have higher reputability (on average), reinforcing our belief that
subgraph decomposition identifies topologically and contextually essential nodes.
As users often rate things they like or not rate at all [17], being connected to more
people makes one more likely to be positively rated and may have a cascading
effect on reputability. The influential nodes identified by nucleus decomposition
have the highest reputability in Slashdot, whereas in Epinions, all three tested
methods have similar reputability scores.

3.4 Evaluating Spreading Performance

We now evaluate spreading effectiveness using the three information diffusion
models. We test k-core, truss and nucleus decomposition as well as the Degree
Centrality method for selecting the seed set. For degree centrality, we take the
top-n highest degree centrality nodes, where n is the number of nodes in a
maximal nucleus. While [13] use only the nodes having the highest degree as
the seed set, we found that the number of highest-degree nodes can often be too
small to be of any practical significance.

Furthermore, we compare our methods to the IMM algorithm [22], which is
an approximation algorithm to solve the underlying NP-hard influence maxi-
mization problem.

Given the desired number of seed nodes, IMM identifies the (approximately)
best such nodes given the underlying diffusion model. As we did in the degree
centrality method, we set the desired number of seed nodes to be the number of
nodes in a maximal nucleus.

We also note that previous work often used undirected versions of datasets.
However, an undirected edge means that “if A trusts B, B also trusts A.” This
reciprocal behaviour may not always be true, which may affect the efficacy of the
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diffusion process. Thus, we use directed graphs in our simulations. The experi-
mental setup for the three diffusion models is given below:

– Independent Cascade Model: We draw propagation probabilities from
a uniform distribution. We set the propagation probability, or activation
rate, of an edge (v, v′) to pv,v′ = u(0, t), where u(0, t) is a uniform function
between 0 and t for some t ∈ (0, 1]. We choose the uniform distribution as we
do not have complete knowledge about users’ propagation probabilities [4].
We limit the propagation probabilities to t and use this as a parameter for our
experiments. For instance, a low value of t means that nodes are not easily
influenced and thus can be thought of as low-trust networks. We start with
t = τ as per Table 1.

– Linear Threshold Model: We set the activation thresholds based on a
uniform distribution as we do not know the real thresholds for the nodes.
Thus, θv = u(0, 1) where u(0, 1) is a uniform function.

– SIR Model: We set the infection rate to be the threshold τ (see Table 1)
and the recovery rate to be 0.08 as suggested in [13].

Table 4. Average Spreading performance (number of nodes activated per
seed set node). Note: for SIR and IC, we use threshold τ .

Dataset Subgraph LT SIR IC Dataset Subgraph LT SIR IC

WikiVote Core 7.85 1.15 0.16 Epinions Core 8.23 6.01 0.32

Truss 14.99 1.15 0.30 Truss 9.79 6.50 0.36

Nucleus 17.65 2.00 0.35 Nucleus 11.01 8.47 0.43

DC 28.44 0.24 0.25 DC 38.2 14.41 1.13

IMM 28.66 3.34 0.72 IMM 68.39 7.16 1.76

Slashdot Core 47.6 0.68 0.04 EuEmail Core 9.45 2.82 0.79

Truss 71 0.24 0.05 Truss 58.21 3.15 1.39

Nucleus 87.46 1.12 0.05 Nucleus 78.27 6.96 2.48

DC 79.42 1.08 0.05 DC 74.71 4.02 2.46

IMM 85.2 1.27 0.06 IMM 76.67 9.48 2.52

For each trial, we activate all the nodes that were reported by a given method
as being influential. We then run the diffusion process until no new nodes can be
activated. We repeat the simulation 1, 000 times and report the average number
of nodes activated divided by the seed set size. This metric is our spreading
efficiency.

Table 4 shows the results. We present the spreading performance for IC and
SIR at the minimum threshold chosen (τ). We see that the absolute value of
the final spreading efficiency is low for SIR and IC. This is because the reported
values are at the lowest threshold we tested. Furthermore, we see that both
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Fig. 2. Impact of propagation probabilities on spreading performance (number of nodes
activated per seed set node) for IC model. Note: the standard errors were too small to
report (standard error < 0.15).

Degree Centrality (DC) and nucleus decomposition performs better than core
and truss decompositions, even at low thresholds. In some cases, DC outperforms
the tested graph decomposition methods.

Impact of Propagation Probabilities: We now illustrate the impact of prop-
agation probabilities in the Independent Cascade (IC) Model. We focus on the
IC model as SIR has been discussed in depth in [13], and SIR reduces to IC
when the propagation probability is the same for all nodes (called infection rate
for SIR).

For each method and dataset, Fig. 2 shows the number of activated nodes
for the following propagation probabilities, shown from left to right: τ , 0.01,
0.03, 0.05, 0.1 and 0.5 (recall that τ is the inverse of the largest eigenvalue
of the corresponding adjacency matrix and gives a reasonable lower bound for
the propagation probability threshold). We stop at 0.5 as information spread
tends to saturate at some propagation probability threshold, typically ≈ 0.5.
As expected, the number of activated nodes increases for all methods as the
propagation probability increases. Second, as nucleus decomposition starts with
a smaller seed set, nucleus nodes have better per-node spreading efficiency on
average. The degree centrality nodes also perform on par with the nucleus nodes.

Comparison with IMM Algorithm: The methods we considered so far select
influential nodes based on graph properties. In contrast, IMM selects influential
nodes by solving the underlying influence maximization problem approximately
to 1−1/e−ε, where ε controls the approximation (a higher value trades solution
quality for runtime). Since we randomly assign propagation probabilities in our
simulations, we found that different experimental runs of IMM on the same graph
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gave different influential nodes. To account for this, for each experiment, we run
IMM 100 times and output the nodes that were most frequently identified as
influential over the 100 runs. (Again, as mentioned earlier, the total number of
influential nodes we select is equal to the number of nodes in a maximal nucleus.)
IMM requires the user to set ε, which we set to 0.1 following prior work [22].

From Fig. 2 and Table 4, we conclude that IMM has the best average spread-
ing performance in many situations, and is nearly as good as nucleus decompo-
sition for Slashdot and EuEmail. Our results align with those from [1], which
shows that there is no single state of the art technique in Influence Maximiza-
tion. We also note that IMM took about 1500 s per iteration for the Epinions
dataset (IC model, 0.5 threshold), while nucleus decomposition took 126 s, truss
took 5.2 s, and core took 0.2 s. The runtimes on all the datasets are shown in
Table 5. As we explained above, we ran IMM 100 times to arrive at a “stable”
set of seed nodes, giving a total runtime of over 41 h. Moreover, the memory
footprint of IMM is high (> 30GB of RAM for the EuEmail dataset). Thus,
nucleus decomposition may be the algorithm of choice for practitioners willing
to sacrifice some effectiveness for much faster runtime.

Comparison with Degree Centrality: According to Fig. 2 and Table 4, DC
performs better than nucleus decomposition in some cases. In Table 2, we see
that the top 100 nodes ranked by degree centrality contain ∼ 20% of nucleus
nodes. Interestingly, there is no overlap between the top degree centrality nodes
and subgraphs for Epinions. One possible reason for this could be the sparse
nature of the Epinions graph, as seen in Table 1. We also see that DC has a high
overlap with the nodes found by IMM, indicating that the optimal nodes chosen
by IMM often have high degree as well.

Table 5. Runtimes in seconds. For IMM, we report the time at threshold 0.5 for IC

Dataset Core Truss Nucleus IMM

WikiVote 0.16 0.35 4.1 83.13

Slashdot 0.10 0.81 5.2 373.8

Epinions 0.19 4.00 126.2 1275.2

EuEmail 0.11 0.38 2.0 786.7

4 Discussion

Identifying influential nodes that can disseminate information to a large part
of a network is of particular interest in social network research. k-core, a sub-
graph decomposition based on maximal node degrees, has mainly been studied
in this context and found to be effective [10,15]. However, even k-core can over-
look critical features in the graph, motivating the use of a higher-order decom-
position called k-truss [13]. The promising results using k-truss decomposition
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motivated us to consider even more dense substructures, and we arrived at a gen-
eralized notion of nucleus decomposition [19]. By imposing more restrictions on
nodes in terms of topological and positional factors, our experiments reveal that
nucleus decomposition significantly reduces the number of candidates for influ-
ential spreaders. This means that in practice, fewer nodes need to be engaged
to obtain similar spreading performance. Nucleus decomposition can be used in
conjunction with other influence maximization algorithms to reduce their search
space for even better results. For example, one may start with a set of nucleus
nodes and choose a subset of them with the highest degree. However, as seen in
the experimental results using the Epinions dataset, nucleus decomposition may
not always produce the most influential nodes.

We explored three models for information spread in order to gauge the per-
formance of topology-based IM methods. The Linear Threshold (LT) model is
sensitive to the number of neighbours that can influence a node: a large number of
neighbours make it more likely for information to spread. Thus, Degree Central-
ity works well in the LT model. The SIR and Independent Cascade (IC) models
use propagation probabilities that may be different for different node pairs. In
these cases, nucleus decomposition performs better as it tends to identify strate-
gically placed nodes. We notice that Degree Centrality often performs on par
with nucleus decomposition, especially for higher propagation probabilities. This
may be due to the high overlap between the nucleus and high degree-centrality
nodes, as seen in Table 2. Furthermore, we found that in many situations, DC and
nucleus decomposition performs similar to IMM in terms of average spreading
performance. However, they take much less time to be computed. This suggests
the benefits of topology-based methods such as nucleus decomposition compared
to approaches that solve the underlying influence maximization problem.

Modeling and optimizing influence spread has garnered much interest from
multiagent systems researchers. Some researchers in this field contend that graph
properties may be prone to an error in predictions of information spread, and
that actual behaviour in certain networks, especially ones of more modest sizes
(e.g., for homeless youth HIV prevention [23]) may play out differently, inte-
grating more connection to those currently outside the network. These authors
also advocate considering the set of seed nodes as a multiagent team, with inter-
connections. We view the work in this paper as complementary to these research
threads in the multiagent systems domain. For one, if it is indeed critical to be
examining relationships between the nodes in the seed set, this can be done all
the more effectively if operating with a smaller set of nodes, the behaviour of
which can be examined in detail. It is also possible to use nucleus decomposi-
tion together with other models of diffusion, which are more generous to the
integration of external nodes.
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5 Conclusions and Future Extensions

This work provides vital new insights into how to track influence within social
networks when operating with constrained resources, revealing the effectiveness
of smaller seed sets, of use for a host of applications. Calibrating the value of
k-nucleus is an important part of our effort. Recall that truss and core can
be thought of as (2, 3) and (1, 2)-nuclei, respectively. A (3, 4)-nucleus is an even
denser subgraph with fewer nodes that have the potential to exhibit good spread-
ing power. While there is a marked improvement, there will be a diminishing
return on computation time investment on successively mining denser subgraphs
(as noted by [19]). This opens several avenues for future work.

A limitation of subgraph mining methods is that they usually consider undi-
rected graphs, and thus some information may be lost. A potential solution is
to identify d-cores [6], which separately consider the in-degree and out-degree of
nodes and thus may be more suitable for directed graphs. Furthermore, other
graph decomposition based approaches have been proposed, such as k-meanoid
[25] and modified k-shell [2]. A comparison of k-nucleus against these methods
would be an ideal next step.

Various empirical studies to date have provided insights into the theoretical
advantages of different algorithms (e.g. [8]); for future work, it would be valuable
to expand these kinds of discussions to nucleus decomposition. Additionally,
since nucleus decomposition gives a verifiably smaller set of nodes with better-
spreading properties than other methods such as core and truss, it can also be
used as a preprocessing step for optimal algorithms. Moreover, there are now
parallelized algorithms available for nucleus decomposition, which can improve
the efficiency of our approach [18].

Interestingly, the work of [15] on tracking real-world information flow found
that the most influential nodes lie in the k-core subgraph, and it would be
valuable to show that they lie in the nucleus or truss subgraphs as well. It would
also be interesting to empirically compare subgraph based methods with the
greedy algorithm of [8]. [16] assigns a “Klout Score” of influence to 750 M users
by extracting features from user interactions in multiple social networks and then
aggregating them into a hierarchical scoring structure. Combining these content-
based methods with k-nucleus decomposition is another potential direction for
future work.

One final avenue for future work is to experiment with something other than a
uniform propagation probability distribution, determining which scenarios ben-
efit from lifting that assumption. Examining other methods for measuring influ-
ence would also be valuable (for example, [21] uses social media posts to create
a content based metric).
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18. Sariyüce, A.E., Seshadhri, C., Pinar, A.: Local algorithms for hierarchical dense
subgraph discovery. Proc. VLDB Endow. 12(1), 43–56 (2018)
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for identifying hierarchy of dense subgraphs. ACM Trans. Web 11(3), 16 (2017)

20. Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287
(1983)

21. Sun, B., Ng, V.T.Y.: Identifying influential users by their postings in social net-
works. In: Atzmueller, M., Chin, A., Helic, D., Hotho, A. (eds.) MSM/MUSE -2012.
LNCS (LNAI), vol. 8329, pp. 128–151. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-45392-2 7

http://snap.stanford.edu/data
https://doi.org/10.1007/978-3-642-45392-2_7
https://doi.org/10.1007/978-3-642-45392-2_7


28 R. R. Agarwal et al.

22. Tang, Y., Shi, Y., Xiao, X.: Influence maximization in near-linear time: a martin-
gale approach. In: Proceedings of the 2015 ACM SIGMOD International Confer-
ence on Management of Data, pp. 1539–1554. ACM (2015)

23. Wilder, B., et al.: End-to-end influence maximization in the field. In: 17th Interna-
tional Conference on Autonomous Agents and MultiAgent Systems, pp. 1414–1422
(2018)

24. Yadav, A., et al.: Bridging the gap between theory and practice in influence
maximization: raising awareness about HIV among homeless youth. In: IJCAI,
pp. 5399–5403 (2018)

25. Zhang, X., Zhu, J., Wang, Q., Zhao, H.: Identifying influential nodes in complex
networks with community structure. Knowl. Based Syst. 42, 74–84 (2013)



Investigating Relational Recurrent Neural
Networks with Variable Length Memory

Pointer

Mahtab Ahmed(B) and Robert E. Mercer

Department of Computer Science, University of Western Ontario, London, Canada
mahme255@uwo.ca, mercer@csd.uwo.ca

Abstract. Memory based neural networks can remember information
longer while modelling temporal data. To improve LSTM’s memory, we
encode a novel Relational Memory Core (RMC) as the cell state inside an
LSTM cell using the standard multi-head self attention mechanism with
variable length memory pointer and call it LSTMRMC. Two improve-
ments are claimed: The area on which the RMC operates is expanded to
create the new memory as more data is seen with each time step, and
the expanded area is treated as a fixed size kernel with shared weights in
the form of query, key, and value projection matrices. We design a novel
sentence encoder using LSTMRMC and test our hypotheses on four NLP
tasks showing improvements over the standard LSTM and the Trans-
former encoder as well as state-of-the-art general sentence encoders.

Keywords: Relational Memory Core · Long short term memory ·
Sentence encoder · Attention · Semantic similarity

1 Introduction

Humans use their memory system to retrieve important information irrespec-
tive of when they are perceived [8,12,15]. Recent neural network based research
has successfully encoded memory inside the LSTM cell [7,12] and even designed
core memory augmented neural networks [6,13]. These memory based networks
have efficient information storing and retrieval capabilities reinforced by bounded
computational cost, augmented memory capacities and overcoming the vanish-
ing gradient problem. In NLP, it is necessary to analyze and compare phrases as
well as sentence constituents seen at different time steps to extract the meaning.
Giving an LSTM’s common hidden memory access to more of the previous rep-
resentations using a relational memory core (RMC) gives a performance boost
in tasks demanding particular types of temporal relational reasoning [12]. This
RMC is designed using the standard multi-head self attention framework [18].

In this paper, we design an improved relational memory core (RMC) hav-
ing access to previously seen representations through a variable length memory
pointer. Our idea is that the memory created at each time step should reflect the
previously created representations whereas the LSTM gates should be updated
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only with the last one. We encode this new RMC as the cell state inside an
LSTM cell and design a sentence encoder model to encode a pair of sentences
for the sentence pair modelling task. Evaluation done on textual entailment
(TE), semantic relatedness (SR), paraphrase identification (PI), and question
answer pairing (QAP) improves on standard LSTM encoders on all tasks and is
best on the textual inference and second best on question-answer pair tasks.

2 Related Work

Memory based models based on attention have been used to modify standard
and tree LSTMs. Sukhbaatar et al. [17] train a memory based neural network in
an end-to-end fashion to solve a compartmentalization problem with a slot-based
memory matrix. Santoro et al. [14] propose a plug-and-play neural network to
perform relational reasoning task which involves two MLPs as the composition
functions. Ahmed et al. [1] encode a single head dot product attention block
inside a tree-LSTM cell. General purpose sentence encoders have been state-of-
the-art on the four tasks of interest in this paper. Cer et al. [3] propose a sentence
encoder model based on the encoder portion of Transformer [18] and perform
an element-wise sum of the encoded representations at each word position to
get a fixed length sentence representation. Conneau et al. [4] also propose a
universal sentence representation model based on LSTMs where they first train
it on the Stanford Natural Language Inference dataset and then uses transfer
learning to evaluate on a range of tasks including QAP, PI, and SR. Zhou et al.
[20] propose a sentence pair ranking model where they encode attention in the
tree structure of the hypothesis based on the sequential representation of the
premise and vice versa. Zhao et al. [19] propose a self-adaptive hierarchical model
which first extracts an intermediate representation of all possible phrases and
finally takes the convex combination of them through gating. Socher et al. [16]
propose a recursive auto-encoder-based paraphrase identification model that first
reconstructs each of the phrases from the tree representation and then extracts
the sentence representation with a min-pooling block.

3 The Model

To improve the design principle of the current RMC [12], we extend the scope of
the memory pointer in RMC by giving the self attention module more to explore.
In the classic setting [12], the network maintains a fixed length memory pointer
which begins with a random memory M1×b×d and is updated at each time step.
It creates a new tensor ˜M by concatenating the previous memory and a linear
projection of the current input as follows,

˜M t
2×b×d = [M t−1

1×b×d;Wxt
1×b×d] (1)

Following this, the multi-head self attention (MSA) block is applied
to see how much information to take from the current input and the previ-
ous memory to create the next memory. This MSA block first creates query,
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Fig. 1. Sample encoding of a sentence using RMC with variable length memory pointer
(from left to right direction).

Q(= MWq), and key, K(= MWk), and then applies the dot attention A

(= softmax(QKT

√
dk

)) on top of them to get the scalar weights. Finally, the value

tensor, V (= MWv), is scaled with these weights giving the final memory ˜M .
A residual connection is then added to the resultant tensor ˜M followed by

a Layer-Normalization (LN) block to speed training. Unlike the separate ver-
sions of mean and variance projection matrices in the original RMC work, we
maintain the same parameter over all dimensions. Next, n non-linear projec-
tions of ht are applied followed by a residual connection. Eq. 2 shows this step
for n = 2.

X = f(W(1)f(htW(2))) + ht (2)

Here, we use ReLU as f. The new memory is extracted from the resultant tensor
X from Eq. 2 (has shape 2 × b × d) by splitting it at the cardinal dimension
M t

1×b×d = X1
1×b×d and used as the candidate cell state in LSTM equations. The

xt’s in the LSTM equations are replaced with Wxt from Eq. 1.
Unlike Eq. 1 we continually expand the area on which the MSA operates. At

each time step t, we do this by concatenating all the projected inputs from time
step t to 1 with the previous memory as follows,

˜M t
(t+1)×b×d = [M t−1

1×b×d;Wxt
1×b×d;Wxt−1

1×b×d; · · · ;Wx1
1×b×d] (3)

We keep the weight (W) shared over all the words. Next, we apply MSA,
LN and a series of projections to get a new transformed representation X as in
Eq. 2. We can always keep track of the memory as it is fixed at the first index.
Finally, as done earlier, we use Wxt as xt in the LSTM equations. We limit the
past view to a maximum window size meaning that we cannot use a fixed set
of mean and variance projection matrices in the LN block as it will make the
gradient accumulation of few parameters unstable. Finally, as the sentence pair
modelling architecture, we choose Infersent [4] as is except its LSTM block is
replaced by LSTMRMC.
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Table 1. Hyper-parameters used for the experiments (in boldface) and the ranges that
were searched during tuning.

Config Value Config Value

Initial learning rate 0.1/0.05/0.001 maxNorm 5

Batch size 10/16/25 Learning rate decay 0.99

No. of Attention layers 1/2/3 Dropout FC 0.0375−0.5

Hidden dimension 256, 512, 1024 No. of Heads 8

Word embedding Glove 300D W q,W k,W v dimension 128

Table 2. Model performance compared to top performing models. † indicates models
that we implemented. FLMP/VLMP = Fixed/Variable length memory pointer.

Model MSRP AI2-8grade SICK-E SICK-R

Acc. Acc. Acc. r/MSE

LSTMRMC + FLMP 74.67 74.72 85.38 0.8107/0.3452

LSTMRMC + VLMP (window size = 5) 75.89 74.72 84.28 0.8440/0.2925

InferSent [4] † 74.46 74.10 84.62 0.8563/0.2732

LSTM [4] † 70.74 74.24 76.80 0.8291/0.3244

BiLSTM Projection Layer [4] † 74.24 75.15 85.20 0.8037/0.3667

Inner Attention [9] † 69.74 74.32 72.01 0.7863/0.3944

ConvNet Encoder [19] † 73.96 75.15 83.82 0.8520/0.2806

Transformer Encoder [3] 74.96 − 81.15 −/0.5241

Seq-LSTMs [20] 71.70 63.30 − 0.8528/0.2831

Tree LSTM [20] 73.50 69.10 − 0.8664/0.2610

Tree LSTM + Attn. [20] 75.80 72.50 − 0.8730/0.2426

Tree GRU [20] 73.96 70.60 − 0.8672/0.2573

Tree GRU + Attn. [20] 74.80 72.10 − 0.8701/0.2524

RAE [16] 76.80 − − −

4 Experimental Setup

Datasets: Model evaluation uses three datasets. MSRP (paraphrase identi-
fication) [5], SICK (two tasks: (1) classify sentence pairs into three classes:
Entailment, Neutral and Contradiction, and (2) assign a score between 1 and 5
for a sentence pair based on their semantic relatedness) [10], and AI2-8grade
(pair a question with its correct answer given multiple answers per question) [2].

Experimental Setup: Word vectors are initialized with the 300D GloVe embed-
dings [11] and are frozen during training. To smooth the update, we normalize
the gradients by batch size and adopt the decaying learning rate paradigm.
Table 1 shows the hyper-parameter settings used during the experiments. Train-
ing is done on a GeForce GTX 1080Ti GPU with the ‘SGD’ optimizer. Models
are implemented in PyTorch 0.4.1 under the Linux environment.
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He also worked in the Virginia attorney general's office. Before that he held various posts in Virginia, including deputy attorney general.

Fig. 2. Change in attention weights as the attention window shifts over time (memory
pointer length/window size = 5). Sentences shown are paraphrases.

5 Experimental Results and Analysis

Table 2 displays our model’s performance in terms of task specific evaluation
metrics. The first group contains the results of LSTMRMC in the classic fixed
pointer (FLMP) and our variable pointer (VLMP) configurations. Notably, on
the MSRP task, the VLMP model is behind only RAE [16] which leverages
additional grammatical information. The VLMP model achieves better accuracy
than the FLMP model indicating the importance of checking word overlapping
in a local context for this task. On the AI2-8grade dataset our model is behind
only BiLSTM Projection Layer [4] and ConvNet Encoder [19]. Our application
of classic FLMP on the SICK-E task achieves the best accuracy compared to
the other sequential models. On the SICK-R task, the 0.8440 Pearson’s r and
0.2925 MSE puts us in the top three sequential models on this task. These scores
clearly tell that LSTMRMC is always in the top three general purpose sentence
encoders on all of the four different corpora.

Figure 2 visualizes attention weights on different segments (5-gram in this
case) of the sentence pair when doing the comparison. Over stop-words, it puts
less attention and distributes the probability on other content words inside the
window. In the left sentence, as “Virginia attorney general’s office” is a content
phrase, attention on memory is less significant compared to attention on the
5-grams at the last time step. In the right sentence, the memory gets compara-
tively higher weight as the content phrase appears at the time step before.
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6 Conclusion and Future Work

In this paper, we modify the classical RMC with the concept of a variable length
memory pointer allowing it to use local context for computing enhanced memory.
Encoding this improved RMC inside an LSTM cell we design a sentence pair
modelling architecture and evaluate on four different tasks. We achieve on par
performance on most of the tasks and best performance on one of them. Being
equipped with this new memory, our model interprets the attention shifting
very well. Our limited experiments show that the memory pointer length does
not follow a uniform pattern across all datasets, making it an interesting area
to investigate for our future studies.
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Abstract. We present an unsupervised learning method for the task
of monocular depth estimation. In common with many recent works,
we leverage convolutional neural network (CNN) training on stereo pair
images with view reconstruction as a self-supervisory signal. In contrast
to the previous work, we employ a stereo camera parameters estimation
network to make our model robust to training data diversity. Another
of our contributions is the introduction of self-supervision correction.
With it we address one of the serious drawbacks of the stereo pair self-
supervision in the unsupervised monocular depth estimation approach:
at later training stages, self-supervision by view reconstruction fails to
improve predicted depth map due to various ambiguities in the input
images. We mitigate this problem by making depth estimation CNN
produce both depth map and correction map used to modify the input
stereo pair images in the areas of ambiguity. Our contributions allow us
to achieve state-of-the-art results on the KITTI driving dataset (among
unsupervised methods) by training our model on hybrid city driving
dataset.

Keywords: Depth estimation · Deep learning · Unsupervised learning

1 Introduction

Monocular depth estimation is one of the tasks which is well-known to be eas-
ily performed by humans, while performing the same task by computer vision
systems has proven to be a particularly difficult problem. One of the reasons
for such a good depth perception by humans is their ability to utilize a rich set
of depth-related cues available in the image, such as perspective, relative sizes
of familiar objects, occlusions, lighting and shading of object surfaces. Recently,
convolutional neural networks (CNNs) have become famous for being capable
of leveraging similar rich sets of visual cues for solving various computer vision
tasks, like image classification, content-based image retrieval, semantic segmen-
tation, etc. So, unsurprisingly, several latest works successfully applied CNNs
for monocular depth estimation task.
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However, most of those works used supervised learning approach, which lim-
its the applicability of the methods to scene categories where large training
datasets containing dense ground truth depth data are available. This is a seri-
ous restriction, since ground truth depth values are typically obtained by depth
sensor hardware which often either suffers from short range and high noise levels
(IR sensors) or provides sparse non-instantaneous point cloud measurements at
very high cost (LiDAR sensors).

To overcome the limitations of supervised methods, there has lately been a
surge in the number of works trying to solve the task of monocular depth estima-
tion via unsupervised learning. Most of these methods are based on view recon-
struction used as self-supervision. Not only do such methods provide much wider
coverage of scene categories due to learning on readily available and abundant
unlabelled datasets, but they also achieved remarkable levels of depth estimation
accuracy.

Our approach builds upon the latest success of the end-to-end unsupervised
monocular depth estimation approaches, but adds several crucial contributions:

– Stereo camera parameters estimation network, aimed at predicting
gain and bias parameters which are used to transform inverse depth map
produced by depth estimation network to obtain disparity map subsequently
used for view reconstruction.

– Multi-task learning for the depth estimation network: this network
produces input image correction maps in addition to inverse depth maps.
These correction maps are added to the input images which are further used
for view reconstruction and self-supervising loss computation.

2 Related Work

Supervised Approaches. In a pioneering work [8], depth estimation was for-
mulated as a regression task with deep CNN used as regression model. Fu
et al. [10] combine regression and classification CNNs in the cascaded network to
achieve very good depth estimation accuracy at the cost of high model complex-
ity. Kundu et al. [19] and Zheng et al. [39], while claiming their approaches being
unsupervised, actually make use of synthetic depth ground truth data in their
variants of Generative Adversarial Network (GAN) based domain adaptation.
Similarly, Jiang et al. [17], though also claiming their model being self-supervised,
use sparse LiDAR depth values to fine-tune their network. Still, such methods
heavily rely on high quality, pixel-aligned ground truth depth data for training.

Unsupervised Approaches. To overcome the limitations of supervised
approaches, unsupervised methods have been attracting increasing attention over
the last few years. Garg et al. [11] proposed training on stereo pairs using oppo-
site view reconstruction loss as self-supervision signal for learning monocular
depth estimation. Several works have built on the success of this stereo pair-
based approach, including: Godard et al. [14] use bilinear sampler for opposite
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view reconstruction and left-right consistency regularization loss, Repala and
Dubey [29] leverage Siamese CNN processing for left and right views, Poggi
et al. [26] trade accuracy for efficiency in their real-time inference-capable low
complexity model.

Another unsupervised approach removes the requirement of training on stereo
pairs by utilizing neighbouring frame reconstruction loss for self-supervision in
monocular video sequences: Zhou et al. [40] designed a model relying on estima-
tion of both the depth map of a target image and the relative camera poses in a
short image sequence captured by a moving camera. Wang et al. [31] augmented
the framework of [40] with perceptual loss.

3 Method

This section describes our method for monocular depth estimation. The task of
the method is generation of dense depth map given a single input image. We
build our method basing upon the framework of the state-of-the-art unsupervised
monocular method of [14]. Our modifications to this framework allow us to set
a new state-of-the-art in the unsupervised monocular depth estimation and are
described in the following subsections.

3.1 Depth Estimation as Image Reconstruction

Similar to [14], we formulate a depth estimation task as a subtask in the image
reconstruction framework (see Fig. 1). Given a calibrated stereo pair consisting
of two RGB images IL and IR at training time, our model first predicts per-pixel
inverse depth maps ẑL and ẑR using two Siamese UNet-style CNNs (the weights
of which are kept tied during training). Alongside inverse depth maps, correction
maps ΔIL and ΔIR are estimated by the same CNNs. Note that, in contrast
to [14], a single inverse depth map is predicted from each image (rather than a
pair of disparity maps, as in [14]), while each correction map is a three-channel
image which is added to the corresponding input image to form the corrected
left and right images ÎL and ÎR.

Two small subsets of high-level feature maps produced in the bottleneck of
each depth estimation CNN are concatenated and subsequently fed into camera
parameters estimation CNN which outputs two scalar values: gain G and bias
B. These parameters are used to derive the primary disparity maps dL and dR

from the corresponding inverse depth maps ẑL and ẑR using per-pixel affine
transform:

dL = G(ẑL + B)
dR = −G(ẑR + B), (1)

where multiplications and additions are element-wise. We draw inspiration for
this particular transform from Eq. 3 of [34], where similar affine transform was
used to translate depths to disparities.

The primary disparity maps are used to reconstruct the left image from the
right one and vice versa using the same bilinear sampler as in [14]: I ′

L = ÎR(dL)
and I ′

R = ÎL(dR). The secondary disparity maps d′
L and d′

R are derived from the
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Fig. 1. The block diagram of our model.

primary ones using bilinear sampler, too: d′
L = −dR(dL) and d′

R = −dL(dR).
Furthermore, the secondary disparity maps are also used for image reconstruc-
tion, producing auxiliary reconstructed images: I ′′

L = ÎR(d′
L) and I ′′

R = ÎL(d′
R).

Note that for all aforementioned images and maps, predictions at four different
scales are produced and used in subsequent operations (except for correction
maps, for which two scales are used), with each scale doubling in spatial resolu-
tion with respect to preceding scale.

The reconstructed images provide primary supervisory signal for training our
model via L1 reconstruction loss:
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Lrec =
∑

s

1
Ns

∑

i,j

∣∣∣I ′(s)
L (i, j) − Î

(s)
L (i, j)

∣∣∣ +
∣∣∣I ′(s)

R (i, j) − Î
(s)
R (i, j)

∣∣∣ , (2)

where s is scale index, i, j are pixel coordinates and Ns is the number of pixels
at scale s.

Additionally, we use auxiliary reconstructed images to define auxiliary L1

reconstruction loss:

Laux =
∑

s

1
Ns

∑

i,j

∣∣∣I ′′(s)
L (i, j) − Î

(s)
L (i, j)

∣∣∣ +
∣∣∣I ′′(s)

R (i, j) − Î
(s)
R (i, j)

∣∣∣ . (3)

3.2 Input Image Correction

We motivate the introduction of correction maps by the observation that in
the unsupervised monocular depth estimation approaches training on stereo
pairs, the self-supervision by opposite view reconstruction, while being highly
efficient in learning reasonable depth map at earlier training stages, at later
stages becomes to some extent counter-productive when trying to find geomet-
ric explanation for differences in left/right views of a stereo pair actually arising
from non-geometric reasons: camera sensor noises, occlusions, reflections from
non-Lambertian surfaces. Due to such reasons, there might be pixels in left and
right views for which there’s actually no matching counterpart in the same scan-
line of the opposite view. However, the reconstruction loss drives the model to
seek matchings even for such unmatched pixels, thereby introducing false dispar-
ities and, respectively, incorrect depths. Instead of trying to smooth the noises
in disparities or inverse depths arising from inconsistent pixel matching by using
disparity smoothness loss (like in [14]), we address the problem by introducing
input image correction maps aimed at making pixel matching by disparities in
the corrected images as much consistent as possible. To constrain image cor-
rection so that it does not remove geometric cues from stereo pair images, we
introduce L1 correction regularization loss term:

Lcor =
∑

s

1
Ns

∑

i,j

∣∣∣ΔI
(s)
L (i, j)

∣∣∣ +
∣∣∣ΔI

(s)
R (i, j)

∣∣∣ . (4)

3.3 Camera Parameters Estimation

Another issue of the state-of-the-art unsupervised monocular depth estimation
methods trained on stereo pairs is their intrinsic assumption of stereo rig param-
eters constancy across the training dataset. Taking as a baseline the method
of [14], where the CNN processes the left view and outputs two disparity maps
for reconstructing left and right views, such a setting assumes that the baseline
distance between the cameras is the same for all stereo pairs. Indeed, given the
left view image, for different baseline distances disparity values needed to recon-
struct the right view from the left one would be different: longer baseline distance
implies larger disparity values. So, we argue that in general setting, where the
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baseline distance for training stereo pairs is variable, the left view image alone
is insufficient for predicting disparity maps.

To remove the requirement for constant (or known from external sources)
baseline distance, we introduce stereo camera parameters estimation network.
We rely on the intuition that a pair of left and right views contains visual cues
sufficient for estimation of the baseline distance between the monocular cameras
of the stereo rig used to obtain the stereo pair (at least, up to a scale factor). So,
we concatenate two small equally-sized subsets of the high-level feature maps
produced in the bottleneck of the depth estimation UNet for the left and right
views and use the resulting combined feature maps as the input to the stereo
camera parameters estimation network. It allows our model to adapt during
training to stereo pairs originating from stereo set-ups with varying stereo base-
line and focal length. We argue that such adaptivity makes our model robust
to diversity and variability of training dataset in terms of stereo set-up settings,
thereby allowing us to efficiently train our model on hybrid dataset containing
data from datasets produced by differently configured stereo set-ups.

3.4 Total Training Loss

Similar to [14], we use L1 left-right disparity consistency penalty:

Lcon =
∑

s

1
Ns

∑

i,j

∣∣∣d′(s)
L (i, j) − d

(s)
L (i, j)

∣∣∣ +
∣∣∣d′(s)

R (i, j) − d
(s)
R (i, j)

∣∣∣ (5)

Note that the auxiliary reconstruction loss given in Eq. 3 provides additional
left-right consistency indirectly by using secondary disparity maps d′

L and d′
R

for image reconstruction.
So, the total training loss for our model is composed of all the above loss

terms:
Ltot = Lrec + αcorLcor + αconLcon + αauxLaux, (6)

where αcor, αcon and αaux are weighting coefficients for corresponding loss terms.

4 Results

In this section we provide details of the implementation of our method, describe
the training datasets and procedure and compare the performance of our method
with prior monocular depth estimation methods (both unsupervised and super-
vised).

4.1 Implementation Details

The architecture of depth estimation CNN is similar to the one of [14], though
we modified it to enlarge network’s receptive field and to improve output depth
map’s detailization.
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For camera parameters estimation CNN we use relatively shallow network
since it accepts as input the high-level feature maps from the bottleneck of the
depth estimation CNN.

Once the model is trained, the depth prediction is performed by running
depth estimation CNN on an input image and inverting its output using the
following formula:

z =
1

P99.99(ẑ) − ẑ
(7)

where P99.99 is 99.99th percentile which is introduced here since the inverse depth
maps are produced using tanh activation, so they may take both positive and
negative values and thus require proper shifting before inverting.

The model was implemented in MXNet framework [2] and trained from
scratch for 50 epochs on Nvidia GeForce GTX 1080 Ti GPU with a batch size of
8 using Adam [18] with the learning rate of λ = 10−4 and β1 = 0.9, β2 = 0.999,
ε = 10−8.

4.2 Datasets

We use two datasets to train our model: hybrid city driving (CS+K) dataset
and Stereo Movies (SM) dataset.

Hybrid city driving dataset is a mixture of stereo pairs from KITTI [12]
(using split of [8]) and Cityscapes [5] datasets, rescaled to 768 × 320. To the best
of our knowledge, our method is the first monocular depth estimation method
trained on the mixture of those datasets, while other methods typically employ
pre-training on Cityscapes and fine-tuning on KITTI (e.g. [14,26,27,37,40]).
Training on CS+K dataset poses a serious challenge for unsupervised methods
based on stereo pair training, since KITTI and Cityscapes datasets have been
collected using different stereo rigs having different baseline distances and focal
lengths. On the other hand, training on such diverse dataset forces the model
to seek for more general geometric cues in the images. The weights for the loss
terms when training on CS+K dataset were set as follows: αcor = 1.7, αcon = 0.2,
αaux = 0.5.

Stereo Movies dataset has been collected by us using 28 commercially
available stereo movies, totalling to over 4 million stereo pairs rescaled to
768 × 384. The movies used for collecting dataset were selected to be very
diverse in genre and scenery. This dataset is quite challenging for monocular
depth estimation algorithms: supervised methods cannot use it since there’re
no ground truth depths for stereo movies, while for the unsupervised methods
based on monocular video sequence training (like [40]) there’s no camera intrin-
sics information required by such methods. On the other hand, this dataset
provides vast diversity in content and high variability in stereo camera param-
eters. The weights for the loss terms when training on SM dataset were set as
follows: αcon = 0.01, αaux = 0.5 and no correction maps were used for this
dataset (because of much higher quality of its images).
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For quantitative evaluation of the trained models we utilized the widely-used
test subset of KITTI (Eigen split) following the evaluation procedure described
in [14] as well as Depth In the Wild (DIW) dataset [4].

Table 1. Results on KITTI 2015 [12] using the split of Eigen et al. [8]. Best results
in each section are in bold font, our results are in red color. Datasets: K is the KITTI
dataset [12], CS+K is the mixture of Cityscapes [5] and KITTI, CS→K means pre-
training on Cityscapes and fine-tuning on KITTI, MD→K means pre-training on
MegaDepth dataset [23] and fine-tuning on KITTI.

Method Output resolution Training data Training dataset Error metric (lower is better) Accuracy metric (higher is better) #Weightsc, ×106

#Input images Depth Camera params ARD SRD RMSE RMSE (log) RMSE(sc.inv.) δ < 1.25 δ < 1.252 δ < 1.253

Unsupervised approaches (cap at 80 m)

Zhou et al. [40] 416 × 128 3 � CS→K 0.198 1.836 6.565 0.275 0.270 0.718 0.901 0.960 31.6

Poggi et al. [26] 512 × 256 2b CS→K 0.146 1.291 5.907 0.245 – 0.801 0.926 0.967 1.9

Yang et al. [36] 830 × 254 2 × 2a � CS→K 0.114 1.074 5.836 0.208 – 0.856 0.939 0.976 45.1

Chen et al. [1] 512 × 256 2b K 0.145 1.267 5.786 0.244 – 0.811 0.925 0.965 31.7

Zhan et al. [38] 608 × 160 2 × 2a � K 0.135 1.132 5.585 0.229 – 0.820 0.933 0.971 5.94

Wang et al. [32] 416 × 128 3 � CS→K 0.148 1.187 5.496 0.226 – 0.812 0.938 0.975 31.6

Ranjan et al. [28] 832 × 256 5 � K 0.148 1.149 5.464 0.226 – 0.815 0.935 0.973 23.6

Godard et al. [13] 640 × 192 3 × 2a � K 0.114 0.991 5.029 0.203 – 0.864 0.951 0.978 14.1

Godard et al. [14] 512 × 256 2b CS→K 0.118 0.923 5.015 0.210 0.205 0.854 0.947 0.976 31.6

Godard et al. [14] ResNet 512 × 256 2b CS→K 0.114 0.898 4.935 0.206 0.204 0.861 0.949 0.976 58.5

Poggi et al. [27] 512 × 256 2b CS→K 0.111 0.849 4.822 0.202 – 0.865 0.952 0.978 78.9

Ours (w/o correction) 768 × 320 2b CS+K 0.118 0.883 4.776 0.197 – 0.869 0.955 0.979 25.8

Ours 768 × 320 2b CS+K 0.118 0.809 4.692 0.196 0.192 0.865 0.954 0.979 25.8

(Semi-)supervised approaches (cap at 80 m)

Eigen et al. [8] 142 × 27 1 � K 0.203 1.548 6.307 0.282 – 0.702 0.890 0.958 54.2

Li and Snavely [23] 512 × 384 1 � MD→K 0.141 1.328 5.90 0.241 – – – – 5.4

Li et al. [22] 310 × 94 1 � K 0.113 – 4.687 – – 0.856 0.962 0.988 65.2

Kuznietsov et al. [20]d 320 × 96 2b � K 0.113 0.741 4.621 0.189 – 0.862 0.960 0.986 63.5

Hu et al. [16] 378 × 76 1 � K 0.107 – 4.604 – – 0.875 0.970 0.990 41.5

Yang et al. [35] 512 × 256 2b � � K 0.097 0.734 4.442 0.187 – 0.888 0.958 0.980 95.3

Dharmasiri et al. [6] 320 × 240 2 × 2a � � K 0.096 – 4.301 0.173 – 0.895 0.968 0.987 117.0

Luo et al. [25] 1280 × 384 2b � K 0.094 0.626 4.252 0.177 – 0.891 0.965 0.984 412.8

He et al. [15] 320 × 224 1 � � K 0.086 – 4.014 – – 0.893 0.975 0.994 121.4

Tang and Tan [30] – 2 � K 0.083 0.025 3.640 0.134 – – – – 63.6

Fu et al. [10] 192 × 96 1 � K 0.084 0.386 3.072 0.136 – 0.911 0.979 0.993 186.2

Fu et al. [9] 513 × 385 1 � K 0.072 0.307 2.727 0.120 – 0.932 0.984 0.994 –

aSequence of stereo pairs
bStereo pair
cWeights required for depth estimation at test time only
dSemi-supervised variant

4.3 Depth Estimation Performance Evaluation

Table 1 shows the results of our method (trained on CS+K dataset) in compari-
son with the previous works (both unsupervised and supervised). Since the depth
predicted by our method is defined up to a scale factor, we use the same median
normalization approach for depth maps as in [40]. We compare various meth-
ods using depth estimation accuracy metrics widely used in the previous works
[8]: absolute relative difference (ARD), squared relative difference (SRD), root-
mean-square error (RMSE), logarithmic RMSE, scale-invariant RMSE and three
thresholds

(
δ < 1.25{1,2,3}). In contrast to many previous works, we also com-

pare inference model complexities using the number of inference model weights.
Finally, to complete the comparison, we also added information on the out-
put depth map resolution, training data requirements (number of input images,
depth supervision, camera intrinsics) and training dataset.

From Table 1 one can see that our method outperforms previous unsupervised
results in terms of depth estimation accuracy across most of metrics and output
depth map resolution, while being one of the least complex in terms of inference
model weights number. Our method is also one of the least demanding in terms
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Table 2. Results on DIW for our model trained on SM dataset. Best results are in
bold font, our results are in red color.

Method Supervised WHDR, %

Laina et al. [21] � 31.65

Zhou et al. [40] 31.24

Godard et al. [14] 30.52

Liu et al. [24] � 28.27

Eigen and Fergus [7] � 25.70

Ours (SM dataset) 23.92

Li and Snavely [23] � 22.97

Xian et al. [33] � 11.37

Chen and Deng [3] � 10.59

of training data requirements. Even when compared to the supervised results,
our method outperforms many methods, while being much less complex than
the supervised methods having better accuracy.

To quantitatively evaluate our model trained on SM dataset, we have to
take into account the fact that during training it was presented movie images
having quite shallow depth of field (DOF) with most of the background blurry
and with detailed objects in focus being quite shallow in their depth range.
Such peculiarities restrict the depth-related visual cues our model can learn
from, thus we only expect it to provide relative depth predictions rather than
metric depths. So, for quantitative evaluation we use DIW dataset, containing
very diverse set of sceneries annotated with relative depth labels, and Weighted
Human Disagreement Rate (WHDR) [4] as depth estimation accuracy metric.
Table 2 shows the results of our method (trained on SM dataset) in comparison
with the previous works. Our method outperforms both unsupervised methods
of [40] and [14] and even some of the supervised methods. Remarkably, the
result of our unsupervised method is close to that of [23], even though they used
supervised learning on densely-labelled MegaDepth dataset.

Ablation Study. In Table 1 we provide the results of our method obtained
without image correction, using different consistency loss term weight αcon = 0.1.
The results are very close to those with correction maps, indicating that most
of the improvement in quantitative results comes from the other contributions.
We do not perform ablation for camera parameters estimation network, since
removing it would disable conversion of inverse depths to disparities and break
the subsequent processing. However, to verify the efficiency of our contributions
in achieving robustness to training dataset diversity, we performed additional
set of experiments: we trained our model separately on KITTI and Cityscapes
datasets and then fine-tuned on KITTI the model pre-trained on Cityscapes.
The results were compared to our baseline model of [14] trained on the same
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Table 3. Results of test of robustness to training dataset diversity. Best results for
each method are in bold font.

Method Training

dataset

Error metric (lower is better) Accuracy metric (higher is better)

ARD SRD RMSE RMSE

(log)

RMSE

(sc.inv.)

δ < 1.25 δ < 1.252 δ < 1.253

Godard

et al. [14]

CS 0.652 8.960 13.544 0.518 0.233 0.078 0.443 0.866

K 0.141 1.186 5.677 0.238 0.229 0.809 0.928 0.969

CS→K 0.118 0.923 5.015 0.210 0.205 0.854 0.947 0.976

CS+K 0.152 1.328 5.748 0.232 0.227 0.805 0.934 0.972

Ours CS 0.314 2.158 7.309 0.366 0.353 0.509 0.769 0.928

K 0.130 0.973 5.127 0.210 0.206 0.842 0.946 0.976

CS→K 0.114 0.793 4.676 0.193 0.190 0.870 0.955 0.980

CS+K 0.118 0.809 4.692 0.196 0.192 0.865 0.954 0.979

datasets (using their published code1). This comparison is shown in Table 3.
From this table one can see that the method of [14], when trained on CS+K
dataset, drastically deteriorates its performance, which is not the case for our
method. Moreover, our method significantly outperforms the method of [14] even
when trained on KITTI or Cityscapes alone.

The model of [14] failed to converge on SM dataset at all. We hypothesize
that the reason for that is that stereo pairs from different movies have different
stereo baselines and varying focus lengths, making prediction of disparity maps
from the left view, suitable for reconstructing the right view, infeasible. Our
model does not suffer from this problem, since our depth estimation network only
predicts inverse depth maps (which are independent of stereo rig parameters)
and we derive disparity maps using those inverse depth maps along with stereo
camera parameters estimated from the data extracted from both left and right
views.

5 Conclusion

We have presented an unsupervised deep neural network for single image depth
estimation. While incorporating some of the advantageous ideas from the pre-
vious state-of-the-art methods in the field, such as training on stereo pairs with
opposite view reconstruction error as a supervisory signal and left-right consis-
tency loss, we propose significant novel improvements to the previous unsuper-
vised design: camera parameters estimation network and regularized input image
correction. These improvements allow us to outperform the previous unsuper-
vised results and make our model capable of training on very diverse and chal-
lenging datasets, such as hybrid city driving dataset and our own Stereo Movies
dataset, resulting in highly generalizable depth estimation model.

1 https://github.com/mrharicot/monodepth.

https://github.com/mrharicot/monodepth
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Abstract. The supervised learning algorithms provide a powerful tool
to classify and process the remotely sensed imagery data sets. They have
the strengths to handle high-dimensional data and to map classes with
very complex characteristics. However, the usual supervised machine
learning algorithms face issues that limit their applicability especially in
dealing with the knowledge interpretation and with imbalanced labeled
data sets. To address these issues, the prototype based classifier K-
Closest Resemblance K-CR was proposed. K-CR is inspired by the social
choice theory and preference modeling, which argues that the classifiers
based on preference modeling are simple, do not need to normalize the
features, and do not have loss of information during learning. The effec-
tiveness of the proposed classifier is evaluated by comparing with the
other well-known existing classifiers for remote sensing data set. The
obtained results indicate that our proposed classifier is an effective tool
for land cover classification from remote sensing data.

Keywords: Machine learning · K-CR classifier · Land cover
classification

1 Introduction

Over the last few years machine learning algorithms have become highly suc-
cessful and very popular techniques in remote sensing image classification. The
Urban Land Cover (ULC) classification is one of the widest used applications in
the field of remote sensing. A wide range of machine learning methods for ULC
classification continues to be proposed and assessed. They show that supervised
machine learning leads to higher accuracy compared to traditional statistical
parametric methods, especially for complex data with high-dimensional feature
spaces [9]. Many supervised classification algorithms, such as K-Nearest Neigh-
bor (K-NN), Artificial Neural Network (ANN), Random Forests (RF) and Sup-
port Vector Machines (SVM), have been applied for classifying the ULC [9].
However, they do not deal with the imprecision of the attributes’ scores and
c© Crown 2020
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they allow the compensation between features, which will lead to the low clas-
sification accuracy [8]. In order to improve the ULC classification accuracy, we
have introduced the K-CR classifier. The proposed method is inspired by the
social choice theory through the application of the outranking approaches to
calculate the similarity “the closeness” of unlabeled sample to the prototype of
the classes [2]. Comparing to the well-known classifiers, K-CR possesses several
advantages, such as:

– K-CR does not require any normalization during the pre-processing steps
compared with other classifiers such as ANN and SVM. This is because K-
CR is based on the aggregation of the partial pairwise comparison of each
feature. It uses the outranking comparison approach from the ELECTRE
methods [5,10]. Therefore, the K-CR method can deal with all types of data
without sensitivity to noise [2].

– K-CR results are automatically explained which provides the possibility to
access to more detailed information concerning the classification results.

– K-CR is based on each feature’s weight that reflects the intrinsic relative
importance of the feature to different classes. This property is important
especially for the multiclass imbalanced data classification problems and for
feature selection.

We show that K-CR is an appropriate technique for classifying the ULC
from remote sensing data. In this paper, the K-CR classifier is presented and
compared with other well-known classifiers using the case of the ULC data set.

2 The K-Closest Resemblance Classifier

The K-CR classifier is an exemplar-based generalization learning models, where
the knowledge representation are formed by generalized exemplars like in the
case of hyper-rectangular models [7]. It was successfully applied to bioinformat-
ics, clinical decision support system and Content-based recommendation system
[1,4]. K-CR is considered as a weighted voting classifier in which each feature
v̈otes̈for the class membership of an unlabeled sample according to which class’s
prototype is the closest [1,2]. The partial comparison used by K-CR to calculate
the resemblance between the sample and prototypes avoids resorting to conven-
tional metric and non-metric distances that aggregate the score of all features
in the same value unit. Hence, it helps to find the correct pre-processing and
normalization data techniques without losing information. The k-CR classifier
proceeds in two phases:

1. Learning phase: For each class Ch K-CR determines a set of prototypes from
the training set. More precisely, for each prototype and each attribute, an
interval is defined. To define these intervals we follow the same approach
from the PROAFTN classifier as described in [3].

2. Class prediction: To classify an unlabeled sample s, K-CR applies the follow-
ing steps:
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1. Outranking relation between the prototypes: If bh and bl represent two pro-
totypes of classes Ch and Cl respectively, then the outranking relation P s

expresses the degree with which the resemblance between the sample s and
prototype bh is stronger than the resemblance between the sample s and
prototype bl. K-CR takes as input the partial outranking indices induced
by the set of attributes and aggregates them into global outranking relation
P s(bh, bl).

2. Scoring function: Based on the outranking relations P s between the pro-
totypes of all classes, K-CR selects the best prototypes in terms of their
resemblance to the unlabeled sample. The scoring function is used to select
a subset of prototypes that are more closely to the sample s. Different scor-
ing functions can be used as shown in [1,2]. In our method we used the flux
scoring function as used in PROMETHEE methods [5].

3. Class prediction: Once a subset of K closest resemblance prototypes to s is
determined, a majority voting rule is applied to assign the unlabeled sample
to the closest class.

3 Experiments and Evaluation

The data set presented in this paper is obtained from the University of Cali-
fornia, Irvine Machine Learning Repository [6]. The data set was created based
on high-resolution aerial geographical images which have been classified into 9
types of ULC including Asphalt, Building, Car, Concrete, Grass, Pool, Shadow,
Soil, and Tree. The class target Y is specified from 0 to 8 based on these 9
types of ULC. The training set contains 168 instances in total. In addition, each
instance is described by 147 features which represent information about spec-
tral properties, size, shape, and texture. One of the main challenge of this data
set is the imbalanced distribution of the classes. Accordingly, the objective of
this paper is to apply the proposed model on this data set, and to explore its
ability of handling imbalanced data sets. The experiments involve comparison
between the K-CR and other classifiers including RF, K-NN, SVM and MLP
for ANN. The classifiers RF, K-NN and SVM were implemented using packages
from ‘sklearn’ and MLP was implemented using TensorFlow. The parameters of
K-CR are set to 0.1 for the threshold and to 2 for the number of intervals for
each attribute. Apart from that, RF constructs 500 trees. The linear function is
set as SVM’s kernel function, while the number of neighborhood K in K-NN is
set to 3. Furthermore, the MLP with 2 hidden layers is trained for 200 epochs
with a learning rate of 0.0001 and using the Adam optimizer. In our experiments,
the 10-fold cross-validation (10-CV) technique is used to randomly partition the
training data set into 10 equal sized subsets. A single subset is used for testing
and the remaining 9 folds are used for the training. The cross-validation pro-
cess is then repeated 10 times and we calculate the average score from 10 results.
Performance evaluation is conducted using the generalization of F1-measure and
AUC (Area Under The Curve) ROC (Receiver Operating Characteristics) curve
since the standard classification accuracy (the % of correct classification) is not
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suitable for multi-class imbalanced data sets. Therefore, the F1-measure which
seeks a balance between precision and recall is taken into consideration. More
precisely, a weighted average F1-measure is used in these experiments. The con-
tributions of all classes are aggregated so as to obtain a ‘fair’ average among
unevenly-distributed classes. ROC analysis is a popular metric which gives a
standard for selecting possibly optimal models while discarding the impact of
the class distribution. ROC is a probability curve and AUC represents degree
or measure of separability. It tells how much model is capable of distinguish-
ing between classes. The ROC curve is plotted with True Positive Rate (TPR)
against the False Positive Rate (FPR) where TPR is on y-axis and FPR is on
the x-axis. Theoretically, in a ROC curve, a perfect one goes straight up along
the y-axis and straight right along the x-axis.

4 Results and Discussion

Table 1 shows the weighted average F1-measure on training file using 10-CV. The
first column represents the 9 classes within the data-set. The rest of columns show
the F1-measure of each class, followed by the average score for each classifier.
Among all 5 weighted average F1-measure scores, K-CR obtained 0.91 which is
the highest score. Comparing with the second highest score 0.82 from RF, K-CR
significantly improves the performance by 9%. By looking at the scores of each
individual class, the improvements vary from 3% to 21%. The class Soil with 14
training instances improved with 21%. Another class, Asphalt, which also has
only 14 training instances improved with 5%.

Table 1. Weighted average F1-measure on the training file using 10-CV

K-CR RF SVM KNN MLP

Asphalt 0.89 0.84 0.61 0.22 0.52

Building 0.91 0.78 0.62 0.57 0.60

Car 0.90 0.87 0.87 0.87 0.61

Concrete 0.90 0.75 0.47 0.38 0.23

Grass 0.94 0.87 0.58 0.44 0.33

Pool 0.93 0.86 0.73 0.77 0.48

Shadow 0.88 0.84 0.64 0.32 0.29

Soil 0.88 0.67 0.40 0.09 0.21

Tree 0.94 0.87 0.57 0.41 0.38

Weighted average F1-measure 0.91 0.82 0.60 0.46 0.40

From another perspective, the AUC-ROC curve shown in Fig. 1 also visually
demonstrate such improvements. In Fig. 1, K-CR has a micro-average area score
of 0.95, while in figure of RF has 0.9. The lines of the Fig. 1 obviously centralize
more to top-left corner compared to the figure of RF.
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Fig. 1. ROC curve for K-CR using 10-CV

In Maxwell et al. [9] the same data set was tested using SVM, DT, RF,
Boosted decision tree, ANN and k-NN and the results showed that RF has the
highest accuracy of 81.5%. Therefore their results are in concordance with ours,
which show that RF is better than SVM, KNN and MLP.

5 Conclusion

In this work, we presented an experimental study using machine learning to
classify the remotely sensed imagery data sets for ULC classification problem.
Our results demonstrate the power of prototype based classifier that based on
preference modeling and simple discretization technique for ULC classification
problems. In addition, the proposed K-CR classifier can face the challenges of
sensing data sets in multi-class imbalanced data sets, and the method presented
here provides an improvement when compared with well-known classifiers in
ULC classification problem such RF and SVM. In future work, we hope to apply
the developed K-CR classifier on other types of ULC classification problems.
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Abstract. Reinforcement learning (RL) has been demonstrated to have
great potential in many applications of scientific discovery and design.
Recent work includes, for example, the design of new structures and com-
positions of molecules for therapeutic drugs. Much of the existing work
related to the application of RL to scientific domains, however, assumes
that the available state representation obeys the Markov property. For
reasons associated with time, cost, sensor accuracy, and gaps in scientific
knowledge, many scientific design and discovery problems do not satisfy
the Markov property. Thus, something other than a Markov decision pro-
cess (MDP) should be used to plan/find the optimal policy. In this paper,
we present a physics-inspired semi-Markov RL environment, namely the
phase change environment. In addition, we evaluate the performance
of value-based RL algorithms for both MDPs and partially observable
MDPs (POMDPs) on the proposed environment. Our results demon-
strate deep recurrent Q-networks (DRQN) significantly outperform deep
Q-networks (DQN), and that DRQNs benefit from training with hind-
sight experience replay. Implications for the use of semi-Markovian RL
and POMDPs for scientific laboratories are also discussed.

Keywords: Reinforcement learning · Semi-Markov decision
processes · Materials science

1 Introduction

Developing new materials is seen as a key to advance in many areas of science and
society [11]. Currently, state-of-the-art methods for developing new materials are
slow, unpredictable, and have high associated costs. Artificial intelligence has the
potential to make significant contributions to problems of this nature.

In recent years, deep reinforcement learning (RL) has achieved significant
advancements, and produced human level performance on challenging video
c© Springer Nature Switzerland AG 2020
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games, board games, and in robotics [4,7,12]. These results have garnered much
attention across a wide variety of domains, including the fields of chemistry
and physics. RL has, for example, been applied in quantum physics and chem-
istry [1,15]. The latter is partially motivated by work with scientific laboratory
robots [6,9].

Our research focuses broadly on the application of RL to materials science.
We hypothesise that RL has a great potential to speed up the materials design
and discovery process. From an AI perspective, this application area embodies
many interesting challenges. In materials, for example, evaluating prospective
solutions can be costly, time consuming and destructive. Therefore, sample effi-
ciency is a key requirement. On the other hand, an agent may have multiple
goals, and/or new goals may be added overtime. Thus, multi-agent learning
with shared experience and transfer learning are of interest. The rewards are
often binary and significantly delayed, which motivates the need for strategies
to handle rewards, and improve sample efficiency. Moreover, important informa-
tion to the materials design process is often hidden due to costs and scientific
limitations. Thus, the AI must be suitable for semi-Markov decision processes.

To date, there has not be a systematic investigation of the suitability of
deep RL algorithms for applications in materials science involving semi-Markov
decision processes. In this paper, we commence this exploration by present-
ing a new physics-inspired semi-Markov learn task; specifically the semi-Markov
phase change environment. Subsequently, we conduct an initial evaluation of the
potential for value-based deep RL algorithms in the environment, and discuss
the challenges to be faced in future real-world applications.

1.1 Contributions

We make the following contributions in this paper:

– Introduce the semi-Markov phase change environment;
– Compare the performance of deep Q-networks (DQN) to deep recurrent

Q-networks (DRQN) on the proposed environment;
– Evaluate the benefit of hindsight experience replay (HER) on DQN and

DRQN; and,
– Discuss the performance gap between these methods and the optimal policy.

2 Related Work

Q-learning is an off-policy temporal difference control algorithm [14] where the
objective is to learn an optimal action-value function, independent of the policy
being followed. DQN is a recent variation of Q-learning that takes advantage of
the generalizing capabilities of deep learning. DQNs have been shown to produce
human-level performance on challenging games on Atari 2600 [8].

DQNs offer a solution approach for Markov decision processes (MDPs).
Specifically, problems where the state observation emitted from the environ-
ment is sufficient to select the next action. Cases where the Markov property
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does not hold, require a partially observable MDP (POMDP). In these cases,
the representation of the current state alone is not sufficient to select the next
action. This can occur due to unreliable observations, an incomplete model (i.e.
latent variables), noisy state information or other reasons.

In [5], the authors propose the use of a recurrent neural network architec-
ture in place of the feed-forward network in DQN. Leveraging recurrent neural
networks, it is argued, enables the Q-network to better handle POMDPs. Specif-
ically, with the recurrent neural network, the agent can build an implicit notion
of its current state based on the recent sequence of state observation result-
ing from actions taken. The authors show that Deep Recurrent Q-Networks
(DRQN) presented with a single frame at each time-step can successfully inte-
grate information through time, and thereby replicate the performance of DQNs
on standard Atari 2600 games. In this work, we extend the evaluation of DRQNs
to the phase change environment in order to better understand the potential of
DRQN on real-world POMDPs.

Many of the recent achievements of deep RL have been produced in simulated
environments because RL agents must gather a large amount of experience. Deep
Q-Networks, for example, famously required approximately 200 million frames
of experience for trainings and approximately 39 days of real-time game playing,
on the Atari 2600 [8]. Model-based RL methods, such as DYNA-Q [13], aim
to replace a large portion of the agent’s real-world experience with experience
collected from a surrogate or other models of the environment. Model-based
methods, however, have seen most of their successes in environments where the
dynamics are simple and can easily and accurately be learned. This is decidedly
not the case for most physics and chemistry environments.

Learning in many physics and chemistry environments is made more chal-
lenging by sparse, binary rewards. Andrychowicz et al. in [2], proposed Hindsight
Experience Replay (HER), which extends the idea of training a universal policy
[10]. Inspired by the benefit that humans garner by learning from their mistakes,
HER simulates this by re-framing a small, user-defined, portion of the failed tra-
jectories as successes. It is applicable to off-policy, model-free RL, and to domains
in which multiple goals could be achieved. HER was shown to improve sample
efficiency, and make learning possible in environments with sparse and binary
reward signals.

Multi-goal learning environments with sparse, binary rewards, and the neces-
sity for sample efficiency are key features of many physics and chemistry appli-
cations, such as materials design. As a result, HER is potentially of great value
in these domains. To date, however, it has not been evaluated in semi-Markov
decision processes nor has it been explored in conjunction with DRQN.

3 Semi-Markov Phase Change Environment

Our new semi-Markov phase change environment1 is implemented based on
the OpenAI Gym framework [3] and is depicted in Fig. 1. Within the physical
1 The environment is available at http://clean.energyscience.ca/gyms.

http://clean.energyscience.ca/gyms
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sciences, Fig. 1 is known as a phase diagram - a convenient representation of a
materials behaviour where, within a “phase”, symmetry is preserved over a wide
range of experimental conditions (in this case temperature, T , and pressure, P ).
In general, it is possible to alter the pressure or temperature of a material while
remaining within the same phase (e.g. cold water and warm water are both
liquids). Within a single phase, adding heat (Q+) results in a positive change
of temperature, while removing it, (Q−) does the opposite. Similarly, within a
single phase, doing positive work (W+) increases the pressure, while negative
work, (W−) results in a pressure decrease.

Importantly, we note that the relationship between heat, work, tempera-
ture, and pressure is different at the boundary between some phases. Thus, the
state transition dynamics are different at the boundary. Specifically, symmetries
change when crossing a discontinuous phase boundary (e.g solid-liquid). This
change is accompanied by the addition or removal of a latent heat. On a phase
diagram, such a boundary is denoted with a solid line. Because of the latent
heat, under equilibrium conditions, two or more phases can co-exist with one
another in a stable state. As a result, when visualized on a phase diagram, a
trajectory of constant heating will temporarily stall at a phase boundary. There
is an apparent lack of progress at the boundary while this energy is used to
convert the material from one phase into another at constant (P, T ) (e.g. the
size of an ice-cube decreases while the amount of liquid water increases).

In our environment, the agent’s goal is to take a series of actions that add or
remove energy in the system by two independent mechanisms (heat and work)
to modify a material from its start state Ms to some goal state Mg. The result of
the actions is measured in terms of the pressure and temperature of the material.

The environment has a discrete 4-action space, A ∈ {a0 = Q−, a1 = Q+, a2 =
W−, a3 = W+}. Thus, the agent must learn to navigate from some start posi-
tion in the two-dimensional temperature-pressure space Ms = (ts, ps) to some
goal state Mg = (tg, pg) in as few steps as possible. The episodes terminates
immediately after the agent takes the action to transition in to Mg. The agent
receives a reward of 1 when it reaches the goal, and zero elsewhere. The optimal
policy in the environment is to apply the minimum number of actions (steps) to
get to the goal. The environment emits a state observations in terms of T and P .
The initial version of the environment has discretized pressure and temperature
measurements, and a limit to the range. This results in a 2-dimensional grid
state-space with vertical movements analogous to changes in pressure (resulting
from W+/−) and horizontal movements corresponding to changes in tempera-
ture (resulting from the Q+/−).

The environment is designed to weakly approximate the process of adding
small, fixed amounts of energy (in the form of heat or work) to an initial phase
(e.g. a liquid) to convert it to another one (or for the case of the phase boundary, a
mixture of different fractions solid, liquid, and gas). In order to make the problem
extra challenging, we include the requirement that the agent invoke two different
actions when it crosses through the boundary. While this would not strictly be
required physically for equilibrium processes, it makes the learning task more
difficult and relevant for real world examples which involve nucleation, activation
barriers, etc.
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Fig. 1. (Left) Phase change environment. (Top right) State transition dynamics for
within-phase states. (Bottom right) State transition dynamics for phase change bound-
ary. This assumes that the agent is at some boundary states.

Unlike the traditional grid-world setup, the grid-based phase change envi-
ronment does not have any barriers that might prevent an agent from moving
in a certain direction. The challenge, as we have discussed from the scientific
perspective above, is learning to efficiently navigate through partially observ-
able phase change boundaries. The state transition dynamics are presented in
the tables on the right in Fig. 1.

The dynamics for the phase change boundary are as such, when in some
boundary state (sx, sy), the agent must apply a sequence of two actions to tran-
sition into the state on the other side of the boundary. In order for the agent to
move in the direction of increasing pressure, for example, it must apply action
a = 1 followed by action a = 3. This leads to the following state-action sequence:

...(sx, sy), a = 1, (sx, sy), a = 3, (sx, sy+1)... (1)

4 Experimental Setup

4.1 Reinforcement Learning Algorithms

In order to assess the suitability of value-based RL in a semi-Markov materials-
inspired environment, we compare the performance of DQN to DRQN. We eval-
uate DRQN with a trace length of one (i.e., a one state history) as this makes it
directly comparable to DQN. This forces the network to rely solely on its internal
architecture to remember the implicit state of the system. Finally, we explore
the benefit of HER on DQN and DRQN in the semi-Markov environment.

Deep Q-Learning: In this work, DQN receives a state vector s = [P, T ] as
the input and emits a value for each action Q = (a1, a2, a3, a4) at the output
layer. A greedy agent in state s will take a = arg max Q. The parameters



60 C. Bellinger et al.

of the network θ are updated as, θi+1 = θi + αΔθL(θi), to minimize the loss
function, L(s, a|θ) ≈ (r + γ maxa Q(s′, a|θ) − Q(s, a|θ))2, where r is the reward,
γ is a discount factor and α is the learning rate. In this case, a single network
is generating the update target and being updated. Updating based on a single
network has been shown to lead to instability in some cases, and can be improved
upon by having a separate target network. However, this was not necessary in
the phase change environment.

In the following experiments, we applied a neural network with a single 48
unit hidden layer with ReLU activation and the ADAM optimizer. The free
parameters were set as follows, the discount factor γ = 0.95 and the exploration
rate ε = 1 with linear εδ = 0.00001 decay. After an initial period of experience
gathering, the network was updated after every episode by sampling a batch of
size 127 from the experience replay buffer.

Deep Recurrent Q-Learning: DRQN follows the same setup as that pre-
sented for DQN above. Specifically, the input, output and objective function,
and optimizers are the same. The key difference is that the fully connected hid-
den layer in DQN is replaced by a recurrent network. In our experiments below,
we use a 128 unit Gated Recurrent Unit.

Training with Hindsight Experience Replay: HER is a training framework
that requires the current state and the goal state to jointly form the state space.
Thus, all experiments related to HER have an expanded state space. We edited
5% of the tuples corresponding to failed actions (i.e., action with zero reward)
to be seen as successful. Specifically, we set the reward to 1 and the goal state
to the current state, prior to adding the tuple to the experience replay buffer.

4.2 Evaluation Method

In order to thoroughly assess the impact of the non-Markov phase change bound-
aries on the RL algorithms, we evaluate each method from three deterministic
starting locations. From each of these starting locations, the agents must learn to
navigate to a single goal. In experiment 1 (EXhard), the agents start off farthest
from the goal and must cross two phase change boundaries. The agent starts
marginally closer to the goal in experiment 2 (EXmod). Here, the agent must
cross a single non-Markov barrier. Finally, in experiment 3 (EXeasy) the agent
starts close to the goal and is not required to cross any non-Markov barriers.

To further our analysis of the impact of the non-Markov phase change bound-
aries on the RL algorithms, we repeat each of the above experiments in a Markov
version of the phase change environment. In the Markov version, the dynamics
in the phase change boundaries are equivalent to the inner-phase dynamics, and
all of the states are fully observable.

The performance of each agent is recorded on intervals of 50 episodes. Specif-
ically, after each increment of 50 episodes of training, each agent is applied
for one episode (or a maximum of 10, 000 steps) of testing with an ε-greedy
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policy (ε = 0.2). Thus, for 20, 000 episodes of training, in each of the 30 itera-
tions, we collect 400 test results. These are averaged and reported in the plots
below.

5 Results

5.1 DQN on the Semi-Markov Phase Change Environment

Fig. 2. Mean number of steps per episode for DQN on (left) the semi-Markov phase
change environment, and (Right) the Markov phase change environment

The plot on the left in Fig. 2 shows the average number of steps per episode
that an agent learning with DQN takes to the goal in the semi-Markov environ-
ment when starting at each of the three starting locations EXeasy, EXmod, and
EXhard. For comparison, the results on the right show the performance when the
phase change environment is made fully Markovian.

These results demonstrate that DQN is affected by both the distance between
the starting state and goal (sparsity of reward) and semi-Markov decision process
resulting from the phase change boundaries. From the left plot, it is clear that
the agent in EXhard learns much slower than the agents in EXmod and EXeasy.
The mean number of steps by episode for EXmod and EXeasy are nearly indis-
tinguishable, whereas the mean number of steps for EXhard remains significantly
higher throughout training. Two factors are contributing to this, the crossing of
phase change boundaries and the distance from the goal state.

To understand which factor is impacting the performance in EXhard more,
we compare the corresponding plots on the left (semi-Markov) and the right
(Markov). On the semi-Markov environment, initially the mean number of steps
drops quickly, before plateauing at what is still a large mean number of steps
to the goal. Alternatively, in the Markov environment, the agent starting from
EXhard consistently learns to take fewer steps to the goal. Here, it converges
to a mean number of steps that is much closer to optimal. This suggests that
while DQN is harmed by the reward sparsity, it is the non-Markov phase change
boundaries that prevent it from converging to the optimal number of steps.
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5.2 DRQN on the Semi-Markov Phase Change Environment

Given the significant effect caused by the non-Markov phase change boundaries,
we now investigate the extent to which the hidden representation and sequential
nature of recurrent neural networks enables agents learning with DRQN to better
navigate the non-Markov phase change boundaries.

Fig. 3. (left) Mean number of steps per episode for DRQN on the semi-Markov phase
change environment. (Right) Mean number of steps per episode for DRQN on the
Markov phase change environment

The left plot in Fig. 3 shows the average number of steps per episode that
the agent learning with DRQN takes on route to the goal in the semi-Markov
environment. The results for the Markov version of the phase change environment
are shown on the right.

For the most challenging case EXhard, DRQN converges to approximately
530 steps after 10, 000 episodes (200 × 50). By contrast, when the agent learns
with DQN on EXhard, it does not converge after 20, 000 episodes of training.
Thus, DRQN provides a good improvement in terms of the convergence speed
and the average number of steps taken on route to the goal.

Comparing the semi-Markov results on the left and the Markov results on
the right reveals that the DRQN agent on the semi-Markov problem is still not
equivalent to the agent on the Markov problem. The gap, however, is closed
significantly from what we found with DQN. In the Markov environment, the
DRQN agent in EXhard converges after approximately 3, 750 episodes to 40 steps
(which is optimal), versus approximately 530 steps after around 10, 000 episodes
for the semi-Markov environment.

5.3 Agents with Hindsight Experience Replay

The above results demonstrate that learning with DRQN can produce a signifi-
cant reduction in the number of steps taken to the goal, and a significant speed
up in the rate of learning in comparison to DQN. Nonetheless, the number of
episodes DRQN requires to converge is more than double on the semi-Markov
problem, and the converged agent takes on average over 10 times more steps.
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In the following two subsections, we evaluate whether HER helps to improve
the rate of convergence on the semi-Markov phase change environment, and
assess how it compares to the Markov environment.

Fig. 4. (left) Mean number of steps per episode for DQN with HER on the semi-Markov
phase change environment. (Right) Mean number of steps per episode for DQN with
HER on the Markov phase change environment

DQN+HER: Figure 4 shows the mean performance for DQN with HER in the
semi-Markov phase change environment on the left and in the Markov environ-
ment on the right. Once again, we will focus on the performance on EXhard as it
produces the most insightful results. The plot demonstrates that the DQN agent
learns significantly faster with HER than without. This is consistent with previ-
ously published results. In particular, the agent on EXhard converges to approx-
imately 195 steps after 6, 000 episodes of learning on average. Whereas, without
HER, DQN had not converged after 20, 000 episodes. Interestingly, this is faster
convergence, and to fewer steps than the DRQN results reported in the previ-
ous section. This is likely due to improved efficiency within the phases, whilst
the accuracy of the action selection in the non-Markov phase change boundaries
remains less than optimal. The performance gap with the Markov environment
is narrowed, but still wide. Specifically, in the Markov setup, DQN+ HER con-
verges to approximately 43 steps (approximately optimal) after an average of
3, 150 episodes.

DRQN+HER: Finally, we evaluate the benefit of using HER with DRQN
in the semi-Markov phase change environment. These results are presented in
Fig. 5. The earlier results with DRQN on EXhard amounted to 530 steps after
approximately 10, 000 episodes. With the addition of HER, the agent converges
to approximately 145 steps on average after 4, 000 episodes. This shows that
DRQN receives a good performance boost from the addition of HER in terms
of average number of steps and the rate convergence. For comparison, the agent
learning with DQN+ HER on EXhard converges to approximately 195 steps after
6, 000 episodes of learning on average. Thus, DRQN+ HER is the better of the
two methods on the semi-Markov phase change environment.
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Fig. 5. (Left) Mean number of steps per episode for DRQN with HER on the semi-
Markov phase change environment. (Right) Mean number of steps per episode for
DQN with HER on the semi-Markov phase change environment (re-plotted for ease of
analysis).

Despite its superiority, there is a noteworthy lag in the learning curve for
DRQN+ HER for EXhard before the mean number of steps steeply drop off.
Whereas, DQN+ HER has a relatively consistent drop in the mean number of
steps from the outset. This difference suggests that agents learning with recurrent
neural network models may suffer from an initial lag in performance due to the
added complexity of training the GRU.

6 Discussion

Our results have extended the previous analysis of DRQN as a method to solve
POMDPs to problems beyond the standard Atari 2600 game suite. In particu-
lar, our results show that agents trained with DRQN learn significantly better
value-functions for a physics-inspired semi-Markov phase change environment in
comparison to DQN. Specifically, adding the recurrent architecture to the DQN
enables the agent to takes fewer steps on route to the goal. Moreover, we show
that DRQN is further improved in terms of the learning rate and the number of
steps to the goal when HER is incorporated into the training process.

In spite of the significantly improved performance, DRQN does not learn
a value-function that implements a perfect policy for the semi-Markov phase
change environment. After convergence, DRQN + HER takes on average 3-times
the optimal number of steps on route to the goal in EX hard in the semi-Markov
environment. Without HER, DRQN takes on average 13-times more steps than
optimal. As can be seen in Fig. 5, the gap is significantly narrowed for EX mod,
and is completely closed for EX easy. This suggests that the portion of non-
Markov states has a non-linear impact of the learning difficulty.

A potential method to improve the performance of the DRQN is to use longer
trace length. Longer trace lengths would provide more direct information about
the state sequence, and potentially simplify the problem. Our current analysis
does not reveal where the extra steps are taken. Nonetheless, it highly likely that
the agent would still struggle with the semi-Markov phase change boundaries.
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Our ongoing research aims to identify where the DRQN is failing to learn the
optimal actions in order to propose improvements. There is clearly room for
improvement; here we have established a strong baseline for future work.

From an experimental science perspective, these results suggest that RL has
the potential to have a significant, positive impact of the advancement of mate-
rials, and other experimental science. We note, however, that application of RL
in the laboratories will involve several more layers of complexities on top of
partial observability. Each of these challenges needs to be clearly understood
and analyzed from an RL perspective in order to leverage the right tools from
the current state-of-the-art and to develop new RL theories and methodologies
where necessary. In the list below, we outline a few characteristic of laboratory
learning that we see as being pertinent.

– The existence of different classes of sensors, each of which provide different
information content, costs, and data representation;

– The value and cost of each sensor depends on time and space;
– Because observations are costly, the agent should have the ability to make

active decisions about when to take an observations and which observations
to make;

– Sensors have intrinsic quantifiable uncertainties associated with them.
– In a significant number of experiments there is a simple phenomenological

model which can roughly predict the outcome.

A straightforward extension of the results presented here would be to include
simulated spectroscopic sensor input. This is closer to the conditions that human
operators face. Additionally, in our simple model of material phases, the mapping
between energy input to change in conditions (P,T) did not vary across the
different phases. In general, this is not true and depends on the specific heat and
compressibility of the material. Finally, throughout, we assumed equilibrium
conditions - i.e. the timescale of internal relaxations was short compared to the
observation time.

7 Conclusion

We introduced the phase change environment to evaluate RL algorithms on a
semi-Markov problem inspired by physics and laboratory science. We compared
DQN and DRQN with and without HER in the environment. Our results show
that DRQN learns significantly faster and converges to a better solution than
DQN in this domain. Moreover, we find that the number of episodes to conver-
gence in DRQN is further improved by the incorporation of HER. Nonetheless,
the hypothesis that the implicit state estimate maintained by the recurrent net-
work in DRQN would enable it to learn to behave optimally in the phase change
environment was not realized in these experiments. Specifically, DRQN+ HER
converges to approximately 3-times the optimal number of steps on EXhard.

Our ongoing research is evaluating the benefit of longer trace lengths for
DRQN and alternative algorithms for semi-Markov decisions processes. In addi-
tion, we are developing more materials-inspired RL environments to evaluate
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existing algorithms and promote the development of new, superior algorithms
for materials design and discovery.
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Abstract. Deep Learning and back-propagation have been success-
fully used to perform centralized training with communication pro-
tocols among multiple agents in a cooperative environment. In this
work, we present techniques for centralized training of Multi-Agent Deep
Reinforcement Learning (MARL) using the model-free Deep Q-Network
(DQN) as the baseline model and communication between agents. We
present two novel, scalable and centralized MARL training techniques
(MA-MeSN, MA-BoN), which achieve faster convergence and higher
cumulative reward in complex domains like autonomous driving simu-
lators. Subsequently, we present a memory module to achieve a decen-
tralized cooperative policy for execution and thus addressing the chal-
lenges of noise and communication bottlenecks in real-time communica-
tion channels. This work theoretically and empirically compares our cen-
tralized and decentralized training algorithms to current research in the
field of MARL. We also present and release a new OpenAI-Gym environ-
ment which can be used for multi-agent research as it simulates multiple
autonomous cars driving on a highway. We compare the performance of
our centralized algorithms to existing state-of-the-art algorithms, DIAL
and IMS based on cumulative reward achieved per episode. MA-MeSN
and MA-BoN achieve a cumulative reward of at-least 263% of the reward
achieved by the DIAL and IMS. We also present an ablation study of
the scalability of MA-BoN showing that it has a linear time and space
complexity compared to quadratic for DIAL in the number of agents.

Keywords: Multi-agent reinforcement learning · Autonomous
driving · Emergent communication

1 Introduction

Multi Agent Reinforcement Learning (MARL) is the problem of learning
optimal policies for multiple interacting agents using RL. Current autonomous
driving research focuses on modeling the road environment consisting of only
human drivers. However, with more autonomous vehicles on the road, a shared
cooperative policy among multiple cars is a necessary scenario to prepare for.

To overcome the problem of non-stationarity in the training of MARL agents,
the current literature proposes the use of centralized training using message shar-
ing between the agents [11]. The message shared between the agents is generated
using the policy network and trained using policy gradients. This approach leads
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to sub-optimal messages being shared between agents as the message is inadver-
tently tied to the policy of the agent [3]. Current approaches thus show a poor
performance in large-scale environments with sparse rewards and a long time to
horizon as shown in our experiments section.

In this paper, we propose centralized training (MA-MeSN) algorithms for
MARL environments which are a generalization of the MARL algorithms cur-
rently in literature. Our approach allows separation of policy and communication
models and provides a stabilized method for training in an off-policy method.
We also compare our centralized training algorithm against DIAL (Differentiable
Inter-Agent Learning) [5] and IMS (Iterative Message Sharing) [14] on a large
scale multi-agent highway driving simulator we developed as part of this work.
We present techniques (MA-MeSN-MM) to derive a cooperative decentralized
policy from the trained centralized policy (MA-MeSN). All algorithms are com-
pared based on various metrics our treadmill driving simulator and OpenAI’s
multi-agent particle environments [13] for formal verification of our algorithms.

2 Related Work

MARL has a rich literature (particularly in the robotics domain [2]). Independent
cooperative tabular Q-learning with multiple agents has been studied in [15]. The
empirical evaluation shows that cooperative behavior policy can only be achieved
by information sharing, for example, other agents’ private observations, policies
or episode information.

There is a vast literature on the emergence of communication between agents
in the same environment [4,9,13,14]; which propose training messages shared
between agents using backpropagation. The work in [5,14] extends the tech-
niques of message sharing between agents to multi-agent reinforcement learn-
ing (MARL). The authors in [14] employ a message sharing protocol where an
aggregated message is generated, by averaging the messages from all agents, and
passing it back as an input to the agents along with their observation’s hidden
state representation to compute the final state-action values. This Iterative Mes-
sage Sharing (IMS) is iterated P times before the final action for all agents is
computed using ε-greedy method. Differentiable Inter-Agent Learning DIAL [5]
also trains communication channels, through back-propagation, for sequential
multi-agent environments. DIAL presents an on-policy training algorithm which
uses the past history to generate messages for inter-agent communication. In this
paper, we present a generalization of the MARL algorithms currently available
in literature for centralized training. Our algorithm is able to outperform DIAL
and IMS on large scale environments while achieving a better time and space
complexity during training and execution.

Multi agent environments require a decentralized execution of policy by
agents in the environment. Work in [7] has shown that the MARL agents could be
executed with discrete communication channels by using a softmax operation on
the message. This approach provides a partial decentralization of the trained cen-
tralized policy. The authors in [6] successfully train multiple independent agents
by stabalizing the experience replay for multi-agent setting. The stabilization
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is done by prioritizing newer experiences in the experience buffer for training
as they represent the current transition dynamics of the environment. We also
compare the training of our decentralized policy against the independent agents
trained using Stabilized Experience Replay (SER). Our algorithm allows the
centralized trained cooperative policy to be easily extended to a decentralized
setting while maintaining acceptable performance.

3 Background on Multi-Agent Reinforcement Learning

In this section we present a background on multi-agent reinforcement learning
and the variables used in the paper. A short background on Deep Q-Networks
[12] can be found in Appendix (https://uwaterloo.ca/scholar/sites/ca.scholar/
files/mcrowley/files/deep multi agent reinforcement learning for autonomous
driving-full.pdf). In this work we consider a general sum multi-agent stochastic
game G which is modeled by the tuple G = (X,S,A, T,R,Z,O) with N agents,
x ∈ X, in the game. The game environment presents states s ∈ S, and the agents
observe an observation z ∈ Z. The observation is generated using the function
Z ≡ O(s, x) which maps the state of each agent to its private observation z. The
game environment is modeled by the joint transition function T (s,ai, s′) where
ai represents the vector of actions for all agents x ∈ X. The dependence of the
transition matrix on behavior policy of other agents gives it the non-stationary
property in multi-agent environments. We use the subscript notation i to repre-
sent the properties of a single agent x, a bold subscript i to represent properties
of all agents x ∈ X and −i to represent the properties of all agents other than xi.
We use the superscript t to represent the discrete time-step. All agents share the
same utility function R, which provides agents with an instantaneous reward
for an action ai. Our game environment represents a Decentralized Partially
Observable Markov Decision Process (DEC-POMDP) [1]. The agents can send
and receive discrete messages between each other, which are modeled based on
speech act theory, represented as mt

i. The game environment does not provide
a utility function in response to the communication/message actions performed
by an agent. The major challenges in the domain of multi-agent reinforcement
learning include the problem of dimensionality, coordinated training, and train-
ing ambiguity. Having strong communication between agents can solve some of
these problems.

4 Methods

4.1 Multi-Agent Message Sharing Network (MA-MeSN)

The DIAL and IMS methods demonstrated that emergent communication
between multiple agents can be achieved by optimizing messages shared between
agents using backpropagation. DIAL presents a model where the communicative
actions (generated by the message policy) and non-communicative actions (gen-
erated by the behavior policy) are generated using the same model. This app-
roach forces a strong correlation between the communicative and non commu-
nicative actions, but leads to sub-par results. Behavior policy of the agents might

https://uwaterloo.ca/scholar/sites/ca.scholar/files/mcrowley/files/deep_multi_agent_reinforcement_learning_for_autonomous_driving-full.pdf
https://uwaterloo.ca/scholar/sites/ca.scholar/files/mcrowley/files/deep_multi_agent_reinforcement_learning_for_autonomous_driving-full.pdf
https://uwaterloo.ca/scholar/sites/ca.scholar/files/mcrowley/files/deep_multi_agent_reinforcement_learning_for_autonomous_driving-full.pdf
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be similar in a cooperative environment, but their message policy is focused on
achieving high information sharing between agents. Using the same model to
predict the behavior and message policy would lead to conflicting updates to
the neural network due to different objectives.

1

N

f

1

N

f

1

N

f

1

N

f'

O1

t t

A1

A2

A3

O2

O3

1

N

f''

1

N

f''

1

N

f''

Switch

O2

1

N

f'

O3

Concat

Concat

Concat

1

N

f'

O1

Fig. 1. Architecture for Multi-Agent Message Sharing Network (MA-MeSN)

We thus present a generalization of the communication based MARL algo-
rithms in Fig. 1 where each agent uses a different model for message policy and
behavior policy. The f ′′ neural network maps the message received from the
other agents m−i along with its partial observation of the environment zi to a
state-action-message value function f ′′ = Q(zi, ai,mi). We refer to this network
as the (behavior) policy network. The message is generated by the other agents
x−i using the neural network approximator f ′

i which maps the agent’s private
observation to a communication action m−i. We refer to this network as the
message (policy) network. The message passing interaction/negotiation can be
extended to multiple iterations for faster convergence. During the training, we
allow only allow a single pass of messages between agents. In contrast to previous
work in DIAL, we train the message network using the cumulative gradients of
all policy networks as shown in Algorithm 1. Optimizing the message network
with cumulative gradients leads to messages which are generalizable to all agent
policies.

Comparison to Previous Work. This approach has two advantages over
DIAL. The messages mt

−i(z
t
−i, f(zt

i)) are conditioned on the entire observable
state at time t, as opposed to DIAL, where messages mt

−i(z
t−1
−i ) are a function

of the previous time-step observation of each agent zt−1
−i . Generating a message

based on the past introduces the message network’s dependency on the transition
dynamics; which as discussed exhibits a non-stationary property in multi-agent
environments and thus lead to divergence. On the other hand, in MA-MeSN,
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Algorithm 1. Multi-Agent Message Sharing Network (MA-MeSN)
for i = 1, N do

Initialize replay memory D〉;wherei ∈ {1..N} to capacity M
Initialize the online and target, message and policy networks f ′

i,θ, f
′′
i,θ, f

′
i,θ′ , f ′′

i,θ′
end for
for episode = 1, E do

for t = 1, Tconvergence do
for i = 1, N do

Select a random action at
i with probability ε

Otherwise, select at
i = argmaxaQf ′′

i
(ot

i, m
t
−i, a; f

′′
θ )

Execute action at
i, collect reward rt+1

i and observe next state ot+1
i

Store the transition (ot
i, a

t
i, r

t+1
i , ot+1

i ) in D〉
Sample mini-batch of transitions (oj

i , a
j
i , r

j+1
i , oj+1

i ) from D〉
Generate the messages from other agents mj

−i = f ′
−i(o

j
−i)

Set yj
i =

{
rj+1

i , if oj+1
i is terminal

rj+1
i + γ maxa′ Qf ′′

i
(oj+1

i , mj+1
−i , a′; f ′′

i,θ′), otherwise

Compute gradients using target value yj
i for policy network f ′′

θ

ΔQf ′′
i
= yj

i − Qf ′′
i
(oj

i , m−i, a; f
′′
i,θ

Apply gradients ∇θi,f ′′ to f ′′
i,θ

Collect gradients ∇θi,f ′ from all policy networks
Apply gradients ∇θi,f ′ to f ′

i

end for
Every C steps, set θ′

i,f ′′ ← θi,f ′′∀i
Every C steps, set θ′

i,f ′ ← θi,f ′∀i
end for

end for

training the message network to generate messages mt
−i based on the current

observation reduces the dependence on the environment’s transition dynamics.
Secondly, this allows for our algorithm to train off-policy using a step based
experience replay. Whereas DIAL requires on-policy training using recorded tra-
jectories.

Fully Decentralized Cooperative Policy. The messages shared between
agents are discrete of size 2 bytes. We generate discrete message by apply-
ing Gumbel-Softmax Sampling [7] on the prediction of the message network.
To achieve fully decentralized execution without message sharing, we utilize a
LSTM memory module μ in conjunction with each agent’s policy network. The
LSTMμ learns a mapping from agent’s private observation history to the mes-
sage generated by the other agents in the environment. The model LSTMμ

mimics the message received from other agents. Thus the individual memory
modules μ along with their policy network f ′′ can be independently used for fully
decentralized execution of the learned cooperative policy (MA-MeSN-MM). The
message memory module LSTMμ is trained in a supervised fashion in parallel
to the policy and message networks during centralized training.
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4.2 Multi-Agent Broadcast Network (MA-BoN)

The generalization of communication based centralized MARL algorithms pre-
sented in the previous section allows us to develop communication models with
distinct message types. We constraint our MA-MeSN model to a single message
to rule them all approach and develop a broadcast model as shown in Fig. 2.
The neural network f ′ (message network) maps the shared partial observation
encoding from all agents to a broadcast message bmt. We study the properties
of MA-MeSN and MA-BoN in Sect. 6.3 and show that this network is feasible in
multi-agent general sum games.
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Fig. 2. Multi-Agent Broadcast Network (MA-BoN)

The NN f ′ learns a combined communication message as the broadcast mes-
sage (bmt). Each agent can now independently evaluate the action-value for
their private observation using the function g′(zt

i , bm
t), which is a function of

the complete observed state of the environment. This network also allows for
parallel action-value evaluations with a single forward pass of the network and
avoids the |P | iterations required by IMS, and provides a linear space and run-
time complexity as shown in Sect. 6.2. MA-BoN can also be decentralized by
the use of a memory module LSTMπ trained parallel to the policy network
(MA-BoN-MM).

5 Experimental Methodology

In this paper, we compare our algorithms with MARL algorithms in the literature
on three different MARL environments. We present the treadmill driving envi-
ronment simulator in this section. The OpenAI particle environments are used to
show the validity of our algorithms on public testbeds. The results can be found
in Appendix (https://uwaterloo.ca/scholar/sites/ca.scholar/files/mcrowley/files/
deep multi agent reinforcement learning for autonomous driving-full.pdf).

https://uwaterloo.ca/scholar/sites/ca.scholar/files/mcrowley/files/deep_multi_agent_reinforcement_learning_for_autonomous_driving-full.pdf
https://uwaterloo.ca/scholar/sites/ca.scholar/files/mcrowley/files/deep_multi_agent_reinforcement_learning_for_autonomous_driving-full.pdf
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5.1 Treadmill Driving Environment

The treadmill environment simulates an infinite highway with multiple cars driv-
ing in the presence of an adversary. The highway is simulated using a treadmill,
which is always running and thus creates an infinite highway. The size of the
treadmill is currently kept fixed at [100, 100] steps. Agents can enter or exit
the treadmill from the front and back. The treadmill contains a minimum of 2
cooperative autonomous agents and at least 1 adversary agent. These agents can
be controlled using Deep RL methods and the adversary (aggressive) car is con-
trolled with a stochastic behavior policy which can cause a crash with the closest
autonomous car. The cooperative autonomous vehicles can sense the closest car
as part of its partial private observation of the environment, but do not receive
information to distinguish between their behavior (cooperative/adversary). The
agents can send messages to other agents using a discrete communication broad-
cast channel, to which other agents subscribe. The private reward received by
an autonomous car is the normalized distance from the closest observed car
and a large negative reward for a crash. The agents’ actions include 3 angles of
steering in 8 directions and 3 discrete levels of acceleration/deceleration. The
reward function does not provide explicit rewards for cooperation between the
agents or for maintaining stable emergent communications between agents. The
episode is terminated when the distance between any two agents is 0 (collision
is encountered).

6 Results and Discussions

In this section, we present the results of training our algorithms in the treadmill
driving environment. In all our algorithms (MA-MeSN, MA-BoN, DIAL, IMS,
independent DQN, independent DQN with SER), we use a hierarchical neural
network structure [8]. We provide an evaluation of hierarchical DQN on tread-
mill driving environment domain in Appendix (https://uwaterloo.ca/scholar/
sites/ca.scholar/files/mcrowley/files/deep multi agent reinforcement learning
for autonomous driving-full.pdf). In this section, we focus on presenting perfor-
mance results for our multi-agent algorithms on the treadmill driving simulator.

6.1 Centralized Training on Multi-Agent Driving Environment

All experiments are run for a minimum of 4K episodes (0.8M steps). All neural
networks consist of two layers with 4096 neural units in the first layer with 12
neurons in the second layer. DIAL network consists of two layers with 6144 units
in the first layer to allow for fair evaluation to other algorithms. The maximum
size of message shared between agents is 2 bytes. We use Adam optimizer with a
learning rate of 5×10−4. The batch-size for updates is 64 and the target network
is updated after 200 steps, except DIAL’s target network is updated after 40
episodes. For the IMS algorithm, we arrived at using P = 5 for communication
iterations through cross-validation.

https://uwaterloo.ca/scholar/sites/ca.scholar/files/mcrowley/files/deep_multi_agent_reinforcement_learning_for_autonomous_driving-full.pdf
https://uwaterloo.ca/scholar/sites/ca.scholar/files/mcrowley/files/deep_multi_agent_reinforcement_learning_for_autonomous_driving-full.pdf
https://uwaterloo.ca/scholar/sites/ca.scholar/files/mcrowley/files/deep_multi_agent_reinforcement_learning_for_autonomous_driving-full.pdf
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Fig. 3. Comparison of Cumulative Reward for Centralized Training Algorithms in
Multi-Agent Driving Environment.

The cumulative reward achieved during centralized training of our MARL
algorithms is shown in Fig. 3. All experiments are repeated 20 times and averaged
to produce the learning curves. We achieve the highest cumulative reward with
MA-MeSN followed by the MA-BoN algorithm. The IMS and DIAL algorithms
are able to improve on the policy achieved by independent DQN, as they have
the advantage of message sharing over independent DQN policy. IMS shows a
slow learning curve compared to other algorithms with P = 5 communication
iterations. IMS training also requires curriculum learning approach to train the
network efficiently [14]. However, to maintain fairness, this was left out in our
experiments. DIAL shows steady improvement in performance, however, the
performance of the final policy is weak when compared to MA-MeSN.

As results show, our generalized MARL algorithm (MA-MeSN) is able to
perform superior to DIAL and IMS. The benefit of having a separate model
for message policy and behavior policy prediction. The separation of message
policy model and behavior policy model leads to each neural network achieving
a more optimal solution than competing approaches. Whereas, DIAL and IMS
constraint the training of message and behavior policy to a single neural network
which produces sub-optimal results. MA-BoN also constraints the inter-agent
message sharing to a single broadcast message which also leads to a sub-par
result in comparison to MA-MeSN.

6.2 Ablation Study of Scalability of MA-BoN

In this section, we demonstrate the scalability of the MA-BoN approach com-
pared to DQN with stabilized experience replay, IMS and DIAL. We carry out
an ablation study of our approach by varying the number of cars in the envi-
ronment and present the results in Fig. 4. The Fig. 4 shows a comparison of the
inference time it took to complete an episode and the average cumulative reward
achieved per episode when the number of agents in the environment is increased.
The results for cumulative reward comparison are computed by averaging results
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Avg. cumulative reward achieved at
convergence with varying number of
agents in the environment.

Avg. inference time of the algorithms
with varying number of agents in the
environment.

Fig. 4. Scalability comparison on the treadmill environment.

of 5 training runs for each algorithm with different seed values. The training of
all algorithms was completed over 15, 000 episodes or 2.5M steps. We see that
our approach MA-BoN is able to sustain better performance compared to other
approaches when the complexity of the environment was increased. The infer-
ence time grows linearly for MA-BoN in comparison to the quadratic increase
for DIAL. MA-BoN shows better scalability as the message generation network
for each agent is optimized separately using the cumulative gradients from all
agent’s temporal difference loss. Thus the message is more generalizable in com-
plex settings, while DIAL and IMS suffer from the problem of optimizing the
joint objective for communicative and non-communicative policy; which leads to
reduced robustness of the messages shared between agents.

6.3 Theoretical Study of Emergent Communication

In this section, we study the inter-agent emergent communication achieved dur-
ing training of our MARL algorithm, MA-MeSN. Table 1 shows the results for
MA-MeSN using common metrics [10] to measure the effect of these messages
using our domain. Speaker consistency (SC) is used to measure positive sig-
naling as it measures the mutual information between the communicative mi

and behavior ai policy of an agent. We see a small positive value of 0.18 for
SC; which suggests that the objective for message policy and behavior policy
are indeed different. Thus our approach of generalizing MARL algorithms with
separate message and policy networks is necessary. Instantaneous Coordination
(IC) measures the positive listening between agents, which is measure of the
mutual information between the speaker’s communicative actions m−i and the
listener’s behavior/locomotive actions ai. We achieve a value of 0.41 for IC which
indicates that the listener agent’s policy are dependent on the messages of the
speaker agent, which is necessary for emergent communication. We also study
the Communication Message Entropy which measures if the listener receives the
same message for a given input. We achieve a value of 1.27 for entropy, which
shows that the speaker is not using different messages for the same input and
is rather consistent in its signals.
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Table 1. Study of Emergent Communication in MA-MeSN. The table shows the results
for speaker consistency, instantaneous coordination and entropy [10].

Emergent communication metric used Value

Speaker consistency (Positive signaling) 0.18

Instantaneous coordination (Positive Listening) 0.41

Communication message entropy 1.27

Message Input Norm (MIN) 63.75

Cumulative reward with white noise 319.07

To further study the effects of communication, we probe our MA-MeSN
model, calculate the L2-norm of the fully connected weight matrix for message
input for the listener agent, and report the results in Table 1. The weight matrix
for the message input has an L2-norm much higher than 0.0, which suggests
that the message indeed does get used by the listener agent’s policy network.
We extend our analysis of the MA-MeSN by replacing the messages received by
the agents with white noise on a trained MA-MeSN model. We see a reduction in
the mean cumulative reward achieved by the algorithm from 746.8 to 319.07 in
the stochastic environment. The reduction in the cumulative reward shows that
emergent communication did develop between agents and is an integral part of
the final cooperative policy achieved.

6.4 Fully Decentralized Cooperative Policy in Driving Environment

We compare our method of using message memory models for decentralized
execution (MA-MeSN-MM) with independent DQN, DQN with stabilized expe-
rience replay and distributed behavior cloning of centralized cooperative policy

Fig. 5. Comparison of cumulative reward for decentralized training in Multi-Agent
Driving Environment.
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(CoDBC). CoDBC policy is trained using imitation learning of the (expert) cen-
tralized cooperative policy from MA-MeSN. All of the hyper-parameters and
experimental setup are exactly the same as the experiments for the centralized
training section. The learning curve for decentralized policies is shown in Fig. 5.
As the treadmill environment does not explicitly reward agents for cooperation,
we see poor performance from DQN and DQN with SER; however DQN with
SER is more stable during training compared to DQN. DQN with SER applies
a weight to each training sample’s gradient. The weight is computed using a
linearly decaying function based on the episodes elapsed since a sample was
collected. Thus, DQN with SER is able to prioritize its training on the latest
samples (which represent the latest policies of other agents) collected in the
DQN’s buffer and thus avoids divergence. However, the final policy achieved by
DQN w/ SER is worse than MA-MeSN-MM and CoDBC.

While the CoDBC method outperforms DQN and DQN w/ SER, the num-
ber of episodes required to learn a cooperative policy is nearly 8000 episodes, as
CoDBC needs to be run sequentially after MA-MeSN policy training has con-
verged. Our method MA-MeSN-MM achieves decentralized cooperative policy by
learning a function mapping from private observations to the messages received
from other agents. The message module (MM) is trained in parallel to the pol-
icy network and thus does not require additional training after MA-MeSN has
converged. This approach is ideal for real-time agents in MARL environments
with a goal of cooperation as communication channels are unreliable and induce
a time-latency.

7 Conclusion and Future Work

In this paper we present that generalization of the current work in MARL field
leads to large improvements in the final multi-agent policy. Our approach allows
for variability in the message format which is useful for various domains. MA-
MeSN and MA-BoN both outperform the algorithms found in current literature
based on learning curve results. Our algorithms also provide improvements in
the time and space complexity over DIAL and IMS. MA-MeSN and MA-BoN are
easier to train as they can be trained in an off-policy setting. We also present a
decentralized model which achieves higher cumulative reward compared to some
of the centralized techniques and all decentralized techniques. This paper also
presents a new large scale multi-agent testing environment for further MARL
research.
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Abstract. Traditional static pattern mining techniques, such as asso-
ciation rule mining and sequential pattern mining, perform inefficiently
when applied to streaming data when regular updates are required, since
there is significant repetition in the computation. Incremental mining
techniques instead reuse information that has been previously extracted,
and apply newly received data to compute the updated set of patterns.
This paper proposes a new algorithm for incrementally mining sequential
rules with streaming data. An existing rule mining algorithm, ERMiner
is presented, and an incremental extension, called IERMiner is pro-
posed and demonstrated. Experiments show that IERMiner significantly
decreases the run time required to update the set of patterns when com-
pared to running ERMiner on the full dataset each time.

Keywords: Data mining · Incremental sequential rule mining ·
Streaming data

1 Introduction

Data mining involves discovering interesting information in large quantities of
data. A popular subfield of data mining is tasked with finding patterns in
sequences of data. Much work has been done in itemset and association rule
mining [1]. However, these approaches do not consider time or the sequential
order of the data. Sequential pattern mining and sequential rule mining solve
this limitation.

Sequential pattern mining (SPM) [2,3] is a research discipline within the
field of data mining that focuses on identifying frequently occurring sequences
of objects or events in an input set of sequences. Here, patterns of interest
are sequences themselves, and such patterns are declared frequent if they are
contained (i.e. as a subsequence) by a sufficient number of the input sequences.
An extension to sequential pattern mining is sequential rule mining [4], which
aims to find rules that dictate under which circumstances (i.e. given the presence
c© Crown 2020
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of certain items) that items or sequences appear with sufficient frequency, given
a set of input sequences. These rules can then used to predict which items might
appear in the future, given what has been observed in the past. Specifically,
we attempt to identify partially ordered sequential rules (also referred to as pos
rules), as proposed by Fournier-Viger et al. [5]. This type of rule dictates when
a set of items are likely to appear in the future, conditionally on the presence of
a second set of items. There exist various algorithms for pos rule mining [4,6],
with the fastest today being ERMiner [6].

In this paper, we explore the problem of partially ordered sequential rule
mining on streaming data, where there is never a static, complete dataset to
mine, but rather data is being received continuously. Examples of this type
of data are live customer transactions, up-to-date weather measurements, and
ongoing patient registrations at a hospital. In such situations where there is a
desire to update the set of identified patterns of interest with regularity, it can be
wasteful to ignore information that was found in previous iterations and simply
mine the set of patterns from scratch each time. To address this, incremental
algorithms have been proposed that process new information efficiently and, by
maintaining previously identified information effectively, are able to generate an
updated set of patterns more quickly than static algorithms can process the
entire dataset from scratch [7–12].

The key contribution of the work presented in this paper is an incremental
algorithm for partially ordered rule mining with unbounded data. Specifically,
we propose an extension of the ERMiner algorithm, called IERMiner, that incre-
mentally mines rules from streaming input sequences. In this case, the number
of sequences remains static; sequences grow over time, with newly arriving data
appended to the ends of those sequences. We show that our solution is effec-
tive by comparing the performance of our algorithm with that of re-running the
existing algorithm for bounded data on an ever-increasing set of data.

2 Background

2.1 Literature Review

Initial exploration into sequential pattern mining can be attributed to Srikant
and Agrawal [13], who first proposed the AprioriAll algorithm, as well as its first
key extension, the Generalized Sequential Patterns (GSP) algorithm. Further
improvements were proposed by Zaki [14] with a vertical sequence representation
for the SPADE algorithm, Ayres et al. [15], who introduced the use of bitmaps
for the SPAM algorithm, and Pei et al. [16] with the introduction of the pattern
growth mining method with the PrefixSpan algorithm.

Solutions for the concept of incremental sequential pattern mining were ini-
tially proposed by Parthasarathy et al. [10] who utilized a sequence lattice to
contain all of the potential frequent sequential patterns with the ISM algorithm.
Masseglia et al. [9] next provided an advancement with the ISE algorithm that
utilized a candidate generate-and-test approach. Cheng et al. [8] provided further
improvements to the efficiency of incremental search with the IncSpan algorithm.
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As mentioned above, sequential rule mining is a relatively new area with a
small number of algorithms having been proposed [4,6], with the current state
of the art algorithm being ERMiner, which is described in detail in Sect. 3.

To the best of our knowledge, this paper is the first to propose an incremental
algorithm for sequential rule mining on streaming data.

2.2 Sequential Pattern Mining

Sequential pattern mining is an extension of itemset mining applied to data that
possess temporal order [17]. Let I be a set of items, and let S be a set of input
sequences, where each s ∈ S consists of an ordered list of itemsets, or sets of
items from I, also known as transactions. A sequence 〈a1a2 . . . an〉 is said to be
contained in another sequence 〈b1b2 . . . bm〉 if there exist integers i1, i2, . . . , in
with i1 < i2 < . . . < in such that a1 ⊆ bi1 , a2 ⊆ bi2 , . . . , an ⊆ bin . A sequence
s ∈ S supports a sequence s′ if s′ is contained in s. The support sup(s′) for a
sequence s′ given a set S of input sequences is the percentage of sequences in S
that support s′, and equals sup(s′) = |{s ∈ S | s supports s′}| / |S|. A sequence
s′ is deemed a sequential pattern if sup(s′) is greater than some minimum.

2.3 Sequential Rule Mining

Where a sequential pattern is essentially a smaller sequence that is contained
within the set S of input sequences with sufficiently high frequency or support, a
sequential rule r ∈ R(S) dictates when the presence of one or more items implies
the presence of others, where some sequence-based properties are satisfied with
both sufficient support and confidence. In this paper, we specifically consider
partially ordered sequential rules. Formally, a partially ordered sequential rule
(henceforth referred to simply as a sequential rule) X → Y is a relationship
between the nonempty sets of items X ⊆ I and Y ⊆ I, such that X ∩ Y = ∅. A
rule defines a relationship between two sets of items, specifically that if the items
in the set X occur within a sequence, then items in Y will occur afterwards in the
same sequence. The left and right sides of the rule are called the antecedent and
the consequent, respectively [4]. For example, a rule might state that customers
who buy bread and butter are also likely to purchase milk later that week.

The problem of sequential rule mining is defined as follows: given a database
of sequences, find all the sequential rules that satisfy some given constraints. Two
commonly encountered constraints (also referred to as interestingness measures
[4]) are support and confidence.

Let X → Y be a candidate sequential rule and let si ∈ S be an input sequence
containing items U(si,m, n) ⊆ I in its itemsets from position m (inclusively) to
position n (exclusively). The sequence si contains X → Y iff there exists an
integer k such that X ⊆ U(si, 0, k) and Y ⊆ U(si, k, |si|). The overall support
σ(X → Y ) is then the fraction of input sequences that contain it. If the support
of a candidate rule exceeds some prespecified threshold, it is said to be frequent.



82 A. Drozdyuk et al.

The confidence ω(X → Y ) is then the fraction of sequences containing
the rule’s antecedent that also support the rule. Thus ω(X → Y ) = |{s ∈
S|s supports X → Y }|/|{s ∈ S|X ⊆ U(si, 0, |si|)}|. If a candidate rule is fre-
quent and its confidence is greater than or equal to some prespecified threshold,
it is considered to be a sequential rule.

For example, consider the following sample database:

(1) a, c, b, k, e, f (2) c, a, d, e (3) k, g, f, p (4) k, r, f, p

The set {a, c} occurs in sequences 1 and 2. This gives rise to a partially
ordered sequential rule {a, c} → {e}, which occurs in two sequences out of the
four, so the support is 2

4 = 0.5. The whole rule occurs in both of the sequences
in which the rule’s antecedent occurs, so the confidence is 2

2 = 1.

3 ERMiner

ERMiner [6] is an algorithm developed by Fournier-Viger et al. for mining par-
tially ordered sequential rules. ERMiner uses a notion similar to equivalence
classes to keep track of which rules need to be further inspected. It differs from
a previous algorithm, RuleGrowth [4], in that it does not recursively expand the
left or right sides of the rules, but instead proceeds by left and right merges.

To describe the ERMiner algorithm, we first demonstrate the concept of rule
equivalence classes. Formally, a left equivalence class is:

LEW,i =
{
W → Y | (

Y ⊆ I
) ∧ (|Y | = i

)}

where W ⊆ I, i is an integer, and rule W → Y is frequent. In other words, given
a particular itemset W and an integer i, a left equivalence class is defined to be
the set of frequent rules W → Y for all possible itemsets Y of size i.

The right equivalence class is:

REW,i =
{
X → W | (

X ⊆ I
) ∧ (|X| = i

)}

where W ⊆ I, i is an integer and rule X → W is frequent. In other words, given
a particular itemset W and an integer i, a right equivalence class is defined to
be the set of frequent rules X → W for all possible itemsets X of size i.

Now we are ready to introduce the concept of merging.
Left merge is a process of combining two rules r : W → X and s : W → Y

from a left equivalence class LEW,i into a single rule W → X ∪ Y . We require
that the itemsets differ by exactly one item, i.e. |X ∩ Y | = |X| − 1 = |Y | − 1.

Right merge is a process of combining two rules r : X → W and s : Y → W
from a right equivalence class REW,i into a single rule X ∪ Y → W . We require
that the itemsets differ by exactly one item, i.e. |X ∩ Y | = |X| − 1 = |Y | − 1.

As the authors note, we can generate any left equivalence class LEW,i+1 by
performing all left merges on pairs of rules from LEW,i, and we can generate
right equivalence class REW,i+1 by right merging all pairs of rules from REW,i.
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Both LEW,i and REW,i are initialized by a set of 1×1 rules, which are easily
computed by considering all pairs of individual frequent items. For example, if
we know that the sequences in which the item a occurs are [1, 2, 3] while the
item b occurs in [2, 3, 4], then we can calculate the intersection of the two to
be [2, 3]. If a occurs before b in both, and this satisfies our minimum support
requirement, we can form a simple rule a → b, and we initialize LEa,1 = {a → b}
and REb,1 = {a → b}. We proceed similarly for all the other pairs of items.

Finally, the algorithm performs left merges on the results of all the right
merges. This is done by storing all equivalence classes generated by the right
merge into a special structure called the left store. Left store is simply a way
to turn right equivalence classes into left equivalence classes. For example, if
we have two rules generated by the right merge like so: RE{e,f},1 = {{a} →
{e, f}, {b} → {e, f}} then the left store would contain LEa,2 = {{a} → {e, f}}
and LEb,2 = {b} → {e, f}}. These two equivalence classes would then be merged
by a left merge.

4 Incremental Sequential Rule Mining

4.1 Information Maintenance

It is crucial to the overall benefit of an incremental mining algorithm to retain
knowledge about the dataset from state to state as new information is received, in
order to alleviate the necessity to spend resources on re-analyzing previously pro-
cessed data. To facilitate this information maintenance, the algorithm proposed
in this paper takes advantage of the following characteristics. Please see [18] for
developed proofs of each of the claims presented below.

Consider a database S of input sequences. Suppose a new event (i.e. itemset)
is added to the end of a sequence in S, giving the new database S′. Then, for
any r in the set of rules R(S):

– The number of sequences that contain r can only increase, and thus support
of r in S′ is greater than or equal to that in S.

– If r is frequent in S then it cannot become infrequent in S′.
– The confidence of r can increase, decrease or remain unchanged in S′.
– If r is infrequent in S, then there exists a possible sequence of itemset addi-

tions, resulting in database S′′ in which r would become frequent.

A key result of the above statements is that, as the database grows, equiva-
lence classes (as defined by the ERMiner and adapted for the incremental version
proposed here) cannot lose rules.

4.2 The IERMiner Algorithm

Here we will present the IERMiner algorithm. Unlike the bounded versions of
Sequential Rule Mining algorithms, the IERMiner algorithm operates on events
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instead of sequences. Each new event triggers a complete run-through of the
algorithm, which then computes a new set of rules.

We begin presentation of the IERMiner pseudocode with the main procedure
called mine, which uses a procedure that generates simple 1 × 1 rules.

IERMiner Mine Procedure

1. Receive an event
2. Generate 1 × 1 Rules from Event
3. For each 1 × 1 Rule above
4. Store the 1 × 1 Rule in the Aggregator
5. Process the 1 × 1 Rule with Left Equivalence Class Processor
6. Store the resulting rules in the Aggregator
7. Process the 1 × 1 Rule with the Right Equivalence Class Processor
8. Store the resulting rules in the Aggregator
9. Process resulting rules with Left Equivalence Class Processor

10. Store the resulting rules in the Aggregator

Generate 1 × 1 Rules Procedure

1. Given an Event and Sequence Id
2. Find New Frequent Items in the Event
3. Append Event to the Sequence with the given Id
4. For each combination of New and Old frequent Item
5. Generate a Rule of the form New Item → Old Item
6. Return all Generated Rules

Next we detail the Left Equivalence Class Generation pseudocode.

Equivalence Class Generation

1. Given a Rule
2. Generate Left Equivalence Class from the Rule
3. Find Left Rules with Left Search on equivalence class above
4. Remember all the Rules in Left Rules that are new or have changed
5. Return the new and changed Rules to the caller or an empty set

Generate left equivalence class procedure:

1. Given a Rule
2. Let W = Rule’s l.h.s.
3. Let Y = Rule’s r.h.s.
4. Let i be the number of items in Y
5. The unique pair (W, i) will designate the Equivalence Class
6. If (W, i) does not exist in our store
7. initialize a map with the key (W, i) to be the equivalence class with

just the rule W → Y
8. Else
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9. Find the equivalence class (W, i)
10. Update all rules in it with new confidence information
11. If the rule W → Y is present in equivalence class:
12. update its support
13. Append the rule W → Y to the equivalence class with the determined

support and confidence
14. Return the set of all rules in the (W, i) equivalence class.

As was the case for the left equivalence classes, there is a Right Equivalence
Class Processor for the right equivalence classes, which utilizes a Generate right
equivalence class procedure. These are developed in a manner analogous to that
of the left equivalence, and are thus not outlined here.

Finally the developed rules are merged, as outlined in the Left Search and
Right Search procedures, with Right Search being a procedure that makes use
of the Left Search.

Left Search Procedure:

1. Given a Left Equivalence Class, Support and Confidence
2. Merge all the rules in the Equivalence Class that differ by 1 item in R.H.S.
3. Return only the Merged rules that have required Support and Confidence

Right Search Procedure:

1. Given a Right Equivalence Class, Support and Confidence
2. Merge all the rules in the Equivalence Class that differ by 1 item in L.H.S.
3. Keep only the Merged rules that have the required Support and Confidence
4. Recursively perform a Right Search on the resulting Merged rules
5. Return the union of Merged rules and rules from the recursive call

4.3 IERMiner Example

Here we provide a partial example of the IERMiner algorithm in action, where
a new rule is identified as a result of a new item being added.

Each rule R in the example is of the form:

X → Y [Rs] 〈Rc〉,

where Rs, called supportive, is a set of sequence identifiers denoting sequences
that contain the rule. Rc, called confident, is a set of sequence identifiers denoting
sequences that contain at least X. Notice that it is always true that Rs ⊆ Rc.
We use this augmented notation to better illustrate the merging process.

We present the example in two parts. Part 1 will illustrate the operation of a
conventional ERMiner, while Part 2 shows how an individual event is integrated
into an existing structure to produce the new rules.
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Part 1. Given minimum support and confidence of 0.5, and the following
sequences:

1. (a, b), (c), (f), (g), (e)
2. (a, d), (c), (b), (a, b, e, f)
3. (a), (b), (f), (e)
4. (b), (f, g, h)

The first steps are to generate initial 1 × 1 rules and then to gather these
into equivalence classes. The left equivalence classes, LE1, of size one are shown
in Fig. 1a.

From LE1, we can produce left equivalence classes of size two, LE2, by per-
forming a left merge. The results are shown in Fig. 1b.

LEa,1 a → b [2, 3] 〈1, 2, 3〉,
a → c [1, 2] 〈1, 2, 3〉,
a → e [1, 2, 3] 〈1, 2, 3〉,
a → f [1, 2, 3] 〈1, 2, 3〉

LEb,1 b → e [1, 2, 3] 〈1, 2, 3, 4〉,
b → f [1, 2, 3, 4] 〈1, 2, 3, 4〉,
b → g [1, 4] 〈1, 2, 3, 4〉

LEc,1 c → e [1, 2] 〈1, 2〉,
c → f [1, 2] 〈1, 2〉

LEf,1 f → e [1, 3] 〈1, 2, 3, 4〉

(a) Left equivalence classes LE1

LEa,2 a → (b, c) [2] 〈1, 2, 3〉,
a → (c, f) [1, 2] 〈1, 2, 3〉,
a → (b, f) [2, 3] 〈1, 2, 3〉,
a → (e, f) [1, 2, 3] 〈1, 2, 3〉,
a → (c, e) [1, 2] 〈1, 2, 3〉,
a → (b, e) [2, 3] 〈1, 2, 3〉

LEb,2 b → (e, f) [1, 2, 3] 〈1, 2, 3, 4〉,
b → (e, g) [1] 〈1, 2, 3, 4〉,
b → (g, f) [1, 4] 〈1, 2, 3, 4〉

LEc,2 c → (e, f) [1, 2] 〈1, 2〉

(b) Left equivalence classes LE2

Fig. 1. Example results of ERMiner algorithm

We then clean these up by throwing out all the rules that do not meet the
minimum support requirement of 0.5, like a → (b, c) [2] 〈1, 2, 3〉, which occurs
only in one sequence #2 out of the total of four, making its support 1

4 = 0.25.
Execution continues in a similar manner to generate the remaining larger left

equivalence classes, as well as the right equivalence classes.

Part 2. We now consider that an event (c) is added to the end of the sequence
3, so that the whole now looks as follows:

1. (a, b), (c), (f), (g), (e)
2. (a, d), (c), (b), (a, b, e, f)
3. (a), (b), (f), (e), (c)
4. (b), (f, g, h)



Incremental Sequential Rule Mining with Streaming Input Traces 87

We next scan all the 1 × 1 rules with c in the consequent, and update their
supportive and confident indices. In this case only one rule is affected:

a → b [2, 3] 〈1, 2, 3〉 b → f [1, 2, 3, 4] 〈1, 2, 3, 4〉
a → c [1, 2, 3] 〈1, 2, 3〉 b → g [1, 4] 〈1, 2, 3, 4〉

a → e [1, 2, 3] 〈1, 2, 3〉 c → e [1, 2] 〈1, 2〉
a → f [1, 2, 3] 〈1, 2, 3〉 c → f [1, 2] 〈1, 2〉
b → e [1, 2, 3] 〈1, 2, 3, 4〉 f → e [1, 3] 〈1, 2, 3, 4〉
Next we proceed to update the equivalence classes that were produced as a

result of combining the above rule with others. Here, too, only one is updated:

LEa,1 a → b [2, 3] 〈1, 2, 3〉,
a → c [1, 2, 3] 〈1, 2, 3〉,

a → e [1, 2, 3] 〈1, 2, 3〉,
a → f [1, 2, 3] 〈1, 2, 3〉

So we proceed to inspect and update LEa,2 only:

LEa,2 a → (b, c) [2, 3] 〈1, 2, 3〉,
a → (c, f) [1, 2, 3] 〈1, 2, 3〉,

a → (b, f) [2, 3] 〈1, 2, 3〉,
a → (e, f) [1, 2, 3] 〈1, 2, 3〉,
a → (c, e) [1, 2, 3] 〈1, 2, 3〉,

a → (b, e) [2, 3] 〈1, 2, 3〉
Note that now the rule a → (b, c) [2, 3] 〈1, 2, 3〉 meets the minimum support

requirement, thus demonstrating the identification of a new rule.

5 Experiments

We propose that updating an existing set of sequential rules with our incremen-
tal IERMiner algorithm works faster than mining the entire set of rules again
using the ERMiner algorithm when a new event is added to a database. Each
experiment starts by running each algorithm on an initial set of empty sequences.
Events are then added to the sequences one at a time, running each algorithm
each time. We test the methods on two publicly available datasets, Kosarak1

and MSNBC 2. We use 31790 sequences from the MSNBC dataset. We split the
Kosarak dataset into one dataset with 5000 sequences, (and call it Akosarak
5000 ) and another with 25,000 sequences (denoted by Akosarak 25000 ). This
splitting is done to facilitate experimenting with different values of minimum
support and minimum confidence. Several experiments were run, using different
combinations of values for the number of sequences, the minimum support level

1 http://fimi.ua.ac.be/data/.
2 http://archive.ics.uci.edu/ml/datasets/msnbc.com+anonymous+web+data.

http://fimi.ua.ac.be/data/
http://archive.ics.uci.edu/ml/datasets/msnbc.com+anonymous+web+data
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and the minimum confidence level. The results presented in this section are for
a representative sample of these experiments.

Experiments were run on a Macbook Pro with a 2.2 Ghz Intel Core i7 proces-
sor with 16 GB DDR3 memory and a 256 GB SSD hard drive. Algorithms were
coded using Python, and tests were run using a Linux OS. Each experiment was
conducted at least twice to ensure that accurate results were produced.

In all cases, the results showed that, in the long term, IERMiner significantly
decreases the running time required to update the set of patterns when compared
to running ERMiner on the full dataset each time.

5.1 Experiment Akosarak 5000

This experiment was defined by the following parameters:
Number of sequences: 5,000, Minimum Support: 0.1, Minimum Confidence: 0.1.
To plot the data (Fig. 2), we took the average time for every set of 100 consecutive
events.

Fig. 2. Experiment Akosarak 5000 (times averaged in groups of 100 events)

5.2 Experiment Akosarak 25k

This experiment was defined by the following parameters:
Number of sequences: 25,000, Minimum Support: 0.05, Minimum Confidence:
0.1. To plot the data (Fig. 3), we took an average for every 1000 events.
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Fig. 3. Experiment Akosarak 25k (times averaged in groups of 1,000)

5.3 Experiment MSNBC 31790

This experiment was defined by the following parameters:
Number of sequences: 31,790, Minimum Support: 0.1, Minimum Confidence: 0.1.
To plot the data (Fig. 4), we took an average for every 2000 events.

Fig. 4. Experiment MSNBC 31790 (times averaged in groups of 2,000)

6 Concluding Remarks

In this work, we aimed to show that it is possible to optimize data mining for
unbounded data. We created an algorithm, IERMiner , that can use previously
examined data to help it mine future data faster. IERMiner operates on more
granular data called events. This distinguishes it from other algorithms and
allows it to function on unbounded input streams. The result of the algorithm
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is used to construct output, rules, similar to that of other algorithms that use
bounded data. This allowed us to compare performance. We showed that, while
the IERMiner algorithm initially performed more slowly than the state-of-the-
art ERMiner algorithm for mining Sequential Partially Ordered Rules, in the
long term IERMiner produced substantial savings in run-time. In the world of
streaming data, such an algorithm provides value and can be used as a building
block for further research.

Some potential topics for future work include using parallelization to improve
performance, extending the algorithm to allow the processing of more than one
new event at a time, and dealing with the issue of receiving events out of order.
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Abstract. We consider the problem of multiple team formation within
a project-based university course. Given several tasks with requirements
and several students with skills, we investigate the problem of assign-
ing teams of students to tasks as fairly as possible so that each task’s
requirements are maximally met. Instead of using traditional team for-
mation techniques, we adapt the fair division formulation by considering
tasks as agents and students as items. Furthermore, we present a novel
framework that generalizes fair division to account for order within the
assignment phase. Finally, we present an algorithm to address instances
of team formation within this new setting. Our empirical experiments
show that this new algorithm performs better than existing fair division
algorithms in terms of speed and fairness, as defined by complete balance
ordered and up to one individual.

Keywords: Team formation · Fair allocation · Social choice

1 Introduction

In many real-world situations, people must be grouped into teams to accomplish
various tasks. Typically, a team must meet some requirements in order to be con-
sidered viable. For example, a task may require some minimum skill set for it to
be accomplished. Finding teams that meet a set of requirements for a task is the
domain of the well-explored Team Formation Problem (TFP) (e.g., [13,15,17]).
Much of the research into TFP centres on creating teams that meet skill require-
ments of a single task, or that work well together by minimizing communication
cost – prioritizing teams with members who get along. To date, most of this
research addresses the creation of one team for a single task. However, many
real-world scenarios require distinct teams for multiple tasks, without sacrificing
the consideration of skill, communication cost, or other requirements that make
TFP research so attractive.

Consider a project-based course in which students work in teams. Suppose
further that each project is a task consisting of a set of requirements and each
student has a set of skills, with skills and requirements drawn from the same
set. Ideally, the instructor would like to assign students to teams that work
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C. Goutte and X. Zhu (Eds.): Canadian AI 2020, LNAI 12109, pp. 92–104, 2020.
https://doi.org/10.1007/978-3-030-47358-7_9
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well together, while ensuring that the teams can meet as many of the project
requirements as possible.

Intuitively, this example can be viewed as multiple instances of TFP. How-
ever, with simple examples, it can be shown that TFP does not easily generalize
to multiple tasks. In fact, it is impossible to guarantee that all requirements are
met once a second task is introduced.

Instead, we propose that the above problem be tackled as an instance of
fair allocation. Fair allocation is the problem of assigning a set of items among
several agents, with each item possessing a value for each agent. In a typical fair
division problem, either all items are desirable goods with positive value, or all
items are undesirable chores with negative value. Once all items are assigned, the
resulting allocation is evaluated on metrics such as envy to determine whether
items were assigned fairly.

To cast the above example of assigning course projects as a problem of fair
division, we switch the roles of projects and students by viewing each student as
an item and each project as an agent. In this way, we arrive at a familiar setting
of assigning items to agents (i.e., assigning students to projects). While some-
what counter intuitive, the values now represent how well-matched the project
requirements are by each student. Thus, each item (i.e., student) has a positive
or negative value with respect to an agent (i.e., project).

Although this formulation fits squarely into the realm of fair division, we note
that at each step during which a student is assigned to a project (assignment
step), an item’s contribution to the total value of an agent’s bundle may change.
As a practical example, a project whose requirements have been completely
fulfilled will gain nothing from an additional student – even if she has a valuable
skill set. The potential for each item’s value to change means that no item can
be viewed as solely beneficial or detrimental to an agent. Since most existing
research into fair division focuses on solely good or solely bad items [3,4,8],
current frameworks are insufficient to tackle this problem. Instead, we propose
a broader framework to capture this case of dependent values. Our framework
is a generalization of fair division of indivisible items [1], which is capable of
capturing all previous examples of fair division. Additionally, our setting allows
several other types of problems to be cast as fair division, though we consider
only team formation here.

For this framework, we present in Sect. 3 case studies to illustrate why cur-
rent methods of fair division are insufficient in this more general setting. We
additionally present a formulation of the team formation problem within this
framework, and present an algorithm to solve specific cases in Sect. 4. Finally,
Sect. 5 shows empirical results of our algorithm alongside other fair division algo-
rithms to highlight its usefulness. We show that our algorithm gives satisfactory
results when assigning teams in a multi-task setting, but that some existing fair
division algorithms also perform surprisingly well in our setting after changing
only the value functions.
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2 Related Work

2.1 Team Formation

Within the multiagent systems community, extensive research has been done
on team formation based on decision preferences [10,11,18]. Most notably, the
Group Activity Selection Problem (GASP) [11] presents a setting in which many
individuals are assigned to many groups based on their preference over both those
groups and their potential teammates [14].

In contrast, the operations research and optimization communities have
focused on the assignment of individuals to a single team for the purposes of
completing one task [15,17,19]. Historically, the TFP in this space aims to form
a group for some task such that the requirements of that task are met by the
skills of the group members. Recently, consideration has also been given to the
underlying social structure of the team [12,15]. Defining two different measures
of communication cost, Lappas et al. show that the problem of finding a group of
individuals for a task such that all requirements are met, while also minimizing
their defined communication costs is NP-complete. When a solution exists, the
researchers present algorithms which are able to find solutions efficiently.

While TFP is normally considered in the context of a single task, we are
aware of at least one paper which attempts to apply team formation techniques
and consideration of skill sets to a multi-task setting. Gutierrez et al. [13] propose
the Multiple Team Formation Problem (MTFP) that formulates TFP in a multi-
task setting using constraint programming and discrete optimization. In MTFP,
each individual is considered to have only one skill, and requirements are given
as the number of individuals possessing each skill required to complete a task.
Additionally, individuals are allowed to split their time between multiple tasks.

The main limitation of team formation research is that there is no one-
size-fits-all solution. While solutions to GASP create multiple groups, they do
not consider requirements of tasks or skills of individuals. Solutions to TFP
consider requirements and skills, but form only one group for a single task.
Finally, solutions to MFTP consider requirements, skills, and create multiple
groups, but require the problem space to be restricted to one skill per person,
and may form non-distinct groups. While each is interesting and appropriate for
certain scenarios, it is easy to identify real-world examples for which all three
are insufficient.

2.2 Fair Division

Given a set of agents (typically people) and a set of items, the problem of fair
division aims to assign subsets of items to agents such that the resulting alloca-
tion is fair. Research focuses heavily on identifying notions of fairness on which
allocations can be evaluated [2,7]. Algorithms can then be developed to solve
the allocation problem by assigning items within those constraints. There are
several established fairness notions, often drawing inspiration from metrics from
other fields [1,11], most notably envy-freeness.
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An allocation is said to be envy-free if no agent would get greater value by
switching their assigned items with a different agent. As this is often impossible
to achieve, as will be shown in later sections, recent developments have explored
the less restrictive notion of envy-freeness up to one good [7]. This fairness notion
has become well-studied in its own right [3,7,9], though primarily for goods
allocation, in which items have a positive value for all agents. Chores allocation,
in which items having a negative value for all agents, is less well-studied. Recent
approaches have attempted to address this by considering the mixed case, in
which items may have positive or negative value [1,4,6]. Most notably, Aziz
et al. [1] propose a setting in which items may have positive or negative value
for any agent, including the case where an item may be a good for one agent,
but a chore for another. They present this setting as a generalized version of
goods allocation, including a generalization of the notion of envy-freeness up to
one good as envy-freeness up to one item.

Bredereck et al. [6] present another generalized setting allowing items to have
positive or negative values depending on the agent, with the additional consid-
eration of the multiplicity of objects. Interestingly, Bredereck et al.’s motivating
example is similar to ours, considering research groups to which items – includ-
ing graduate students – must be assigned. The setting we propose differs in a few
key ways from that of Bredereck et al. In particular, we consider only students,
while allowing these a number of features (i.e. skills). Additionally, our setting
is powerful enough to consider an ordering of items, but does not account for
multiplicity.

3 A Framework for Fair Division with Dependent Values

We formulate the problem of forming multiple teams from a set of individuals
as an instance of fair division. To do this, we first need to generalize the fair
division setting to allow values to change between assignment steps.

Let N = {1, ..., n} denote a set of n tasks for which teams must be assigned,
and M a set of individuals. Additionally, let Xi ⊆ M denote the set of individuals
assigned to task i. Each subset Xi is referred to as a team.

For each individual m, the value of m to a team Xi is defined by a two-
parameter function ui(m,Xi). Because the value of ui(m,Xi) depends on the
current members of team Xi, we say that task i has a dependent value for m.

Note under this definition that an individual’s value may change at each
assignment step. For this reason, the order in which individuals are assigned
is important. Therefore, we define the value of a team iteratively by Ui(Xi) =
∑|Xi|−1

k=0 ui(Xi[k],Xi[1 : k − 1]), where Xi[1 : k − 1] is the ordered bundle con-
sisting of the first k items of Xi, and Xi[k] is the next item to be added.

An allocation π is a function assigning each project such that for each pair of
distinct tasks i, j ∈ N , π(i)∩π(j) = ∅. An allocation π is complete if

⋃
i∈N π(i) =

M . We take our definition of allocation from Aziz et al. [1].
Next, we define fairness concepts within our model, specifically envy-freeness

(cf. Sect. 2), requiring that agents do not envy each other. In our setting, we
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rename this to balance. Specifically, given an allocation π, we say that i is unbal-
anced w.r.t j if Ui(π(i)) < Ui(π(j)). An allocation π is completely balanced (CB)
if no task is unbalanced w.r.t. other tasks.

Consider the case of two tasks, and one individual with positive value for
both. Since this individual can only be assigned to one task, this simple example
illustrates the impossibility of achieving CB in general.

A relaxation of EF, introduced by Budish [7] and generalized by Aziz et al.
[1], is envy-freeness up to one item. We rename this to complete balance up to
one individual (CB1), and generalize CB1 to account for order by introducing
the concept of complete balance ordered and up to one individual (CBO1).

Definition 1. An allocation π is completely balanced up to order and one indi-
vidual (CBO1) if for all i, j ∈ N either i is balanced w.r.t. j, or if there is an
individual m ∈ π(i) ∪ π(j) such that ui(π(i)\{m}) ≥ ui(π(j)\{m}), where the
ordering of π(i) and π(j) is retained except for the exclusion of m.

Within this new setting, we can now formulate our problem as an instance of
fair division. Let N and M be projects and students, respectively, in a project-
based course. Further, suppose each project has a set of requirements, and each
student a set of skills, with both requirements and skills drawn from the same
set. Finally, suppose the communication cost is recorded in a social network
graph modeling the student relationships. This results in the following instance:

– N = {1, ..., n} is a set of projects
– M = {m1,m2, ...,mp} is a set of students
– G(M,E) is a graph representing the underlying social network. A low weight

on the edge between q, t signifies that mq and mt are friends and would work
well together

– R = {r1, ..., rn} is the sets of requirements for each project
– S = {s1, ..., sp} is the sets of skills for each student, drawn from the same set

as project requirements

We call the above formulation Fair Allocation of Several Teams to Tasks
(FASTT). FASTT is adapted from the TFP instance defined by Lappas et al.
[15]. The main difference is that N consists of several projects instead of only
one. Additionally, we consider student skill sets and project requirements as
separate from students and projects themselves.

Because TFP considers only one task, it is easily shown that allocations are
not guaranteed when multiple tasks are involved. In comparison, FASTT chooses
to instead to maximize task coverage. The coverage c of a task i is defined as
the number of requirements of the task which are met by the students assigned
to it, i.e. |(ri) ∩ ⋃

s∈π(i) |.
Similarly, fairness concepts do not apply to TFP since only one task is

involved. Overall, in most real-world scenarios, FASTT is more applicable
because it can simultaneously assign all students within a course and find teams
for multiple tasks. Moreover, our iterative definition for a student’s value to a
project generalizes to both offline and online scenarios. Specifically when teams
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already exist, we are able to add to an existing allocation. This is useful in exam-
ples where new students join a course after teams have been formed and need
to be added to existing teams.

4 Algorithms

Given an instance of FASTT, we first ask how to define each value function. Moti-
vated by the problem’s similarities to TFP as described by Lappas et al. [15], we
model the value of a student for a project as a function of the number of addi-
tional requirements met by that student and the communication cost of adding
her to the team. Here, we measure cost as the graph diameter, i.e. the longest
shortest path between any two students in the social network graph imposed
by the resulting team. That is, dXi

= maxm,v∈Xi
(δ(m, v)), where δ(m, v) is the

sum of edge lengths for the shortest path between students m and v.
Our value function is defined as:

ui(mn+1,Xi[1 : n]) = ((ri \ ∪x∈Xi[1:n]sx) ∩ smn+1)
+ (dXi[1:n] − dXi[n]∪mn+1)

where Ui(Xi[1 : n]) is the value of the team, given by

Ui(Xi[1 : n]) = |ri ∩ (s1 ∪ s2 ∪ · · · sn)| − dm1∪m2∪...∪mn

where each student’s value is given by the number of skills required by that
project, exhibited by that student, and not currently present in the team assigned
to that project, plus the change in diameter after adding the student. This value
function has the useful property that a student’s value may change at every
assignment step, but the final value is independent of order. Note that, though
our value functions are order-agnostic, it is possible to define order-aware value
functions. However, when order-aware value functions are used, the number of
possible allocations increases dramatically, heavily increasing the runtime for
algorithms that must compare allocations. For this reason, we elected to define
value functions in such a way that value to change at every step, but for which
the final result does not depend on order.

To solve an instance of FASTT, we look to the mixed case of fair division
explored by Aziz et al. [1]. Aziz et al. propose an algorithm called Double Round
Robin (DRR) to solve mixed instances of fair division. As our values are not
additive, this algorithm alone is insufficient in our setting. We note that there
are several settings allowing for non-additive utility values [6,7,16], though these
approaches tend toward proofs of more general results. Instead, we carefully
adjust the DRR algorithm combined with elements of the Adjusted Winner (AW)
rule [5] to produce an algorithm we call Multiple Round Robin with Adjusted
Winners (MRR). We present this as Algorithm 1 and evaluate its performance
in the next section.

MRR works by running several truncated selection rounds until all students
have been assigned, each beginning with the project with the current lowest-
valued team. At the beginning of each round, dummy students are created such
that the total number of students and dummy students is a multiple of the
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Input: An instance I = (N, M, G(M, E), S, R, U)
Output: An allocation π
while There are students left to assign do

Order all projects in increasing order by the value of their teams
if There are any students with positive value for any project then

Create dummy students such that the total number of students plus
dummy students is a multiple of the number of projects

end
for i in projects do

if There are no students with positive value, but there are still dummy
items then

Select a dummy student and assign them to the project
else

Select the student with the highest value for this project and assign
them to the project
Reorder all projects as above, and set i to the project with the
lowest team value

end

end

end
AdjustWinners(π)

Algorithm 1: Multiple Round Robin with Adjusted Winners (MRR)

Input: An allocation π
Output: An allocation π′

for Each pair of projects (i, j) do
if i is not CBO1 w.r.t. j then

for Each student m assigned to j do
if Moving m from j to i increases i’s total value from Xi then

Moved m from j to i in π′

end

end

end

end

Algorithm 2: AdjustWinners function

number of projects. During each round, students are assigned to a project in
increasing order of the total value of its current team. As soon as a student is
assigned, the values and order are recalculated and a new round begins. If at any
point there are no students with strictly positive value for the current project,
a dummy student may be assigned to that project, as long as one exists. The
number of dummy students created in each round is low enough to guarantee
that at least one student is assigned. However, because the number of dummy
students is so low, these should be generated in each round to ensure that dummy
students are always available at the start of the selection round.
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Once all students have been assigned, the resulting allocation is checked for
pairwise CBO1. If any pair is not CBO1, the AdjustWinners method moves items
between them until the resulting allocation is pairwise CBO1. By running this
correction function for each project pair i, j, we fix every CBO1 error, usually
resulting in a complete CBO1 allocation. Note that proceeding in this way may,
in rare cases, result in the introduction of additional CBO1 errors between pairs
that have already been checked, which are therefore not fixed. For this reason,
Algorithm 2 does not provably result in a CBO1 allocation in every instance.
Regardless, we show in the next section that CBO1 allocations can be obtained
in the majority of practical scenarios.

MRR runs in O((|M | ·n)+(n · (n−1) · |M |2)) time. The while loop must iter-
ate through all students, and then through all projects, achieving a complexity
of O(|M | · n). The AdjustWinners method then checks all pairs of projects, and
swaps students between them, while respecting the order of the projects, result-
ing in a complexity of O(n·(n−1)·|M |2). The verification step that an allocation
is CBO1 happens pairwise after each swap, and has a worst case running time
of O(|M |2). This is because verification of CBO1 must iteratively build up the
total values of each team. The final complexity to that stated previously.

5 Empirical Evaluation

In this section, we evaluate our proposed algorithm for instances of FASTT
using data extracted from the DBLP bibliography server. We used a snapshot of
the DBLP database taken on July 1, 2019 to create a benchmark dataset. The
dataset was then filtered in the same way as Lappas et al. [15]. We refer to the
resulting dataset as the DBLP dataset.

Our students are a set of authors with at least three papers in the DBLP
dataset. Each author has a list of skills defined by the keywords listed in at
least two of their papers. Finally, a social network containing all chosen authors
was created. Weights were assigned based on the frequency of co-authorships.
Specifically, if two authors have never co-authored together, their edge receives
a high weight, 5. On the other hand, if two authors co-authored with each other
more than with anyone else, then their edge receives a low weight, 1. All other
co-authors receive a weight of 3.

Test cases were generated by taking a random sample of authors as the set
of students and their combined skill sets as the set of possible requirements for a
number of projects. A project is generated by randomly choosing 4 requirements.
Each test case consisted of 3 of these projects. Each trial in our simulation
experiment consists of a test case with 3 projects (each having 4 requirements)
and a variable number of students ranging between 3 and 25. Each trial was run
500 times (with different projects, project requirements, and students).

5.1 Results

We report on the performance of the fair division algorithms based on average
running time and average team coverage over 500 trials, and the total number of
times a CBO1 allocation was found in those trials. As a comparison, we use the
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Double Round Robin (DRR) and Generalized Envy Graph (GEG) algorithms
from [1] as a baseline algorithm. Each algorithm was run on the same test cases.

Our experiment was performed by running algorithms on a series of t2.micro
instances with 1 GB of memory on Amazon’s AWS platform.

Figure 1 shows the resulting runtimes on a logarithmic scale. The MRR and
DRR algorithms are bounded by a quadratic runtime. We also note that the
highest average runtime per trial is barely over 100 s and can therefore always
be feasibly run when the number of students is low. Nonetheless, as the lowest
average running times are all well below 1 ms per trial, this growth illustrates
the algorithmic complexity quite well.

Fig. 1. Average runtimes of each algorithm.

Figure 2 reports the standard deviation for the runtimes of each algorithm.
We note that DRR behaves erratically. This is likely due to DRR’s selection
round. Because of the dependent nature of values in our setting, it is not enough
to determine the order of selection once at the beginning of each selection round,
as values may change at any point. MRR’s truncated selection round addresses
this, and is reflected in the algorithm’s standard deviation.

Fig. 2. Standard deviation of runtimes for each algorithm.
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Fig. 3. Total number of times a CBO1 allocation was found by each algorithm.

Figures 3 and 4 show the number of times CBO1 allocations were found and
the average project coverage achieved respectively. While MRR methods find
CBO1 allocations in nearly all cases, several data points fall below 100%. This
shows that MRR does not guarantee CBO1 even on a small number of projects.
DRR methods perform surprisingly well in terms of average project coverage,
approaching the average project coverage achieved by MRR methods with an
increasing number of students.

Finally, we note that GEG could only be run up to 17 students. As the number
of students increases, the runtime of GEG grows exponentially. Additionally, the
cycle detection performed by GEG [1] results in GEG getting stuck on certain
test cases when a cycle cannot be resolved. Finally, note that the percentage
of CBO1 allocations found by the GEG algorithm decreases as the number of
students increases, while the project coverage remains consistently lower than
DRR or MRR. We conclude that GEG is unsuitable in our setting.

Figure 5 shows the results of running the DRR and MRR methods while
varying the number of projects and students. We fixed the requirements per
project at 4, and varied the number of students between 23 and 24. We note
that the average project coverage decreases as the number of projects approaches
the number of students. This is unsurprising, as more projects with the same
number of students results in students being spread more thinly. We also note
that MRR nearly always achieves as high or higher coverage than DRR.

Furthermore, it is worth noting that, in a realistic setting such as a class of
24 students with 6 projects, we can still achieve an average project coverage of
over 50%. Therefore, in this setting, projects could be expected to be completed
to an acceptable degree while still allowing for some independent learning (for
the percentage that is not covered).

It should be noted at this point that our method of student selection and
project generation resulted in a vast majority of cases in which student skill sets
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Fig. 4. Average project coverage of each algorithm.

Fig. 5. Average project coverage of MRR as the number of projects increases.

were distinct, but many projects had overlapping requirements. For this reason,
total project coverage is not possible in the majority of test cases.

6 Conclusions and Future Work

We presented a multi-project formulation of team formation utilizing fair division
techniques. This formulation generalizes the fair division problem, allowing item
values to change between allocation steps. Within this setting, we additionally
generalized envy-freeness up to one item to CBO1 to account for order.

Our work paves the way for a more detailed examination of both fair division
and multi-project team formation. In particular, it remains to be seen whether
there are conditions which guarantee that an instance of FASTT has a CBO1
allocation. We also note that several other fairness concepts exist which we have
not considered here, most notably proportionality and envy-freeness up to the
least valued item (EFX) [9]. As well, recall that the work of Bredereck et al. [6]
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introduces the idea of multiplicity. Future work could combine these settings, by
introducing multiplicity to FASTT, or order to the setting presented by Bred-
ereck et al. Additionally, Bredereck et al. provide proofs of the fixed-parameter
tractability of several special cases of fair division, which may be applicable in
our setting as well.
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Abstract. We present a new methodology for assessing when data-
based predictive models can be trusted. Particularly, we propose to learn
a model from experimentation that determines, for a given labeled data
set and a learning technique, when the model generated by the respective
technique on the given data can be trusted to perform within specified
accuracy limits. That is to say, we apply machine learning to machine
learning: We repeatedly use a technique to generate models, referred as
primary model, for a supervised regression problem. Based on the result-
ing model performance on a hold-out validation set, we then learn when
the trained primary model can be expected to perform well and when
there is a concern regarding the trustworthiness of that model.

Keywords: Supervised learning · Uncertainty quantification

1 Introduction

Artificial intelligence is increasingly being used to provide decision support in
high stakes contexts, where errors can be very costly [1]. Examples for this trend
range from operating machinery in transportation to diagnostics in healthcare.
With this trend emerges a need for trusted and robust models. One way to gain
a certain level of trust and acceptance is to convince with very good performance
(e.g. as measured by accuracy, precision, and recall for predictive models, or the
optimality gap or quality guarantees for prescriptive optimization models).

However, there always will be limits to practical performance, be it due to
an imperfect assessment of the world or computational limitations. Despite the
inherent performance limitations, we can potentially achieve a higher level of
trust by embedding the model in a process that handles exceptions. That is,
rather than requiring the model to make a call under all circumstances, we allow
the model to declare its incompetence in a concrete situation.

This paper investigates how machine learning (ML) can be applied to ML
to critically assess model competence. In particular, we develop techniques that
learn when models generated by certain learning techniques on a particular data
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set can be expected to perform well, and when not. The core idea is to let
the machine learn, from repeated experimentation, for which test inputs models
generated by an ML technique will perform well, and for which vectors in the
feature space it is prudent to exercise caution when considering the predictions
of the generated primary model.

2 Related Works

Despite the high accuracy of modern ML models and their many applications,
human end-users often distrust this models [7]. To increase trust in ML fore-
casts and recommendations, adversarial testing [17], black-box testing [9], and
human-in-the-loop [6] approaches help identify and prevent model failures. Sev-
eral works on trust focuses on interpretability, explainability [15,22], and failure
perception [19].

We study an aspect of trust that is orthogonal to interpretability, namely the
self-assessment of the reliability of an ML model for a concrete testing instance
at run-time. A key results in the area was recently introduced by Jian et al. [11].
The authors theoretically and empirically show that classification confidence can
be assessed effectively based on a reliability measure that consists in computing
the ratio of the distance of the test feature vector to the nearest training exam-
ple of the predicted class and the distance to the nearest training example that
is outside the predicted class. The lower this ratio, the more we trust the pri-
mary classifier. The keys of this reliability measure are to carefully analyze the
training set and to set the threshold for the distance ratio following the training
data. In other words, the reliability metric is general but the thresholds used
to decide when to trust the primary classifier is derived from the data at hand.
Unfortunately, the method by Jian et al. [11] does not generalize to regression,
which is the objective of this paper.

As in [11], the measures used to assess confidence in the primary model are
not enough. At best, they give us a relative sense of trust. To make these mea-
sures prescriptive, we need to find thresholds or a mapping from these quantities
to the actual performance of the primary model. The research on this transfor-
mation step for primary regression models is scarce. Bosnić et al. [5] propose a
secondary regression model that predicts the signed error of a (primary) regres-
sion model. The authors perform a sensitivity analysis [3] over their primary
model to generate their secondary model features. The output of the secondary
model is then used to correct the predictions of the primary model. Hence, the
approach focuses on boosting the primary model rather than assessing reliability.

Bosnić et al. [4] also propose an internal cross-validation and a meta-classifier
that predicts the reliability for a given problem domain and regression model.
Their decision-tree meta-learner uses features that describe the regression model
and the training data to predict which of their nine reliability metrics works best.

Matsumoto et al. [14] use a meta-model to estimate when the primary regres-
sion model will err significantly. Their approach estimates a threshold value to
create acceptable and critical error regions. Their secondary classifier uses the
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original training data and the predictions of the primary model as features to
predict whether the prediction is acceptable or has a critical error.

Our technique belongs to the same class as Matsumoto et al. [14] work:
We also propose to learn empirically when a primary regression model can be
trusted. However, we propose a paradigm shift: Instead of assessing the com-
petence of the primary model directly, we focus on the learning technique that
is used to generate the primary model and to learn how models generated by
this technique perform under different scenarios. The thresholds derived from
our experimentation will still be specific to the training data, but the repeated
experimentation with the learning technology gives us a much richer supervised
training set for the secondary confidence assessor.

We use reliability measures derived from concepts introduced in the litera-
ture. We consider confidence and prediction intervals [10] which can be used to
measure the reliability of regression tasks [18]. We use metrics based on confor-
mal predictions which are used to create “regions of trust” for classification and
regression tasks [20]. We also leverage non-conformal measures [16] to assess the
performance of the learned model as a function of proximity to the training data.

3 Empirical Confidence Models

The goal is to build a competence assessor pipeline that accompanies a super-
vised regression model. We consider the following scenario: An ML model is built
based on a set of labeled training examples. Once deployed, this primary model
regresses the feature inputs it receives to predict a value for the dependent vari-
able. The system does not receive the actual labels after making the predictions,
i.e., we are not able to learn about any model drift [13] after deployment.

The top portion of Fig. 1a illustrates the process. Here and in the following,
colored boxes mark data vectors and labels, gray boxes are algorithms pro-
grammed by human developers, and gray plaques with rounded corners denote
machine-learned models. The primary model is generated by an ML technique
(e.g., random forest) based on a given training set of labeled examples (see bot-
tom Fig. 1a). At run-time, the primary model and competence assessor pipeline
receive the same input feature vector, where the competence assessor provides
a secondary classification on the primary model competence. The pipeline itself
consists of (1) a meta-feature builder which relates the current input to the pri-
mary model and the training set, and (2) the competence assessor that attempts
to classify the competence of the primary model for the respective input as either
trusted, cautioned, or not trusted.

This work aims to overcome the assessment of supervised regression models
purely by summary statistics. Summarized statics give an overall view of the
quality of a model in the data set but can be misleading when it comes to asses
the accuracy of a specific prediction. For example, while a primary model has
a 95% accuracy, there is no guarantee that this performance will be achieved
for each new test instance. In fact, it is quite likely to be regions of the input
space where the model has similar or higher accuracy (i.e., trusted regions), and
regions where the accuracy is low (i.e., cautioned regions).
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Fig. 1. Deployment of primary model and assessor pipeline (right) and training data
generation for meta-model (left).

Therefore, we aim to learn when an ML model can or should not be trusted,
conditioned by the concrete feature input given. Note that this is different from
predicting local model accuracy, as considered by the sensitivity analysis in [5].
The label of a concrete example may be off due to the uncontrollable error
introduced by label noise, but if the example falls into a region where our model
generally performs well, it is still correct to trust the model. On average, we
should see good accuracy of the primary model on inputs for which we trust
our model. On the other hand, the given input may fall into a region where the
model has no competence at all (e.g., a decision tree for a test instance where
no training example is anywhere close). Even if the model has a low error, it is
correct to distrust the model. Of course, on average we expect the accuracy of the
model to be low on inputs where we consider the model to have low competence.

We now present the steps to build our empirical competence assessor pipeline.
We first introduce the meta-features that relate the input with the primary model
training data. Then, we show how to train the competence classifier. We explain
how we generate training data for training the competence assessor, in particular,
the base/validation splits and the techniques to train the assessor.

3.1 Reliability Measures as Meta-Features

Naturally, the assessor can consider all original features that are being fed to
the primary model [14]. If the assessor were to learn only the primary model’s
behavior, these original features might even be enough to learn when the primary
model is likely to perform within the desired quality bounds and when not.

Our approach goes one step further: We train the assessor for a technique
rather than the concrete resulting model. Thus, we aim to learn how a model
trained by a technique (e.g., random forest) performs based on the relation of
the given feature input and the data used to train the primary model.

First, we need a distance measure between the run-time features and the
training set. Given a distance function d : F × F → R≥0, where F denotes the
primal feature space, we compute the k nearest neighbors to the input feature
vector x (we use k = 5 in our experiments but this parameter could be tuned).
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For any x, N(x) denotes the set of the k nearest labeled training examples
(xi, yi)i. Then, the first meta-feature, M1, is the average distance to points in
N(x), i.e., M1 measures the of training experience in the vicinity of x.

M1(x) :=
∑

(x′,y′)∈N(x)

d(x′, x)
k

. (1)

Consider the regression forecasts by the primary model as f : F → R. Then,
M2 considers the average prediction difference between x and its k nearest neigh-
bors. Analogously, M3 is the deviation from the primary model’s prediction and
the weighted nearest neighbor average in the neighborhood of x. Thus, M2 and
M3 represent to what extent the primary model’s prediction coincides with the
labels and forecasts in the immediate vicinity of the current input.

M2(x) :=
∑

(x′,y′)∈N(x)

|f(x) − f(x′)|
k

, (2)

M3(x) :=

∣∣∣∣∣∣
f(x) −

∑

(x′,y′)∈N(x)

y′ s(x)
d(x′, x)

∣∣∣∣∣∣
, s(x) =

1∑
(x′′,y′′)∈N(x)

1
d(x′′,x)

. (3)

Next, we consider the average and variance of the distance-weighted training
error on the neighborhood of the given input x. Thus, M4 and M5 assess the
primary model’s performance in the neighborhood of the current input.

M4(x) :=
∑

(x′,y′)∈N(x)

|f(x′) − y′| s(x)
d(x′, x)

, M5(x) :=
∑

(x′,y′)∈N(x)

(|f(x′) − y′| − M4(x))2

k − 1
. (4)

Lastly, we consider the target value variability in the neighborhood of x.
Thus, M6 gives a measure of how much true label variance we expect in the
immediate vicinity of the given input vector.

M6(x) :=
∑

(x′,y′)∈N(x)

(y′ − ȳ)2

k − 1
, where ȳ =

∑

(x′,y′)∈N(x)

y′

k
. (5)

The notion of a neighborhood is central to our features. We can employ
the Euclidean distance in the feature space but this has all the drawbacks of
k-nearest neighbor methods: The need to adjust for the respective influence of
each feature, the distance-distorting influence of non-informative features, and
the implicit assumption that feature importance is the same.

Consequently, we propose using technique-specific measures of distance,
i.e., we assess similarity based on what the primary model considers simi-
lar. For example, random forest considers two feature vectors similar if they
often end up in the same leaf node [2]. For a linear regression model with
parameters w ∈ R

m+1 and an m-feature regression problem, we can consider
d(x′, x) ← ∑m

i=1 |wi||x′
i − xi| to define the dissimilarity of feature vectors x and

x′.In both examples, feature vectors that result in similar regression values are
not necessarily considered similar by the model. The feature vectors would be
similar only if the primary model’s reasoning underlying the regression is similar.
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3.2 Meta Training Data

Given the meta-features relating the run-time feature vectors to the primary
model training data, we aim to learn when a model trained by a particular
learning technique can be trusted to perform well, and when not. To this end,
we split the training data several times into base and validation sets. The goal
is to provide the meta-model with information on possible regions where the
primary model might have a poor performance.

Then, for each split and validation instance, we assess whether the model
trained performs with sufficient quality or not (see Fig. 1b). Using our meta-
features, we can create a new training data set for the meta-model, where each
validation instance in a split of the training data creates one new example
instance for the meta-model: Its features are the original features augmented
by the six features introduced above to characterize how the validation instance
relates to the base data that was used to build the primary model.

The classification labels for the meta-model are determined by the true error
of the learned model on the base data set. To this end, we first order the absolute
values of the residuals for each base instance, and then determine the two max-
imum errors such that 80% or 95% of all base instances have a prediction error
below that respective error rate. Then, we use three different classes to label our
validation instances: not trusted if the forecast is above the 95% error, cautioned
if the prediction is off by more than the 80% error but less than the 95% error
and trusted otherwise. Note that the values 80% and 95% can be adjusted nat-
urally to increase or decrease the desired levels of trust in the primary model.
For the given used case, if regression errors are costly, a lower trust percentage
can be used. If frequent escalation resulting from an incompetent regressor puts
an undue burden on operations, a higher trust percentage may be chosen.

The remaining question is how to split the training data. The first method
is cross-validation, where each training example is randomly assigned to one of
h buckets. We consider h splits (for h = 3, h = 5, and h = 10) where, in each
split, one bucket is used as a validation set and the others as a base set. Thus,
we hope to give the meta-model enough training data to learn, for various levels
of training density surrounding the current input, when the learned model can
be expected to perform well or not.

We also wish the meta-model to learn to assess when the i.i.d. assump-
tions underlying the learning of the primary model are broken. To this end,
we construct splits that create “interpolation” and “extrapolation” scenarios:
We project the training data onto the first (and later the second) principal com-
ponent (PC) dimension. Then, we partition the respective line in h intervals
(the left-most and right-most being half-open), such that each interval contains
the same number (up to rounding errors) of training instances. We then con-
sider each such interval as validation and the remaining data as base sets. We
do this for the two most significant PC dimensions and again for bucket size
h ∈ {3, 5, 10}. Thus, including the three random cross-validations, in total, we
generate nine meta-model examples for each original training example.
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Table 1. Characteristics of the UCI benchmarks used in the experiments.

Data sets Airfoil B. Housing Combine cycle Concrete Diabetes Yacht

# Observations 1503 506 9568 103 442 308

# Attributes 5 13 4 10 10 6

Lastly, we experiment with two supervised classification techniques to train
a meta-model: a support vector machine (SVM) with RBF kernel (one vs. rest
decision function for multi-classification) [21], and a random forest classifier [12]
with 100 trees and no depth limit. We choose these out-of-the-box models as
proof of concept, i.e., we are interested in testing our meta-learning procedure
(e.g., meta-features and data-splitting) rather than the performance of the meta-
learner. Nonetheless, sophisticated models tune for the specific data sets can lead
to better performance of the empirical confidence procedure.

4 Numerical Results

We train primary regression models for six well-known UCI benchmarks [8].
Table 1 shows the characteristics of the selected benchmarks, including the num-
ber of observations and attributes. We use three techniques to train a primary
regression model: A random forest trainer (RF), a linear regressor (Linear), and
a support vector regressor (SVR). These perform differently in each benchmark
data set but this is not our primary concern. Rather, we want to find out if our
approach creates meta-models that effectively assess when a primary modeled
performs similarly to what the training performance led us to expect, and when
the primary model is best not to be trusted blindly.

We conduct four different tenfold cross-validations to evaluate the perfor-
mance of our assessor pipelines. First, we randomly partition the data into equal
size buckets and make each bucket the test set, i.e., standard cross-validation
(Random CV ). Secondly, we 20-cluster the data, and then create 10 buckets by
joining the smallest and largest cluster, the second smallest and second largest
cluster, and so on. Then, we consider each resulting bucket as the test set (called
Cluster). That is, the test sets are generated by extracting entire clusters of
labeled instances from the benchmark and making these the test instances. Note
that in this setup the test sets are not guaranteed to be of equal size. For the
last sets of evaluations, we project all examples on their first (and third) PC
dimension and partition the data in equal size intervals (referred to as PCA-1
and PCA-3, respectively). Again, we consider in turn each interval as the test
set. Thus, for each benchmark, we obtain 40 train/test splits. For each of these,
we train three primary models (RF, Linear, and SVR), and two respective asses-
sor pipelines (a random forest and an SVM meta-model). In total, we consider
144 10-fold cross-validations to assess the efficacy of our approach.

Figure 2 depicts the competence assessments on a 1-dimensional regression
problem. The figure shows only the test set, the training set consisted only of
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Fig. 2. Scatter plots illustrating competence assessments on 1-D regression with linear
regression (left) and random forest (right). (Color figure online)

examples on the top left and lower right of the instances shown in each scatter
plot. Our pipeline assesses the competence of a linear regressor and a random
forest regressor on this interpolation task. We use green dots for instances for
which the primary model is trusted, yellow for caution, and red for not trusted.
We can see that the meta-model trusts the linear regression model to perform
well on the test set, while the assessor built for the random forest model does
not once the test inputs are far from the training data.

The above shows that empirical competence assessment works conceptually,
but of course, we are interested in real-world multi-dimensional regression prob-
lems. Table 2 shows our results on the UCI benchmarks [8] using as meta-model
an off-the-shelf SVM with RBF kernel (no hyper-parameter tuning). For each
of the four cross-validation scenarios (i.e., Random CV, PCA-1, PCA-3, and
Cluster), we report the average percentage of test examples that fall into each
category: trusted (T), cautioned (C), or not trusted (NT), and the geometric
mean of the mean squared errors (MSE) over the ten test sets. We can see that
the meta-models are effective in identifying when the primary models perform
poorly. With few exceptions, when the meta-models label a significant number
of test instances as cautioned or not trusted, the mean squared errors of the pri-
mary regressors increase. This is an indication that the meta-models we trained
can effectively assess when a primary regressor is trustworthy and when not.

Very encouragingly, this works for random cross-validations and the non-i.i.d.
splits based on removing entire clusters and PCA-projected intervals. Consider
the Airfoil benchmark as an example. On the Random CV, the Linear primary
model achieves an average (geometric mean) MSE of 0.46. The meta-model trusts
Linear in 61% of the cases with an average MSE of 0.27. For 30% of the test
instances, the meta-model cautions that the primary model may be degrading
and indeed the average MSE climbs to 0.63. On the remaining 9%, the meta-
model no longer trusts the primary model and the MSE is 0.99, more than double
the primary’s average on all test instances. We observed similar results for the
Cluster splits: The average MSE over all ten test sets is 0.46 for the Linear
primary model. The meta-model trusts the model in 70% of all test cases with
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Table 2. Competence assessor effectiveness on UCI benchmarks.

Split Random CV PCA-1 PCA-3 Cluster

Benchmark Class T C NT all T C NT all T C NT all T C NT all

Airfoil % 61.11 29.62 9.27 100 64.84 26.60 8.56 100 68.63 23.84 7.53 100 69.77 21.64 8.59 100
Linear MSE 0.27 0.63 0.99 0.46 0.21 0.95 1.43 0.51 0.30 0.74 1.39 0.48 0.18 0.84 1.90 0.46

% 42.67 44.46 12.87 100 52.95 33.64 13.41 100 56.83 36.24 6.93 100 57.80 33.82 8.38 100
SVR MSE 0.18 0.36 0.36 0.31 0.13 0.32 0.45 0.26 0.14 0.31 0.58 0.23 0.08 0.29 0.28 0.19

% 28.11 26.24 45.64 100 45.44 29.75 24.80 100 29.34 25.67 44.98 100 56.12 26.92 16.96 100
RF MSE 0.14 0.14 0.33 0.21 0.06 0.11 0.23 0.12 0.07 0.10 0.19 0.14 0.10 0.09 0.20 0.12

Boston % 51.09 38.61 10.30 100 53.84 37.22 8.94 100 64.69 27.63 7.68 100 57.95 32.11 9.94 100
Linear MSE 0.14 0.30 0.72 0.26 0.13 0.40 0.70 0.28 0.10 0.31 1.53 0.28 0.12 0.35 0.84 0.27

% 46.93 41.01 12.06 100 51.16 36.32 12.51 100 51.30 36.82 11.88 100 48.37 39.84 11.79 100
SVR MSE 0.10 0.12 0.39 0.18 0.12 0.15 0.36 0.18 0.05 0.13 0.81 0.19 0.08 0.17 0.37 0.16

% 41.46 27.49 31.05 100 43.66 29.97 26.37 100 41.52 28.61 29.87 100 39.75 30.87 29.37 100
RF MSE 0.07 0.13 0.23 0.17 0.07 0.12 0.33 0.17 0.05 0.08 0.24 0.13 0.08 0.12 0.16 0.15

CCycle % 62.77 33.22 4.00 100 57.09 33.55 9.36 100 57.55 37.39 5.06 100 57.00 36.99 6.01 100
Linear MSE 0.04 0.10 0.22 0.07 0.05 0.10 0.15 0.07 0.06 0.09 0.13 0.07 0.06 0.09 0.14 0.07

% 70.69 27.47 1.84 100 64.06 32.29 3.65 100 60.95 35.00 4.05 100 56.26 37.17 6.57 100
SVR MSE 0.04 0.08 0.21 0.05 0.05 0.08 0.28 0.06 0.05 0.08 0.11 0.06 0.05 0.07 0.11 0.06

% 55.63 30.78 13.59 100 31.36 38.32 30.31 100 29.20 42.38 28.42 100 26.44 37.97 35.60 100
RF MSE 0.02 0.04 0.07 0.04 0.03 0.05 0.08 0.05 0.04 0.05 0.08 0.06 0.03 0.05 0.07 0.05

Concrete % 64.08 26.21 9.71 100 60.78 25.53 13.69 100 64.27 24.37 11.36 100 57.13 26.80 16.07 100
Linear MSE 0.24 0.74 1.06 0.42 0.22 0.55 1.00 0.40 0.22 0.65 0.85 0.42 0.19 0.64 1.01 0.44

% 63.01 23.59 13.40 100 59.03 25.05 15.92 100 53.59 30.10 16.31 100 39.70 42.16 18.14 100
SVR MSE 0.16 0.35 0.56 0.25 0.13 0.29 0.34 0.21 0.11 0.25 0.41 0.21 0.14 0.23 0.35 0.23

% 32.33 30.87 36.80 100 27.96 31.65 40.39 100 35.83 30.68 33.50 100 14.61 26.00 59.40 100
RF MSE 0.07 0.08 0.29 0.15 0.09 0.11 0.30 0.20 0.07 0.08 0.24 0.15 0.05 0.12 0.29 0.21

Diabetes % 67.63 22.88 9.49 100 61.66 24.75 13.59 100 62.42 26.92 10.66 100 63.77 20.00 16.22 100
Linear MSE 0.46 0.53 0.36 0.49 0.49 0.52 0.55 0.51 0.49 0.52 0.47 0.50 0.39 0.59 0.46 0.50

% 59.49 27.17 13.33 100 58.02 27.45 14.54 100 56.72 26.48 16.80 100 51.73 31.20 17.07 100
SVR MSE 0.46 0.61 0.28 0.52 0.59 0.75 0.52 0.63 0.51 0.62 0.41 0.56 0.44 0.57 0.37 0.53

% 32.34 31.01 36.65 100 28.90 33.85 37.25 100 36.41 27.82 35.77 100 29.50 29.79 40.71 100
RF MSE 0.39 0.49 0.73 0.57 0.42 0.54 0.75 0.59 0.41 0.55 0.65 0.57 0.37 0.51 0.77 0.57

Yacht % 67.86 25.97 6.17 100 69.85 24.63 5.52 100 68.16 26.32 5.52 100 71.90 22.26 5.83 100
Linear MSE 0.13 0.48 2.04 0.35 0.14 0.52 2.31 0.34 0.13 0.51 2.09 0.35 0.14 0.52 2.19 0.34

% 51.59 34.75 13.66 100 40.76 45.29 13.95 100 42.70 43.00 14.30 100 41.90 44.40 13.69 100
SVR MSE 0.02 0.09 1.17 0.22 0.02 0.11 1.17 0.22 0.02 0.12 0.84 0.22 0.03 0.09 1.21 0.22

% 51.95 31.84 16.22 100 48.76 33.12 18.12 100 49.32 33.11 17.57 100 49.52 34.76 15.71 100
RF MSE 1.00 15.79 121.72 29.46 0.79 14.41 125.85 31.92 0.62 9.94 144.50 30.87 0.66 13.17 118.62 26.14

(× 1e-4)

an average MSE of 0.18. In 22% of all cases, the meta-model cautions us and
the MSE climbs to 0.84. Finally, on 8% of the test instances, the meta-model
distrusts Linear and the MSE rises to 1.9, over four times the average error the
primary model makes on all test instances.

We observe that forecasting the “cautioned” appears to be more difficult
than for the other two cases. Intuitively, assessing whether a test instance may
lie in the narrow band of the 80% and 95% error margins is harder than assessing
whether an instance belongs to one of the extreme cases.

Figure 3 shows scatter plots on two test sets from the third PC dimension
splits, the first using random forest primary model for a middle interval on the
Concrete benchmark, the other using Linear as a primary model on the left-
most interval for the Airfoil benchmark. The figure shows the forecasted value
by the primary model over the true value. The colors indicate the meta-model’s
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assessment: green for trusted, yellow for cautioned, and red for not trusted. Note
that this figure shows predicted value over the actual value, so we cannot tell
here whether the problematic inputs come from the same feature input region
or not. Overall, we observe that the meta-model is effective at identifying test
instances on which the primary model has problems, while the vast majority of
trusted inputs find themselves within the desired performance bounds.

Fig. 3. Competence assessment on test set: linear regression on Airfoil middle PCA-3
interval (left) and Random forest regressor on Concrete leftmost PCA-3 interval (right).
(Color figure online)

Table 3 compares our approach, which learns about the technique that builds
the primal model, with an approach that assesses the primary model directly
(motivated by Matsumoto et al. [14] approach for ANN primary regressors and
Neural Networks Committees as meta-models). Here, we train one primary lin-
ear regression model on the training set and then, based on the residuals, label
training instance as either trusted, cautioned, or warned. As in [14] we use the
original benchmark features and the primary model forecast as meta-model fea-
tures. Thus, this baseline omits our meta-features and the multiple data-splits to
construct the meta-model input. We again use an SVM to train the meta-model.

Table 3. Empirical competence assessor (ECM) vs. One-model assessor (Baseline).

Split Random CV PCA-1 PCA-3 Cluster

Benchmark Class T W T W T W T W

Airfoil % 60.51 39.49 64.24 35.76 68.57 31.43 69.92 30.08
ECM MSE 0.26 0.86 0.20 1.08 0.31 0.92 0.18 1.19

% 50.12 49.88 51.35 48.65 57.29 42.71 51.33 48.67
Baseline MSE 0.31 0.22 0.29 0.79 0.34 0.81 0.23 0.73

Boston % 51.88 48.12 55.03 44.97 64.49 35.51 57.88 42.12
ECM MSE 0.15 0.40 0.13 0.49 0.10 0.57 0.11 0.49

% 50.93 49.07 59.21 40.79 57.76 42.24 53.80 46.20
Baseline MSE 0.16 0.36 0.14 0.40 0.12 0.49 0.13 0.39

CCycle % 62.77 37.23 57.55 42.45 57.83 42.17 56.90 43.10
ECM MSE 0.04 0.12 0.05 0.11 0.06 0.10 0.06 0.09

% 48.80 51.20 41.42 58.58 42.83 57.17 42.72 57.28
Baseline MSE 0.05 0.09 0.05 0.09 0.06 0.09 0.06 0.08

Split Random CV PCA-1 PCA-3 Cluster

Benchmark Class T W T W T W T W

Concrete % 65.15 34.85 60.68 39.32 63.98 36.02 57.91 42.09
ECM MSE 0.26 0.79 0.23 0.66 0.24 0.75 0.19 0.82

% 55.44 44.56 56.89 43.11 55.63 44.37 53.13 46.87
Baseline MSE 0.23 0.67 0.24 0.57 0.23 0.66 0.23 0.68

Diabetes % 67.40 32.60 61.87 38.13 63.55 36.45 63.06 36.94
ECM MSE 0.46 0.55 0.51 0.54 0.45 0.57 0.35 0.56

% 53.37 46.63 53.01 46.99 52.48 47.52 57.91 42.09
Baseline MSE 0.38 0.59 0.48 0.58 0.40 0.59 0.42 0.65

Yacht % 68.18 31.82 69.83 30.17 69.76 30.24 72.74 27.26
ECM MSE 0.13 0.81 0.14 0.84 0.14 0.83 0.14 0.91

% 60.39 39.61 60.42 39.58 59.42 40.58 61.79 38.21
Baseline MSE 0.16 0.63 0.15 0.63 0.16 0.62 0.16 0.63

The table shows the percentage of test instance labeled as trusted (T) or
warned (W) (i.e., we expect the error to exceed 80% of the average training
error), and the respective average MSE (geometric mean over the ten test sets
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in each cross-validation). Overall, assessing the learning technique works better
than assessing the final model. For example, consider the Yacht benchmark. On
all cross-validations, our empirical confidence model (ECM) has lower MSE on
the trusted instances while labeling more instances as trusted. Also, the spread
between the MSE on trusted and warned instances is usually higher for Baseline.

We also experimented with a standard random forest as a meta-model, which
showed no significant difference to the SVM meta-model. Moreover, we analyzed
the importance of our meta-features to characterize how a test input related
to the primary model training set. Our analysis showed that the new features
are crucial to get good performance. We also found that different features had
different importance for different cross-validations and primary models, and, at
times, even within the same cross-validation and primary learning technique
(results omitted due to space restrictions). Therefore, the six meta-features are
important to assess regressor competence in different circumstances.

5 Conclusion

We proposed a new methodology for building competence assessors for regression
models. Rather than assessing the model itself, we experiment with the learning
technique that generates the model over labeled training data. We showed the
effectiveness of the technique, even on non-i.i.d. train/test splits, and when using
off-the-shelf classifiers. Assessing primary model competence can thus be learned
effectively and automatically. We, therefore, recommend that models that oper-
ate in critical environments should be secured using a competence assessor.

We also showed that learning how the primary regression technique behaves
on the training set is more effective than aiming to learn only from the final
primal model. This procedure obviously incurs higher computational costs, but
on the other hand is not excessive either: hyper-parameter optimization of the
primal model will require retraining in various cross-validations, so the cross-
validations used for training the competence assessor will only add a constant
factor to the total computation time.

Future work regards the proposal of other reliability metrics as meta-features.
While the six features proposed lead to satisfactory results, we believe that
the search for features that characterize the relationship between the run-time
feature vector, the training set, and model performance has just begun.

Another aspect that deserves further investigation is the use of active learn-
ing. In this setting, we could add targeted training data for the competence
assessor where it appears most beneficial. In fact, it is also conceivable that we
learn lazily: When a new run-time instance is given that exhibits a very unique
relationship to the training data which the competence assessor has not been
trained for, we could, at run-time, aim to build new training data to retrain the
competence model before it assesses the new input.
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Abstract. The current encode-attend-decode paradigm suffers from
noisy encoder problem. We implemented a seq2seq model consisting
of a novel selective mechanism for query focused abstractive document
summarization using neural networks to solve this problem. Selective
mechanism was used for the better representation of input (passage)
sequence. We conducted experiments on Debatepedia dataset and have
demonstrated that our model outperforms the state-of-the-art model in
all ROUGE scores.

1 Introduction

Abstractive document summarization is the process of summarizing document by
shortening a document to a condensed summary in an abstractive manner where
the summary retains the key information about the document. Query-focused
abstractive document summarization (QFADS) aims the same while keeping the
query in context. However, despite the rise of neural models based on encode-
attend-decode paradigm to generic summarization, not enough attention has
been given to query focused abstractive document summarization. Although the
purpose of attention mechanism is to show the alignment relationship between
the input sequence and the output sequence, there is no clear alignment rela-
tionship between the two sequences [7]. Our work is based on the hypothesis
that the encoder is too confused and noisy with just simple bi-directional RNN
unit. We propose a seq2seq model consisting of novel selective mechanism for
QFADS task. This selective mechanism can reduce the unnecessary information
and enhance the important information to represent a long text in a better way.
As the queries are relatively short, the selective encoding is only done on the
passage of the document. Our contributions can be summarized as follows: (i)
we propose a solution of novel selection mechanism for countering the problem of
noisy encoder outputs, (ii) we also demonstrate that our proposed model clearly
outperforms current state of art model in all evaluation scores.

c© Springer Nature Switzerland AG 2020
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2 Proposed Model

The idea of selectively encoding the text was introduced by Lin et al. [2]. Our
model is inspired by their model; however, our proposed model is different than
their model. First of all, their model was used for the task of generic abstractive
document summarization; however, our model is used for the task of QFADS.
Along with the passage (document) encoder and the passage (document) atten-
tion, our model also includes the query encoder and the query attention. Second,
their model uses Inception module to learn the local and global features whereas
our model uses Inception Network. Third, their model uses attention mechanism
as a post-step to the decoding layer whereas our model uses attention mechanism
as a pre-step to the decoding layer. Fourth, the inputs to the passage (document)
attention mechanism are different as the query contexts are included in the pas-
sage (document) attention along with the addition of separate query attention
to the model’s attention mechanism. Figure 1 shows the pictorial representation
of our model.

Fig. 1. Query focused abstractive document summarization model.
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2.1 Task Description

Given a query q = q1, q2, . . . , qk containing k words, a passage p = p1, p2, . . . , pn
containing n words, the task is to generate a query focused summary y =
y1, y2, . . . , ym containing m words. This task can be achieved as follows:

y∗ = argmaxy

m∏

t=1

p(yt|y1, . . . , yt−1, q, p)

This equation can be modeled using neural based seq2seq network.

2.2 Embedding Layer

Our embedding layer consists of three sub-layers: character level embedding
layer, word level embedding layer, and sentence level embedding layer. This
layer is applied to both passage and query separately.

2.3 Input Concatenation Layer

The input concatenation layer concatenates its multiple input embeddings to
one single embedding using linear and highway layers. This results in a single
embeddings for the query and a separate single embeddings for the passage.

2.4 Encoding Layer

The encoding layer is responsible for encoding the input sequence (both query
and passage separately) via deep bi-directional LSTM. The encoding layer con-
sists of two encoders: Query Encoder and Passage Encoder.

Query Encoder. The query encoder computes the hidden encoder query state
in sequential way from left to right for each time-step as:

sqi = DeepBiLSTM(sqi−1, e(qi))

where, sqi contains the hidden encoder query outputs hq
i and the hidden cell

memory cqi and e(qi) represents the concatenated embedding of the query word
at position i.

Passage Encoder. The passage encoder computes the hidden encoder passage
state in the similar fashion for each time-step as:

spi = DeepBiLSTM(spi−1, e(pi))
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2.5 InceptionNet Layer

The InceptionNet layer is responsible for learning the local and global features of
the document as well as the corpus. This layer is applied only to the passage as
the length of passage text is quite long. The main idea of Inception module was
introduced by Szegedy et al. [5]. Lin et al. [2] modified the Inception module to
match their computational requirements. We are using the same modified Incep-
tion module for our proposed model. The InceptionNet layer chains together five
Inception modules to form a single network which is used by the model to learn
the local and global features of the document and the corpus. The width (the size
of the Inception module) of each Inception module is varied to create a filtering
effect to the features. Five residual connections are added (one for each Incep-
tion module) to the InceptionNet layer. Residual connections help the network
to go even deeper. They also help ease the training of deeper neural network.
Five outputs, one from each Inception module, are concatenated and followed
by linear layer. As a part of regularization process, the concatenated output is
followed by batch normalization. The process of InceptionNet layer can be seen
in Fig. 2 which can be formulated as:

hip = InceptionNetLayer(hp)

where, hp = {hp
1, . . . , h

p
n} is the sequential hidden encoder passage outputs of

the first n words from the input passage sequence.

Fig. 2. InceptionNet Layer

2.6 Self-attention Layer

Introduced by [6], self-attention is used to strengthen the learning of the features.
This layer can be formulated as:

hsp = softmax(
hipKT

√
dk

)hip
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where, K = Watth
ip, Watt is a learnable matrix, dk represents the dimension of

the InceptionNet outputs which is the same as the RNN size.

2.7 Gated Layer

Gated layer is responsible for filtering the outputs of the passage encoder in
order to remove unnecessary and unimportant information and only select the
information relevant to the local and global features of the document and the
corpus. This gated layer can be formulated as:

hgp = hp � σ(hsp)

where, σ and � represent sigmoid activation function and Hadamard product,
respectively.

2.8 Attention Layer

Attention layer is responsible for aligning the input sequence for the purpose
of decoding the output sequence. Our attention layer consists of two sub-layers:
Query Attention and Passage Attention.

Query Attention. The query attention mechanism can be formulated as
follows:

cvq
t =

N∑

i=1

Softmax(
Score(hd

t−1, h
q
i )√

dk
)hq

i

Here, Score represents Luong’s multipicative score function [3] to calculate the
energy score of the query attention. cvq

t represents query context vector at time t.

Passage Attention. The passage attention mechanism can be formulated as
follows:

cvpt =
N∑

i=1

Softmax(
Score(hd

t−1, [h
gp
i , cvqt ])√

dk
)hgp

i

Here, [] represents the concatenation of two vectors followed by a linear layer.

2.9 Final State Concatenation Layer

The final hidden state of both encoders are combined in this final state concate-
nation layer followed by a linear layer.

2.10 Output Embedding Layer

Output embedding layer is responsible for converting the summary words into
vector space using just word level embedding layer.
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2.11 Decoding Layer

This layer is responsible for decoding the output sequence via uni-directional
LSTM. The decoding layer takes the concatenated final hidden state of both
encoders as an initial state to its first recurrent layer. Each decoding step can
be formulated as follows:

sdt = LSTM(sdt−1, [e(x
d
t ), cv

p
t ])

2.12 Output Layer

The output layer is responsible for predicting the summary words. The output
layer can be formulated as below:

OV = Linear(Concat(hd
t , cv

q
t , cv

p
t ))

OD = softmax(Projection(OV ))
yt = Id2Word(argmax(OD))

Here, Projection represents converting the dense representation into the
sparse representation matching the output size to the vocabulary size. argmax
function takes the probability distribution and returns the index having highest
probability. This index is converted into word by using Id2Word function.

3 Experiments and Results

We took the dataset created by Nema et al. [4] from Debatepedia1. We used
Adam optimizer with initial learning of 0.0001. We used sequence loss func-
tion. Gradient clipping technique was used to alleviate the problem of vanish-
ing/exploding gradient. We trained our model on a single Nvidia TITAN X
GPU card with 12G RAM and the model took about 24 h to train. We used
ROUGE(1, 2, L) [1], METEOR, Embedding Average Cosine Similarity (EACS),
Greedy Maching Score (GMS)2, and Copy Rate(CR) to evaluate the performance
of our model.

We compare our model with the current state-of-art model on QFADS model
proposed by Nema et al. [4] (Diversity) and vanilla Encode-Attend-Decode
(EAD) framework. Both scores are taken from the Diversity paper.

Table 1 summarizes the result of our experiment. It shows that our proposed
model outperforms Diversity model for QFADS task in all ROUGE scores.

Table 1. Model Comparison

Models R-1 R-2 R-L METEOR EACS GMS CR

EAD 13.73 2.06 12.84 - - - -

Diversity 41.26 18.75 40.43 - - - -

Our 43.22 27.40 42.73 25.72 85.49 72.59 40.47

1 https://github.com/PrekshaNema25/DiverstiyBasedAttentionMechanism.
2 https://github.com/Maluuba/nlg-eval.

https://github.com/PrekshaNema25/DiverstiyBasedAttentionMechanism
https://github.com/Maluuba/nlg-eval
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4 Conclusion

We implemented a model consisting of a novel selective mechanism for the query
based abstractive document summarization. The novel selective mechanism was
introduced to reduce the noise present in long text of the input (passage)
sequence. Experiments were conducted on Debatepedia dataset which showed
that our model outperforms the state-of-the art model in all ROUGE scores.

Acknowledgements. We would like to thank the anonymous reviewers for their use-
ful comments. The research reported in this paper was conducted at the University of
Lethbridge and supported by the Natural Sciences and Engineering Research Council
(NSERC) of Canada discovery grant and the University of Lethbridge.
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Abstract. Tensor decomposition is a collection of factorization tech-
niques for multidimensional arrays. Today’s data sets, because of their
size, require tensor decomposition involving factorization with multiple
matrices and diagonal tensors such as DEDICOM or PARATUCK2. Tra-
ditional tensor resolution algorithms such as Stochastic Gradient Descent
(SGD) or Non-linear Conjugate Gradient descent (NCG), cannot be eas-
ily applied to these types of tensor decomposition or often lead to poor
accuracy at convergence. We propose a new resolution algorithm, VecH-
Grad, for accurate and efficient stochastic resolution over all existing ten-
sor decomposition. VecHGrad relies on the gradient, an Hessian-vector
product, and an adaptive line search, to ensure the convergence dur-
ing optimization. Our experiments on five popular data sets with the
state-of-the-art deep learning gradient optimizers show that VecHGrad
is capable of converging considerably faster because of its superior con-
vergence rate per step. VecHGrad targets as well deep learning optimizer
algorithms. The experiments are performed for various tensor decomposi-
tion, including CP, DEDICOM, and PARATUCK2. Although it involves
an Hessian-vector update rule, VecHGrad’s runtime is similar in practice
to that of gradient methods such as SGD, Adam, or RMSProp.

Keywords: Line search · Gradient descent · Loss function

1 Motivation

Tensors are multidimensional, or N-order, arrays. Tensors are able to scale down
a large amount of data to an interpretable size using different decomposition
types, also called factorizations. The data sets used in machine learning [1] and
data mining [2] are multi-dimensional and, therefore, tensors and their decom-
positions are highly appropriate [3]. Because of the size of modern data sets,
Tensor Decompositions (TDs), such as the CP/PARAFAC [4,5] decomposition,
later denoted CP, are now challenged by other TDs such as DEDICOM [6] and
PARATUCK2 [7,8]. CP decomposes the original tensor as a sum of rank-one ten-
sors, as illustrated in Fig. 1, whereas DEDICOM and PARATUCK2 decompose

c© Springer Nature Switzerland AG 2020
C. Goutte and X. Zhu (Eds.): Canadian AI 2020, LNAI 12109, pp. 125–137, 2020.
https://doi.org/10.1007/978-3-030-47358-7_12
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the original tensor as a product of matrices and diagonal tensors, as shown in
Figs. 2 and 3, respectively. Depending on the TD type, different latent variables
are highlighted with their respective asymmetric relationships. Fast and accu-
rate tensor resolutions have however required specific numerical optimization
methods known as preconditioning methods.

Well-known in the Machine Learning (ML) and Deep Learning (DL) com-
munity, the standard Stochastic Gradient (SGD) optimization method [9,10] is
widely used in different ML and DL approaches. It is however losing its momen-
tum over recent preconditioning gradient methods. The latter considers a matrix,
a preconditioner, to update the gradient before it is used. Standard precondi-
tioning methods include Newton’s method, which employs the exact Hessian
matrix, and the quasi-Newton methods, which do not require the exact Hes-
sian matrix [11]. The computational cost of the exact Hessian matrix is one of
the major limitations of Newton’s method. Introduced to answer some of the
challenges in ML and DL, AdaGrad [12] uses as a preconditioner the co-variance
matrix of the accumulated gradients. Due to the dimensions of the ML problems,
specialized variants were proposed to replace the full preconditioning methods
by diagonal approximation methods, such as Adam [13], or by other schemes,
such as Nesterov Accelerated Gradient (NAG) [14] or SAGA [15]. The diagonal
approximation methods are often preferred because of the super-linear memory
consumption of other methods [16].

In this work, we aim at efficient and accurate resolution of high-order TDs
for which most of the ML and DL state-of-the-art optimizers fail. We describe
how to exploit the quasi-Newton convergence with a diagonal approximation of
the Hessian matrix and an adaptive line search. Our algorithm, VecHGrad for
Vector Hessian Gradient, returns the tensor structure of the gradient using a
separate preconditioner vector. Our analysis relies on the extensions of vector
analysis to the tensor world. We show the superior capabilities of VecHGrad
for various resolution algorithms, such as Alternating Least Squares (ALS) or
Non-linear Conjugate Gradient (NCG) [17], and some popular DL optimizers,
such as Adam or RMSProp. Our main contributions are summarized below:

– We propose a new resolution algorithm, VecHGrad, that uses the gradient,
the Hessian-vector product and an adaptive line search to perform accurate
and fast optimization of the objective function of TD.

– We demonstrate the superior accuracy of VecHGrad at convergence. We com-
pare it, on five popular data sets, to other resolution algorithms, including
deep learning optimizers, for the three most common TDs known as CP,
DEDICOM, and PARATUCK2.

The paper is structured as follows. We discuss the related work in Sect. 2.
We review briefly tensor operations and tensor definitions in Sect. 3. We then
describe in Sect. 4 how VecHGrad performs in a numerical optimization scheme
applied to tensor structures without the requirement of knowing the Hessian
matrix. We highlight the experimental results in Sect. 5. Finally, we conclude
and address promising directions for future work.
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2 Related Work

VecHGrad uses a diagonal approximation of the Hessian matrix and, therefore,
is related to other diagonal approximations such as AdaGrad [12], which is very
popular and frequently applied [16]. However, it only uses gradient information,
as opposed to VechGrad which uses both gradient and Hessian information.
Other approaches extremely popular in ML and DL include Adam [13], NAG
[14], SAGA [15], and RMSProp [18]. The non-exhaustive list of ML optimizers
is considered in our study case since it offers a strong baseline comparison for
VecHGrad.

Since our study case is related to TDs, the methods specifically designed for
TDs have to be mentioned. The most popular optimization scheme among the
resolution of TDs is the Alternating Least Squares (ALS). Under the ALS scheme
[3], one element of the decomposition is fixed. The fixed element is updated
using the other elements. Therefore, all the elements are successively updated
at each step of the iteration process until a convergence criteria is reached,
e.g. a fixed number of iteration. For every TDs, there exists at least one ALS
resolution scheme. The ALS resolution scheme was introduced in [4,5] for the
CP decomposition, in [19] for the DEDICOM decomposition and in [7] for the
PARATUCK2 decomposition. An updated ALS scheme was presented in [20]
to solve PARATUCK2. In [6], Bader et al. proposed ASALSAN to solve with
non-negativity constraints the DEDICOM decomposition with the ALS scheme.
While some matrix updates are not guaranteed to decrease the loss function,
the scheme leads to overall convergence. In [21], Charlier et al. have recently
proposed a non-negative scheme for the PARATUCK2 decomposition.

Other approaches are specifically designed for one TD using gradient informa-
tion. In [17,22], an optimized version of NCG for CP is presented, i.e. CP-OPT.
In [23], an extension of the Stochastic Gradient Descent (SGD) is described to
obtain, as mentioned by the authors, an expected CP TD. The performance
on other TDs was, however, not assessed. The comparison to other numerical
optimizers in the experiments was rather limited, especially when considering
existing popular machine learning and deep learning optimizers. In contrast,
VecHGrad is detached from any particular model structure, including the choice
of TDs. It only relies on the gradient, the Hessian diagonal approximation and
an adaptive line search, crucial for fast convergence of complex numerical opti-
mization. Consequently, VecHGrad is easy to implement and use in practice as
it does not require to be optimized for a particular model structure.

3 Background

In this section, we briefly introduce the preliminaries of TDs. Scalars are denoted
by lower case letters a, vectors by boldface lowercase letters a, matrices by
boldface capital letters A, and N-order tensors by the Euler script notation X.
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3.1 Tensor Operations

Vectorization. The vectorization operator flattens a tensor of n entries to a
column vector R

n. The ordering of the tensor elements is not important as long
as it is consistent [3]. For a third order tensor X ∈ R

I×J×K , the vectorization of
X is equal to vec(X) =

[
x111 x112 · · · xIJK

]T
.

Tensor Norm. The square root of the sum of all squared tensor entries of the

tensor X defines its norm: ‖ X ‖ =
√∑I1

j=1

∑I2
j=2 ...

∑In
j=n x2

j1,j2,...,jn
.

Tensor Rank. The rank-R of a tensor X ∈ R
I1×I2×...×IN is the number of linear

components that could fit X exactly. X =
∑R

r=1 a
(1)
r ◦ a(2)r ◦ ... ◦ a(N)

r .

3.2 Tensor Decomposition

The CP decomposition, shown in Fig. 1, has been introduced in [4,5]. The tensor
X ∈ R

I×I×K is defined as a sum of rank-one tensors. The number of rank-
one tensors is determined by the rank, denoted by R, of the tensor X. The
CP decomposition is expressed as X =

∑R
r=1 a

(1)
r ◦ a(2)r ◦ a(3)r ◦ ... ◦ a(N)

r where
a(1)r ,a(2)r ,a(3)r , ...,a(N)

r are factor vectors of size RI1 ,RI2 ,RI3 , ...,RIN . Each factor
vector a(n)r with n ∈ {1, 2, ..., N} and r ∈ {1, ..., R} refers to one order and one
rank of the tensor X.

The DEDICOM decomposition [19], illustrated in Fig. 2, describes the asym-
metric relationships between I objects of the tensor X ∈ R

I×I×K . The decompo-
sition groups the I objects into R latent components (or groups) and describes
their pattern of interactions by computing A ∈ R

I×R, H ∈ R
R×R and

D ∈ R
R×R×K such that Xk = ADkHDkAT , ∀ k = 1, ...,K. The matrix A

indicates the participation of object i = 1, ..., I in the group r = 1, ..., R, the
matrix H the interactions between the different components r and the tensor D
represents the participation of the R latent component according to K.

The PARATUCK2 decomposition [7], presented in Fig. 3, expresses the
original tensor X ∈ R

I×J×K as a product of matrices and tensors Xk =
ADA

k HDB
k BT with k = {1, ...,K} where A, H and B are matrices of size R

I×P ,
R

P×Q, and R
J×Q. The matrices DA

k ∈ R
P×P and DB

k ∈ R
Q×Q ∀k ∈ {1, ...,K}

are the slices of the tensors DA ∈ R
P×P×K and DB ∈ R

Q×Q×K . The columns
of the matrices A and B represent the latent factors P and Q, and therefore
the rank of each object set. The matrix H underlines the asymmetry between
the P latent components and the Q latent components. The tensors DA and DB

measure the evolution of the latent components according to K.

4 VecHGrad for Tensor Decomposition

In this section, we first introduce VecHGrad for the first order tensors, also com-
monly called vectors. We then present the core of our contribution, VecHGrad
for N-order tensor decomposition.
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Fig. 3. Third order PARATUCK2 TD

4.1 Introduction to VecHGrad for Vectors

Under Newton’s method, the current iterate x̃t ∈ C is used to generate the next
iterate x̃t+1 by performing a constrained minimization of the second order Taylor
expansion such that:

x̃t+1 = arg min
x∈C

{1
2

〈
x − x̃t,∇2f(x̃t)(x − x̃t)

〉
+

〈∇f(x̃t),x − x̃t
〉}. (1)

We recall that ∇f and ∇2f denote the gradient and the Hessian matrix, respec-
tively, of the objective function f : Rd → R.

∇f = grad
x∈C

f

∇f = [
∂f

∂x1
,

∂f

∂x2
, ...,

∂f

∂xd
]

(2)

∇2f = Hes

∇2f =

⎛

⎜
⎜
⎜
⎝

∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xd

...
...

. . .
...

∂2f
∂xd∂x1

∂2f
∂xd∂x2

· · · ∂2f
∂x2

d

⎞

⎟
⎟
⎟
⎠

(3)

When C ∈ R
d, which is the unconstrained form, the new iterate x̃t+1 is generated

such that:
x̃t+1 = x̃t − [∇2f(x̃t)]−1∇f(x̃t) . (4)
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We use the strong Wolfe’s line search which allows Newton’s method to be
globally convergent. The line search is defined by the following three inequalities:

i) f(x̃t + αtpt) ≤ f(x̃t) + c1α
t(pt)T ∇f(x̃t) ,

ii) − (pt)T ∇f(x̃t + αtpt) ≤ −c2(pt)T ∇f(x̃t) ,

iii) | (pt)T ∇f(x̃t + αtpt) |≤ c2 | (pt)T ∇f(x̃t) | ,

(5)

where 0 ≤ c1 ≤ c2 ≤ 1, αt > 0 is the step length and pt = −[∇2f(x̃t)]−1∇f(x̃t).
Therefore, the iterate x̃t+1 becomes the following:

{
x̃t+1 = x̃t − αt[∇2f(x̃t)]−1∇f(x̃t) ,

x̃t+1 = x̃t + αtpt .
(6)

Computing the inverse of the exact Hessian matrix, [∇2f(x̃t)]−1, may be difficult.
The inverse is therefore computed with a Conjugate Gradient (CG) loop. It has
two main advantages: the calculations are considerably less expensive [11] and
the Hessian can be expressed by a diagonal approximation. The convergence
of the CG loop is defined when a maximum number of iterations is reached or
when the residual rt = ∇2f(x̃t)pt + ∇f(x̃t) satisfies ‖ rt ‖≤ σ ‖ ∇f(x̃t) ‖ with
σ ∈ R

+. In the CG loop, the exact Hessian matrix is approximated by a diagonal
approximation. The Hessian matrix is multiplied by a descent direction vector
resulting in a vector which satisfies the requirement of the main optimization
loop. Therefore, only the results of the Hessian vector product are needed. The
equation is expressed below:

∇2f(x̃t) pt =
∇f(x̃t + η pt) − ∇f(x̃t)

η
. (7)

The term η is the perturbation and the term pt is the descent direction vector,
set to the negative of the gradient at initialization. Consequently, the extensive
computation of the inverse of the exact full Hessian matrix is bypassed using
only gradient diagonal approximation.

4.2 VecHGrad for Accurate Resolution of Tensor Decomposition

The loss function, or the objective function, is denoted by f . It is equal to:

f(x̃) = min
X̂

||X − X̂||. (8)

The tensor X is the original tensor and the tensor X̂ is the approximated tensor
built from the decomposition. If we consider, for instance, that the CP TD
applied on a third order tensor, the tensor X̂ is the tensor built with the factor
vectors a(1)r ,a(2)r ,a(3)r for r = 1, ..., R initially randomized such as:

X̂ =
R∑

r=1

a(1)r ◦ a(2)r ◦ a(3)r . (9)
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The vector x̃ is a flattened vector containing all the entries of the decomposed
tensor X̂. If we consider a third order tensor X̂ of rank R factorized with the CP
TD, we obtain the following vector x̃ ∈ R

d=R(I+J+K) such that:

x̃ = vec(X̂) = [a(1)1 , a(1)2 , ...,a(R)
I ,a(2)1 , a(2)2 , ...,a(R)

J ,a(3)1 , a(3)2 , ...,a(R)
K ]T .

(10)
Since the objective is to propose a universal approach for any TDs, we rely on
finite difference method to compute the gradient of the loss function of any TDs.
Thus, the method can be transposed to any decomposition just by changing the
decomposition equation. The approximate gradient is based on a fourth order
formula (11) to ensure reliable approximation [24]:

∂

∂xi
f(x̃t) ≈ 1

4!η
(
2[f(x̃t − 2ηei) − f(x̃t + 2ηei)]

+ 16[f(x̃t + ηei) − f(x̃t − ηei)]
) . (11)

In Eq. (11), the index i is the index of the variables for which the derivative is to
be evaluated. The variable ei is the ith unit vector. The term η, the perturbation,
is set to a small value to achieve the convergence of the process.

The Hessian diagonal approximation is evaluated as described in the previous
section, using Eq. (7). Our approach is therefore free of the extensive computa-
tion of the inverse of the exact Hessian matrix. We finally reached the core
objective of describing VecHGrad for tensors, summarized in Algorithm 1.

Algorithm 1: VecHGrad, tensor case

1 Select tensor decomposition equation: g :

{
R

d → R
I1×I2×...×In

x̃t �→ X̃

2 Select randomly x̃0 = vec(X̂)

3 repeat

4 Select loss function: f :

{
R

d → R

x̃t �→‖ X − g(x̃t) ‖
5 Compute gradient ∇f(x̃t) ∈ R

d

6 Fix pt
0 = −∇f(x̃t)

7 repeat

8 Update pt
k with CG loop: rk = ∇2f(x̃t)pt

k + ∇f(x̃t)

9 until k = cgmaxiter or ‖ rk ‖≤ σ ‖ ∇f(x̃)t) ‖
10 αt ← Wolfe’s line search

11 Update parameters: x̃t+1 = x̃t + αtpt
opt

12 until t = maxiter or f(x̃t) ≤ ε1 or ‖ ∇f(x̃t) ‖≤ ε2

5 Experiments

We investigate the convergence behavior of VecHGrad and compare it to other
popular optimizers inherited from both the tensor and machine learning commu-
nities. We compare VecHGrad with ten different algorithms applied to the three
main TDs, CP, DEDICOM, and PARATUCK2, with increasing linear algebra
complexity:
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– ALS, Alternating Least Squares [20,21];
– SGD, Stochastic Gradient Descent [11];
– NAG, Nesterov Accelerated Gradient [14];
– CP-OPT and the Non-linear Conjugate Gradient (NCG) [17,22];
– Adam [13];
– RMSProp [18];
– SAGA [15];
– AdaGrad [12];
– L-BFGS [25].

Data Availability and Code Availability. We highlight the performance of
VecHGrad using 5 popular data sets CIFAR10, CIFAR100, MNIST, LFW and
COCO, all available online. Each data set has different intrinsic characteristics
such as size or sparsity. A quick overview of their characteristics is presented
in Table 1. We chose to use different data sets as the performance of different
optimizers might vary depending on the data. The overall conclusion for the
experiments is therefore independent of one particular data set. The implemen-
tation and the data for the experiments are available on GitHub1.

Table 1. Description of the data sets used (K: thousands).

Data Set Labels Size Batch Size

CIFAR-10 Image × pixels × pixels 50K × 32 × 32 64
CIFAR-100 Image × pixels × pixels 50K × 32 × 32 64
MNIST Image × pixels × pixels 60K × 28 × 28 64
COCO Image × pixels × pixels 123K × 64 × 64 32
LFW Image × pixels × pixels 13K × 64 × 64 32

Experimental Setup. In our experiments, we use the standard parameters for
the popular ML and DL gradient optimization methods. We use η = 10−4 for
SGD, γ = 0.9 and η = 10−4 for NAG, β1 = 0.9, β2 = 0.999, ε = 10−8 and
η = 0.001 for Adam, γ = 0.9, η = 0.001 and ε = 10−8 for RMSProp, η = 10−4

for SAGA, η = 0.01 and ε = 10−8 for AdaGrad. We use the Hestenes-Stiefel
update for the NCG resolution. Furthermore, the convergence criteria is reached
when f i+1−f i ≤ 0.001 or when a maximum number of iterations is reached. We
use 100,000 iterations for gradient-free methods, 10,000 iterations for gradient
methods and 1,000 iterations for Hessian-based methods. Additionally, we fixed
the number of iterations to 20 for VecHGrad’s inner CG loop, used to determine
the descent direction. We invite the reader to see our code available on GitHub1

for further insights about the parameters used in our study. The simulations

1 The code is available at https://github.com/dagrate/vechgrad.

https://github.com/dagrate/vechgrad


VecHGrad for Solving Accurately Tensor Decomposition 133

were conducted on a server with 50 Intel Xeon E5-4650 CPU cores and 50GB
of RAM. All the resolution schemes have been implemented in Julia and are
compatible with the ArrayFire GPU accelerator library.

Results and Discussion. First, we performed an experiment to identify visu-
ally the strengths of each of the optimization algorithms. The Fig. 4 depicts the
resulting error of the loss function for each of the methods at convergence for
PARATUCK2 TD. We fixed latent components for which the differences between
the optimizers are easily noticeable. The error of the loss function depends on
how blurry the picture is, measured by the error at convergence. Some of the
numerical methods, ALS, RMSProp and VecHGrad, offered the best observable
image quality at convergence, given our choice of parameters. Other popular
schemes, including NAG and SAGA, however failed to converge to a solution
resulting in a noisy image, far from being close to the original one.

Fig. 4. Visual simulation of the accuracy at convergence of the different optimizers for
the PARATUCK2 decomposition. The accuracy is highlighted by how blurry the image
is (error at convergence ALS: 1018, SGD: 4082, NAG: 6469, Adam: 2996, RMSProp:
1184, SAGA: 6378, AdaGrad: 2961, NCG: 1569, L-BFGS: 1771, VecHGrad: 599). The
popular gradient optimizers AdaGrad, NAG and SAGA failed to converge to a solution
close to the original image, contrarily to VecHGrad or RMSProp.

In a second experiment, we compared in Table 2 and Table 3 the loss func-
tion errors and the calculation times of the optimizers for the five ML data
sets described in Table 1 for the three TDs aforementioned. Both the loss func-
tion errors and the calculation times were computed based on the mean of the
loss function errors and the mean of the calculation times over all batches. The
numerical schemes of the NAG, SAGA and AdaGrad algorithms failed to min-
imize the error of the loss function accurately. The ALS scheme furthermore
offers a good compromise between the resulting errors and the required calcu-
lation times, explaining its major success across TD applications. The gradi-
ent descent optimizers, Adam and RMSProp, and the Hessian based optimiz-
ers, VechGrad and L-BFGS, were capable to minimize the loss function the
most accurately. The NCG method achieved satisfying errors for the CP and
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the DEDICOM decomposition but its performance decreases significantly when
trying to solve the PARATUCK2 decomposition. Surprisingly, the calculation
times of the Adam and RMSProp gradient descents were greater than the cal-
culation times of VecHGrad. VecHGrad was capable to outperform the gradient
descent schemes for both accuracy and speed thanks to the use of the strong
Wolfe’s line search and the vector Hessian approximation, inherited from gradi-
ent information. This result is reported in Table 4 presenting the experimental

mean convergence rate, defined such that q ≈ log
∣
∣
∣ f

t+1−ft

ft−ft−1

∣
∣
∣
[
log

∣
∣
∣ ft−ft−1

ft−1−ft−2

∣
∣
∣
]−1

Table 2. Mean of the loss function errors at convergence over all batches. The lower,
the better. The strong Wolfe’s line search is crucial for the VecHGrad’s performance.

Decomposition Optimizer CIFAR-10 CIFAR-100 MNIST COCO LFW

CP ALS 318.667 428.402 897.766 485.138 4792.605

CP SGD 2112.904 2825.710 2995.528 3407.415 7599.458

CP NAG 4338.492 5511.272 4916.003 8187.315 18316.589

CP Adam 1578.225 2451.217 1631.367 2223.211 6644.167

CP RMSProp 127.961 128.137 200.002 86.792 4205.520

CP SAGA 4332.879 5501.528 4342.708 6327.580 13242.181

CP AdaGrad 3142.583 4072.551 2944.768 4921.861 10652.488

CP NCG 41.990 37.086 23.320 76.478 4130.942

CP L-BFGS 195.298 525.279 184.906 596.160 4893.815

CP VecHGrad ≤1.000 ≤1.000 ≤1.000 ≤1.000 ≤1.000

DEDICOM ALS 1350.991 1763.718 1830.830 1894.742 3193.685

DEDICOM SGD 435.780 456.051 567.503 406.760 511.093

DEDICOM NAG 4349.151 5722.073 4415.687 6325.638 9860.454

DEDICOM Adam 579.723 673.316 575.341 743.977 541.515

DEDICOM RMSProp 63.795 236.974 96.240 177.419 33.224

DEDICOM SAGA 4285.512 5577.981 4214.771 5797.562 8128.724

DEDICOM AdaGrad 1962.966 2544.436 1452.278 2851.649 3033.965

DEDICOM NCG 550.554 321.332 171.181 583.430 711.549

DEDICOM L-BFGS 423.802 561.689 339.284 435.188 511.620

DEDICOM VecHGrad ≤1.000 ≤1.000 ≤1.000 ≤1.000 ≤1.000

PARATUCK2 ALS 408.724 480.312 1028.250 714.623 658.284

PARATUCK2 SGD 639.556 631.870 1306.869 648.962 495.188

PARATUCK2 NAG 4699.058 6046.024 5168.824 8205.223 14546.438

PARATUCK2 Adam 512.725 680.653 591.156 594.687 615.731

PARATUCK2 RMSProp 133.416 145.766 164.709 134.047 174.769

PARATUCK2 SAGA 4665.435 5923.178 4934.328 6350.172 8847.886

PARATUCK2 AdaGrad 1775.433 2310.402 1715.316 2752.348 2986.919

PARATUCK2 NCG 772.634 1013.032 270.288 335.532 15181.961

PARATUCK2 L-BFGS 409.666 522.158 464.259 467.139 416.761

PARATUCK2 VecHGrad ≤textbf1.000 ≤1.000 ≤1.000 ≤1.000 ≤1.000
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Table 3. Mean calculation times (sec.) to reach convergence over all batches.

Decomposition Optimizer CIFAR-10 CIFAR-100 MNIST COCO LFW

CP ALS 5.289 4.584 2.710 5.850 4.085

CP SGD 1060.455 1019.432 0.193 2335.060 6657.985

CP NAG 280.432 256.196 0.400 1860.660 1.317

CP Adam 2587.467 2771.068 2062.562 6667.673 6397.708

CP RMSProp 2013.424 2620.088 2082.481 5588.660 4975.279

CP SAGA 1141.374 1160.775 0.191 3504.593 3692.471

CP AdaGrad 1768.562 2324.147 959.408 3729.306 6269.536

CP NCG 315.132 165.983 4.910 778.279 716.355

CP L-BFGS 2389.839 2762.555 2326.405 5936.053 5494.634

CP VecHGrad 200.417 583.117 644.445 1128.358 1866.799

DEDICOM ALS 21.280 70.820 14.469 55.783 158.946

DEDICOM SGD 1826.214 1751.355 1758.625 1775.100 1145.594

DEDICOM NAG 30.847 25.820 240.587 43.003 49.518

DEDICOM Adam 2105.825 2128.626 1791.295 2056.036 1992.987

DEDICOM RMSProp 1233.237 1129.172 993.429 1140.844 1027.007

DEDICOM SAGA 27.859 30.970 64.440 28.319 32.154

DEDICOM AdaGrad 196.208 266.057 1856.267 2020.417 2027.370

DEDICOM NCG 2524.762 644.067 236.868 1665.704 4219.446

DEDICOM L-BFGS 1568.677 1519.808 1209.971 1857.267 1364.027

DEDICOM VecHGrad 592.688 918.439 412.623 607.254 854.839

PARATUCK2 ALS 225.952 209.978 230.392 589.437 625.668

PARATUCK2 SGD 1953.609 2625.722 2067.727 3002.172 2745.380

PARATUCK2 NAG 48.468 48.724 285.679 76.811 72.068

PARATUCK2 Adam 2628.211 2657.387 2081.996 2719.519 2709.638

PARATUCK2 RMSProp 1407.752 1156.370 1092.156 1352.057 1042.899

PARATUCK2 SAGA 74.248 70.952 120.861 71.398 86.682

PARATUCK2 AdaGrad 2595.478 2626.939 2073.777 292.564 2795.260

PARATUCK2 NCG 150.196 1390.013 928.071 1586.523 82.701

PARATUCK2 L-BFGS 2780.658 2656.062 2188.253 3522.249 2822.661

PARATUCK2 VecHGrad 885.246 1149.594 1241.425 1075.570 1222.827

Table 4. PARATUCK2 experimental mean convergence rate per step.

ALS SGD NAG Adam RMSProp SAGA AdaGrad NCG L-BFGS VecHGrad

0.958 1.004 1.010 1.009 0.992 0.994 0.983 1.376 1.452 1.551
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for PARATUCK2 TD. The latter underlines the best differences between the
optimizers. The highest convergence rate was obtained by VecHGrad, followed
by L-BFGS and NCG. Similar values were obtained for the other decompo-
sition. Thus, we can conclude that VecHGrad is capable to solve accurately
and efficiently TDs outperforming popular machine learning gradient descent
algorithms.

6 Conclusion

We introduced VecHGrad, a Vector Hessian Gradient optimization method, to
solve accurately linear algebra error minimization problems. VecHGrad uses a
strong Wolfe’s line search, crucial for fast convergence and accurate resolution,
with partial information of the second derivative. We conducted experiments
on five real data sets, CIFAR10, CIFAR100, MNIST, COCO and LFW, very
popular in machine learning and deep learning. We highlighted that VecHGrad
is capable to outperform widely-used gradient-based resolution methods, such
as Adam, RMSProp or Adagrad, on three different tensor decompositions, CP,
DEDICOM and PARATUCK2, offering different levels of linear algebra com-
plexity. We emphasized our experiments with machine learning optimizers since
VecHGrad can be easily applied to solve machine learning error minimization
problems. Surprisingly, the runtimes of the gradient-based and the Hessian-based
optimization methods were very similar as the runtime per step of the gradient-
based methods was slightly faster, but their convergence per step was lower.
Therefore, gradient-based optimization methods require more iterations to con-
verge. Furthermore, the accuracy of some of the popular schemes, such as NAG,
was fairly poor while requiring a similar runtime than that of the other meth-
ods. Future work will concentrate on the influence of the adaptive line search
to other machine learning optimizers. We observed that the performance of the
algorithms is strongly correlated to the performance of the adaptive line search
optimization. Simultaneously, we will look to reduce the memory cost of the
adaptive line search as it has a crucial impact on a GPU implementation. We
will finally provide a Python and PyTorch public implementations of our method
to answer the need of the machine learning and deep learning communities.
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Abstract. The AI community today has renewed concern about the
social implications of the models they design, imagining the impact of
deployed systems. One thrust has been to reflect on issues of fairness
and explainability before the design process begins. There is increasing
awareness as well of the need to engender trust from users, examining
the origins of mistrust as well as the value of multiagent trust modelling
solutions. In this paper, we argue that social AI efforts to date often
imagine a homogenous user base and those models which do support
differing solutions for users with different profiles have not yet examined
one important consideration upon which trusted AI may depend: the risk
profile of the user. We suggest how user risk attitudes can be integrated
into approaches that try to reason about such dilemmas as sacrificing
optimality for the sake of explainability. In the end, we reveal that it
is challenging to be satisfying the myriad needs of users in their desire
to be more comfortable accepting AI solutions and conclude that trade-
offs need to be examined and balanced. We advocate reasoning about
these tradeoffs concerning user models and risk profiles, as we design the
decision making algorithms of our systems.

Keywords: Position paper · Trusted AI · Risk profiles · Explainability

1 Introduction and Background

This position paper argues that deciding how to design AI systems which will be
accepted by human users is a process where the specific profile of the user needs
to be considered. We frame this discussion in terms of engendering trust in AI and
advocate for reasoning about user risk profiles, when deciding whether to sac-
rifice accuracy for explainability. We note that several researchers have already
suggested that differing user profiles may come into play, when studying mistrust
in AI. For example, Salem et al. [20] assessed trust in robots as the participants’
willingness to cooperate with the robot when it makes several unusual and usual
requests. The nature of the task and the participant’s personality were both con-
sidered to be deciding factors. Rossi et al. in [18,19] delved further into which
aspects of personality may be necessary: agreeableness, conscientiousness, stable
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emotionality all suggested higher disposition for assuming benevolence and thus,
a tendency to adopt a trusting stance. Extroverts were also more likely to trust a
robot. How trusted agents differ from trusted humans is another theme. De Melo
et al. [15,16] indicate that humans experience less guilt when dealing with agent
partners than humans, and also reveal that humans are concerned when agents
adopt different values during bargaining. That humans are less tolerant of mis-
takes made by AI agents than by humans has also been observed [25]. These
papers draw out some of the differing emotional reactions to AI from users. A
final paper that helps to emphasize the importance of considering personalized
solutions, when developing AI approaches that consider human acceptance, is
that of Anjomshoae et al. [1]. This work draws out the critical value of providing
explanations to non-experts but also reveals that few proposals have addressed
the significant concern of personalization and context-awareness. Indeed, with-
out sufficient explanation, users may ascribe unfounded mental states to robots
that are operating on their behalf [10], so that it is essential to address explain-
ability well. Increased confidence can also arise with sufficient explanation [17],
which allows the receiver to perceive the sender’s state of mind.

The fact that risk profiles may hold the key to determining how to design
our systems is a theme that emerges from the work of Mayer et al. [14] explor-
ing organizational trust. The authors suggest that perceived trustworthiness is
comprised of the components of benevolence (belief in wanting good), integrity
(adhering to desired principles) and ability (having necessary skills). They raise
the point that risk-taking actions may influence future perceptions of trustwor-
thiness.

2 Desiderata for Trusted AI

As outlined in [4], there are a variety of reasons why individuals and organi-
zations may be concerned about employing AI solutions for decision making.
These include issues of fairness, explainability, ethics and safety. One question
to consider is whether multiple concerns can be addressed simultaneously, with
any of the efforts today to adjust our AI solutions in order to engender trust.
For instance, are current approaches to address issues of fairness for AI systems
in use also helping to increase transparency? We return to discuss the challenge
of taking multiple concerns into consideration at once, towards the end of the
paper.

The proposal of [4] is to make better use of existing frameworks for modelling
agent trustworthiness, precisely in order to compare competing proposals for
enabling trusted AI solutions for users. Trust modelling algorithms can identify
less reliable sources either by learning from direct experience, together with a
prediction of future behaviour or by interpreting reports received from other
agents in the environment, judged according to their inherent reliability. The
authors sketch how the use of trust modelling, injected into an environment for
judging competing explanations from differing sources, can assist in determining
which overall consensus is most dependable. This may be effective for settings
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such as gauging the value of supervised learning. A specific proposal outlining
how to integrate trust modelling into a system aimed at promoting trusted AI
is not offered in this short paper. The paper at least argues that not all efforts
to address anyone of the desiderata (fairness, accountability, transparency) are
equally valuable, and some comparisons are thus necessary.

Our view, however, is that for any attempt to improve outcomes regarding
even one of these concerns, there will be a tradeoff. Furthermore, ultimately, user
preferences should determine how those tradeoffs are modelled, and thus which
competing goal should take precedence. One researcher with the desire to identify
user needs for the sake of improved acceptance from users is Kambhampati [12].
References such as [22] suggest that planning and explainability should go hand
in hand. Which kinds of explanations provide the best outcomes depend at times
on the perceived model differences of the users [26]. There is also an effort to
describe problems in a space of plan interpretability [2] where the computational
capability of the observer is an issue. Agents can opt to make intentions clear to
users or to obfuscate. Explicable planning can be viewed as an effort to minimize
the distance from the plan expected by the human as well [2] so that mappings
of plan distances need to be estimated and reasoned with. True human-aware
planning [22] makes adjustments during the plan generation process itself, effec-
tively beginning to reason about trading off the cost and computation time of
plans in a way that serves the human observer best. In essence, the main tradeoff
is between sacrificing optimality against the cost of an explanation. What would
be especially valuable to consider are different ways in which these sacrifices can
be decided based on the particular user at hand and their specific preferences.
One relevant dimension that we choose to explore here is that of the user’s risk
attitude.

3 Reasoning with Differing User Preferences for Trusted
AI

In order to support our position that it is valuable for efforts towards trusted AI
to consider specific risk preferences of users, we offer three primary arguments.
The first two arguments are framed within the context of research which suggests
that agents should adopt less optimal but safer plans in scenarios where users
opt to observe the plans or the execution of plans of intelligent agents [12].
The first argument opens up the process of requesting observability, clarifying
that despite a user’s initial risk profile, they may progressively update their
preferences about the Agent’s plan and its need for explainability. The second
argument distinguishes the concept of user trust in an agent’s plan and the notion
of user’s inherent risk profile. We outline how cautious users may still prefer less
safe plans under certain circumstances. After discussing how risk profiles can
influence trusted AI solutions for explainability, we then briefly explain how
fairness decisions may also be influenced by risk profiles of users, as our third
argument. We conclude with suggested steps forward to continue to map out
user-specific approaches for engendering user trust.
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3.1 Game-Theoretic Reasoning

We are considering one especially relevant starting point for framing an avenue to
integrate reasoning about user preferences as the detailed proposal of [21], which
reflects on the kind of costs that users may need to bear within the setting of a
game-theoretic model of trust. Interestingly, the risks associated with robots or
humans, making certain decisions with respect to their partnership for executing
the real-world plan are discussed within this paper as well. The framework at
least suggests that each user may have differing preferences, so that decisions
about actions such as observing the Robot or not will incur costs that users
may willingly opt to endure, again with certain consequences of doing so with
respect to optimality. Borrowing a similar game-theoretic framework, we begin
to study how user risk profiles may end up suggesting differing outcomes for
the trusted AI effort. Our game-theoretic framework for studying AI behaviour
under assumptions of risk is as follows.

We first note that in the model of [21], the Robot has a model of the Human’s
assessment of the Robot. The Human has an option to monitor the Robot’s
behaviour and stop execution if needed. Since meta-models of human behaviour
may be challenging to learn and interpret, we recast the goals and constraints of
each actor based on the risk profiles of the humans and also use the word Agent
instead of Robot to represent the AI entity. Finally, we re-imagine the cost of
inconvenience for the Human as the risk that the Human takes for allowing
the Agent to create and execute the plan. We believe that the success of a
plan will depend on the explainability, i.e. how well the Human understands the
solution given by the Agent. The Agent should have a cost of explainability.
Our framework, outlined below, assumes that the Human arrives with a known
general risk profile and that the Agent primarily aims to avoid the cost of not
achieving the goal at hand. This formulation thus moves beyond the more vague
concept of Human mental model, which [21] assumes to be the basis for the
Agent’s reasoning. For now, we imagine that explainability incurs an additional
computational cost, beyond that of making or executing a plan. Our framework
proceeds as follows.

1. Agent is the artificial intelligence agent who has the following properties:
(a) Agent is uncertain of Human’s risk assessment of the Agent but knows

that their risk profile of the Human is the space of all possible risk profiles.
Thus, it has a perceived risk profile that we denote as RH .

(b) Agent has plan πp. Agent incurs some cost for not achieving the goal.
2. Human is the human actor who requests some information from the Agent.

(a) Human has a risk profile RH .
(b) If Human believes a plan is risky, it can observe and stop at any time. It

incurs the cost of observing the partially executed plan and a cost of the
inconvenience of not achieving goal.

(c) Human has non zero cost of observation.
(d) Human is rational, i.e. they only stop execution if the plan is too risky.
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3. Plan
(a) A plan πp is a set of sequential decisions made by the agent. πs is the

safest plan that satisfies all of the models of RH and πr satisfies none.

The Human has following strategies: Observe, stop execution at that time
(SO,∼E); observe at some time but not stop the execution (SO,E); not observe
and not stop (S∼O,E); and not observe and stop at any time(S∼O,∼E).

The payoffs for the Human and Agent for a plan are given in Table 1. Note
there is a negative sign as the actor incurs a penalty equal to the cost. These
calculations are based on the following utilities.

1. Agent
(a) Cost of making plan is CA

P (πp).
(b) Cost of explaining is CA

E (πp).
(c) We can say that CA

E (πp) > CA
P (πp) i.e. cost of explaining a plan is greater

than cost of making the plan.
(d) Cost of explaining until a partial plan (π̂p) will be less than cost of explain-

ing entire plan (πp) i.e., CA
E (πp) > CA

E (π̂p)
(e) Cost of not achieving goal (G) is CA

Ĝ
. We can assume that the safest plan

doesn’t have a cost of failure i.e., CA
Ĝ

= 0 when πp = πs.
2. Human

(a) Cost of observing the plan until some plan (π̂p) has been executed is
CH

E (π̂p).
(b) Cost of observing at the end is CH

E (πp).
(c) Cost of not achieving goal is CH

Ĝ
.

CH
Ĝ

= 0 when πp = πs.
(d) Risk of executing a plan (πp) is RH(πp).

We can assume that there is no risk in the safest plan i.e., RH(πs) = 0.
(e) Risk of executing a full plan (πp) is more than that of a partial plan (π̂p)

i.e. RH(πp) > RH(π̂p).

Table 1. Normal form game matrix for our formulation. The top line is the human’s
payoff and the bottom line is the agent’s payoff.

SO,∼E S∼O,∼E S∼O,E SO,E

πp −CH
E (π̂p) − CH

Ĝ
−CH

Ĝ
−RH (πp) −CH

E (π̂p) − RH
E (πp − π̂p)

−CA
P (πp) − CA

Ĝ
− CA

E (π̂p) −CA
P (πp) − CA

Ĝ
−CA

P (πp) − CA
E (πp) −CA

P (πp) − CA
E (πp)

πs −CH
E (πs) NA 0 −CH

E (πs)

−CA
P (πs) − CA

E (πs) −CA
P (πs) − CA

E (πs) −CA
P (πs) − CA

E (πs)

Note that, if the Human completely trusts the system (πp = πs), then the
Nash Equilibrium is when the Human selects S∼O,E , i.e. the plan is executed
without observing. If the Human completely distrusts the system (πp = πr), then
the Nash Equilibrium is when the Human selects S∼O,∼E , i.e. they do not exe-
cute the plan without observing. In the discussion that follows, we explore how
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a Human’s risk profile can influence the Agent’s reasoning (moves in the game),
equating the risk profile with certain assumptions about whether to require
explainability.

1. Risk Averse: In this case, we can assume that RH(πp) > CH
E (πp)+CH

Ĝ
, i.e.

it is riskier to let any plan run its course without observing. The human will
prefer either SO,∼E or SO,E . In order for the goal to be achieved, the Agent’s
costs CA

Ĝ
> CA

E (πp)−CA
P (π̂p), i.e. the cost of achieving the goal must at least

be greater than the cost of explaining the rest of the task.
2. Risk Taking: It is most important to get to the goal RH(πp) < CH

Ĝ
. In this

case, the Agent does not need to change its strategy. However, the Agent can
make a more explainable plan to start with such that the Human does not
need to observe at all.

We begin to sketch one way in which the Agent’s decision procedure could
be represented. The Agent needs to reason about whether to execute its plan at
hand or to adjust its plans based on the user’s perceived risk profile. The Agent
will focus on explainability at the expense of accuracy (i.e. optimality), with a
risk-averse human. It may forgo attempts at explainability to promote accuracy
if the user is more risk-seeking. One interesting question is whether the Agent
believes it can achieve the kind of explainability desired by the Human. The
reasoning could proceed in the following fashion. If the Agent believes that the
plan is more difficult to explain than it is worth trying to do so, it could inte-
grate a kind of mixed-initiative dialogue with the user, asking for more direction.
The Agent may view this as a scenario where the user’s risk threshold may be
exceeded, if that Agent proceeds with the plan at hand. The Human could be
presented with options to either dismiss the Agent’s execution of actions on its
behalf (take manual control) or could instruct the Agent to begin reformulating
a new plan from the current state (making more of an effort with the explain-
ability). This procedure is intended to give more agency to the Human, and to
prevent unintended outcomes that the Human’s risk profile suggests should be
avoided.

One interesting option is to have the Agent reflect on whether it should con-
tinue to execute its plan, each time a new step is taken. Such a decision procedure
could be run as follows. At each decision element pi ∈ πp, the Agent reflects on
whether the cost of achieving its goal is more than the cost of explanation. If
so, it prompts the user. The user’s risk profile can then be progressively learned
during the dialogue as well. If the user opts to observe an execution, this can
cause the Agent to increase its belief that the user is risk-averse. If the user
proceeds for some time without requesting any observations, the Agent may opt
to reduce its view of the user as risk-averse.

We view the primary decision-making of the Agent in a cycle of execution
as one of assessing RH(π) as RH(π) > CH

E (π) + GH
Ĝ

and increasing the cost
by cost = cost + CA

E (π). When steps of a plan have begun executing without a
request for observability from the user, the Agent can reduce RH (its view of
the Human’s risk profile); likewise, as Humans engage in observing, the Agent
may increase its belief that the Human is risk-averse.
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3.2 Distinguishing Trust and Risk Averseness

In Sengupta et al.’s [21] model, the human H has three strategies, to only observe
the planning process (OP), to only observe the execution process (OE), or to not
observe the robot at all (NO-OB). They argue that it is the Human’s lack of trust
in the Agent, which causes the Agent to opt for a safer plan (abandoning one
which may be more accurate but also riskier). We note that while risk averseness
of a user can translate into a distinct consideration for an Agent to reason about
explaining its actions, it is also valuable to consider distinguishing between the
Human’s trust of the Agent and their inherent risk profile. In Sengupta et al.’s,
original model, the trust boundary of the Human is derived to ensure that the
Agent will never execute the risky plan. However, in some situations, the risky
plan might be desired by the Human, as it incurs a lower cost. Thus, the Human
chooses a mixed strategy q = [qP , qE , (1 − qP − qE)]T over the actions OP, OE
and NO-OB respectively. For the risky plan to be worth executing, the expected
utility given trust boundary q has to be higher for πp than for πs by α. α ∈ (0, 1]
and we must consider the cost of execution of the plan CA

E (πp)

Eq[U(πs)] < Eq[U(πp)] × α i.e.

(−CA
P (πs) − CA

E (πs)) < ((−CA
P (πp) − CA

Ē
(πp) − CA

Ĝ
) × qP

+(−CA
P (πp) − CA

E (π̂p) − CA
Ĝ

) × qE

+(−CA
P (πp) − CA

E (πp)) × (1 − qP − qE)) × α

(1)

If the Agent knows the user’s risk profile and trust boundary, using the
above equation would enable reasoning about whether the risky plan is worth
executing instead of the safe plan. It is important to note, however, that while
the user’s risk profile (obtained through some initial questionnaire, for instance)
is relatively stable, the user’s trust boundary (determined by noticing how often
they observe the planning process or execution) is constantly changing. If a user
observes the Agent planning or executing a risky plan, for instance, then their
trust in the Agent may be lowered. If a user observes the Agent executing a safe
plan, their trust in the Agent may increase. As such, a progressive update of the
model of the Human is necessary for the Agent’s decision procedure. But merely
relying on a modelling of the Human’s trust may cause the Agent to be overly
cautious in its planning.

4 Fairness and Explainability

In the previous section, we studied how designing for trusted AI may require
reasoning about differing preferences from users with respect to accuracy and
explainability. In this section, we delve further into the consideration of fairness,
as another pillar of trusted AI for which distinct user risk profiles may suggest
alternative designs for reasoning about costs and tradeoffs. We begin by explor-
ing further the kinds of concerns that exist today regarding the fairness of AI
systems used for decision making. We reflect on whether solutions for fairness
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can also satisfy a desire for explainability. We then discuss how to reason about
individual preferences when trying to balance these two considerations. One view
is that risk-averse individuals may be willing to accept systems that have been
demonstrated to be fair, even if the methods for achieving this fairness cannot
be fully explained.

As motivation for this position about tradeoffs for trusted AI, consider the
case where an organization is running AI algorithms in order to make decisions
on whether to hire a new employee. One might imagine setting the risk profile of
the organization initially to be extremely risk-averse with respect to investment
in fairness. This means that a solution that has inadequately considered fairness
is problematic, as it could result in the organization being charged with dis-
crimination. Consider as well the context where the hiring decisions are derived
from modelling various features of successful employees in the past so that the
solution is data-driven machine learning. In this case, the data used for training,
as well as the reasoning about which features constitute an ideal employee, must
both be under the microscope with respect to fairness. Now suppose that cases
of clear discrimination do not arise, but that explanations for failing to hire a
particular individual are desired, and these are difficult to articulate clearly, as
they are tied to some sophisticated deep learning methodology. One might imag-
ine being disappointed in the failure of explainability, but willing to put up with
this consequence, if the required fairness has at least been attained. We begin
with the first observation that the concern at hand may be with respect to the
fairness of the data or with respect to the decision-making algorithm, which is
making use of the data that is provided.

There are three major approaches towards achieving fairness in decision-
making algorithms. We can modify the input data distribution to reduce bias at
the source and thus train our model on the cleaner data. This method is called
pre-processing. An alternate approach is to instead regulate the loss function
of the classifier by adding fairness measures as regularization terms. This helps
to control the tradeoff between fairness and the overall accuracy of the system.
[9] showed that machine learning models amplified representation disparity over
time and proposed to alter the loss function to minimize the worst-case risk
for the minority groups. Notice that in the above approaches, we need to have
access to the underlying data, which is not possible in many cases. Thus, in an
alternative approach, one may first use the original data to train a classifier and
then generate another classifier. This new classifier is independent of the original
data and is created using just the original classifier and the protected attribute.
However, we then need to ensure that the new classifier is fair by some definition
of fairness. This approach is referred to as post-processing. One way to formalize
this idea was proposed by [8], where they learn a probability distribution which
controls whether to change the value of the predicted output from the original
classifier or to keep it the same. The probability distribution is learnt by solving
an optimization problem, which ensures that the desired fairness constraints are
met while keeping the accuracy close to that of the original classifier.
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Even if we have a user who is risk-averse with respect to explainability, there
may be different options for addressing their needs. [6] uses crowd-sourcing in the
form of Amazon Mechanical Turks to provide insights on how different styles of
explanation impact people’s fairness judgment of ML systems. They show people
certain explanations of a model and ask them to differentiate between global
explanations (describing the whole model) and local explanations (justifying a
particular decision). They argue that it depends on the kinds of fairness issues
and user profiles and that there is no one-size-fits-all solution for an effective
explanation. Finally, they show that individuals’ prior positions on algorithmic
fairness also influence how they react to explanations. They argue for providing
personalized forms of explanations to users. The authors do not, however, provide
specific insights into how this personalization can be achieved.

Tradeoffs and Alternative Definitions for Fairness
In order to map out a decision procedure to respect user preferences with
respect to fairness, the same concerns of Kambhampati and his coauthors
[12,21,22], namely tradeoffs between accuracy and explainability, seem to arise.
The point is that efforts to examine the success of the classification algorithm,
with respect to the data on which it has been trained, may fail to consider bias,
so that obtaining what appears to be well-respected performance accuracy, may
still reflect critical failure with respect to fairness. A small example here helps
to draw out why this might be the case.

Imagine we have a task to determine if a student will be successful in grad-
uate school using some test scores. For simplicity, let us assume that students
belong to two demographic groups. Students of one demographic group might
be in the majority. If for certain reasons, students belonging to this majority
demographics have higher scores (they are rich and give exams multiple times)
than the students in the minority group. Therefore a classifier trained to get the
best accuracy might more often reject the students belonging to the minority
group. Thus, a more accurate solution does not mean a fair solution. Optimizing
for average errors fits the majority error. We can obtain Pareto improvements
by using group memberships. Current models tend to be inherently designed to
be more accurate and not fair. They pick up the bias present in the data and,
in some cases, amplify it [27]. [5] showed that if we have to satisfy even a single
fairness criterion, we will sacrifice on the utility (accuracy).

We note as well that in some cases, users may not be risk-averse regarding
fairness (e.g. they believe that this is not an issue for their particular applica-
tion), while they may instead be much less forgiving of a failure to explain (e.g.
unwilling to run software in their firm which cannot be justified to sharehold-
ers). For these individuals, the cost profile has changed and, all of this still needs
to be considered against the primary aim of producing a system that provides
important overall accuracy.

It is also important to note that there are alternate definitions of fairness,
so that any effort to achieve this aim for trusted AI, may need to be attuned
to a more precise measurement. Three widely used ways of modelling fairness
are disparate impact, individual fairness or equalized odds. It may, therefore, be
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important to determine which of these considerations is paramount for the user,
for their given context, before proceeding to reason about how best to design
and where the tradeoffs between costs are best determined. Our discussion below
also points out some challenges in achieving each of these differing perspectives,
to date. Disparate Impact is measured by Pr(Y = 1|A = 0)/Pr(Y = 1/A =
1) <= t, where t is a threshold value, Y represents an outcome (1 is a positive
event) and A represents the protected attribute (0 is the minority/protected
class). Thus, it means that the probability of the classification event (getting
admitted) should be independent of the protected attribute (race). For our sce-
nario of admission to graduate school, getting admitted should, for instance,
be independent of race. This measure may not ensure fairness, however, as the
notion permits that we accept qualified applicants in the demographic A = 1
but unqualified individuals in A = 0, as long as the percentages of acceptances
match. In addition, demographic parity may cripple utility in cases where the
target variable Y is correlated with A. Individual Fairness [7] defines the notion
that similar individuals should be treated similarly. How best to frame this met-
ric is currently unresolved. Equalized Odds measure was defined by [8]. The
constraint requires that the classifier(represented by Y) has equal true (y=1)
and false (y=0) positive rates across the two demographics A=0 and A=1.
Pr(Y = 1|A = 0, C = y) = Pr(Y = 1|A = 1, C = y), y ∈ 0, 1 C represents
the true label present in the dataset. However, equalized odds enforces that the
accuracy is equally high in all demographics, punishing models that perform well
only on the majority.

5 Acquiring and Updating User Risk Profiles

A question to resolve is how best to represent a user’s risk profile. A broad
classification of the user as risk-averse or risk-seeking would enable an initial step
forward with the reasoning proposed in this paper, namely to vary the outcomes
of algorithms aiming to achieve trusted AI. We argue that it is desirable to make
these adjustments. Any effort to model a user requires decisions along several
fronts per the longstanding field of user modeling [13]: representing the user
(what to model and how to represent), deciding when to update the user model,
deciding how to reason with the user model to adjust an intelligent agent’s
decision making and how to acquire the user model. It is only the first of these
elements that we have focused on so far.

Some research has explored the methods best able to elicit user risk profiles
[3]. These authors mention a suggestion that individuals attempt to maximize
some specific utility functions, as well. They ultimately caution against using
conclusions within one limited context in order to predict what users will prefer
in other scenarios. The fact that users may deviate from expected utility theory
is also mentioned in the work of [11]. These authors then suggest that solutions
for eliciting preferences should be able to function well, for cases where users
are instead of making decisions based on cumulative prospect theory [24]. One
element sketched in this paper is an expected minimax regret (EMR) heuristic,
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leading to the selection of queries for the user based on maintaining the low-
est expected pairwise maximum regret, between pairs of possible decisions. It is
therefore quite important to acknowledge the challenges of acquiring an effective
representation of a user’s risk profile, in order to then reason with that informa-
tion when making higher-level decisions about how best to respect the various
elements of trusted AI. One critical point is the fact that user risk profiles are not
static, but may dynamically change as the user can experience various outcomes.
Moreover, user risk profiles may also be quite varied, depending on the specific
context. This point has been acknowledged well already in the multiagent trust
modelling community, where trying to engender trust in a user may need to differ
considerably, depending on which features are most important to that user (e.g.
quality or cost, for e-commerce transactions) [23]. While the work above rein-
forces the point that it is important to develop complex strategies for properly
determining the risk profiles of users, it is still the case that if some risk attitudes
were known, AI system choices could be adjusted to increase acceptability from
users.

6 Conclusion and Future Work

This paper proposes new directions for addressing trustworthiness of AI, pre-
senting a particular viewpoint for designing future AI systems. We reveal that
there are tradeoffs when aiming for trusted AI, that user risk profiles matter and
can be integrated into decisions about how to design our systems, and that we
should be considering solutions where different costs are more central, depending
on the user. We have also reflected on basic considerations of accuracy, explain-
ability and fairness, revealing that distinct needs and definitions may be at play;
we have also sketched the process for reasoning about costs and risk profiles.
While we comment on how broad, straightforward classification of user risk pro-
files enable an initial solution, we also acknowledge that this consideration is
considerably more complex, requiring a collection of more complex reasoning
processes.

The most obvious first step for future work is to expand upon representing
user risk aversion, reflecting further on how these profiles are best known or
acquired, and allowing finer-grained distinctions (for example, enabling users to
be risk-averse in certain specified contexts, and more forgiving for other tasks
being executed by the AI system). We have sketched only one small proposal
for designing AI systems based on risk profiles and costs; ours is embedded in
the game-theoretic analysis. Future work should proceed to calibrate gains for
trusted AI using our approach. We should also consider many other desiderata
of AI systems and continue to determine how decisions made by AI systems can
be modulated by these considerations in a way that is faithful to individual user
needs. We also acknowledge that reasoning more broadly about user preferences
rather than risk profiles per se might open up a deeper set of approaches. But
our position is that focusing on risk aversion as the critical element which may
require sacrificing accuracy for explainability (or other trusted AI concerns) is
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a very powerful and effective stand-in,1 one that shows promise as we continue
our dialogue with those invested in securing better acceptance of AI from non-
experts.
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macher, M., Främling, K. (eds.) EXTRAAMAS 2019. LNCS (LNAI), vol. 11763,
pp. 95–109. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30391-4 6

2. Chakraborti, T., Kulkarni, A., Sreedharan, S., Smith, D.E., Kambhampati,
S.: Explicability? legibility? predictability? transparency? privacy? security? the
emerging landscape of interpretable agent behavior. In: Proceedings of the Inter-
national Conference on Automated Planning and Scheduling, vol. 29, pp. 86–96
(2019)

3. Charness, G., Gneezy, U., Imas, A.: Experimental methods: eliciting risk prefer-
ences. J. Econ. Behav. Organ. 87, 43–51 (2013)

4. Cohen, R., Schaekermann, M., Liu, S., Cormier, M.: Trusted AI and the contri-
bution of trust modeling in multiagent systems. In: Proceedings of AAMAS, pp.
1644–1648 (2019)

5. Corbett-Davies, S., Pierson, E., Feller, A., Goel, S., Huq, A.: Algorithmic decision
making and the cost of fairness. In: Proceedings of the 23rd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pp. 797–806. ACM
(2017)

6. Dodge, J., Liao, Q.V., Zhang, Y., Bellamy, R.K., Dugan, C.: Explaining models:
an empirical study of how explanations impact fairness judgment. In: Proceedings
of the 24th International Conference on Intelligent User Interfaces, pp. 275–285.
ACM (2019)

7. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness through aware-
ness. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Con-
ference, pp. 214–226. ACM (2012)

8. Hardt, M., Price, E., Srebro, N., et al.: Equality of opportunity in supervised
learning. In: Advances in Neural Information Processing Systems, pp. 3315–3323
(2016)

9. Hashimoto, T.B., Srivastava, M., Namkoong, H., Liang, P.: Fairness without demo-
graphics in repeated loss minimization. arXiv preprint arXiv:1806.08010 (2018)

10. Hellström, T., Bensch, S.: Understandable robots-what, why, and how. Paladyn J.
Behav. Robot. 9(1), 110–123 (2018)

11. Hines, G., Larson, K.: Preference elicitation for risky prospects. In: Proceedings of
AAMAS, pp. 889–896 (2010)

12. Kambhampati, S.: Synthesizing explainable behavior for human-ai collaboration.
In: Proceedings of AAMAS. Richland, SC, pp. 1–2 (2019)

13. Kass, R., Finin, T.: Modeling the user in natural language systems. Comput. Lin-
guist. 14(3), 5–22 (1988)

14. Mayer, R.C., Davis, J.H., Schoorman, F.D.: An integrative model of organizational
trust. Acad. Manag. Rev. 20(3), 709–734 (1995)

1 In contrast with the more general term of human mental models proposed in [12].

https://doi.org/10.1007/978-3-030-30391-4_6
http://arxiv.org/abs/1806.08010


150 R. Cohen et al.

15. Melo, C.D., Marsella, S., Gratch, J.: People do not feel guilty about exploiting
machines. ACM Trans. Comput. Hum. Interac. (TOCHI) 23(2), 8 (2016)

16. de Melo, C.M., Marsella, S., Gratch, J.: Do as I say, not as I do: challenges in
delegating decisions to automated agents. In: Proceedings of AAMAS, pp. 949–
956 (2016)

17. Nomura, T., Kawakami, K.: Relationships between robot’s self-disclosures and
human’s anxiety toward robots. In: Proceedings of the 2011 IEEE/WIC/ACM
International Conferences on Web Intelligence and Intelligent Agent Technology-
vol. 03, pp. 66–69. IEEE Computer Society (2011)

18. Rossi, A., Dautenhahn, K., Koay, K.L., Walters, M.L.: The impact of peoples’
personal dispositions and personalities on their trust of robots in an emergency
scenario. Paladyn J. Behav. Robot. 9(1), 137–154 (2018)

19. Rossi, A., Holthaus, P., Dautenhahn, K., Koay, K.L., Walters, M.L.: Getting to
know pepper: effects of people’s awareness of a robot’s capabilities on their trust
in the robot. In: Proceedings of the 6th International Conference on Human-Agent
Interaction, pp. 246–252. ACM (2018)

20. Salem, M., Lakatos, G., Amirabdollahian, F., Dautenhahn, K.: Would you trust a
(faulty) robot?: effects of error, task type and personality on human-robot coop-
eration and trust. In: Proceedings of the Tenth Annual ACM/IEEE International
Conference on Human-Robot Interaction, pp. 141–148. ACM (2015)

21. Sengupta, S., Zahedi, Z., Kambhampati, S.: To monitor or to trust: observing
robot’s behavior based on a game-theoretic model of trust. In: Proceedings of the
Trust Workshop at AAMAS (2019)

22. Sreedharan, S., Kambhampati, S., et al.: Balancing explicability and explanation
in human-aware planning. In: 2017 AAAI Fall Symposium Series (2017)

23. Tran, T.T., Cohen, R., Langlois, E., Kates, P.: Establishing trust in multiagent
environments: realizing the comprehensive trust management dream. TRUST@
AAMAS 1740, 35–43 (2014)

24. Tversky, A., Kahneman, D.: Advances in prospect theory: cumulative representa-
tion of uncertainty. J. Risk Uncertainty 5(4), 297–323 (1992)

25. Yuksel, B.F., Collisson, P., Czerwinski, M.: Brains or beauty: how to engender
trust in user-agent interactions. ACM Trans. Internet Technol. (TOIT) 17(1), 2
(2017)

26. Zahedi, Z., Olmo, A., Chakraborti, T., Sreedharan, S., Kambhampati, S.: Towards
understanding user preferences for explanation types in model reconciliation. In:
2019 14th ACM/IEEE International Conference on Human-Robot Interaction
(HRI), pp. 648–649. IEEE (2019)

27. Zhao, J., et al.: Men also like shopping: reducing gender bias amplification using
corpus-level constraints. In: Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing (2017)



Forecasting Seat Counts in the 2019
Canadian Federal Election Using Twitter

Shainen M. Davidson(B) and Kenton White

Advanced Symbolics, 109 York Street, Ottawa, ON, Canada
{shainen.davidson,kenton.white}@advancedsymbolics.com

Abstract. Previous attempts to predict elections using social media
data have attempted to emulate traditional polling by predicting the
share of votes received by major parties. However, in parliamentary elec-
tions, such as those held in Canada, the party who wins the most seats
in parliament forms government (which may not be the party with the
most votes nationally). In this paper, a method is presented which pre-
dicts seat counts using supervised learning with Twitter, polling, and
historical election data. The model was trained on the 2015 Canadian
federal election and was able to accurately predict the outcome of the
2019 Canadian federal election (a Liberal minority government, despite
the Conservative Party winning the plurality of votes nationally). The
model was designed before the 2019 election, and predictions were made
public before election day. It is demonstrated that Twitter data about
local candidates is more predictive than incumbency.

1 Introduction

Forecasting a Canadian federal election is a uniquely complex challenge. To form
government in the first-past-the-post parliamentary system, a political party
must win the most seats. A seat is won by gaining the plurality of votes in a
geographic region (known colloquially in Canada as a “riding”). At the federal
level, there are currently 338 ridings in Canada, ranging in population from
26,728 (Labrador, NL) to 132,000 (Brantford—Brant, ON)1. Thus accurately
forecasting the winner of the 2019 Canadian federal election essentially requires
forecasting 338 local elections, each with local candidates and unique local issues.
Both traditional methods (i.e. polling), and newer social media-based prediction
algorithms [3] generally tackle the more manageable task of forecasting national
or provincial-wide vote ratios. While the party with the largest national vote
total frequently does win the most seats, this is not always the case: in the
2019 Canadian federal election, the Conservative Party won the plurality of
the national vote, while the Liberal Party won the most seats and thus was
able to form government. This paper presents a model which overcomes this
weakness by using supervised learning to forecast vote shares in each riding, and
1 https://www.elections.ca/content.aspx?section=res&dir=cir/list&

document=index338&lang=e.
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thus determine the seat totals of the major parties. The forecast of the model
for the 2019 Canadian federal election accurately predicted a Liberal minority
government.

In Canada, major polling firms will publicly release national, and sometimes
regional, polling numbers in the lead-up to an election; however, they do not
publish polling in individual ridings (due to the cost and difficulty of running
hundreds of individual polls)2. Since riding level results are needed to accurately
predict electoral outcomes, into this information vacuum step popular poll aggre-
gation websites, such as the CBC Poll Tracker [9] and 338Canada.com [5]. These
websites predict likely seat counts based on current regional polling aggregations,
historical riding voting results, and other local factors that the model construc-
tor adds at various weights using their political experience. This is essentially
a data-driven version of how a seasoned political observer would determine the
odds of a party winning a particular riding: take in the regional popularity of
the party from the polls, and weigh it against the historical voting behaviour of
the riding and the details of the local candidates.

In this paper the seasoned political observer is replaced with supervised learn-
ing. Similar to other seat models, it uses as input regional level polling; here the
regional polling is forecasted with Twitter data using a method previously pre-
sented by White [18]. The model then combines the regional polling forecast with
historical electoral data as well as locally relevant Twitter data to predict riding
level results. The model deviates from previous seat models by weighting the
effect of the inputs to the forecast by training on previous elections, as opposed
to adding local effects on an ad-hoc basis.

The question of which information from social media is relevant for electoral
outcomes is inconclusive, and some question its relevance at all. In the 2009
German election, the volume of twitter messages mentioning each party was
closely correlated to the election results [16]; however, in the 2017 French presi-
dential election, sentiment was correlated to the result, rather than volume [17].
In other cases, more complex relationships between the Twitter data and elec-
tions have been found [15], including the use of non-linear supervised models [1].
While many try to replace polling entirely with social media data, polling and
Twitter data can be used in conjunction to interpolate polling results to regions
and cases where polling information is lacking [2]. Note that all of these methods
are predicting total vote-share, not seat counts, even in the case of parliamen-
tary systems. When seat counts are given as a prediction, it is using an ad-hoc
method to convert the vote-share prediction to seat-level election results [4].

Metaxas et al. [14] express skepticism of predictive power of social media
data for elections, noting that most election studies choose the best method
and features after the election has happened. The present work addresses this
concern, as the model was chosen before the 2019 Federal Election, and the

2 In the UK, the pollster YouGov has used multi-level regression and post-stratification
with census and historical data to construct district level estimates from polling data
with some success in the 2015 UK election [12].
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forecast of the model was made public days before the election on the internet
and on national television3.

2 Twitter Data

All Twitter data is gathered from a sample of 273,830 Canadians on Twitter that
was gathered using the network crawling algorithm Conditional Independence
Coupling (CIC) [13]. White [18] demonstrated that a CIC sample generated
for Toronto was broadly representative by gender, age, and race, with notable
under-representation for ages 5–14 and 65+, and Filipinos.

The posting histories of the users in the sample are gathered using the Twitter
API, and stored in an ElasticSearch database to allow for efficient querying based
on post contents. As opposed to pulling Twitter data directly from the Twitter
stream API, pulling from a sample of users has several advantages.

First, the Twitter stream is down-sampled and at peak times is rate limited,
so unknown biases may creep into this data. In the case of the CIC sample, the
results for any query are the full set of relevant posts of a representative sample
of Twitter users.

Second, the full background of Twitter volume of the sample is known, and
thus any tweets volume of interest may be normalized against this background.
This especially relevant to take into account seasonal and daily patterns in Twit-
ter use. E.g., Twitter use goes down substantially over the weekend, and so an
actual increase in the interest in a political party on Saturday may still manifest
as a lower absolute volume on that day; however, measuring the volume against
the background rate of the sample will capture an increase in the ratio.

Third, the model here attempts to capture features at the riding level, and
thus needs to identify the riding in which users reside. For locating users within
cities, it is often possible to use the self-reported location field included in Twitter
user-level data. However, there are typically many ridings within a city, and
thus precise lat/long coordinates are required to place a user within a riding. A
Twitter user may choose to enable a feature that publishes the geocoordinates of
Tweets they make when possible; however, even then, only some tweets by the
user are typically geotagged in this manner. By having the full history of users
in the sample, it is possible to determine the likely riding of residence of a user if
any of the tweets in their history are geotagged. Out of the 273,830 users in the
full sample, 29,590 are pinpointed to ridings in this way, about 11%. For users
who have tweeted in multiple ridings, a probability of them being located in a
particular riding is used proportional to the ratio of their tweets in that riding.

An additional methodology to identify users’ locations uses the text contents
of users’ histories; however, the attempted location resolution is generally at the
city level [10]. To use text data to isolate a users ridings, a geographical construct
relevant only to a particular election, the localising text would generally have to
also be related to the same election. The obvious choice would be the candidates

3 https://twitter.com/CTV PowerPlay/status/1185310000501145601.

https://twitter.com/CTV_PowerPlay/status/1185310000501145601
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for election in the particular riding. In this study candidate mentions are used
as a proxy for popularity of the local candidates in the model, so this method is
not used for localising users in the present work.

3 Riding Prediction Model

There are two supervised learning models we use to predict the voter ratio within
each riding, henceforth called the local vote ratio. First, Vector Autoregression
with Exogeneous Variables (VARX) is used to forecast the voter ratio at the
regional level (henceforth called the global vote ratio). Then the forecasted global
vote ratio is distributed down to the riding level with linear regression, using
historical and Twitter data to account for local variation.

3.1 Global Vote Ratio Forecasting

To start, a model is needed to forecast the global vote ratio for the new election:

V e
p , (1)

where p is the political party and e is the election.
The model follows the methodology presented in [18]. In brief, a Vector

Autoregression with Exogeneous Variables (VARX) model is trained with time-
series aggregated polls as the endogenous variable and time-series Twitter data
as the exogenous variables.

The Twitter data is the ratio of the number of users tweeting about any of
the major parties in a given day, divided by the total number of users in the
sample tweeting on that day. The aggregated poll numbers are from the CBC
Poll Tracker [9]. The VARX model is implemented in the R package DSE [8].

3.2 Riding Distribution Model

Once a prediction is made for the global vote ratio, a prediction is needed for
how these votes will be distributed among the ridings, where the ratio translates
to seats.

To get the vote ratio in each riding, the local riding “lean” is forecasted,
ie the difference between the global vote ratio per party and what the party
receives in a particular riding [11]:

vote ratio in riding r for party p = V e
p + Le

p,r, (2)

where Le
p,r is the lean for party p in riding r in election e. This is the variable

that contains all the unique local character of the riding, that which makes it
different from the “average” riding: local candidate effects, local demographics,
the history of political party activities in the area, local issues, etc. This is a
good variable to look at, as riding lean is relatively stable between elections
even when there is a change in government (Fig. 1). Any sophisticated model
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can be compared to the simplest assumption (call it m1) to forecast the local
voter share:

Lc
p,r = Lo

p,r, (m1)

i.e. the riding lean in the current election c will be the same as it was in an old
election o. More advanced models can be constructed as a perturbation on this
simple model.

By building the distribution model in this way, it is assumed that there is a
linear relationship between the global vote ratio and the local vote ratio, i.e. if
the global vote total for party x goes up by 3% between elections, then the vote
share of party x in a particular riding will also go up by 3%, at least as a first
approximation. This assumption is driven by empirical rather than theoretical
considerations. Perhaps a simpler distribution model is that the riding’s share of
the total votes received by the party is constant. I.e. if a riding gets 0.3% of the
votes for party x in a previous election, then in another election where party x
doubles their vote count, the riding still gets 0.3% of that doubled total vote, and
thus we expect the vote ratio for that party to roughly double. This distribution
model has the benefit that given a value for total votes, the distributed votes will
add up to the total votes (not the case for riding lean). However, empirically this
metric is not as consistent between elections as riding lean (Fig. 1). This implies
a model of the electorate where the difference between ridings is largely due to
groups of voters who vote consistently for the same party, and these voters give
the riding its consistent lean.
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Fig. 1. On the left the riding lean for each of 338 federal ridings is plotted as it was in
the 2011 compared to the 2016 federal elections. The diagonal line indicates where a
riding with exactly the same lean in both elections would lie. On the right, the riding
share of party votes is plotted for the two elections. The riding share deviates further
between elections than riding lean.

Having defined the ad-hoc baseline model m1, the question is, can a simple
supervised model do better? In the following, three models of increasing com-
plexity are presented. Due to a paucity of data, all models are linear regression
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models to minimise over-fitting by keeping complexity to a minimum. As social
media data is used, the models can only be fitted to data in the recent past
where use of Twitter was common. Also, to keep the modelling simple, the mod-
els are only fitted to elections of the same type: predicting a future election based
on data from a previous election of the same type is already an out-of-sample
prediction, and thus risks over-fitting.

The first model adds features derived from the global vote ratio forecasted
for the current election, as well as the old global vote ratio. Interactions between
global vote share and voter lean are accounted for with quadratic terms. This
model (m2) has equation

Lc
p,r ∝ Lo

p,r + V o
p + V c

p + (V o
p )(Lo

p,r) + (V c
p )(Lo

p,r). (m2)

In addition to electoral ratios, incumbency, i.e. having a local candidate run-
ning for reelection, is known to elevate vote ratio [7], so that is added in model
m3:

Lc
p,r ∝ m2 + Ip,r, (m3)

where the incumbency Ip,r is 1 if the candidate running is the current represen-
tative for the riding, and 0 otherwise.

Finally, twitter may be used to capture some local riding effects. To begin
with, a proxy for the local standing of each party may be gleaned by counting
the number of people in the sample in each riding who have discussed each party
or party leader in the last 30 days, NP

p,r.
To account for popularity of local candidates, the number of people in the

sample mentioning each candidate in the past 30 days is measured, NC
p,r. The

results are not confined to a particular riding, to be able to use data from
non-geolocated users. Since the number of users engaged in politics online has
increased over time (Table 1), these numbers are normalized by converting to
ratios for each election:

CRp,r =
NC

p,r∑
p,r N

C
p,r

, PRp,r =
NP

p,r∑
p,r N

P
p,r

. (3)

In the case of both candidate and party counts, the distribution has long
tails (Fig. 2). In the case of candidate mentions this is particularly evident, as the
number of people talking about party leaders and cabinet ministers is many times
greater than those talking about even popular candidates with only local name
recognition. To take this into account, the log of the distribution is calculated:

CLp,r = log(CRp,r + 10−10) + 10, (4)

PLp,r = log(PRp,r + 10−10) + 10. (5)

Both versions of the data are added to the final model (m4):

Lc
p,r ∝ m3 + CRp,r + CLp,r + PRp,r + PLp,r. (m4)
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Table 1. Percent of users in sample active in 30 days before election who mention a
leader of a political party in that period. Comparing the 2015 and 2019 elections, the
percent of users mentioning a party leader increases 50%, illustrating the increase in
political speech on Twitter.

Party 2015 Election 2019 Election

Any Party 11.3% 16.9%

Liberal 8.2% 16.8%

Conservative 7.5% 13.3%

NDP 3.9% 8.8%

PPC 0.0% 4.7%

Green Party 1.4% 3.7%

Bloc Québécois 0.9% 1.1%

Candidate mentions Party mentions

1 100 10000 1 100 10000

0

100

200

300

Number of users

Fig. 2. Histogram of the number of users in the sample mentioning either a local riding
candidate (left) and the number of users identified in a particular riding mentioning a
particular party. Note that there may be fractional values for geolocated users, as users
who tweet in more than one riding are split proportional to the number of tweets. The
distributions have long tails (note the log scale).

By using both the pure ratio and the log rescaled values, the model may take
into account two regimes where these values may have an effect: one expects a
large change in voter behaviour when a truly famous candidate is up for election,
and this effect can be represented by a linear response to CRp,r. However, there
will also be an effect due to locally known candidates which can be modelled as
a linear response to CLp,r.



158 S. M. Davidson and K. White

4 Training and Testing the Model

The goal is to predict the 2019 Canadian federal election. Thus the model is fit
using as labelled data the results of the next most recent election of the same
type, the 2015 Canadian federal election.

The same fitted model parameters are used for all political parties4, so the
training data labels are the riding lean results in each of the 338 federal ridings
for six different parties: Liberal, Conservative, NDP, Bloc Québécois5, Green
Party, and Other. Liberal, Conservative, and NDP had candidates in all 338
ridings, the Green Party in 336, the Bloc Québécois in all 78 ridings in Québéc,
and Other was a factor in 214 ridings. As the same fit is applied to all parties,
there are 1,642 labelled data points.

To predict the 2015 Canadian federal election, the model uses historical data
from the previous elections, in this case the 2012 Canadian federal election. In
the case where a party was not present in a riding in a previous election, a lean
of 0 is used as a default.

Electoral history data for the 2012 and 2015 Canadian federal elections are
gathered from Elections Canada6, at the poll and riding level (each riding has
many polling regions within). Riding boundaries changed between the 2012 and
2015 elections, so the poll level data is used to interpolate the results from the
2012 elections into the riding boundaries used in the 2015 and 2019 elections.

The Twitter data for candidate mentions and party mentions within ridings
are retrieved from a CIC sample generated for Canada with a sample size of
273,830. The data is gathered for messages within the 30 days leading up to the
2015 Canadian federal elections, on October 19, 2015.

The models m2, m3, and m4 are fit using this data with ordinary-least-
squares linear regression. In Table 2, the P-values for the models are presented.
The log-normalized candidate mentions in particular have strong predictive
value, which is in contrast to studies of Gayo-Avello [6] and Metaxas [14] which
report that tweet volume was not predictive of the 2010 US Congressional elec-
tion. This may be due to the trend of increased political speech on Twitter since
that election, as indicated by Table 1.

The model is used to forecast the 2019 Canadian Federal Election, which
took place on October 21, 2019. The results presented here are using Twitter
data gathered on October 20, 2019, the day before the election, from the same
CIC sample of 273,830 users as the training data. In total there were 24,226
mentions by unique users of local candidates, and 6,320 mentions of parties by
unique users located to ridings (out of 34,488 total mentions of parties).

4 It would also be possible to fit a model for each party separately, but that is not
done in this case to avoid over-fitting.

5 This party only has candidates in the province of Québéc.
6 https://elections.ca/.

https://elections.ca/
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Table 2. P-values for the various models, fitted with historical data o from the 2012
Canadian federal election to predict current election c the 2015 Canadian federal elec-
tion. While the most predictive feature is the old riding leans Lo

p,r as expected, the next
most predictive feature is from Twitter, the log-normalised local candidate mentions
CLp,r.

Term m2 m3 m4

Lo
p,r 4 ×10−96 6 ×10−92 2 ×10−74

V o
p 4 ×10−1 1 ×10−1 4 ×10−2

V c
p 4 ×10−1 9 ×10−1 1 ×10−2

(V o
p )(Lo

p,r) 4 ×10−2 8 ×10−3 2 ×10−2

(V c
p )(Lo

p,r) 4 ×10−4 3 ×10−4 2 ×10−6

Ip,r 1 ×10−7 2 ×10−5

CRp,r 2 ×10−2

CLp,r 5 ×10−16

PRp,r 4 ×10−1

PLp,r 7 ×10−2

The most likely seat counts per party predicted by the various models com-
pared to the actual result are presented in Table 3. Note that this is not simply
taking the prediction for the vote share in each riding and selecting the party
with the highest vote share as having won the seat; this would be the predic-
tion for the most likely specific vote share result in each riding. Since there is
uncertainty involved in the prediction of each party vote share in each riding
(estimated with the standard error), this must be taken into account. E.g., if the
model predicts the two parties with greatest vote share in a particular riding are
well within the prediction error, then that seat could really go to either party. To
get the most likely seat count, the full distribution of possible vote share ratios
with probabilities determined by the model must be integrated over. Here this
is approximated, with probabilities for voter ratio for each party in each riding
modeled as a Gaussian with mean the point estimate from the model and using
the standard error from the model for the standard deviation, and is numerically
integrated via Monte Carlo integration.

The results for the models are presented in Table 3, compared to the actual
results, as well as the predictions of two popular polling aggregator websites.
In Table 4, the sum of the absolute error of the seat counts for the models is
compared.

Comparing the models, the greatest improvement is found in simply going
from an ad-hoc model (m1) to the simplest supervised learning model (m2)
(already we achieve better results than both poll aggregators, which while more
sophisticated than m1, use ad-hoc parameters instead of fitting parameters
through training). As the model gets more complicated, the accuracy improves.
Of note, while the addition of the local twitter variables only increases the
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accuracy by about three seats, it is much more effective than including incum-
bency (a feature already well-known in the literature to be highly predictive [7]).
This result, along with measure of model fit in Table 2, bolsters the case for local
Twitter data to be an effective tool to fine-tune predictive election models. The
accuracy of the final model is quite striking, accurately predicting the seat count
of the winning party to within a single seat.

Table 3. The actual seat count for the 2019 Canadian Federal Election compared to
the average seat count per party for the various models along with error at 95% CI.
For comparison, we include the predictions of popular poll aggregating websites CBC
Poll Tracker [9] and 338canada.com [5].

Party Actual m1 m2 m3 m4 CBC 338Canada

Liberal 157 146 ± 9 153 ± 10 159 ± 10 156 ± 9 137 142

Conservative 121 119 ± 8 120 ± 8 117 ± 8 117 ± 8 124 125

NDP 24 39 ± 6 32 ± 6 31 ± 6 31 ± 6 35 35

Bloc Québécois 32 30 ± 5 30 ± 5 28 ± 6 30 ± 5 39 33

Green Party 3 2 ± 2 2 ± 1 2 ± 1 2 ± 1 1 2

Other 1 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 0

PPC 0 1 ± 0 0 ± 0 0 ± 0 1 ± 0 1 1

Table 4. Total of absolute error on average seat count for each model. There is a large
decrease in error when moving from the ad-hoc model m1 to the simplest trained model
m2. There is again a smaller decrease in error when local Twitter data is added to the
model (m4). Curiously, incumbency does not appear to have much effect on accuracy
in this case (m3).

Model Sum of absolute error

m1 31.25

m2 17.45

m3 17.46

m4 14.68

5 Conclusion and Future Work

A supervised learning model was presented that uses a VARX prediction of global
vote ratios, historical election data, and Twitter data to predict the number
of seats won by a party in an election. Thus the model forecasts the party
that will form government, as opposed to the winner of the popular vote (as is
done by traditional polling). The model was used to forecast the result of the
2019 Canadian Federal Election in advance, and was successful in predicting



Forecasting the 2019 Canadian Federal Election Using Twitter 161

the overall result (Liberal minority), as well as predicting the seat total for the
winning party within one seat.

This model generalises beyond the Canadian context to other parliamentary
systems (e.g. Great Britain). Beyond that, this work can be expanded upon to
forecast the results in elections which have a local structure but are not parlia-
mentary systems. For example, the US Presidential election involves winning the
majority of “electoral colleges”, which translates to winning the popular vote in
each of the 50 states. This model will serve as a template for a similar model to
predict the winner of the 2020 US Presidential election.
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Abstract. Neural networks have been investigated as models for sur-
vival data using a training criterion similar to that of the Cox propor-
tional hazards model, a criterion not designed for clinical prediction. In
this paper, we develop a new survival learning algorithm where a neu-
ral network ensemble minimizes the integrated Brier score. We compare
the results obtained with this method to a standard implementation of
random survival forests in R and to an ensemble of linear units.

Keywords: Neural networks · Survival analysis · Predictive models

1 Introduction

Neural networks (NNs) have been discussed for clinical use and survival analysis
starting in the mid 90s, but early works had serious shortcomings [1]. Many
survival deep learning models have now been proposed [2–8], with a clear focus on
regularization and validation. Predictive accuracy of these NN models are usually
assessed with the C-index [9] or the Brier score [10]. Limitations remain for
clinical applications: these NNs have loss functions that don’t measure predictive
accuracy, and they are not well suited for high-dimensional data. In this work, we
propose a new survival learning algorithm which combines predictions from an
ensemble of NN models minimizing the integrated Brier score, optionally with
L1 penalization. We compare this procedure to the state-of-the-art ensemble
approach which is the Random Survival Forest [11], and to a baseline ensemble of
linear units that maximize partial likelihood under L1 penalization. To evaluate
performance in the high-dimensional setting, we created different survival data
sets by adding non-informative covariates to the well-known Primary Biliary
Cirrhosis (PBC) dataset [12].

2 Probabilistic Survival Model

The health status of a patient is measured until a certain event occurs or until
he is lost to follow-up. Let the random variables T and C be the time-to-event
c© Springer Nature Switzerland AG 2020
C. Goutte and X. Zhu (Eds.): Canadian AI 2020, LNAI 12109, pp. 163–169, 2020.
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and the censoring time, respectively. We define X = min(T,C) as the observed
follow-up time and δ = 1(X=T ) as the event indicator. We assume noninformative
and independent censoring for T and C [13]. The survival function of T is defined
by S(t) = P [T > t] (t ≥ 0), the hazard function by λ(t) = − (

d
dtS(t)

)
/S(t), and

the cumulative hazard function by Λ(t) =
∫ t

0
λ(s)ds; we have S(t) = exp(−Λ(t)).

To take into account that some patients are not susceptible to the event of
interest, we use an improper survival function S(t) such as limt→∞ S(t) = ε
where ε (0 < ε < 1) is the tail defect; we then have Λ(t) ≤ − ln ε. Broadly speak-
ing, the random variable T takes the value ∞+ for non-susceptible patients.
In this context, we consider an improper semi-parametric model given by
S(t | Z) = exp

{
− θ exp[φ(Z)]

[
1 − A(t)exp[ψ(Z)]

] }
where Z = (Z1; . . . ;Zp)

is a p-dimensional vector of covariates, where A(t) can be any function decreas-
ing with time from one to zero, and where θ is a positive parameter. This type
of model is a useful alternative to the standard Cox model which allows to inves-
tigate survival effects evolving in time. Here, φ(Z) and ψ(Z) are two risk func-
tions that correspond to the long-term effect (linked to the tail defect) and the
short-term effect (linked to the time-to-event survival distribution for suscepti-
ble patients), respectively. The tail defect is given by ε = exp[−θ exp(φ(Z))].
We define θ and A(t) based on the Nelson-Aalen estimator of the cumula-
tive hazard rate, noted H(t), as follows. We set θ = max{H(t)} and, given
H−(t) = max{H(t)1(H(t)<θ)} and H∗(t) = H(t)1(H(t)<θ) + H−(t)1(H(t)=θ), we
set A(t) = 1 − θ−1H∗(t). Moreover, for small values of ψ(Z), S(t|Z) can be
re-expressed as a time-dependent proportional hazard model [14].

2.1 Neural Network Architecture Proposal

We propose to model the risk functions φ(Z) and ψ(Z) with a NN having a p-
dimensional input and a two-dimensional output (o3,1; o3,2). The network, shown

in Fig. 1A, is described by oa,b = ha

(
wa,b,0 +

∑10
j=1 wa,b,joa−1,j

)
for layers a =

2, 3, and by o1,b = h1,b

(
w1,b,0 +

∑p
j=1 w1,b,jzj

)
for layer 1. We use h1(x) =

h2(x) = selu(x), a scaled exponential linear unit [15], and h3(x) = 5 tanh(x),
a scaled hyperbolic tangent. The resulting survival function is noted Ŝ(t|Z). A
variant of the network, where input variables are subjected to L1 penalization,
is described in Fig. 1B. In this case, the equation for the first layer is given by
o1,b = φ1

(
w1,b,0 +

∑p
j=1 w1,b,jo0,j

)
with o0,j = w0,jzj , where w0,j is the weight

of the jth unit of the penalization layer (note that these units have no bias term).
We base the loss function of the network on the integrated Brier score [16],

defined by IBS = 1
τ

∫ τ

0
BS (t) dt where τ = max(Xiδi) is the time of the last

uncensored event, and where BS (t) is the Brier score at time t, a pointwise
mean square error between Ŝ(t|Z) and what is observed. The observation vari-
able takes value 1 if the event did not occur up to time t, value 0 if the event did
occur, and it does not exist in case of censoring. To account for this third case, the
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Fig. 1. A) Three layered NN. B) Modified NN with penalization layer.

error is weighted by the inverse probability of censoring. Thus, we have BS(t) =
1
n

∑n
i=1

{[
Ŝ (t|Zi)

]2
Ĝ−1(Xi)1(Xi≤t,δi=1) +

[
1 − Ŝ (t|Zi)

]2
Ĝ−1(t)1(Xi>t)

}
. The

function Ĝ(t) is the nonparametric Kaplan-Meier estimate of the censoring distri-
bution. The square root

√
BS(t) represents the deviation between the predicted

outcome and the true event status. In the modified network, a penalization term
λ1

∑p
j=1 |w0,j | is added to the IBS, where λ1 is the penalization parameter.

2.2 Classical Approaches

The baseline model (ensemble of linear units) that we use in our experiments
is derived from the hazard λ(t|Z) = ν(t)eφ(Z), with ν(t) a baseline hazard, and
from the partial likelihood function L =

∏n
i=1 eφ(Zi)δi/

(∑n
j=1 eφ(Zj)1(Xj≥Xi)

)
.

Model parameters in φ(Z) are adjusted to maximize L. Equivalently, we can min-
imize � = −∑n

i=1

(
φ(Zi)δi − ∑n

j=1 φ(Zj)1(Xj≥Xi)

)
, that is the negative partial

log-likelihood. We use � as the loss for each unit of the ensemble. Applications
of NNs to survival analysis have also focused on minimizing � or its variants.

Random Survival Forest (RSF) is one of the most effective machine learning
approaches for survival prediction. Broadly speaking, the RSF builds a series of
binary decision trees from which a final prediction is obtained by combining the
predictions from each individual tree. These latter tree-based learners are non-
parametric approaches that partition recursively the predictor space into disjoint
sub-regions that are homogeneous according to the outcome of interest. These
partitions are obtained from a splitting criterion, usually the logrank statistic,
that can be expressed as a score test from the partial likelihood function.

3 Experiment

3.1 Simulated Dataset

The PBC dataset has n = 312 observations and p = 17 covariates. To test the
capacity of the models to select relevant covariates, we generated two modified
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versions of the PBC dataset. For the second version, we added 500 uninforma-
tive variables (each of them, for every patient, generated randomly following an
uniform distribution on the interval 0–1), resulting in a dataset with p = 517
covariates. For the third version, we added 5000 uninformative variables in the
same manner instead of 500, resulting in a dataset with p = 5017 covariates.

3.2 Models

We tested four models on the dataset: a survival NN ensemble (SNNE), a SNNE
with L1 penalization (SNNE-L1), a RSF, and an ensemble of linear units (base-
line). The survival random forest model is generated with the rfsrc function
(with default values) from the R package randomForestSRC. We implemented
the three other models in Python with Keras and TensorFlow. The ensemble
method comprises bagging with 1000 bootstrap samples for all four models.

The prediction of NN ensembles for a patient is the average of the survival
curves Ŝ(t|Z) from every network where the patient was out-of-bag. Note that
H(t), θ, A(t), Ĝ(t) and τ are computed in-bag. The process is similar for the
baseline model: the survival estimate for each bootstrap sample is given by
Ŝ(t|Z) = [K(t)]exp[h(w1,0+

∑p
j=1 w1,jw0,jzj)] , where w1,j for j = 0, . . . , p are the

weights of the linear unit, where w0,j are the penalization weights, and where
K(t) = exp[−H(t)] is the Fleming-Harrington estimator.

For the SNNE model, we normalized the inputs (in-bag) and we used the
Glorot uniform initializer. We then trained each NN for 200 epochs with mini-
batches (size 32) with the default Adam optimizer, and we selected the best
weights with 15% in-bag validation. In addition, for the SNNE-L1 model, we used
λ1 = 0.01 and we initialized the penalization layer with a uniform distribution
(0.95–1.05 interval). For the baseline model, we used the same training setup
(with λ1 = 0.01 for penalization), expect that we used the batch mode of training
(no validation set), because � is not a sum of individual error terms (mini-batches
with validation have not been studied in the literature for partial likelihood).

Table 1. Out-of-bag prediction error, computed with τ = 4191 (time of the last uncen-
sored event). SNNE-L1 shows best performance (values highlighted in bold). These
values do not include the penalization term for the SNNE-L1 and baseline models.

Model IBS (p = 17) IBS (p = 517) IBS (p = 5017)

SNNE 0.1217 0.1545 0.1898

SNNE-L1 0.1151 0.1310 0.1316

RSF 0.1252 0.1550 0.1855

Baseline 0.2270 0.1956 0.2147

The out-of-bag IBS for all models and for the three datasets is given in
Table 1. The SNNE yields a slightly lower IBS value that the RSF, but this
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advantage is lost in the presence of uninformative variables. The SNNE-L1 has
the overall best performance. The baseline model performs notably worse that
the other models due to batch training without validation.

Fig. 2. Survival stratification for A) SNNE model, B) SNNE-L1 model, C) RSF
model, D) baseline model (solid curve for low-risk group, dashed curve for mid-risk
group, dotted curve for high-risk group)

To highlight the differences between models, we stratified the out-of-bag sur-
vival estimates (for the second version of the PBC dataset) into three groups
based on the survival probability value at the time of the last uncensored event:
patients in the upper quartile form the low-risk group, patients in the interquar-
tile range form the mid-risk group, and patients in the lower quartile form the
high-risk group. The groupwise survival curves obtained with each model are
shown in Fig. 2. Despite having similar performance, the SNNE and RSF mod-
els have very noticeably different survival curves, with the RSF model having
more pessimistic survival for the low-risk group and more optimistic survival for
the high-risk group. The SNNE-L1 model makes a compromise between SNNE
and RSF for the survival of the low-risk group, whereas it predicts low sur-
vival for the high-risk group, like SNNE. The baseline model generates survival
curves that clearly display the proportional hazards assumption, and its predic-
tions show a trend similar to those of RSF: survival is pessimistic in the low-risk
group and optimistic in the high-risk group.

Our results indicate that there is potential in using NNs for survival predic-
tion based on the integrated Brier score. In particular, they allow penalization
strategies via modifications of the loss function. We showed that this strategy is
well suited to situations where few relevant predictors are expected.
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4 Conclusion

In this paper, We have shown that an ensemble of NNs provides a valuable tool
for survival prediction in high dimensional setting. The proposed strategy shows
better predictive performance than survival random forests on the PBC dataset.
The originality of the proposed model lies in its choice of loss function to train
an NN ensemble with regularization. Future work will evaluate the interest of
such approach in ultra-high dimensional genomics datasets.
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Abstract. Many real world classification problems are skewed in terms of the
cost of potential misclassifications. Clinical health care for individuals following
pulmonary resection involves chest drainage tubemanagement where the decision
to remove or maintain a patient’s chest drain post-surgery is one such skewed
classification problem. This is because the associated cost of premature removal
is significantly higher than delayed removal in terms of health risks, discomfort
and economic factors. While recognition of a cost differential in a problem is
straightforward, its implementation in a predictive system is not, because there is
no simple way to quantify cost. We addressed this issue through the design of an
evolutionary based optimization approach for cost matrices. In order to test our
approach,we compared three different settings: onewith no costmatrix, onewhere
the cost matrix used is provided by the thoracic surgeons, and one where the cost
matrix is optimized through our evolutionary algorithm. The results show that our
optimization method for cost matrices yields a large improvement over the other
two settings on most performance measures, including an almost 20% increase
in overall accuracy. This is a surprising result since it suggests that cost matrices
provided by experts may not be as useful as those derived by a computational
optimization approach.

Keywords: Cost sensitive learning · Evolutionary algorithms · Health care

1 Introduction

After lung resection a chest drain is required to drain air and liquid from the pleural
space. Patients typically stay in hospital until the chest drain is removed, however some
patients requiring prolonged drainage can be sent home with a portable drainage device
(pneumostat). Experienced health care providers manage chest drain considering many
factors about the patient and the features of the drain. (Gilbert et al. 2015). Using retro-
spective patient data indicating what action was taken and whether or not that action was
a good one, machine learning has the potential to create a clinical decision support sys-
tem that can help health care providers optimize management of chest drains ultimately
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resulting in earlier discharge of patients while preserving healthcare safety (Shah et al.
2019). Currently, no chest drain management algorithm has been universally accepted.

In this study various machine learning approaches were explored with the aim of
providing clinical decision support for health care staff to improve accuracy and preci-
sion of chest drain management decisions. This classification problem is complicated
by unequal costs of adverse events. For example, delay in removal of the chest drain
results in the patient remaining in hospital longer than necessary often causing patient
dissatisfaction and poor use of hospital resources. On the other hand, premature removal
of the chest drain requires re-insertion causing the patient pain and ultimately delaying
discharge. Premature removal of the chest drain is, thus, considered to be costlier than
delayed removal. However, setting a cost matrix to achieve the most desirable outcome
is not a simple task. The objective of this study is to propose a method for improving
the performance of machine learning algorithms by optimizing the cost matrix provided
to them.

The particular paradigm that we chose for this optimization problem is that of Evolu-
tionaryAlgorithm because of its simplicity and general measure of success. In particular,
we used a genetic algorithm to optimize the cost matrix over multiple objectives. The
approach was tested on clinical data collected prospectively in compliance with the
research ethics board protocol used at the Ottawa Hospital.

The remainder of the paper is divided into five sections. Section 2 presents previous
work used in our study. Section 3 describes our algorithm. Section 4 describes the domain
in detail alongwith the pre-processing of the data. Section5presents our results. Section 6
concludes the paper and suggests some avenues for future work.

2 Previous Work

Our research falls into the area of Cost-Sensitive Learning. Cost-sensitive learn-
ing addresses the problem of skewed misclassification costs (Elkan 2001). Several
approaches have been proposed to convert arbitrary cost insensitive classifiers into cost
sensitive ones able to use a cost matrix. (Domingos 1999; Fan et al. 1999; Margineantu
2002; Zadrozny et al. 2003). In this work, instead of using a given cost matrix, we use
an Evolutionary Algorithm (EA) to search for an optimal cost-matrix. EAs mimic the
evolutionary process, where a specific trait is selected for through iterative breeding of
populations. The iterative process in an EA is a stochastic approach to optimization. An
EA approach was chosen because it requires less a priori knowledge of the range that
the cost matrix entries are likely to belong to.

3 Cost Matrix Genetic Algorithm Optimization

Cost matrices are the tools used to account for the skewed nature of misclassification
costs. In our clinical setting, for example, a cost matrix could reflect the fact that it is
much more ‘costly’ for a health care provider to prematurely remove the final chest tube
of a patient versus maintaining a chest tube for an excessive amount of time. Cost matrix
construction may, thus, rely on domain specific knowledge. However, this study chose
to use an agnostic approach allowing for a stochastic optimization protocol. Optimizing
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the entries of the cost matrix followed an EA approach. The EA approach focused on
optimizing the actions: remove and discharge with a pleural drain (DPD) over multiple
objectives. Here, the objectives we optimizedwere the following performancemeasures:
false positive rate (FPR), precision, positive likelihood and negative likelihood.

We performed cost matrix EA optimization as follows. An initial population of 100
cost matrices was constructed at random. The fitness of the population was determined
following 5-fold Cross-Validation of the cost-sensitive implementation of the classifier
implementation. The associated cost matrix implementations were ranked based on the
above mentioned performance measures, and the top five cost matrices for each measure
were selected for survival and propagation into the next generation. The 40 surviving
matrices were then randomly coupled together with each couple surviving, unchanged,
into the following generation, while also producing three offspring matrices. For each
surviving couple, progeny cost matrices were generated as follows: first, one offspring
matrix was produced by taking the mean of its parents’ entries, which can be interpreted
as a cross-over event between parental genotypes. The other two children were clones of
each of the individual parent matrices that underwent a mutation implemented by adding
Gaussian noise with mean zero and variance 1/10th of the cost matrix entries’ current
value. This process was repeated for a set number of generations. Finally, thematrix with
the highest precision with respect to class label Remove, here denoted, precisionremove,
was selected for further analysis.

Our multi-performance measure optimized approach was interpreted as optimizing
over multiple performance measures, in some blended sense. This was important, as
initial experiments optimizing over a single performance measure were often shown to
succeed at the detriment of other as important metrics. Hence, this approach was inter-
preted as selecting a better balanced cost-matrix over multiple performance measures,
while not necessarily optimizing for a single performance measure.

4 Domain Description and Pre-processing Methods

The data set used in this study consisted of preoperative, intraoperative and postoper-
ative features collected from 67 patients. Data was obtained under the approval of the
Ottawa Hospital Research Ethics Board. Preoperative features include variables such as
age, BMI, gender, results of lung function testing and other clinically relevant patient-
related factors. Intraoperative features are events that occurred during the surgery such
as specifying which lobe of the lung was removed and how many staples were used.
Postoperative features include data collected in the post-operative period such as chest
x-ray findings, and a discrete time series representing the mean airflow from the chest
drainage tube recorded every 10 min. At each recorded point in time, three actions can
be taken relative to the chest drain: Maintain, Remove, Discharge with Pleural Drain
(DPD). Maintain and Remove are self-explanatory. DPD applies to patients requiring
prolonged drainage but who can be sent home with a portable drainage device named
pneumostat. We constructed a data set appropriate for machine learning methods as
follows.

Instance Generation. Data instances were generated as follows. The raw data repre-
senting a patient comprises preoperative and intraoperative features as well as a time
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series of T airflowmeasurements, each occurring at discrete tenminute intervals. Hence,
from a single patient’s time series, every discrete ten-minute event post-surgery repre-
sents an instance where a classification can be made. Using the entire time series for
each patient, we combined the pre- and intraoperative features together with the steps of
the time series up until the present time, t. For example, a patient staying in the hospital
for 72-hours post-surgery comprises of 72 * 6 = 432 discrete events, each with a class
label attributed to the action to be taken.

Instance Labeling. The data instances were assigned class labels corresponding to one
of the three actions described earlier or a fourth label corresponding to the case where the
label is uncertain (Maybe). Retrospective data include the time of chest drain removal, the
time of discharge with a portable pleural drain, and the presence of adverse events. For
example, if a removal was successful, the instance corresponding to that time of removal
would be labeled as ‘Remove’. On the other hand, if this removal led to adverse events,
then this instance and the following ones would be labeled as ‘Maintain’. ‘Maybe’ labels
correspond to instance for which the clinical drain removal criteria was reached, tDR,
but the actual removal was not done. We thus don’t know whether the removal would
have been successful or not at these times.

Sampling. Since, given the nature of the data, the vast majority of class instances are
of the classes Maintain and Maybe. Not all of these instances are necessary. Therefore,
only a sub-sample were utilized. We used an exponential decay sampling technique,
where the 1st most recent time point (with respect to the upper time boundary) is used,
as well as the 2nd, 4th, 8th, 16th, etc. In this way, overfitting to individuals with longer
hospital stays was reduced.

Feature Construction. As in current clinical practice, new postoperative features rep-
resenting descriptive statistics were constructed from the data to summarize the time
series. These include the minimum, maximum, mean, median, and total airflow volume
over the prior 1, 2, 4, 6, 8, 10 and 12 h. Thus, each instancewas represented by 56 features
(44 pre- and intra-operative, and the 12 post-operative features just mentioned). From
this dataset, a second dataset denoted “Mass”, was constructed, where the postoperative
features were normalized by the patient’s body mass.

Feature Selection. To determine which of the provided or constructed features hold
discriminative information, we implemented a strong majority rule voting ensemble
of feature selection methods. Our approach, denoted FS1, pools multiple base feature
selection approaches together and maintains only the features selected in at least 80% of
the feature selection algorithms considered. The base feature selection algorithms used
were correlation-based feature selection, information gain, Chi squared attribute evalua-
tion, and classifier subset evaluation.Another feature selection approach (FS2/GilParam)
selected pre- and intra- operative features determined by surgical professionals. We also
ran experiments with no feature selection for comparison.

Class Imbalances. A patient may be required to have a chest drain in place for up to
several weeks if a prolonged air leak from the lung tissues is present. Given that every 10-
minute interval acts as an instance, almost all the instances in the training set are of class
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Maintain. In order to deal with the class imbalance, two methods were implemented
in addition to keeping the imbalance: under sampling from the majority classes and
SMOTE (Chawla et al. 2002), to augment the minority classes.

Classifier Selection. The classifiers chosen for this study were J48, JRIP and PART.
These classifiers were chosen for their model transparency which is of great importance
in the medical domain. Additionally, bagging and boosting ensemble methods were
implemented for each base classifier mentioned so as to verify that the human readable
constraint is not overly limiting with respect to predictive ability.

5 Experimental Framework

Prior to evaluating our cost matrix optimization scheme we conducted a large study
aimed at testing the various settings discussed in Sect. 4 and identifying the optimal
combinationswhenno confusionmatrix is used (no-CM).The results of this investigation
revealed that the most effective and stable combinations of factors for this problemwere:
{SMOTE, PART}, {FS1, SMOTE, PART}, {Mass, SMOTE, PART} and {Mass, FS2,
SMOTE, PART} (results not shown due to space limitations).We then sought to compare
the performance of these four implementations, to two additional situations: when a cost
matrix derived from domain experts is provided (Heuristic/H-CM) and when using a
cost matrix optimized by our EA algorithm (CM-Opt).

The table below displays our results. The best result obtained for each metric and
for each implementation is highlighted in bold. As can be seen from the table, the EA
optimization approach outperforms the same implementations without the use of the EA
optimization in virtually all cases, showing a large improvement over the No-CM and
Heuristic CM approaches across most performance measures, including an almost 20%
increase in overall accuracy. Another interesting observation is that in most cases per-
formance measures were improving from No-CM to Heuristic CM to the EA approach,
suggesting that the performance of classifiers using Heuristic CM were generally equal
to or greater than No-CM implementations. This provides further evidence to suggest
that using cost matrices was well suited for this learning problem.

For each given implementation, in order to determine if there was any significant
difference in performance between the No-CM, Heuristic CM or EA optimization
approaches the Wilcoxon’s signed-rank test was performed. At α = 0.0005, the EA
optimization approachwas significantly differently (better) to bothNo-CMandHeuristic
CM for each of the four implementations considered. This is shown with a (*).
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{SMOTE, PART} {FS1, SMOTE, PART} {MASS, SMOTE, PART}

No-CM H-CM CM-Opt* No-CM H-CM CM-Opt* No-CM H-CM CM-Opt*

fprre 0.0649 0.0613 0 0.0720 0.0720 0 0.0649 0.0649 0

Prre 0.4303 0.4482 1 0.3987 0.3987 1 0.3767 0.3767 1

Spre 0.9351 0.9387 1 0.9280 0.9280 1 0.9351 0.9351 1

tprDPD 0.9000 0.9000 1 0.9000 0.9000 1 0.8000 0.8000 1

fprDPD 0.0050 0.0050 0.0017 0.0149 0.0149 0.0270 0.0116 0.0116 0.0032

SpDPD 0.9950 0.9950 0.9983 0.9851 0.9851 0.9730 0.9884 0.9884 0.9968

tprMain 0.8697 0.8720 0.9823 0.8228 0.8228 0.9971 0.8193 0.8193 0.9867

fprMain 0.1745 0.1745 0.0174 0.1712 0.1712 0.0254 0.1610 0.1610 0.0591

Prmain 0.8664 0.8668 0.9836 0.8649 0.8649 0.9791 0.8665 0.8665 0.9537

Remai 0.8697 0.8720 0.9823 0.8228 0.8228 0.9971 0.8193 0.8193 0.9867

SpMan 0.8255 0.8255 0.9827 0.8288 0.8228 0.9746 0.8390 0.8390 0.9409

PrMay 0.8611 0.8646 0.9241 0.7895 0.7861 0.9952 0.7735 0.7735 0.9804

SpMay 0.9274 0.9263 0.9534 0.8891 0.8866 0.9973 0.8739 0.8739 0.9856

Acc 0.8126 0.8158 0.9603 0.7711 0.7695 0.9602 0.7774 0.7774 0.9622

6 Conclusion

This study is based on clinical data from patients admitted to hospital for pulmonary
resection, after which clinically implemented chest drain management guidelines have
been followed. The particular focus of this study was to test an evolutionary algorithm
approach to optimize the cost matrix of the domain. Our algorithm is designed to learn
from the errors of the health care providers and in so doing to improve upon the clinical
decision to maintain or remove the chest drain. While the main novelty of the approach
resides in the search for an optimal cost-matrix, significant data issues needed to be
handled prior to considering the cost-matrix. The results show that our optimization
method yields a large improvement over settings with no confusion matrix or with a
heuristically constructed one.

There are several avenues to consider before testing our approach with clinicians.
First, this study was conducted on only N = 67 patients. New patients will be added.
Second, since this was a proof-of-concept study, we limited the computation time used
during the evolutionary algorithm. A population size of 100 cost matrices was used, for
a total of 100 generations. In future work, we plan to use more powerful machines to
speed-up the process and explore a deeper search space. We also intend to experiment
with different mating and mutation strategies. A third consideration regards the choice
of classifiers. While we chose to stay away from ‘black box’ classifier, our future work
will include stronger classifiers. Finally, there are a number of practical obstacles to be
overcome includingways to ensure that the approachwe suggest speeds up actual patient
release time, taking into consideration hospital delays as well as patient preparation time
prior to chest drain removal. Our future work will examine such issues as well.
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Abstract. This paper presents an innovative and generic deep learning
approach to monitor heart conditions from ECG signals. We focus our
attention on both the detection and classification of abnormal heartbeats,
known as arrhythmia. We strongly insist on generalization throughout
the construction of a shallow deep-learning model that turns out to be
effective for new unseen patient. The novelty of our approach relies on the
use of topological data analysis to deal with individual differences. We
show that our structure reaches the performances of the state-of-the-art
methods for both arrhythmia detection and classification.

Keywords: Topological data analysis · Deep learning · Arrhythmia ·
Auto-encoder · Multi-channel · Convolution networks · Classification

1 Introduction

Healthcare is among the most thriving domains since the democratized usage
of artificial intelligence. Tasks such as monitoring, diagnostic and aided clinical
decisions are relying on sharpened machine learning algorithms. As heart attack
and strokes are among the five first causes of death in the US, it comes to no
surprise that heart monitoring is of particular importance. Developing wearable
medical devices would help to deal with a larger proportion of the population,
and reduce the time used by cardiologists to make their diagnosis. This paper
focuses on both the detection and classification of arrhythmia, an umbrella term
for group of conditions describing irregular heartbeats. Detection deals with
spotting abnormal heartbeats, while classification consists in giving the right
label to the detected abnormal heartbeats.

Among the several existing studies, some developed descriptive temporal fea-
tures to feed SVM [12] or neural networks [22], sometimes mixed with optimiza-
tion methods [12,23]. The general approach of those papers enables arrhyth-
mia classification through machine learning. However, most papers [11,13,14]
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either reduce the classification task to groups of conditions or to a few ones
only. On the other hand, [10] sought to improve multi-class classification. But
the more the classes, the faster the performances did vanish. To overcome this
issue, [5,10,13] have introduced deep learning methods based on convolutional
networks. Other teams focused on unsupervised learning, such as auto-encoders
[16], with promising results. Nonetheless, the methods presented so far have low
performance for unknown patient, due to obvious individual differences. Gener-
alization, which means robustness regarding individual differences, is a serious
issue for any application in the healthcare sector.

The approach we propose consists in the analysis of ECG through a mod-
ular multi-channel neural network whose originality is to include a new chan-
nel relying on topological data analysis to capture new robust patterns in the
ECG signals. That information describes at best the geometry of each heartbeat,
independently of the values of the signal or the individual heart rhythms. By
combining topological data analysis, handcrafted features and deep-learning, we
reached better generalization compared to existing literature.

Our paper is organized as follows: After presenting Topological Data Anal-
ysis, we condensed our approach in the presentation of the datasets, our pre-
processing methodology and the general deep-learning architecture. We then
expand our testing procedure, which is key to quantify generalization. Follows
the introduction of our benchmark for arrhythmia classification, underlining the
strengths of topological data analysis and auto-encoders to tackle the issue of
individual differences. The last two sections provide comparisons with existing
state-of-the-art performances. Finally, remarks and thoughts are provided as
conclusion at the end of the paper.

2 Topological Data Analysis

Among the main challenges to reach generalization, we find individual differ-
ences, and specifically bradycardia and tachycardia. We dealt with it by bridg-
ing Topological Data Analysis with a modular deep-learning architecture. Topo-
logical Data Analysis (TDA) is a recent and fast growing field that provides
mathematically well-founded methods [3] to efficiently exhibit topological pat-
terns in data and to encode them into quantitative and qualitative features. In
our setting, TDA, and more precisely persistent homology theory [6], powerfully
characterizes the shape of the ECG signals in a compact way, avoiding com-
plex geometric feature engineering. Thanks to fundamental stability properties
of persistent homology [4], the TDA features appear to be very robust to the
deformations of the patterns of interest in the ECG signal, especially expansion
and contraction in the time axis direction. This makes them particularly useful
to overcome individual differences and rhythms diversity due by bradycardia and
tachycardia.

Persistence Homology. To characterize the heartbeats, we consider the persis-
tent homology of the so called sub-level (resp. upper-level) sets filtration of the
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considered time series. Seeing the signal as a function f defined on an inter-
val I and given a threshold value α, we consider the connected components of
Fα = {t ∈ I : f(t) ≤ α} (resp. Fα = {t ∈ I : f(t) ≥ α}). As α increases (resp.
decreases) some components appear and some others get merged together. Per-
sistent homology keeps track of the evolution of these components and encodes
it in a persistence barcode, i.e. a set of intervals - see Fig. 1 for an example of
barcode computation on a simple example. The starting point of each inter-
val corresponds to a value α where a new component is created while the end
point corresponds to the value α′ where the created component gets merged
into another one. In our practical setting, the function f is the piecewise linear
interpolation of the ECG time series and persistence barcodes can be efficiently
computed in O(n log n) time, using, e.g., the GUDHI library [18], where n is the
number of nodes of the time series.

To clarify the construction of a persistence barcode, one may observe Fig. 1
with the following notations: y = f(t): for α < α1, Fα is empty. A first component
appears in Fα as α reaches α1, resulting in the beginning of an interval. Similarly
when α reaches α2 and then α3, new components appear in Fα giving birth to the
starting point of new intervals. When α reaches α4, the two components born
at α1 and α3 get merged, resulting in the “death” of the most recently born
component (persistence rule), i.e. the one that appeared at α3 and creation of
the interval [α3, α4] in the persistence barcode. Similarly when α reaches α5 the
interval [α2, α5] is added to the barcode. The component appeared at α1 remains
until the end of the sweeping-up process, resulting in the interval [α1, α6].

Fig. 1. Heartbeat transformation in a persistence barcode and Betti curve

Betti Curves. As an unstructured set of intervals, the persistence barcodes are
not suitable for direct integration in machine-learning models. To tackle this
issue, we use a specific representation of the barcode diagrams, the so-called
Betti curves [24]: for each α, the Betti curve value at α is defined as the number
of intervals containing the value α. See Fig. 1 for an a specific Betti curve con-
struction based on an ECG signal. The Betti curves are computed and discretized
on the interval delimited by the minimum and maximum of the birth and death
values of each persistent diagram, both for the time-series and its opposite (in
order to study the sub-levels and upper-levels of the signal). One may observe
that a fundamental property of Betti curves of 1D signal that follows from the
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definition of barcodes is their stability with respect to time re-parametrization
and signal value rescaling, as stated in the following theorem. This allows us to
build an uniform input for classical 1D convolutional deep-learning models, thus
tacking the main issue of individual differences.

Theorem: Time Independence of Betti Curves

Given a function f : I → R and a real number a > 0 the Betti curves of
t → f(t) and t → f(at) are the same.

Moreover, if g(t) = bf(t) for some b > 0, then the Betti curves of f and g are
related by BCg(α) = BCf (α

b ).

This theorem is a particular case of a more general statement resulting from
classical properties of general persistence theory [4]. Intuitively, the invariance
to time rescaling follows from the observation that persistence intervals measure
the relative height of the peaks of the signal and not their width. The value-
rescaling of the signal by a factor b results in a stretching of the persistence
intervals by the same factor resulting in the above relation between the Betti
curves of the signal and its rescaled version.

3 Deep-Learning Approach

3.1 Datasets

To facilitate comparison to other existing methods, our experiments are based
on a family of open-source data sets that have been extensively used in the
literature. Those are provided by the Physionet platform, and named after the
diseases they describe: MIT-BIH Normal Sinus Rhythm Database [7], MIT-BIH
Arrhythmia Database [7,19], MIT-BIH Supraventricular Arrhythmia Database
[7,9], MIT-BIH Malignant Ventricular Arrhythmia Database [7,8] and MIT-BIH
Long Term Database [7]. Those databases present single-channel ECGs, each
sampled at 360 Hz with 11-bit resolution over a 10 mV range. Two or more
cardiologists independently annotated each record, whose disagreements were
resolved to obtain the reference annotations for each beat in the databases. Each
heartbeat is annotated independently, making peak detection thus unnecessary.

3.2 Preprocessing

Regarding preprocessing, we focused on the standardization of all the avail-
able ECG. To reduce both noise and bias, we re-sampled the signals at 200 Hz,
removed the baselines and applied filters, based on both a FIR filter and a
Kalman filter. The signal is then rescaled between 0 and 1 before being trans-
lated to get a mean of the signal close to 0, for distribution concerns.
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Baseline Wander. Removing baselines is motivated by the fact it generally cor-
responds to muscular and respiratory artifacts. To do so, we used the established
baseline drift technique [2], based on the Daubechies wavelets. Using consecu-
tive convolution processes of decomposition and reconstruction of the signal, it
removes the outlying components and enable us to identify and suppress the
baseline component in the signal.

Filtering. The first applied filter to each ECG is a FIR (Finite Impulse Response)
filter. It performs particularly well on ECG, and wavelets-based signals in gen-
eral. It behaves basically as a band-filter. We chose 0.05 Hz and 50 Hz as cut
frequencies to minimize the resulting distortion [25].

Heartbeats Slicing. Once standardized, each ECG is segmented into partially
overlapping elementary sequences made of a fix number of consecutive heart-
beats. Each sequence is extracted according to the previous and next heartbeat.
This extraction being patient-dependent, it reduces the influence of diverging
heartbeat rhythms, e.g bradycardia and tachycardia. The number of consecutive
heartbeats in that window is a controlled parameter. The labels are attributed by
the central peak (whose index is the integer value of half the number of peaks).
Once the windows are defined, we use interpolation to standardize the vectors,
making them suitable for deep-learning purposes.

Feature Engineering. Once those heartbeats are extracted, we began building
relative features. Literature [2,17,20] screening brought us to the discrete Fourier
transform of each window, the linear relationships between each temporal com-
ponents (P, Q, R, S, T), and the statistical values given by the extrema, mean,
standard deviation, kurtosis, skewness and entropy measures, crossing-overs and
PCA window reduction to 10 components.

3.3 Auto-Encoder

One of our major motivation being generalization, we quickly faced the issue of
uneven distribution of labels, as well as extreme minority classes. This was true
for both the binary and multi-class classification tasks.

Fig. 2. Reconstruction error on heartbeat signals
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We decided to take advantage of the large amount of normal samples over
abnormal samples, thus exploiting unsupervised learning with auto-encoders [1].
Our structure has six fully-connected hidden layers, developed in a symmetric
fashion, with an input dimension of size 400 (equals to the signal shape) and
a latent space of size 20 (experimentally leading to the best performances). We
trained the model on all the normal beats available, minimizing the reconstruc-
tion error defined by the mean squared error. Once its weights frozen, this model
is integrated into our larger architecture. The reconstruction error, represented
in Fig. 2, is used as a new feature for anomaly detection, unfortunately not
descriptive enough for classification.

Regarding binary classification, such model may be used in two different
ways: by either using the embedding as a set of features, or by using the recon-
struction error with a subtraction layer linking input to reconstruction. Those
solutions are respectively referred to by encoder and auto-encoder in our archi-
tectures. Another way of using this structure is to directly integrate it into the
deep-learning model. The concurrent optimization of two models is thus neces-
sary, building a relational encoding space relative to the task. This is the strategy
that has been applied for multi-class classification.

3.4 Architecture

Once the signals standardized, we undertook the construction of our deep-
learning model to exploit the multi-modality of inputs. Our first objective was
to determine whether the heartbeats are normal or abnormal, before classifying
them. The motivation was to avoid the issue of great imbalance between normal
and abnormal samples, while initially focusing on an easier task. A representa-
tion of our architecture is given in Fig. 3.

Fig. 3. General overview of deep-learning architecture

Channels. We use a convolution channel to deal with the subtracting layer deal-
ing with the auto-encoder output, while we use a fully-connected layer to deal
with the latent space. The input signals and the Betti curves are fed in convo-
lution channels, aiming at extracting the long and short patterns [5,10,15]. The
other inputs (both features and discrete Fast Fourier Transform coefficients) are
injected into fully connected networks.



TDA for Arrhythmia Detection Through Modular Neural Networks 183

Annealed DropOut. As we launched a first battery of tests, we were confronted
to the unexpected strong influence of the DropOut parameter over the perfor-
mances. Since DropOut is of great help for generalization, we sought a way to
reach greater robustness. A solution came from the annealing dropout technique
[21], which stabilized our results.

4 Experimental Results

From the problem presentation, we highlighted two issues: imbalanced datasets
and individual differences. The fewer the patients and the bigger the imbal-
ance, the greater the influence of individual differences. To deal with the issue
of imbalance, we introduced our auto-encoder architecture, while dealing with
the individual differences by introducing Topological Data Analysis. Once we
established our solution to both imbalance and individual differences, we aimed
at developing our own approach and validation. As we mentioned earlier, two
ways have been explored, both for performance enhancement and reduction of
the influence of imbalance. The first one has been to detect whether a heart-
beat is normal or abnormal, in order to get a first classification. The second
one has been multi-class classification (13 classes) on the arrhythmic heartbeats
only. Our objective is to introduce a new benchmark to attest that TDA (and
auto-encoders) do improve generalization for arrhythmia classification.

Training Parameters. Different methods have been used for the model train-
ing and optimization. Firstly, all the channels described previously are concate-
nated into one fully-connected network, dealing with all the obtained feature
maps concurrently. Secondly, all the activation layers used are PReLU, initial-
ized with he normal. Thirdly, the dropout has been configured according to
the strategy of the annealing dropout, from a rate of 0.5 to a rate of 0.0 after
100 epochs. Concerning the training losses, we used categorical crossentropy or
binary crossentropy for the classification model, and mean squared error for the
auto-encoder structure. Adadelta was used for optimization with an initial learn-
ing rate of 1.0.

Testing Methodology. Dealing with a medical diagnosis, the testing methodology
has to be rigorously defined to accurately analyze the performances. A great
importance was given to generalization abilities of the developed models. For that
purpose, our strategy aimed at performing patient-based cross-validation,
which means that for each model, train and validation sets were build on a
fraction of the available patients, while the remaining patients constituted the
test set. This way, validation score indicates the ability of the model to dissociate
arrhythmias on known patients, while the test score demonstrates the ability of
the model to detect arrhythmias on new patients. By using permutations of all
the available patients, we were able to train, validate and test each model on all
patients. The results presented in the following parts stem from a cross-validation
keeping 5 unique patients for testing at each cross-validation permutation.
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4.1 Channel Comparison

We first quantified the importance of each channel, by turning them off and
on. That strategy allowed us to specifically quantify the importance of the
introduced TDA channel in terms of generalization improvement. Once again,
we tested our architecture through a patient-based cross-validation. This time,
we made 10 experiments with the underlying objective of generalization: for
each experiment, 225 patients are used for both training (70%) and validation
(30%), while 15 patients are kept for testing. Each subset of 15 patients is not
overlapping between experiments.

Table 1. Weighted test accuracy for channel comparisons.

ID Arrhythmia detection Arrhythmia classification

With TDA Without TDA With TDA Without TDA

0 0.99 0.98 0.73 0.68

1 0.96 0.90 0.75 0.69

2 0.85 0.86 0.68 0.65

3 0.94 0.95 0.95 0.96

4 0.85 0.80 0.97 0.97

5 0.87 0.77 0.96 0.93

6 0.78 0.80 0.94 0.93

7 0.81 0.63 0.90 0.80

8 0.79 0.65 0.85 0.78

9 0.84 0.86 0.68 0.47

A closer look at Table 1 supports the importance of TDA regarding gen-
eralization. Its role is emphasized for multi-class classification, with an impor-
tant improvement of performances. With this right combination of channels, we
started testing our model through patient-based cross-validation for both binary
and multi-class classification. For the purpose of the demonstration, the
scores are weighted in order to compensate for the general imbalance.
Moreover, multi-class classification is not biased by normal samples since they
have been put aside beforehand. This finally supports the generalization role of
TDA, that is expected to bring improvements combined with other deep-learning
architectures as well.

4.2 Arrhythmia Detection

Our first benchmark dealt with arrhythmia detection (binary classification). It
consisted in using our architecture, enhanced with the (auto-) encoder trained
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in an unsupervised manner on normal beats. The model determined by chan-
nel comparison has thus been used for cross-validation. Each instance of cross-
validation has been made by randomly undersampling the majority class to
obtain balanced datasets. It takes approximately 10 h to train on a GPU
(GeForce GTX). We used the data structure previously presented to test over the
240 patients we have in our datasets. Moreover, to tackle the issue of anomaly
detection, and accelerate the process of validation, each cross-validation round
is respectively built out of a set of 5 unknown patients. The mean accuracy score
is 98% for validation and 90% for test. This approach shows great generaliza-
tion abilities. With a closer look on the results, the low performances appear
on patients for which it was hard to recognize their normal beats. It comforts
us as more patients will improve the generalization abilities of the model. How-
ever, its performances on the validation results prove its abilities to learn about
specific patients, thus making it suitable for personalized monitoring devices.
Unfortunately, no other paper do use those test settings for comparison.

4.3 Arrhythmia Classification

The same strategy has been applied for multi-class classification. The greatest
channel influence are the ones linked to the TDA and the encoder. As a con-
sequence, we reduced the original model to the one composed of four channels
in the same fashion than we did for anomaly detection. Moreover, the influence
of those channels is greater than observed for binary classification. Since the
previous approach was not enough, we went further with 13-class classification.
The models proved their ability to learn about heartbeat condition through
cross-validation, with a mean validation score of 97.3%, while being able to
generalize this acquired knowledge on patients it never saw, with a mean testing
accuracy of 80.5%. Once again, literature does not provide comparable settings.
The use of cross-validation focused on the generalization ability of the model.
By also removing the normal beats, we focus on differences between the different
arrhythmias, and remove the influence of imbalance that is generally found in
the scores presented in the literature.

5 Benchmarks Comparison

5.1 Premature Ventricular Heartbeats Detection

Once our model established, we ran through evaluation of its performances
against existing benchmarks. Our claim is enhanced generalization thanks to
both the usage of TDA and the auto-encoder. To support it, our first com-
parison has been made with [13], which focuses on the detection of premature
ventricular contractions (PVC). The classification of a given condition is a par-
ticular case of anomaly detection (one-vs-all), for which our architecture is built
for. The results we obtained are presented in Tables 2 and 3, and support the
generalization ability of our model. Those are obtained using the same method-
ology and the same scoring system than the quoted paper (PPV stands for
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Table 2. Detection of PVC on the MIT-
BIH database

Paper Acc PPV Sen

Proposed 99.2% 95.1% 95.5%

Li et al. 99.4% 93.9% 98.2%

Table 3. Detection of PVC on the
augmented databases.

Paper Acc PPV Sen

Proposed 96.1% 97.0% 96.0%

Li et al. 95.6% 94.1% 92.7%

Positive Predictive Value, Acc for Accuracy and Sen for Sensitivity). The first
experiment (Table 2) only concerns the MIT-BIH Arrhythmia database. Out of
the 48 initial patients in the MIT-BIH Arrhythmia Database, 4 patients are dis-
carded. The remaining patients are split in two groups: 22 are used for training
and validation, 22 are used for testing. Such approach focuses on the premature
ventricular contractions, which are the most reported labels among the available
arrhythmias.

The second experiment (Table 3) aggregates the five databases. This time
they split the group of 240 patients in two, both 120 for training and validation,
and 120 for testing. With more patients, the experiment configuration imply a
greater need for generalization, which emphasizes our model ability to learn the
concept of PVC and apply it to unknown patients. This performance difference is
emphasized in our results, and highlight our greater generalization performance.

5.2 8-Classes Classification

Table 4. 8-classes classification - MIT-BIH database

Paper Classes Acc PPV Sen

Proposed 8 99.0% 99.0% 98.5%

Jun et al. (2017) 8 99.0% 98.5% 97.8%

Kiranyaz et al. (2017) 5 96.4% 79.2% 68.8%

Güler et al. (2018) 4 96.9% – 96.3%

Melgani et al. (2008) 6 91.7% – 93.8%

The previous experiment is a specific use-case for our architecture. In this second
comparison, we focus on 8-classes classification [14]. Once again, our claim is
better generalization, which is done thanks to patient-based cross-validation.
Nonetheless, their settings imply a limitation to the MIT-BIH Arrhythmia Data-
base, from which they select 8 classes, comprising normal beats. Unexpectedly,
this selection does not correspond to the majority classes. Our performances
are compared in Table 4, extending the results they present in their paper. We
pinpoint, thanks to those results, the generalization ability of our model, which
has better positive predictive value (here precision) and sensitivity. It finally
underlines a more efficient classification.
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6 Conclusion

We developed a new approach to deal with the issue of generalization in arrhyth-
mia detection and classification. Our innovative architecture uses common source
of information, Topological Data Analysis and auto-encoders. We supported our
claim of improved generalization with scores reaching the performances of state
of the art methods, and above. Our experiments pinpoint the strengths of TDA
and auto-encoders to improve generalization results. Moreover, the modularity
of such model allows us to build and add new channels, such as a possible channel
based on the Wavelet transform, which also gives a good description of the ECG
time-series. Finally, we give a new benchmark on five open-source datasets, and
get excited by performance improvement through the release of larger datasets
such as presented in [5].
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Abstract. This work considers exceptionally active users on Twitter,
the “big players,” and analyzes the correlation between the level of
emotion these users express in communications tagged with the hash-
tag #globalwarming and the levels expressed by the Twitter community
as a whole. Using an emotion lexicon incorporating four of the eight base
human emotions according to Plutchik: anger, fear, sadness, and joy, we
identify to what extent a small group of these big players may predict
the emotion expressed by their online community in their tweets.

1 Introduction

The significant world-wide rise in temperatures is a major challenge facing
humanity today. As assessed by the Intergovernmental Panel on Climate Change
(IPCC) [26], human-induced changes in atmospheric composition are leading to
a rise in global temperatures that has had and will continue to have a severe
impact on the earth’s climate. Rising temperatures not only challenge human
health and food supplies, they are also a threat to biodiversity. Global warming
therefore represents a serious social and political issue, and much has been done
in recent years to better understand related public perception and behaviour.

Research indicates that there is a complex relation between environmental
concern, informal education, experience, and behaviour [20]. Furthermore, envi-
ronmental risk perception and policy support is in fact strongly influenced by
sentiment (positive/negative reactions), emotional responses, imagery, and val-
ues [15]. Emotions are a driving force in modifying behaviour in order to avoid
risk in dangerous situations [29], and they may be key to understanding how
people reason and respond to information about global warming [17].

This work considers emotion expressed on climate-related issues in the con-
text of the social media site Twitter,1 evaluating affect using sentiment analysis.
This relatively new subfield of natural language processing (NLP) is becoming
increasingly popular largely due to the enormous amount of opinion that the

1 https://twitter.com/.
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public expresses online in today’s world [16]. Sentiment analysis is often con-
cerned with polarity, determining if a message is positive or negative. Here we
focus on affect using a type of analysis commonly called emotion mining.

Of particular interest is the behaviour of Twitter users showing exceptionally
high participation. One might, for instance, wonder whether a small number of
the “top” high-activity users could be particularly representative of the overall
community. Hence, we present affective models to predict emotion expressed
in the general community2 from the emotion expressed by these “big players”
in their tweets. We also compare these models with predictive models from the
emotion expressed by a random set of users of the same size in order to ascertain
whether the top high-activity users have a distinct predictive capability.

We show that, while the big players are not necessarily more representative
of the whole community than other groups of the same size, they do indeed
show a distinct predictive capability. Moreover, this effect sharply depends on
the emotion being considered.

2 Related Work

When seeking to identify individuals filling specific roles in their communities, a
common approach is to analyze centrality in graph-based representations of the
relationships between users. Bigonha et al. [2] create a model to find influencers
based on three elements: sentiment polarity in users’ tweets; two types of graph
representations (“who follows whom” and “who reacts to whose tweets”); and
grade-level readability of the messages. Aleahmad et al. [1] propose an algorithm
called OLFinder to identify major topics for a given domain in a set of tweets
and determine which users are “opinion leaders” for those topics based on the
users’ calculated competency in that domain and a popularity score determined
by graphs of follower relations. A study by Eliacik and Erdogan [6] seeks to boost
graph-based methods using a calculated measure of trust that others extend to a
user based on her relations, expertise, and activity in a topic-centred community.
In research pertaining to climate change, Cody et al. [5] use sentiment analysis
to examine changes in polarity in tweets with respect to climate-related events.

The studies above involve measuring the polarity in tweets, but there are
also a number of projects which focus on emotion as we do in the present work.
Mitchell et al. [19] look at finding the happiest and saddest states and cities in the
United States using a large corpus of tweets tagged with geolocation information.
Preoţiuc-Pietro et al. [25] work with regression models for predicting the income
of Twitter users based partly on polarity and emotion content in their tweets.
Finally, Halse et al. [12] use affect models during a crisis to determine if tweets
are trustworthy and contain information that may be useful to first responders.

2 We use the word community to indicate the users sending tweets or being referred
to in tweets with a given hashtag.
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Contrary to research involving graph-based representations of a given role
between certain users and their followers, we focus our attention on users
set apart by their unusually high level of activity in order to determine to
what extent their behaviour can predict that of the general #globalwarming
community.

3 Methodology

To determine which top high-activity users will be the big players, we look at the
correlation between the emotion expressed in the online activity of a tentative
set of big players and the emotion in tweets published by “regular players,” the
rest of the Twitter community talking about global warming.

Tweet Dataset: We made use of the Twitter developer platform API3 to col-
lect 414, 035 tweets from 239, 590 users, published between January 1, 2018 and
August 31, 2019 and incorporating the hashtag #globalwarming . We call the
analysis of the tweets from this dataset over a fixed period of time a track-
ing run. We are interested in communications on climate change generally, but
this work specifically tracks the hashtag #globalwarming . According to a study
by Williams et al. [30], this hashtag is more regularly used by Twitter users
from both pro-science and skeptic communities, compared to #climatechange,
which more often appears in tweets from climate activists than from skeptics and
deniers. The dataset contains only tweets in English as flagged by accompanying
metadata from the Twitter API.

Emotion Lexicon: We analyze tweets using four base emotions from Robert
Plutchik’s model [23]: anger , fear , sadness, and joy . We treat the tweet text as a
bag of words to be checked against the Affect Intensity Lexicon from the National
Research Council of Canada (NRC). We chose this lexicon as we see potential in
the method known as Best-Worst Scaling, which the NRC used to create it [21].4

The lexicon is available via the Affective Tweets plugin5 for the machine learning
platform Weka [10]. Our algorithm uses the plugin to standardize usernames and
web URLs and to calculate floating-point values in a tweet’s emotion vector,
summing intensity levels for each of the four emotions across all words in the text
that are contained in the lexicon. When analyzing a tracking run, the first step
is to determine this emotion vector for each tweet tagged with #globalwarming .

NLP Tools: The Affective Tweets library [21] provides an NLP tokenizer specif-
ically designed for tweets [11] to delimit words, user names, and web links in a
user’s text. The library also provides other NLP preprocessing tools, allowing the
modeller to specify a stopword list to remove common words devoid of analyti-
cal value and a stemming algorithm to reduce words to their grammatical roots.

3 https://developer.twitter.com/.
4 Plutchik’s model also includes anticipation, trust , surprise, and disgust . The NRC

is in the process of expanding the lexicon to include all eight emotions.
5 https://github.com/felipebravom/AffectiveTweets.

https://developer.twitter.com/
https://github.com/felipebravom/AffectiveTweets
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When creating our models, we experimented with the English stopword list from
Apache’s information retrieval package Lucene6 as well as the Snowball Porter
stemmer [24] for the English language.7 However, our results did not improve
substantially, and therefore in this paper we present results obtained without a
stop list and without stemming.

The lack of improvement should not be too surprising considering that the
utility of traditional NLP tools may suffer when analyzing human language on
social media. Users are non-professional writers, tending to express ideas with lit-
tle thought towards clear content. Tweets contain frequent abbreviations, slang,
and (often intentional) errors in grammar and spelling. Twitter is particularly
problematic due to the small size of the texts [8].

Communication Categories: There are various ways to demonstrate high
activity. We rank users in terms of tweet count for the following categories:

1. Original Tweeters (oter): Users publishing personally-authored messages.
2. Retweeters (rter): Users retweeting (resending tweets written by another

user) using Twitter’s popular “RT @author ...” syntax.8

3. Retweeted Authors (rted): Users whose tweets are retweeted by others.
4. Mentioned Authors (tmed):9 Users specifically mentioned in the tweets of

others via Twitter’s “@user” notation. This syntax usually serves to address
specific users or attract their attention [14].

A single tweet may be accounted for multiple times. For example, if user U1

publishes tweet T1, which he has personally authored and which mentions user
U2, then T1 contributes to U1’s participation in the oter category and also to U2’s
participation in tmed. Similarly, if user U2 sends a retweet R2 originally published
by user U1 that mentions user U3, then R2 contributes to U2’s participation in
rter, to U1’s participation in rted, and to U3’s participation in tmed.

Each category represents a distinct type of participation. For instance, in the
last example the original tweet from U1 would not be considered at all if it was
sent before the tracking run. Nevertheless, if others continue retweeting it often
enough, then U1 may become a rted big player. Likewise, when considering the
category of mentioned authors, one should keep in mind that these users may not
have actively participated in the tracking run. For example, the top-mentioned
account in our collected #globalwarming tweets is realDonaldTrump; however,
this famous user authored no tweets with this hashtag during the tracking run.

We may also think of oter and rter as categories of active participation, sim-
ilarly considering rted and tmed as representing a passive form of participation.
Yet, while the concept of passive big players may be useful, it is not valid in
every sense. Twitter users may actively work to be retweeted [3], and users often
mention each other in tweets when establishing communication threads [14].
6 https://lucene.apache.org/.
7 http://snowball.tartarus.org/.
8 The syntax for retweeting is not standardized, and alternatives do exist. The Twitter

API sends metadata that identifies retweets and indicates the retweeted author.
9 Note that the tmed code is backwards: “mentioned in tweet.”.

https://lucene.apache.org/
http://snowball.tartarus.org/


Big Players: Emotion in Twitter Communities Tweeting 193

“Top N” Big Players: For each of the four communication categories described
above, we identify a set number of users who rank highest with respect to the type
of activity that the category represents: the Top N. Note that we are essentially
considering four types of big players, and it is possible for a specific user to
belong to more than one big player group.

For this study we evaluate a series of big player groups with sizes ranging
from 5 to 25. Our reasoning is that N should be small enough that the total
number of big players will not be overwhelming to a researcher who must, for
example, examine users’ account profiles. Ideally, we can identify a size N that
demonstrates a significant correlation between emotion levels in tweets from the
big players and emotion levels in the general community.

We define the regular players as users who are not in any of the four big player
categories and who have published at least one original tweet with the hashtag
#globalwarming during the tracking run. We are endeavouring to predict the
emotion levels expressed by the regular players in these original tweets. It stands
to reason that tweets authored and published by the general #globalwarming
community are likely a meaningful reflection of what that community is feeling.

Machine Learning Models: We conducted experiments with the following
models: linear regression, Gaussian processes, decision lists using separate-and-
conquer (M5Rules), random forests, and support-vector machines with first and
second degree polynomial kernels (SMOreg using PolyKernel with exponents set
to 1 and 2). For each of these we used the implementations in Weka [31] with
the default settings. Linear regression set itself apart by consistently showing
better results. It also has the advantage of being a “white-box” modelling tech-
nique, enabling the modeller to understand how it arrives at its predicted values.
Henceforth, we will only report on the linear regression models.

Emotion Models: We create regression models for four target values, which
are the variation from one week to the next in levels for the emotions anger,
fear, sadness, and joy as measured in tweets from regular players in the #glob-
alwarming Twitter community. To predict these values, we use 16 independent
attributes that describe the variation, week by week, in the average levels of each
of the four emotions for big player tweets across the four communication cate-
gories. We name these attributes and the targets of the models using a three-part
syntax to indicate the community group, the communication category, and the
emotion:

(
big
reg

)−
(

oter
rter
rted
tmed

)
−

( anger
fear

sadness
joy

)

Independent attributes begin with big as these are values representing big play-
ers. For example, big rter fear gives the variation in the level of fear in retweets
from users in the big retweeters category, and big tmed joy is the variation in joy
measured in tweets that include frequently-mentioned authors. Target attributes
start with the community code reg as these are values we are predicting for the
regular players.10 As an example, the following represents a typical regression

10 For targets we consider only the original tweets (oter) for the four base emotions.
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model to predict the variation in the level of anger measured in regular players’
tweets for a given week with respect to the previous week:

reg oter anger = 0.218 × big oter anger

− 0.105 × big oter fear

− 0.056 × big tmed fear

− 0.001 (1)

Data Preparation: To prepare tracking run data for a regression model, our
system runs all the tweets tagged with #globalwarming , collected over the track-
ing period, through the Affective Tweets Weka filter to determine their associ-
ated emotion vectors. We keep running averages for all users with respect to
each of the four emotions for all four communication categories. Once we have
the emotion vector for a tweet, we apply it to the user either as an original tweet
(oter) or a retweet (rter). For a retweet, we also apply the emotion vector to the
tweet’s original author (rted). Finally, we search the tweet text for all mentioned
users and apply the emotion vector to their accounts as well (tmed). Applying
the vector to a user means that the system incorporates the emotion levels for the
tweet into an emotion vector representing the running averages of the emotions
on the day the tweet was published for the communication type being processed.
The system increments the user’s counter for the communication activity, used
to track the user’s position in the ranking for that category.

After the tweets have been processed, the system finds the big players. For
N ranging from 5 to 25, we create player activity rankings for the four com-
munication categories and select the Top N players in each case. Note that as
players are ranked, there is an occasional tie in activity levels. For example, when
determining the Top 10 original tweeters, the players ranked #10 and #11 may
have both sent the same number of tweets. In this case we accept both players,
and the Top 10 big players for one category will incorporate 11 users. As our
models target the variation from one week to the next for the levels of emotion in
the regular players’ original tweets, the group of regular players is defined as all
accounts which have authored and sent one or more tweets during the tracking
run but are not included in the four big player groups.

After identifying the big players in the four communication categories and the
remaining accounts that make up the regular players, our system then creates
five groups (one for each player type) and calculates an average of the emotion
vectors across all users in a group for each day of the tracking run. It then
sorts the day groupings and bundles them into super-groups representing a week
(seven consecutive day groups). The system reduces all the emotion vectors
in each week-long grouping into a single vector corresponding to the average
emotion levels measured in the tweets for all players in a community (big or reg)
and communication category (oter, rter, rted, or tmed) over that week.

At this point we create a preliminary set of data instances, which each contain
levels of emotion intensity for one week of tweets. As a final step, we subtract the
attribute values for each instance from those of the previous one to obtain the
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variation in emotion intensity from week to week.11 Thus, variations in the levels
of the four emotions in the four big player groups become the 16 independent
attributes (big oter anger, etc.). These values remain the same across all affect
models for a given N . The target attribute for each model represents the weekly
variation in the average affect intensity expressed by all regular players for one
emotion. Each element of an emotion vector in the grouping for regular players
(e.g., reg oter fear) represents the dependent attribute for one affect model. Its
value for a given data instance is computed from a pair of consecutive weeks
from the regular player group.

4 Results and Analysis

This section presents results from the models predicting the variation in level
from one week to the next for anger, fear, sadness, and joy in the regular players’
original tweets for the #globalwarming Twitter community. For each emotion we
ran a series of models for the Top N big players with N ranging from 5 to 25.
Our dataset contains 20 full months of tweets tagged with #globalwarming ,
beginning on January 1, 2018 and ending on August 31, 2019. For each set
of experiments we ran 9 tracking runs with each run using 12 months of data,
starting on midnight of the first day of month Mi, for i ranging from 1 to 9,
and ending at 23:59:59.999 on the last day of month Mi+12. As each tracking
run shifts the starting month by one, we are essentially sweeping a 12-month
window across the 20 months of Twitter data.

In addition to being a natural choice with respect to the calendar, the one-
year window provides sufficient data to train our models, given that each data
instance represents a whole week of Twitter activity. For each 12-month period
we used the first nine months (75%) for training and tested the models on the last
three months (25%). We report averages of the Pearson Correlation Coefficient
(PCC) across the 9 tracking runs in Table 1 for each of the four emotions. The
PCC is a value between −1 and 1, with 1 indicating a total positive correlation
between the model’s predictions and the measured values in the test data.

To determine whether a group of big players of a given size is significant with
respect to predicting emotion in the general community, we compare the results
for the big players with results for reference groups of the same size. In order to
build a meaningful model, however, we must ensure that users in the reference
groups have a minimal level of participation. Therefore, we generate reference
groups in the following way. We pick random users to form four groups (oter,
rter, rted, and tmed).12 These groups are the same size as the big player groups,

11 For a given attribute, AΔ, we compute AΔ = Ai−Ai−1, where Ai is the emotion level
for the current week, and Ai−1 is the level for the previous week. One might consider
using instead the relative change, dividing our AΔ by Ai−1, to get a percentage. This
was not possible here because if a player group does not express some given emotion
in a week’s worth of tweets, the relative change will be undefined.

12 We use the Erlang rand library’s implementation (exrop) of the Xoroshiro116+ pseu-
dorandom number generator [28] with 58 bits of precision and a period of 2116−1.
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and they must have at least 40 tweets in the communication category for their
group. To avoid biased results wherein a few big players represent the dominant
contribution, we require that users in the reference groups not be in any of the
four big player groups. After creating the groups, we process the tweets and
create regression models as explained above, replacing the big players with these
reference groups. For each tracking run, and for each group size of N reference
users (analogous to the Top N players), we repeat this procedure 20 times.

The “ref” columns in Tables 1 and 2 report the averages over these 180 models
(20 sets of reference groups × 9 tracking runs). In these tables, a field containing
asterisks (*****) indicates that for all 180 models, there was at least one week
for which a reference group had no tweets for one or more communication cate-
gories. This generally occurs for small values of N and for larger training periods
(12 months as opposed to 9). By definition, the reference users are less active
than the big players, and if there are too few of them in a given group, together
their activity may not be consistent enough to cover every week in the tracking
run.13

Table 1. Correlation (PCC) for models
predicting emotion in the last 3months.

Table 2. Correlation (PCC) for models
evaluated using 10-fold cross-validation.

Comparing columns 2 and 3 from Table 1, we see the PCC for anger (vari-
ation) predictions from big players closer to 1 and higher than the PCC for
the reference groups. Interestingly, as we follow N , looking at larger groups of
big players, the PCC increases to 0.3869 before decreasing again for even larger
groups. The best results are obtained with a group of around 17 big players.

From columns 4 and 5 of the same table we observe that while the fear
models for big players do not always outperform the reference models, they
do show a better linear correlation for N between 14 and 18, where the PCC

13 Setting a higher minimum tweet limit would help to correct this problem; however,
raising the minimum past 40 means there may not be a large enough pool of candi-
date users to fill the reference groups for larger values of N.
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for the big players reaches values up to 0.2972. The big players perform better
than the reference groups near the middle of the table, but not when we create
models using smaller groups or larger ones. For anger and fear, one may conclude
that the big players are indeed significant as a group. Furthermore, the PCC is
maximal for N in the range 16–18, showing that interested researchers can focus
their attention on a reasonable number of the top players.

For sadness and joy, the results are much less clear as Table 1 shows. Models
for sadness do not show a significant level of correlation for the big players, nor
for the reference groups. As for joy, one notable PCC of 0.2517 for N = 19 does
not seem significant.

In order to determine if this lack of correlation for sadness and joy might
be a consequence of the limitations of linear regression, we experimented with
other learners as mentioned in Sect. 3. These include Gaussian processes, decision
lists, random forests, and support-vector machines with first and second degree
polynomial kernels. None of these algorithms outperformed the linear model.

We also used the affect models to predict variation in levels of emotion
expressed in the Twitter community during the twelve-month period itself,
rather than predicting over the last three months. To test this scenario, we eval-
uated the models using 10-fold cross-validation for each of the nine 12-month
periods. From Table 2 one can see that the PCC does not vary significantly across
values of N, and therefore it is difficult to identify a value of N of particular inter-
est. Even more significant is the fact that the PCC obtained by the big players
and those for the reference groups are similar. This indicates that the big players
are comparable to other groups of the same size with respect to their predictive
value within the twelve-month periods. This finding is in stark contrast to their
predictive value for the last 3 months of these periods.

As an additional test, we repeated the experiment, but rather than using
cross-validation, we created an independent test dataset by randomly selecting
three-month’s worth of data instances throughout the 12-month period, remov-
ing those instances from the training dataset. This method is of interest since it
more closely parallels the methodology we followed when using the final three
months of the period for model evaluation. The results with this independent
test dataset were similar to those we obtained using cross-validation.

5 Discussion

When examining ways in which our results may help to further research on
climate change, three hypotheses give likely interpretations of the correlation
the models show for anger and fear:

1. Emotion expressed by a big player is representative of the larger community.
2. A big player’s tweets are influencing the emotional state of the community.

(High Twitter activity may indicate a user is seeking to gain an online pres-
ence or communicate a specific message to a perceived audience [3,18].)

3. A big player and the community are each influencing each other’s emotional
state. (Users interact online mainly with like-minded individuals [9,30].)
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In each case, the big player may potentially be of high interest. The fact that
the model identifies a relatively small number of big players greatly reduces the
work effort involved in looking up user profiles and following specific chains of
tweets. Furthermore, since models take into account different types of big player
activity as well as a set of base emotions, they may be useful for organizations
aiming to evaluate various types of high-level participation in order to improve
communication methods which use emotion-based message framing.

Furthermore, researchers are exploring the relation between emotion at a
social level and people’s response to the dangers of climate change. Anger and
fear are of particular interest, and our results show that big players can be a
group of significant interest in the context of #globalwarming on Twitter. For
instance, studies are looking into how fear affects people’s reactions to informa-
tion about climate change [13] and the role fear can play when framing messages
intended to promote climate change advocacy [22].

Our models for sadness and joy, however, do not show any significant cor-
relation. This does not seem to be an artifact of linear regression as the other
algorithms do not produce better results. Hence, techniques to model sadness and
joy may differ sharply from those for anger and fear. Further research on sadness
in the context of high-activity online users is certainly warranted because this
emotion is an important aspect in studies of human reactions to climate change.
One example is the study by Farbotko and McGregor [7] exploring the influence
which sadness can have on shaping international policy on climate change.

Our initial interpretations indicate that models analyzing sadness and joy
may need to handle additional complications. We would not generally expect
joy in particular to be a clear, unblurred emotion in messages about global
warming. For instance, Sulis et al. [27] demonstrate that high levels of sadness
may be found in tweets expressing irony, while joy occurs frequently in tweets
expressing sarcasm. We would expect these emotions to be particularly difficult
to model for communications on climate change, and it is intriguing to speculate
on the extent to which irony and sarcastic remarks are influencing our models.

Limitations: With statistical models we must remember that finding a corre-
lation does not mean we understand the causes behind the phenomenon we are
studying. We present a method for predicting emotion levels in tweets about
global warming, but we cannot say that the elements that we are considering as
big player activity is causing the expression of emotion. We must also exercise a
measure of restraint as we interpret our results. Tweets are a noisy, extremely
informal, and non-standard use of language that traditional NLP techniques
often find problematic [8]. Users may repeatedly send the same tweet (or retweet)
numerous times; they may alter the original author’s text when retweeting [3];
and they may use the “@” sign for purposes other than addressing another user.
Additionally, emotions are only a part of the complex system that is human
cognition. When using affective models to study how best to talk to people to
inform them about climate change and work with them to mitigate its effects,
we must continually be conscious of the underlying complexities and, as much
as possible, avoid oversimplifying human understanding and behaviour [4].
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6 Conclusion

This work shows that top high-activity users in the #globalwarming commu-
nity on Twitter do not demonstrate a general predictive capacity compared to
other groups of the same size. However, high-activity users do show a distinct
predictive capability when predicting for the three months following the train-
ing period for anger and fear, two particularly relevant emotions with respect
to climate change. Furthermore, this correlation occurs for the Top N players
in groups small enough to allow researchers to follow up on them if needed. In
contrast, this is not the case for sadness and joy, indicating that modelling these
emotions is not a completely straightforward process in the context of online
communications about global warming.
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Abstract. We consider the task of predicting the class of commen-
taries associated with financial discrepancies between actual and esti-
mated sales data. Such analysis of the financial data is helpful in meet-
ing targets and assessing the overall performance of the company. While
generating a commentary and its associated class is the task of an ana-
lyst, these manual operations might be erroneous and as a result, might
lead to a diminished performance for the employed prediction model due
to wrong class labels. Accordingly, we propose using topic modelling,
namely Latent Dirichlet Allocation (LDA), for automated extraction of
the classes of the commentaries. In addition, we use feature selection
strategies to improve the accuracy of the prediction models. Our anal-
ysis with various time series classification methods points to improved
performance due to LDA and feature selection.

Keywords: Time series classification · LDA · NLP

1 Introduction

On an annual basis, companies make budgets to set targets for sales, revenues
and expenses. Financial reports that are generated through various transactions
are then used to understand the discrepancies between actual performance and
financial forecast. These reports are generated from different sources including
the daily sales transactions, inventories, cash flows, and supplier transactions.
Financial analysts within the company examine the variances between projected
outcomes and the actuals in certain time intervals (e.g. weekly, monthly, or
quarterly), and provide management with insights. Accordingly, it is determined
whether some adjustments are needed to be made to the targets or some other
actions are needed to be taken in various departments to meet these targets.

The analyst report usually involves a summary information that relates each
variance with a short commentary that serves as a baseline for top management
to take immediate actions. While this process relies on the analyst’s knowledge
of the business areas, the data coming from different silos of the company might
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lead to erroneous assessments. As such, there is a need to learn from existing
commentaries and build a prediction model that helps the automatic generation
of the commentaries and their associated classes.

In our previous work [5], we tried to predict the commentaries using an
encoder/decoder structures that predict jointly from the variance dataset and
the expert commentaries. However, the reduced set of commentaries and a high
variety among commentaries in terms of writing and wording, made it hard to
predict meaningful commentaries. Later, we simplified the problem and aimed
to predict the category of the commentary rather than trying to generate the
original text [6]. Our analysis with various machine learning models including
Support Vector Machines (SVMs), Random Forests (RFs) and Long Short Term
Memory Neural Networks (LSTMs) indicated a positive predictive performance.

We note that, while generating a commentary and its associated class is
the task of an analyst, such manual operations might be erroneous and as a
result might lead to a diminished performance for the employed prediction model
due to wrong class labels. Accordingly, we propose applying topic modelling,
namely Latent Dirichlet Allocation (LDA) on the commentaries dataset in order
to cluster commentaries based on their similarity, and then predict the topic of
the commentary rather than the full text. The model learns from the variance
dataset and predicts the topic, which helps automating the overall process.

Topic modelling aims to identify abstract or hidden structures of the text
bodies which are called topics. There are various topic modelling techniques in
the literature such as Latent Semantic Analysis (LSA) [3], probabilistic latent
semantic analysis (pLSA) [7] and LDA [2]. While LSA is a simple dimensionality
reduction technique with SVD, pLSA and LDA consider a statistical approach
that builds a probabilistic language model from documents considered as a mix-
ture of topics. Unlike pLSA that ignores how the topic mixture is generated
for a document [9], LDA uses the Dirichlet distribution to determine this topic
distribution. Liu et al. [10] used sentiment as topics and applied pLSA to model
weblogs entries and predict product sales performance. LDA was successfully
applied for Pseudo Relevance Feedback as well, where Miao et al. [11] introduced
a topic space to evaluate the reliability of each candidate feedback document,
then they used the reliability scores to adjust the weights of terms. LDA was
also applied in identifying medical prescription patterns [12] and modelling the
correlations of news items with stock price movements [8].

2 Methodology

2.1 Topic Modelling

Data is provided by our partner company in two datasets that include 34 months,
from January 2016 to October 2018. The first dataset, COM (see Table 2), con-
tains the commentaries written by the analyst for every customer and brand.
The second dataset, VAR (see Table 1), includes the difference between forecasts
and actuals in millions of dollars for every customer and brand.
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Table 1. The VAR dataset records the
discrepancy between forecast and actu-
als by customer and brand in Millions
of CAD. Sample for one customer.

Customer 1

Jan. 2016 Feb. 2016 . . . Sep. 2018

B1 +0.10 −0.01 . . . +0.05

B2 −0.08 −0.05 . . . +0.12

. . . . . . . . . . . . . . .

Table 2. Commentaries are written
monthly for brands with discrepancies
higher than 0.2 Millions CAD. Sample
commentaries for January 2016

January 2016

Brand Var. Commentary

B3 +0.50 Customer10: caused by
over delivery

B15 +0.63 Customer25: declining
faster than seen in the
market

. . . . . . . . .

The analyst labelled each commentary with one of the following five labels:
1. “Promo” when a promotion did not perform as expected, 2. “SP&D” related
to special offers including multiple products sold as a package, 3. “POS” related
to sales that showed unexpected highs or lows at retail stores, 4. “Other” for rare
topics, and 5. “NoComm” when no commentary was provided. The process of
labelling commentaries is challenging as it often happens that a commentary has
a main topic and one or two secondary topics. Further, it leads to an imbalanced
dataset having NoComm as a majority class and Other as a minority class. We
apply undersampling for NoComm and oversampling for the remaining classes
to balance the labels’ occurrences.

We process the VAR dataset in a way that for every commentary emitted
for a customer and a brand in any given month, we associate a time series of
variances (i.e. forecasts − actuals) recorded for the customer and the brand for
all previous 12 months. Therefore, we build a new dataset VAR-COM where
each row is associated with a brand b, a customer c and a month m. The input
is in the form of a vector of 13 elements that represents the variance of the
brand/customer pair (b, c) during the month m and the 12 preceding months:
{v(b,c)m−12, . . . , v

(b,c)
m−1, v

(b,c)
m }. The output is a one-hot-encoded representation of the

label of the commentary generated by the expert for the tuple (b, c,m).
In addition, we pre-process all commentaries by converting them to lower-

case then removing numbers, punctuation signs and common English stop-words.
We also build a context-related list of stop-words such as customer name, prod-
uct description and months. The comment after pre-processing is supposed
to contain only useful keywords. We later apply lemmatizing and stemming
to transform all word variants to standardized roots. Then, we apply TF-
IDF to the resulting commentaries according to the formula TF-IDF(t, c) =
TF (t, c) · log

(
N

DF (t)

)
where t denotes a term in a commentary c, TF (t, c) is the

frequency of the term t in the commentary c, N is the number of non-empty
commentaries in the dataset, and DF (t) the document frequency defined as the
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number of documents containing the term t. Therefore, TF-IDF associates a
higher score to the relevant words. Every commentary is converted into a set of
tokens associated with their TF-IDF scores. We choose to use TF-IDF scoring
instead of embedding vectors as the vocabulary size and the number of commen-
taries are relatively low (around 521 commentaries and 441 unique words after
pre-processing).

Finally, we apply LDA to all commentaries by using three topics. The one
with the highest probability is considered as the main topic of the commentary.
It may happen that all words in a commentary are removed in the pre-processing
phase, in this case, we associate a label “General” to the commentary. Empty
commentaries are labelled with NoComm. Consequently, LDA results in five
labels, which is equal in number to the labels provided by analysts, but different
in nature as they are produced by clustering (i.e. LDA). Each commentary is
assigned one of the following labels: “Topic1”, “Topic2”, “Topic3”, “General” or
“NoComm”. We experiment with a different number of topics as well.

2.2 Learning Model

We train five models, each one is based on a different classification approach:
RF, Gradient Boosting (XGB), SVM, LSTM and one-nearest neighbour dynamic
time warping (1-NN DTW) [1]. Previously, we observed that not all months in
the dataset are important in the time series [4], thus we consider feature selection
based on RF feature importance by keeping 4 months out of 13 months, namely
vm−12, vm−11, vm−1 and vm where m is the month the commentary is issued.

3 Results

The commentaries dataset contains 2607 data points where only 521 are asso-
ciated with commentaries. The average number of words in a commentary is
nine. After pre-processing this number is reduced to four. Around 6% of the
commentaries ended up being empty after pre-processing. We carry out three
different experiments: (1) with analyst and LDA labels using 3 topics and no
feature selection, (2) with analyst and LDA labels using 3 topics and with fea-
ture selection, (3) with analyst and LDA labels using 2 topics and with feature
selection. After splitting the dataset into a train and test sets with an 80/20
ratio, we run all models 25 times with random oversampling and downsampling.
We report the F1-score macro resulting from each run.

Figure 1 indicates that there is no significant improvement when learning with
the original labels and the ones generated by LDA without feature selection. We
note that, after feature selection, results are improved for XGB and SVM. With 2
topics, LDA-based models perform better than with the original labels as shown
in Fig. 2. This can be explained by the fact that the number of labels with LDA is
smaller, however, from a practical perspective, such results are still interesting for
the consumer goods company as the model is able to predict the commentary
topic and provide insightful keywords for every topic. Figure 3 illustrates the
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Fig. 1. F1-scores for different models before and after applying LDA using 3 topics
(i.e. 5 labels), with and without feature selection.

Fig. 2. F1-scores for considering different number of topics selected by LDA.

Fig. 3. Percentage of each expert label in LDA topics.

distribution of each analyst label by LDA topic. If we discard the “General”
topic, the figure does not reveal a clear association between topics and labels
which may suggest that the labels may not be related to specific keywords as
was assumed in this analysis. Alternatively, this might be considered as evidence
for data quality issues, if the expectation is to have some correlation between
the labels and the associated commentaries.
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4 Conclusions and Future Work

In this paper, we incorporate LDA into the classification of financial time series
data into categories of commentaries. We examine the impact of feature selec-
tion on prediction quality as well. Our analysis with various time series classifi-
cation methods shows that LDA in combination with feature selection leads to
improved results. Moreover, automated identification of class labels from com-
mentaries enables experimenting with different numbers of class labels, which
further improves the predictive performance. 1-NN DTW performed the best
in predicting labels after applying LDA. However, no significant correlation is
observed between analysts’ labels and LDA topics. Future work includes acquir-
ing more data to test out our approaches as well as employing an active learning
mechanism to guide the expert in manually labelling the instances so that num-
ber of manually labelled instances and the associated errors will be reduced.

Acknowledgement. This work is supported by Smart Computing For Innovation
(SOSCIP) consortium, Toronto, Canada.
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Abstract. Large amounts of mobility data are being generated from
many different sources, and several data mining methods have been pro-
posed for this data. One of the most critical steps for trajectory data
mining is segmentation. This task can be seen as a pre-processing step
in which a trajectory is divided into several meaningful consecutive sub-
sequences. This process is necessary because trajectory patterns may not
hold in the entire trajectory but on trajectory parts. In this work we pro-
pose a supervised trajectory segmentation algorithm, called Wise Sliding
Window Segmentation (WS-II). It processes the trajectory coordinates
to find behavioral changes in space and time, generating an error signal
that is further used to train a binary classifier for segmenting trajectory
data. This algorithm is flexible and can be used in different domains.
We evaluate our method over three real datasets from different domains
(meteorology, fishing, and individuals movements), and compare it with
four other trajectory segmentation algorithms: OWS, GRASP-UTS, CB-
SMoT, and SPD. We observed that the proposed algorithm achieves the
highest performance for all datasets with statistically significant differ-
ences in terms of the harmonic mean of purity and coverage.

Keywords: Trajectory segmentation · Spatio-temporal segmentation ·
Trajectory partition · Supervised trajectory segmentation

1 Introduction

An essential task for mobility data mining is trajectory segmentation. Differ-
ent to classical data mining, in trajectory data mining, the attributes/features
are extracted from subtrajectory parts. The partitioning is necessary because a
mobility pattern, in general, does not hold for the entire trajectory, but for sub-
trajectory parts. Therefore, the segmentation process becomes one of the most
critical pre-processing steps for trajectory data mining.
c© Springer Nature Switzerland AG 2020
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Trajectory segmentation is the process of splitting a given trajectory into
several homogeneous segments regarding some criteria. This task plays a pivotal
role in trajectory mining since it affects the features of each segment, as the
features may depend on the size of the trajectory segment, independently of the
application domain, such as fishing detection [15], animal behavior [7,8], tourism
[6], traffic dynamics [5,7,13,16], vessel movement patterns [2] etc.

A trajectory is a sequence of points located in space and time, and different
criteria can be used to split trajectories. There are several approaches that can
be used for trajectory segmentation such as CB-SMoT [12], SPD [17], WK-
Means [10], GRASP-UTS [15], TRACLUS [9], OWS [4], etc. Different to previous
approaches where no training step is performed, we propose in this paper a
supervised strategy to segment trajectory data. To the best of our knowledge
this is the first approach that actually learns partitioning positions (i.e., the
last trajectory point of a segment) from trajectory data characteristics for a
given application domain. The main advantage of this supervised strategy is
that the transitioning characteristics of a behavior change can be learned from
the training data. The model built to forecast partitioning positions is further
used to segment trajectories. After that, a majority vote strategy decides the
proper location to place a partitioning position.

In summary, the main contributions of this work include: (i) a method for
producing training data from partitioning positions on a labeled trajectory; (ii)
a method to decide when a partitioning position occurs in a trajectory; and (iii)
an empirical study comparing WS-II and several baselines for segmentation.

This paper is organized as follows. Section 2 shows the definitions necessary
to describe our trajectory segmentation method. In Sect. 3, the related works
are described. In Sect. 4, we propose WS-II with details. In Sect. 5, we applied
the proposed method and other trajectory segmentation algorithms on three
datasets and reported their performance results. Finally, we conclude our work
in Sect. 6.

2 Definitions

In this section we present the basic concepts related to trajectories and used
throughout this paper.

The trajectory of a moving object o can be described by a time ordered
sequence of locations the object has visited. We call these locations, trajectory
points.

Trajectory Point. A trajectory point, loi , is the location of object o at time i,
and is defined as,

loi = 〈xo
i , y

o
i 〉 (1)

where xo
i is the longitude of the location which varies from 0◦ to ±180◦, while

yo
i is the latitude which varies from 0◦ to ±90◦.
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Raw Trajectory. A raw trajectory, or simply trajectory, is a time-ordered
sequence of trajectory points of some moving object o,

τo = 〈lo0, lo1, .., lon〉 (2)

Segment or Subtrajectory is a set of consecutive trajectory points belonging
to a raw trajectory τo = 〈lo0, lo1, .., lon〉,

so = 〈loj , · · · , lok〉, j ≥ 0, k ≤ n and so ⊂ τo (3)

The process of generating segments from a trajectory is called Trajectory
Segmentation (TS). The most common way of defining TS involves splitting a
raw trajectory into a set of non-overlapping segments. More formally:

Trajectory Segmentation. Given a raw trajectory τo = 〈lo0, lo1, .., lon〉, we define
a sequence of segments S = 〈so0, · · · , sok〉, such that

∀soi ,s
o
i+1∈S soi = 〈lop, · · · , lop+t〉, soi+1 = 〈lop+t+1, · · · , lop+t+u〉 (4)

and
so0 = 〈lo0, · · · , loi 〉, sok = 〈loj , · · · , lon〉 (5)

Equation 6 shows the input and output of the trajectory segmentation pro-
cess, where τ is a raw trajectory which contains n trajectory points, and S is
the set of all segments generated from τ using TS.

TS : τ −→ S, |τ | = n + 1, |S| = k + 1 (6)

In this notation, n+1 is the number of trajectory points and k+1 is the number
of segments resulting from applying TS to the trajectory.

We call a trajectory point at the end of each segment as partitioning posi-
tion. This means that the result of applying TS to a trajectory, S contains k
partitioning positions.

Problem Definition. Given a raw trajectory τo, we would like to generate a
sequence of segments S = 〈so0, · · · , sok〉 so that each soi satisfies a certain homo-
geneity criteria for a given application domain. To evaluate the performance of
the generated S, we rely on the knowledge of an expert user to provide a set of
semantic tuples sli = (sid, label) where sid identifies a segment si of a trajec-
tory, generated by the expert user, and label is a semantic label attached by the
expert to this segment, such as for instance, a transportation mode or status of
fishing or non-fishing.
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Fig. 1. A high level view of wise sliding window segmentation algorithm.

3 Related Works

In this section, we give an overview of several methods for trajectory segmen-
tation. Warped K-Means (WK-Means), which is a general-purpose segmenta-
tion algorithm based on K-Means [11], is introduced in [10]. It modifies the
K-Means algorithm by minimizing a quadratic error (cost function) while impos-
ing a sequential constraint in the segmentation step. Since WK-Means imposes
a hard sequential constraint, segments can be updated while new samples arrive
without affecting too much the previous clustering configuration [10]. This algo-
rithm receives the number of segments to be found on the data (k). Having such
input parameter is the main limitation of using it in domains where the number
of segments is not pre-defined or is dynamic.

The Stay Point Detection (SPD) [17] is a simple algorithm that follows the
idea that between each two-movements, there is a stop. SPD applies a distance
threshold (θd) and a time threshold θt so that a moving object which spends
more than θt time in the neighborhood of θd belongs to a stay point. Hence,
each stay point identifies a segment, and the trajectory points between two stay
points are generated in another segment.

An extension of DB-SCAN [3], CB-SMoT detects stops and moves segments
in a trajectory [12]. The original definitions of a ε−neighborhood and minimum
points in DB-SCAN are altered so that CB-SMoT utilizes spatial and temporal
aspects of trajectories. CB-SMoT works based on the trajectory speed, and the
stop points are consecutive trajectory points where the moving object has a
lower speed.

TRACLUS [9] detects dense regions with the same line segment character-
istics. This clustering algorithm has two steps: (i) partitioning of the trajectory
to line segments; and (ii) clustering these lines. A cost function based on the
Minimum Description Length (MDL) principle is applied in the first step to
split a trajectory into its line segments. It considers three trajectory segment’s
attributes: (i) parallel distance, (ii) perpendicular distance, and (iii) angular
distance. Clustering line segments using DB-SCAN is run in the next step [9].

GRASP-UTS is an unsupervised trajectory segmentation algorithm that
benefits from the Minimum Description Length (MDL) principle to build the
most homogeneous segments. First, GRASP-UTS generates random landmarks.
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Then, it builds homogeneous segments by swapping the trajectory points across
temporally-ordered segments and adjusting the landmarks based on its cost func-
tion’s value [15]. GRASP-UTS can apply additional features on top of the raw
trajectories to perform trajectory segmentation.

The OWS (Octal Window Segmentation) algorithm is based on comput-
ing the error signal generated by measuring the deviation of a middle point of
an octal window [4]. The intuition behind OWS is that when a moving object
changes its behavior, this shift may be detected using only its geolocation over
time [4]. OWS uses interpolation methods to find the estimated position of the
moving object, i.e., where it is supposed to be if its behavior does not change.
Then, OWS compares the real position of the moving object with the estimated
one, creating an error signal. With such a procedure, it is possible to determine
where the moving object changed its behavior and to use this information to
create segments.

In this work, we extend the idea of OWS by using a configurable sliding
window for interpolating points and a supervised strategy for deciding where
partitioning positions should be placed. Unlike all previous segmentation algo-
rithms, WS-II is supervised. This means that WS-II is able to learn the variations
in the error signal generated by interpolation techniques which characterize par-
titioning positions over consecutive segments, avoiding in this way the decision
of choosing an error threshold value (i.e., an epsilon value in the OWS) that
relies on the characteristics of the domain where trajectories were collected.

4 The Proposed Method

Figure 1 shows an overview of the Wise Sliding Window Segmentation (WS-II)
method, which has four core procedures: Generate Error Signal, Create Training
Data, Binary Classification Model, and Majority Vote. First, the WS-II creates
the error signal from the labeled dataset, which is detailed in Sect. 4.1. The
second step is to generate the training data using the error signal, by sliding
a window over its values and adding the presence or absence of a partitioning
position. This part is detailed in Sect. 4.2. The third step is to train a binary
classifier to recognize the partitioning positions over the sequence of error sig-
nals. This part is detailed in Sect. 4.3. Finally, unlabeled trajectories can then
be segmented based on the model learned in the previous step and using the
majority vote, as detailed in Sect. 4.4.

4.1 Generating the Error Signal

The first step of our proposal is similar to the OWS algorithm [4], which creates
a sliding window over a trajectory to compute a signal error between trajectory
points. For each sliding window, the error is generated by calculating the devia-
tion of the interpolated midpoint of the window from the actual midpoint. This
process is repeated by sliding the window by one point forward, so receiving a
new trajectory point, it adds the newer point to the window set and removes
the oldest point from the set. An example of this process is shown in Fig. 2a.
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(a) (b)

Fig. 2. (a) Example of error calculation where seven trajectory points (e.g., l1 to l7)
are selected as the current sliding window (e.g., green box). (b) Example of error signal
generated in meters for trajectory data. (Color figure online)

In Fig. 2a, the green rectangle is a sliding window of size 7, the lB (red
triangle), and lF (blue triangle) are the interpolated positions. lF is generated
using extrapolation on the first three points (l1, l2, l3) and lB is generated using
the last three points inside the window (l5, l6, l7). The green dot (l4) is assumed
to be the missing point in the sliding window, while the lC (orange triangle)
is generated as a middle point between lB and lF . The distance between the
midpoint (lC) and the missing point (l4) is called the error value of this window.
In the example of Fig. 2a, the haversine distance from the estimated position lC

to the real position li is visible. This may indicate that the moving object’s
behavior has changed at position l4.

An example of the error signal from a trajectory is shown in Fig. 2b. A raw
trajectory with 26 points that forms 20 sliding window of size 7 (generating
error for point index 4 to 23) is displayed in this example. The first three and
last three error values are dropped. Window index is the index of the middle
trajectory point in each window. Figure 2b illustrates a situation in which they
are several trajectory points (e.g., around trajectory points 8 and 12) along the
raw trajectory where the estimated positions were far from the real trajectory
positions. These boundaries are considered as potential partitioning positions
for creating trajectory segments.

4.2 Creating Training Data

The second core procedure of WS-II is to create a training dataset using the
sequential error values extracted in the previous step. First, we create an array
of size q of error signals that will belong to the first training sample, and we use
the ground truth information (i.e., if in this particular region there was a change
in the behavior) to annotate the label of this sample. If this window includes a
partitioning position, it is labeled as 1 and 0 otherwise. By receiving every new
trajectory point, we remove one point from the start of our window and add
the new point to the end of the window. Then we create our next sample by
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(a) Example of a training set gener-
ated by WS-II.

(b) Example of the majority vote
mechanism.

Fig. 3. Examples of data tables generated by our algorithm.

applying the same step of labeling 1 when a partitioning position is present in
the sliding window, and 0 if it is not. This procedure is repeated until all the
error signals are evaluated.

To understand how the labeling process works, we show an example in Fig. 3a.
In this example, the training data are created for the sliding window built with
seven (e1 to e7) trajectory points over eleven slides (i.e., w1 to w11). As can
be seen in Fig. 3a, from w1 to w3, there was no big change in the error signal
(ranging from 120 to 340 m). In w4, the value of 560 characterizes a high jump
in the estimated error and actually reflects a real change in the behavior of
the moving object, resulting in a positive example (i.e., there is a partitioning
position) in the training data. Examples from w4 to w10 are labeled as positive
due to the presence of partitioning position in the sliding window. From w11,
the samples are again labeled as negative examples due to the absence of a
partitioning position in the data.

4.3 Binary Classification Model

A binary classifier is used by WS-II to categorize each error signal sample into
either a partitioning position or not. The labeled trajectory data created in
the previous step is used to generate training samples for this binary classifier
so that it can classify signal samples into a class where a sliding window has a
partitioning position (e.g., value 1) or a class when it does not have a partitioning
position (e.g., value 0).

It was observed that the error signal has its minimum fluctuations far from
a partitioning position, and it has its maximum fluctuations while transition-
ing from one segment to a new one. Therefore, detecting the area that includes
partitioning positions is an indicator that the behavior has changed. We apply
the binary classifier to identify these areas over a trajectory that has the highest
likelihood of containing partitioning positions. In this work, we used a Random
Forest classifier [1] to benefit from its bagging power while processing long win-
dow sizes faster by limiting the number of features. However, we emphasize that
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any classification model can be used in this step. After forecasting these tran-
sitioning areas, we use a majority vote mechanism to decide precisely where to
place a partitioning position, explained in the next section.

4.4 Majority Vote

At this step, we use the same sliding window of size q to decide if a partitioning
position occurred. Since we are using a window slide point by point, each trajec-
tory point can be part of q sliding windows, and we classify each window using
the binary classifier. This means that we have q outputs that the binary classifier
generates for a trajectory point belongs to the q windows. Using a majority vote
mechanism for these q outputs leads us to the final decision: the trajectory point
is a partitioning position if more than 50% of the sampled signals are labeled as
a partitioning position.

Leveraging this feature and applying the voting technique, we can have a
more robust evaluation to support if a point is a partitioning position or not.
The decision to identify a trajectory point as a partitioning position is supported
by q results, each of which contributes 1/q to the final decision. This means a
misclassification of the binary classifier weights 1/q. Although increasing q can
make the algorithm more robust to noise, it will make it fail to identify segments
with a length smaller than q. Furthermore, the algorithm is more robust against
noisy points, which may happen in trajectory data due to device collection errors.

An example of the advantages of the majority vote mechanism are exemplified
in Fig. 3b, where a window with q = 7 was used. In Fig. 3b, the column bcls was
forecast by the binary classifier for wm to wm+9. It is possible to see in Fig. 3b
that wm+3 is decided by evaluating the bcls column values from wm to wm+6

(0, 1, 0, 0, 0, 1, 1). The decision regarding a majority vote for wm+3 is equal to 0
since |#0| = 4 and |#1| = 3. For deciding the final value of wm+4 the lines from
wm+1 to wm+7 are used. The evaluation of the set (1, 0, 0, 0, 1, 1, 1) through
a majority vote (|#0| = 3 and |#1| = 4) results in the decision of 1 (i.e., a
partitioning position occurred). As previously stated, such strategy makes WS-
II robust against spatial jumps due to GPS error in the data collection process.

5 Experimental Evaluation

In this section, we evaluate the proposed method and compare it to state-of-the-
art approaches. In Sect. 5.1, we describe the datasets. In Sect. 5.2, we detail the
experimental setup and we report the results in Sect. 5.3.

5.1 Datasets

We evaluate our method on three datasets. The first is a fishing dataset con-
taining 5190 trajectory points and 153 segments, where fishing activity labels
(e.g., fishing or not-fishing) were provided by specialists and used to create tra-
jectory segments. The second is the Atlantic hurricane dataset, which contains
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1990 trajectory points and 182 segments. The Saffir-Simpson scale was used to
determine the type of hurricane, and the transitions from one hurricane-level to
another was used for creating trajectory segments. Finally, a subset of the Geo-
life dataset containing 12,955 trajectory points and 181 segments was used as a
third dataset. For this dataset, we use the transportation mode as the ground
truth for creating the segments. The reason that we did not use the full Geolife
data set was that some of the segmentation algorithms, such as GRASP-UTS
were not able to provide segments in a reasonable time. We create a sample
Automatic Identification System (AIS) data to debug our algorithm and test
our code and made it available to public1.

5.2 Experimental Setup

In this work we measure the trajectory segmentation performance using
Harmonic mean of Purity and Coverage, introduced in [4]. The use of purity
and coverage for trajectory segmentation performance measurement originally
is introduced in [15]. We do not use clustering measures such as completeness and
homogeneity since the segmentation task is different from clustering. In trajec-
tory segmentation, the order of the segments is essential, and adjacent segments
can come from the same cluster. For example, an object moving to a shopping
store and going back home characterizes two segments, that would be in the
same “walk” cluster.

In each experiment, we divided the dataset into ten folds, one of which is
applied to tuning/training the algorithm and the rest to testing its performance.
Each fold contains different trajectories of different moving objects; therefore,
we individually segment each trajectory and report the average results.

Since we divide data into ten folds, we calculate ten values for the Harmonic
means. A boxplot is used to show the visual difference between these ten values
for each algorithm, Fig. 4. Although the boxplot can show the difference between
the performance of algorithms, we perform a Mann Whitney U test (having only
ten numbers, we could not prove the data follows normal distribution, so we did
not use T-test) to show that the difference between the median of each set is not
generated randomly.

The state of the art methods that we compare to our approach requires some
parameterization. The input parameter values estimation for GRASP-UTS was
using a grid search with all combinations of values reported in [15]. For the SPD
algorithm, we used the suggested parameters on the original paper for the subset
of Geolife dataset, and for the rest of datasets we used a grid search to find the
best parameters. For CB-SMoT, we applied a grid search to tune parameters
using the parameter tuning fold. For OWS, we have tested the four kernels (e.g.,
random walk, kinematic, linear, and cubic) and used the same strategy reported
in [4] to find the best value of epsilon. We decided only to report the random
walk kernel findings since it obtained good results for all datasets. For a fair
comparison between OWS and WS-II, we only report the WS-II results with the

1 https://github.com/metemaad/WS-II.

https://github.com/metemaad/WS-II
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random walk kernel. Details regarding the input parameter values ranges for all
algorithms can be found in the following link2.

5.3 Results and Discussion

Figure 4.a displays the results of executing different segmentation algorithms on
the Fishing dataset. A Mann Whitney U test indicated that WS-II produces sta-
tistically significant higher median (mean = 94.32, std = 0.9) harmonic mean for
trajectory segmentation comparing to OWS with random walk kernel (pvalue =
9.133e−05, mean = 89.04, std = 1.03). Therefore, the proposed method achieved
better performance in comparison to other trajectory segmentation methods.

A fishing activity is characterized by several ship turns. We believe that
WS-II had a better result when compared with the other algorithms because of
its capability to analyze not only a single trajectory point, but a larger region
(i.e., a larger sliding window size). By analyzing a larger region, WS-II will only
place a partitioning position when a partitioning position actually occurred (e.g.,
learned from the training data). Since a single turn is not enough to characterize
a fishing activity, WS-II’s strategy of analyzing a larger window is more robust
in learning such behavior.

In this experiment, we compare five trajectory segmentation algorithms:
CB-SMoT, SPD, GRASP-UTS, OWS with Random Walk kernel, and our pro-
posed trajectory segmentation algorithm (WS-II) on Atlantic hurricane dataset.
Figure 4.b shows that WS-II performed better than all other algorithms. A Mann
Whitney U test indicated that WS-II produces statistically significant higher
median (mean = 94.68, std = 2.23) harmonic mean for trajectory segmentation
comparing to OWS with random walk kernel (pvalue = 9.1e−05, mean = 85.67,
std = 0.59).

In this experiment, we applied all the segmentation algorithms on a sub-
set of Geolife containing ten different users. Each user’s trajectory creates
a fold and we use one fold to tune up our algorithm each time. Figure 4.c
depicts our experiment results. Moreover, a Mann Whitney U test supports the
claim that WS-II produces statistically significant higher median (mean = 92.8,
std = 2.11) harmonic mean for trajectory segmentation comparing to OWS with
random walk kernel (pvalue = 0.00065, mean = 88.94, std = 5.06).

In the Geolife dataset, there are two major types of movement: (1) fast move-
ments of buses, trains, and cars; and (2) slow movements of walk and bike, which
have a random nature. The selection of a random walk seems to be a reasonable
decision in this dataset because as long as a moving object moves slowly, the
random walk kernel seems to reproduce the random nature of the movement. On
the other hand, for the moving object that travels fast, the behavior of random
walk is similar to a linear interpolation kernel in terms of direction because the
direction variation decreases.

2 https://github.com/metemaad/WS-II.

https://github.com/metemaad/WS-II
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Fig. 4. Our proposed method outperforms CB-SMoT, SPD, GRASP-UTS, and OWS
with Random Walk kernel on Fishing, Hurricane and Geolife dataset

6 Conclusions

In this paper we presented a supervised method for trajectory segmentation
named Wise Sliding Window Segmentation (WS-II), that uses a trained model
for deciding where partitioning positions should be placed. With the majority
voting strategy the method becomes more robust to noise points and avoid-
ing unnecessary partitions. The experimental results show that WS-II achieves
better performance in terms of a harmonic mean of purity and coverage when
compared with state-of-art trajectory segmentation algorithms in three datasets
of different domains. One limitation of WS-II, which is a limitation for all learn-
ing methods, is that several domains do not have a labeled dataset where the
patterns of movement behavior change can be learned. Although there are tools
in the literature that encourage and assist the user in the process of labeling
trajectory data [14], most trajectory datasets still do not provide any type of
ground truth for validating supervised methods. As future work, we would like
test how this algorithm performs with different sample sizes for training, i.e.,
how large the labeled data needs to be to find good results.
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Abstract. Unmanned Surface Vehicles technology (USVs) is an excit-
ing topic that essentially deploys an algorithm to safely and efficiently
performs a mission. Although reinforcement learning is a well-known app-
roach to modeling such a task, instability and divergence may occur when
combining off-policy and function approximation. In this work, we used
deep reinforcement learning combining Q-learning with a neural repre-
sentation to avoid instability. Our methodology uses deep q-learning and
combines it with a rolling wave planning approach on agile methodology.
Our method contains two critical parts in order to perform missions in an
unknown environment. The first is a path planner that is responsible for
generating a potential effective path to a destination without considering
the details of the root. The latter is a decision-making module that is
responsible for short-term decisions on avoiding obstacles during the near
future steps of USV exploitation within the context of the value func-
tion. Simulations were performed using two algorithms: a basic vanilla
vessel navigator (VVN) as a baseline and an improved one for the vessel
navigator with a planner and local view (VNPLV). Experimental results
show that the proposed method enhanced the performance of VVN by
55.31% on average for long-distance missions. Our model successfully
demonstrated obstacle avoidance by means of deep reinforcement learn-
ing using planning adaptive paths in unknown environments.

Keywords: Deep reinforcement learning · Path planning · Obstacle
avoidance · Maritime autonomous surface vessels

1 Introduction

Ship collision avoidance and path planning is a fundamental research topic for
autonomous navigation. Several methods have been proposed in the literature
to this end. However, deep reinforcement learning strategies have empowered
models for automatic maneuverability of vessels [4]. Autonomous vehicles have
been developed and improved in different areas, ranging from unmanned aerial
c© Springer Nature Switzerland AG 2020
C. Goutte and X. Zhu (Eds.): Canadian AI 2020, LNAI 12109, pp. 220–231, 2020.
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(e.g., planes and drones) [8], to underwater (e.g., ships, remotely operated
underwater vehicles (ROVs), submarine gliders, and unmanned suface vessels
(USVs)) [1].

Path planning has the objective of generating a path between an initial loca-
tion and the desired destination with an optimal or near-optimal performance
under specific constraints. Avoiding obstacles in real or simulated environments
is an essential task for safely driving USVs towards a target without human
intervention [5]. For example, in marine application scenarios, it is of extreme
importance to avoid obstacles such as rocks, floaters, debris, and other ships [4].

In this paper, we develop a new method for path planning and obstacle
avoidance in marine environments by using deep reinforcement learning (DRL)
and local view strategy, namely Vessel Navigator with Planner and Local View
(VNPLV). Unlike previous method as proposed in [16], which has a single envi-
ronment with a fixed origin and destination points, we developed a methodology
that can surpass traditional global approaches in unknown environments with-
out any limitation of various origin and destination points. Basically, we improve
the performance of the model by feeding it with CNN features and reducing the
number of states using the Ramer–Douglas–Peucker algorithm. Results show
that we can further enhance our model by using the idea of rolling wave plan-
ning and that our method benefits from combining the path planner for longterm
planning and local view for short term decisions [9].

We summarize the contributions of our work as follows. Inspired by agile
methodology, we implemented the idea of rolling wave planning by using a deep
reinforcement learning model for short-term decision making and a planner for
longterm general planning. (i) We created 2D marine environments by extract-
ing information of geographical layers. (ii) We developed a deep reinforcement
learning method for agents that simulates USV movements. Agents trained by
our method are able to autonomously plan their path and avoid obstacles in a
simulated 2D marine environment. (iii) We performed extensive experiments by
means of simulations comparing our method and a baseline and propose a metric
named Rate of Arrival to Destination (RATD) to evaluate the performance of
our method.

The rest of this paper is organized as follows. Section 2 presents some related
works in the area of path planning, reinforcement learning, and deep reinforce-
ment learning. In Sect. 3, we provide definitions used across our work and detail
our four proposed methods. Section 4 demonestrates the performance of our
method in a simulated marine environment. Finally, Sect. 5 concludes the work
and also discusses future works.

2 Related Works

In recent years USVs have attracted a great deal of attention from several mar-
itime companies and research groups all over the world. There exist several
approaches developed and applied for the USVs, which are mainly divided into
path planning, obstacle avoidance, and intelligent optimization methods. We
divide this section into three subsections to which our work is related.
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Traditional Path Planning Approaches. Several research methods on colli-
sion avoidance have been developed for path planning based on A* and Artificial
Potential Field (APF). The algorithm A* is a global heuristic search strategy
that takes into account both the start position and the destination. However, the
algorithm is considered in the literature to be an inefficient search in a large grid
map. The works of [3] and [17] proposed hierarchical path planning strategies to
improve the efficiency of A*. In contrast to A* algorithm, APF employs repulsive
fields to model the environment with higher efficiency [10]. Such a strategy can
create a smoother path when it compares with A*.

Reinforcement Learning. Some articles have employed reinforcement learning
(RL) for the collision avoidance and path planning task to improve the autonomy
of the obstacle avoidance system. Reinforcement learning is a classical machine
learning method, first proposed by Sutton in 1984, and widely explored in the
’90s. It has been widely used in the artificial intelligence field. Although the
main algorithm used for path planning is Q-Learning [13], many methods in
the literature are hybrid of RL with other methods [11]. In general, the two
main drawbacks of RL approaches are the high cost of the learning process that
depends on the environment and the user condition, and the degrees of freedom
(DOF). Although the reinforcement learning algorithms have shown successful
performance in variety of domains, their applicability has been restricted to fully
observable low-dimensional state spaces domains.

Deep Reinforcement Learning. DRL is a novel topic which has been emerged
to address the challenges of using RL in complex, high dimensional problems. In
addition to the outstanding performance of Deep RL models in other domains,
they have attracted a lot of attention in ship collision avoidance topic. The work
of [4] proposed a deep reinforcement learning obstacle avoidance approach with
the deep Q-network architecture for unmanned marine vessels in unknown envi-
ronment. The authors presented a learning policy for obstacle avoidance at a safe
distance in unknown environments with 3-DOF. They used the replay buffer and
self-play trials to learn the control behaviors. Recently, [13] presented a prototype
of multiple autonomous vessels controlled by deep q-learning. Their reward func-
tion and the training process were designed with respect to the maneuverability
of the vessel, including speed, and acceleration. The incorporated navigation
rules employed the conversion to navigational limitation by polygons or lines.

It is also important to point out that there exist two kinds of analysis regard-
ing the enviroment exploration: (i) the global view, and (ii) the local view. Envi-
ronment exploration is linked to the performance of the approaches, but there
is no strict definition related to the size of the local view. The most noteworthy
approach for local view strategy is based on line-of-sight (LOS), presented by
[14]. Moreover, utilizing a local view became a best practice in some strategic
game solvers such as [15].

In this paper we present a path planning method using deep q-learning with
unknown position of dynamically generated obstacles in the environment. Our
DRL-based method is focused on a local view strategy which reduces the number
of states. Our policy is obtained using four different iterations of evolving our
proposed work evaluated in simulation experiments detailed in Sect. 3.2.
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3 A New DRL Method for Unmmaned Surface Vessels

In this section we go through the details of the proposed method. First, we define
the main concepts used to model our agent-environment approach (Sect. 3.1).
After that, we describe our proposed method for path planning and obstacle
avoidance in the maritime domain (Sect. 3.2).

3.1 Definitions

In this work, an agent is a vessel voyaging from an origin in the environment
with the objective of safely arriving at a desired destination in the environment.
The environment is a bounding box area that contains a body of water that
an agent can voyage through and variety of lands which the agent cannot travel
through. The environment has access to a layer of obstacles, such as vessels
moving in the environment. Our agent can take some actions from a set of
directions to move from its current location to its next location in a direction
for 0.001◦, which is about 100 m of distance traveled in the real world.

An origin point is the position of an agent at the first moment of the train-
ing or testing phases of our methods. This means that our agent is positioned
at the location of the origin point at the start of each experiment or training
episode. We can define an origin point, OP = (xs, ys), as a tuple where xs is the
latitude of the agent at the start of the experiment or training episode, and ys
is the longitude of the agent.

The destination point is the final geographical position that an agent
should arrive at. We define DP = (xd, yd) as a tuple where xd is the latitude of
the desired location that the agent aims to arrive at, and yd is the longitude of
that location.

We use eight discrete actions A = {N,S,E,W,NE,NW,SE, SW}, repre-
senting the directions North, South, East, West, Northeast, Northwest, South-
east, and Southwest, respectively.

In this work, we use five discrete outcomes for an action is taken by an
agent O = {hit an obstacle, hit land, arrive at target, vanish target, normal
movement}. To hit an obstacle means that the agent hits one of the vessels
moving in the environment. To hit land means the agent took a direction that
moved it to a geographic area that has land, which is not suitable for the vessel.
To arrive at target means that our agent successfully reached its destination
point. To vanish target means that the agent is farther from the target than
the distance threshold. Finally, a normal movement is an output where the
agent has not finished its mission, but there is no reason to stop the voyage.

Each action and its outcome for our agent in the environment is considered
as one step si = (ai, oi), where si ∈ S, ai ∈ A, oi ∈ O, and S is the set of all
possible steps. Therefore, each step moves our agent from a current state to a
future state.

An episode is a set of consecutive steps with a fixed origin and destination
point. In an episode, the agent voyages from the origin point with the objective
of arriving at its destination point.
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An episode ej = (OPj ,DPj , < s1, s2, ..., sn >) - where OPj is an origin
point, DPj is its destination point, < s1, s2, ..., sn > - is a sequence of steps, and
ej ∈ E, where E is the set of all possible episodes. The outcome of an episode
is the outcome of the last step of that episode, which is sn. When the outcome
of an episode is to hit an obstacle, go to land, vanish target, this is considered
to be a failed episode . If the outcome of an episode is arrive at target, this is
considered to be a successful episode . In this work, we define a maximum
number of steps for each episode because we want to encourage our agent to
arrive at its destination as fast as possible and to avoid repetitive actions. If
the number of steps in each episode exceeds this number, we call that episode a
failed episode as well.

A plan , which is defined as pk = (OPk,DPk, < e0, e1, ..., em >) where, OPk

is an origin point, DPk is its destination point, and < e1, e2, ..., em > is a set of
episodes. The destinations in each episode (e0, e1, ..., em) of a plan pk are called
intermediary goals, except for the last episode, which is the final destination
reached by a plan. If the outcome of a plan is not reached the destination, we
call that plan a failed plan . The arrive at target outcome means the agent has
(i) arrived at target and (ii) the agent is in its destination. If the outcome of a
plan is to reach the destination, we call that plan a successful plan .

We limit the knowledge our agent has about the environment so that the
agent is only able to observe within the boundary around itself. This approach
of creating a local view has been used in [15]; however, the local view of our work
is not a limitation for an agent. In this way, we force the agent to learn general
rules of movement, without memorizing the whole environment and the best
paths. Furthermore, some details in the environment, such as dynamic obstacles
that are far from an agent, can move to other locations by the time our agent
arrives there.

Having access to full information about the environment would encourages
our agent to memorize the environment. When an intermediary goal is outside
of our agent’s local view, a subset of our environment, we make an abstract

Fig. 1. Vanilla Vessel Navigator (VVN)
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Fig. 2. Vessel Navigator with planner and localview (VNPLV)

line from the agent position to its intermediary goal and find the shadow of the
intermediary goal inside the local view with some margin of freedom.

3.2 Baseline and Our Proposed Method

In Figs. 1 and 2, we summarize the baseline method and our proposed one,
respectively. In these figures, xs and ys are the origin point coordinates, xd, yd are
destination point coordinates, ai is the action suggested by the method, Q(s, a) is
the action value function that predicts the reward given to an agent if it selects an
action a in state s, ReLU is a rectified linear unit, Linear is a linear activation
function, Flatten is a flattening process that involves transforming the entire
pooled feature map matrix into a single column, and Conv is a convolutional
neural network. We detail how these methods work below.

Vanilla Vessel Navigator (VVN)
This method was implemented based on the work of [16], but we addressed the
two limitations of their algorithm for a fair comparison with our method. The
first limitation is that the model’s destination is a static point, and as a result, the
model is able to learn only routes to a single destination. The second limitation
is that using the QLearning approach with a large and dynamic environment
makes it impossible for QLearning to train.

In our implementation of the VVN method, the agent receives its origin and
destination point with freedom inside the environment.

Figure 1 shows the architecture of this method where the origin point (xs

and ys), and destination point (xd and yd) are the only inputs that feed our
model. The output of this architecture, which is the argmax of the outputs of
our neural network, determines the action of our agent. Since the objective of
this paper is not to search for the best model for this architecture, we select one
model with reasonably good results on training using a trial-and-error approach.

In the original model presented by [16], by changing the destination point,
the agent would need to be trained again. Therefore agent trained by the original



226 M. Etemad et al.

method is not able to use its knowledge from previous training. Our modification
removed this limitation so that the origin and destination points can be selected
dynamically, and such retraining limitations are not necessary. Figure 1 shows
the reactions between the agent and the environment. The agent receives two
origin and destination points, OP and DP, from the environment and the reward
that the agent gained during its last action. The neural network model estimates
the next action of the agent by updating its parameters using the reward of the
previous action.

Vessel Navigator with Planner and Local View (VNPLV)
In the first step of our proposed method (Fig. 2), we introduce a path planner
that makes a full plan from the start point to the destination without con-
sidering any dynamic obstacle in its way using the Floyd Algorithm [6]. The
Floyd algorithm has the objective of finding the shortest paths in a weighted
graph. This algorithm is computationally expensive but we only run it once for
an environment and store the calculations results. This can be seen as high-
level planning without considering the details of a plan. In the second step, we
reduce this high-level plan by removing similar intermediary goals applying the
Ramer–Douglas–Peucker algorithm [7], in our work ε = 0.001 geomtry degree.
The Ramer–Douglas–Peucker algorithm has the objective of simplifying a curve
composed of a line of segments to a similar curve with fewer points. This reduc-
tion gives our agent more flexibility in making local decisions. In the third step,
our agent decides on the details of the plan in the near future to arrive at the
shadow of its intermediary goal residing in the local view. The shadow is a point
in the direction to intermediary goal inside a definde margin of the local view.in
This work we use a margin of 3 pixcels. Our agent observes its local view and
finds an abstract destination point, which is the shadow of the nearest interme-
diate destination provided by the path planner. This first destination point is the
destination point of the first episode in this plan, which resides in the local view.
The agent starts moving towards its abstract destination point, which is residing
inside the local view. After achieving the intermediary goals (i.e., the destina-
tion point of that episode), the environment updates the destination point of the
next episode in its plan. The idea of using CNN is not a novel idea and has been
introduced in reinforcement learning by the work of [12]. Moreover, the idea of
using a local view also is introduced in [15]. To the best of our knowledge, we are
the first to use a combination of path planning and local view for implementing
the rolling wave planning approach for this problem. In Fig. 2, our agent benefits
from two planning modules. First, the path planner provides a longterm plan
without considering any dynamic obstacles on the way to arriving at the destina-
tion. Second, a DRL decision-making approach provides details for short-term
decisions actions in detail. This part is responsible for avoiding obstacles and
moving the agent safely in the near future.
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4 Experiments

In this section we describe the dataset and evaluation metrics (Sect. 4.1), the
setup for our algorithm (Sect. 4.2) and the experiments performed (Sect. 4.3).

4.1 Dataset Creation and Evaluation Metrics

We selected a region in the area of Halifax, Nova Scotia (Canada) with a
bounding box (longitude, latitude) starting from (−63.69, 44.58) and ending at
(−63.49, 44.73). We created a water and a land layer using public data on earth
elevation using the NOAA1 dataset.

Then we drew a buffer of 50 m around the land and used it as the environ-
ment. We also randomly added some moving objects to play the role of obstacles
in this simulated 2D environment. In this work, we dynamically generated the
obstacles during an episode. However, the design we have in mind for the future
is based on the assumption that these obstacles can be dynamic and can move
based on traffic patterns, such as can be extracted from Automatic Identification
System (AIS) messages.

We also defined a metric called RATD to measure the performance of a
method as follows. When we test a method, we randomly generate a set of
origin and destination points N . Such information is provided to the method
being tested as an episode or a plan.

Then we observe if the method can successfully place the agent at its destina-
tion (i.e., a successful episode or a successful plan) or not (i.e., a failed episode or
a failed plan). We count how many times a model successfully conducts the agent
to its destination and call it P . The RATD is calculated as RATD = |P |

|N | ∗ 100.

4.2 Training and Testing Setup

In our experiments, we use the reward function R(oi ∈ O) detailed in Eq. 1,
where Δd is the distance in geometry degree that an agent moved from the last
state, ψ is set at 1,000, Δod is the distance of our agent from its nearest obstacle
in geometry degree, and φ is set at 20. In Eq. 1 we deducted κ from the reward to
encourage the agent to find the nearest path, and it was set at 0.01. The values of
ψ, φ, and κ were manually tuned using a trial and error approach and the values
reported are those that provided the optimal performance for all methods.

R(x) =

⎧
⎪⎨

⎪⎩

−5, Vanish target, Obstacle collision, Land collision

+5, Arrive target

ψ ∗ Δd − φ ∗ Δod − κ, Other

(1)

In this work, we use a target network to adjust the action-values (Q) iter-
atively towards the target values as in [12]. The application of target network
application is to reduce correlations with the target. In the work of [12], a reply

1 https://coast.noaa.gov/dataviewer/.

https://coast.noaa.gov/dataviewer/
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buffer is proposed to eliminate relationships in the observation chain and to
soften fluctuations in the data distribution, and we use the same idea here.

In our training phase, a training step includes 1,000 episodes or plans ran-
domly executed to update our neural network parameters. Each of these episodes
or plans includes an undefined number of training steps. We store (i) the agent’s
state, (ii) the agent’s next state (iii) the reward, and (iv) the action, in a reply
buffer with a size of 100,000 in the same way as introduced in [12].

We retrieve 3,000 items from this reply buffer after every 100 training steps.
Every 200 training steps, the parameters of our model are copied to our target
network. These values were configured empirically by trial and error tests.

In the training phase of our models we use the idea of exploit and explore
which means the action of our agent is based on two types of learning [2]. First,
exploring the environment randomly and measure the gained rewards. Second,
exploiting the learned knowleadge by using the parameters of the trained neural
network. In this work, we assigned the weight of 0.9 for the explore part and 0.1
weight for the exploit part. The weight of explore increases during the training
so that in traing step 25,000 of our training, the weight of exploit becomes 0.9
and the weight of explore becomes 0.1. After training step 25,000, these weights
are not changed.

4.3 Result Analysis and Discussion

An experiment was conducted to answer the two following research questions.
First, what is the rate of arriving at the destination if we randomly select some
sets of origin and destination points for episodes? Second, how does this rate
change by increasing the distance between the origin and destination points?
We increased the distance between the origin and destination points using the
following distances in degrees [0.01, 0.02, 0.04, 0.08, 0.16, 0.32], which is roughly
equal to [1364.59, 2729.11, 5457.90, 13004.68, 21824.01, 43627.70] in meters.

Figure 3 shows the results of our experiment for each training step.
Therefore, each point in Fig. 3 represents the results of 100 tests while the

x-axis shows the progress on the number of training steps in a 102 scale. Between
each two points, we update the parameters of our models using 1,000 executions
of episodes or plans so that they update the parameters of our network. In this
experiment, we dynamically randomly add some vessels on the body of water to
play the role of obstacles.

The results for VVN (Fig. 3(a)) show that by increasing the distance between
the origin point and the destination point, the percentage of successful trips
decreases. In the experiment with a distance of 0.32◦ from origin to destination,
the mean of RATD decreased from 79.44% (using VNPLV) to 24.13% (using
VVN). These results show a weakness of VVN, as it is only good for near dis-
tance situations and cannot perform well in long-distance path planning. This is
because (i) the search space of the agent increases when the distance is longer,
and (ii) the probability of selecting actions from a loop of actions can increase so
that the agent can just move back and forth without arriving at its destination.
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Fig. 3. Results of training of each model for different sets of distances between the
start point and destination.

Fig. 4. Comparing the two vessel navigation methods using RATD for six category of
distances after training models for 100,000 training steps

In Fig. 3(a) the shortest distance, shown by yellow, achieved the highest RATD.
As can be seen, by increasing the distance, the VVN performance declined so
that the mean of RATD was 24.13% for a 0.32◦ distance.

Figure 3(b) shows the result for the VNPLV.
The results shows that the performance of VNPLV is improved consider-

ably, 55.31% on mean of RATD for a 0.32◦ distance, in comparison to VVN.
The proposed method is more stable and learns better to navigate our agent,
even with fewer episodes for training. This enhancement is because VNPLV is
equipped with two crucial modules to benefit from rolling wave planning. First,
the longterm planner provides a potential optimal path without considering the
details of the movement. Second, the local view makes the decisions related to
navigating the agent in the near future to avoid dynamic obstacles.

Figure 4 presents a high level comparison of all methods developed in this
work. Figure 4 shows boxplots of the RATD for the distances of 0.01, 0.02, 0.04,
0.08, 0.16, and 0.32◦. As can be seen, VNPLV has the best performance values for
all categories of distances. We used a T-test to compare the results of VVN and
VNLPV methods which supports that there is a statistically significant difference
between VVN and VNPLV p value = 0.000019. The results show that the mean
of the RATD for these two methods are statistically different, confirming that
the performance of VNPLP is higher than the VVN for this experimental setup.
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5 Conclusions and Future Works

In this work, we proposed a method to improve the performance of the RL Vessel
Navigator model using the concept of rolling wave planning in agile methodology.

Our proposed method takes advantage of two planning approaches: (1) long-
term planning using a path planner with the assumption of no obstacles to
generate a potential efficient path, and (2) a short-term decision-maker that is
the output of our reinforcement learning model to avoid dynamically generated
obstacles and to navigate the agent in the near future.

Our experiments show that the use of a local view improves the performance
of our basic model. However, its performance reduces when the distance between
the origin point and destination increases. We address this weakness using a
path planner to provide a potentially efficient path for the whole trip without
the detail of movements. This is followed by a short-term decision-maker to
navigate agents safely.

Although we applied the idea of adaptive planning from the agile methodol-
ogy for autonomous navigation, it can be applied to any other domain to increase
the agent’s performance. We intend to expand our work in various ways. We want
to connect our dynamically generated obstacles to AIS messages received from
vessels and test our agent in an unknown environment with dynamic obstacles.
In this way, we would like to change the core neural network with sequence model
networks such as a combination of RNN and CNN to have a memory of the past
agent actions. We also would like to add similar agents to the environment and
define a global task to perform it simultaneously in the environment.
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Abstract. Density-based clustering is well-known for finding clusters
that have different shapes and sizes, but they have unsatisfactory results
on adjacent clusters with different densities. In this paper, we propose a
novel algorithm that combines DBSCAN with centroid-based algorithms
to address this issue. Our algorithm uses DBSCAN to form mini-clusters,
which will be merged based on their density and center distances. We test
the new algorithm on synthetic and real datasets to show the significant
improvement in the results.

Keywords: Clustering · DBSCAN · Centroid-based · CB-DBSCAN

1 Introduction

Clustering has been one of the major tasks in the field of Data Mining that tries
to separate data points into groups or objects that share the same characteristics.
Density-based spatial clustering of applications with noise (DBSCAN) [3] was
introduced for spatial clustering problem and quickly became popular due to
its excellent performance and features. One of the requirements that DBSCAN
cannot satisfy is cluster analysis on adjacent clusters with different densities
[11]. In this paper, we introduce a novel algorithm based on both DBSCAN and
centroid-based clustering algorithms to overcome the problem of multi-density
clustering.

2 Preliminaries

2.1 DBSCAN

DBSCAN is a clustering algorithm that tries to find clusters based on the den-
sity of different regions of the data. MinPts and Eps are two parameters of
DBSCAN, and based on them, clusters are formed. Different categories of points
in DBSCAN are explained as follows [3]:
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– Core point: any point in the data that has at least MinPts in its Eps-
neighborhood.

– Border point: any point that is not a core point but is directly density
reachable from a core point.

– Noise point: any point that is neither a core point nor a border point.

DBSCAN forms clusters in a recursive way. First, it chooses a random unvis-
ited point, and if it is a core point, all of its directly density reachable points
will be visited. The same steps will be done for all other points.

2.2 Multi-density Clustering

Multi-density clustering is a cluster analysis task on data that contains clusters
with different densities, which DBSCAN does not perform well on.

The density of a cluster c is defined in Eq. (1) with N being the total number
of points in that cluster and V as the total volume it occupies. If we assume
that the density of the cluster is same over all of its volume, the density of it can
be calculated with nEps and vEps, which are respectively number of points
and volume of an Eps neighbourhood. Let us assume that b is a boundary
point which is directly density reachable from core points of both clusters C1

and C2 (C1 is the denser cluster so d1 > d2). Since the volume in any Eps
neighborhood is same, number of points decides the density. As Db , the density
around b, is between the two other densities, they will be connected and detected
as one cluster using DBSCAN.

Density(c) =
N

V
=

nEps

vEps

d1 =
n1

v1
, d2 =

n2

v2
, v1 = v2 = vb, d2 < d1

Db =
nb

vb
=

n1
2 + n2

2

vb
→ Db =

d1 + d2
2

→ d2 < Db < d1

(1)

3 Related Work

One of the main ways of improving DBSCAN that has been used is using Grid-
based partitioning for determining the densities of the grids [12]. GMDBSCAN
[12] is one of the papers that have used this concept. PACA-DBSCAN [5] is
another proposed algorithm that finds the appropriate parameters by defining a
density for each point and portioning the data into K subsets. PACA-DBSCAN
has a high time complexity, and finding the proper parameters for it can be
complicated [6].

Another algorithm that tries to solve the problem of multi-density clustering
with partitioning is kAA-DBSCAN [6]. Their algorithm builds a tree called DLT.
The algorithm splits the data into cells of the DLT tree and finds approximate
adaptive Eps, which can be used for different densities.

HDBSCAN [2] is another extension of DBSCAN. This algorithm adds hier-
archy to DBSCAN and makes flat clustering out of it. HDBSCAN needs a lot of
data for higher dimensions that might not always be available.
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Some other algorithms have attempted to solve the problem by finding the
proper parameters using mathematical computations. OPTICS [1] has two addi-
tional parameters, “reachability distance” and “core distance”. It finds a repre-
sentation of the data based on ordered points with the additional parameters it
has. OPTICS does not need global parameters for the density of the clusters.

4 CB-DBSCAN

Our proposed algorithm centroid-based DBSCAN (CB-DBSCAN) contains sev-
eral basic steps to do the cluster analysis:

– Cluster analysis with DBSCAN to extract mini-clusters.
– Merging mini-clusters based on their centroid and density distance.
– Assigning noise points to clusters based on the specified thresholds.

4.1 Mini-Clustering

Mini-clusters are small dense regions of the data that will form the final clusters.
To extract mini-clusters, we need to find the right parameters for DBSCAN.
The mini-clusters should be big enough to form the final clusters in a reasonable
amount of time, but also small enough that the algorithm’s ability to find clusters
of different shapes is preserved.

If we choose Eps and MinPts in a way that both of the clusters are split
into several smaller clusters, depending on the parameters, it might be possible
to correct the results by merging them into bigger clusters. The optimal set of
parameters is a set that breaks only the sparser cluster so that the merging
step can correct the result easily. We should avoid choosing a set of parameters
that combines the adjacent clusters because the results cannot be corrected with
merging steps.

4.2 Centroid-Based Merging

CB-DBSCAN merges the mini-clusters in two different levels and has two param-
eters that are called Cdis and Ddis. Cdis is the threshold for centroid distance
and Ddis is the threshold for density difference.

For the first step of merging the mini-clusters, we compare the centroid dis-
tances of the mini-clusters and start with the closest pair of them. If the density
difference between this pair of mini-clusters is lower than Ddis, they are going
to be added to a group. Once we have the first mini-clusters in the group, we
search and add all the mini-clusters that are close enough to one of them. By
doing so, the mini-clusters will be added to the group and then merged in a chain
way. One example of how mini-clusters are merged in the first level of merging
is shown in Fig. 1.

Later, second level of merging is done. We added this step to avoid the
separation of boundary points from their clusters due to the lower density in the
border areas. For doing so, we will merge clusters pairwise instead of merging a
group of clusters. The algorithm of CB-DBSCAN is presented in Algorithm1.
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Algorithm 1. CB-DBSCAN
Input: Data,Eps,MinPts, Cdis,Ddis
Output: FinalClusters
1: mini − clusters = DBSCAN(Data,Eps,MinPts)
2: Set all of the mini-clusters to UNV ISITED
3: FinalClusters = {}
4: while Any mini-cluster is UNV ISITED do
5: Create a new CLUSTER
6: StartMCs = closest pair in mini − clusters
7: if Distance(StartMCs) < Cdis and Density(StartMCs) < Ddis then
8: Add StartMCs to CLUSTER and set them to V ISITED
9: end if

10: for mc ∈ CLUSTER do
11: for m ∈ mini − clusters do
12: if Distance(mc,m) < Cdis and Density(mc,m) < Ddis then
13: Add m to CLUSTER and set it to V ISITED
14: end if
15: end for
16: end for
17: Add CLUSTER TO FinalClusters
18: end while
19: for I and J ∈ FinalClusters do
20: if Distance(I, J) < Cdis

2
and Density(I, J) < 3Ddis then

21: Combine I and J
22: Update FinalClusters
23: end if
24: end for
25: return FinalClusters

5 Clustering Evaluation

In order to compare our results to some other algorithms that aimed to solve the
multi-density clustering problem of DBSCAN, we have used five different labeled
datasets from two different sources [4,9], which are widely used for comparing
different clustering algorithm.

The comparison between the performance of state of the art algorithms that
have been proposed for multi-density clustering [6] and CB-DBSCAN is shown
in Table 1. CB-DBSCAN has outperformed all the other methods in almost all
of the cases with a noticeable difference in F-measure.

Furthermore, we used CB-DBSCAN for a clustering task of Twitter data.
Two hand-classified topics are clustered that have different densities [9]. In this
task, each tweet is represented by calculating the mean of all the word vectors
[7] and applying PCA [8] on them. The improvement in all of the metrics versus
DBSCAN’s results, confirms the satisfactory performance that our algorithm
achieved, Table 2.
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Fig. 1. (a) Merging mini-clusters based on density and their centroid distance to form
final clusters. (b) New clusters.

Table 1. Comparison of CB-DBSCAN and state of the art algorithms’ results on
synthetic and real datasets.

Dataset F-measure

DBSCAN CB-DBSCAN PACA-DBSCAN kAA-DBSCAN OPTICS

Flame 0.89 0.99 0.98 0.98 0.91

Seeds 0.56 0.9 0.72 0.85 0.8

Path based 0.66 0.91 0.92 0.99 0.69

Breast 0.61 0.97 0.75 0.73 0.66

Wine 0.67 0.94 0.72 0.72 0.71

Table 2. Results of CB-DBSCAN and DBSCAN on Twitter data.

Algorithm Accuracy F-measure Silhouette
coefficient

DBSCAN 0.91 0.47 0.38

CB-DBSCAN 0.98 0.65 0.51

6 Time Complexity Analysis

The time complexity of the algorithm depends on two main parts of it, mini-
clustering and merging. The worst-case time complexity of mini-clustering step
(DBSCAN) is O(n2) [10].

The merging part has two different levels. The first merging level goes over
the mini-clusters once to combine them, which means that the time complexity of
this step is linear (O(n)). The second level of merging compares the mini-clusters
pairwise, which leads to worst-case time complexity of O(n2).

The time complexity of all the steps is lower than or equal to O(n2). Hence,
the overall worst-case of CB-DBSCAN has a time complexity of O(n2).
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7 Conclusion and Future Work

In this paper, a novel algorithm was proposed for solving the issue of multi-
density clustering. CB-DBSCAN uses DBSCAN to produce mini-clusters that
are going to be merged in a chain way to form bigger clusters with different
densities. One of the future improvements that can be done for CB-DBSCAN is
automating the process of choosing the proper parameters for the DBSCAN to
produce the mini-clusters.
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Abstract. We propose a novel approach to anomaly detection called
Curvature Anomaly Detection (CAD) and Kernel CAD based on the
idea of polyhedron curvature. Using the nearest neighbors for a point,
we consider every data point as the vertex of a polyhedron where the
more anomalous point has more curvature. We also propose inverse CAD
(iCAD) and Kernel iCAD for instance ranking and prototype selection
by looking at CAD from an opposite perspective. We define the con-
cept of anomaly landscape and anomaly path and we demonstrate an
application for it which is image denoising. The proposed methods are
straightforward and easy to implement. Our experiments on different
benchmarks show that the proposed methods are effective for anomaly
detection and prototype selection.

Keywords: Anomaly detection · Prototype selection · Polyhedron
curvature · Curvature Anomaly Detection (CAD)

1 Introduction

Anomaly detection, instance ranking, and prototype selection are important
tasks in data mining. Anomaly detection refers to finding outliers or anoma-
lies which differ significantly from the normal data points [1]. There exist many
applications for anomaly detection such as fraud detection, intrusion detection,
medical diagnosis, and damage detection [2].

Ranking data points (instances) according to their importance can be useful
for better representation of data, omitting the dummy or noisy points, better
discrimination of classes in classification tasks, etc. [3]. Prototype selection is
referred to finding the best data points in terms of representation of data, dis-
crimination of classes, information of points, etc. [4]. It can also be useful for
better storage and processing time efficiency. Prototype selection can be done
either using ranking the points and then discarding the less important points or
by merely retaining a portion of data and discarding the others.

In this paper, we propose Curvature Anomaly Detection (CAD) and inverse
CAD (iCAD) for anomaly detection and prototype selection, respectively. We
also propose their kernel versions which are Kernel CAD (K-CAD) and Kernel
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iCAD (K-iCAD). The idea of proposed algorithms is based on polyhedron curva-
ture where every point is imagined to be the vertex of a hypothetical polyhedron
defined by its neighbors. We also define anomaly landscape and anomaly path
which can have different applications such as image denoising. In the follow-
ing, we mention the related work for anomaly detection and prototype selection.
Then, we explain the background for polyhedron curvature. Afterwards, the pro-
posed CAD, K-CAD, iCAD, and K-iCAD are explained. Finally, the experiments
are reported.

Anomaly Detection: Local Outlier Factor (LOF) [5] is one of the important
anomaly detection algorithms. It defines a measure for local density of every
data point according to its neighbors. It compares the local density of every
point with its neighbors and find the anomalies. One-class SVM [6] is another
method which estimates a function which is positive on the regions of data with
high density and negative elsewhere. Therefore, the points with negative values
of that function are considered as anomalies. If the data are assumed to have
Gaussian distribution as the most common distribution, Elliptic Envelope (EE)
can be fitted to data [7] and the points having low probability in the fitted
envelope are considered to be anomaly. Isolation forest [8] is an isolation-based
anomaly detection method [9] which isolates the anomalies using an ensemble
approach. The ensemble includes isolation trees where the more depth of tree
for isolating a point is a measure of its normality.

Prototype Selection: Prototype selection [4] is also referred to as instance
ranking and numerosity reduction. Edited Nearest Neighbor (ENN) [10] is one
of the oldest prototype selection method which removes the points having most
of its neighbors from another class. Decremental Reduction Optimization Pro-
cedure 3 (DROP3) [11] has the opposite perspective and removes a point if
its removal improves the k-Nearest Neighbor (k-NN) classification accuracy.
Stratified Ordered Selection (SOS) [12] starts with boundary points and then
recursively finds the median points noticing that boundary and median points
are informative. Shell Extraction (SE) [13] introduces a reduction sphere and
removes the points falling in this hyper-sphere in order to approximate the sup-
port vectors. Principal Sample Analysis (PSA) [3], which is extended for regres-
sion and clustering tasks in [14], considers the scatter of data as well as the
regression of prototypes for better representation. Instance Ranking by Matrix
Decomposition (IRMD) [15] decomposes the matrix of data and makes use of
the bases of decomposition. The more similar points to the bases are considered
to be more important.

2 Background on Polyhedron Curvature

A polytope is a geometrical object in R
d whose faces are planar. The special

cases of polytope in R
2 and R

3 are called polygon and polyhedron, respectively.
Some examples for polyhedron are cube, tetrahedron, octahedron, icosahedron,
and dodecahedron with four, eight, and twenty triangular faces, and twelve flat
faces, respectively [16]. Consider a polygon where τj and μj are the interior and
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Fig. 1. (a) Polyhedron vertex, unit sphere, and the opposite cone, (b) large and small
curvature, (c) a point and its neighbors normalized on a unit hyper-sphere around it.

exterior angles at the j-th vertex; we have τj+μj = π. A similar analysis holds in
R

3 for Fig. 1-a. In this figure, a vertex of a polyhedron and its opposite cone are
shown where the opposite cone is defined to have perpendicular faces to the faces
of the polyhedron at the vertex. The intersection of a unit sphere centered at the
vertex and the opposite cone is shown in the figure. This intersection is a geodesic
on the unit sphere. According to Thomas Harriot’s theorem proposed in 1603
[17], if this geodesic on the unit sphere is a triangle, its area is μ1+μ2+μ3−π =
2π− (τ1 +τ2 +τ3). The generalization of this theorem from a geodesic triangular
polygon (3-gon) to an k-gon is μ1 + · · · + μk − kπ + 2π = 2π − ∑k

a=1 τa [17],
where the polyhedron has k faces meeting at the vertex.

The Descartes’s angular defect at a vertex x of a polyhedron is [18]: D(x) :=
2π − ∑k

a=1 τa. The total defect of a polyhedron is defined as the summation of
the defects over the vertices. It can be shown that the total defect of a polyhe-
dron with v vertices, e edges, and f faces is: D :=

∑v
i=1 D(xi) = 2π(v − e + f).

The term v − e + f is Euler-Poincaré characteristic of the polyhedron [19,20];
therefore, the total defect of a polyhedron is equal to its Euler-Poincaré charac-
teristic. According to Fig. 1-b, the smaller τ angles result in sharper corner of
the polyhedron. Therefore, we can consider the angular defect as the curvature
of the vertex.

3 Anomaly Detection

3.1 Curvature Anomaly Detection

The main idea of the Curvature Anomaly Detection (CAD) method is as follows.
Every data point is considered to be the vertex of a hypothetical polyhedron
(see Fig. 1-a). For every point, we find its k-Nearest Neighbors (k-NN). The k
neighbors of the point (vertex) form the k faces of a polyhedron meeting at that
vertex. Then, the more curvature that point (vertex) has, the more anomalous it
is because it is far away (different) from its neighbors. Therefore, anomaly score
sA is proportional to the curvature.
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Since, according to the equation of angular effect, the curvature is propor-
tional to minus the summation of angles, we can consider the anomaly score to
be inversely proportional to the summation of angles. Without loss of generality,
we assume the angles to be in range [0, π] (otherwise, we take the smaller angle).
The less the angles between two edges of the polyhedron, the more their cosine.
As the anomaly score is inversely proportional to the angles, we can use cosine
for the anomaly score: sA(xi) ∝ 1/τa ∝ cos(τa). We define the anomaly score
to be the summation of cosine of the angles of the polyhedron faces meeting at
that point: sA(xi) :=

∑k
a=1 cos(τa) =

∑k
a=1(x̆

�
a x̆a+1)/(||x̆a||2||x̆a+1||2) where

x̆a := xa − xi is the a-th edge of the polyhedron passing through the vertex xi,
xa is the a-th neighbor of xi, and x̆a+1 denotes the next edge sharing the same
polyhedron face with x̆a where x̆k+1 = x̆1.

Note that finding the pairs of edges which belong to the same face is difficult
and time-consuming so we relax this calculation to the summation of the cosine
of angles between all pairs of edges meeting at the vertex xi:

sA(xi) :=
k−1∑

a=1

k∑

b=a+1

x̆�
a x̆b

||x̆a||2||x̆b||2 , (1)

where x̆a := xa − xi, x̆b := xb − xi, and xa and xb denote the a-th and b-
th neighbor of xi. In Eq. (1), we have omitted the redundant angles because
of symmetry of inner product. Note that the Eq. (1) implies that we normalize
the k neighbors of xi to fall on the unit hyper-sphere centered at xi and then
compute their cosine similarities (see Fig. 1-c).

The mentioned relaxation is valid for the following reason. Take two edges
meeting at the vertex xi. If the two edges belong to the same polyhedron
face, the relaxation is exact. Consider the case where the two edges do not
belong to the same face. These two edges are connected with a set of poly-
hedron faces. If we tweak one of the two edges to increase/decrease the angle
between them, the angle of that edge with its neighbor edge on the same face
also increases/decreases. Therefore, the changes in the additional angles of relax-
ation are consistent with the changes of the angles between the edges sharing
the same faces.

After scoring the data points, we can sort the points and find a suitable
threshold visually using a scree plot of the scores. However, in order to find
anomalies automatically, we apply K-means clustering, with two clusters, to the
scores. The cluster with the larger mean is the cluster of anomalies because the
higher the score, the more anomalous the point.

For finding anomalies for out-of-sample data, we find k-NN for the out-of-
sample point where the neighbors are from the training points. Then, we calcu-
late the anomaly score using Eq. (1). The K-means cluster whose mean is closer
to the calculated score determines whether the point is normal or anomaly. It is
noteworthy that one can see anomaly detection for out-of-sample data as novelty
detection [21].
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3.2 Kernel Curvature Anomaly Detection

The pattern of normal and anomalous data might not be linear. Therefore, we
propose Kernel CAD (K-CAD) to work on data in the feature space. In K-CAD,
the two stages of finding k-NN and calculating the anomaly score are performed
in the feature space. Let φ : X → H be the pulling function mapping the data
x ∈ X to the feature space H. In other words, x �→ φ(x). Let t denote the dimen-
sionality of the feature space, i.e., φ(x) ∈ R

t while x ∈ R
d. Note that we usually

have t � d. The kernel over two vectors x1 and x2 is the inner product of their
pulled data [22]: R � k(x1,x2) := φ(x1)�φ(x2). The Euclidean distance in the
feature space is [23]: ||φ(xi) − φ(xj)||2 =

√
k(xi,xi) − 2k(xi,xj) + k(xj ,xj).

Using this distance, we find the k-NN of the dataset in the feature space.
After finding k-NN in the feature space, we calculate the score in the feature

space. We pull the vectors x̆a and x̆b to the feature space so x̆�
a x̆b is changed

to k(x̆a, x̆b) = φ(x̆a)�φ(x̆b). Let Ki ∈ R
k×k denote the kernel of neighbors of

xi whose (a, b)-th element is k(x̆a, x̆b). The vectors in Eq. (1) are normalized.
In the feature space, this is equivalent to normalizing the kernel k(x̆a, x̆b) :=
k(x̆a, x̆b)/

√
k(x̆a, x̆a) k(x̆b, x̆b) [24]. If K ′

i denotes the normalized kernel Ki,
the anomaly score in the feature space is:

sA(xi) :=
k−1∑

a=1

k∑

b=a+1

K ′
i(a, b), (2)

where K ′
i(a, b) is the (a, b)-th element of the kernel. The K-means clustering and

out-of-sample anomaly detection are similarly performed as in CAD.
Our observations in experiments showed that the anomaly score in K-CAD is

ranked inversely for some kernels such as Radial Basis Function (RBF), Lapla-
cian, and polynomial (different degrees) in various datasets. In other words, for
example, in K-CAD with linear (i.e., CAD), cosine, and sigmoid kernels, the
more anomalous points have greater score but in K-CAD with RBF, Laplacian,
and polynomial kernels, the smaller score is assigned to the more anomalous
points. We conjecture that the reason lies in the characteristics of the kernels.
We defer more investigations for the reason as a future work. In conclusion, for
the mentioned kernels, we should either multiply the scores by −1 or take the
K-means cluster with smaller mean as the anomaly cluster.

3.3 Anomaly Landscape and Anomaly Paths

We define anomaly landscape to be the landscape in the input space whose value
at every point xi in the space is the anomaly score computed by Eq. (1) or (2).
The point xi in the space can be either the training or out-of-sample point but
the k-NN is obtained from the training data. We can have two types of anomaly
landscape where all the training data points or merely the non-anomaly training
points are used for k-NN. In the latter type, the training phase of CAD or
K-CAD are performed before calculating the anomaly landscape for the whole
input space.
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We also define the anomaly path as the path that an anomalous point has tra-
versed from its not-known-yet normal version to become anomalous. Conversely,
it is the path that an anomalous point should traverse to become normal. In
other words, an anomaly path can be used to make a normal sample anomalous
or vice-versa. At every point on the path, we calculate the k-NN again because
the neighbors may change slightly during the path. For anomaly path, we use
the second type of anomaly landscape where the path is like going up/down the
mountains in this landscape. For finding the anomaly path for every anomaly
point, we use gradient descent where the gradient of the Eq. (1) is used:

∂sA(xi)
∂xi

=
k−1∑

a=1

k∑

b=a+1

[
1

||x̆a||2||x̆b||2
[
− (x̆a + x̆b) + x̆�

a x̆b

( x̆a

||x̆a||22
+

x̆b

||x̆b||22
)]

]

,

(3)
whose derivation is eliminated for brevity (will be submitted to arXiv). The
anomaly path can be computed in CAD and not K-CAD because the gradient
in K-CAD cannot be computed analytically. The anomaly path can have many
applications one of which is image denoising as explained in our experiments.

4 Prototype Selection

4.1 Inverse Curvature Anomaly Detection

If the anomaly detection uses scores, we can see instance ranking and numeros-
ity reduction in the opposite perspective of anomaly detection. Therefore, the
ranking scores can be considered as the anomaly scores multiplied by −1:
sR(xi) := −1 × sA(xi) = −∑k−1

a=1

∑k
b=a+1(x̆

�
a x̆b)/(||x̆a||2||x̆b||2). We sort the

ranking scores in descending order. The data point with larger ranking score is
more important. As the order of ranking scores is inverse of the order of anomaly
scores, we name this method as inverse CAD (iCAD).

Prototype selection can be performed in two approaches: (I) the data points
are sorted and a portion of the points having the best ranks is retained, or (II)
a portion of data points is retained as prototypes and the rest of points are
discarded. Some examples of the fist approach is IRMD, PSA, SOS, and SE.
DROP3 and ENN are examples for the second approach. The iCAD can be used
for both approaches. The first approach is ranking the points with the ranking
score. For the second approach, we apply K-means clustering, with two clusters,
to the ranking scores and take the points of the cluster with larger mean.

4.2 Kernel Inverse Curvature Anomaly Detection

We can perform iCAD in the feature space to have Kernel iCAD (K-iCAD).
The ranking score is again the anomaly score multiplied by −1 to reverse the
ranks of scores: sR(xi) := −1 × sA(xi) = −∑k−1

a=1

∑k
b=a+1 K ′

i(a, b). Again, we
have two approaches where the points are ranked or K-means is applied on the
scores. Note that for what was mentioned before, we do not multiply by −1 for
some kernels including RBF, Laplacian, and polynomial. Note that iCAD and
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K-iCAD are task agnostic and can be used for data reduction in classification,
regression, and clustering. For classification, we apply the method for every class
while in regression and clustering, the method is applied on the entire data.

5 Experiments

5.1 Experiments for Anomaly Detection

Synthetic Datasets: We examined CAD and iCAD on three two-dimensional
synthetic datasets, i.e., two moons and two homogeneous and heterogeneous clus-
ters. Figure 2 shows the results for CAD and K-CAD with RBF and polynomial
(degree three) kernels. As expected, the abnormal and core points are correctly
detected as anomalous and normal points, respectively. The boundary points
are detected as anomaly in CAD while they are correctly recognized as normal
points in K-CAD. In heterogeneous clusters data, the larger cluster is correctly
detected as normal in CAD but not in K-CAD; however, if the threshold is man-
ually changed (rather than by K-means) in K-CAD, the larger cluster will also
be correctly recognized. As seen in this figure, the scores are reverse in EBF and
polynomial kernels which is consistent to our previous note in the paper. We also
show the anomaly landscape and anomaly paths for CAD in Fig. 2. The K-CAD
does not have anomaly paths as mentioned before. The landscapes in this figure
are of the second type and the paths are shown by red traces which simulates
climbing down the mountains in the landscape.

Real Datasets: We did experiments on several real datasets of anomaly detec-
tion. The datasets, which are taken from [25], are speech, opt. digits, arrhythmia,
wine, and musk with 1.65%, 3%, 15%, 7.7%, and 3.2% portions of anomalies,
respectively. The sample size of these datasets are 3686, 5216, 452, 129, and 3062
and their dimensionality are 400, 64, 274, 13, and 166, respectively. We compared
CAD and K-CAD with RBF and polynomial (degree 3) kernels to Isolation for-
est, LOF, one-class SVM (RBF kernel), and EE. We used k = 10 in LOF, CAD,
and K-CAD. The average area under the ROC curve (AUC) and the average
time for both training and test phases over 10-fold Cross Validation (CV) are
reported in Table 1. For wine data, because of small sample size, we used 2-fold
CV. The system running the methods was Intel Core i7, 3.60 GHz, with 32 GB
RAM. In most cases, K-CAD has better performance than CAD; although CAD
is useful and effective as we will see for anomaly path and also instance rank-
ing. For speech and optdigits datasets, RBF kernel has better performance than
polynomial and for other datasets, polynomial kernel is better. Mostly, K-CAD
is faster in both training and test phases because K-CAD uses kernel matrix and
normalizing the matrix rather than element-wise cosines in CAD. In speech and
optdigits datasets, we outperform all the baseline methods in both training and
test AUC rates. In arrhythmia data, K-CAD with polynomial kernel has better
results than isolation forest. For wine dataset, K-CAD with polynomial kernel
is better than isolation forest, SVM, and EE. In musk data, K-CAD with both
RBF and polynomial kernels is better than isolation forest and SVM.
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For experimenting the effect of k in CAD and K-CAD, we report the results
of k ∈ {3, 10, 20} for arrhythmia dataset in Table 2. For CAD, where the cosine
is done element-wise, time increases by k as expected. Overall, the accuracy,
especially the training AUC, increases in CAD by k. K-CAD is more robust to
change of k in terms of accuracy and time.

Fig. 2. Anomaly detection, anomaly scores, anomaly landscape, and anomaly paths
for synthetic datasets. In the gray and white plots, the gray and white colors show the
regions determined as normal and anomaly, respectively. The gray-scale plots are the
anomaly scores.

An Application; Image Denoising: One of the applications for anomaly path
is image denoising where several similar reference images exist; for example, in
video where neighbor frames exist. For experiment, we used the first 100 frames
of Frey face dataset. We selected one of the frames and applied different types of
noises, i.e., Gaussian noise, Gaussian blurring, salt & pepper impulse noise, and
JPEG blocking to it all with the same mean squared errors (MSE = 625). For
a more difficult experiment, we removed the non-distorted frame from dataset.
Figure 3 shows the iterations of denoising for different noise types where k = 3
is used.
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Fig. 3. Image denoising using anomaly paths: the most left image is the original image
and the first to fourth rows are for Gaussian noise, Gaussian blurring, salt & pepper
impulse noise, and JPEG blocking. The numbers are the iteration indices.

5.2 Experiments for Prototype Selection

Synthetic Datasets: The performances of iCAD and K-iCAD with RBF and
polynomial (degree 3) kernels are illustrated in Fig. 4 for the three synthetic
datasets where the larger markers show the more important points. We can see
that the points are ranked as expected.

Real Datasets: We performed experiments on several real datasets, i.e., pima,
image segment, Facebook metrics, and iris datasets, from the UCI machine learn-

Fig. 4. Instance ranking for syn-
thetic datasets where larger mark-
ers are for more important data
points. The first to third columns
correspond to iCAD, K-iCAD with
RBF kernel, and K-iCAD with
polynomial kernel, respectively.

Table 2. Comparison of CAD and K-CAD perfor-
mance on arrhythmia dataset for different k values.

CAD K-CAD (rbf) K-CAD (poly)

k = 3 Train Time 0.55 ± 0.00 3.25 ± 0.15 3.06 ± 0.16

AUC 37.01 ± 1.00 49.83 ± 0.63 63.61 ± 1.36

Test Time 1.12 ± 0.02 0.37 ± 0.01 0.35 ± 0.01

AUC 45.51 ± 6.21 49.32 ± 1.69 61.67 ± 10.18

k = 10 Train Time 4.76 ± 0.02 2.75 ± 0.06 2.53 ± 0.03

AUC 52.89 ± 0.96 48.87 ± 0.51 73.92 ± 1.12

Test Time 1.59 ± 0.01 0.30 ± 0.01 0.28 ± 00.00

AUC 48.02 ± 9.06 48.56 ± 5.38 71.88 ± 9.23

k = 20 Train Time 16.56 ± 0.07 3.41 ± 0.13 3.24 ± 0.24

AUC 56.87 ± 1.02 49.33 ± 0.91 76.83 ± 1.07

Test Time 2.88 ± 0.01 0.39 ± 0.01 0.36 ± 0.01

AUC 47.90 ± 9.18 49.27 ± 7.06 74.88 ± 8.47
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ing repository. The first two datasets are used for classification, the third for
regression, and the last one for clustering. The sample size of datasets are 768,
2310, 500, and 150, and their dimensionality are 8, 19, 19, and 4, respectively.
The number of classes/clusters in pima, image segment, and iris are 2, 7, and
3, respectively. We used 1-Nearest Neighbor (1-NN), Linear Discriminant Anal-
ysis (LDA), SVM, Linear Regression (LR), Random Forest (RF), Multi-Layer
Perceptron (MLP) with two hidden layers, K-means and Birch clustering meth-
ods in experiments. Table 3 reports the average accuracy and time over 10-fold
CV and comparison to IRMD (with QR decomposition), PSA, SOS, Sorted by
Distance from Mean (SDM), ENN, DROP3, and No Reduction (NR).

The iCAD and K-iCAD are reported in both rank-based and retaining-based
versions of prototype selection. For pima and image segment datasets, iCAD
and K-iCAD are both performing equally well but in other datasets, K-iCAD
is mostly better. In terms of time, we outperform PSA and DROP3. In pima,
we outperform all other baselines. In image segment, we are better than IRMD,
SE, and SDM. In facebook data, we are mostly better than SOS, SE, and SDM,
and in some cases better than PSA. In iris data, we outperform all the baselines.
In some cases, we even outperform using the entire data. In retaining-based
iCAD and K-iCAD, mostly, K-iCAD with RBF kernel retains the least, then
K-iCAD with polynomial kernel, and then CAD.

6 Conclusion and Future Direction

This paper proposed a new method for anomaly detection, named CAD, and
its kernel version. The main idea was to consider every point as a vertex of a
polyhedron with the help of its neighbors and measure its curvature. Moreover,
with an opposite view to CA, iCAD and K-iCAD were proposed for prototype
selection. Different experiments as well as an application in image denoising were
also reported. As a possible future work, we will try the idea of curvature for
manifold embedding to propose a curvature preserving embedding method.

References

1. Emmott, A.F., Das, S., Dietterich, T., Fern, A., Wong, W.K.: Systematic construc-
tion of anomaly detection benchmarks from real data. In: Proceedings of the ACM
SIGKDD Workshop on Outlier Detection and Description, pp. 16–21. ACM (2013)

2. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Com-
put. Surv. (CSUR) 41(3), 15 (2009)

3. Ghojogh, B., Crowley, M.: Principal sample analysis for data reduction. In: 2018
IEEE International Conference on Big Knowledge (ICBK), pp. 350–357. IEEE
(2018)

4. Garcia, S., Derrac, J., Cano, J.R., Herrera, F.: Prototype selection for nearest
neighbor classification: taxonomy and empirical study. IEEE Trans. Pattern Anal.
Mach. Intell. 34(3), 417–435 (2012)

5. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based
local outliers. In: ACM SIGMOD Record, vol. 29, pp. 93–104 (2000)



250 B. Ghojogh et al.

6. Schölkopf, B., Williamson, R.C., Smola, A.J., Shawe-Taylor, J., Platt, J.C.: Sup-
port vector method for novelty detection. In: Advances in Neural Information Pro-
cessing Systems, pp. 582–588 (2000)

7. Rousseeuw, P.J., Driessen, K.V.: A fast algorithm for the minimum covariance
determinant estimator. Technometrics 41(3), 212–223 (1999)

8. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE Interna-
tional Conference on Data Mining, pp. 413–422. IEEE (2008)

9. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation-based anomaly detection. ACM Trans.
Knowl. Discov. Data (TKDD) 6(1), 3.1–3.39 (2012)

10. Wilson, D.L.: Asymptotic properties of nearest neighbor rules using edited data.
IEEE Trans. Syst. Man Cybern. SMC-2(3), 408–421 (1972)

11. Wilson, D.R., Martinez, T.R.: Reduction techniques for instance-based learn-
ing algorithms. Mach. Learn. 38(3), 257–286 (2000). https://doi.org/10.1023/A:
1007626913721

12. Kalegele, K., Takahashi, H., Sveholm, J., Sasai, K., Kitagata, G., Kinoshita, T.:
On-demand data numerosity reduction for learning artifacts. In: 2012 IEEE 26th
International Conference on Advanced Information Networking and Applications
(AINA), pp. 152–159. IEEE (2012)

13. Liu, C., Wang, W., Wang, M., Lv, F., Konan, M.: An efficient instance selection
algorithm to reconstruct training set for support vector machine. Knowl. Based
Syst. 116, 58–73 (2017)

14. Ghojogh, B.: Principal sample analysis for data ranking. In: Meurs, M.-J., Rudzicz,
F. (eds.) Canadian AI 2019. LNCS (LNAI), vol. 11489, pp. 579–583. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-18305-9 62

15. Ghojogh, B., Crowley, M.: Instance ranking and numerosity reduction using matrix
decomposition and subspace learning. In: Meurs, M.-J., Rudzicz, F. (eds.) Cana-
dian AI 2019. LNCS (LNAI), vol. 11489, pp. 160–172. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-18305-9 13

16. Coxeter, H.S.M.: Regular Polytopes. Courier Corporation, North Chelmsford
(1973)

17. Markvorsen, S.: Curvature and shape. In: Yugoslav Geometrical Seminar, Fall
School of Differential Geometry, Yugoslavia, pp. 55–75 (1996)

18. Descartes, R.: Progymnasmata de solidorum elementis. Oeuvres de Descartes X,
pp. 265–276 (1890)

19. Richeson, D.S.: Euler’s Gem: The Polyhedron Formula and the Birth of Topology,
vol. 64. Princeton University Press, Princeton (2019)

20. Hilton, P., Pedersen, J.: Descartes, Euler, Poincare, Polya and polyhedra. Séminaire
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Abstract. AI systems that offer social services, such as healthcare ser-
vices for patients, driving for travellers and war services for the military
need to abide by ethical and professional principles and codes that apply
for the services being offered. We propose to adopt Requirements Engi-
neering (RE) techniques developed over decades for software systems
in order to elicit and analyze ethical requirements to derive functional
and quality requirements that together make the system-to-be compliant
with ethical principles and codes. We illustrate our proposal by sketching
the process of requirements elicitation and analysis for driverless cars.

Keywords: Requirements Engineering · Ethical requirements · AI
systems

1 Introduction

The advent of Artificial Intelligence (AI) technologies, including machine learn-
ing, computer vision and natural language processing, has made it possible to
build autonomous cyber-physical systems (CPSs), systems consisting of soft-
ware and physical components, for example robots. Some CPSs being developed,
including driverless cars and autonomous weapons, have raised ethical questions
and even calls for their banning altogether [2]. Since AI is often built to stand
in situations where human decision-making would otherwise be required, a big
aspect one takes into account in decision-making processes is one’s own ethics.
Thus, systems should likewise be built based on ethical principles. But ethical
questions about CPSs that socially interact with humans are not limited to AI
systems and apply to all CPSs, including car cruise control systems, drones and
photo cameras. It seems that the publicity surrounding AI systems has focused
the limelight on a neglected dark corner of Software Engineering (SE): Ethical
Requirements.
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Requirements Engineering (RE) is the area of research within SE concerned
with the elicitation and analysis of requirements for a system-to-be (for our
purposes, an AI system). Requirements are elicited from stakeholders: persons,
groups, or organizations that are actively involved in the design of the system-
to-be, may be affected by its outcomes, or can influence its outcomes. Analysis of
stakeholder requirements leads to a specification for the system-to-be, consisting
of functional and quality constraints the system-to-be must satisfy in order to
meet the needs of its stakeholders.

Ethical requirements are requirements for AI systems derived from ethical
principles or ethical codes (norms). They are akin to Legal Requirements [8], i.e.,
requirements derived from laws and regulations1. We are interested in character-
izing the sources of ethical requirements, ethical principles and ethical codes, also
sketching a systematic process for deriving requirements from such sources. The
AI systems built on the basis of our proposal are not ethical agents who can rea-
son and act on the basis of ethical principles. Rather, they are software systems
that have the functionality and qualities to meet ethical requirements, in addition
to other requirements they are meant to fulfill. We illustrate our initial proposal
with a case study involving a driverless car. The main thesis of this paper is that
techniques developed in RE that have been practiced for decades can also be used
for making AI systems compliant with ethical principles and codes.

Defining ethical requirements allows ethical issues to be considered from the
beginning in the CPSs development process. Hence, first of all, developers and
stakeholders (e.g. those paying for the development of the system or the actual
users of the system) shall include these issues during requirements elicitation,
aiming at achieving a consensual agreement in their regard. Moreover, during
requirements validation activities, i.e., when it is time to evaluate if each require-
ment is met by the system, a focus on ethical aspects is assured.

The remainder of the paper is structured as follows. Section 2 introduces eth-
ical principles and codes, while Sect. 3 sketches a systematic process for identify-
ing ethical requirements. By leveraging on this process, Sect. 4 briefly discusses
the case of driverless cars, discussing their compliance to ethical considerations.
Section 5 discusses related work, and Sect. 6 presents some final considerations.

2 Ethical Principles and Codes

Ethical principles are general principles of conduct towards others. For example,
TheEuropeanCommission’s draft ethical guidelines for trustworthyAI [5] lists five
such principles: Autonomy (respect for human dignity), Beneficience (doing good
to others), Nonmaleficence (doing no harm to others), Justice (treating others
fairly), Explicability (behaving transparently towards others). For example, from
the Principle of Autonomy one may derive “Respect for a person’s privacy”, and
from that an ethical requirement “Take a photo of someone only after her consent”

1 But note, there are ethical requirements that are not legal, and legal ones that are not
ethical.
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for a phone camera. As another example, from Nonmaleficence, we may derive a
functional requirement “Do not drive fast past a bystander” for a driverless car.

Ethical principles are generally domain-independent and rather abstract, so
they require some analysis to fit them to a particular domain so as to derive
ethical requirements. Ethical codes specialize ethical principles into particular
domains, such as codes of conduct for employees of an organization, and codes
of professional conduct for members of a professional society. The medical pro-
fession has adopted elaborate rules for an ethical code of practicing doctors, and
so have research organizations for the conduct of research. There are codes of
conduct for the military, by national jurisdiction, and numerous ethical codes
for drivers in regional or municipal jurisdictions depending on driver responsi-
bilities (such as taxi/track/school bus driving). Notably, Germany is the first
country to adopt an ethical code for driverless cars [10]. Finally, and perhaps
most importantly for autonomous weapons, there are international conventions
for the conduct of war, the use of weapons, the treatment of civilians and pris-
oners, etc.

3 Deriving Ethical Requirements

The key concept to deriving ethical requirements is that of Runtime Stakeholders.
These include those stakeholders that are using, affected by, or influencing the
outcomes of a system as it is operating. Traditional RE often limits runtime
stakeholders to just users of the system-to-be. However, for AI systems this
needs to be extended to other parties. For example, for a driverless car, runtime
stakeholders include passengers – i.e., the users of the car – but also pedestrians,
whose path may cross that of the car and shouldn’t be hit; bystanders, who
shouldn’t be scared or splashed as the car drives by; nearby drivers, who as a
courtesy, should be allowed to cut in front in the car’s lane; and fellow drivers
in general, who might benefit from information about an accident that just
happened in the vicinity of the car.

Runtime stakeholders are often ignored in classical RE as they are perceived
to lack a concrete “stake” in the system-to-be. But the intrusion of AI systems in
social settings is dictating a shift in the theory and practice of RE to include also
these somehow indirect stakeholders into the RE process. Considerations such
as the examples given above may seem trivial in the dawn of a new technological
era. But they aren’t! Think of ten thousand driverless cars added to a local
setting, say Ottawa (population approximately 1,000,000), who are aggressive
and inconsiderate in their driving in the sense that they don’t fulfill simple ethical
requirements, such as the above. Wouldn’t this constitute an act of maleficience
towards local drivers and pedestrians alike? Manufacturers of driverless cars
should produce cars that can do more than meet legal, safety, security and other
requirements: the cars they produce must be good drivers. And what constitutes
good driving is defined in terms of ethical requirements, to be derived from
ethical principles and codes.

We could categorize Ethical Requirements for an artificial system as types
of Ecological Requirements, in the sense that they are necessarily requirements
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that are derived from the whole ecosystem in which the system is included. From
an ontological perspective, there is a fundamental reason why this is the case,
namely, given that these requirements are derived from assessments of value and
risk. In a nutshell, value can be seen as a relational property, emerging from
a set of relations between the intrinsic properties of a value object (or a value
experience) and the goals of a Value Subject [9]. Roughly speaking, the value of
an object (or experience) amounts to the degree to which the properties (affor-
dances) of that object positively contribute (help, make) to the achievement of
the value subject goals. Mutatis Mutandis, risk can also be seen as a relational
property, emerging from a set of relations between the intrinsic properties of
an Object-at-Risk (vulnerabilities), as well as Threat Objects and Risk Enablers
(capacities, intentions) and the goals of a Risk Subject [9]2. Again, roughly speak-
ing, the risk of an object-at-risk given threat objects and risk enablers amounts to
the degree to which the properties of those entities can be enacted to negatively
contribute to denting (hurt, break) the risk subject goals. Now, ontologically
speaking, affordances, vulnerabilities, capacities, intentions are all types of dis-
positions, which are themselves ecological properties, i.e., those that essentially
depend on their environment (context) for their manifestation [9].

For example, given that we (as a society) value life, we would of course
like to reduce as much as possible the risk of serious accidents with threats to
human life (humans being the object at risk). For this, we must both consider
the vulnerabilities of cars and their passengers, as well as the possible threats
posed by other entities (e.g., other cars, road conditions). We must also endow
driveless cars with a number of security features, but we must also do that for
the entire platform in which driveless cars operate, including the consideration
of features for roads, coordination points (the digital equivalent of traffic lights
and road signs).

Given a set of runtime stakeholder types with their associated value and risk
assessments, the next step is to introduce functional requirements that ensure
that the car-to-be can actually recognize with adequate accuracy when it encoun-
ters instances of each type, under different weather and lighting conditions. In
addition, we need functional requirements for recognizing notable events in the
traffic environment of a car, such as accidents, slow/fast/very fast moving vehi-
cles. Reports from different driverless car projects suggest that this is a step
that has been recognized and adopted by driverless car manufacturers. Ethi-
cal requirements are functional and quality requirements elicited from runtime
stakeholders in accordance with the five ethical principles discussed above.

4 The Case of Driveless Cars

We can now conduct an analysis of how to apply ethical principles, such as those
listed above, to the case-at-hand. Explicability towards passengers may lead to
a functional requirement for the driverless car to engage in conversations to
2 In [9], the focus is on use value as opposed to ethical value. However, we believe the

analysis still holds, in particular, regarding the connection between value and risk.



Ethical Requirements for AI Systems 255

explain the route it is following and why. Explicability towards nearby drivers,
pedestrians and bystanders leads to a functional requirement for the car to signal
on turns and changes of lane. Explicability towards society in general benefits
from the type of analysis aforementioned in which requirements can be traced
back to the explicit identification of stakeholders, and an explicit and semanti-
cally transparent analysis of their values and risk3. Respect for human dignity
calls for the car to stop in case it encounters a runtime stakeholder in need of
assistance. Beneficience calls for the car to let a nearby driver cut in front, also
to notify traffic authorities of an accident. Nonmaleficence calls for the car to
slow down in the presence of nearby pedestrians and bystanders, independently
of any speed limits that might apply. And in the case of two lanes merging into
one, Justice calls for treating drivers from the other lane fairly, rather than in a
me-first manner.

This analysis can be made more concrete and guided if it is based on an
ethical code that applies for the system-to-be. Firstly, ethical codes often identify
some of the runtime stakeholders, also include concrete applications of ethical
principles that make the derivation of ethical requirements more direct and less
controversial.

5 Related Work

In [6], the authors offer an excellent discussion on the incorporation of ethics
into AI systems in the context of driverless cars. Two approaches are con-
sidered: (a) Make the AI system an ethical agent who can reason top-down
from first principles to an ethical problem-at-hand and choose a suitable action;
(b) Have the AI system learn bottom-up the most suitable ethical choice in dif-
ferent circumstances. Both alternatives are found to be problematic and both
assume that for an AI system to comply with ethical principles or codes, it
must be capable of reasoning on its own about the ethical merits of alternative
decisions.

The US Department of Defense directive on autonomous weapon system [1]
adopts a human-in-the-loop approach to such weapons. It also proposes poli-
cies that emphasize thorough testing and Verification & Validation for all semi-
autonomous weapons to ensure that they function as designed. Arkin [4] dis-
cusses the merits and pitfalls of autonomous weapons, emphasizing that they
could end up saving civilian lives. On the other hand, O’Connell [7] considers
the politics of banning autonomous killing altogether.
3 Notice that transparency w.r.t. the entities that compose an ecosystem regarding

their capabilities, intentions, vulnerabilities, and goals strongly connects also to the
notion of trust. In a nutshell, trust amounts to a set of relations connecting the
beliefs of a (trustor) agent regarding the capabilities, vulnerabilities and intentions
of a trustee insomuch as they can affect that agent’s goals [3]. From this we directly
have that: (1) trustworthiness assessment can and should be grounded in the explicit
assessment of these aspects; (2) trustworthiness is not an absolute property of a
system, but one that depends on all these aspects. To put it bluntly, it is meaningless
to speak of trustworthy systems in an unqualified manner.
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6 Conclusions

We have argued that RE techniques can be applied in the design of AI systems,
such as driverless cars and autonomous weapons, to ensure that they comply
to ethical principles and codes. It is important to emphasize that the solution
we propose doesn’t render such systems autonomous in ethical decision-making,
since ethical matters are dealt with by their designers and built into the sys-
tems. Our proposal, however, does suggest a way to go forward with AI systems
where technology is available, but we don’t know how to deal with the ethical
implications of their outcomes.

As to the implementation of functional and quality requirements derived from
ethical requirements, it is important to emphasize that the system-to-be should
be able to perform as well as well-trained humans performing the same task. For
instance, similarly to a medical doctor, who writes a detailed report explaining
her findings, AI systems should explain their reasoning rather than only providing
results and taking decisions. This has important implications because some of the
most successful AI technologies, notably Machine Learning ones, cannot currently
deal well with explainability and other transparency-related requirements.
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Abstract. Monitoring the oceanographic activity of ships in restricted
areas is an important task that can be done using sonar signals. To this
end, a human expert may regularly analyze passive sonar signals to count
the number of vessels in the region. To automate this process, we propose
a deep neural network for counting the number of vessels using sonar
signals. Our model is different from common approaches for acoustic
signal processing in the sense that it has a rectangular receptive field
and utilizes temporal feature integration to perform this task. Moreover,
we create a dataset including 117K samples where each sample resembles
a scenario with at most 3 vessels. Our results show that the proposed
network outperforms traditional methods substantially and classifies 96%
of test samples correctly. Also, we extensively analyze the behavior of our
network through various experiments. Our codes and the database are
available at https://gitlab.com/haghdam/deep vessel counting.

Keywords: Deep neural networks · Sonar signal · Vessel counting

1 Introduction

Sonar is an important technology in oceanographic monitoring that might be
used for mapping the ocean floor or studying the population of certain species
[1,2,10,14]. These applications usually depend on active sonar that is also used
for creating sonar images. Active sonar emits a signal and listens to the signal
that is reflected after hitting an object or the ocean floor. However, active sonar is
not suitable for applications such as detecting the presence of vessels or counting
them in restricted areas since vessels can acquire the signal that is sent by the
active sonar.

In contrast to active sonar, passive sonar does not emit a signal and, funda-
mentally, it listens to ambient noise and the signal generated by marine objects.
Human-made objects such as cargo vessels produce a certain pattern that could
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be acquired and processed for detecting their presence or counting them. Passive
sonar offers a powerful technology for detecting and counting illegal vessels since
it does not send any signal and it will not be detectable by other vessels. Under-
standing the raw signal is not trivial and it must be processed before analyzing
it by a human expert. Assigning experts to regularly check the data might not
be effective assuming the scarcity of illegal activities.

An alternative method is to analyze these signals automatically. However,
signals vary substantially depending on the ambient noise, the number of ves-
sels, and the bearing, heading, speed, frequency and the distance of each vessel.
As it turns outs, it is unlikely that a hand-engineered method counts the num-
ber of vessels correctly for a diverse set of signals that are produced by different
combinations of these factors. In this paper, we propose a method for automat-
ically counting the number of vessels using deep neural networks that accepts
pre-processed signals (ie. spectrograms) and outputs the number of vessels.

Contribution: The raw signal is processed in overlapping time windows in the
frequency domain to obtain the spectrogram of the signal. The sonar signal could
be very long that in turn generates a large spectrogram. Our contribution has
three folds. First, we devise a statistical method to determine if a spectrogram
contains a vessel. Second, we propose a network with a rectangular receptive field
and temporal feature aggregation to count the number of vessels in the input
spectrogram. Third, we synthesize a large dataset of signals containing 117K
spectrograms. Our experiments show that the proposed network performs signif-
icantly better than traditional approaches and networks designed for processing
the spectrogram holistically. Our dataset and networks are available in https://
gitlab.com/haghdam/deep vessel counting. In this paper, we directly work on
sonar signals that is different from sonar images.

2 Materials

We generated raw sonar signals using noise levels n̄ ∈ {0.2, 0.4, 0.8, 1}. For each
noise level, 7000, 500 and 2250 samples were generated as training, validation and
test samples, respectively. Overall, there are 84K training samples, 6K validation
samples, and 27K test samples in the dataset. The generated signal depends on
variables such as the initial position of vessels, heading, bearing, speed, frequen-
cies of each target and power of each frequency, which are set randomly for each
signal. Raw signals are further processed to obtain their spectrograms and feed
them to vessel detection and vessel counting methods.

Each spectrogram is computed using different segment lengths (window sizes,
integration times) where 500 overlapping segments are used with a shift of 2.5 s
between two consecutive segments. Therefore, spectrograms represent different
physical time and frequency resolutions. However, for ease of processing, the
spectrograms are computed such that the number of frequency bins in each row
of the spectrogram (i.e. resolution) is constant. Each spectrogram shows if there
are 0, 1, 2 or 3 ships in the scanned region. Our goal is to train a model to count
the number of submarines depicted by the spectrogram.

https://gitlab.com/haghdam/deep_vessel_counting
https://gitlab.com/haghdam/deep_vessel_counting
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3 Proposed Methods

In this section, we propose two different methods for vessel detection (ie. presence
or absence of targets) and counting problems.

3.1 Vessel Detection

Figure 1 illustrates sample log-spectrograms with various number of targets. All
log-spectrograms have been normalized for consistent visualization by setting the
minimum value to −40 and the maximum value to 20. Each row in these spectro-
grams indicates the spectrum of the signal at a specific time frame. Comparing
one row from the spectrogram without any vessels with other spectrograms,
we realize that there is a significant difference between them. An effective idea
to perform target detection might be computing the maximum and mean of
each spectrogram and detecting the presence/absence of vessels by passing them
through a decision stump. Figure 2 shows the scatter plot of these quantities for
the training set.

Fig. 1. Samples of spectrograms without any vessels (upper left), one vessel (upper
right), two vessels (bottom left) and three vessels (bottom right). The horizontal and
vertical axis shows the frequency and time, respectively.

First, depending on the noise level, the mean of spectrograms is scattered
in four regions. Nonetheless, the maximum of spectrogram varies between 0
and 33 regardless of the noise level. Second, while it is possible to perform
target detection accurately when the noise level is 0.2 and lower, it does not
work accurately with higher noise levels. Consequently, the mean and maximum
of spectrograms are not good features to perform vessel detection. Below, we
propose a method that computes higher-order statistics for this purpose.
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Fig. 2. Presence and absence of targets is detectable with reasonable accuracy using
the mean and maximum of spectrograms.

To be more specific, given a spectrogram of size S = R
Nf×Nt where Nt

denotes the number of time frames and Nf shows the number of frequency bins
in each spectrum, we first compute the mean of spectra over time. Denoting this
quantity by Ŝ = [ŝi], the ith element in this vector is computed as follows:

ŝi =
1
Nt

Nt∑

j=0

Sij ∀i = 0 . . . Nf (1)

Next, the skewness and kurtosis of Ŝ is obtained. Figure 3 shows the scatter plot
of training samples using these two features. Concretely, the presence or absence
of targets is perfectly detectable using either of these measures. According to the
figure, by comparing the kurtosis of the mean spectrum with 2 or the skewness
of the mean spectrum with 1, we can detect the presence or absence of target
on training samples with 100% accuracy. As we will show in experiments, this
also holds on validation and test sets.

In contrast to vessel detection, counting the number of vessels cannot be
done using simple statistical features. The blue cluster in Fig. 3 represents spec-
trograms with one, two or three vessels. In other words, using these statistical
features, spectrograms with a different number of vessels fall into the same clus-
ter in the feature space. Consequently, we need a more expressive mapping to be
able to form a separate cluster for each category in the feature space. To achieve
this goal, we propose a neural network in the next section.

3.2 Counting Targets

Processing spectrograms with only convolutional neural networks is commonly
done using square filters and processing the entire inputs to extract a feature
vector for classification [3,13,17]. This approach is different from using recur-
rent neural networks for analyzing spectrograms [4,8] since the latter approach
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Fig. 3. The presence and absence of targets is perfectly detectable using either the
skewness or kurtosis of the mean spectrum. All points are shifted by one along both
axis to prevent negative values for log-scale plots. (Color figure online)

considers the spectrogram as a sequence of inputs and learns the temporal depen-
dency between these inputs.

Our proposed network is inspired by the method in the previous section for
detecting vessels. We started by aggregating spectra over time to compress the
information into a single vector. Then, two features were computed from the
aggregated spectrum. Depending on how spectra are aggregated over time, we
might lose the temporal information in the spectrogram. Each spectrogram from
a class represents a sequence of spectra. By comparing sequences of two different
spectrograms of the same class, we will realize that they might be potentially
different from each other. Therefore, strictly encoding long-term temporal infor-
mation in the aggregated spectrum might not be essential.

In contrast, there might be a strong dependency between consecutive fre-
quencies and spectra in the short-term. As a result, it is important to analyze
frequencies in each time frame, locally. Based on these observations, we propose
the approach that is illustrated in Fig. 4 for counting targets. Given a spectro-
gram of size 1024 × 500, we design a neural network (NN) that operates over
entire frequencies, but it covers a small fraction of time frames (ie. spectra). In
other words, we aim to design a neural network whose receptive field is 1024×H
where H is much smaller than 500.

Fig. 4. Our network performs feature extraction in small time frames in a sliding
fashion and integrates them to form the final feature vector.
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Then, the input spectrogram is hypothetically divided into smaller patches of
size 1024 ×H, and each patch is processed using the neural network. Assuming
there are K overlapping patches on the spectrogram, K feature vectors will be
produced in the output. The next stage is to integrate these feature vectors into
one vector. Finally, the integrated feature vector is classified using a linear classi-
fier. Our network is different from both above approaches in the sense that it has
a rectangular receptive field and it aggregates features that are extracted over a
short time. In practice, this network can be implemented using all-convolutional
neural networks [11].

Neural Network. Our network is composed of an initial layer, five blocks of
wide residual (WR) modules [16], and an integration layer and a classification
layer that are collectively 33 layers. Table 1 shows the architecture of the net-
work. Each row inside brackets represents one WR module. Each WR module
contains two convolution layers. In contrast to the original WR module, we use
vertical convolution kernels instead of square kernels and one-sided strides as
opposed to square strides in the first convolution layer. The size of the second
convolution layers is always 3 × 3 except in the last block where the second con-
volution uses 1×1 kernels. Moreover, we apply spatial dropout [12] after the first
convolution and batch normalization [5] after all convolution layers in each WR
module. Figure 5 shows the architecture of our WR module. Note that the 1 × 1
convolution layer in this module is applied if the depth of the input is different
from the depth of the second convolution. According to the output size in the
last WR block, K is equal to 125 using our network.

Fig. 5. The wide residual module in our proposed network.

Integration. Table 1 shows that the output of the last WR block is a 1×125×
256 tensor. This means, there are 125 time-frames in which entire frequencies
have been processed to generate 256 features for each time-frame. The next step
is to integrate time-frame features into one feature vector encoding the whole
spectrogram in one vector. In this work, we integrate time-frame specific features
by computing the maximum of each feature across all time-frames. This method
is computationally efficient and it does not add new parameters to the network.
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Table 1. The architecture of our proposed network.

Block name Architecture Input size Output size

Init 3× 3@16, st= (2, 2) 1024× 500 512× 250

Block 1

⎧
⎪⎨

⎪⎩

7× 3@32, st = (5, 2)

3× 3@32, st = (1, 1)

3× 3@32, st = (1, 1)

⎫
⎪⎬

⎪⎭
512× 250× 16 103× 125× 32

Block 2

⎧
⎪⎨

⎪⎩

7× 1@64, st = (5, 1)

3× 3@64, st = (1, 1)

3× 3@64, st = (1, 1)

⎫
⎪⎬

⎪⎭
103× 125× 32 21× 125× 64

Block 3

⎧
⎪⎨

⎪⎩

7× 1@128, st = (5, 1)

3× 3@128, st = (1, 1)

3× 3@128, st = (1, 1)

⎫
⎪⎬

⎪⎭
21× 125× 64 5× 125× 128

Block 4

⎧
⎪⎨

⎪⎩

7× 1@256, st = (5, 1)

3× 3@256, st = (1, 1)

3× 3@256, st = (1, 1)

⎫
⎪⎬

⎪⎭
5× 125× 128 1× 125× 256

Block 5

⎧
⎪⎨

⎪⎩

1× 1@256, st = (1, 1)

3× 1@256, st = (1, 1)

3× 1@256, st = (1, 1)

⎫
⎪⎬

⎪⎭
1× 125× 256 1× 125× 256

Integrate Max 1× 125× 256 1× 1× 256

Logits 3 1× 1× 256 1× 1× 3

Receptive Field. The effective value of H depends on the weights of the
network and it is related to the effective size of the receptive field (ERF) [7].
We computed the ERF for 1000 samples after training the proposed network.

Fig. 6. Effective receptive field of the trained network computed for the middle neuron
in the last convolution layer. Left three images show the results for three random
samples and the right most image illustrates the accumulated results of 1000 samples.
Dark blue color regions do not have any impact on the output of the neuron and red
regions have the highest impact on the neuron. (Color figure online)
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Figure 6 shows that the ERF in our trained network is roughly H = 160 time
frames from the input spectrogram. Compared to Fig. 4, the axis of input in
Fig. 6 are transposed because of the space limitation in the paper. That means
the horizontal axis indicates the time and the vertical axis corresponds to fre-
quencies.

4 Experiments

In this section, we first present the results of vessel detection. Then, we will ana-
lyze the results of target counting from different perspectives. Since the accuracy
of target detection is 100% and it is a fairly simple problem, we do not perform
extensive analysis for this problem.

4.1 Vessel Detection

We computed the kurtosis margin and the skewness margin between spectro-
grams without any vessels and spectrograms with one or more than one vessel
on the training set. The minimum and maximum margins are (1.25, 5.63) for
kurthosis and (0.32, 1.17) for skewness, respectively. As it turns out, there is a
clear space between two classes using any of these features. We fixed the thresh-
old T to the middle point in each feature and classified the given spectrogram
X using a decision stump with the threshold T . In both cases, the accuracy of
the classification on the test set is 100%. Figure 7 shows the plot of two classes
using these features on the test set.

Fig. 7. The presence and absence of targets is perfectly detectable on the test set using
either the skewness or kurtosis of the mean spectrum. All points are shifted by one
along both axis to prevent negative values for log-scale plots.
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4.2 Counting Targets

We train the network using the Momentum Gradient Descend with batch size 32
for 100 epochs. The initial learning rate is set to 0.001, and it is multiplied with
0.1 at the 70th and 90th epochs. Moreover, the weight of the L2 regularization
term in loss function is fixed to 1e−4. The network is evaluated using 27K test
samples. We repeated the training procedure three times starting from random
initialization at each trial. Table 2 shows the mean and standard deviation of
the three runs. First, the precision and recall of the test set deviate infinitesi-
mally at each run. This shows that the training procedure is stable, and we will
obtain highly similar results if the network is trained several times. Second, the
network has high precision and recall on the spectrograms with only one target.
Nonetheless, the precision of the second class and the recall of the third class
are lower. Overall, the accuracy of the network is greater than 96%.

To study the reason, we embedded the integrated feature into the 2D space
using the t-SNE [9] technique. Figure 8 illustrates the features in the embedded
space. Spectrograms with only one target are distinguishable from spectrograms
with two or three targets. In contrast, some of the samples with three targets
fall into the region where samples with two targets are located. As a result,
these samples are classified as the second class (ie. two targets). This increases
the number of false-positives in the second class which in sequel reduces the
precision. The same argument holds for the reduction in the recall of the third
class. The results could be improved by creating an ensemble of models and
using the ensemble to make predictions. In this work, we compute the mean of
probability scores for each sample and take the class with the maximum score
as the class of the sample. Table 3 illustrates the precision and recall of the
ensemble.

Comparison. The main idea behind deep neural networks is to learn a set of
feature functions to map the input into a feature space. Then, the extracted
feature is classified using a linear classifier. Traditionally, this would be done
by designing feature functions manually and training a nonlinear classifier. To
compare the results using traditional approaches with our network, we extracted
feature vectors using different methods from spectrograms and trained a random
forest to perform classification. Table 4 shows the results.

As it turns out, the mfcc [15] and spectral centroid [6] features are not able to
accurately classify spectrograms in this problem. Moreover, there is a improve-
ment compared to holistic network where we use square kernels and process the

Table 2. Precision and recall of the proposed network on the test set.

# of targets Precision (%) Recall (%) Support

1 target 98.4 ± 0.001 99.9 ± 0.0002 9003

2 targets 91.9 ± 0.004 97.0 ± 0.003 9004

3 targets 98.5 ± 0.003 91.5 ± 0.004 9003
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Table 3. Precision and recall of the proposed network ensemble on the test set.

# of targets Precision (%) Recall (%) Support

1 target 98.5 1.00 9003

2 targets 92.9 97.9 9004

3 targets 99.4 92.5 9003

Fig. 8. Embedding the integrated feature vectors into the 2D space using the t-SNE
technique. Red, blue and pink points show spectrograms with 1, 2 and 3 targets,
respectively. (Color figure online)

entire input as opposed to integrating features temporally. In contrast, we use
rectangular field-of-view and perform feature integration directly on the spec-
trogram. Second, our network has a high capacity that makes it possible to learn
complex mappings.

Table 4. Comparing our network with hand-crafted features.

Method 1 target (%) 2 targets (%) 3 target (%)

Precision Recall Precision Recall Precision Recall

Our network 98.5 1.00 92.9 97.9 99.4 92.5

Holistic network 80.0 70.0 50.0 50.0 67.0 77.0

mfcc 70.0 77.0 47.0 41.0 66.0 67.0

Spectral centroid 47.0 51.0 30.0 27.0 39.0 39.0



A Deep Neural Network for Counting Vessels in Sonar Signals 267

Temporal Dependency. In this section, we empirically study how important is
temporal information in this problem. First, we start by flipping the spectrogram
such that the first spectrum becomes the last spectrum and the last spectrum
become the first spectrum after flipping. Second, spectra are dropped out every x
frames where x ∈ {2, 3, 5, 10}. Fourth, The last half of the spectra are zeroed out.
Fifth, the first half of the spectra are zeroed out. Sixth, half of the spectra in the
middle are zeroed out. Finally, spectra are randomly shuffled. In this experiment,
we use only one of our trained networks rather than using the ensemble. The
results are summarized in Table 5.

Table 5. Precision and recall of the proposed network on the test set.

1 target (%) 2 targets (%) 3 target (%)

Precision Recall Precision Recall Precision Recall

Original network 98.2 99.9 91.5 96.6 98.2 91.0

Flip 98.3 98.4 90.7 94.8 96.3 91.9

Drop 10 97.8 99.9 89.3 96.6 98.7 88.5

Drop 5 97.6 99.9 90.5 95.8 98.1 90.0

Drop 3 97.7 99.8 90.5 94.8 96.9 90.2

Drop 2 98.4 74.8 70.6 73.4 78.9 94.6

Zero upper 81.7 99.9 53.6 79.7 1.0 29.0

Zero lower 48.4 1.00 22.3 19.7 1.00 5.1

Drop middle 84.8 98.9 52.8 83.8 99.9 24.7

Shuffle 44.7 98.3 28.5 22.6 94.0 0.5

Interestingly, flipping the spectrogram along spectra produces comparable
results. In addition, dropping out spectra every x frames does not affect the
output significantly as long as there are at least two consecutive spectra that
are not dropped out. In contrast, zeroing out last spectra reduces the accuracy
dramatically compared to zeroing out first or middle spectra. In all cases, zeroing
out spectra affects the performance adversely. The results in this table suggest
that temporal information play an important role in this problem.

5 Conclusion

In this work, we first propose a statistical technique to identify the presence or
absence of a vessel in spectrograms. Then, we proposed a new network archi-
tecture to extract features from the spectrogram of sonar signals and count the
number of targets. Our network has a rectangular field-of-view and it works by
extracting features in short time-frames and integrating all of them into one vec-
tor. Our experiments showed that the proposed network is able to classify 96% of
samples correctly and compared to hand-crafted features, our network produces
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considerably higher accuracy. Visualizing the feature space showed that while
there is a negligible overlap between the first class and the other two classes,
the second class overlaps with the thirds class causing a reduction in the over-
all performance. Then, we analyzed the histogram of entropy and probability
scores individually. The histograms reveal that there are some samples that are
incorrectly classified with high confidence due to the class overlap. There are
also samples that are classified correctly with very low confidence since they lie
close to the decision boundary in the feature space.
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Abstract. Partial label learning deals with the problem where each
training example is associated with a set of candidate labels, only one
of which is assumed to be valid. To learn from such ambiguous labeling
information, the critical point is to disambiguate the set of candidate
labels, thereby targeting the ground-truth label. By utilizing the nature
that only one of the candidate labels is correct, we employ the entropy
minimization strategy to force the model making confident predictions
of the training data. By doing this, the ground-truth labels are likely
to make more contributions to the model training. Finally, comparative
experiments on a number of real-world datasets are conducted, demon-
strating the effectiveness of the proposed approach.

Keywords: Weak supervision · Partial label learning · Entropy
minimization

1 Introduction

Partial label learning is regarded as a weakly supervised learning framework. It
is also named as ambiguous label learning [1–3] or superset label learning [4,5].
The partial label learning deals with the problem where each training example
is associated with a set of candidate labels, only one of which is assumed to be
valid [6,7]. Due to the difficulty in collecting the unambiguous or clean labeled
data, partial label learning has been widely applied to many real-world scenarios,
such as web mining [8], automatic image annotation [3,9], ecoinformatics [10],
etc.

Formally speaking, let X = IRn be the n-dimensional feature space and
Y = {1, 2, · · · , l} be the label space including l possible labels. Suppose there
are m training examples and each example is assigned with several labels. Denote
D = {(xi, Si)m

i=1} the partial training set, where xi ∈ X is the feature vector
and Si ⊆ Y is the candidate label set of xi. The ground-truth label yi of xi is
assumed to reside in Si, i.e. yi ∈ Si. The task of partial label learning is to learn
a multi-class classifier f : X �→ Y from training set D, which aims to correctly
predict the ground-truth label of a test example.

Due to the inaccessibility of the ground-truth labels, the key to successful par-
tial label learning is trying to disambiguate the set of candidate labels, namely
c© Springer Nature Switzerland AG 2020
C. Goutte and X. Zhu (Eds.): Canadian AI 2020, LNAI 12109, pp. 270–275, 2020.
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targeting the ground-truth label. To achieve this, there are normally two general
strategies, which are disambiguation by averaging [2,6,7] and disambiguation by
identification [10–13]. The average-based strategy treats every candidate label
equally, and the final prediction is made by averaging the modelling outputs
of all the candidate labels. It is worth pointing out the potential drawback of
this strategy, that is the significant output yielded by the ground-truth label is
likely to be overwhelmed by the undesired outputs yielded by the false positive
labels, so that the model could be misled into making wrong predictions. The
identification-based strategy ties to regard the ground-truth label as a latent
variable and employ an iterative refining process to gradually identify the con-
fidence of each candidate label. However, these approaches fail to consider the
mutually exclusive relationship among the candidate labels.

Motivated by the entropy minimization [14], a strategy widely-used in the
semi-supervised learning forcing the confident prediction of the unlabelled data,
we follow the similar idea to try to make confident predictions of the par-
tial training data. Extensive experiments on a number of real-world datasets
are conducted, which clearly demonstrates the effectiveness of the proposed
approach.

2 Related Work

As a result of the difficulty in learning from ambiguous labeling information of
partial training examples, there exist two general strategies to disambiguate the
candidate labels, which are the average-based strategy and the identification-
based strategy.

The average-based strategy makes the final predictions by averaging the mod-
elling outputs of all the candidate labels, as we mentioned above. Following this
strategy, some instance-based approaches [2,5] predict the label of a test exam-
ple by averaging the candidate labels of its nearest neighbours in the partial
training set. Moreover, some parametric approaches train a parametric model
[6,7] trying to distinguish the average modelling output of candidate labels from
that of non-candidate labels.

Different from the average-based strategy dealing with each candidate label
equally, the identification-based strategy attempts to treats candidate labels with
discrimination, and refine different confidences of candidate labels. Following this
strategy, conventional approaches try to optimize the objective function in term
of the maximum likelihood criterion [11] or the maximum margin criterion [12].
Furthermore, some approaches [5,7] in leveraging the topological information of
the feature space are recently proposed, to derive the confidence of each candi-
date label.

In this paper, a simple but effective partial label learning approach called
Partial Label Learning by Entropy Minimization is proposed, and the perfor-
mance is demonstrated by the detailed results of comparative experiments.
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3 Proposed Method

Following the notations stated in Sect. 1, we denote the partial training set by
D = {(xi, Si)m

i=1}. Let X = [x1, · · · ,xm]� ∈ IRm×n be the training data matrix
and Y = [y1, · · · ,ym]� ∈ {0, 1}m×l be the corresponding partial label matrix,
where yij = 1 means the j-th label is a candidate label of xi, i.e. yij ∈ Si,
otherwise yij /∈ Si.

Assuming a probabilistic classifier f(x; θ) such that f(x; θ) ∈ [0, 1]l and
f(xi)�1 = 1, we propose a unified partial label learning formulation with proper
constraints as follows:

min
θ

m∑

i=1

(L(f(xi, θ),yi) + λH(f(xi, θ))) + βΩ(θ)

s.t. f(xi) ≤ yi + ε, ∀i ∈ [m]

(1)

where [m] := {1, 2, · · · ,m}. L is the loss function, here we employ the mean-
squared error loss that is L(f(xi),yi) = (f(xi; θ) − yi)2. H is the entropy func-
tion, i.e. H(p) = −p� logp. ε > 0 is a very small constant value. Ω(·) is a
regularization function to control the complexity of model parameters, here we
define Ω(f) = ‖θ‖2. λ and β are the tradeoff parameters.

By incorporating the constraints as a hinge loss term into the objective func-
tion, the final optimization problem is presented as follows:

min
θ

m∑

i=1

((f(xi; θ)−yi)2 −λf(xi; θ)� log f(xi; θ)+α[f(xi; θ)−yi − ε]+)+βΩ(θ)

(2)
where [·]+ = max(·, 0). This optimization problem can be solved by stochastic
gradient descent. The entropy term encourages the model to make confident
predictions for training data, so that the ground-truth labels are likely to con-
tribute more to the model training. Furthermore, the hinge loss term enhances
this target.

4 Experiment

To demonstrate the effectiveness of our proposed method, we conduct compar-
ative experiments against five partial label learning algorithms, each configured
with parameters suggested in respective literature:

– CLPL [6]: a convex formulation for the partial label setting via averaging-
based disambiguation [suggested configuration: SVM with squared hinge loss];

– PALOC [15]: an approach that adapts one-vs-one decomposition strategy for
partial label learning [default configuration for partial label learning: μ = 10]

– PLKNN [2]: a k-nearest neighbour approach to make predictions by averaging
the labeling information of neighbouring examples [suggested configuration:
k ∈ {5, 6, · · · , 10}];
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– PLSVM [12]: a maximum margin approach learning from partial examples
by optimizing margin-based objective function [suggested configuration: λ ∈
{10−3, 10−2, · · · , 103}];

– LSBCMM [10]: a maximum likelihood approach learning from partial label
examples via mixture models [suggested configuration: L = 10 log 2(l)].

For our model, we employ a three-layer neural network as the classifier and
apply softmax function to the final layer to get the probabilistic outputs. For
each dataset, the ten-fold cross-validation is conducted and the mean prediction
accuracies and the standard deviations are reported. Moreover, we deploy pair-
wise t-test at 0.05 significance level to investigate whether our model significantly
outperforms the comparing algorithms for all the experiments.

Table 1. Characteristics of the real-world partial label datasets.

Data set #Examples #Features #Labels Avg. CLs Task domain

BirdSong 4998 38 13 2.18 Bird song classification [16]

Lost 1122 108 16 2.23 Automatic face naming [17]

FG-NET 1002 262 78 7.48 Facial age estimation [17]

Soccer Player 17472 279 171 2.09 Automatic face naming [9]

Yahoo! News 22991 163 219 1.91 Automatic face naming [18]

Table 1 summarizes the characteristics of real-world partial label datasets,
including BirdSong [16], Lost [17], FG-NET [17], Soccer Player [9], and Yahoo!
News [18]. These real-world partial label datasets are from various application
domains, such as bird song classification (BirdSong), automatic face naming
(Lost, Soccer Player, and Yahoo! News) and facial age estimation (FG-NET).
The average number of candidate labels (Avg. CLs) for each partial label instance
is also reported in Table 1.

Table 2. Classification accuracy of each algorithm on the real-world datasets. The
symbols •/◦ indicate whether our approach is statistically superior/inferior to the
comparing algorithms (t-test at 0.05 significance level for two independent samples).

Data Ours CLPL PALOC PL-KNN PL-SVM LSBCMM

Bir. 0.698 ± 0.018 0.632 ± 0.019• 0.711 ± 0.016 0.614 ± 0.021• 0.660 ± 0.037• 0.672 ± 0.056

Los. 0.649 ± 0.043 0.742 ± 0.038◦ 0.629 ± 0.056 0.424 ± 0.036• 0.729 ± 0.042◦ 0.693 ± 0.035◦
FG. 0.099 ± 0.020 0.063 ± 0.027• 0.065 ± 0.019• 0.038 ± 0.025• 0.063 ± 0.029• 0.059 ± 0.025•
Soc. 0.501 ± 0.010 0.368 ± 0.010• 0.537 ± 0.015◦ 0.497 ± 0.015 0.464 ± 0.011• 0.494 ± 0.017

Yah. 0.490 ± 0.007 0.462 ± 0.009• 0.625 ± 0.005◦ 0.457 ± 0.004• 0.629 ± 0.010◦ 0.645 ± 0.005◦

Table 2 reports the mean classification accuracies of our approach as well as
comparing algorithms. As shown in Table 2, it is worth to point out that: 1)
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On all data sets, our proposed method significantly outperforms or at least is
comparable to PLKNN; 2) On the FG-NET dataset, our approach achieves supe-
rior performance compared to all the approaches; 3) our approach statistically
outperforms CLPL on all datasets except Lost; 4) our approach is comparable
to PALOC on BirdSong & Lost and to LSBCMM on BirdSong & Soccer Player.

5 Conclusion

In this paper, a new partial label learning approach with entropy minimization
is presented. An experimental study was conducted to evaluate the performance
and demonstrate the effectiveness of the models. If we have a number of unlabeled
data at hand, how to utilize unlabelled data to help partial label learning would
be an interesting direction.

References

1. Chen, Y., Patel, V.M., Chellappa, R., Phillips, P.J.: Ambiguously labeled learning
using dictionaries. IEEE Trans. Inf. Forensics Secur. 9(12), 2076–2088 (2014)
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Abstract. In this paper, we use dimensionality reduction techniques
to study how a recurrent neural network (RNN) processes and encodes
information in the context of a classification task, and we explain our
findings using tools from dynamical systems theory. We observe that
internal representations develop a task-relevant structure as soon as sig-
nificant information is provided as input and this structure remains for
some time even if we let the dynamics drift. However, the structure is
only interpretable by the final classifying layer at the fixed time step
for which the network was trained. We measure that throughout the
training, the recurrent weights matrix is modified so that the result-
ing dynamical system associated with the network’s neural activations
evolves into a non-trivial attractor, reminiscent of neural oscillations in
the brain. Our findings suggest that RNNs change their internal dynam-
ics throughout training so that information is stored in low-dimensional
cycles, rather than in high-dimensional clusters.

Keywords: Recurrent neural networks · Internal representations
geometry · Dynamical systems

1 Introduction

Recurrent neural networks (RNNs) contain intra-layer connections which allow
the networks to preserve past information across multiple time steps. Because
of this feedback mechanism RNNs are well-suited for the analysis of tempo-
ral or sequential data [1]. Furthermore, this temporal dependence suggests that
progress in understanding RNNs resides in analysing them as nonlinear dynam-
ical systems [1,8,10]. At every time step, the network state, which is governed
by past inputs, is moved in the high dimensional internal state space by the
network dynamics, which depend in part of the present input.

While research has been done studying the geometry of internal representa-
tions and its effect on the performance of deep neural networks [2], this was not
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studied in RNNs where network dynamics largely dictate the geometry [5,10].
Here, we analyse the geometric properties of internal representations and the
network dynamics in parallel. This allows us to shed some light onto how RNNs
process information at every time step and encode it over long periods of time.

2 Methods

2.1 Experimental Setup

Task: We trained the network on Sequential MNIST classification, a dynamical
task where an RNN has to classify a digit by being shown one row of pixels
at a time. Each image being 28 × 28, the inputs to the network were vectors
of dimension 28 and the sequence length was equally 28, corresponding to the
number of rows. This toy task requires the network to integrate past inputs
quickly into its computations and its decision making process hence making the
task relevant and representative of more general RNN tasks.

Model: The recurrent neural network used contained a single recurrent layer
of 200 tanh neurons and a linear output layer. Both layers had only weight
parameters and no bias to affect the recurrent dynamics. The vector equation
for the recurrent unit activations ht in response to input xt is:

ht = tanh(Win xt + Wrec ht−1) (1)

The weights matrices for each layer, Win, Wrec and Wout are sampled i.i.d
from a Gaussian distribution, i.e. Wij ∼ N (0, 1/dimW )). The output y is gen-
erated by a linear readout at the last time step t = T , via the equation:

y = Wout hT (2)

Training and Implementation: The network is trained using the Adam optimiza-
tion algorithm with a crossentropy loss function. After training the network for
30 epochs we achieve a testing accuracy of a little over 93%. While this accuracy
is far from the state-of-the-art, our purpose here is to study the dynamics of
network computations, which should not change qualitatively in circumstances
where the network architecture, task and training method are similar. The code
was implemented in Python using PyTorch and all the experiments reported
below were conducted using the trained networks and the validation dataset,
which the network did not see during training.

2.2 Experimental Datasets

Our experiments were conducted on the MNIST validation dataset as well as on
three modified versions of it. Dataset 1: Hidden images - The last n pixel
rows of each image are blank (value 0), for 1 ≤ n ≤ 27 (e.g., Fig. 1b). This
aims to determine how the recurrent dynamics alone help the classification task.
Dataset 2: Cut images - Only the first n lines of the images are shown to the
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networks, for 1 ≤ n ≤ 27 (e.g., Fig. 1c). This allows to evaluate the importance of
sequence length and the interpretability of early internal representations by the
last linear layer. Dataset 3: Extended images - Blank pixel rows are added
at the end of the full input sequences, increasing their length (e.g., Fig. 1d). This
is in order to see how network dynamics affect the internal representations after
the network was provided with all the available information.

Fig. 1. One MNIST image across all tested validation datasets

2.3 The Spectrum of Lyapunov Exponents

To analyse and understand the behaviour of an autonomous dynamical system
such as the recurrent internal dynamics associated with (1)

ht = σ(Wrecht−1) (3)

we use its spectrum of Lyapunov exponents, a powerful classification tool for the
geometry of the attractor associated with the dynamics (e.g. [3,5]). For such a
system, or in a more compact form ht = f(ht−1), the following limit exists and
is constant for almost-all values of the initial starting point h0 ∈ R

m :

λ0 = lim
n→∞

1
n

ln
∣
∣
∣μ0

(

FT
n Fn

)∣
∣
∣ (4)

where μ0(A) denotes the first eigenvalue of matrix A, Fn = f ′(hn) · . . . · f ′(h0)
and f ′(h) denotes the Jacobian of f at h. To compute λ0, we decompose the
product of Jacobians in (4) using its QR-decomposition.

The scalar λ0 ∈ R is referred to as the maximal Lyapunov exponent (MLE),
and corresponds to the rate of growth of a volume element, governed by the
dynamics. Its value can be interpreted as follows :

– λ0 > 0 : exponential volume expansion, meaning initially close trajectories
will exponentially differ ;

– λ0 = 0 : volume preservation, such as trajectories in a limit cycle ;
– λ0 < 0 : exponential volume compression, meaning converging trajectories.



Low-Dimensional Dynamics of Encoding and Learning in RNNs 279

3 Results

3.1 Development of a Task Relevant Structure

In this section, we expose the impact of input sequence length on classification
accuracy and relate these findings to the developed internal representations asso-
ciated with network responses to inputs. The results were generated by training
ten networks and evaluating them on the modified datasets from Sect. 2.1. Mean
and standard deviation across networks are plotted in Fig. 2.

Fig. 2. Accuracy of the trained networks on the modified validation datasets

Figure 2a shows the importance of sequence length for the classification task.
The networks only reach over 90% classification accuracy when the sequence
length is of 28 pixel lines – the full training image length. For almost all other
sequence lengths the classification is, on average, no better than random.

Figure 2b further emphasises this idea by showing that despite being pro-
vided with the same amount of relevant information (i.e., nonblank pixel lines),
the networks classify better when input sequences are of length 28. This also
indicates that up to time step 28, the recurrent dynamics driven by Wrec sig-
nificantly help classification. However, after time step 28 the effect is opposite:
the hidden dynamics hinder classification as shown by the orange line of Fig. 2a
and by Fig. 2c. The recurrent pattern in Fig. 2c suggests that the network relies
on oscillatory dynamics in the representation space to implement the task. We
further investigate this idea in Sect. 3.2.

If we run unsupervised clustering on the internal representations at different
time steps using t-SNE [4], we observe that early in the classification process the
networks identify the class of certain inputs and separates their internal repre-
sentations from those of the rest of the inputs (Fig. 3a). By the time entire images
are shown, the clustering is highly correlated with the true classes (Fig. 3b). As
we let the recurrent dynamics drift, we see a slow but steady degradation of the
task-relevant geometric structure (Fig. 3c).
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Fig. 3. Class coloured clustering of internal representations in three different settings

3.2 Formation of Limit Cycles

To establish a link between the results in Sect. 3.1 and autonomous RNN internal
dynamics we use tools from dynamical systems and machine learning. Neural
oscillations have been recorded in the brain and are central to different cognitive
processes [7], and we find strong evidence that RNNs develop internal limit
cycles over the course of training. To understand and quantitatively measure
the asymptotic behaviour of the internal states, we computed the spectrum of
Lyapunov exponents associated with the dynamical system in (3) (see Sect. 2.3).
The maximal Lyapunov exponent (MLE) for the system tends to 0 as the number
of training epochs increases, regardless of initialisation. This value for a MLE
indicates that the volume carried by the asymptotic ergodic measure of the
system is preserved along a direction and all other directions compress; i.e., the
attractor is composed of one or several limit cycles. Since the MLE was negative
before training, as the networks we consider are initialised in a convergent regime
[9], this shows that RNNs change their internal dynamics during training so that
the attractor associated with their learned autonomous internal states settles into
limit cycles (Fig. 4).

Fig. 4. Network internal representations in phase space at three different time steps.
Each subplot contains 104 points corresponding to MNIST test image. Time step 28
corresponds to the final line of the images; further time steps correspond to blank lines
added to the images where we let the neural dynamics drift.
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To analyse the global geometrical characteristics of the internal representa-
tions as they vary with time, we use the UMAP visualisation [6], as shown in
Fig. 4. We determine that not one, but in fact two limit cycles are used by the
network to complete the task. Furthermore, the cycles are of low-dimensional
nature despite residing in a high-dimensional space.

4 Summary and Conclusions

In this paper, we provide different perspectives on how information is processed
in a standard RNN in the context of the sMNIST classification task, using dimen-
sionality reduction techniques and dynamical systems theory. While the informa-
tion is initially kept as multi-dimensional clusters, our work suggests that when
the recurrent dynamics drift, learned internal representations are compressed
into a non-trivial attractor. This attractor is composed of two limit cycles of
intrinsic dimension far smaller than that of the space they reside in.

While the setup used is unconventional and highly artificial for RNNs, our
analysis offers interesting insight into the network’s underlying dynamics. Con-
sidering the fact that recurrent models such as RNNs, LSTMs and GRUs are
defined by their dynamics, we expect the same analytical framework to be effec-
tive in other scenarios as well. A clear description of the internal dynamical
system can then help us better understand the way information is encoded and
decoded by these models. In this scenario we hypothesise that information about
the classes associated with internal representations might be encoded in their
respective phases on these limit cycles. Representations corresponding to dif-
ferent classes would have different phases on the limit cycles. Further work is
required to verify this hypothesis and to extend our analysis to less artificial
setups.
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Abstract. Implicit entity linking is the task of identifying an appro-
priate entity whose surface form is not explicitly mentioned in the text.
Unlike explicit entity linking where an entity is linked to an observed
phrase within the input text, implicit entity linking is concerned with
determining specific yet implied entities. Existing work in the literature
have already identified appropriate features that can be used for ranking
relevant entities for explicit entity linking. In this paper, we (1) consider
the applicability of such features for implicit entity linking, (2) intro-
duce features that are suited for this task, (3) compare our work with
the state of the art in implicit entity linking, and (4) and report on
feature importance values and present their interpretations.

1 Introduction

When producing content on social media, such as Twitter, users often refer
to people, places and things without explicitly mentioning them [2–4,8]. For
instance, in the tweet ‘and thats why he is the King of Pop, Duke of Dance,
Master of The Moonwalk...but mostly the King of our Hearts for all eternity.’
Michael Jackson is the main person who is being referred to but without being
mentioned. For such cases, traditional entity linking methods and named entity
taggers cannot identify or link the content to an appropriate entity. According
to [4], on average, 15% of tweets contain implicit mentions and according to
[8], 21% of tweets in the domain of movies and 40% of tweets in the domain of
books, contain implicit references to entities. This translates into a large number
of information-rich content that cannot be readily processed by existing entity
linking techniques. The task of implicit entity linking is concerned with identi-
fying and linking such implied mentions. In this paper, we adopt a learning to
rank approach for performing implicit entity linking. Our work’s main motiva-
tion is that existing work on explicit entity linking have successfully adopted the
learning to rank approach for identifying suitable entities [6]. These approaches
rely on a collection of features that link the content space to the entity space. We
systematically categorize and present features for the context of implicit entity
linking. We will show that features showing strong performance on explicit link-
ing do not necessarily have the same linking power for implicit linking. We
identify most suitable features for implicit linking and show that when used in
c© Springer Nature Switzerland AG 2020
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the context of a learning to rank approach, they can provide significantly better
performance compared to the state of the art. Summarily, the contributions of
our work are as follows: 1) We provide a framework for systematically categoriz-
ing features that can be used for explicit and implicit entity linking within the
context of a learning to rank approach; and, 2) We examine the suitability of
these features for both of the entity linking tasks and show their importance.

2 Proposed Approach

This paper rests on the foundation offered by work in the learning to rank liter-
ature, which rely on the definition of effective features for ranking relevant items
for an input query. In our case, we are interested in ranking relevant entities from
the knowledge graph for an input text, e.g., a tweet. Here, we introduce our differ-
ent feature types and explain how they can be extracted. As seen in Table 1, the
features are structured based on four main categories: term-based, string-based,
graph-based (network properties) and graph-based (popularity properties). In
the table, we additionally specify whether the feature is extracted based on
input text (specified as T) or the target entity representation (specified as E) or
both (denoted as TE). We further denote the unit of each feature as to the form
by which the feature is extracted, which can include Unigrams (u), Bigrams (b),
Unordered Bigrams (ub), entities identified using an explicit entity tagger (e),
or anchor texts (a). The final column of the table indicates which features, and
if so which variation, is not applicable for the task of explicit entity linking. In
the following, we provide the details of each feature category.

2.1 Term-Based and String-Based Features

This category encompasses features that extract information from textual con-
tent of tweets and/or entities’ textual representations. Features in this category
are mainly Information Retrieval (IR)-based, such as, term frequency also dis-
counted with inverse document frequency, sequential dependence model (SDM)
[7] as well as textual similarity through cosine similarity. All of these features
can be applied to both the tweet content and the entities’ representations. We
additionally extract three other term-based features, which are not based on IR
methods, yet commonly used in entity linking: (1) PARC considers presence of
anchors within the tweet. Presence of an entity anchor in the tweet can be an
indicator for relevance to the anchor’s pertinent entity. Also, it might serve as a
textual reference to the target implicit mention; (2) TitleContainsTweet, investi-
gates the presence of a substring of the tweet in the title of the candidate entity.
This can be an effective feature in the case of explicit entity linking since surface
forms of entities can appear in the text. We study the effectiveness of this feature
in implicit entity linking and we hypothesize that this feature will not perform
as well, since implicit references do not contain surface forms of entities; and,
(3) URLEntityCount depends on the URLs found within the tweet. This feature
extracts and additionally considers the webpage content of URLs found within
a tweet and counts the number of times a candidate entity appears in them.
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Table 1. Description and categorization of features proposed for entity linking.

Category Feature name Description Type Unit Not

applicable in

explicit

linking

u b ub e a

Term-based TF Considers frequency of

tweet term in the content

of entity

TE � � � � � TF(e)

TF-IDF Considers the inverse

frequency of tweet term

in entities’ content

TE � � � � � TF-IDF(e)

SDM SDM model with different

feature functions

TE � � � � � SDM(e)

Cosine similarity Cosine similarity of tweet

text and entity

representation

TE � � � � � Cosine

similarity(e)

PARC Presence of an Anchor

Referring to a Candidate

Entity inside tweet

TE – – – – � –

TitleContains tweet If title of entity contains

substring of the tweet

TE – – – – – –

URLEntity count Number of times entity

appears on a webpage

whose URL is in the

tweet

T – – – – – –

ECoocKB Co-occurrence of tweet

Explicit entities with

Candidate entities on KB

E – – – � – ECoocKB(e)

String-based TitleCharLength Character length of title

of the entity

E – – – – – –

TitleTermCount Number of terms in title

of entity

E – – – – – –

Graph-based

(network

properties)

InkinksKB Number of entities on a

KB linking to e

E – – – � – –

OutlinksKB Number of KB articles

linking from e

E – – – � – –

CatKB Number of categories

associated with e on a

KB hierarchy

E – – – � – –

Redirect Number of redirect pages

linking to e on Wikipedia

E – – – � – –

Betweenness Betweenness measure of

each candidate entity in a

constructed graph

E – – – � – –

PageRank PageRank measure of

each candidate entity in

Wikipedia graph

E – – – � – –

EmbedEntSimilarity Embedding-based

Similarity Measure

between the candidate

entity and the entities in

the tweet (Cosine

similarity of embeddings)

TE – – – � – EmbedEnt

similarity(e)

Graph-based

(popularity

properties)

ViewCount Number of times {e} was

visited in a specific time

frame

E – – – � – –

ClickStream The number of times

Wikipedia users have

navigated from a tweet

explicit entity to a

candidate entity

TE – – – � – ClickStream(e)
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On the other hand, string-based features consists of two features, namely
TitleCharLength and TitleTermCount, both of which are primarily syntactic
features. The first feature calculates the number of characters in the entity title
and the second counts the number of terms in the entity title. These features
can be important for the explicit entity linking task given significantly longer
entity titles have a lower likelihood of appearing within a text.

2.2 Graph-Based Features

Network Properties. The most common form of network measures focus on
centrality of nodes. In the context of a knowledge graph, node centrality can
indicate the importance and/or relevance of the content represented by that
node within the graph. As such, we adopt two widely used centrality measures,
namely Betweenness Centrality and PageRank. Furthermore, we introduce addi-
tional locally defined features based on the neighborhood of an entity within the
knowledge graph. For instance, we measure how many Wikipedia categories are
associated with the entity, or how many inbound and outbound links are con-
nected to the entity of interest. We consider such features as an indication of
the extent to which a given entity is involved in relationships with other entities.
We also employ entity representations that have been trained based on neural
networks on the structure of the knowledge graph [9] to compute the similarity
between the input tweet and the target entity from the knowledge graph. The
neural representations of entities capture geometric relations between entities
given their proximity and position to each other on the knowledge graph and
can hence be an indication for the relevance of the tweet and the target entity.

Popularity Properties. Features in this category depend on the meta-data
associated with the knowledge graph that are collected from external sources.
We introduce two features in this category. ViewCount takes into account the
number of times a specific entity was visited by viewers during a certain time
frame. This feature aims at capturing hotness of entities in the real world at
different times. Moreover, we introduce a novel feature denoted ClickStream,
which captures the way users navigate on Wikipedia. This feature is extracted
from the Wikipedia metadata and records how many times each linked entity
on a specific entity’s Wikipedia page has been clicked. This stream of clicks
is hypothesized to show the different levels of relevance between an entity and
other reachable entities. The feature takes explicit entities within the tweet and
the target entity and calculates the click frequency between them.

3 Datasets and Experimental Setup

For implicit entity linking, we exploit the dataset introduced in [4], which con-
tains 1, 345 tweets with implicit mentions. The dataset’s taxonomy contains 6
coarse-grained entity types, namely Person, Organization, Location, Product,
Event, and Work. In this dataset, every tweet is labelled with one target entity.
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For explicit entity linking, we use the dataset provided by [6] consistinng 318
available tweets, with an average of 2.22 mentions per tweet. In our ranking
problem, we consider each tweet-entity pair as one training instance resulting in
a total of 707 samples. Here, for the sake of reproduciblity, we clearly describe
the process for extracting the introduced features. For features requiring iden-
tification of explicit entities within the tweet, we employ TagMe entity tag-
ger. For Wikipedia textual content, we extract entities by processing Wikipedia
dumps. In order to extract entity inlinks, outlinks, and redirects and the num-
ber of categories associated with each entity, we exploit the Wikipedia API.
For EmbedEntSimilarity, we use embeddings trained by Li et al. [5]. We extract
Betweenness Centrality and PageRank from a graph that we construct from
the DBpedia RDF dump. Finally, in order to extract PARC, we build a map-
ping from anchors on Wikipedia to entities, extracted by processing Wikipedia
dump’s textual content. To build the rankers, we exploit SVMrank model trained
with features described in Table 1. The choice of SVMrank is motivated by the
fact that SVMrank has been shown to perform well in ranking problems similar
to ours [6]. The specification of our model, identical to the baseline, is as follows:
linear kernel, 0.01 as the trade-off between training error and margin, and the
loss function is the number of swapped pairs summed over all inputs.

Fig. 1. Feature importance ranked by value for implicit and explicit entity linking.

Table 2. P@1 of this work for implicit entity linking as compared to baselines. The
average is calculated with weighting of ratio of queries in each domain.

Person Organization Location Event Product/Device WrittenWork Film Average

This work (Implicit

entity linking)

66.37 62.6 62.02 77.77 70.58 74 76.78 67.53

Hosseini et al. 2019-a 59.82 61.23 58.25 54.09 67.63 72.97 76.43 64.34

Perera et al. 2016 49.6 49 49.8 50.4 48.9 61.05 60.97 52.81

4 Results and Discussion

We report the overall results for the implicit entity linking task in Table 2 and
compare performance of the introduced features against two state of the art
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baselines. As seen, the proposed features when employed within the context
of a learning to rank approach show improved performance compared to the
two baselines over all entity domains. To evaluate the importance of features,
we draw upon their Gini scores, as reported in Fig. 1. Literature on explicit
entity linking report that graph-based features such as ViewCount alone are
enough for successfully performing linking [1]. This point is reassured in our
experiments as well; as seen in Fig. 1, CatKB, ViewCount, and OutlinksKB are
among the top 10 best performing features for explicit entity linking. In case
of implicit entity linking, however, only one of the graph-based features, i.e.,
ViewCount, is to be found among the top 10. A lower feature importance for
Graph-based features for implicit entity linking as compared to explicit linking
shows the difference between the two tasks. We further perform experiments
with different groups of features as categorized in our work. We run our sys-
tems with features of the following four groups: Term-based and String-based
(we combine these two categories as string-based features alone do not produce
any noticeable results), Graph-based (popularity-based), Graph-based (network-
based), and Graph-based (combined), i.e., the combination of popularity-based
and network-based features; results are reported in Table 3. As seen, there are sig-
nificant differences between feature performance for implicit and explicit entity
linking tasks. For implicit linking there is significant difference between the per-
formance of term-based features and that of the graph-based features. However,
such a difference is not noticeable for explicit linking. Most specifically, we find
that: (1) Term-based features are the most discriminative features for perform-
ing implicit entity linking. This is because those terms that appear in the input
text, e.g. tweet, have close resemblance to the textual representation of the tar-
get entity. While strong features, these term-based features are not as effective
for explicit entity linking; (2) Graph-based popularity features are quite effec-
tive for implicit entity linking. This can be in part due to the fact that users
often use implicit mentions when they believe their audience can understand the
implicit reference. Such identifiable entities are often those which have become
‘hot’ in the social sphere or widely mentioned by the community. As such, graph-
based popularity features that capture these characteristics are effective. On the
other hand, these features are not useful for explicit entity linking at all. (3) On
the contrary, graph-based network features are quite effective for explicit entity
linking. This can be explained by the fact that network measures determine the
importance of entities that form effective priors for the likelihood of that entity
being mentioned in text. When explicitly mentioned, these priors accurately

Table 3. P@1 of implicit and explicit entity linking with subsets of features.

Term and
string-based

Graph-based
(popularity)

Graph-based
(network)

KB (combined)

Implicit linking 70.58 41.17 5.88 47.05

Explicit linking 31.62 7.26 25.21 27.35
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estimate the likelihood of the entity to be mentioned. However, when discussing
implicit mentions, these priors are not accurate but rather priors based on popu-
larity of entities are more accurate; and, (4) Finally, we find that popularity and
network features have reinforcing effect on each other for implicit entity linking
and as such, it is helpful to include features from both categories when building
an implicit entity linker. On the other hand, these features have an overlapping
effect on each other for explicit entity linking and as such the inclusion of only
network-based features seems to be a better strategy.
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Abstract. Colorectal cancer is the third most common cancer-related
death after lung cancer and breast cancer worldwide. The risk of develop-
ing colorectal cancer could be reduced by early diagnosis of polyps during
a colonoscopy. Computer-aided diagnosis systems have the potential to
be applied for polyp screening and reduce the number of missing polyps.
In this paper, we compare the performance of different deep learning
architectures as feature extractors, i.e. ResNet, DenseNet, InceptionV3,
InceptionResNetV2 and SE-ResNeXt in the encoder part of a U-Net
architecture. We validated the performance of presented ensemble mod-
els on the CVC-Clinic (GIANA 2018) dataset. The DenseNet169 fea-
ture extractor combined with U-Net architecture outperformed the other
counterparts and achieved an accuracy of 99.15%, Dice similarity coeffi-
cient of 90.87%, and Jaccard index of 83.82%.

Keywords: Convolutional neural networks · Polyp segmentation ·
Colonoscopy images · Computer-aided diagnosis · Encoder-decoder

1 Introduction

Colorectal cancer is the third most common cancer-related death in the United
States in both men and women. According to the annual report provided by
American cancer society [3], approximately 101,420 new cases of colon cancer
and 44,180 new cases of rectal cancer will be diagnosed in 2019. Additionally,
51,020 patients are expected to die from colorectal cancer during 2019 in the
United States. Most colorectal cancers start as benign polyps in the inner lin-
ings of the colon or rectum. Removal of these polyps can decrease the risk of
developing cancer. Colonoscopy is the gold standard for screening and detecting
polyps [5]. Screening and analysis of polyps in colonoscopy images is dependent
on experienced endoscopists [21]. Polyp detection is considered as a challenging
task due to the variations in size and shape of polyps among different patients.
This is illustrated in Fig. 1, where the segmented regions vary in size, shape and
position.
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Fig. 1. Some examples of polyps from colonoscopy images (first row) and their corre-
sponding manual segmentations provided by expert endoscopists (second row).

The miss rates of smaller polyps during the colonoscopy is also another issue
that needs to be addressed. Developing computer-aided diagnosis (CAD) systems
can assist physicians in the early detection of polyps. CAD systems using convo-
lutional neural networks (CNN) is an active research area and has the potential
to reduce polyp miss rate [20]. Recent developments based on the application of
deep learning-based techniques achieved promising results for the segmentation
and extraction of polyps and improved the detection rate, despite the complexity
of the case during colonoscopy [12,17,19,26]. The presence of visual occlusions
such as shadows, reflections, blurriness and illumination conditions, as shown
in Fig. 2 can adversely affect the performance of CNN and the quality of the
segmented polyp region.

Fig. 2. Examples of different noises exist in colonoscopy images.
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1.1 Motivation and Contributions

The main motivation of this paper is to compare the performance of different
CNN modules, i.e. Squeeze-and-Excitation (SE) blocks, inception blocks, resid-
ual blocks and dense blocks for building automatic polyp segmentation systems.
Considering the problem of intra- and inter-observer variability, designing hand-
crafted features with limited representation capability requires expert knowl-
edge and extensive application-specific fine-tuning. Also, employing very deep
networks for small data samples suffers from gradient vanishing and poor local
minima issues. In this study, we evaluate the performance of different CNN
architectures (e.g., ResNet [10], DenseNet [14], InceptionV3 [24], InceptionRes-
Net [23], SE-ResNeXt [11]) with various modules as feature extractor to the
encoder part of a U-Net architecture to investigate the impact of incorporating
modules in extracting high-level contextual information from the input image.
In this way, we provide better insights on how different convolutional pathways
efficiently incorporate both local and contextual image information for training
producers and cope with the inherent variability of medical data. We validated
the performance of presented ensemble models using the CVC-ClinicDB (GIANA
2018) dataset.

The rest of this study is organized as follows. Section 2 provides the related
work in the literature on polyp segmentation approaches. Section 3 presents a
detailed description of materials and the methodology. Section 4 describes exper-
imental analysis and discussion of the performance of the segmentation models.
Finally, Sect. 5 concludes the paper and provides future directions.

2 Related Work

Li et al. [17] presented a fully convolutional neural network for polyp segmenta-
tion. The feature extraction stage consists of 8 convolution layers, and 5 pooling
layers. The presented method evaluated on CVC-ClinicDB. Li et al. approach
obtained an accuracy of 96.98%, f1-score of 83.01%, sensitivity of 77.32% and
specificity of 99.05%.

Akbari et al. [4] applied a fully convolutional neural network (FCN-8S) for
polyp segmentation. An image patch selection method used for training proce-
dure. Also, a post-processing method (Otsu thresholding) employed on the prob-
ability map to improve the performance of the proposed method on the CVC-
ColonDB [1] database. Akbari et al. method achieved an accuracy of 97.70% and
a Dice score of 81.00%.

Qadir et al. [21] trained a Mask R-CNN with different CNN architec-
tures (Resnet50, Resnet101 and InceptionResnetV2) as a feature extractor for
polyp detection and segmentation. Also, two ensemble models of (ensemble of
Resnet50 and Resnet101) and (ensemble of Resnet50 and InceptionResnetV2)
were employed on CVC-ColonDB dataset. Qadir’s approach achieved 72.59%
recall, 80.00% precision, 70.42% Dice score, and 61.24% Jaccard index.

Nguyen and Lee [19] used a deep encoder-decoder network method for polyp
segmentation from colonoscopy images. The presented encoder-decoder structure



Automatic Polyp Segmentation Using Convolutional Neural Networks 293

consists of atrous convolution and depthwise separable convolution. To improve
the performance, the proposed model pre-trained with the VOC 2012 dataset and
achieved 88.9% of Dice score and 89.35% of Jaccard index on the CVC-ColonDB
database.

Kang and Gwak [15] employed Mask R-CNN to segment polyp regions in
colonoscopy images. Also, an ensemble Mask R-CNN model with different back-
bone structures (ResNet50 and ResNet101) was adopted to further improve
the model performance. The Mask R-CNN was first trained on the COCO
dataset and then fine-tuned for polyp segmentation. Three datasets, i.e. CVC-
ClinicDB, ETIS-Larib, and CVC-ColonDB, used to measure the performance of
the proposed model. The best result achieved on the CVC-ColonDB dataset with
77.92% mean pixel precision, 76.25% mean pixel recall and 69.4% intersection
over the union.

3 Methods and Materials

3.1 Experimental Dataset

In this paper, CVC-ClinicDB [7,8,25] database, publicly available at [2], is used
to validate the performance of the presented method. The database consists of
300 Standard Definition (SD) colonoscopy images with a resolution of 574× 500
pixels, and each image contains one polyp. Each frame has a corresponding
ground truth of the region covered by the polyp.

3.2 Data Pre-processing

Resizing: Regarding to the black margin of each image as illustrated in Fig. 3,
we center-cropped all images of SD-CVC-ClinicDB from the original size of 574×
500 pixels to the appropriate size 500× 500 pixels using bicubic interpolation to
reduce the non-informative adjacent background regions.

Data Augmentation: Recent works have demonstrated the advantages of data
augmentation methods in extending the size of training data to cover all of the
data variances. In this regard, various data augmentation techniques such as
horizontal and vertical flipping, rotating and zooming are applied to enlarge the
dataset and aid to successfully accomplish segmentation task. Figure 3 shows
the examples of the original polyp image (Fig. 3.a) after applying different data
augmentation methods. The used methods of augmentation are vertical flip-
ping (Fig. 3.b), horizontal flipping (Fig. 3.c), random filter such as blur, sharpen
(Fig. 3.d), random contrast by a factor of 0.5 (Fig. 3.e), and finally, random
brightness by a factor of 0.5 (Fig. 3.f).

Z-Score Normalization: To have a uniform distribution from input images
and remove bias from input features, we re-scaled the intensity values of the input
images to have a zero mean and a standard deviation of one to standardize the
input images.
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(a) Original image (b) Vertical Flip (c) Horizontal Flip

(d) Random Filter (e) Random Contrast (f) Random Brightness

Fig. 3. Examples of data augmentation methods.

Image Normalization: Before feeding images into the CNN models, we also
normalize the intensity values of input images using ImageNet mean subtrac-
tion [16]. The ImageNet mean is a pre-computed constant derived from Ima-
geNet [9] database.

3.3 Feature Extraction Using Transfer Learning Strategy

The intuition behind transfer learning is that knowledge learned by a cross-
domain dataset transfer into the new dataset in another domain. The main
advantages of transfer learning are the improvement of the network performance,
reducing the issue of over-fitting, reducing the computational cost, and also the
acceleration of the convergence of the network [18]. In this approach, instead
of training a model from scratch, the weights trained on ImageNet dataset or
other similar cross-domain dataset is used to initialize weights for the current
task. Providing training data large enough to sufficiently train a CNN model
is limited due to privacy concerns, which is a common issue in the medical
domain. To address the issue of insufficient training samples, transfer learning
strategy has also been widely used for accurate and automatic feature extraction
in developing various CAD systems.

3.4 Ensemble Method

U-Net Architecture. U-Net, proposed by Ronneberger et al. [22] in 2015, is
an encoder-decoder convolutional network that won ISBI cell tracking challenge.
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The encoder or down-sampling layers of U-Net architecture learn the feature
maps and the decoder or up-sampling layers provide precise segmentation. The
encoder part has alternating convolutional filters and max-pooling layers with
ReLU activation function to down-sample the data. When the input image is fed
into the network, representative features are produced by convolutions at each
layer.

Fig. 4. Proposed Approach for polyp segmentation. The CNN network is based on
encoder-decoder of U-Net architecture with an encoder of pre-trained VGG16 as an
example.

Pre-trained CNN Feature Extractors. For the down-sampling part of the
U-Net architecture, different deep CNN-based feature extractors were selected
to extract high-level features from the input image. The choice of the feature
extractor is based on different modules incorporated into the associated CNN
models that successfully achieve the best segmentation performance in the litera-
ture. In this study, we selected five Deep CNN architectures as feature extractors,
namely ResNet, DenseNet, InceptionV3, InceptionResNetV2 and Squeeze-and-
Excitation Networks (SE-ResNeXt), to compare their performance in polyp seg-
mentation task. Residual blocks in ResNet architecture consists of two or three
sequential convolutional layers and a supplementary shortcut connection. This
shortcut connection adds the output of the previous layer to the output of the
next layer, enabling to pass the signal without modification. This architecture
helps reduce the degradation of the gradient in deep networks. The inception
module creates wider networks rather than deeper by adding filters of three dif-
ferent sizes (1 × 1, 3 × 3, and 5 × 5) and an additional max-pooling layer. The
output is then concatenated together and is sent to the next inception module.
Also, before 3 × 3 and 5 × 5 convolutions, an extra 1 × 1 convolution is added
to limit the number of input channels. In Dense modules, the previous layer is
merged into the future layer by concatenation, instead of using shortcut connec-
tions as in ResNet modules. In the Dense module, all feature maps from a layer
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are connected to all other subsequent layers. SE-ResNeXt introduced an opera-
tion that can adaptively recalibrate channel-wise feature responses of each fea-
ture map. SE-ResNeXt is the integration of ResNet into squeeze-and-excitation
blocks to further improve the accuracy of the network. Inception-ResNet is a
hybrid of the Inception architecture with residual connections to boost the rep-
resentational power of the network. The proposed CNN network based on U-Net
architecture with a pre-trained VGG16 feature extractor is illustrated in Fig. 4.

3.5 Evaluation Criteria

To measure the performance of the proposed method for polyp segmentation, we
employed common segmentation evaluation metrics: Jaccard index, also known
as intersection over union (IoU), and Dice similarity score to quantitatively
measure similarity and difference between the predicted mask from segmenta-
tion model and the ground-truth mask. These metrics are computed by the
following:

Jaccard index (A,B) =
| A ∩ B |
| A ∪ B | =

| A ∩ B |
| A | + | B | − | A ∩ B | (1)

Dice (A,B) =
2 × | A ∩ B |
| A | + | B | (2)

Where A represents the output binary mask, produced from the segmentation
method and B represents the ground-truth mask, ∪ represents union set between
A and B, and ∩ represents the intersection set between A and B.

We also used accuracy to measure the overall accuracy of the segmentation
models (binary classification). A high accuracy demonstrates that most of the
polyp pixels were classified correctly.

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

True Positive (TP) represents the number of correctly predicted pixels as
polyp. False Positive (FP) represents misclassified background pixels as polyp.
False Negative (FN) represents misclassified polyp pixels that misclassified as
background, and True Negative (TN) represents the background pixels that are
correctly classified as background.

4 Experiments and Results

4.1 Experimental Setup

For this study, we randomly selected 80% of the CVC-ClinicDB images as the
training and validation set and the remaining 20% for the test set. There is no
intersection between the training and test images. To update the weight, we used
Adam optimizer with a learning rate, β1 and β2 of 10-5, 0.9, 0.999, respectively.
The batch size was set to 2, and all models were trained for 50 epochs. Our
experiment is implemented in Python using Keras package with Tensorflow as
backend and run on Nvidia GeForce GTX 1080 Ti GPU with 11 GB RAM.
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4.2 Results and Discussion

The accuracy, Dice score and Jaccard index of the obtained results are summa-
rized in Table 1. There is a level of variation in the performance of all models.
Analyzing Table 1, U-Net with DenseNet169 backbone feature extractor outper-
formed the other approaches, where the U-Net with InceptionResNetV2 back-
bone feature extractor achieved the second-best results with a slightly lower
performance rate. We believe that dense modules, inception modules and also
residual blocks as part of U-Net encoder provide an efficient segmentation pro-
cess and overcome the issue of over-segmentation [13]. U-Net with DenseNet169
achieved an accuracy of 99.15% in comparison to 99.10% for InceptionResNetV2
architecture. Also, Dice score for DenseNet169 model was 90.87% compared to
90.42% for InceptionResNetV2. DenseNet169 also had better results for Jaccard
index, 83.82% compared to 83.16% for InceptionResNetV2 architecture.

Table 1. Evaluation of the segmentation results from different combinations of the
pre-trained feature extractors and U-Net architecture.

Accuracy (%) DICE (%) Jaccard index (%)

Baseline U-Net [22] 97.92 75.86 63.53

SegNet [6] 95.12 68.39 61.57

U-Net+ResNet34 98.09 88.08 79.22

U-Net+ResNet50 98.77 86.06 77.62

U-Net+ResNet152 98.9 87.67 79.22

U-Net+DenseNet121 98.72 85.42 77.35

U-Net+DenseNet169 99.15 90.87 83.82

U-Net+DenseNet201 98.85 87.54 80.2

U-Net+InceptionV3 99.08 89.63 81.84

U-Net+InceptionResNetV2 99.1 90.42 83.16

U-Net+SE-ResNeXt50 98.79 86.61 79.05

U-Net+SE-ResNeXt101 98.9 87.63 80.09

To justify the performance of the ensemble architectures, the performance of
baseline U-Net and SegNet architectures are also evaluated and compared with
the presented approach. The worst performance is for SegNet with a Jaccard
index of 61.57%, Dice score of 68.39%, and accuracy of 95.12%. U-Net with
DenseNet169 significantly improves the baseline U-Net up to 15.01%, and the
baseline SegNet architecture up to 22.48% in terms of Dice score. Moreover,
U-Net with DenseNet169 improves baseline U-Net up to 20.29% and the SegNet
architecture up to 22.25% in terms of Jaccard index. Similar conclusions can
be drawn for accuracy metrics. The experimental results indicate the important
role of incorporating modules in encoder part of a convolutional segmentation
architecture in extracting hierarchical information from input images.
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Table 2. Comparison of performance of polyp segmentation models on the CVC-
ClinicDB dataset.

Input image Ground truth DenseNet169 ResNet50 Baseline U-Net

In Table 2, we illustrate three segmentation output results produced by the
DenseNet169, ResNet50 and the baseline U-Net model. As the results indicate,
the examples selected in the column of DenseNet169 can accurately segment
polyps from the background. Also, DensNet169 feature extractor can adequately
address different noises present in the input images, including shadows, reflection
and blurriness, etc. It should be noted that feature extractors such as ResNet50
and baseline U-Net suffer from over-segmentation. Over-segmentation affects the
Dice score and Jaccard index adversely. The main cause of over-segmentation
is the low-intensity variations between the foreground and the background and
also the lack of enough spatial information. Dense and InceptionResNet modules
can eliminate the over-segmentation and effectively segment out polyps with a
better performance rate than other models, as demonstrated in Table 2. Table 3
compares the performance of the proposed methods with that of [4,15,17,19,
21]. The obtained results were comparable with prior CNN-based methods in
the literature, as shown in Table 3. Both DenseNet169 and InceptionResNetV2
methods show better performance when compared with the existing methods.
However, Nguyen and Lee’s approach achieved better results in terms of Jaccard
index while the Dice score and accuracy of DenseNet169 and InceptionResNetV2
models outperformed those of Nguyen and Lee’s approach.
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Table 3. Quantitative comparison of the segmentation results with prior CNN-based
works on the polyp segmentation task.

Model Jaccard index (%) Dice score (%) Accuracy (%)

Li et al. [17] - - 96.98

Akbari et al. [4] - 81 97.7

Qadir et al. [21] 61.24 70.42

Nguyen and Lee [19] 89.35 88.9 -

Kang and Gwak [15] 69.46 - -

U-Net+DenseNet169 83.82 90.87 99.15

U-Net+InceptionResNetV2 83.16 90.42 99.1

5 Conclusion

In this work, we presented a transfer learning-based encoder-decoder architec-
ture for automated polyp segmentation. The proposed framework consists of
a U-Net architecture with different backbone feature extractors, i.e. ResNet,
DenseNet, InceptionV3, InceptionResNetV2 and SE-ResNeXt. Our method is
validated using a dataset from the CVC-ClinicDB polyp segmentation chal-
lenge. The experimental results showed that the proposed ensemble method using
DenseNet169 and InceptionResNetV2 feature extractors achieved good results
and significantly outperformed the baseline U-Net, and SegNet approaches for
polyp segmentation. The main limitation of this work is the limited number of
polyp shapes and structures present in the provided dataset, which is a focus
of future work. By adding more training samples from external datasets, the
deep learning-based segmentation models could gain a better performance and
further improve the generalization ability of the network. Our future work will
also be dedicated to the investigation of the post-processing methods to reduce
the over-segmentation issue.
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Abstract. Time series data consists of high dimensional sets of obser-
vations with strong spatio-temporal relations. Accordingly, conventional
methods for comparing different regression methods, such as random
train-test splits, do not sufficiently evaluate time series forecasting
tasks. In this work, we introduce a robust technique for out-of-sample
forecasting that takes the spatio-temporal nature of time series into
account. We compare well-known auto-regressive integrated moving aver-
age (ARIMA) models with recurrent neural network (RNN) based mod-
els using Turkish electricity data. We observe that RNN-based models
outperform ARIMA models. Moreover, as the length of forecast interval
increases, the performance gap widens between these two approaches.

Keywords: Time series · Performance measures · Deep learning ·
ARIMA

1 Introduction

Time series, {yt}, are high dimensional sets of observations with strong spatio-
temporal relations. They can be broken down into time-dependent deterministic
component, Ωt, and random components, εt, and are represented as follows:

yt = Ωt + εt

The goal of prediction models is to identify as much of the deterministic com-
ponent, Ωt, without overfitting and capturing random noise. With the amount
of available modern tools, there is not enough analysis on the accuracy of a
given prediction model. Due to strong spatio-temporal relations between obser-
vations, time series forecasting can not be treated as a regular regression problem.
Learning the underlying deterministic component (Ωt) requires the capabilities
of modeling these spatio-temporal relations. Therefore, evaluation of different
time series forecasting algorithms requires special attention. The de facto eval-
uation methods in regular regression tasks, such as random train-test splits, are
c© Springer Nature Switzerland AG 2020
C. Goutte and X. Zhu (Eds.): Canadian AI 2020, LNAI 12109, pp. 302–308, 2020.
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no longer suitable for time series forecasting. In this work, we introduce a new
approach to compare models, known as an augmented out-of-sample model com-
parison method. This method is able to accurately compare different models on
a dataset, with a higher degree of certainty.

Current comparison techniques for time series models such as one shot com-
parison and random interval testing lack robustness and the testing usually does
not correctly reflect real-world situations. Our augmented out-of-sample model
comparison approach alleviates these issues by providing a more flexible and
robust technique. To demonstrate the effectiveness of the proposed approach,
we compared numerous models using highly seasonal Turkish electricity con-
sumption data. We find that recurrent neural network (RNN) architectures out-
perform classical algorithms in the associated forecasting task. Moreover, the
gap widens as the forecast interval grows.

2 Background

2.1 Time-Series Prediction

Earlier studies on time series forecasting focus on linear prediction models such
as auto regressive (AR), moving average (MA) and auto-regressive integrated
moving average (ARIMA) which predict future values based on a linear function
of past observations [2]. Recent advances in artificial neural networks and deep
learning allowed researchers to utilize deep structures in time series forecast-
ing. Several recent studies focus on Long Short Term Memory Neural Networks
(LSTM) and Gated Reccurent Units (GRU) architecture for forecasting prob-
lems in various fields including electricity demand prediction [3,8]. Further, a
recently developed GluonTS package provides a comprehensive deep-learning-
based time series modeling environment [1].

2.2 Time-Series Model Comparison Techniques

Commonly used methods for comparing time-series prediction models include
single forecast testing [7], multiple dataset testing [9] and random test interval
sampling [6]. The strengths to single interval tests is the simplicity of imple-
mentation as well as the translation to real-world tests. However, this approach
allows for lucky one-shot tests to determine the most accurate method. This
issue might be averted by expanding the algorithm to predict the future (data
points) for multiple datasets. One pitfall to multiple dataset testing is that it is
computationally expensive because of the effort to find numerous datasets and
training each model on each dataset. As an alternative, random test interval
sampling allows all tests to be done on the same dataset, hence there is no need
for multiple datasets to have multiple tests. However, disadvantage is that we are
no longer predicting the immediate future, as required in most practical appli-
cations. As well, we lose the ability to compare against algorithms that are data
dependent such as ARIMA, which can not make a prediction at some arbitrary
point in the future without the preceding residuals.
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To remedy aforementioned issues, Tashman et al. [10] proposed an augmented
training approach. The idea is to first train over the dataset, train1, then test the
trained model on a varying interval length of the next time period test1. Next,
the model’s hyper parameters are tuned, the entire model is retrained on the
initial test dataset train1 + test1 = train2, and then the model is tuned on the
next test interval test2. This process is repeated until some stopping condition is
met. This method has shown to be a fast ad hoc way to train a model with the
best hyper parameters, as well as a way to determine the performance of a single
model. Figure 1 provides a visualization of the augmented training approach.

Fig. 1. Train-test rolling visualization

3 Augmented Out-of-Sample Comparison Technique

Augmented training method can be used to evaluate numerous models on test
datasets. Specifically, the entire dataset is used to obtain the train-test sets, a
forecast interval, and the number of tests. After each test, the model is updated
to include the test data. In cases where old data should be discarded, a sliding

Algorithm 1: Augmented Out-Of-Sample Testing
Input : Dataset sorted by ascending date as D, algorithm as f , test interval

length as �, number of tests as n
Output: Array of predicted values and real values

1 T , U ← TrainTestSplit(D);
2 model ← TrainUsing(f, T );
3 {Cj}n

j=1 ← Split(U , n);
4 results ← ∅;
5 for i = 1 . . . n do
6 testingData ← RetrieveFirst(�, Ci);
7 testResults ← TestUsing(model, testingData);
8 results ← results ∪ testResults;
9 model ← UpdateUsing(model, Ci);

10 end
11 return results;
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window approach should be used. This would require model retraining, which is
a laborious task. Using the proposed expanding horizon approach, the model is
instead updated on a small portion of data which prevents full retraining. The
proposed approach is summarized in Algorithm 1.

By using fixed forecast intervals, numerous models can all be compared using
the same testing points. The test values can be then amalgamated using any
preferred metric, e.g. mean absolute error and mean squared error. Comparison
plots can be made to ensure that outlier data points do not impact the results.
If the dataset has seasonality, s, it is important to check that the test interval
length, �, is chosen such that gcd(s, �) = 1. This ensures that the test intervals
capture a wide variety of tests, instead of a particular segment of the seasonality.

4 Experiments

To demonstrate the power of the proposed technique, we evaluate numerous
models on the Turkish electricity dataset1. Specifically, we consider two RNN
algorithms: LSTM [5] and GRU [4]. In addition, we implement a variant of the
ARIMA model, called SARIMAX (Seasonal ARIMA with Regressors), and a
naive baseline model which uses last week’s data to predict the current week.

The electricity dataset is broken down into five years worth of hourly data.
Each day, on average, follows a typical trend where the electric usage starts to
rise in the morning hours, peaks in the middle of the day, and then tapers off in
the evening. There is weekly seasonality as well, with more electricity usage in
the weekdays compared to the weekends.

4.1 Experimental Settings

In our analysis, each model was fit using an 80–20 train-test split, with 25 indi-
vidual tests embedded in the test data. Then, three forecast intervals have been
chosen: 6 h, 24 h, and 48 h, which allows for 150, 600, and 1200 test points,
respectively. We only considered multi-step forecasts, but the same principles
translate to single-step forecasting as well.

Parameters of the SARIMAX model were determined by optimization in
order to ensure the best performance. The resulting SARIMAX model has an
order of (1, 1, 2) × (1, 0, 1)24 for the (p, d, q) × (P,D,Q)m parameters, respec-
tively. Both LSTM and GRU models contain two layers with 32 and 16 hidden
units, which is useful for making a multi-step forecast. In addition, the final
15% of the training data was placed into a validation set. This was done in
order to perform cross validation during training. Once the loss in the validation
plateaued, training is stopped and the trained models were saved. Using a set of
test values T of length N , we use Mean Absolute Percentage Error (MAPE) as
our aggregation metric, which can be defined as MAPE = 100× 1

N

∑
t∈T

|ŷt−yt|
yt

1 https://seffaflik.epias.com.tr/transparency/tuketim/gerceklesen-tuketim/gercek-
zamanli-tuketim.xhtml.
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where, for a given time t ∈ T , the predicted value is represented as ŷt and the
observed value is yt.

Additional regressors considered were cyclic day-of week and hour-of-day
regressors, which are incorporated using sinusoidal transformation. Due to the
inherent seasonality, instead of letting the model pick up this information, we
pass it to the model explicitly. We observed that addition of these regressors
improved the MAPE value by 10–30% depending on the model. Several other
potential regressors such as holidays and weather information were not included.

4.2 Benefits of Augmented Out-of-Sample Testing

Since the subtests were evaluated on many different points, our testing captured
many cases. In Fig. 2, each point on the x-axis is an individual subtest, which
could be a lucky-one shot test. We see that the subtest lines overlap, and the
performance of the subtest is heavily dependent on the subtest interval. If we had
used only one test, the choice could have been unlucky. For example, subtest 3
ranks algorithms from best to worst as SARIMAX, Baseline, LSTM, and GRU,
which is different from the actual raking of GRU, LSTM, Baseline, SARIMAX.
This comparison would have taken 25 times as long using a sliding window
approach. This highlights the benefits of updating models instead of retraining.

Fig. 2. Subtest MAPEs for 24-h Forecast

4.3 Results

Table 1 provides a numerical comparison between different models. LSTM and
GRU models produce similar results for a 6-h and a 48-h forecast, and the GRU
performs best for the 24-h forecast. Both RNN models perform fairly consistently
across all the tests with low deviations. In fact, while our objective was not to
develop the best possible prediction model, we note that predictive performance
of GRU is better than recently published studies with the same dataset (e.g.
see [11]). We note that each trained model predicts less accurately as the time
horizon increased. Interestingly, SARIMAX perform worse than the naive base-
line model for the long forecast since the SARIMAX model is not well-suited
to predict 48 intervals into the future with its relatively low number of param-
eters. The SARIMAX model error fluctuates a lot more and it misses many
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segments in the testing, which can be seen by the larger error bounds on its
predictions. If augmented out-of-sample testing had not been used, this pattern
in the predictive nature of SARIMAX would not have been evident.

Table 1. MAPE by prediction forecast interval with 95% error bounds

Hours Baseline (%) SARIMAX (%) LSTM (%) GRU (%)

6 6.8 ± 1.8 2.6 ± 0.5 1.8 ± 0.4 1.6 ± 0.3

24 6.8 ± 0.9 5.4 ± 0.5 2.6 ± 0.2 1.9 ± 0.1

48 6.2 ± 0.6 7.9 ± 0.5 3.2 ± 0.2 3.3 ± 0.2

5 Conclusion

The augmented out-of-sample method alleviates many shortcomings of the stan-
dard approaches that are currently used to compare different time series models.
By allowing for more testing on the same dataset, in a realistic manner to real-
world training, augmented out-of-sample comparison is able to determine the
best algorithm. In our numerical analysis, we found neural networks to outper-
form classical models to predict electricity consumption rates in Turkey using
the augmented out-of-sample model comparison. Beyond the scope of the elec-
tricity dataset, this comparison method is flexible to be used in comparing many
different time series models.
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Abstract. The bug growth pattern prediction is a complicated, unre-
lieved task, which needs considerable attention. Advance knowledge of
the likely number of bugs discovered in the software system helps soft-
ware developers in designating sufficient resources at a convenient time.
The developers may also use such information to take necessary actions
to increase the quality of the system and in turn customer satisfac-
tion. In this study, we examine eight different time series forecasting
models, including Long Short Term Memory Neural Networks (LSTM),
auto-regressive integrated moving average (ARIMA), and Random For-
est Regressor. Further, we assess the impact of exogenous variables such
as software release dates by incorporating those to the prediction models.
We analyze the quality of long-term prediction for each model based on
different performance metrics. The assessment is conducted on Mozilla,
which is a large open-source software application. The dataset is orig-
inally mined from Bugzilla and contains the number of bugs for the
project between Jan 2010 and Dec 2019. Our numerical analysis pro-
vides insights on evaluating the trends in a bug repository. We observe
that LSTM is effective when considering long-run predictions whereas
Random Forest Regressor enriched by exogenous variables performs bet-
ter for predicting the number of bugs in the short term.

Keywords: Time series prediction · Software quality · Bug number
prediction

1 Introduction

Bug prediction is a crucial task in software engineering practice as it lends insight
for practitioners to prepare their resources before their system becomes over-
whelmed with defects. Predicting the number of reported bugs to a software
system enables developers, managers, and product owners to distribute limited
resources, take timely decisions towards effort reduction, and maintain a high-
level of software quality. Therefore, there is a need for an automated bug number
estimation to facilitate decision making in software development.

The bug growth pattern is a complex and tedious task, and there is uncer-
tainty in the reporting time, assigning time, and fixing time of a bug [7]. Despite
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the random bug introduction pattern, there are certain rules and patterns in
those interactions which can be a valuable source of information [16]. In this
paper, we have extracted the number of bugs from the Mozilla bug repository
from Jan 2010 to Dec 2019. The data are split to the weekly bug number, and
there exist 522 weeks in total. As an exogenous factor, we extracted the release
times of Mozilla updates to see whether multivariate modelling can enhance the
performance of the prediction models.

Previous studies on modelling the bug growth patterns mostly use generic
time series models, e.g. auto-regressive integrated moving average (ARIMA),
X12 enhanced ARIMA, exponential smoothing, and polynomial regression
[12,13,17,21,23]. We note that the previous studies lack a rational baseline to
compare our methods against. In most cases, they compared different algorithms
with each other without having a concrete baseline. To alleviate the issue, we
defined lag(1) prediction as a naive baseline - that is, predicted value for the
target step is exactly equal to the last observed value. The worst-case scenario
is that the prediction model should outperform the naive baseline, otherwise the
model can be considered useless.

Time series prediction models have been used in the software engineering
domain for the past 20 years. Choraś et al. [2] exploit time series methods such
as ARIMA, Holt-Winters, and random walk to forecast various project-related
characteristics. Pati and Shukla [15] compared ARIMA and Artificial Neural
Network models for Debian Bug Number Prediction. Their comparative anal-
ysis indicates that the combination of ANN and ARIMA improves prediction
accuracy. Destefanis et al. [3] used time series analysis to determine seasonality
and trends of Affective Metrics for Software Development. They consider the
evolution of human aspects in software engineering. Our study is different than
these studies in that we focused on the reported number of bugs in software as
a metric which helps developers maintain the software quality.

Wang and Zhang [20] use a different approach to predict Defect Numbers.
They design Defect State Transition models and apply the Markovian method
to predict the number of defects at each state in the future. There are also
studies that consider software defect number prediction in method-level and file-
level [1,5,6]. Our work differs from these two studies as we consider the bug
reported to the system regardless of whether it is valid or not rather than the
number of bugs existing in different granularities of the system. Hence, we set
out to study different approaches that are not well investigated to identify the
number of bugs reported to the Mozilla project. We structure our study along
with the following two research questions:

RQ1: How accurately the number of bugs in a project can be pre-
dicted using time series analysis?

Time series prediction assumes that there are some patterns in the time
series, making it feasible for prediction. Nonetheless, it is not always the
case. We tried multiple time series models, including Long Short Term
Memory (LSTM), ARIMA, Exponential Smoothing (EXP), Weighted
Moving Average (WMA), and Random Forest (RF) regressor with or
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without exogenous features. Surprisingly, the performance of a one-step
prediction for all models is not significantly different. Furthermore, the
baseline seems as good as the others, a new finding which was not con-
sidered in previous studies.

RQ2: How feasible is long-term bug number prediction?
Not all models are able to predict more than one step ahead. Hence,
we investigate the feasibility and sensitivity of different models to long-
term prediction. Specifically, we consider a 3-month prediction (or equiv-
alently 13-week prediction). For the Mozilla project, LSTM shows a sig-
nificant improvement compared to traditional time series models. The
performance of the model is almost of the same quality as it was for a
one-step prediction.

The rest of the paper is organised as follows. Section 2 discusses the exper-
imental setting of the models, including the preprocessing phase, the datasets,
and a brief discussion of forecasting models. Section 3 presents the performance
results of different models for predictions over a long and short horizon. Section 4
discloses the threats to the validity of our findings. Finally, Sect. 5 concludes the
paper.

2 Methodology

To predict the number of introduced bugs in the system, we used both statisti-
cal models and machine learning techniques. Before applying time series mod-
els, we first check certain requirements to ensure that data is stationary [10].
We conduct Augmented Dickey-Fuller (ADF) for this purpose. The ADF test
determines the number of lags by the Akaike information criterion (AIC). The
null hypothesis (at the significance level α = 0.05) of the test is that the data
are non-stationary [4]. The p-value of the test is 0.012 thus rejecting the null
hypothesis. This suggests that the time series does not have a unit root, and in
turn it is stationary. Hence, the data can be modelled directly and there is no
need to have supplementary preprocessing or transformation. To further investi-
gate the result of the test, we conduct the auto-correlation function and partial
auto-correlation function as well (see Sect. 2.2).

In order to train time series models on the data, we applied a rolling method
for training a time series dataset [18]. The idea is to train the dataset, train(0−t),
including time series from time 0 to t, and test the model on time t + 1, testt+1.
In the next step, the ground truth at time t + 1 is added to the training set and
tested on testt+2. Figure 1 demonstrates a visual representation of this approach.

We used the weekly reported bug dataset from January 2010 to January
2017 as the training set and February 2017 to December 2019 as the test set (see
Sect. 2.1). After the training-test split based on the rolling approach, different
models have been evaluated for the given dataset (see Sect. 2.3).
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...

Fig. 1. Train-test rolling visualisation

2.1 Data

We have extracted the number of reported bugs from the Mozilla bug repository1.
Mozilla is established in 1998 by Netscape as an open-source community. The
bug-related information for Mozilla and its products is tracked in the Bugzilla
system. We gather reported number of bugs data for Mozilla for the past decade
(from January 2010 to the end of December 2019) with a total count of 100,450.
We divided data into weekly bug number- that is 522 weeks in total. Mozilla
suite weekly bug arrival ranges from 50 to 558.

Figure 2 demonstrates the arrival and resolved bugs in the Mozilla project.
The clear outlier in the number of resolved bugs related to the end of 2013 is
manually removed from the dataset. Here, our aim is to predict the number of
bugs arriving to the system (arrival bugs) to help practitioners efficiently allocate
resources.
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Fig. 2. The number of bugs introduced and resolved in Mozilla during the past decade.
Horizontal black lines indicate release dates of different versions of the Mozilla project.

1 Mozilla Bug Tracking System. https://bugzilla.mozilla.org/.

https://bugzilla.mozilla.org/
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2.2 ACF and PACF

Auto-correlation function (ACF) defines the correlation of the series between
different lags. In other words, it specifies how well the current value of the
series is related to its past values. Therefore, this characteristic enables it to
depict seasonality, cycles, and trends in data. On the other hand, partial auto-
correlation function (PACF) shows the correlation of the residuals with the next
lag value. The sharp cut-off in PACF represents the number of Auto-Regressive
(AR) terms, p, while a sharp drop in ACF is associated with Moving Average
(MA) terms, q. Figure 3 illustrates the general tendency in ACFs and PACFs
calculated on our training set. The PACF drops sharply when the lag is 2, indi-
cating the number of AR terms, p, is two. ACF does not have such behaviour,
so we assume q is equal to zero.

(a) Auto-correlation Function (b) Partial Auto-correlation Function

Fig. 3. ACF and PACF plots. ACF Long short term memory gradual decline whereas
PACF cuts off sharply.

2.3 Forecasting Models

In order to forecast the issues reported to the Mozilla project, we consider dif-
ferent algorithms, including LSTM, ARIMA, Exponential Smoothing, Weighted
Moving Average, and RF regressor. We also defined exogenous variables (covari-
ates) to examine the effect of external and seasonal variables on the prediction
performance. The exogenous variables include Branch dates (from version his-
tory), week of the month, month of the year, and year. For the models which
incorporate exogenous variables, we add “x” at the end of their name; for
instance, RFx is a random forest containing exogenous variables. The brief expla-
nations for each model are provided below.

1. Naive Baseline: It assumes the number of bugs at time t is equal to that at
time t−1. Note that we expect to see a better result for the proposed models
compared to naive baseline defined in this manner.
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2. EXP: It considers two factors in its prediction: the forecast value at the
previous timestamp and its actual value. Therefore, it is defined as

Xt = αXt−1 + (1 − α)X̂t−1

where Xt and X̂t are the actual and predicted values at time t, respectively,
and α is the smoothing level.

3. WMA: Weighted Moving Average simply forecasts based on a weighted aver-
age of the previous steps.

4. ARIMA: It is one of the most popular models used for time series predic-
tion [2,14,15,24]. The general ARIMA model (p, q, d) is formulated as

Wt =
p∑

i=1

αiWt−i +
q∑

j=0

βjet−j

where Wt = Xt−Xt−d, αi and βi represent the linear coefficients of the model,
e(t) is the error concerning the mean, and d is the degree of non-stationary
homogeneity. The value associated with each parameter has been discussed
in Sect. 2.2.

5. LSTM: Long short-term memory is widely used for time series analysis. They
capture both long temporal dependencies and short term patterns in data.
We use the LSTM cell architecture defined by [8] as follows:

ft = σ
(
Wf .[ht−1, xt] + bf

)

it = σ
(
Wi.[ht−1, xt] + bi

)

Ĉt = tanh
(
Wc.[ht−1, xt] + bc

)

Ct = ft × Ct−1 + it × Ĉt

ot = σ
(
Wo.[ht−1, xt] + bo

)

ht = ot × tanh(Ct)
where b is the bias term in all equations. ft is the forget gate deciding which
information coming from hidden state ht−1 and the new input x should be
discarded. Update layer, it, selects critical information to be stored and mul-
tiplied with candidate vector, Ĉt, generating Ct vector as the result. Finally,
the model decides which information should be reported, ot, and which one
should be passed to the next cell, ht.

6. RF: Unlike the greedy nature of uni-variate trees, Random Forest is less
prone to overfitting on the data as it is an amalgam of DTs which takes the
random subset of features in each tree. We applied RF Regressor as a new
method that has not been used in this domain.

The parameters of the models are shown in Table 1.
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Table 1. Models’ parameter settings

Model Settings

EXP α = 0.5

WMA Number of previous steps = 2

Weights = [0.66, 0.33]

ARIMA [p, q, d] = [2, 0, 0]

LSTM Number of units = 100

Number of epochs = 50

with log and difference transformation

RF Number of trees = 100

Number of feature = sqrt (total features)

3 Results

After designing the experiment, Root Mean Square Error (RMSE), R-squared
(R2), Error percentage, Median Absolute Error (MAE), and Error Stand Devi-
ation (Std) are used to contrast the algorithms’ performance.

Table 2 shows the performance of each method. Random Forest with exoge-
nous variables (RFx) has the best performance in terms of RMSE, error percent-
age and standard deviation of the errors. Surprisingly, the simple exponential
smoothing generates reliable predictions in terms of MAE and R2. We observe
that adding exogenous variables does not necessarily augment the performance
of the algorithms, including ARIMA and LSTM. One of the reasons could be
the sensitivity of those algorithms to the new features. They cannot differentiate
between the time series and exogenous variables; thus, the effect of the values
of previous time steps will be eclipsed by the newly defined variables. On the
other hand, in the software engineering domain, the Random Forest is proved to
be robust, highly accurate, and resilient to noisy data [9,11]. Therefore, it can
deal with new features that might be unimportant or have a negligible effect on
the output. RFx has a better performance than a simple RF Regressor as more
exogenous features will reduce its bias. Figure 4 shows the general overview of
the training-test split and predicted time series using Random Forest Regressor
with covariates.

The answer to the RQ1 is that due to random fluctuation in the number of
bugs introduced to the Mozilla project, the performance of the proposed models
remains almost the same. However, Random Forest with exogenous features
outperforms the others in most cases with the least variance (see Fig. 5).

In RQ1, we investigated the prediction performance of the models for the
next step (next week) whereas in the RQ2 we want to see the effect of long-term
prediction. As for the long-term prediction, the error of the models is accumu-
lated, the future predictions would not be as accurate as the closer ones. Here,
we analyse the performance of the models for a 3-month bug number prediction.
Figure 6 shows that LSTM with the capability of having both Long and Short
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Table 2. The result of different time series prediction models in terms of RMSE, R2,
Error percentage, MAE, and Std. The best value for each metric is bold-faced.

Method RMSE R-squared Error (%) MAE Std

EXP 39.36 0.114 0.178 22.09 39.36

WMA 39.26 0.270 0.181 25.17 39.25

ARIMA 37.46 −0.131 0.170 22.62 37.43

ARIMAx 42.97 −0.448 0.199 29.24 42.92

LSTM 39.86 0.127 0.185 25.07 39.78

LSTMx 42.29 0.383 0.194 25.81 42.29

RF 40.18 0.167 0.171 23.30 39.87

RFx 36.06 0.179 0.160 24.39 35.88

Base 41.04 0.346 0.183 27.00 41.03

2011 2012 2013 2014 2015 2016 2017 2018 2019
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400

500

Train
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RFx

Fig. 4. A sample output of the bug number prediction for the last 3 years

Term Memory performs at the same level in long-run without compromising
accuracy. This merit makes it the most suitable model for long-term prediction.

4 Threats to Validity

In this section, we disclose threats to the validity of our empirical study.

4.1 Construct Validity

We estimated the performance of the models using a train-test rolling approach.
However, the rolling approach can be used when we have enough history of
data. As cross-validation can not be directly applied in time series prediction,
the rolling strategy maintains the chronological order of the series and increases
its reliability. Other experiment designs, such as nested rolling Cross-validation
[19], may yield different results.
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Fig. 5. Prediction performance of different algorithms for one-step prediction (based
on error percentage)
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Fig. 6. 3-month prediction performance of the models, reported as cumulative mean
absolute error percentage

Although we study four different exogenous variables, there are likely more
external features (e.g., major release or social media rumours about a defect
in a project) that may impact the trends in the dataset. We plan to expand
our exogenous variables to include additional external factors since some previ-
ous works that the correct implementation of exogenous terms will improve the
performance of time series prediction [22].
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4.2 Internal Validity

The tracking dataset data is extracted from the Bugzilla using the REST API2.
While extracting the dataset, we consider all records between Jan 2010 and Dec
2019 to have the most recent number of reported bugs. However, some issue
records might be removed from the repository or imposed restricted access to
normal users. We ensure to extract all publicly available bugs; however, there
might be some other defects that are only visible to developers.

4.3 External Validity

We only consider the biggest project in Bugzilla, and hence, our result may not
be generalizable to all software systems. However, the dataset is a large, long-
lived system that alleviates the likelihood of bias in our report. Nonetheless,
replication of our study using additional systems may prove fruitful3.

We used 8 different models to evaluate the feasibility of bug number predic-
tion across the projects whereas using other forecasting techniques may boost
the prediction performance.

5 Conclusion and Future Work

In this paper, we study the effectiveness of a time series prediction methods in
predicting the number of bugs reported to a software repository. Our main aim
is to help practitioners anticipate an abnormal number of bugs introduced in
a specific time and be well prepared by planning ahead. Predicting the num-
ber of bugs discovered in the system may also provide insights for developers
and managers about the trends of discovered defects and therefore the quality
of software. Time series analyses have two-fold outcomes: first, to forecast the
number of future defects that may occur in the system; second, to identify the
trends and abnormality in the system.

Through an empirical study on the number of bugs introduced to the Mozilla
project, we made the following observations:

– The number of bugs introduced to the aforementioned system does not have
a unit root and therefore is stationary. Furthermore, no specific trend has
been observed in the dataset.

– Using eight different forecasting methods, we conclude that there are some
improvements in the prediction performance compared to the baseline. Con-
sidering five different metrics, Random Forest with exogenous variables
exceeds other methods. Nevertheless, we expected to observe a significantly
better performance while all models have almost the same error distribution.

2 https://wiki.mozilla.org/Bugzilla:REST API.
3 https://github.com/HadiJahanshahi/Bug-Number-Prediction.

https://wiki.mozilla.org/Bugzilla:REST_API
https://github.com/HadiJahanshahi/Bug-Number-Prediction
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– Using a neural network, especially LSTM, significantly improve the long-term
prediction. LSTM is not affected by the residual error of the prediction when
applied on the long-term test dataset whereas other methods construct their
prediction on the error of the last period; hence they are unable to challenge
the robustness of LSTM.
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Abstract. Modern cloud-based applications, including smart homes
and cities require high levels of reliability and availability. All cloud
services, including hardware and software experience failures because
of their large scale and heterogeneity nature. In this paper, the main
objective is to develop a failure prediction model that can early detect
failed jobs. The advantage of the proposed model is to enhance resource
utilization and to increase the efficiency of cloud applications. The pro-
posed model is evaluated based on three public available traces, which
are the Google cluster, Mustang, and Trinity. Moreover, four different
machine learning algorithms have been applied to the traces in order
to select the best accurate model. Furthermore, we have improved the
prediction accuracy using different feature selection techniques. The eval-
uation results show that the proposed model has achieved a high rate of
precision, recall, and f1-score.

Keywords: Failure prediction · Fault tolerance · Google cluster
trace · Trinity trace · Mustang trace

1 Introduction

Fault tolerance can be defined as the capability of cloud computing that includes
all cloud layers to deliver uninterrupted services even though one or more cloud
components can be failed for any reason. The cloud architectures have become
more complicated due to their large scale and heterogeneity nature. Thus, there
is a significant need to design and implement a dependable cloud computing
environment. The reliability and availability concerns have become one of the
most significant challenges facing cloud computing [8]. Failed jobs consume a
notable amount of computational resources and memory. Hence, wherever the
number of failed tasks increases, cloud resources such as CPU, memory, and disk
space will be wasted. This paper extends our previous work in [5] and establishes
a new generalized version of our failure prediction model that can be applied to
different workload traces. To the best of our knowledge, no study has focused
on the design and implement of the failure prediction model based on com-
paring four different classification algorithms: Decision Trees (DTs), Random
c© Springer Nature Switzerland AG 2020
C. Goutte and X. Zhu (Eds.): Canadian AI 2020, LNAI 12109, pp. 321–327, 2020.
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Forest (RF), Naive Bayes (NB), and Quadratic Discriminant Analysis (QDA),
and three different datasets: Google, Mustang, and Trinity. In addition, we eval-
uated and compared the model performance using different metrics to ensure
that the proposed model provides high accuracy of prediction.

To this end, the main contribution of this paper is to design and implement
a failure prediction model based on machine learning methods and provide a
comprehensive review of recent advances in this field. The remainder of this paper
is organized as follows: Sect. 2 discusses the related work, while the proposed
model is presented in Sect. 3. The experiments and evaluation results of the
proposed model are presented in Sect. 4, and Sect. 5 concludes the paper.

2 Related Work

Failure analysis and characterization have been studied widely in grid computing,
cloud cluster and supercomputer [2]. In [4], we have studied the workload features
such as memory usage, CPU speed, disk space. We find that there is a clear
correlation between the failed jobs and workload attributes. The Google traces [6]
are used in different research studies, including workload trace characterization
[2] and applying statistical methods in order to compare Google datacentres,
which consider as a cloud environment, to Grid or HPC systems. Sun et al. [9]
have applied deep learning model to predict a software fault. Also, they have
utilized a technique for generating new samples to produce failure data. Most
studies have focused mainly on failure analysis and characterization while there
is limited research has been done on failure prediction [2,3,7]. El-Sayed et al. [3]
have designed a job failure prediction model using a RF classifier. Amvrosiadis
et al. [1] have introduced four new traces which are: two from the private cloud
of Two Sigma, and two from HPC clusters located at the Los Alamos National
Laboratory (LANL).

3 Failure Prediction Model

We improved and extended our framework of failure analysis and prediction of
previous studies that were presented in [4,5]. The framework phases are pre-
sented in Fig. 1.

The five phases of the proposed model are summarized as follows: (1) The
data are loaded from different datasets, and the reason for using different traces
is to ensure that the proposed model is generic and can be applied to any Cloud
workload trace. (2) The data prepossessing and filtration techniques are applied
to the traces. The data preprocessing steps for Google trace have been presented
in detail in [4]. (3) Different feature selection algorithms are applied to improve
the model accuracy, then we can select the most important features that can
be used as input for the proposed model. (4) Four different classification algo-
rithms will be applied to the three different traces. (5) Finally, based on the best
prediction results, the failure prediction model will be selected, then the cloud
management system will make the appropriate decision. If the job is predicted
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Fig. 1. Proposed evaluation process

as a completed job, the job continues to be submitted and normally scheduled
to the available nodes. Otherwise, if the incoming job is predicted as a failed
job, failure mitigation techniques will be applied.

4 Experiments and Evaluation Results

4.1 Trace Description

Our experiments utilize three different datasets of large scale traces that were
collected from different organizations which are Google and LANL. The general
description of each trace is presented in Table 1.

Table 1. Basic description of each trace

Dataset Num of nodes Sample size Features Failed sample ratio (%)

Google 12550 28,546,501 11 36.2

Mustang 1600 2,113,175 9 7.2

Trinity 9408 20,277 14 16.5

Google cluster traces [6] contains many files of monitored data that are gen-
erated from a large system includes more than 12,500 nodes. The Google traces
contain 672,074 jobs and more than 28 million tasks, and these jobs are submit-
ted from May 1st to May 29th. Mustang is one of HPC clusters that used for
capacity computing at LANL from October 2011 to November 2016. Thus, we
can consider that Mustang trace is the longest publicly available trace to date.
Mustang contained of 1600 compute nodes, with 102 TB RAM and an overall of
38,400 AMD Opteron 6176 2.3 GHz cores. The trace contain of 2.1 million jobs,
and these jobs are submitted by 565 users [1]. Trinity is the largest supercom-
puter at LANL. Trinity consisted of 9408 compute nodes with a total of 301,056
Intel Xeon E5-2698v3 2.3 GHz cores and 1.2 PB RAM. Thus, Trinity trace is the
largest cluster with a publicly available trace by the number of CPU cores. This
dataset covers three months, from February to April 2017 [1].



324 M. S. Jassas and Q. H. Mahmoud

4.2 Experimental Setup

The traces size of Google, Mustang, and Trinity are approximately 15 GB,
280 MB, and 14 MB, respectively. Then, we use scikit-learn, which is machine
learning packages in python, to implement the failure prediction model. We run
this experiment on Microsoft Azure because Google trace has large volumes of
data requiring high performance computing (HPC) for analysis and prediction.

4.3 Failure Analysis and Characterization

For Google trace, we used all jobs that were submitted in 29 days of the trace (500
files). Our goal is to study the failure behaviour by focusing on the most important
events (“Fail” and “End”), which are presented in the Google trace as “3” and “4”,
respectively. Figure 2 shows the distribution of Google trace. Approximately 46%
of jobs are finished while a very high percentage of approximately 54% for failed
jobs in the first ten days of the trace. However, the percentage of completed jobs
has increased to be approximately 93% while the number of failed jobs has sharp
decreased to be only 7% in the last ten days of the trace. Figure 3 and 4 present the
distribution of Mustang and Trinity traces. Note: in Fig. 2, 3, and 4, the overlap
colors present both classes: failed and completed tasks.

Fig. 2. Distribution of job status for Google Trace (Color figure online)

Fig. 3. Distribution of job status for
Mustang (Color figure online)

Fig. 4. Distribution of job status for
Trinity (Color figure online)
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4.4 Classifiers and Prediction Techniques

After the datasets were preprocessed, the goal is to build a prediction model
that can predict the value of the target variables. The most accurate classifiers
can learn from a relatively small quantity of training data.

As shown in Fig. 5, it is clear that after we increase the number of trace
observations (Google trace in 29 days), the accuracy of Precision, Recall, and
F1-score for the RF and DTs classifiers have increased to be 98%, 95%, and 97%
respectively. The RF-based model has the longest time at 1023 s using Google
trace for 29 days compared to DTs, NB, and QDA, which have training time of
174, 3, and 9.2 s respectively.

(a) Google trace in 7 days (b) Google trace in 29 days

Fig. 5. Performance evaluation of different algorithms applied to the Google trace

(a) Mustang (b) Trinity

Fig. 6. Performance evaluation of different algorithms applied to the Mustang and
Trinity traces

As depicted in Fig. 6, the same classifiers were applied to Mustang and Trinity
traces. The RF and DTs have achieved the best accuracy compared to other
classifiers. For Mustang trace, the accuracy of precision, recall, and f1-score for
the RF and DTs are 90%, 87%, and 88%, respectively. However, the RF and DTs
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have achieved lower accuracy when they are applied to Trinity, the accuracy of
precision, recall, and f1-score for the RF and DTs algorithms are 72%, 69%, and
70%, respectively. As a result, it is clear that DTs and RF classification are the
best two models. However, the DTs have less complexity than the RF because
the classifier does not require long training time.

4.5 Feature Selection Algorithms

Features selection is one of the most important methods that can be used to
increase the accuracy of our model based on automatically select a number
of features that have a high contribution to the model output. Many benefits
of applying features selection techniques, such as reducing overfitting and also
reducing training time.

Table 2. Evaluation results of performing different feature selection techniques

Decision tree classifier Random forest classifier

Prec. Rec. F1-score Train. (t) Test. (t) Prec. Rec. F1-score Train. (t) Test. (t)

Google SelectKBest 97% 97% 97% 491.3 4.17 98% 97% 97% 2683 39.5

Feature importance 93% 93% 93% 518.3 7.9 95% 93% 94% 2924 60.40

RFE 99% 99% 99% 542.18 3.39 99% 99% 99% 2812 36.43

Mustang SelectKBest 92% 93% 93% 0.9 0.03 94% 94% 94% 9.66 0.32

Feature importance 94% 94% 93% 1.2 0.09 95% 94% 95% 10.3 0.56

RFE 93% 93% 93% 1.4 0.12 94% 93% 93% 11.1 0.73

Trinity SelectKBest 72% 69% 70% 0.05 0.0008 72% 65% 69% 0.27 0.008

Feature importance 88% 85% 87% 0.07 0.001 89% 85% 89% 0.38 0.02

RFE 84% 83% 84% 0.09 0.008 85% 81% 83% 0.58 0.09

Table 2 presents the evaluation results of performing different feature selec-
tion techniques. For Google trace, the DTs and RF have achieved the highest
accuracy for predicting failed class to be 99% for precision, recall, and f1-score
using RFE technique. As a result, applying feature selection techniques to the
proposed model has a significant impact on increasing the accuracy. For Mus-
tang, the RF classifier can predict the failed class with higher accuracy using
feature importance algorithm. The accuracy of Precision, Recall, and F1-score
are 95%, 94%, and 95%, respectively. For Trinity trace, we have achieved the
highest accuracy when we applied the feature importance algorithm and RF clas-
sifier. The accuracy of Precision, Recall, and F1-score are 89%, 85%, and 89%,
respectively. RF achieves higher accuracy compare to DTs when it is applied to
Trinity and Mustang. As a result, we selected RF as a failure prediction model
which can be considered as a generic model that can be applied to different traces
to achieve the best accurate results. El-Sayed et al. [3] have designed a job failure
prediction model using Random Forests (RF). The results show that they can
successfully recall up to 94% of all failed jobs with at least 95% precision. A
comparison with the previous studies, we have achieved the highest precision,
recall, f1-score. For Google trace, the DTs and RF classifiers have achieved the
highest accuracy for predicting failed class.
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5 Conclusion and Future Work

We have developed a prediction model for failed jobs based on machine learning
methods. The proposed model can be applied to the large datacenters in aim
to detect the failed jobs before the cloud management system schedules them.
Moreover, we have applied different classification algorithms to various workload
traces to come up with a new general model that can provide a high rate of
accuracy of predicting failed jobs. In future work, we will develop the proposed
model using a deep learning approach to improve the accuracy. Besides, future
research will consider mitigation policies and techniques.

Acknowledgement. The first author would like to thank Umm Al-Qura University,
Saudi Arabia for funding this work as part of his graduate scholarship.

References

1. Amvrosiadis, G., et al.: The Atlas cluster trace repository. ;login 43(4), 29–35 (2018)
2. Chen, X., Lu, C.D., Pattabiraman, K.: Failure analysis of jobs in compute clouds: a

Google cluster case study. In: 2014 IEEE 25th International Symposium on Software
Reliability Engineering, pp. 167–177. IEEE (2014)

3. El-Sayed, N., Zhu, H., Schroeder, B.: Learning from failure across multiple clusters:
a trace-driven approach to understanding, predicting, and mitigating job termi-
nations. In: 2017 IEEE 37th International Conference on Distributed Computing
Systems (ICDCS), pp. 1333–1344. IEEE (2017)

4. Jassas, M., Mahmoud, Q.H.: Failure analysis and characterization of scheduling
jobs in Google cluster trace. In: IECON 2018-44th Annual Conference of the IEEE
Industrial Electronics Society, pp. 3102–3107. IEEE (2018)

5. Jassas, M., Mahmoud, Q.H.: Failure characterization and prediction of scheduling
jobs in Google cluster traces. In: 2019 10th IEEE-GCC Conference and Exhibition
(GCCCE). IEEE (2019)

6. Reiss, C., Wilkes, J., Hellerstein, J.L.: Google cluster-usage traces: format+ schema.
Google Inc., White Paper, pp. 1–14 (2011)

7. Ros, A., Chen, L.Y., Binder, W.: Predicting and mitigating jobs failures in big data
clusters. In: 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, pp. 221–230 (2015)

8. Snir, M., et al.: Addressing failures in exascale computing. Int. J. High Perform.
Comput. Appl. 28(2), 129–173 (2014)

9. Sun, Y., Xu, L., Li, Y., Guo, L., Ma, Z., Wang, Y.: Utilizing deep architecture net-
works of VAE in software fault prediction. In: 2018 IEEE International Conference
on Parallel & Distributed Processing with Applications, pp. 870–877. IEEE (2018)



Customer Segmentation and Churn
Prediction in Online Retail

Nilay Jha, Dhruv Parekh, Malek Mouhoub(B), and Varun Makkar

Department of Computer Science, University of Regina, Regina, Canada
{nhj123,djp657,mouhoubm,vmq810}@uregina.ca

Abstract. The online retail industry has changed the way customers
shop as everything is available online. In order to build a loyal cus-
tomer base, a company needs to deploy various marketing strategies
focused on the diverse nature of its customers. We propose a model,
abbreviated as RFMOC, based on extension of recency frequency, mone-
tary (RFM) analysis with two new variables to segment customers. The
model also studies the segmentation performance for the k-means cluster-
ing algorithm. Moreover, customer lifetime value (CLV) is calculated for
the weighted RFMOC with weights for variables calculated by the ana-
lytic hierarchy process (AHP) and customer segments are then ranked
accordingly which helps to create targeted marketing strategies. At last,
the customer churn prediction is performed using logistic regression by
further extending the RFMOC with one more variable, abbreviated as
RFMOCD, in order to predict the churning behaviour of the customers.
The proposed approach is helpful to assess customer loyalty and to man-
age customer relationships in an effective manner.

Keywords: Online shopping · E-commerce · Customer segmentation ·
Churn prediction

1 Introduction

To retain existing customers and attract new ones is challenging for online retail-
ers. [1]. A possible solution is to segment customers and make targeted marketing
strategies for which historical data of customers is required. RFM analysis is a
technique that helps in extracting insights from the records and can be used for
segmentation of customers as well. However, sometimes RFM analysis alone is
not sufficiently insightful. In such situations, it is extended with other variables
[1]. This paper focuses on improving customer segmentation by extended RFM
model which is named RFMOC (Recency, Frequency, Monetary, Offer Factor and
Category Variance). K-means clustering is used to access RFMOC for better seg-
mentation in comparison to RFM. The values are standardized before clustering
using min-max normalization as it increases clustering performance [6]. Thus, the
study proves better feasibility of RFMOC as compared to classical RFM. More-
over, the RFMOC model is used to calculate CLV which is used to identify the loy-
alty of customers across segments. In order to calculate weights used by CLV for
c© Springer Nature Switzerland AG 2020
C. Goutte and X. Zhu (Eds.): Canadian AI 2020, LNAI 12109, pp. 328–334, 2020.
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RFMOC, AHP is used with recency and frequency having the highest importance
[4]. Apart from customer segmentation, the study also discusses the use churning
behavior of the customers and suggests a way to predict customer churn.

2 Background

2.1 Analytic Hierarchy Process (AHP)

AHP is used to calculate the relative importance of the desired variables. It
is a structured method that helps in studying and organizing complex deci-
sions. AHP helps decision-makers to set priorities and make the best decision by
reducing complex decisions to a series of pairwise comparisons [8]. AHP helps to
capture both the objective aspect (price, weight, etc.) and subjective (feelings,
preferences, etc.) aspects of the problem [8].

2.2 RFM Analysis

It is a process of studying the purchase behaviour of customers for making the
process of customer segmentation efficient. RFM analysis helps to recognize the
customers which are most likely to respond to marketing strategies. The inter-
pretation for R, F and M variables is as follows:

– Recency (R): It indicates number of days from the last purchase [3].
– Frequency (F): It indicated how frequently a customer makes purchases.

Basically, it is the number times a customer makes transactions over specific
period of time [3].

– Monetary (M): It indicates the sum of the amount spent by the customer
within a particular period of time [3].

The below-average values of all these parameters indicates that the com-
pany may lose customers if any actions are not taken. The above-average value
would indicate that such customers require attention, which can be achieved by
rewarding in an appropriate manner.

Once these values are known for each customer, the customers can be seg-
mented into 5 equal quantiles based on the distribution of recency (R), frequency
(F) and the monetary (M) values of a customer [1]. Based on the quintile values
for R, F, and M an RFM score is assigned which is obtained by concatenation
of R-F-M values [3]. For eg: If the customer has a value of R-Quartile = 4,
F-Quartile = 1 and M-Quartile = 2, his/her RFM score will be 412.
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3 The Proposed Model

The main steps of the model, as shown in Fig. 1, are described below in detail.

Fig. 1. The proposed architecture.

3.1 Data Pre-processing

In initial phase of the process, irrelevant fields are removed and the format of some
fields are changed to relevant ones. The customer data is aggregated based on
orders and additional variables are derived which contains Recency (R), Frequency
(F), Monetary (M), Offer Factor (O), Categorical Variance (C) and Distribution
Delay (D) are calculated. Then, the remaining process of RFM analysis is carried
out where R, F and M values are assigned respective quartiles and RFM score is
calculated. In proposed model, two more attributes are considered as for extending
RFM. The attributes derived from the data are as follows:

– The Offer Factor (O): This variable refers to how often a customer buys
a product during the offer periods. The offer factor can be obtained by the
following formula:

O = PIO/TP (1)

Here, PIO is total products purchased during offers and TP is total products
purchased. The value of O closer to one indicates that the customer gener-
ally purchases more during the offer periods whereas a value closer to zero
indicates that the customer is not much concerned about offers.

– Category Variance (C): This variable indicates how much variation is there
in the customer’s purchase behavior with respect to categories. The category
variance can be obtained by the formula:

C = PC/TC (2)

Here, PC is total number of categories from which the customer has purchased
products and TC is total number of available categories. The value of C closer
to 1 shows that the customer is interested in products from different categories
whereas the value closer to 0 means the customer considers the products from
a specific set of categories.

– Delay in Distribution (D): This variable will be used for the purpose
of churn prediction. It is borrowed from the RFMITSDP model and it the
indicates average time difference between the date on which the order is placed
and the date on which the order was shipped [1].
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3.2 Standardization

According to various studies, clustering with standardized attributes results into
better cluster outputs compared to non standardized values [6]. The standardiza-
tion technique used here is Min-Max normalization. The equation for Min-Max
normalization is same as mentioned in [2]. Here values of R, F and M are nor-
malized to match with range of variables O and C.

3.3 Clustering

In order to group the customers on the basis of recency, frequency and mone-
tary value, k-means clustering is used [5]. The possible number of groups (k) is
calculated according to Davies–Bouldin Index [5], the Average Silhouette score
and the Elbow test. The appropriate number of clusters obtained by all three of
them is 4. Once the appropriate number of clusters are finalized, the clustering
is applied. The performance is evaluated on the basis of silhouette index and the
cluster size ratio (the ratio of the largest cluster size to smallest cluster size).
The configurations on which the k-means clustering was performed are K-means
with RFM attributes, K-means with normalized RFM attributes and K-means
with normalized RFMOC attributes.

3.4 Calculating Weights

AHP is used to calculate weights for the RFMOC attributes. These weights
are used to calculate the CLV for the clusters obtained by applying k-means
clustering on normalized RFMOC attributes. The final calculated weights for R,
F, M, O and C variables using AHP are 0.398067, 0.287158, 0.156691, 0.0950614,
0.0630227 respectively. The precedence of the importance of the variables is:

WF > WR > WM > WO > WC

3.5 Calculating the CLV Score for Clusters

CLV is calculated for all the clusters to identify which cluster has customers
with the highest level of loyalty using the equation below mentioned:

CLVi = WR ∗a(Ri)+WF ∗a(Fi)+WM ∗a(Mi)+WO ∗a(Oi)+WC ∗a(Ci) (3)

Here i = ith cluster, a(X) stands for mean value of parameter X and Wx stands
for the weight of parameter X, computed using AHP. Once CLV, for each cluster
is calculated, the clusters are ranked accordingly. The cluster with the highest
rank represents the customers with the highest loyalty and likewise the loyalty
decreases with the ranking. The following are the results of calculating CLV with
clustering on normalized values of RFMOC:
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Table 1. Clusters with calculated CLV and assigned ranks.

Cluster-1 Cluster-2 Cluster-3 Cluster-4

CLV score 0.0883 0.1300 0.1309 0.0738

CLV rank 3 2 1 4

From Table 1, one can depict that cluster-3 has the highest number of loyal
customers whereas the cluster-2 comes second, cluster-1 third and then cluster-4.
The outcome of the CLV was verified by manually inspecting the values of the
RFM quartiles for different clusters.

3.6 Churn Prediction

Churn Prediction is an approach used to predict the churning behavior a cus-
tomer. A churned customer is one who is no longer making purchases. Here,
churn prediction is carried out using Logistic Regression with L1 penalty [7].
Here, RFMOC with derived varied D (discussed earlier) is used to predict cus-
tomer churn. For the purpose of this study, customer belonging to the 4th quar-
tile for recency and 3rd and 4th quartile for frequency are considered as churned.
The data used for this purpose is a subset of the dataset of 798 customers.

4 Experimentation

4.1 Dataset Description

The dataset used for this study is a combination of two datasets of the online sale of
Superstore with one dataset having data from 2011-to-2015 and other from 2015–
2018. The dataset set has historical data of 1590 customers and 30039 orders.

4.2 Customer Segmentation

To perform and evaluate the clustering a tool called SPSS Modeler (Statistical
Package for Social Sciences) was used. The tool provides the silhouette score
and the cluster ratio as discussed earlier in this paper are the metrics to access
the clustering performance. On evaluation of the outputs for the clustering,
normalized (represented by prefix ‘n’) RFMOC model performed better, the
results are as follows (Table 2):

Table 2. Output of k-means clustering with different configurations.

RFM n-RFM n-RFMOC

Silhouette score 0.6 0.6 0.7

Cluster ratio 5.96 4.17 4.08
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4.3 Churn Prediction

On accessing the performance of RFMOCD and RFM for churn prediction using
Logistic regression, It was found that RFMOCD performed better. As presented
in [7], the regression model was evaluated based on: (1) Precision, (2) Recall and
(3) Area under Reverse Operating Characteristics (ROC) Curve. The f1- score is
another parameter which is used to present balance the trade off between recall
and precision [4]. The results are shown in Table 3 are average of 4 tests.

Table 3. Churn prediction results.

Area under ROC Precision Recall F1-score

RFM 0.88 0.84 0.79 0.81

RFMOCD 0.91 0.93 0.85 0.88

5 Conclusions

A model abbreviated as RFMOC was proposed in the paper which is an extension
of RFM analysis. The performance of RFMOC model for customer segmentation
against RFM was evaluated on normalized values for attributes. The dataset used
contained customer data of transactions from 2011–2018 of a Superstore. It was
found that RFMOC performs better at segmentation. The CLV score for each
obtained segment was calculated to measure loyalty of each. The outcome of
CLV was verified manually by inspecting the data. Finally, one more variable D
was used with RFMOC for churn prediction and it was found that the RFMOCD
is better as compared to RFM. The proposed model thus can be effectively used
for customer segmentation and churn prediction in order planning the targeted
marketing strategies.
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Abstract. This paper aims to build a reliable decision support detec-
tion system to help physicians give more accurate risk profiles for breast
cancer patients. In this quantitative study, we use Bayesian network to
uncover hidden insights from the Wisconsin Breast Cancer Diagnostic
dataset. A Bayesian network was learned from the data and conditional
probability queries were performed. Lastly, a Bayesian network classifier
was built. We found diagnosis was conditionally dependent upon two fea-
tures: worst concave points and worst radius. Both the highest probabil-
ity for malignant cancer and lowest probability for benign diagnosis were
detected by Very High, (0.161, 0.291] for worst concave points and Very
High, (18.8, 36]µm for worst radius. The highest probability for benign
diagnosis and lowest probability for malignant cancer were detected by
Low, [0, 0.0649] for worst concave points and Low, [7.93, 13]µm for worst
radius. Our proposed Bayesian network classifier had: 96.31% accuracy,
92.92% sensitivity, 98.32% specificity, 97.04% positive predictive value,
and 95.90% negative predictive value, making it a robust model in terms
of accuracy, sensitivity, and specificity.

Keywords: Bayesian network · Inference · Decision support system ·
Healthcare · Breast cancer

1 Introduction

Breast cancer is the most common cancer found among women around the world.
In the year 2018 alone, there was a report of over two million cases accounting
for 25.4% of all new cases of cancer in women [2]. As breast cancer rates increase,
early detection and diagnosis are very important for early intervention and treat-
ments. False positive is misdiagnosing a healthy patient to have cancer and false
negative is misdiagnosing a cancer patient as healthy, which is detrimental. Addi-
tionally, in areas with limited resources, a reliable decision support system can
help clinicians detect cancer quickly and with greater confidence.

A Bayesian network is a probabilistic graphical model that represents con-
ditional dependencies between random variables. It is a directed acyclic graph

This paper was written as part of the Certificate in Data Analytics, Big Data, and
Predictive Analytics at Ryerson University.
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(DAG) consisting of nodes and edges. Nodes represent random variables and
edges represent conditional dependencies between these variables [9]. Every node
has a local probability distribution contributed by its parents [8]. In this paper,
we conducted a quantitative Bayesian analysis using the Wisconsin Breast Can-
cer Diagnostic dataset, which is open source and publicly available1.

Our research questions are:

RQ1 Which features and intervals detect the highest and lowest probabilities for
malignant cancer? Which features and intervals detect the highest and lowest
probabilities for benign diagnosis?

RQ2 What is the probability of a patient having a diagnosis of malignant or
benign event given feature measurements as evidence?

RQ3 How do models from literature compare to our proposed Bayesian network
classifier in terms of accuracy, sensitivity, and specificity?

2 Related Work

Wolberg et al. proposed three robust classification methods using different fea-
ture sets [14]. Logistic regression used Worst Radius, Worst Texture, and Worst
Concave Points features and Multisurface Method-Tree (MSM-T) used Worst
Area, Worst Texture, and Worst Smoothness features, which performed the same
as Xcyt program using Extreme Area, Extreme Smoothness, and Mean Texture
features (Table 2) [7,13]. In 2018, Westerdijk looked at correlation, recursive fea-
ture elimination, and genetic algorithm feature selection techniques and classifi-
cation models, logistic regression, random forest, support vector machine, artifi-
cial neural network, and ensemble, using 10-fold cross-validation (Table 2) [11].

In 2017, Abdou et al. quantitatively identified causal relationships for soft-
ware defects by employing Bayesian belief networks [1]. Abdou et al. learned the
structure of the Bayesian network using Hill-Climbing search algorithm, then
estimated the Bayesian network using the Peter and Clark (PC) algorithm and
conditional independence tests at significance level of 0.01 [1,6]. False positives
were excluded by checking the Markov blanket [1]. Cruz-Ramı́rez et al. investi-
gated seven Bayesian network (BN) classifiers for single and multiple observers
using two breast cancer databases (Table 2) [3]. Fallahi and Jafari found the
Bayesian network algorithm outperformed models AR+NN and NN (Table 2) [5].
Witteveen et al. compared logistic regression with various Bayesian networks
and found Bayesian networks with the most links performed better and logistic
regression slightly outperformed Bayesian networks [12].

3 Methods and Proposed Bayesian Network Model

All numeric attributes were discretized into four categories of equal number of
observations, each corresponding to a certain level: Low - minimum to 25%,
1 https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-
wisconsin.

https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin
https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin
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Medium - 25% to 50%, High - 50% to 75%, and Very High - 75% to maxi-
mum. The Bayesian network was learned using the greedy Hill-Climbing search
algorithm and the Akaike information criterion (AIC) metric for the score algo-
rithm [10]. To estimate the parameters, the PC algorithm was implemented using
the conditional independent test, G2 statistic, at a significance alpha level of
0.05. This could confirm the arc directions that are statistically significant [1,6]
The Markov blanket (parents, children, and spouses) of the diagnosis node was
checked for false positives [1]. Conditional probability distributions were deter-
mined to find the features conditionally dependent upon diagnosis (RQ1). Con-
ditional probability queries were performed using the likelihood weighting (lw)
algorithm to give the probability of diagnoses as events given feature inter-
vals as evidence for potential patients. RQ2 was answered using the query:
cpquery (fitted, event, evidence,method = “lw”). The BN classifier has a high
classification accuracy and optimal Bayes’s error [4]. A BN classifier was built
using 10-fold cross-validation and its parameters fitted using the Bayes method.
The posterior classification error “pred-lw” was used to obtain Bayesian poste-
rior estimates [10]. The accuracy, sensitivity, specificity, positive predictive value,
and negative predictive value were calculated.

4 Results

4.1 Bayesian Network

The resultant Bayesian network is shown in Fig. 1 and its corresponding condi-
tional probability table bar chart in Fig. 2. This shows that the diagnosis is con-
ditionally dependent upon two features: worst concave points and worst radius
and the combinations of feature intervals of parent nodes give patients either a
high or low probability of malignant or benign diagnosis (RQ1).

– The highest probability for malignant cancer was detected by Very High,
(0.161, 0.291] for worst concave points and Very High, (18.8, 36]µm for worst
radius.

– The lowest probability for malignant cancer was detected by Low, [0, 0.0649]
for worst concave points and Low, [7.93, 13]µm for worst radius.

– The highest probability for benign diagnosis was detected by Low, [0, 0.0649]
for worst concave points and Low, [7.93, 13]µm for worst radius.

– The lowest probability for benign diagnosis was detected by Very High, (0.161,
0.291] for worst concave points and Very High, (18.8, 36]µm for worst radius.

The PC algorithm could not estimate the cause and effect relationships at
an alpha significance level of 0.05 as the estimated arcs were undirected. From
Fig. 1, the Markov blanket consists of seven nodes: two parents - worst radius
and worst concave points, two children - mean texture and worst smoothness,
and three spouses - compactness standard error, mean smoothness, and worst
fractal dimension. There were no false positives in the Markov blanket.
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4.2 Conditional Probability Querying

Conditional probability queries were performed to predict outcomes for potential
patients (RQ2). This would help physicians assess and give patients a quantita-
tive probabilistic risk profile. Examples are:

P (M |wr = (18.8, 36]µm, wcp = [0, 0.0649]) = 44%
P (B|wr = (15, 18.8]µm, wcp = (0.0649, 0.0999]) = 90%

P (M |wr = (15, 18.8]µm, wcp = [0, 0.0649]) = 10%

B, M, wr, and wcp are benign, malignant, worst radius, and worst concave
points.

Fig. 1. The learned Bayesian network structure

4.3 Bayesian Network Classifier

Our BN classifier had 96.31% accuracy and 3.69% classification error. The sen-
sitivity, specificity, positive predictive value, and negative predictive value were:
92.92%, 98.32%, 97.04%, and 95.90%, as determined from Table 1.

Table 2 compares performance measures of our model to models found in
literature [3,5,11,13]. Westerdijk’s logistic regression had 97.35% accuracy com-
pared to Wolberg et al.’s 96.2% accuracy [11,13]. While Wolberg et al.’s highest
model accuracy was 97.5% for the MSM-T model, both Westerdijk’s support
vector machine and ensemble was 98.23% accuracy [11,13]. Running a logistic
model on our discretized dataset with Westerdijk’s features gave 94.71% accu-
racy and with Wolberg et al.’s features, 96.47% accuracy. The small difference for
Westerdijk’s model could have been due to different pre-processing techniques.
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Fig. 2. Conditional probabilities for the diagnosis node

Table 1. Confusion matrix
for BN classifier

Actual Benign Malignant

Benign 351 (TN) 6 (FP)

Malignant 15 (FN) 197 (TP)

Table 2. Model performance measures

Model Accuracy Sensitivity Specificity

BN classifier 0.9631 0.9292 0.9832

LR [13] 0.9620

MSM-T [13] 0.9750

LR [11] 0.9735 0.9524 0.9859

RF [11] 0.9735 0.9286 1

ANN [11] 0.9735 0.9286 1

SVM [11] 0.9823 0.9524 1

Ensemble [11] 0.9823 0.9524 1

BN classifier 1 [3] 0.9304

BN classifier 2 [3] 0.8331

BN classifier [5] 0.9815

AR+NN [5] 0.9740

NN [5] 0.9520

For RQ3, our goal was to build a model that was explainable rather than a
black box model that lacks interpretability. Our proposed model’s performance
was slightly lower but the difference is negligible, so we can conclude that our
model is robust in terms of accuracy, sensitivity, and specificity. Compared to
BN classifiers found in literature on breast cancer, our model outperforms those
models in terms of accuracy except for Fallahi and Jafari’s model (Table 2) [3,5].
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This could have resulted from employing the feature selection algorithm (RELI-
EFF) and Synthetic Minority Over-Sampling Technique (SMOTE).

5 Threats to Validity

Continuous variables have more variability making patterns difficult to capture;
therefore, we discretized our variables into four ordinal categories. However, with
finer granularity, we could determine more intervals for a finer analysis. While
we focused on reducing the number of false positives, techniques to reduce false
negatives could help evaluate other aspects of the model.

6 Conclusion and Future Work

Assuming there were no hidden variables in the dataset, the most probable
Bayesian network was learned from the discretized dataset. The highest prob-
ability for malignant cancer and lowest probability for benign diagnosis were
detected by Very High, (0.161, 0.291] for worst concave points and Very High,
(18.8, 36]µm for worst radius. The highest probability for benign diagnosis and
lowest probability for malignant cancer were detected by Low, [0, 0.0649] for
worst concave points and Low, [7.93, 13]µm for worst radius. The probabilities
of a patient having diagnoses given feature measurements as evidence were deter-
mined by querying. This enables the decision support system of clinicians to give
more accurate risk profiles for patients. The proposed BN classifier had 96.31%
accuracy, 92.92% sensitivity, and 98.32% specificity, suggesting it was a robust
model in addition to its reliability, reproducibility, and explainability. With the
help of a domain expert and more available current data, we can improve the
model. For future work, a finer granular quantitative analysis can be conducted
by discretizing numeric attributes into more intervals for further insights into
breast cancer detection and diagnosis.
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Abstract. In the Query Focused Abstractive Summarization (QFAS)
task, the goal is to generate abstractive summaries from the source doc-
ument that are relevant to the given query. In this paper, we propose a
new transfer learning technique by utilizing the pre-trained transformer
architecture for the QFAS task in the Debatepedia dataset. We find that
the Diversity Driven Attention model (DDA), which was the first model
applied on this dataset, only performs well when the dataset is aug-
mented by creating more training instances. In contrast, without requir-
ing any in-domain data augmentation, our proposed approach outper-
forms the DDA model as well as sets a new state-of-the-art result.

Keywords: Query · Abstractive summarization · Transformer · BERT

1 Introduction

In abstractive text summarization task, the goal is to create summaries contain-
ing novel words or phrases which have not appeared in the source document. In
the query focused summarization task, a query is also given along with docu-
ment(s) and the aim is to generate summaries based on the relevance between
the query and the document(s) [13]. While significant research has been done on
different datasets for generic abstractive summarization, the number of datasets
available for query-based abstractive summarization is very small [1,13]. For the
QFAS task, two of the most used datasets are the Debatepedia dataset1 [8] and
the datasets based on Document Understanding Conferences (DUC) between
2005 and 2007 [1]. However, these datasets are very small in size compared to
the generic abstractive summarization datasets.
1 http://www.debatepedia.org/.
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To address this problem, we introduce a transfer learning approach for the
QFAS task based on the transformer architecture by first pre-training our model
on a large generic abstractive summarization dataset followed by fine-tuning it
for the QFAS task via incorporating query relevance. Our contributions pre-
sented in this paper are summarized as follows. First, we propose a transfer
learning technique with transformer for the QFAS task. To the best of our knowl-
edge, this is the first work where transfer learning is utilized with transformer for
QFAS. Second, we perform extensive experiments on the Debatepedia dataset
and observe a new state-of-the-art result with our proposed approach. Unlike the
DDA model [8], which we find that fails to perform well without augmenting the
training data, our approach does not require any in-domain data augmentation.
Finally, we make the source code of this work publicly available2.

2 Related Work

Recently, researchers have applied various neural models based on encoder-
decoder architecture to generate abstractive summaries [7,10]. A major problem
of such models is that they tend to repeat the same word multiple times and thus
produce non-cohesive summaries. See et al. [11] address the problem by utilizing
the Pointer Generation Network (PGN) which discourages repetition using a
copy and coverage mechanism. More recently, the Bidirectional Encoder Repre-
sentations from Transformers (BERT) architecture for SUMmarization (BERT-
SUM) [4] model obtained state-of-the-art-results which used BERT [2] as encoder
and transformer decoder [12] as decoder for abstractive summarization.

While significant progress has been made on generic abstractive summariza-
tion, applying neural encoder-decoder models for query focused summarization
has been rare [1]. One notable exception is the Diversity Driven Attention (DDA)
model [8], which alleviates the problem of repeating phrases and can focus on
different portions of a document based on a given query at different times. How-
ever, their Debatepedia dataset is very small compared to the datasets used
for generic abstractive summarization. [1,4,11]. Thus, the lack of large training
data makes the QFAS task on this dataset a few-shot learning problem. To tackle
this issue, the Relevance Sensitive Attention for Query Focused Summarization
(RSA-QFS) [1] utilized transfer learning by first pre-training the PGN model
on large generic abstractive summarization dataset and then incorporated query
relevance into the pre-trained model to generate query focused summaries. How-
ever, they did not fine-tune their model on QFAS datasets and obtained a very
low Precision score [1]. In contrast to the above body of work that are based
on Recurrent Neural Network (RNN) models, we utilize the transformer archi-
tecture along with leveraging transfer learning and fine-tuning since the former
and the latter with the transformer based models have been found to be more
effective on various natural language processing tasks [2,3].

2 https://github.com/tahmedge/QR-BERTSUM-TL-for-QFAS.

https://github.com/tahmedge/QR-BERTSUM-TL-for-QFAS
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3 Our Proposed Approach

Let’s assume that we have a query q = q1, q2, ..., qk containing k words and a
source document d = d1, d2, ...dn containing n words. Our task is to generate a
contextual summary y = y1, y2, ...ym containing m words. In other words, our
goal is to find the summary y∗ that maximizes the probability p(y|q, d).

Fig. 1. Our proposed approach works in two steps: (a) Pre-train the BERTSUM model
on a generic abstractive summarization corpus (e.g. XSUM) and (b) Fine-tune the pre-
trained model for the QFAS task on the target domain (i.e. Debatepedia).

To achieve this goal, our proposed method adopts the BERTSUM model [4]
which used transformer-based architecture for abstractive summarization. How-
ever, the BERTSUM model was designed for a generic summarization task with-
out considering the query relevance [4]. Therefore, we incorporate query rele-
vance (QR) and transfer learning (TL) within the BERTSUM model for the
QFAS task. More specifically, our model (denoted as QR-BERTSUM-TL) per-
forms the QFAS task in two steps as shown in Fig. 1. In the first step, we pre-train
the BERTSUM model on a large training corpus of generic abstractive summa-
rization. Then, we fine-tune the pre-trained model for the QFAS task by utilizing
the query relevance. In the following, we describe these steps.

1) Pre-training the BERTSUM Model: In this step, we pre-train the
BERTSUM model on a large generic abstractive summarization dataset. Among
the datasets used for BERTSUM [4], the XSUM3 dataset was the most abstrac-
tive one containing highest number of novel bi-gram. Therefore, we pre-train
the BERTSUM model on this dataset. During the training process, the model
utilizes the pre-trained BERT model [2] as the encoder and the randomly ini-
tialized Transformer decoder [12] as the decoder. However, the original BERT
model inserted the special token [CLS] at the beginning of only the first sentence.
In contrast, the BERTSUM model inserts the [CLS] token at the beginning of
each sentence. Moreover, each sentence-pair in BERTSUM is also separated by
the [SEP] token.
3 https://github.com/EdinburghNLP/XSum/tree/master/XSum-Dataset.

https://github.com/EdinburghNLP/XSum/tree/master/XSum-Dataset
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2) Incorporating Query Relevance and Fine-tuning BERTSUM: In
this step, we fine-tune the BERTSUM model on the Debatepedia dataset which
was pre-trained on the XSUM dataset. During fine-tuning, we incorporate the
query relevance by concatenating the query with the document as the input of
the encoder (see Fig. 1b). We do this because we find that a similar approach
of concatenating question with document works well for the question-answering
task [3]. Through this process, our model is adapted in the target domain.

4 Debatepedia Dataset

Debatepedia is an encyclopedia of pro and con arguments and quotes on debate
topics. Nema et al. [8] utilized Debatepedia to create a dataset for the QFAS
task [8]. The average number of words per document, summary, and query in
the Debatepedia dataset is 66.4, 11.16, and 9.97 respectively. They used 10-fold
cross validation in their experiments with the DDA model on this dataset. The
average number of instances in each fold is 10,859 for training, 1,357 for testing,
and 1,357 for validation respectively. However, we find in the source code4 of the
DDA [8] model that the dataset was augmented to create new training instances.
In the augmented dataset, the test and validation data were the same as the
original, but the average training instances in each fold were 95,843. Since the
original paper [8] did not address the data augmentation approach, we briefly
explain this process below based on the source code (see Footnote 4) of DDA.

Augmenting the Debatepedia Dataset: For data augmentation, a pre-
defined vocabulary of 24,822 words was used where each word had been associ-
ated with a synonym. Then for each training instance, N (10 ≤ N ≤ 17) words in
each document and M (1 ≤ M ≤ 3) words in each query were randomly selected
(except stop words and numerical values) and then replaced with their synonyms
found in the vocabulary. If a selected word was not found in the vocabulary, it
was added there with the most similar word found based on cosine similarity in
the GloVe [9] vocabulary. For each training instance, this process is repeated 8
times to create 8 new document and query instances. But the same summary of
the original instance was used in the newly generated instances.

In this work, we did not leverage any data augmentation. We used the original
Debatepedia dataset for evaluation and pre-processed it by removing the start
token <s> and the end token <eos> to evaluate our QR-BERTSUM-TL model.

5 Experimental Setup

In this section, we describe the baselines used to evaluate the effectiveness of our
proposed approach followed by the training parameters used in our experiment.

4 https://git.io/JeBZX.
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5.1 Baselines

We consider the following models as baselines:

QR-BERTSUM: This model adopted the BERTSUM architecture [4] and
incorporated Query Relevance (QR) by concatenating the query with the docu-
ment. We trained it end-to-end on the original version of Debatepedia Dataset.

BERTSUMXSUM: This baseline used the BERTSUM model pre-trained on
the XSUM dataset and did not do any fine-tuning on the Debetepedia dataset.

We also compared our proposed model with the current state-of-the-art in
the Debatepedia dataset RSA-QFS + PGN model [1] as well as the first model
proposed for this dataset, the DDA model [8]. In addition, we experimented with
DDA on both the original and augmented versions of the Debatepedia dataset.

Table 1. Performance of different models. Here, ‘*’ denotes ‘our implementation of
DDA’. ‘R’, ‘P’, and ’F’ denote ‘Recall’, ‘Precision’, and ‘F1’ respectively. The ‘Original’
and ‘Augmented’ versions of DDA are denoted by ‘ORG’ and ‘AUG’ respectively.

MODEL ROUGE-1 ROUGE-2 ROUGE-L

R P F R P F R P F

QR-BERTSUM 22.31 35.68 26.42 9.94 16.73 11.90 21.22 33.85 25.09

BERTSUMXSUM 17.36 11.48 13.32 3.03 2.47 2.75 14.96 9.88 11.46

DDA*(ORG) 7.52 7.67 7.35 2.83 2.88 2.84 7.13 7.54 7.24

DDA*(AUG) 37.80 47.38 40.49 27.55 33.74 29.37 37.27 46.68 39.90

DDA [8] 41.26 - - 18.75 - - 40.43 - -

RSA-QFS + PGN [1] 53.09 - - 16.10 - - 46.18 - -

QR-BERTSUM-TL 57.96 60.44 58.50 45.20 46.11 45.47 57.05 59.33 57.73

5.2 Training Parameters

To pre-train the BERTSUM model on the XSUM dataset, we kept the parame-
ters similar to the original work [4]. To fine-tune it on Debatepedia, we set new
values to the following parameters: batch size = 500, warmup steps encoder =
6000, warmup steps decoder = 2000, and total training steps = 60000.

6 Results and Discussions

Experimental results of our proposed approach and other models are shown in
Table 1. We report the ROUGE-1, ROUGE-2, and ROUGE-L scores5 which were
calculated based on the average across 10-folds. Among the baselines, both QR-
BERTSUM and BERTSUMXSUM models outperform the DDA*(ORG) model

5 We used the following package for calculation: https://pypi.org/project/pyrouge/.

https://pypi.org/project/pyrouge/
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for few-shot learning. Moreover, the transformer based QR-BERTSUM out-
performing the RNN based DDA*(ORG) model suggests the effectiveness of
using transformer instead of RNN. We find that data augmentation significantly
improves the performance of DDA, with the DDA*(AUG) model outperform-
ing all baselines. As our result with DDA*(AUG) could not fully reproduce the
result in [8], we assume that different pre-processing settings could be the possi-
ble reason behind this since Nema et al. [8] did not mention their pre-processing
approach.

When we compare our proposed QR-BERTSUM-TL model with the base-
lines, we find that our model significantly improved performance over the
QR-BERTSUM model as well as the BERTSUMXSUM model, which suggests
the effectiveness of utilizing both transfer learning and fine-tuning in QR-
BERTSUM-TL. In comparison to the recent progress, we observe that the
proposed QR-BERTSUM-TL model sets a new state-of-the-art result with an
improvement of 9.17%, and 23.54% in terms of ROUGE-1, and ROUGE-L
respectively over the RSA-QFS + PGN model [1]. As mentioned in [1], the
RSA-QFS + PGN model generated summaries 10 times longer than the required
length. In contrast, our proposed model shows high precision score by effec-
tively generating summaries according to the required length. We also observe
a huge gain in terms of ROUGE-2 compared to the previous models, with an
improvement of 141.07% from DDA [8] and an improvement of 180.75% over
RSA-QFS + PGN.

7 Conclusions and Future Work

In this work, we presented a transfer learning technique with the transformer-
based BERTSUM model and utilized it for the QFAS task via incorporating
query relevance. Our approach shows state-of-the-art result in the Debatepedia
dataset without the leverage of any data augmentation. This suggests that our
model can overcome the lack of availability of large training data for QFAS. Our
experimental result also suggests the effectiveness of using the transformer model
instead of RNN for such tasks. In future, we will investigate the performance of
our proposed approach on more datasets in other applications [5,6].

Acknowledgements. This research is supported by the Natural Sciences & Engi-
neering Research Council (NSERC) of Canada and an ORF-RE (Ontario Research
Fund-Research Excellence) award in BRAIN Alliance.
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Abstract. Methods for bilingual lexicon induction are often based on
word embeddings (WE) similarity. These methods must be able to
project the WE to the same space. Uncontextualized WE proved to be
useful for this task. We compare them to contextualized WE and Bag
of Words, using specialized and general datasets. We also evaluate the
impact of seed lexicons and check the existing reference lists validity,
claiming that extracting the translation of some words in those lists is
not useful and confirming the need to have more fine-grained reference
lists.

1 Introduction

Bilingual lexicons are mainly made of word pairs considered to be word-level
translations of each other. They are an essential resource for several bilingual
tasks, such as machine translation, cross-lingual information retrieval, and their
automatic extraction, from parallel and comparable corpora, is a very active
research topic. With word embeddings (WE) [3,7], being greatly in fashion these
past few years and with the emergence of various mapping methods to project
different languages in the same embedding space [2,8], several solutions to com-
pare word meaning across languages have been implemented.

The recent surge of contextual embedding models [5,9] allows an interesting
extension of previous work on uncontextualized WE, and various solutions have
been built [11,12] to adapt these WE to actual mapping methods.

In this work, we challenge the current evaluation protocol by studying the
reference lists used for bilingual lexicon induction (BLI) from comparable cor-
pora. These lists are often used as-is, and there is a general tendency to think
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grant ANR-17-CE23-0001 and the Canadian Institute for Data Valorisation.

c© Springer Nature Switzerland AG 2020
C. Goutte and X. Zhu (Eds.): Canadian AI 2020, LNAI 12109, pp. 349–355, 2020.
https://doi.org/10.1007/978-3-030-47358-7_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47358-7_36&domain=pdf
https://doi.org/10.1007/978-3-030-47358-7_36


350 M. Laville et al.

that the larger the list size, the more significant the results, even if they are filled
with proper names, perfect cognates or even incorrect words in the language of
interest. We examine these issues by filtering down general and specialized refer-
ence lists into sublists, examining the resulting differences when using supervised
and unsupervised methods and the Bag of Words (BoW) method.

Our main contributions seek to observe and understand the difference
between BLI techniques when using specialized and general corpora and to take
a more critical and precise look at these lists.

2 Methods

We compare three word representations (BoW, uncontextualized and contextual-
ized WE methods) and various mapping methods (unsupervised and supervised).

2.1 Bag of Words

The Distributional Standard Approach [10] is the historical method for BLI from
comparable corpora. Based on the idea that a word is defined by its context, the
semantic proximity of two words is determined by the degree of overlap of their
contexts. For each source language word, its context vector is translated into the
target language using a bilingual seed lexicon, allowing the source word and its
translation to appear in similar contexts, enabling their alignment.

For specialized corpora, [6] shows that adding general data to the corpus
improves the representations of general words, allowing for an increase in results.

2.2 Embedding Methods

The introduction of deep distributed representations [7] renewed this historical
method. In [8] the authors proposed an approach to learn a linear transformation
from the source to the target embedding spaces.

We use fastText [3] as our uncontextualized WE. For contextualized WE, we
use ELMo [9] and pre-trained models from [11]. To make contextualized embed-
dings suitable for classic mapping methods, we follow [11], creating anchors for
each word by averaging the embeddings of each occurrences of this word.

After extracting our embeddings separately from the source and target cor-
pora, and in order to be able to compare them, we map the obtained matrices
into the same space.

We use two different approaches to map both fastText and anchored ELMo
embeddings. The unsupervised one [2] creates and refines an initial seed lexicon
based on the idea that source (X) and target (Y ) embeddings space are perfectly
isometric. The similarity matrices (MX = XXT and MY = Y Y T ) are, then, just
a permutation of their rows and columns. We also experiment with a supervised
[1] method, with seed lexicon of different sizes.
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2.3 Cross-domain Similarity Local Scaling (CSLS)

After mapping the word vectors in a shared space, we measure the similarity
between each source word of the reference list and the target words. Since the
usage of cosine similarity measure suffers from the hubness problem (some points
tend to be nearest neighbours to many others), we reduce the similarity for word
vectors in dense areas and increase it for isolated ones by using CSLS [4].

3 Data and Analysis

In this section, we describe the corpora, seed lexicons and reference lists used in
most evaluations conducted recently [11,12].

We use two English/French comparable corpora. The Breast Cancer (BC)
corpus represents our specialized domain and contains 500,000 words for each
language. It is composed of scientific documents, available in open access on
the ScienceDirect portal, where the title or the keywords contain the term breast
cancer in English (and their French translation). Our general corpus is a fraction
of the same Wikipedia (Wiki) dumps than [11] (100M words for each language).

For the supervised mapping and the BoW approach, we use a first seed
lexicon (10,872 pairs) from MUSE [4] and a second one from the general domain
ELRA-M0033 French/English dictionary (243,539 pairs).

As for evaluation (see Table 1), we use one general domain reference list from
[4], and a specialized one from the UMLS. The reference list in the specialized
domain is smaller than the general one because it is harder to find many words
in the same specialized domain if we do not want to incorporate less specific
words. However, the specialized reference list represents a more significant part
of its corpus vocabulary than the general one does (6% versus 0.5%).

Table 1. Size of the reference lists and their sublists

Domain Original In-dictionary Lev. ≥ 3 Freq. ≤ 100

General 1,446 1,139 (79%) 783 (54%) 146 (10%)

Specialized 248 216 (87%) 85 (34%) 18 (8%)

In the general domain list, we found many words that do not belong to the
language of interest (i.e. garrison or enjoy being in the French part). Translat-
ing such entities is not of much interest and pollutes the conducted evaluation.
In order to verify this claim, we filter our lists with monolingual general dictio-
naries1,2, removing also proper names in the process, but isolating a subset of
pairs that makes more sense to translate. This cuts down the general domain
list by almost a quarter of its words. We also apply the dictionary filtering on

1 English dictionary: github.com/dwyl/english-words.
2 French dictionary: infolingu.univ-mlv.fr/DonneesLinguistiques/.

http://github.com/dwyl/english-words
http://infolingu.univ-mlv.fr/DonneesLinguistiques/
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the specialized domain reference. Here, unlike for the general domain, we see
that most of the words found to be out-of-dictionary are acronyms (e.g., DNA,
AIDS ) or in-domain words which are not part of a standard dictionary that we
still want to translate because they are part of the specialized domain.

Furthermore, in the remaining pairs for both general and specialized lists,
we found many pairs with nearly identical words. Even if usage of monolingual
dictionaries already solved part of this with the deletion of proper names and
city or country names, we use the Levenshtein distance (the number of deletions,
insertions, or substitutions required to transform a string to another) and add a
third reference list trying to study words with no shared morphology.

We create one last sublist to study rare words, only keeping the ones appear-
ing less than 100 times, dropping the size of our specialized domain list to only
18 pairs, making it quite hard to draw meaningful conclusions.

4 Results

Table 2 shows the results obtained using the different reference lists, word rep-
resentations models, and mapping approaches on the general and specialized
domains. For the general domain, we extract the vectors from Wiki. For the
specialized domain, we enrich BC with general data from Wiki.

We can observe that, even if the results of the unsupervised methods are close
to the supervised ones, the latter is still the way to go, being at least two points
higher in most configurations. We can also see that using a more substantial
dictionary does not mean getting better results for ELMo and fastText.

Table 2. P@1 (%) on multiple lists using different word representations.

Domain Mapping Embeddings Original In-dictionary Lev. ≥ 3 Freq. ≤ 100

General

Unsupervised fastText 68.9 60.2 38.4 30.8

ELMo 62.1 72.2 57.2 68.0

Supervised (MUSE) fastText 70.4 64.6 44.1 44.9

ELMo 63.4 72.7 59.0 70.1

BoW 53.4 49.9 35.7 4.3

Supervised (ELRA) fastText 63.8 63.2 44.2 41.7

ELMo 57.4 70.1 55.9 58.5

BoW 43.8 46.2 34.7 3.8

Specialized

Unsupervised fastText 80.6 81.4 60.0 94.4

ELMo 70.4 77.7 61.2 61.1

Supervised (MUSE) fastText 81.8 82.3 63.5 83.3

ELMo 68.4 75.3 62.4 50.0

BoW 59.5 65.3 53.8 16.7

Supervised (ELRA) fastText 80.2 81.9 62.4 77.8

ELMo 68.8 75.8 61.2 50.0

BoW 67.6 73.5 61.2 27.8
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The results obtained with the three mapping methods all have the same
trends for the different lists, but the list-based variations are more significant.
On the original list, fastText always gets the most interesting results. However,
when we filter the list down, its results degrade notably, while ELMo is way less
affected, showing that fastText is better at predicting graphically close words
since it works with character n-grams. BoW is left behind, especially with the
filtered lists (less than 5% for general domain and with frequency ≤100).

5 Analysis

In this section, we provide a more qualitative analysis of the results obtained for
both general and specialized domains to illustrate the trends mentioned above
from studied lists. To do this, we show in Table 3 some word pairs with their
frequencies and their n-best translations as found by the different approaches.

For the general domain, we observe that fastText mostly finds graph-
ically close words, without really grasping the concept behind the words
(“napoléone” is a plant, and “rings” while “wrestlers” are not French words).
Conversely, ELMo seems to capture their meaning, finding war-related concepts
for “napoleon”, or geometric shapes for “rings”. BoW seems really affected by
word occurrences.

In the specialized domain, since words are supposed to have only one specific
meaning, they are less likely to be found in varying contexts. FastText and

Table 3. 4 best translations obtained for pairs on Supervised (MUSE).

Domain Method Word

translation

Top 1 Top 2 Top 3 Top 4

General

fastText napoleon: 2.1k

napoléon: 5.2k

napoléon napoléone napoléonienne napoléonnien

ELMo bélisaire napoléon guerry salinator

BoW napoléon bonaparte xiv prussien

fastText rings: 710

anneaux : 117

anneaux rings ring anneau

ELMo anneaux ceintures sphères balls

BoW anneaux rouhault penon mémère

fastText wrestlers: 27

lutteurs: 10

catches catchers wrestlers catch

ELMo lutteurs joueurs joueuses joueuses

BoW grandidieri bergroth committeer shinjitsu

Specialized

fastText birth: 9k

naissance: 14k

naissance décès âge deuil

ELMo naissance baptême éclosion décès

BoW naissance enfant mère femme

fastText keratin: 66

kératine: 52

kératine fibroblaste adipocyte prolactine

ELMo kératine collagène mélanine tanin

BoW kératine luminales fibrine hyperdensité

fastText vincristine: 23

vincristine: 15

vincristine dominique monique colette

ELMo vincristine raloxifène fusarium doxorubicine

BoW vinorelbine herceptin rechuter docétaxel
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BoW do a better job at understanding these words, even if they can have some
problems for infrequent words like “vincristine”.

6 Conclusion

This work sought to study the different BLI methods and their evaluation when
using specialized and general comparable corpora. Comparing mapping methods,
we observe that the results follow the same trends. The choice of seed lexicon,
however, is more impactful as bigger lexicons cause the performances to decrease
in the general domain and increase in the specialized one. Supervised mapping is
still the way to go without needing large lexicons. FastText gives the best results
on the original lists, as they are composed of a lot of graphically close words.
ELMo gets better results with the sublists, as it is better at capturing concepts.

Reference lists for these approaches are often used as-is. For both domains,
we challenge the validity of these lists, arguing that not all the words are worth
translating. To verify this claim, we broke down our lists into sublists, isolating
subsets that make more sense to translate. When comparing the results for the
original list and the sublists, we see clear differences in performances, indicating
the necessity of having more fine-grained reference lists.
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Abstract. Since the first appearance of BERT, pretrained BERT
inspired models (XLNet, Roberta, ...) have delivered state-of-the-art
results in a large number of Natural Language Processing tasks. This
includes question-answering where previous models performed relatively
poorly particularly on datasets with a limited amount of data. In this
paper we perform experiments with BERT on two such datasets that are
OpenBookQA and ARC. Our aim is to understand why, in our experi-
ments, using BERT sentence representations inside an attention mecha-
nism on a set of facts tends to give poor results. We demonstrate that in
some cases, the sentence representations proposed by BERT are limited
in terms of semantic and that BERT often answers the questions in a
meaningless way.

1 Introduction

Question answering has long been a core task in Natural Language Processing
(NLP). Due to the booming of deep learning, there has been recently a resur-
gence of work on question-answering, leading to multiplications of benchmarks.
Despite the amazing progress made by deep learning methods, current models
fail to achieve human performance on a lot of these benchmarks. Similarly to
other NLP tasks, question answering features a wide range of sub-tasks. Some
extractive question answering datasets provide an open question on a short text
and require the models to select a chunk in the text (often corresponding to
an entity) that answers the question. SQuAD 1 and 2 [1,2] are two popular
exemples of this type of benchmark. On the other hand, datasets like CoQA
[3] rather ask models to generate an answer that is typically not a span of the
input text or like in RACE [4] provide multiple answer choices from which to
choose while still using a provided text as reference. In our work, we will focus
on two datasets, OpenBookQA [5] and ARC [6], representative of another type
of question answering task. OpenBookQA and ARC feature questions adjoined
with 4 possible answers (similar to RACE), but unlike the datasets presented
above do not provide a reference text with each question. Instead, both datasets
c© Springer Nature Switzerland AG 2020
C. Goutte and X. Zhu (Eds.): Canadian AI 2020, LNAI 12109, pp. 356–367, 2020.
https://doi.org/10.1007/978-3-030-47358-7_37
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are adjoined with a set of common sense sentences supposedly containing all the
knowledge needed to answer the questions but not directly linked to any question
in particular. The competing models thus can retrieve information from this set
of sentences in order to answer the proposed question. However, most state of
the art models rather choose to ignore this additional information and instead
rely on learned world knowledge. We believe that learning to use this knowledge
can lead to improved performances and higher generalization capability.

Recently, [7] introduced BERT, a pretrained deep learning model which
showed huge improvements in a large number of NLP tasks including question
answering. Models inspired from BERT are currently widely used on a lot of
question answering datasets and often hold the first places in the leaderboards.
Notably, on SQuAD, most recent models even beat the human level performance.

These pretrained models can take advantage of a massive quantity of unla-
belled data and are thus particularly useful for tasks that require common sense
knowledge since they already embed some semantic knowledge from the pre-
training. Furthermore, pretraining allows for shorter training time on specific
data and is particularly advantageous for relatively small datasets like ARC and
OpenBookQA that each only gathers a few thousands of questions. Nearly all
current state-of-the-art models on ARC and OpenBookQA are pretrained mod-
els, but they still do not reach human level performances.

In this work, we report the results of multiple experiments we conducted
with BERT-like models on OpenBookQA and ARC. More precisely, our objec-
tive is to evaluate the possibility of using external common sense knowledge to
enhance the current models. Although OpenBookQA and ARC do not provide
a reference text for each question, both datasets are adjoined with a list of com-
mon sense items written in natural language, that is, short sentences such as
“A bee is a pollinating animal”. To the best of our knowledge, among all the
models proposed to address this tasks, most of them only use the common sense
knowledge acquired during training (including pretraining) and only a few mod-
els really used this dataset of common knowledge. A model able to use this extra
data may allow at test time to add sentences into the common sense database
and thus adapt to some extent to new domains without retraining. In addition,
using this common sense database is a first step toward building a model able
to reason using the short sentences (facts) in the database and combining them
to assess the rightness of an answer.

2 Related Work

In this section, we first sketch how BERT works. Then we introduce other models
and techniques we implemented in this work.

BERT [7] is a deep language model pretrained on the BooksCorpus [8] and
English Wikipedia. The model itself is composed of a multi-layer transformer [9].
Once pretrained, it provides a context dependant embedding of all the words in
a sentence and thus can provide a sentence embedding as well by either taking
the first token’s embedding (‘CLS’ special symbol) or the mean of the words
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embeddings. BERT is pretrained on two unsupervised tasks: “Masked LM” and
“Next Sentence Prediction”. In Mask LM, the model is fed with a sentence where
some words are randomly masked and has to predict the missing words. While
in Next Sentence Prediction, the model is fed with two sentences and has to
determine if the last is the actual sentence following the first. Two versions of
BERT have been released: the “base” version with 12 layers and representation
vectors of dimension 768 and the “large” version with 24 layers and vectors of
dimension 1024.

Following the release of the initial paper, multiple adaptations of BERT have
been proposed (XLNet [10], Roberta [11]), each one improving the model or the
pretraining procedure. Sentence-BERT (SBERT) [12] is one of these models that
aim to increase the semantic meaningfulness of the sentence representation pro-
vided by BERT. The authors propose to add to the standard BERT pretraining
an additional pretraining step on the SNLI dataset [13]. SNLI is a dataset con-
taining sentence pairs labelled as entailment, contradiction or neutral. They fine-
tune BERT using a Siamese neural architecture so that two sentences marked
as entailment have a representation close to one another (cosine distance) while
two sentences marked as contradiction have representations that are far apart.
Their claim is that the resulting sentence representations are more semantically
relevant than the representations obtain by a vanilla BERT model.

In this work, we also experiment with MAC Cells [14]. This architecture
was first introduced on the CLEVR dataset [15] (question-answering using an
image) in order to improve the reasoning capability of attention-based neural
networks. This model is build as a recurrent network maintaining two state vec-
tors (memory and control). Control vector is used to determined which reasoning
action must be performed at each step while memory vector is a representation
of all the information the model has obtained. The MAC cell is composed of 3
modules (see Fig. 1): at each step the “control” module updates the control
vector using the previous control vector. A “read” module then uses this new
control vector and the previous memory vector to perform an attention on a
database (attention over the image in the case of CLEVR) and thus creates a
proposed new memory vector. The final new memory is a linear combination of
the previous and proposed memory decided by the “write” module as a function
of the control state. MAC Cells obtained good results on CLEVR and showed
they were capable of basic reasoning.

3 Experimental Protocol

For this study, we use 2 datasets: OpenBookQA [5] and ARC [6]. Both are
multiple-choice question datasets with 4 choices for each question. The questions
are about a broad variety of subjects related to everyday life logic or general
knowledge.

The OpenBookQA dataset is composed of 3 parts: train, validation and test
with respectively 4958, 500 and 500 questions in each. It is adjoined with two
small datasets of common sense sentences. They are similar in their content
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Fig. 1. Inner working of a MAC cell. The cell is a recurrent unit maintaining 2 state
vectors ci and mi. ci is the control state and determine which action is to be done at a
given time step and mi is the memory state that stores the information from previous
steps. Image from [14]

but one of them is composed of all the sentences provided to the annotators as
an inspiration during the creation of the dataset (each question is linked to 1
sentence but each sentence may have been used for multiple questions) and thus
these sentences most of the time contain the necessary information to answer
the questions. The correspondence between the questions and these sentences
is known. The second one is composed of the same kind of sentences but these
ones are not directly related to any question in particular. The first and second
datasets are composed of 1327 and 5168 sentences respectively. See Fig. 2 for
examples of a question and fact sentences.

The ARC dataset is split into 2 parts. The “Easy” part corresponds to ques-
tions well answered by classical machine learning models while more complicated
questions belong to the “Challenge” part. The train sets for “Easy” and “Chal-
lenge” contain 2252 and 1120 questions respectively. Similarly to the fact dataset
in OpenBookQA, we have access in ARC to a 1.4 GB dataset of common sense
sentences data-mined from the web but no information about which ones can
help a given question.

The metric used for evaluation is accuracy defined as the percentage of ques-
tions correctly answered. Current state-of-the-art models on OpenBookQA reach
78% accuracy using Roberta [11] and an additional pretraining on RACE dataset
[4] while BERT Large with no additional pretraining achieves 60% accuracy. On
ARC challenge, the best model scores 68% accuracy. The scores of BERT Base
and Large on ARC challenge are around 36% and 40% respectively.

4 Models

In this section we present different model architectures we implemented. In all
of these models, we use BERT or SBERT as a sentence embedding technique.
To obtain the embedding of a sentence we use a mean pooling over the word
representations provided by (S)BERT. We observed no significant differences
in performance between the mean pooling and other methods of pooling (e.g.
take the start token representation vector as sentence embedding) as long as
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OpenBookQA
Question Stars are ... - A: warm lights that float

B: made out of nitrate
C: great balls of gas burning billions of
miles away
D: lights in the sky

Related fact A star is made of gases
Other interesting facts �The Earth rotating on its axis causes the sun to appear

to move across the sky at night
�The Earth rotating on its axis causes stars to appear to
move across the sky at night
�The north star does not move in the sky in the Northern
�Hemisphere each night
�Burning wood is used to produce heat

ARC
Question Which is a nonrenewable resource? - A: oil

B: trees
C: solar energy
D: food crops

Fig. 2. An example of 2 questions in ARC and OpenBookQA with the fact given to
the annotator and 4 additional facts automatically selected by word co-occurrence with
the question and all possible choices.

the weights of BERT are fine-tuned on the end task. Although we only refer to
BERT in the following model description, BERT and SBERT embeddings are
commutable, and we tested both.

4.1 Model A

This model is the vanilla question-answering setting for BERT used by the large
majority of the proposed models on ARC and OpenBookQA. The answer choices
are concatenated to the question thus obtaining 4 “question + choice” sequences.
From there, we use BERT to get a sentence embedding vector and we send
this embedding vector through a 2 layer perceptron with a ReLU activation
function in between to obtain a single scalar score for each sequence. The scores
corresponding to the 4 choices are then gathered and a softmax is applied on
them. During training, we use a cross-entropy loss and at test time, the choice
with the highest score is selected as the predicted answer. See Fig. 3A.

4.2 Model B

In addition to the “question + choice” sequence embedding we provide the model
with an additional sentence also embedded with (S)BERT. Note that this model
and the following ones are trained on OpenBookQA only since they require the
link between the common sense database and questions. We use the common
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knowledge sentence associated to the question in OpenBookQA. This has been
provided to annotators as an inspiration to write the question and thus, this
sentence is supposed to give enough information to the model to answer the
question. The idea behind this model is to evaluate the semantic quality of
the sentence embedding. Since the additional sentence is supposed to have a
meaning closer to the answer than the other choices, their embedding should
also be closer. The new sentence embedding is concatenated to the “question +
choice” embedding and fed to the final perceptron. See Fig. 3B.

Fig. 3. Description of model A (left) and B (right). X represents the input sequence
consisting of the question plus one answer choice. Y represents the output scalar score
for this particular answer choice. The scores for all answer choices are then gathered
and passed through a softmax function (omitted here).

4.3 Model C

Model B is not applicable to any real case scenario since it presupposes having
access to the sentence that inspired the question. In this third architecture, we
add an attention mechanism to B. Instead of a unique sentence, the model now
has to select the right sentence from a set of 10 sentences extracted from the
common knowledge dataset of OpenBookQA. We select the 9 sentences with the
highest number of words in common with the question and add the “target”
sentence if not already selected. See Fig. 4C.

4.4 Model D

Finally, we experimented with MAC Cells [14]. Usually, multiple facts are rel-
evant for a given question. The reasoning capability of MAC Cells can thus be
useful in order to assemble multiple pieces of information from different facts.
We replace the simple attention of model C by a MAC Cell in the hope, this
would help the model to extract more information from multiple sentences. See
Fig. 4D.



362 G. Le Berre and P. Langlais

Fig. 4. Description of model C (left) and D (right). The only difference with model
B is that instead of a single help sentence, the model has access to multiple sentences
including the help and needs to select the right one with an attention (model C) or
MAC cells (model D).

5 Implementation Details

We use the Hugging Face Pytorch implementation of BERT [16] and the imple-
mentation of SBERT provided with the original paper. We use the base version
of both BERT and SBERT. This means that the word embeddings are of dimen-
sion 768 and we kept the same vector size along all the steps of the models. We
implemented the rest of the code using Pytorch.

The training of all the models is made with a mini-batch of size 8. The shorter
sentences in the mini-batch are padded using a special token and we cropped the
sequences longer than 40 tokens by removing the first tokens thus ensuring that
we keep the answer choice untouched (Table 3 provides some length statistics
for OpenBookQA). We train the models for a maximum of 5 epochs after which
the models always starts to overfit since the datasets are small and BERT has
a huge capacity. To compensate for overfitting, BERT weights are frozen during
the first 2 epochs to let a chance to the other parts of the network to converge.
On models that require an attention mechanism, we added an additional cross-
entropy loss directly on the attention distribution to help the models to quickly
identify what is the sentence that gives the required information. A weighting
coefficient is applied to this part of the loss. It starts to 1.0 and decreases to 0.2
after the first 2 epochs. All the hyper-parameters above are chosen to maximize
accuracy on validation set.

When training on the ARC dataset, we use both “Easy” and “Challenge”
training sets and report separated results for test and validation sets.

6 Experiments

In this section, we present the experiments we made with BERT on Open-
BookQA and ARC. All the experiments shown below were made in an attempt
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to explain why in our preliminary experiments we failed to apply an attention
mechanism (model C) over a knowledge base of sentences embedded with BERT.

First, in order to appreciate what parts of a question BERT is using while
answering it, we decrease the number of tokens available to the model. To do
this, we use the A setup described in Sect. 4. We provide the results (in terms
of accuracy) of a model that has access to the complete question and a model
with access to only the last 4 tokens of the question. Eventually, we completely
removed the question thus feeding only the answer choice to BERT. We of course
expect the model to reach around 25% accuracy (OpenBookQA has 4 answer
choices for each question) with this setup since without the question, there is
supposedly no way to differentiate the right answer from the other choices. We
verified that the dataset (train, validation and test) is balanced in the sense that
all answers choices (A, B, C and D) appear approximately 25% each.

Table 1. Accuracy on OpenBookQA when the model has access to the full question
(full) or only the 4 last tokens of the question (4 tokens) or no question at all (none).
model A + help refers to model A in which the input is the concatenation of the help
sentence, question and answer choice instead of just question + answer choice.

Full 4 tokens None

BERT (model A) 55.8 52.0 51.2

SBERT (model A) 53.2 53.0 53.6

BERT (model A + help) 64.5 64.9 –

SBERT (model A + help) 63.6 65.2 –

BERT (model B) 53.0 53.4 –

SBERT (model B) 55.0 61.3 —

SBERT (model C) 54.8 56.8 –

SBERT (model D) 56.8 56.8 –

Table 2. Accuracy on ARC (Easy and Challenge) when model A has access to the full
question (full), only the 4 last tokens of the question (4 tokens) or no question at all
(none).

Full 4 tokens None

BERT (Easy) 51.7 46.9 36.5

BERT (Challenge) 36.5 36.2 34.2

Table 1 shows the resulting accuracies on the validation and test sets on
OpenBookQA (first 2 lines) for both BERT and SBERT (for comparison pur-
poses since we use SBERT in later experiments). What comes out of this first
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experiment is that, surprisingly, giving only the last 4 tokens of the question
to BERT only slightly decreases the accuracy. Furthermore, if we completely
remove the question, BERT is still managing to get an accuracy greater than
50%, not so far from the original accuracy and even, in the case of SBERT, a
better accuracy.

We ran the same experiment on both parts (Easy and Challenge) of ARC.
The results are reported in Table 2. The challenge set results are quite similar
to what we observed for OpenBookQA: the accuracy for 4 tokens and no token
are close to the accuracy obtained by the vanilla BERT model. On the Easy
set however, we see a clear degradation of the accuracy when removing tokens
but we still obtain at worse 36% accuracy which is significantly better than the
expected 25%. This shows that in any case, a significant part of the questions
can be answered without even looking at the question itself.

Table 3. Mean/min/max length of the questions and answers in OpenBookQA. Cor-
rect answers tend to be slightly longer than wrong ones.

Length in words (train set/test set) Mean Min Max

Questions 10.7/10.3 1/1 68/61

Wrong answers 2.7/3.0 1/1 20/16

Correct answers 3.0/3.3 1/1 21/15

Table 4. Mean/min/max frequencies of tokens in an answer choice averaged over the
dataset in OpenBookQA. Correct answers tend to contain at least a token that is more
specific (less frequent) than the other answers.

Word frequency (train set/test set) Mean Min Max

Wrong answers 0.0054/0.0056 0.00029/0.00033 0.016/0.017

Correct answers 0.0050/0.0058 0.00014/0.00019 0.016/0.019

Our models are thus mainly learning what the characteristics of a good
answer are instead of learning the logical link between a question and the corre-
sponding answer. We found some pieces of explanation for this. First, we com-
pute statistics about the length of the questions and answers. These statistics
are reported in Table 3 and show that the right answers are on average longer
than their counterparts. In practice, a dummy model that selects the longest
answers among the 4 proposed achieves a 33% accuracy. However, this does not
explain the entirety of the 51.2% of BERT on OpenBookQA.
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Question What impacts an objects ability to reflect light?
Answer choices A: color pallete

B: weights
C: height
D: smell

4 tokens ...ability to reflect light?

Fig. 5. An example of question in OpenBookQA (the spelling error is from the dataset)
for which it is relatively easy to answer using only the last 4 tokens. Note that the
correct answer is more complex than the other three and so it might be possible to
guess the answer without reading the question.

In Table 4, we further provide statistics about the relative frequencies of the
tokens in correct vs. incorrect answers. What is interesting here is that the least
frequent token in the correct answers is on average less frequent than the least
frequent token in incorrect answers. This means that the correct answers tends
to include more specific words than incorrect ones. This could be a bias linked
to the annotation method in which annotators are required to invent incorrect
answers. It is possible that one tends to be more generic when trying to write
a wrong answer without inspiration. A dummy model that selects the answer
with the least frequent token achieves 36.8% accuracy on OpenBookQA. Finally,
our experiments shows that 54.6% of the correct answers are either the longest
sequences or the one with the least frequent token in it. These two experiments
although they do not explain the entirety of the phenomenon, show that the
models (BERT and SBERT) can be heavily biased by factors unrelated to the
question-answering logic (Fig. 5).

As explained in Sect. 3, OpenBookQA provides along each question a com-
mon knowledge short sentence that was provided to the annotator as an inspi-
ration for the question. Although using this sentence directly causes the results
to be incomparable with results showed above and state-of-the-art, we can use
it to evaluate how much accuracy could be gained if we could make a decent
selection of related knowledge in a database. We refer at this particular sentence
as the help sentence in this section.

In the following, we still use BERT/SBERT in the A setting on OpenBookQA
but instead of the simple question + answer sequence, we concatenate at the
beginning of the sequence the common sense sentence related to the question.
The idea for now on is to see if the representations from BERT/SBERT are usable
in a configuration where the solution is directly given to the model. Table 1
shows that as expected, we obtain a significant increase in performance with
both BERT and SBERT. Now, what happens if the new sentence is not given
prior to BERT embedding but rather posterior to it? To test this, we use the B
setting. In this configuration, the model now has to rely on a good semantically
significant sentence embedding to answer since it has to evaluate the similarity
between the help sentence and each of the answer choices. The accuracy is again
described in Table 1 (lines 5 & 6). We observe that BERT performs relatively
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poorly at this task and shows no significant change of its accuracy between
this configuration and no help sentence at all. SBERT however obtains a gain
similarly to what happens when concatenating the help sentence to the question.
Thus, the representations of SBERT seem to be more adapted to find semantic
similarity links between sentences.

To confirm this observation we ran yet another dummy model. This model
compute the similarity (cosine distance) between the BERT/SBERT represen-
tation of the help sentence and the representations of the question + answers.
The process is done without any training using only the pretrained BERT and
SBERT. Using this configuration, SBERT achieves 57.6% accuracy on Open-
BookQA test set while BERT only reaches 37.4% once again demonstrating
that SBERT is more adapted to the task.

Finally, we tested more realistic settings. Instead of giving the help sentence
directly, we “hide” it among other similar sentences thus simulating a scenario
in which we use a selector able to accurately select a pool of fact sentences useful
for answering the question. As explained in Sect. 4, we select 9 sentences from
the fact dataset of OpenBookQA according to the maximum word overlap with
the question and we add the help sentence to ensure a good selection. We report
the results of SBERT for configuration C and D in Table 1. BERT performs
poorly for both configurations during our experiments (likely due to the reasons
previously exposed) and so only the accuracy of SBERT are shown here. Overall,
the models C and D are weaker than the configuration B with direct help but
still perform better than model A where no help is given. This tends to show that
there is value to be earned by adding additional common sense information to
the inputs of the model and in the future, we intend to continue working on new
ways to achieve this objective. We would like for example to try to re-balance
correct and incorrect answers by picking correct answers from another question
as new incorrect answers. Like this, we could potentially improve the training
of BERT by removing the local minimum created by the length and frequencies
bias.

7 Conclusion

In this work, we compared a number of models based on BERT-like models for
question-answering. We report disappointing but informative results. Our exper-
iments show that in the case of OpenBookQA more than 50% of the questions can
be answered without even looking at them, which represents a big bias that has
to be taken into account when considering state-of-the-art results. This obser-
vation also transposes to some extent to other question-answering benchmarks
such as the ARC dataset. In addition we present a comparison of BERT and
SBERT representations in term of semantic usefulness and show that SBERT is
more apt to combine sentence representations together in order to answer the
question.
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Abstract. A fundamental question for charities is what action should
they take next to maximize the chance of receiving a donation from a par-
ticular individual. We solve this problem using time-series data, showing
that based on the previous five actions in which a charitable constituent
was involved, their likely donation amount after a sixth action can be
predicted. Once an accurate model is learned, the best next action can
be selected to maximize donations. We show that Recurrent Neural Net-
works can learn accurate models of how much a constituent will donate,
and we use these models to suggest actions for charities to take on an
individual basis.

Keywords: Machine learning · Recurrent Neural Networks · Charity

1 Introduction

When charities make data-driven decisions, they generally rely heavily on the
donation history of a donor, and not on their engagement behavior, such as the
actions taken by the constituent with respect to appeals sent their way. Thus, while
the intention is to give each donor a personalized experience, this personalization is
done on small amounts of (largely) dated donation data, ignoring what is generally
themost recent donor information – the constituent’s interactionwith charity com-
munications. In terms of the message being sent to these constituents, most char-
ities use the same sequence of communications and receive similar results. Donor
actions include opening an appeal email and visiting a charity donation portal.

We define the donor journey as the content and mediums of communication
that a donor engages with prior to making a gift. Our goal involves modeling this
journey using engagement data – how the donor interacts with the charity. Most
of the data to change the sequence (and collect more money) is readily available
to be collected and modelled, but the charitable world generally ignores it.

In this paper, we use deep learning, specifically Recurrent Neural Networks
(RNNs), to model the donor journey using the ordered actions of the constituent
and charity as data, and then suggest best actions for a charity to take, on an
individual basis. That is, for a particular constituent, we suggest what action
a charity should take to increase the amount the constituent will donate. As
c© Springer Nature Switzerland AG 2020
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most actions are actually performed by the constituent and out of control of the
charity, in our experiments we frame this question as “what are the parameters
of the next email the charity sends that will maximize expected donation?” This
is a first step towards the complete personalization of charitable emails. In order
to have the donor journey model trusted by real-world charities, we sought an
error of $30 or lower in our models.

2 Related Research

To the best of our knowledge, most fundraising decisions about emails are not
based on any empirical evidence. Instead, anecdotal “best practices” are often
shared on the web [1]. In [2] the authors evaluate email campaigns from per-
spectives such as demographics, interest, and social network influence of their
constituents, as well as external time-related factors. Basing email decisions on
previous actions of the charity or the constituent has not previously been consid-
ered. In [3], direct email content is explored, through experiments with Red Cross
mailings. The authors found that membership cards lead to repeat donations,
while providing donors with gifts actually hurt retention.

While charities have been hesitant to adopt machine learning techniques, for-
profit organizations have long been using them, and the literature is extensive
in terms of their strategies [4]. Some of the research in machine learning for
targeted marketing in for-profits can be translated to charities, but how people
spend their money on products is not necessarily related to how they donate their
money to charities. Charitable giving is not as simple as one might assume [5].

The use of RNNs to help predict how people will spend money, rather than
donate, is common. In [6], RNNs are used to predict the customer influx and
outflux at a location based on historical parking data. This is analogous to our
work, as we are using the activity of constituents to predict whether they will
be spending their money to help a particular charity.

3 Problem Formulation

Email campaigns involve a charity sending multiple appeal emails to constituents
in order to try to raise money for a designation within a charity’s mandate. Once
a constituent donates to a cause, they receive no further solicitation emails, and
instead receive a thank you message. This demonstrates two actions that can take
place during a campaign, the delivery of an email, and a donation. The full set of
10 actions in our experiments was: no action (a filler when an insufficient number
of actions are available), delivered, opened, complained, bounced, unsubscribed,
dropped (all corresponding to an email), pageview (donation portal was viewed),
donated, and clicked (a link or donation amount was clicked).

Charities must choose which action to take next given the previous actions
taken as part of a campaign, or even beyond a campaign (in the past). If a
constituent has opened an email three times and then clicked a link, but not
donated, what is the best action for the charity to take? Should the charity send
an email? If so, should it be brief as to not annoy the constituent? Should it be
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long to provide more information to the constituent about the cause for which
the charity is currently seeking funds?

All of these are valid questions encountered by fundraisers on a daily basis.
In the next section, we demonstrate how RNNs can be used to automatically
learn a model of a sequence of actions that leads to donation, and use the model
to select actions and email parameters.

4 Our Approach

Our goal was to both model the donor journey and predict the next best action
to be taken for a specific constituent. This would allow us to suggest actions and
email parameters to charities that they should take or use with their constituents,
to increase donations to their causes. We sought to accomplish this using RNNs.

RNNs using Long Short-Term Memory (LSTM) and rectified linear units
(ReLU) are described in [7]. RNNs allow information to persist over time to
model situations where past actions have an influence on future actions. Thus,
they are an appropriate machine learning algorithm to use since we are investi-
gating how a constituent’s past actions influence their likelihood to donate to a
charity in the future.

4.1 Preliminary Experimental Setup

We chose to consider the previous six actions related to a constituent since
campaigns typically involve this number of constituent and charity actions. A
larger window would lead to most donor journeys being padded with one or
more no action actions, since there is no interaction between the charity and the
constituent beyond these six actions.

Note that the only action that is controlled by the charity is delivered. Thus,
the preliminary experiment tested not necessarily what action the charity should
take next, but tested whether the RNN could learn a sequence of actions that
leads to donations. One-hot encoding of the action label was used to eliminate
any false sense of ordering over the actions. The RNN chose only the following
actions as the next best action: pageview, donated, delivered, clicked and opened.
This showed that the network had learned which actions lead to donations.

4.2 Email Optimization

In email appeals the only action available to charities is actually sending an
email. All other actions are taken by the constituent. We thus considered param-
eters of an appeal email that could be changed in order to optimize donation
amounts. The email parameters we considered are the number of each of the
following in the email: words, paragraphs, images, links, blocks, HTML divs,
variables, and editable blocks. These were chosen as they are easy to measure,
and we aim to extend this list in the future.
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These parameters apply only to emails, but every action in the donor journey
is either directly related to an email, or one step removed from an email – except
for no action. Thus, in addition to the one-hot encoding of the action taken, 8
additional values are added to each action, being the parameters of the associated
email. If no email is associated with an action (for us, only no action), the 8
additional values are set to 0. As an example of an action represented in this
format, consider an opened email with 235 words, 4 paragraphs, 2 images, 1
link, 2 blocks, 3 divs, 4 variables and 4 editable content sections. This action is
represented as {0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 235, 4, 2, 1, 2, 3, 4, 4}.

For almost all campaigns the set of donor data is much smaller than the set of
non-donor data. Thus we balance the two sets by limiting the larger (non-donor)
set to be the size of the smaller (donor) set. Several iterations of this process are
performed to ensure the error of this method is accurate. We experimented with
both types of training data and explain this in the next section.

5 Empirical Evaluation

Given our positive preliminary experiment results (Sect. 4), we determined that
the basic structure of the donor journey should be able to be modeled with
RNNs, as the goal of this journey is to receive donations. For the eight email
parameters, the values used were similar to parameter values of emails sent by
actual charities. Table 1 lists all values tried in various experiments.

Table 1. Variable email parameter values used in actual emails and experiments.

Parameter Description

Words {150, 200, 393, 445, 457, 474, 500, 1000}
Paragraphs {1, 2, 3}
Images {2, 3, 6}
Links {28, 29, 35}
Blocks {8, 9}
Divs {40, 41, 44}
Variables {2, 3}
Editable content {8, 9, 15}

5.1 Training the RNN

Preliminary experiments were performed with data sets from three charities – a
wildlife conservation charity (C1), an Alzheimer’s charity (C2), and a children’s
charity (C3). Data was gathered from C1’s Giving Tuesday appeal in 2018, C2’s
Spring Appeal in 2019. and C3’s Year End appeal in 2018. Actions were recorded
as described in Sect. 3. The data for C1, C2 and C3 are shown in Table 2.
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Table 2. Training data for RNN from three charities.

C1 C2 C3

Donors 640 229 316

Non-donors 195669 195688 50811

Total raised $54,387 $55,952 $130,034

Mean donation $85 $245 $409

Median donation $50 $100 $100

Standard deviation $105 $514 $1520

Minimum donation $5 $1 $1

Maximum donation $1,000 $5,000 $10,000

For each charity, 60% of the data was used to train the RNN and 40% was
used to test the learned model, with no overlap between the sets. Other training
and testing splits tried were 75/25 and 80/20, with inferior results. Balancing
the donors with the non-donors obviously dramatically reduced the training and
testing data, and we ran 10 iterations to check the accuracy and error of this
setup, changing the non-donors selected for training and testing in each iteration.

All architectures for the RNN tried for each charity used 18 inputs (10 actions
and 8 email parameters). The best performing architectures in terms of mean
absolute error (MAE) had two LSTM layers with 64 and 32 nodes, a dropout
rate of either 0.2 and 0.5, learning rates of 0.001, momentum of 0.9 and the
ReLU activation function. Deeper networks did not result in more accurate pre-
dictions, nor did using a sigmoid activation function. The MAE testing error
these architectures for C1, C2, and C3 were $25, $139, and $359, respectively.
For C1, The error was within our margin of error to trust the model ($30).
Having accomplished our first goal, we decided to query this model for the best
email parameters for non-donors to each charity.

5.2 Full Email Experiments

After gaining confidence in the RNN model through some preliminary experi-
ments, we experimented with parameters shown in Table 1, with the exception
of variables, which we held at 2 after some analysis of the training data. Results
were gathered on 4,261 constituents for C1, 1914 constituents for C2 and 1763
constituents for C3. While the goal of this project is to provide personalized
email recommendations, several lessons were learned on the group as a whole.
For parameters that showed variance, the mean, median, mode values for C1 are
shown in Table 3. Results for C2 and C3 are not shown as the model did not
meet the error threshold of $30, and the model always chose the same values.

For C1, emails with fewer words (150) and paragraphs (1) were chosen most
often, but for some constituents, 445 words and 3 paragraphs were selected.
These constituents were those who had fewer interactions with the campaign
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Table 3. Mean, median and mode email parameter values chosen by RNN for C1

Mode Median Mean St. Dev

Words 150 150 155.94 41.57

Paragraphs 1 1 1.1 0.414

Images 6 6 4.65 1.89

Links 35 29 31.7 2.99

Editable content 9 9 9.24 1.18

(thus had one or more no action actions in their sequence). We hypothesize that
the model has learned that for constituents who have received less messaging,
more content in the next email will increase the donation amount. This is a first
step towards our goal of personalizing email appeals.

6 Discussion and Future Work

In this paper, we showed that RNNs could learn a model of the donor journey
that was within $25 of the true donation value of a constituent for a given
campaign. We used this model to suggest actions for a charity to take next to
elicit donations from non-donors, and found consistent and reasonable patterns
in these predictions. We would like to test the email parameter selection in an
actual campaign. We have agreements with some charities to do so, given the
accuracy of the models. This will involve feeding current constituents into the
learned RNN model and choosing the email parameters based on the model’s
predictions. In this way, the true performance of the predictions can be measured.
The content of the messages will be determined by outside means - namely
natural language processing research that is ongoing.

To strengthen the accuracy of the RNN, we will feed features of the con-
stituents to the model, in addition to the action and email features. This will
allow for more personalization, as well as give the RNN more data to learn on.
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Abstract. In this paper, we develop and explore deep anomaly detec-
tion techniques based on capsule network (named AnoCapsNet) for
image data. Being able to encode intrinsic spatial relationship between
parts and a whole, CapsNet has been applied as both a classifier
and deep autoencoder. This inspires us to design three normality
score functions: prediction-probability-based (PP-based), reconstruction-
error-based (RE-based), and combination of both (PP+RE-based) for
evaluating the “outlierness” of unseen images. Our results on four
datasets demonstrate that PP-based and RE-based methods outper-
form the principled benchmark methods in many cases and the pp-based
method performs consistently well, while the RE-based approach is rel-
atively sensitive to the similarity between labeled and unlabeled images.
The PP+RE-based approach effectively takes advantages of both meth-
ods and achieves state-of-the-art results.

Keywords: Anomaly detection · Capsule net · Normality score

1 Introduction

As real-time tracking & diagnosis systems and autonomous controlling devices
are strongly demanded in various domains in the current era of Internet of Things
(IoTs), smart cities, big data, and deep learning, anomaly detection (also known
as outlier detection) is becoming increasingly critical. It aims at uncovering
abnormal data points which may stand for novel or alarming events. Anomaly
detection is of key importance in IoT systems, data centres, security platforms,
and life science to diagnose system failure, detect intruders or attackers, and
discover novel knowledge.

Prior to the use of deep learning approaches, statistical and heuristic methods
were main tools for anomaly detection in restricted application domains. Kernel
methods, such as kernel density estimation (KDE) [15,25] and support vector
domain description (SVDD) [31], were the most successful ones to deal with non-
linearity of the input feature space through kernel trick. However, nowadays the
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tremendous amount of data of various types (such as images, texts, omics data,
etc.) have been collected, posing new challenges in handling the scalability and
complexity of such data. With billions of samples in modern datasets, traditional
methods become less effective. For example, conventional feature encoding and
extraction methods are incompetent to capture informative factors from the
input feature space of complex data.

Embracing the wealth of data, deep learning models have achieved signif-
icant successes in various discriminative and generative modellings of modern
data [4,8,9,11,16–18], encouraging to explore deep anomaly detection solutions.
The core of deep learning is learning complex representations for the data at dif-
ferent levels in the latent space [3]. For example, convolutions on sequence data
and embedding technologies on discrete or symbolic data allow to encode visible
examples to low-dimensional continuous dense vectors in a latent space, showing
the advantage of distributed representation learning over alternative approaches.
Furthermore, stochastic gradient descent using mini-batches makes learning of
deep networks very scalable to data of big size. The past few years have witnessed
progresses made by the work reviewed in Sect. 2. Accordingly, comparative stud-
ies, e.g., [30], unconsidering these two advantages of deep learning over classic
methods, could be biased.

The technique in [7] is based on the insightful observation: learning to dis-
criminate between many types of geometrically transformed images encourages
learning of features that are useful for detecting novelties. Among all geometric
transformations, they only considered compositions of horizontal flipping, trans-
lations, and rotations, resulting in 72 distinct transformations. Their main focus
was tackling the problem of identifying anomalous images in pure single class
setting, even though it was mentioned their method may also be effective at
distinguishing out-of-distribution samples from multiple-class data.

In fact, learning transformation is very challenging in computer vision tasks.
Convolutional neural network (CNN) [19], a hierarchy of convolution operations,
has been widely used as a highly effective technique in classifying images. How-
ever, one arguable key limitation of CNN is that the neurons do not sufficiently
capture the properties of entities such as position, orientation, and sizes, as well
as their part-whole relationship. The capsule network (CapsNet) [10,12,27] has
been proposed and shown advantages in maintaining such information, which
is a novel and promising structure that may be more closely related to biolog-
ical neural organization. A capsule is a group of neurons whose activity vector
represents the instantiation parameters of a specific type of entity such as an
object or part. It has been demonstrated that CapsNet is capable of preserving
hierarchical pose (position, size, and orientation) relationships between image
features. For a given image, CapsNet can automatically and dynamically model
affine transformations and part-whole relationships using an iterative routing-
by-agreement mechanism.

Inspired by these developments, we propose that, instead of using geometric
transformations to learn distinct features of images, CapsNet can be employed to
automatically learn transformations from the training examples such that a test
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example that cannot be explained by the network should be viewed as anomaly.
Unlike [7], our work concentrates on the cases where normal samples come from
multiple classes. Our contributions are three-fold: (1) based on unique charac-
teristics of CapsNet, we propose three normality score functions that work well;
to the best of our knowledge, this is the first attempt to explore and test Cap-
sNet for deep anomaly detection; (2) we provide insights and categorize existing
ideas for deep anomaly detection into boundary-based and distribution-based
families, paving the road for future studies; (3) we compared our methods with
principled benchmark methods and three advanced deep generative techniques
and assessed their capacities for deep anomaly detection.

2 Insights into Existing Work

Instead of simply enumerating all existing work for deep anomaly detection,
we categorize these solutions into two families, and provide insights into their
characteristics, strengths and challenges.

A classical viewpoint regarding anomaly detection is that, learning the
boundary of data mass is more effective and straightforward than learning the
density distribution of the data, because (1) available data were too few to cover
the distribution in many cases, and (2) it was much more complicated and dif-
ficult to model data distribution using a generative model. However, in the big
data era, massive amount of data become available in many domains; many of
the data are unstructured (such as images, graphs, time-series, text, etc.); and
deep generative models have achieved promising successes in modelling such
modern data, offering a new avenue for exploring distribution-based methods
for anomaly detection. These two categories, boundary-based and distribution-
based, are respectively discussed below.

2.1 Boundary-Based Methods

Kernel based support vector domain description (SVDD) or one-class support
vector machine (OCSVM) methods, including hypersphere [31] and hyperplane
[29] models, is a successful family for anomaly detection in the pre-deep-learning
era. The idea of the hypersphere-based SVDD is to map data points from input
space to high-dimensional space and learn a hypersphere that capture the core
mass of the data distribution. Any data point outside the hypersphere is viewed
as an abnormal sample. Please see [21,22] for a systematic discussion of SVDD
methods. It is quite natural to think of deep extension of these methods to con-
tinue their success in the deep learning age. In pursuit of this aim, there are
two efforts: deep hybrid methods and one-class neural network models. In deep
hybrid methods (e.g., VAE+OCSVM [2] and DBN+OCSVM [6]), a supervised
(e.g., CNN or recurrent net) or unsupervised (e.g., deep belief net (DBN) or vari-
ational autoencoder (VAE)) neural network is first employed to learn embedding
representations of samples in the hidden space, then using these latent represen-
tations as inputs an SVDD method is employed to detect abnormal data points.
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One-class neural network models (e.g., one-class deep SVDD [26]) learn a neural
network and SVDD together by maximising an adapted SVDD objective in the
prime form. Both classes of methods have pros and cons. Deep hybrid methods
are pipelines that are very flexible in choosing and combining different represen-
tation learning (or pretrained embeddings) and SVDD models. However, these
methods face the challenge of scalability due to size of kernel matrices in dual
form of SVDD. Deep SVDD models explicitly use deep neural networks as fea-
ture extractors in replacement of implicit kernel tricks, and are scalable to large
data due to use of SVDD’s prime forms and stochastic gradient descent. Nev-
ertheless, this strategy is lack of flexibility in practice, that is a specific model
needs to be built for each specific type of data.

2.2 Distribution-Based Methods

As mentioned above, deep generative models (DGMs), such as deep belief net
(DBN) [13,23] and variational autoencoder (VAE) [16], can be applied as unsu-
pervised feature learning techniques. More importantly, since DGMs aim at mod-
elling the joint distribution of visible and latent variables (that is p(x,h)), their
likelihood p(x) by marginalising out h may serve as an anomality describer.
However, exact likelihood can only be obtained in quite few generative mod-
els, such as exponential family restricted Boltzmann machines (RBMs) [24]. In
many cases when a recognition component is used for approximate inference,
only the variational/evidence lower bound (ELBO) of log-likelihood is available.
Unfortunately, ELBO may be too loose to be an normality indicator. Often-
times, the ELBOs of normal and abnormal samples indistinguishably fall into
the same range. Luckily, this is not the end of the story. In an architecture with
encoder (recognition) component and decoder (generative) component, recon-
struction error could serve as anomality measure based on the intuition that
out-of-distribution samples can be reconstructed badly [1]. But in the case of
generative adversarial net (GAN) based methods [28], an encoder is unavail-
able. For an inquiry sample x, a supervised learning process has to be executed
to search for a hidden representation h′ such that the corresponding generated
sample x′ best approximates x. The approximation error and probability from
GAN’s discriminator can together indicate the extent of anomality.

2.3 Benchmarks

Our CapsNet based anomaly detection methods were compared with three prin-
cipled methods from the two family of methods discussed above. These bench-
marks are described as below. The method presented in [7] is unavailable for
multi-class normal data, thus we were unable to compare with it. (1) We imple-
mented a deep hybrid method named CNN+OCSVM, obviously CNN was used
to learn the latent representations and OCSVM was used for anomaly detec-
tion. The CNN component has two convolutional layers (3 × 3 receptive fields
in both layers, 32 and 64 feature maps respectively for the first and second
layers, max-pooling with pooling size of 2 × 2 after the second layer, ReLU
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activation function), one fully connected layer (128 units), and a softmax layer
for class labels of normal samples. The outputs of the fully connected layer were
latent representations extracted for searching the hyperparameters and optimiz-
ing the model parameters of OCSVM. (2) We employed a three-layer DBN to
model data distribution and then measured reconstruction error to score abnor-
mality. There are 500 units in each hidden layer. The model was layer-wise
pretrained by RBMs. Bernoulli distribution was assumed for both visible and
hidden layers. The pixel values were scaled to interval [0, 1] as input to DBN.
Reconstruction error of an inquiry sample was used to detect anomalous samples.
(3) Similarly, a convolutional VAE was also applied to capture data distribution.
The inference component (encoder) has the same architecture as the CNN com-
ponent (disregarding the output layer) in CNN+OCSVM. The latent space size
was set to 64. The structure of the inference component was mirrored for the
structure of the generative component. Reconstruction error was used in deter-
mination of anomality.

3 CapsNet-Based Normality Score Functions

Unlike [7], we actually do not need to manually transform each training image.
Using CapsNet, transformations ought to be automatically learned via an iter-
ative routing-by-agreement mechanism. We can thus avoid the stage of labeling
each transformed image. After a CapsNet classifier is trained, unseen images
(either normal or out-of-distribution) could be directly fed into the learned
model. We present two normality score function to determine the outlierness
of these images.

3.1 Prediction-Probability-Based Normality Score

The activation probabilities of digital capsules at the last layer of a CapsNet [27]
indicate the probabilities of the input sample belonging to the classes. However,
unlike softmax probabilities in CNN, the activation probabilities of all digit cap-
sules do not necessarily sum to one. Assuming the network is trained sufficiently
well, for a normal test image, there should be one and only one probability being
close to “1”, representing the possibility of this image belonging to its true class.
However, when an anomalous sample cannot be explained by the network, all
activation probabilities of digital capsules would be very low. Therefore, this
unique characteristic inspires us to define a normality score function ns(s) based
on prediction probabilities (PP):

nPP (x) � max
c=1,··· ,C

(‖hc‖2), (1)

where x is an input image, hc represents the c-th digit capsule, ‖hc‖2 denotes
the probability of x belonging to the c-th class. Hereafter, we simply call Eq. (1)
PP score function. Since the threshold, dividing the normal and the anomalous,
is hard to decide, as per convention, we use the area under the receiver operating
characteristic curve (auROC) to measure its performance.



380 X. Li et al.

3.2 Reconstruction-Error-Based Normality Score

In CapsNet [27], reconstruction error is used as a regularization term through
a decoder component. The classifier is also an encoder for disentangled repre-
sentation learning. In this perspective, a CapsNet thus meanwhile functions as
a deep autoencoder, offering an idea to score normality based on reconstruction
error.

In this method, we use normalized squared error (NSE) to measure the qual-
ity of reconstructed images. The reason of using NSE instead of MSE (mean
squared error) is that, different objects in different images (e.g., MNIST digits)
can have different numbers of nonzero pixels in contrast with pure background.
Using MSE will significantly weaken the actual difference between the input
image and the reconstructed image. For example, as digit image “1” takes much
less numbers of pixels than digit “8”, using MSE the reconstruction loss of image
“1” will be reduced at a greater extent than that of image “8”, even though image
“1” may be reconstructed worse than image “8”. The reconstruction error (RE)
based normality score can thus be defined as:

nRE(x) � −NSE(x′) = −‖x − x′‖22
‖x‖2 (2)

where x represents an actual image and x′ the reconstructed image. When the
background in an image takes a large portion of the space, and the values of
background pixels are near zeros, the advantage of NSE will be more obvious.
Hereafter, we refer to Eq. (1) as RE score function.

3.3 Combined Normality Score

Since prediction-probability-based and reconstruction-error-based normality
score functions demonstrate their own strengths on a range of datasets, why
don’t we combine them together so that they can complement each other? There-
fore, the combined normality score function (denoted as NPP+RE) is introduced
and defined as below:

NPP+RE(x) = αNRE(x) + (1 − α)NPP (x), (3)

where α ∈ [0, 1] is the combination hyperparameter such that the two terms can
effectively complement each other. The experimental results to be presented in
Sect. 4.2 verify the effectiveness of this normality score function.

4 Experiments

4.1 Comparison on MNIST, Fashion-MNIST, and Small-Norb Data

Both PP and RE methods and 3 benchmarks: CNN+OCSVM, DBN, and VAE
were compared on MNIST by respectively treating each digit class as anomalous
class and the rest as normal. Their performance in terms of auROC is displayed
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in Fig. 1a. Evidently the CapsNet-based PP method works consistently the best,
while CapsNet-based RE method in general is slightly inferior to the PP method,
but has comparable results as CNN+OCSVM. The two DGMs (DBN and VAE)
are not competitive to the CapsNet-based and deep hybrid methods.

(a) On MNIST. (b) On Fashion-MNIST. (c) On Small-Norb.

Fig. 1. Performance on PP, RE, and benchmark methods.

When comparing all five methods on the Fashion-MNIST data (see Fig. 1b),
generally speaking all methods tended to get lower results, which is reasonable
because Fashion-MNIST samples is more complicated than MNIST samples.
When using footwear (Sandals, Sneakers, or Ankle boots) as anomalous sam-
ples, the CapsNet(RE) method outperformed the CapsNet(PP) method. It is
because the CapsNet classifier could carry some wrong confident information of
classifying a footwear anomalous sample (e.g., Sneaker) to the normal footwear
classes (e.g., Sandal or Ankle boots), while reconstruction errors can pick up dif-
ferences in details. In the case of using data from a topwear class as anomalous
samples, CapsNet(PP) worked better than CapsNet(RE). When trousers and
bags were viewed as abnormal samples, both methods worked quite well with-
out big differences in performance. The performances of CNN+OCSVM and
VAE vary largely. In few cases, they can obtain similar results as CapsNet-based
methods. DBN did not behave impressively on the data.

From Fig. 1c, one can see that Small-Norb is a challenging data for all five
methods. When using animals and cars as anomalies, only CapsNet(PP) per-
formed reasonably good, the other methods behaved randomly. When trucks
were used as anomalous samples, only CapsNet(PP) and CapsNet(RE) were
able to behave non-randomly. In the case of planes as abnormal data, both Cap-
sNet(RE) and VAE worked the best. Only in the case of humans as anomalies,
CNN-OCSVM reached 0.7 auROC.

4.2 Case Studies in Normality Score Functions

The performance of three normality score functions is evaluated through two
case studies on the MNIST data.
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Multi-class Training Data and Single-Class Anomalous Digits

PP-Based Normality Score VS. RE-Based Normality Score: Figures 2a
and b shows the performance of two methods when selecting digits “2” and “9”
as abnormal samples, respectively, and the rest digits as normal samples. When
digit “2” was treated as anomaly class, both PP and RE score functions achieved
near perfect auROCs (0.9841 and 0.9699). When “9” was viewed as anomaly
class, however, the PP score function outperformed the RE score function by
auROC of 0.12. The reason for this can be found from Figs. 2c and d, which
depicts 50 real digits and their reconstructed ones for both digits. From Figs. 2c
and d, one can easily notice that anomalous digit “9” was mostly reconstructed
as digit “4”, while anomalous digit “2” was reconstructed as several different
digits such as “1”, “3”, “6”, and “7”. As images “4” and images “9” are quite
similar, the normality scores of images “9” become very high, even though the
true digits “9” and their reconstructed versions “4” are two different numbers.
Similar situations can be observed when considering other digits as anomaly, like
“4” and “1”.

(a) Digit 2 (as anomaly). (b) Digit 9 (as anomaly).

(c) Digit 2 (as anomaly). (d) Digit 9 (as anomaly).

Fig. 2. ROC curves and images (upper half: original digits, lower half: reconstructed
digits), when detecting anomalous digits: “2” and “9” using AnoCapsNet.

Performance of PP+RE-Based Normality Score: From the aforemen-
tioned experiments, one can be convinced that both CapsNet-based PP and
RE methods displayed their own strengths on specific anomalous classes. Not
surprisingly, the combined method (PP+RE) performed the best among all three
normality score functions by making optimum use of advantages of PP and RE
methods. Table 1 depicts the results of three normality score functions on four
image datasets. From Table 1, one can easily notice that outstanding averaged
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Table 1. Performance of AnoCapsNet in comparison with other methods in terms of
auROC on image data. In the column for β-VAE, only reconstruction error is used as
anomaly score. Results for AnoGAN and ADGAN are from [5].

Dataset Class PP RE PP+RE AnoGAN ADGAN β-VAE AnoDM

MNIST 0 0.997 0.947 0.997 0.990 0.999 0.890 0.985

1 0.990 0.907 0.990 0.998 0.992 0.841 0.987

2 0.984 0.970 0.991 0.888 0.968 0.967 0.991

3 0.976 0.949 0.984 0.913 0.953 0.947 0.969

4 0.935 0.872 0.939 0.944 0.960 0.968 0.975

5 0.970 0.966 0.983 0.912 0.955 0.966 0.976

6 0.942 0.909 0.959 0.925 0.980 0.907 0.983

7 0.987 0.934 0.987 0.964 0.950 0.899 0.977

8 0.993 0.929 0.993 0.883 0.959 0.946 0.982

9 0.990 0.871 0.990 0.958 0.965 0.794 0.928

Avg 0.977 0.925 0.981 0.937 0.968 0.913 0.975

Fashion-MNIST 0 0.620 0.454 0.620 – – 0.500 0.844

1 0.851 0.871 0.915 – – 0.860 0.978

2 0.818 0.486 0.818 – – 0.459 0.783

3 0.895 0.693 0.898 – – 0.730 0.886

4 0.790 0.394 0.790 – – 0.379 0.763

5 0.691 0.982 0.982 – – 0.985 0.990

6 0.801 0.480 0.801 – – 0.501 0.713

7 0.619 0.787 0.787 – – 0.842 0.952

8 0.912 0.885 0.960 – – 0.876 0.980

9 0.656 0.754 0.754 – – 0.701 0.944

Avg 0.765 0.679 0.833 – – 0.683 0.883

Small-Norb 0 0.785 0.491 0.785 – – 0.346 0.520

1 0.519 0.598 0.598 – – 0.393 0.656

2 0.718 0.785 0.812 – – 0.772 0.772

3 0.589 0.570 0.605 – – 0.581 0.581

4 0.713 0.562 0.714 – – 0.564 0.564

Avg 0.665 0.601 0.703 – – 0.531 0.619

CIFAR-10 0 0.645 0.377 0.645 0.610 0.661 0.368 0.635

1 0.452 0.736 0.736 0.565 0.435 0.746 0.754

2 0.646 0.413 0.646 0.648 0.636 0.397 0.589

3 0.666 0.597 0.686 0.528 0.488 0.604 0.608

4 0.670 0.390 0.670 0.670 0.794 0.387 0.564

5 0.645 0.590 0.669 0.592 0.640 0.611 0.638

6 0.723 0.486 0.723 0.625 0.685 0.500 0.600

7 0.704 0.628 0.733 0.576 0.559 0.614 0.648

8 0.477 0.403 0.477 0.723 0.798 0.399 0.642

9 0.504 0.688 0.788 0.582 0.643 0.698 0.718

Avg 0.613 0.531 0.677 0.612 0.634 0.532 0.640
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0.981 auROC was achieved by PP+RE-based method when detecting anoma-
lous data on MNIST. In cases of Fashion-MNIST, Small-Norb and CIFAR-10, the
averaged auROCs were also improved by around 7%, 4% and 6% of the highest
auROCs respectively. It can be concluded that (1) PP-based method had con-
sistently better performance than RE-based method when evaluating AnoCap-
sNet on MNIST. And it outperformed RE method mostly on Fashion-MNIST,
Small-Norb and CIFAR-10. (2) PP+RE method sometimes overlapped with PP
method (when PP outperformed RE at a great degree) and occasionally over-
lapped with PP method (considering RE had much better performance than PP).
In other cases (PP and RE had close performance), PP+RE method improved
both methods at some degrees. Three normality scores of AnoCapsNet are also
compared with other advanced models (AnoGAN [28], ADGAN [5] and AnoDM
[20]). The results displayed in Table 1, prove that the proposed PP+RE-based
AnoCapsNet framework improved current successful image anomaly detection
techniques at a great degree. It accomplished the state-of-art performance on a
range of image datasets, even for some challenging datasets such as Small-Norb
and CIFAR-10.

Multi-class Training Data and Multiple Anomalous Digits
In this case, the three CapsNet-based normality score functions are tested by
considering digits “0”, “3” and “5” as abnormal digits, and the rest as normal.
The results is displayed in Fig. 3. Both RE and PP methods achieved similar
auROCs. By combining them together (using PP+RE normality score func-
tion), the state-of-the-art result (0.9919 auROC) is achieved by AnoCapsNet
framework.

5 Conclusion

Many modern data-driven intelligent systems require more accurate anomaly
detection techniques. In this paper, we explore novel solutions in consideration
of CapsNet’s distinct characteristics. We devise three normality score functions
based on CapsNet’s activation probability and reconstruction error respectively.
Experiments on four image data sets show that these CapsNet-based methods
outperform existing solutions in many setups.

Fig. 3. ROC curves of detecting abnor-
mal digits “0”, “3”, and “5” using three
CapsNet-based score functions.

In this paper, we did not dis-
cuss classification-based anomaly detec-
tion methods, as they essentially treat an
anomaly detection task as a two-category
classification problem by using both nor-
mal and abnormal samples in the train-
ing process. While all out-of-distribution
anomaly detection methods as discussed
in this paper only take normal sam-
ples for training, because an anomalous
data point could unpredictably come from
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anywhere outside the normal data distribution, which is true in many application
domains. We did not discuss deep reinforcement learning methods for anomaly
detection in this paper as well. But this is a new area worthy of future investiga-
tion. The performance of CapsNet-based normality score functions depends on
CapsNet’s learning capacity on certain data. Prediction-probability-based and
reconstruction-error-based normality scores possess complementary strengths,
and their combination presents the state-of-art performance on a range of image
data sets by making optimum use of their advantages. Even though Sabour
et al. [27] mentioned that same as deep generative models, current CapsNets do
not perform very well when the backgrounds of images vary too much (such
as CIFAR-10) to be modelled, the AnoCapsNet framework using combined
(PP+RE) normality score technique still accomplishes quite impressive results.

Considering the impressive performance of AnoCapsNet, it might be fruit-
ful to continue deeper research for CapsNet-based anomaly detection problem.
As CapsNets acquire the capability of handling complicated data, CapsNet-
based anomaly detection methods could become more accurate and robust.
Since CapsNet is famous with its state-of-the-art performance on some public
image datasets, currently there are quite few works for sequence (text) modeling
based on CapsNets [14,32]. This research could be a promising and productive
area considering CapsNet is the theoretical improvement of convolution neural
network.

Expectation-Maximization routing algorithm in Matrix CapsNet is essen-
tially an inference technique. Therefore, CapsNet is actually not purely dis-
criminative (or supervised) model, having a potential to improve and develop
into a fully generative model in the near future. Although CapsNet learns some
affine transformations as a supervised method, it is worth exploring unsupervised
learning of affine transformations as a future topic.

References

1. An, J., Cho, S.: Variational autoencoder based anomaly detection using reconstruc-
tion probability. Technical report, Data Mining Center, Seoul National University,
Seoul, South Korea (2015)

2. Andrews, J.T.A., Morton, E.J., Griffin, L.D.: Detecting anomalous data using auto-
encoders. Int. J. Mach. Learn. Comput. 6(1), 21–26 (2016)

3. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new
perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

4. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language
model. J. Mach. Learn. Res. 2, 1137–1155 (2003)

5. Deecke, L., Vandermeulen, R., Ruff, L., Mandt, S., Kloft, M.: Image anomaly detec-
tion with generative adversarial networks. In: Berlingerio, M., Bonchi, F., Gärtner,
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Abstract. The problem of automatic question generation from text is
of increasing importance due to many useful applications. While deep
neural networks achieved success in generating questions from text para-
graphs, they mainly focused on a whole paragraph in generating ques-
tions, assuming all sentences are question-worthy sentences. However,
a text paragraph often contains only a few important sentences that
are worthy of asking questions. To that end, we present a feature-based
sentence selection method for identifying question-worthy sentences.
Such sentences are then used by a sequence-to-sequence (i.e., seq2seq)
model to generate questions. Our experiments show that these features
significantly improves the question generated by seq2seq models.

Keywords: Question Generation (QG) · Sentence selection

1 Introduction

In recent years, automatic question generation (QG) has attracted a consid-
erable attention in both machine reading comprehension [6,34] and educational
settings [5,33]. Automatic question generation aims to generate natural questions
from a given text passage (e.g., a sentence, a paragraph). There are two main
categories of QG methods: rule-based approaches [17,18] and deep neural net-
work approaches based on sequence-to-sequence (seq2seq) models [6,29,36,37].
Rule-based approaches mainly use rigid heuristic rules to transform the source
sentence into the corresponding question. However, rule-based methods heavily
depend on hand-crafted templates or linguistic rules. Therefore, these meth-
ods are not able to capture the diversity of human-generated questions [35],
and also may not be transformed to other domains [33]. Recently, seq2seq
neural network models [6,29,36,37] have shown good performance to gener-
ate better-quality questions when a huge amount of labeled data is available.
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Fig. 1. Sample paragraph from car manuals. Green sentences are question-worthy.
(Color figure online)

Moreover, it has been shown that utilizing the paragraph-level context can
improve the performance of seq2seq models in the question generation task
[6,36].

Most existing seq2seq methods generate questions by considering all sen-
tences in a paragraph as question-worthy sentences [6,29,36,37]. However, not
all the sentences in a text passage (a paragraph or an article) contain important
concepts or relevant information, making them suitable for generating useful
questions. For example, in Fig. 1 only the underlined sentences in a sample para-
graph from a car manual dataset (one of datasets used to evaluate the proposed
method) are question-worthy (i.e., human may ask questions about them), and
other sentences are irrelevant. Therefore, extracting question-worthy sentences
from a text passage is a crucial step in question generation for generating high-
quality questions.

Sentence selection has been investigated for the purpose of text summariza-
tion [9,11,26], where sentences in a document are ranked based on sentence-level
and/or contextual features. However, few works exist for sentence selection for
the task of question generation (QG). Recently, question-worthy sentence selec-
tion strategies using different textual features were compared for educational
question generation [4]. However, these strategies identify question-worthy sen-
tences by considering features individually, which may not be powerful enough
to distinguish between irrelevant and question-worthy sentences.

In this paper, we use two types of features: context-based and sentence-based
features to identify question-worthy sentences for the QG task. Given a passage
(e.g., a paragraph), our goal is to investigate the effectiveness of using these
features for extracting question-worthy sentences from the passage on the QG
performance. In addition, we consider using only the question-worthy sentences
in a passage as the context for question generation instead of using the whole pas-
sage. We incorporate the context into a seq2seq question generation model with
a 2-layer attention mechanism. We conduct comprehensive experiments on two
datasets: Car Manuals and SQuAD [24] and show that the proposed question-
worthy sentence selection method significantly improves the performance of the
current state-of-the-art QG approaches in terms of different criteria.
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2 Related Work

2.1 Question Generation

Question Generation (QG) can be classified into two categories. (1) rule-based
approach [12,19,21] and (2) neural network approach [6,29,37]. Rule-based
methods rely on human-designed transformation or template-based approaches
that may not be transferable to other domains. Alternatively, end-to-end train-
able neural networks are applied to the QG task to address the problem of
designing hand-crafted rules, which is hard and time-consuming. Du et al. [6]
utilized a sequence-to-sequence neural model based on the attention mechanism
[1] for the QG task and achieved better results in contrast to the rule-based
approach [12]. Zhou et al. [37] further modified the attention-based model by
augmenting each input word vector with the answer position-aware encoding,
and lexical features such as part-of-speech and named-entity recognition tag
information. They also employed a copy mechanism [10], which enables the net-
work to copy words from the input passage and produce better questions. Both
works take an answer as the input sentence and generate the question from the
sentence accordingly.

Yuan et al. [34] introduced a recurrent neural model that considers the
paragraph-level context of the answer sentence in the QG task. Sun et al. [29]
additionally improved the performance of the pointer-generator network [27]
modified by features proposed in [37]. Based on the answer position in the para-
graph, a question word distribution is generated which helps to model the ques-
tion words. Furthermore, they argued that context words closer to the answer are
more relevant and accurate to be copied and therefore deserve more attention.
They modified the attention distribution by incorporating trainable positional
word embedding of each word in the sentence w.r.t its relative distance to the
answer. Zhao et al. [36] improved the QG by utilizing paragraph-level infor-
mation with a gated self-attention encoder. However, these methods commonly
use the whole paragraph as the context. Our method uses only question-worthy
sentences in a paragraph as the context.

2.2 Feature and Graph-Based Sentence Ranking and Selection

A variety of rich features have been used to score sentences in a text passage
for summarization purposes [9,11,15,26]. In [26], the authors summarized these
features in two general categories: importance features and sentence relation
features. Importance features (e.g, length of a sentence, average term frequency
(Tf–idf) for words in a sentence, average word embedding of words in the sen-
tence, average document frequency, position of a sentence, and Stop words ratio
of a sentence) are considered to measure importance of a sentence individually.
Sentence relation features determine the content overlap between two sentences.

In [9], the number of named entities in a sentence was considered
as one of sentence importance features. In [23], three types of features: sta-
tistical, linguistic, and cohesion, were applied to score sentences for selecting
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important sentences. Statistical features assign weights to a sentence according
to several features: keyword feature, sentence position, term frequency, the length
of the word, and parts of speech tag. Linguistic features: noun and pronouns give
higher chances for sentences with more nouns and pronouns to be include in the
summary. Cohesion features consider two kinds of features: grammatical and lex-
ical. In order to score and extract sentences that best describe the paragraphs, a
graph-based model, TextRank [20] is used. In this approach, a graph is formed
by representing sentences as nodes and the similarity scores between them as
vertices. By using the PageRank algorithm [3], nodes with higher scores are cho-
sen as the significant sentences of a given paragraph. Another popular method
for deriving useful sentences is LexRank [7], which is a graph-based method cap-
turing the sentences of great importance based on the eigenvector centrality of
their corresponding nodes in the graph. SumBasic [31] is another algorithm in
which the frequency of words occurring across documents determines sentence
significance.

To select sentences for question generation, in [4], different textual features,
such as sentence length, sentence position, the total number of entity types,
the total number of entities, hardness, novelty, and LexRank measure [7] are
individually used to extract question-worthy sentences for a comparison purpose.
Here, we train a sentence selection classifier by using multiple features including
both context-based and sentence-based features.

3 Methodology

Given a text passage (e.g., a paragraph, a section or an article), our task is to
select question-worthy sentences from the passage that capture the main theme
of the passage, and use the selected sentences to generate questions. In this
section, we first introduce a question-worthy sentence extraction method that
extracts all question-worthy sentences from a paragraph. Then, we describe how
the question-worthy sentences of a paragraph are incorporated into a seq2seq
model that uses an attention strategy to generate questions. Figure 2 shows the
general view of the proposed method.

3.1 Feature-Based Question-Worthy Sentence Extraction

Inspired by text summarization methods that extract rich features from a text
passage (a paragraph or an article) for identifying summary-worthy sentences
[9,11,15,26], we develop a new question-worthy sentence selection method. We
consider question-worthy sentence selection as a classification task that evaluates
each sentence in the passage utilizing context-based and sentence-based features
of the sentence.

Given a training data set that contains a set of passages where each passage
consists of a sequence of sentences and each sentence is labelled as question-
worthy or not, our task is to learn a classifier from the training data that pre-
dicts the question-worthiness of a sentence in a passage. To learn such a classi-
fier, we first extract features of sentences in the training data and then train a
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Fig. 2. Proposed framework for question generation

classifier based on the extracted features. The training data are represented as
D = {(x1, y1), . . . , (xn, yn)}, where xi, yi, n are the feature vector of the sen-
tence i, its label, and the number of sentences in D, respectively. The classifier
finds a mapping function F : X → Y , where X is the domain of input sentences
and Y is the set of labels or classes (i.e., question-worthy or not). In our exper-
iment, a Random Forest classifier [2,13] is trained to identify question-worthy
sentences due to its solid performance in text classification tasks, although other
classification methods can be used.

We use two groups of features to represent a sentence: context-based and
sentence-based features. Context-based features consider the passage which the
sequence is in and contain rank features and the tf–df feature. The rank fea-
tures of a sequence are the ranks of the sentence in its passage obtained from
different text summarization methods. The intuition of using rank features is
that sentences with important and valuable information contents are ranked
higher. Therefore, high rank sentences are more suitable to ask question about.
We employ four text summarization methods: TextRank [20], SumBasic [31],
LexRank [7], and Reduction [8]. We use four different ranking methods because
different ranking methods consider different sets of factors in sentence rank-
ing and all these factors can be considered when incorporating all of them in
our sentence representation. The sentence ranks generated by these summariza-
tion methods are used as four rank features. To compute the tf–idf feature of a
sequence, we first compute the tf-idf value of each word in the sequence in the
context of the passage the sentence is in. That is, the term frequence of a word is
the frequency of the word in the sentence and the inverted document frequency
of the word is the number of sentences containing the word in the passage.
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We then use the average tf–idf value of the words in a sentence as the tf–idf
feature of the sequence. Intuitively, the tf-idf value of a sentence measures the
importance of a sentence in its passage.

We also use sentence-based features, which consider only the sentence without
its context. Sentence-based features are of two different types: POS-tag (Parts
of speech tag) and sentence importance features. Part-of-speech tagging is a
basic NLP task that classifies words into their parts of speech and labeling them
accordingly. We use six POS-tag features: (1) Number of verbs in a sentence,
(2) Number of nouns in a sentence, (3) Number of adjectives in a sentence, (4)
Number of adverbs in a sentence (5) Number of pronouns in a sentence, and (6)
Number of connection words in a sentence. Our sentence importance features
are the length of a sentence and the stop words ratio in a sentence [26].

3.2 Context-Aware Question Generation

We use a seq2seq model to generate questions from question-worthy sentences
given a passage. In a seq2seq question generation model, the objective is to
generate a question Q for a text sequence S (e.g., a sentence that answers the
question). More formally, the main objective is to learn a model with parameter
θ∗ given a set of S and Q pairs by solving the following:

θ∗ = arg max
θ

∑

Q,S

log P (Q|S; θ), (1)

Here, we also consider the context of the input sentence S when generating
a question from S. We use the question-worthy sentences in the paragraph of
sentence S as the context C of S. Thus, our problem is to learn a model with
parameter θ∗ given a set of tuples 〈S,C,Q〉, such that:

θ∗ = arg max
θ

∑

Q,S,C

log P (Q|S,C; θ), (2)

To incorporate contexts into the seq2seq model, we use the same strategy pro-
posed in [25] for context-aware query reformulation, where a new attention strat-
egy (two-layer attentions) was introduced for incorporating the context of a
query into a seq2seq model. The model proposed in [25] is called Pair Sequences
to Sequence (Pair S2S) due to the fact that two input sequences are used to
generate one output sequence. In the encoder stage of Pair S2S model, both the
input sequence S = {wS

t }M
t=1 and its context C = {wC

t }N
t=1 (where wS

t and wC
t

represent the tth word in S and C, respectively, and M and N are the number
of words in S and C, respectively) are separately encoded as follows:

uS
t = RNNS(uS

t−1, e
S
t ) (3)

uC
t = RNNC(uC

t−1, e
C
t ) (4)
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where eS
t and eC

t are the word embeddings for the context and the input sen-
tence, respectively. In the decoder stage, the traditional attention mechanism is
separately applied on the context and input sequence as follows:

cC
t =

N∑

k=1

αC
t,kuC

k cS
t =

M∑

k=1

αS
t,kuS

k (5)

αC
t,k =

ef(st,u
C
k )

∑
ki

e
f(st,uC

ki
)

αS
t,k =

ef(st,u
S
k )

∑
ki

e
f(st,uS

ki
)

(6)

where st, cC
t , cS

t , αC
t,k, αS

t,k, and f are represents the internal state of recurrent
neural network (RNN) at time t, the attention vector for the context, the atten-
tion vector for the input sentence, the attention strength for the context, the
attention strength for the input sentence, and the attention function, respec-
tively. Then, another attention layer is applied to combine the attention vectors
of the input sequence and the context:

cC+S
t = βCcC

t + βScS
t (7)

βC =
ef(st,c

C
t )

ef(st,cSt ) + ef(st,cCt )
(8)

βS =
ef(st,c

S
t )

ef(st,cSt ) + ef(st,cCt )
(9)

We apply the above two-layer attentions in [25]. For each input sentence,
question-worthy sentences extracted by the feature-based sentence selection
method from its corresponding paragraph are considered as the question-worthy
context.

Table 1. Evaluation results for important sentence selection on SQuAD. The best
results is highlighted in boldface.

Method (SQuAD) Precision Recall Accuracy Macro-F1 Micro-F1

ConceptTypeMax 0.6021 0.3827 0.4679 0.4680 0.4682

ConceptMax 0.6021 0.3827 0.4679 0.4678 0.4681

LexRank 0.7610 0.4836 0.5915 0.5913 0.5916

Emb 0.7000 0.0002 0.3885 0.2801 0.3887

Longest 0.7235 0.4600 0.5620 0.5622 0.5624

FS-SM-IM 0.8273 0.6813 0.6405 0.5623 0.6407

FS-SM-Pos 0.6938 0.6920 0.6047 0.5695 0.6049

FS-SM-Rank 0.7283 0.7287 0.6510 0.6206 0.6513

FS-SM 0.7626 0.7606 0.6932 0.6658 0.6932
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4 Experimental Setup and Results

4.1 Dataset and Implementation Details

We conduct our experiments on the following datasets.

– Car Manual dataset: This dataset (provided by iNAGO Inc.1) consists of 4672
QAs created by human annotators from two car manuals (Ford and GM). We
randomly divided 80% of the dataset into training, 10% validation and 10%
test. In this dataset, sentences can be divided into two different classes with
label ‘0’ and ‘1’. Label ‘1’ for a sentence means that humans identify it as a
worthy sentence. Sentences with label ‘0’ are irrelevant sentences.

– Processed SQuAD dataset: We use the Stanford Question Answering Dataset
(SQuAD) [24], a machine reading comprehension dataset, which offers a large
number of questions and their answers extracted from Wikipedia through
crowdsourcing. Each example consists of a sentence from an article with its
associated question generated by human and its corresponding paragraph.
We use this dataset with the same setting as (Du et al. [6]). The data has
been split into training set (70,484 question-answer pairs), dev set (10,570
question-answer pairs) and test set (11,877 question-answer pairs).

We train our models with stochastic gradient descent using OpenNMT-py [14],
an open source neural machine translation system, with the same hyperparame-
ters as in [6]. The learning rate starts at 1 and is halved at 8th epoch. We train
a two-layer LSTMs with hidden unit size 600 for 15 epochs.

Table 2. Evaluation results for sentence selection on Car Manuals dataset. The best
results are highlighted in boldface.

Method (Car manuals) Precision Recall Accuracy Macro-F1 Micro-F1

ConceptTypeMax 0.6689 0.3679 0.4740 0.4744 0.4747

ConceptMax 0.6690 0.3680 0.4746 0.4747 0.4750

LexRank 0.7508 0.4129 0.5318 0.5328 0.5330

Emb 0.39 0.0002 0.3548 0.2619 0.3548

Longest 0.5436 0.2990 0.3850 0.3855 0.3858

FS-SM-IM 0.5511 0.5706 0.5805 0.5798 0.5808

FS-SM-Pos 0.6576 0.6531 0.6569 0.6572 0.6574

FS-SM-Rank 0.6094 0.6077 0.6189 0.6196 0.6200

FS-SM 0.7641 0.6896 0.7150 0.7152 0.7155

1 http://www.inago.com/.

http://www.inago.com/
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4.2 Evaluation Metrics

To evaluate sentence selection methods, we use precision, recall, accuracy, and F1
scores. For question generation, we report BLEU-1, BLEU-2, BLEU-3, BLEU-4
[22] and ROUGE-L [16] scores based on the package in [28] for evaluating natural
language generation. BLEU-n is a modified precision of n-grams between the ref-
erence and generated sentences, while ROUGE-L compares the longest matching
sequence of words between system-generated and reference counterparts.

4.3 Question-Worthy Context Results

We compare our feature-based question-worthy sentence extraction method (FS-
SM) with a number of baselines, including LexRank, ConceptTypeMax, Con-
ceptMax, and Longes proposed in [4]. In [4], it was shown that LexRank is
the best question-worthy sentence identification strategy on most datasets. This
strategy is based on summary scores of the LexRank [7] summarization method.
The ConceptMax and ConceptTypeMax strategies consider the total number of
entities and the total number of entity types in a sentence, respectively. In addi-
tion, we examine the embedding feature (Emb method) proposed in [26] which
represents the sentence content. To analyze the effect of each type of features,
we evaluate three variants of FS-SM:

– FS-SM-Pos: A version of FS-SM whose classifier is trained by considering just
the POS-tag features

– FS-SM-IM: A version of FS-SM whose classifier is trained by considering just
the sentence importance features

– FS-SM-Rank: A version of FS-SM whose classifier is trained by considering
just the rank features

Tables 1 and 2 show results on the Car Manuals and SQuAD datasets. The results
show that the FS-SM method significantly outperforms the other baselines in
terms of classification evaluation metrics. From Tables 1 and 2, it can be seen that
all versions of the FS-SM method achieved better results than other strategies.

4.4 Question Generation Results

We compare FS-SM-seq2seq (our QG method) with some baselines for question
generation. Tables 3 and 4 show the results for the following QG methods:

– Vanilla seq2seq: The basic seq2seq model [30] whose input is a sentence.
– Transformer: Transformer model is a neural network based seq2seq model

based on the attention mechanism [1] and positional encoding [32]. Its input
is a sentence.

– Para-seq2seq: A seq2seq model with the 2-layer attention strategy [25] where
for each input sentence its whole paragraph is used as its context.

– ConceptMax-seq2seq: A seq2seq model with the 2-layer attention strategy [25]
that uses the question-worthy sentences identified by ConceptMax from the
paragraph of the input sentence as the question-worthy context.



Question-Worthy Sentence Selection for Question Generation 397

– LexRank-seq2seq: A seq2seq model with the 2-layer attention strategy [25]
that uses the question-worthy sentences identified by LexRank from the para-
graph of the input sentence as the question-worthy context.

– FS-SM-seq2seq (our method): A seq2seq model with the 2-layer attention
strategy [25] that uses the question-worthy sentences identified by our pro-
posed sentence selection method from the paragraph of the input sentence as
the question-worthy context.

We chose LexRank and ConceptMax as an alternative context selection method
to compare with our method because they can identify important sentences
better than other strategies evaluated in [25]. It can be seen from Tables 3 and
4, FS-SM-seq2seq outperform other compared methods on all metrics on the
SQuAD data set and on most metrics on the Car Manuals data set.

Table 3. Question generation evaluation on car manuals on SQuAD

Model (SQuAD) BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L

Vanilla seq2seq 31.34 13.79 7.36 4.26 29.75

Transformer 37.528 18.097 9.457 5.0143 26.600

ConceptMax-seq2seq 41.700 16.551 8.205 4.099 28.772

LexRank-seq2seq 41.057 17.168 8.494 4.099 28.055

Para-seq2seq 33.152 13.786 06.585 03.2867 27.6876

FS-SM-seq2seq 43.27 18.86 9.00 4.48 30.58

Table 4. Question generation evaluation on car manuals

Model (Car manual) BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L

Vanilla seq2seq 34.6012 16.5057 10.11052 6.598 28.1247

Transformer 28.1243 11.5928 6.3074 3.4219 25.2176

ConceptMax-seq2seq 35.2702 14.7947 9.3679 5.2965 0.269364

LexRank-seq2seq 35.4368 0.1601 9.764 6.1662 0.2808

Para-seq2seq 35.13123 15.97419 09.2094 5.5600 28.0959

FS-SM-seq2seq 36.9870 17.6561 09.7696 5.41238 29.5423

5 Conclusion and Future Work

We presented a method for selecting question-worthy sentences from a text pas-
sage and using these sentences as contexts for question generation. For iden-
tifying question-worthy sentences, a feature-based method is designed based
on context-based and sentence-based features. A 2-layer attention strategy is
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applied to incorporate the question-worthy context into a seq2seq model. Exper-
imental results showed that using the question-worthy context for question gen-
eration seq2seq models have achieved better results than baselines on both Car
Manuals and SQuAD datasets.
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Abstract. The global expansion of maritime activities and the devel-
opment of the Automatic Identification System (AIS) have driven the
advances in maritime monitoring systems in the last decade. Given the
enormous volume of vessel data continuously being generated, real-time
analysis of vessel behaviors is only possible because of decision support
systems provided with event and anomaly detection methods. However,
current works on vessel event detection are ad-hoc methods able to han-
dle only a single or a few predefined types of vessel behavior. Most of the
existing approaches do not learn from the data and require the definition
of queries and rules for describing each behavior. In this paper, we dis-
cuss challenges and opportunities in classical machine learning and deep
learning for vessel event and anomaly detection.
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1 Introduction

The worldwide growth of maritime traffic and the development of the Auto-
matic Identification System (AIS) has led to advances in monitoring systems for
preventing vessel accidents and detecting illegal activities. In addition, the inte-
gration of vessel traffic data with environmental and climatological data allows
more complex analyses and a better understanding of the cause and effect of
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maritime events [18]. While preventing vessel accidents means saving money for
shipping companies, from the environmental point of view, it also protects the
marine fauna and flora from irreversible damage [2]. However, real-time moni-
toring and analysis of vessel traffic can be overwhelming to maritime agents due
to the high volume of data continuously generated. Therefore, decision support
systems are fundamental to enabling efficient and effective maritime control.

The detection of events from AIS data has been the subject of study of
several works in the literature [9,16,18]. In particular, some approaches have
been proposed for detecting events such as changes in the speed [18,19] or in the
course of vessels [19], proximity of vessels to other vessels [9], illegal fishing [16]
or possibly hazardous activity [18], among others. However, to the best of our
knowledge, most current works are ad-hoc approaches that do not learn from
the data and are limited to detecting a restricted set of predefined events. Such
methods are not able to detect unforeseen events and also require the assistance
of domain specialists for defining rules that characterize each event.

Another aspect often ignored by previous research is the integration of data
from different sources for analyzing vessel behavior. Even though this can be
advantageous to maritime systems, only a handful of works have addressed it
[18]. For example, detecting small vessels heading towards ice-infested waters
and that are not equipped for handling this situation allows the decision-maker
to warn the captain in advance. Such strategy avoids the deployment of a search
and rescue mission, which might represent a high cost (e.g., lives, resources) to
maritime authorities.

In this work, we present research gaps and challenges in machine learning
for detecting different types of vessel behavior, considering several constraints
imposed by real-time data streams and the maritime monitoring domain. We
highlight the potential of exploiting machine learning techniques for maritime
monitoring, as it has been shown to be fundamental for enabling cognitive smart
cities, for instance, which is a scenario similar to ours with heterogeneous sensor
data that requires real-time decision making systems [13].

2 Research Challenges and Opportunities

In this section, we explore the challenges and research gaps that are currently
faced by vessel behavior monitoring techniques. We address three main tasks
related to vessel behavior detection: (i) the actual detection of different vessel
behaviors or behavior changes; (ii) identifying and relating recurrent behaviors;
(iii) providing the user with means for interpreting and analyzing the detected
vessel behaviors. In addition, we discuss about two main issues associated to
the data that can be challenging for machine learning methods: (i) the data
has limited or no class labels about vessel behaviors; and (ii) often, there is no
knowledge whatsoever of what are the behaviors or labels present in the data.
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2.1 Behavior Detection: Supervised vs. Unsupervised

Most of the existing works for behavior detection in vessel traffic monitoring do
not learn from the data. Instead, algorithms are proposed to detect a restricted
set of vessel activities via rules and thresholds defined beforehand. Defining
such rules requires the knowledge from domain specialists, which may introduce
considerable human bias in the analysis. Although the sole use of supervised
learning techniques may seem appealing, they can also limit the detection of
events to a predefined set, i.e., the classification labels. With that in mind, we
believe that research on unsupervised learning techniques is promising for taking
vessel event detection research to the next level.

A closely-related research topic that has already been explored in the liter-
ature is the detection of concept drift or change in time series data [1,17]. In
streaming data, concept drift is commonly referred to as the detection of sig-
nificant changes in the data distribution [8]. Several works for change detection
in data streams were designed to work along with a supervised learning model,
detecting drifts based on the error rate of the learner [1].

Unsupervised approaches have also been proposed for detecting concept drift
[1,8,17]. However, they also exhibit some drawbacks, such as being limited to
univariate data [1]; simply detecting changes based on individual feature cor-
relation [8] instead of analyzing dependency relationships between features and
how they characterize different behaviors; and even lacking direct interpretabil-
ity of the detected changes [17]. In spite of their limitations, these methods can
provide a solid starting point for future works on unsupervised behavior change
detection and posterior event notification.

2.2 Identifying Recurrent Behavior Patterns

Detecting multiple instances of the same behavior is an essential factor in mar-
itime monitoring. Besides avoiding multiple analyses of the same behavior by
agents, it allows agents to have a higher-level picture of behavior patterns of
a single vessel or even of a group of vessels in a region. In previous works for
vessel event detection, identifying multiple occurrences of the same behavior was
a trivial task, since the detection process consisted mostly of a query [18] or an
algorithm for detecting a single behavior [9]. On the other hand, in the unsu-
pervised setting, a pattern or behavior needs to be characterized in a way that
multiple occurrences of the same pattern can be identified. Although concept
drift or behavior change detection methods can indicate boundaries for different
types of behavior in streaming data, they do not provide a way for detecting
recurrent behavior.

To the best of our knowledge, the only unsupervised learning method
proposed for detecting different and recurrent behaviors in time series data
is the Toeplitz Inverse Covariance-based Clustering (TICC), introduced by
Hallac et al. [6]. TICC segments multivariate sensor data into sequences of states
or clusters (i.e., behavior patterns), representing each behavior as a Markov
Random Field (MRF). However, the number of clusters is fixed and must be
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defined by the user, meaning that the number of different behaviors present in
the data should be known a priori. Additionally, TICC is not directly suitable
for streaming data, as it assumes that all data is available at the same time, and
it requires a few iterations of the algorithm for convergence. Although TICC
has some drawbacks, we believe that future research could take advantage of the
method for recurrent behavior detection as, for instance, use MRFs to represent
and identify the same behavior in different trajectory segments.

2.3 Towards Interpretable Behavior Patterns

Doshi and Kim [4] define interpretability in the context of machine learning as
“the ability to explain or to present in understandable terms to a human.” In
order to enable maritime agents to make data-driven decisions about suspicious
or dangerous vessel activity, discovered behavior patterns must be interpretable,
i.e., understandable to the agents. Moreover, interpretability may assist in the
detection of recurrent behaviors if they can be explicitly characterized based on
feature observations.

Interpretability is, perhaps, the main advantage of a few existing works, since
rules explicitly define events related to vessel behavior. In contrast to these
approaches, detecting interpretable patterns can be challenging for unsupervised
machine learning algorithms. For vessel behavior detection, we conjecture that
the interpretability of the model may be negligible if guarantees are given about
the characteristics of the detected behaviors. For instance, if a behavior can be
represented as an MRF, and it is always defined by the same variable depen-
dency graph, the user might not be interested in the details of the underlying
model as long as this structure is guaranteed for all future occurrences of the
same behavior. Thus, detection methods that are based on abstractions of the
real observed features (e.g., [12,17]) can be a feasible option. Afterwards, other
techniques could be exploited for correlating and providing interpretability of
different behaviors from the real observed variables.

2.4 Diving into Deep Learning

Deep learning models have often been set aside in favor of linear models, because
of the claimed lack of interpretability that they have [10]. We believe that for
a similar reason only very few works have addressed anomaly detection in the
maritime domain with deep learning [14,20]. To the best of our knowledge, no
work has addressed the detection of specific vessel behaviors with deep learning
techniques. More recently, however, a few works have been proposed to assist
in the visual interpretation of these models (e.g. [21]), while others have even
questioned previous claims over the interpretability of deep models [10].

Computer vision has experienced the most advances with deep learning, and
Convolutional Neural Networks (CNNs) are nowadays widely used for image
classification [7]. An intuitive approach is the use of satellite imagery data with
CNNs for detecting ship anomalies. However, it may be difficult or even impos-
sible to detect certain vessel behaviors from satellite imagery, which limits the
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use of modern deep learning methods exclusively based on image data [15]. Also,
obtaining satellite images is generally more expensive in comparison with AIS
data. On the other hand, CNNs have already been used for trajectory classifica-
tion [3] and prediction [11], based on trajectory features that can be extracted
from AIS data. Therefore, CNNs with visual techniques for interpretability [21]
could be further exploited for behavior and anomaly detection.

2.5 Big, Yet Limited Data

The growth of maritime activity led to advances in AIS technology, and such
developments resulted in large volumes of data being generated every day.
Although a large amount of AIS data is available, it lacks labels. Labels are
a valuable piece of information for researchers and machine learning algorithms.
However, labeling data is difficult and expensive since it requires knowledge from
domain experts.

The lack of labels has guided the focus of current research either to detecting
a single type of vessel behavior in an unsupervised manner [9], or to proposing
the detection of different events via predefined behavior rules, materialized in the
form of data queries [16,18]. Future works could take advantage of the knowl-
edge described in previous approaches for labeling data, to provide input-output
examples to machine learning algorithms, as well as ground truth for evaluating
novel approaches. On the other hand, research could concentrate on synthesizing
new behavior data with Generative Adversarial Networks [5], for example, for
enhancing the performance of other supervised models.

3 Summary and Final Remarks

Even though maritime monitoring has experienced significant progress in the last
decade, most of existing works do not take full advantage of machine learning
techniques for vessel behavior detection. In fact, existing research has focused
on proposing queries, rules, and ad-hoc algorithms for detecting specific types of
behavior. We argue that this methodology inhibits further advances to more gen-
eral behavior detection approaches, constraining monitoring systems to function
only under frequent human supervision. In this paper, we presented research gaps
in the field, indicating points of improvement and opportunities for future works.
We hope to instigate the development of new algorithms, methods, and tools for
ship behavior monitoring, as many aspects of it still remain unaddressed.
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Abstract. This paper presents a novel approach for trip reconstruc-
tion and transport mode detection. While traditional methods use a
fixed GPS sampling rate, our proposed method uses a dynamic rate to
avoid unnecessary sensing and waste of energy. We determine a time for
each sampling that gives an interesting trade-off using a particle filter.
Our approach uses as input a map, including transit network circuits
and schedules, and produces as output the estimated road segments and
transport modes used. The effectiveness of our approach is shown empiri-
cally using real map and transit network data. Our technique achieves an
accuracy of 96.3% for a 15.0% energy consumption reduction (compared
to the existing technique that has the closest accuracy) and an accuracy
of 85.6% for a 56.0% energy consumption reduction.

Keywords: Particle filter · Transport mode detection · Trip
reconstruction · Energy efficiency · Mobile device · GPS · Dynamic
sampling

1 Introduction

The popularity of smartphones has brought out many services and applications
based on their sensors (GPS, accelerometer, gyroscope, etc.) such as activity
recognition [7], trip reconstruction (TR) [8,11] and transport mode detection
(TMD) [3,13]. TR and TMD are both used for traffic study in urban planning
to automate the process of data collection [12] instead of using the traditional
survey method that is less precise and more expensive. Most GPS sensing are
usually made at a fixed predetermined rate ranging from 1 s to 60 s [3,12].
However, these algorithms of reconstruction suffer from major drawbacks.

One problem is that a GPS device consumes a significant amount of energy.
Using the GPS at 1 Hz consumes 143.1 mW on the HTC Dream and Google
Nexus One models [5]. According to our experiments, the consumption is
439.3 mW for a Samsung Galaxy S8 and 397.44 mW for an Asus Zenphone
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4 Max. The battery life of these smartphones ranged from 8 to 10 h for nor-
mal daily use (cellular and Wi-Fi enabled, 4G web navigation when travelling in
public transit, etc.) when continuous geolocation was enabled. Sensing at a rate
of 1 Hz is therefore hardly acceptable for users, since it drastically reduces their
smartphone’s autonomy. On another side, a lower rate decreases the accuracy
of TR and TMD algorithms. Hence, there is a trade-off between the quality of
estimation of the algorithm and the energy consumption (EC) of the GPS.

This ideal compromise highly depends on the road network and the smart-
phone’s state after a certain time. Indeed, in a city’s downtown, the number
of different possible paths and the possible change of transport mode (e.g., bus
stops, metro stations, etc.) makes it harder to do TR and TMD, because many
paths and transport mode combination can explain the transition between the
last two GPS sensing. In comparison, on a highway there is usually only one pos-
sibility (transport by car and shortest path between two points). The interval
Δt between sensing should thus dynamically change depending on the position
to achieve the optimal trade-off between precision and EC.

This paper presents a dynamic GPS sampling rate technique for path recon-
struction and transport mode detection based on a particle filter that dynami-
cally determines the moment to use the GPS sensor in order to get a compromise,
depending on preferences, between energy consumption and accuracy.

2 Related Works

Since we address two related problems at once, TR and TMD, this section
presents previous works related to one or both of these problems. Furthermore,
we discuss their impacts on energy consumption.

2.1 Trip Reconstruction

The simplest TR approaches use a fixed GPS sensing rate. Usually, such
approaches are tested with different fixed frequencies to show the decrease in
accuracy when the rate increase. One approach is iterative based [11], where
each node must be within a certain Euclidean distance from the corresponding
GPS reading and directly linked to the previous associated node. If no node
can be associated to a reading, the maximum distance is increased and another
iteration begins. Another approach [10] uses a Hidden Markov Model (HMM) [4]
to determine the most likely road segment for each GPS reading. The authors
limit the EC of their algorithm by updating the sampling rate according to the
mobile device state (stopped, normal road, highway). However, they do not test
their approach with sampling rates higher than 30 s to avoid an arc-skipping sit-
uation, which could greatly increase the error according to the authors. Finally,
a model to generate a set of true potential paths and to associate likelihood to
each of them is used in [1]. The model uses the speed, the time and the bearing
of the mobile device to determine these likelihood. All these techniques high-
light the same problem: an higher sampling rate to reduce EC directly leads to
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an increased error due to the arc-skipping problem. In this situation, the road
segments associated with two consecutive GPS readings may not be directly con-
nected and a shortest-path algorithm must be used to link them [11,12]. This
can induce errors, since some users may not have used the shortest path for some
reason (e.g., construction site, personal preference, traffic, etc.).

2.2 Transport Modes Detection

TMD algorithms are generally based on machine learning (ML), since the goal is
to classify data (GPS readings) among a defined and limited set of class (trans-
port mode). While these approaches can achieve a good accuracy on average
(more than 90%), they rely on a high GPS sampling rate (from 1 s to 15 s) and
do not attempt to reconstruct the smartphone’s trip. Some approaches also use
data from other sensors, such as the smartphone’s accelerometer or field sensor,
to improve their accuracy [3]. Many TMD algorithms use ML techniques such
as neural network (NN) [3,15] and derivatives such as convolutional neural net-
work (CNN) [9]. Other ML techniques such as Random Forest [13] and Support
Vector Machine [2] have also been experimented.

Table 1. Transport mode detection accuracy in related works

Approach Sampling rate (s) Walk Car Bus Average

[13] 15 98.9% 80.8% 93.0% 93.8%

[2] 60 93.8% 88.5% 58.3% 88.0%

[3] 1 95.0% 72.0% 84.0% 83.8%

[15] 1 98.5% 94.2% 88.4% 94.4%

[9] 1–5 95.7% 67.4% 81.1% 84.8%

The general accuracy of these techniques ranged from 84.8% for the CNN [9]
to 94.4% for the NN with particle swarm optimization [15]. However, these aver-
age accuracies hide a deeper phenomenon that occurs in all reviewed study:
distinguishing a walk is generally easier than a car or a bus. Table 1 presents the
accuracy for the different papers previously cited. The walk accuracy is always
the highest (more than 93.8%), while the car and bus can vary a lot (from
67.4% to 94.2% and 58.3% to 93.0% respectively). This is mainly due to the
resemblance between the motorized transport modes (car and bus) regarding
speed and acceleration. Thus, they are easily mixed up and wrongly classified.
A note on the results of [2]: they claim to have an average accuracy of 88.0%
for a sampling rate of 60 s. While this seems impressive for such a low rate, it is
important to note that 52.4% of their data is labelled as walk. Since this is the
easiest transport mode to detect, this greatly increases their average accuracy.
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2.3 Combined Approach

A technique to do both TR and TMD has been proposed by [8]. They use a
conventional GIS-based map-matching algorithm to reconstruct the path and a
rule-based algorithm to identify transport modes (walk, bicycle, bus and car).
Their average error on TR is 21% for a sample rate of 1 s, which is worse than
algorithms previously cited who exclusively reconstruct path. Their accuracy for
transport mode detection is 92%, which is similar to other approaches.

3 Model and Algorithm

The goal of our method is to estimate the paths and the transport modes used
during a trip with the GPS sensor of a smartphone while minimizing the EC. To
achieve this, we use a particle filter to estimate the smartphone’s state according
to GPS readings made at a dynamic rate. This approach novelty resides in the
use of the GPS sensor only when really needed, unlike other methods that make
GPS readings at a given fixed rate. The general outline goes as follows:

1. Make a GPS reading to estimate the smartphone’s state s.
2. Simulate the evolution of s until a time t in the future.
3. Determine a time t� ∈ ]0, t] offering an interesting compromise between accu-

racy and energy consumption. When t� is reached, return to 1.

We model the space in which the smartphone evolves as a graph G = (N,A).
A node is a point n = (n.Lat, n.Long) ∈ N on the map, and an arc is a road
segment a = (nfrom, nto, vmax, Te) ∈ A containing respectively the start and end
vertex of the segment as well as the maximum possible speed on the segment and
the set of all transport modes that can cross a. Each arc thus represents a way
to move between two vertices by using a transport mode (e.g., a road segment,
a subway tunnel, a train rail, etc.). The smartphone’s state at time t is a tuple
st = (p,m, v, P ), where p, m, v and P are respectively the smartphone’s current
position (a point lying on an arc in A), current transport mode, current speed
and actual path travelled (list of nodes and transport modes used).

The smartphone’s state s is not directly observable, but is estimated from
an external sensor (GPS). Since this sensor is not perfect and contains noise,
s.p is modelled as a Gaussian distribution N (x, σ2), where x is the projection of
the coordinate returned by the GPS on the nearest arc a and σ2 is the accuracy
of the GPS. It is important to note that the smartphone’s position distribution
may overlap other allowed arcs according to the current transport mode if x is
near the extremity of a. The evolution of s.p after a time interval Δt is given by

st+Δt.p = st.p + N (s.v, σ2) × Δt. (1)

We need to take into account the fact that s.v can vary during Δt (due to traffic,
road elevation, etc.). Over a long Δt, we consider that a Gaussian distribution
is a good speed approximation at which the smartphone travels.
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Algorithm 1. The particle filter algorithm
1: function Particle Filter(Xt−1, ut, zt)
2: X̄ = Xt = ∅
3: for m = 1 to M do
4: sample x

[m]
t ∼ p(xt|ut, x

[m]
t−1)

5: w
[m]
t = p(zt|x[m]

t )

6: X̄t = X̄t + 〈x[m]
t , w

[m]
t 〉

7: for m = 1 to M do
8: draw i with probability ∝ w

[i]
t

9: add x
[i]
t to Xt

10: return Xt

Using this formalism, the goal of our algorithm is to determine the list of
nodes and transport modes P =

〈
(n0,m0), (n1,m1), . . . , (nk−1,mk−1), (nk,mk)

〉

taken during a trip, where mi is the transport mode used to reach ni.
Since the evolution of the state s can hardly be modelled with parametric

functions (smartphones can be at different places after Δt, each with multiple
different uncertainties, paths and transport modes), we use a particle filter. A
generic implementation [14] is presented in Algorithm 1. Simply put, a particle
filter’s goal is to approximate a belief state bel(xt) by a set of particles Xt of
size M randomly constructed by the control data ut and the sensor data zt. In
our problem, ut is simply the time passed since the last sampling and zt, the
data returned by the GPS sensor. Figure 1 shows a visual example of the particle
filter and the evolution of Xt between two GPS readings. Compare the particles
circled in blue (resp. red) in Fig. 1b and in Fig. 1c. We see that many instances
of s30.p are overlapping with different path.

(a) t = 1. The uncer-
tainty on s1.p is low; few
particles are needed.

(b) t = 10. s10.p can be 5
different positions.

(c) t = 30. More par-
ticles needed to represent
the increased uncertainty

Fig. 1. Evolution of Xt over 30 s for the car transport mode (Color figure online)

One of the challenges of the particle filter is to determine how and when
to resample Xt. After a certain amount of time, the distribution of Xt may
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Fig. 2. Discretization of N (0, 1) at every σ on [−2σ, 2σ].

become too coarse to adequately approximate bel(xt). Therefore, a resample is
eventually needed. In our case, a resampling implies a new sensor observation
zt (which incur energy consumption). We implement two methods to determine
the next resampling time and avoid unnecessary sensing.

Firstly, to avoid too coarse particle distribution, we discretize all possible
states with particles instead of sampling a fixed M particles from p(xt|ut, x

[m]
t−1)

(Line 4 of Algorithm 1). Rather than calculating the density probability of bel(xt)
with the density of particles, we associate a weight to each particle (see Fig. 2).
When a smartphone reach position nto of its current arc, the particle splits itself
on all outgoing edges of nto. An example of this splitting is shown in Fig. 1b.
This ensures that all possible states are covered by the state space.

Secondly, we compute a score for Xt with the following formula:

score(Xt) =
∑

x∈Xt

(
P (x) × xacc

)
− 2

1 + eλt
. (2)

This score represents the trade-off between the EC and the average estimated
accuracy (TR and TMD) the algorithm would achieve if a GPS sensing was done
at t, the elapsed time since the last sensing. The λ parameter in Eq. (2) controls
the trade-off between EC and accuracy. A small λ saves more energy, while a
bigger one gives an higher accuracy. Figure 3 shows an example of the evolution
of score(Xt) for different values of λ. The next sensing and resampling are done
at the time t that maximizes score(Xt). The variable xacc in Eq. (2) is defined by

xacc =
∑

x′∈X̄t

P (x′) × |x′
Path+ | + |x′

Path− |
|xPath| , (3)

where x is the particle currently computed, |x′
Path+ | is the length of path that

x′ has, but not x, |x′
Path− | is the length of path that x′ doesn’t have, but x has

and X̄t is the set of particles at a lower distance from x than the GPS sensing
error. xacc represents the average error on the state estimated when x is the true
smartphone’s state and a GPS sensing is made. Due to noise induced by the
GPS sensor, the true smartphone’s state could be mistaken for any particles of
X̄t (which can have different paths and transport modes).
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Fig. 3. score(Xt) for 3 different λ. With λ = 0.03, the next sensing is done after 21 s.
With the other two λ, the next sensing is done after 44 s.

The resampling is pretty straightforward: score(Xt) is computed on [0, T [,
where T is a time limit after which no better trade-off can be obtained. The
time t� offering the ideal compromise between accuracy and energy consumption
is retained (i.e., t� = argmaxtscore(Xt)). Then, a GPS sensing is done at time
t�. The particles in a radius of 2σ2 are simply kept instead of generating new
particles (Line 8 of Algorithm 1), where σ2 is the radius (in meters) of 68%
confidence given by the GPS sensor. In the event that no particles are in this
radius, it is gradually extended by step of one σ2. The weight of each particle is
then updated according to their distance from the GPS sensing.

The change of transport mode during a trip is considered in two circum-
stances:

1. Special nodes. Some transport mode changes can only happen on prede-
termined nodes, such as walk→bus. When a particle p reaches these nodes, a
copy of p is instantiated with a predefined different transport mode, changing
its transition behaviour between nodes.

2. During resampling. Some other transport mode changes can occur practi-
cally anywhere, such as car→walk. Since those transport mode changes don’t
occur often, we only consider this change at resampling. Based on our results,
the error induced by this simplification is acceptable compared to the combi-
natorial explosion that would arise if a transport mode change was considered
every second. Therefore, after each resampling, a new state is added to Xt for
every transport modes not already present in Xt.

4 Experimentations

Experimentations were done in the metropolitan region of Montréal, Canada
due to its range of different road network configurations (e.g., dense downtown,
highways, suburbs and country roads on the peripheral region). Moreover, the
presence of multiple bus and subway lines allows us to consider multiple transport
modes. In this experimentation, the transport modes considered are walk, car,
bus and subway. Also, score(Xt) has been evaluated on the interval [0, 300[.
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4.1 Data for the Model

The map data comes from the OpenStreetMap (OSM) project, while the transit
network schedule comes directly from the transport societies (STM, RTL, AMT,
STL) that cover the region of Montréal. Bus and subway stations were integrated
to the OSM data by being connected to the nearest node. To obtain the average
speed on every road segment for the car transport mode, we used data collected
by the City of Montréal. With them, we computed an average speed of 28.60 ±
9.49 km/h. The walk average speed has also been found to be between 3.46±0.65
km/h to 4.93 ± 0.68 km/h depending on the place he is and his gender [6].

4.2 GPS Data Collection

Table 2. GPS data collected

Transport mode Runtime (hours) Number of GPS readings

Walk 8.03 28514

Car 11.94 42768

Bus 5.13 17290

Subway 2.06 390

Total 27.16 88962

For two months, we recorded daily trips with an Android application on an
Asus Zenphone 4 Max smartphone (model ZC554KL). All trips were collected
at different times of the day and have different path. This ensures a variety
regarding the traffic, weather conditions and transit network schedules. During
these trips, the GPS sensor made readings at a rate of 1 Hz and the user was
asked to manually specify its current transport mode (walk, car, bus or subway).
A summary of the collected data is presented in Table 2. Few GPS readings
have been recorded for the subway transport mode because GPS signal can’t be
received underground (but some stations are close enough to the surface to allow
some signals to pass through).

Table 3. Algorithm accuracy with different λ

λ ASR (s) Walk Car Bus Subway Avg TMD TR Error

0.01 20.9 0.996 0.988 0.936 0.932 0.963 0.023

0.03 32.5 0.920 0.982 0.871 0.902 0.919 0.028

0.05 48.6 0.908 0.969 0.806 0.890 0.893 0.031

0.07 59.2 0.876 0.934 0.772 0.885 0.867 0.039

0.09 66.0 0.859 0.932 0.758 0.876 0.856 0.041
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Table 4. Transport mode detection matrix confusion for λ = 0.05

Detected Real

Walk Car Bus Subway

Walk 0.908 0.030 0.049 0.013

Car 0.001 0.969 0.021 0.009

Bus 0.048 0.055 0.806 0.091

Subway 0.048 0.018 0.044 0.890

5 Results

Using the collected data, our approach was tested with different λ values to
analyze the trade-offs between accuracy and EC. Table 3 shows for every tested
λ the average sampling rate (ASR), the accuracy obtained with our technique
for the detection of every transport mode and the average on all of them, as well
as the trip reconstruction error. As expected, a higher λ implies a lower GPS
rate. With λ = 0.01, a reading is made at an average sampling rate of 20.9 s,
while with λ = 0.09, the average is at 66.0 s.

5.1 Transport Mode Detection

In order to make a fair comparison between our results and those in the related
works, we looked for public implementation of related works’ algorithms to test
them on the same datasets. However, these datasets are, to the best of our
knowledge, not publicly available. Given the usage of machine learning in these
techniques, a reimplementation was hardly possible, since those algorithms are
very sensitive to the input dataset. Hence, we directly compare our results to
those found in the related works.

The TMD accuracies we obtained are similar to those found in related works.
It ranges from 96.3% with a λ = 0.01 to 85.6% with a λ = 0.09. The result for λ =
0.01 had a better average accuracy than any other approach cited (the closest
average accuracy being 94.4% [15]) and was achieved with a lower sampling rate.
For example, with λ = 0.01, the average sampling rate is 20.9 s while [15] had a
sampling rate of 1 s. In comparison to [2], who used the highest sampling rate of
60 s and had an accuracy of 88.5% for car and 58.3% for bus [2], our technique
had an accuracy of 93.2% (car) and 75.8% (bus) for an average sampling rate
of 66.0 s with λ = 0.09. The TMD errors for λ = 0.05 are shown in a confusion
matrix in Table 4.

The lowest accuracy is for the bus transport mode. It is falsely detected as
car 5.5% of the time, which is understandable since buses and cars drive at a
similar speed. However, car are less often mistaken for bus, only 2.1% of the time.
This is explained by the fact that buses always share the road with cars (except
some rare bus-only lanes) but cars can often be on roads with no buses route.
Bus and subway transport can be confused with walk when the algorithm has
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difficulty to determine the exact bus stop or subway station a user has taken.
Furthermore, subway are often (9.1%) confused with bus. This is due to the
presence of a bus line running parallel to a subway line. Often, both routes can
explain the transition between the last GPS location before entering a subway
station and the first one after exiting the other one. Currently, our algorithm
doesn’t consider an absence of GPS reading as being underground. However, the
presented approach’s accuracy could be improved by increasing the weight of
underground states when a weak GPS signal is detected.

5.2 Trip Reconstruction

Ground truth for paths taken was generated from our GPS readings and cor-
rected by hand. We compared the path estimated by our technique to the ground
truth. The path error was computed with the formula [11]:

E =
|P+

Estimated| + |P−
Estimated|

|PReal| , (4)

where PReal is the real path, P+
Estimated is the part of the estimated path in

extra compared to PReal and P−
Estimated the part lacking from PReal. TR error

ranged from 2.3% with λ = 0.01 (ASR of 20.9 s) to 4.1% with λ = 0.09 (ASR
of 66.0 s). Compared to their respective sampling rate, this is better than the
accuracy found in the related works.

5.3 Energy Consumption

The energy efficiency of our approach is demonstrated by running our algorithm
on smartphones and measuring the energy consumption using Android’s Bat-
teryManager API. Before every test, the battery was fully charged and all other
applications were closed. Wifi was disabled and 4G enabled. Running the algo-
rithm directly on the phone would consume more energy than the amount saved
by making less GPS sampling. Hence, the 4G connection is required to commu-
nicate with a server running the algorithm. We also measured the EC for fixed
GPS sampling rates. Table 5 shows the results obtained.

Obviously, for an equal ASR, the presented approach uses more energy than
those that uses a fixed sampling rate because of the 4G usage (e.g., 286.28 mW
versus 272.49 mW for a sampling rate of around 20 s). However, we can have a
higher or equivalent accuracy with our approach while using less energy. Most
other approaches use a sampling rate of 1 s resulting in an EC of 336.82 mW, the
corresponding average accuracy ranging from 84.0% to 93.0%. In comparison,
the presented approach consumes only 286.28 mW for an accuracy of 96.3% or
210.50 mW for an accuracy of 91.9%. This means a 15.0% EC reduction for
a 3.3% higher accuracy and a 37.5% EC reduction for an equivalent accuracy.
Furthermore, accuracy remains acceptable with greater sampling rate. With an
ASR of 66.0 s, the presented approach still achieves an average accuracy of 85.6%
for an EC of 148.18 mW, a 56.0% EC reduction for an equivalent accuracy
compared to [15].
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Table 5. Energy consumption according to the GPS sampling rate

Method λ ASR (s) EC (mW)

Fixed GPS sampling rate - 1 336.82

- 20 272.49

- 40 172.67

- 60 146.74

- 80 114.02

Dynamic GPS sampling rate 0.01 20.9 286.28

0.03 32.5 210.50

0.05 48.6 170.79

0.07 59.2 151.26

0.09 66.0 148.18

6 Conclusion

In this paper, a novel approach for trip reconstruction (TR) and transport mode
detection (TMD) has been presented. It reduces significantly smartphone energy
consumption by using the GPS sensor only when necessary while achieving simi-
lar or higher accuracy compared to state-of-the-art methods. This approach uses
a particle filter that estimates the smartphone’s state evolution and the average
resulting error if a GPS sampling was made at every moment. These average
estimated errors are then weighted in a smartphone energy consumption model
to determine the optimal time to do the next sampling. This is to the best of our
knowledge the first approach using dynamic GPS rate depending on the under-
lying road and transit network. Finally, field tests demonstrated the approach’s
accuracy and energy saving compared to other methods. In the best case, the
presented approach allowed an increase of 3.3% in the average accuracy and a
15.0% energy consumption reduction compared to other approaches and a 37.5%
to 56.0% energy consumption reduction for an equivalent accuracy.

Our experimentation only looked at one smartphone model (i.e. Asus Zen-
phone 4 Max smartphone, model ZC554KL). More tests should be done to com-
pare the power consumption saving with different models, since each part can
have a different power consumption, i.e., GPS sensor, 4G antenna, CPU, etc.
This could lead to different ratios of energy consumption saving on models where
other parts would consume drastically more than the GPS sensor.

Currently, our transport model uses historic data regarding travel speed on
certain road segments to determine an a priori travel speed. However, it does not
consider the possible punctual slowdowns due to traffic. Because real-time data
on traffic is hard to obtain, research has already been made toward predicting and
modelling traffic on a road network. Such methods would improve our transport
model in order to better predict the user’s state evolution when travelling by
transport mode relying on road segments (e.g., car and bus), increasing the
proposed approach accuracy.
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Abstract. We propose and evaluate three novel approaches to the
problem of performing similarity matching on full-length event-interval
sequences (e-sequences). The ERF approach represents each e-sequence
as a vector of the magnitudes of the durations of the events. Euclidean
distances between the vectors are then used to compare given e-sequences.
The EPC approach embeds each e-sequence as a vector of position codes to
capture the order of the occurrences of events explicitly and temporal rela-
tions among the events implicitly. Cosine distances between the vectors
are used to infer similarity of e-sequences. Finally, the EMKL approach
combines the ERF and EPC approaches using multiple kernel learning.
Empirical evaluation on eight real datasets suggests that the EMKL app-
roach outperforms existing state-of-the-art methods in terms of nearest
neighbor classification accuracy.

Keywords: Event-interval sequence · Interval-based events ·
Temporal relation · Similarity matching · Distance measure

1 Introduction

In many application domains, sequences of events persist over intervals of time
of varying lengths. Such domains include but not limited to medicine [1], sensor
networks [2], and sign languages [3]. In contrast to point-based event sequences,
where events occur instantaneously, we refer to a series of temporal events with
duration as event-interval sequences (e-sequences). The persistence of events over
intervals of time causes temporal relations, which were categorized by Allen [4].

An e-sequence dataset contains longitudinal data where instances are
described by a series of event intervals over time rather than features with a sin-
gle value. Such datasets are not organized appropriately for standard machine
learning algorithms to build predictive or descriptive models for e-sequences.
In this paper, we investigate the problem of matching full-length event inter-
val sequences. Addressing this problem will facilitate performing data mining
tasks such as classification and clustering. We propose and evaluate three novel
approaches to this problem. The ERF approach uses relative frequency, as pro-
posed by [5], to represent each e-sequence as a vector of the magnitudes of the
durations of the events. Euclidean distances between the vectors are then used
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C. Goutte and X. Zhu (Eds.): Canadian AI 2020, LNAI 12109, pp. 420–425, 2020.
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to compare the magnitude of the duration of the event intervals in the two
e-sequences. The EPC approach generates a position code for the coincidence
label sequence (l-sequence) [6] to embed the transformed e-sequence as a vec-
tor. Cosine similarities between the vectors are then used to measure the angles
between position codes in order to explicitly compare the order of the occur-
rences of event labels and implicitly their temporal relations. Finally, the EMKL
approach combines the ERF and EPC approaches using multiple kernel learning
(MKL).

Three exisitng approaches to similarity searching and matching of event iter-
val sequences are DTW-based [7], IBSM [8], and Artemis [7]. The first method
represents an e-sequence by a series of vectors such that a vector is created for
each start- or end-point of any event-interval. The distances between the vectors
are then computed using Dynamic Time Warping (DTW). IBSM uses a vector-
based representation with a vector for each time point. Euclidean distance is then
used to compare the e-sequences. The Artemis method measures the similarity
between two e-sequences based on temporal relations shared between events
by mapping the e-sequences into a bipartite graph. The main limitation of the
Artemis is that it matches e-sequences only if they share common temporal rela-
tions among event intervals without taking the duration of the event intervals
into account. DWT-based and IBSM on the other hand, ignore the temporal
relations between event intervals.

2 Problem Statement

Definition 1. Let Σ = {A,B, ...} denote a finite alphabet. A triple e = (l, b, f)
is called an event interval, where l ∈ Σ is the event label and, b, f ∈ N, (b < f)
are the beginning and finishing time, respectively. The duration of an event
interval e is d(e) = f − b.

Definition 2. An event-interval sequence or e-sequence s = 〈e1, e2, ..., em〉 =
〈(l1, b1, f1), (l2, b2, f2), ..., (lm, bm, fm)〉 is a list of m event intervals placed in
ascending order based on their beginning times. If event intervals have equal
beginning times, then they are ordered lexicographically by their labels. Multiple
occurrences of an event are allowed in an e-sequence if they do not happen
concurrently. The duration of an e-sequence s is d(s) = max{f1, f2, ..., fm} −
min{b1, b2, ..., bm}.

Definition 3. Given an e-sequence s, the multiset T = {b1, f1, b2, f2, ..., bm, fm}
consists of all time points corresponding to sequence s. If we sort T in ascend-
ing order and eliminate redundant elements, we can derive a sequence Ts =
〈t1, t2, ..., tm′〉, where tk ∈ T, tk < tk+1. Ts is called the e-sequence sliced time
of s.

Definition 4. Given an e-sequence s, a function Φs : N×N → 2
∑

is defined as:

Φs(tp, tq) = {lj | (lj , bj , fj) ∈ s ∧ (bj ≤ tp) ∧ (tq ≤ fj)} (1)
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where 1 ≤ j ≤ n and tp < tq. Given a corresponding e-sequence sliced time Ts,
a coincidence ck is defined as Φs(tk, tk+1) where tk, tk+1 ∈ Ts, 1 ≤ k ≤ m′ − 1,
are two consecutive time points. The duration λk of coincidence ck is tk+1 − tk.
The size of a coincidence is the number of event labels in the coincidence.

Definition 5. Given an e-sequence s and the corresponding e-sequence sliced
time Ts, the coincidence label sequence, or l-sequence Ls = 〈c1, c2, ..., cm′−1〉, is
an ordered list of coincidences excluding gaps (i.e, time intervals containing no
events), where each ck, (1 ≤ k ≤ m′ − 1) is a coincidence of e-sequence s. The
size of a l-sequence |Ls| is the number of coincidences in the l-sequence. With
this definition, all information about the order of co-occurrences of events in
e-sequence s can be represented by Ls.

Problem Statement. Given an e-sequence dataset D, our goal is to specify a
function f that can map any e-sequence si ∈ D to an encoding that captures the
main characteristics of si in order to facilitate the comparison of e-sequences.
We intuitively view the similarity between two e-sequences si and sj in terms
of (1) the presence of event intervals with the same event labels, (2) the order
of occurrences of these event intervals, (3) the duration of these event intervals,
and (4) the temporal relations among these event intervals.

3 Similarity Matching of Interval-Based Temporal
Sequences

In this section, we introduce three approaches to performing e-sequence match-
ing. Each method defines a distance function that will be used in a nearest
neighbor search. The first two methods embed e-sequences into vector-based
representations so that comparing e-sequences and finding similarities among
them can be performed using operations on vectors. The third method inte-
grates these two distance functions to compute a combined distance between a
given pair of e-sequences.

3.1 Matching Using Relative Frequency

The ERF approach uses the relative frequencies of event labels in e-sequenes, as
defined in [5], to measure the distance between the e-sequences.

Definition 6. The relative frequency R(s, l) of an event label l ∈ Σ in an e-
sequence s ∈ D, which is the duration-weighted frequency of the occurrences of
l in s, is defined as the accumulated durations of all event intervals with event
label l in s divided by the duration of s. Formally:

R(s, l) =
1

d(s)

∑

e∈s ∧ e.l=l

d(e) (2)
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Suppose we want to specify a vector-based representation of an e-sequence s
using relative frequency. Function f1 is defined such that it maps an e-sequence
s to a vector of the relative frequencies of event labels l ∈ Σ that present in s.
Formally, f1 : s → R

|Σ|, f1(s) = 〈R(s, l1),R(s, l2), ...,R(s, l|Σ|)〉.
The distance between the relative frequency vectors of e-sequences s and s′

can be obtained by comparing the magnitude of the relative frequencies of the
event labels via Euclidean distance by computing the following:

ERF(s, s′) = ||f1(s) − f1(s′)||2 =

√√√√√
|Σ|∑

j=1

(R(s, lj) − R(s′, lj))2 (3)

3.2 Matching Using Position Code

Encoding the temporal order of event intervals and the temporal relations among
event intervals is a challenge because e-sequences have varied lengths and also
event labels may occur repeatedly. The second vector-based distance method,
called EPC, addresses this challenge by focusing on these two aspects of e-
sequences. We use a function to generate a position code for each event label. This
position code explicitly represents the positions of event labels in the e-sequence
and implicitly represents the temporal relations among the event intervals, based
on the coincidence label sequence (Definition 5) of the e-sequence.

Definition 7. The position code P(s, l) of an event label l ∈ Σ in an e-sequence
s ∈ D, is defined as follows:

P(s, l) =
∑

l∈ck ∧ ck∈Ls

2(|Ls|−k) (4)

We define the second vector-based representation of an e-sequence s based
on position codes. Function f2 maps an e-sequence s to a vector of the posi-
tion codes of the event labels l ∈ Σ in s. Formally, f2 : s → N

|Σ|
0 , f2(s) =

〈P(s, l1),P(s, l2), ...,P(s, l|Σ|)〉.
To calculate the distance between two e-sequences based on their position

code vectors, we use the cosine distance measure because the angle between the
vectors matters more than their magnitudes. This distance is defined as follows:

EPC(s, s′) = 1 − f2(s).f2(s′)
||f2(s)||2 ||f2(s′)||2 (5)

3.3 Matching Using Multiple Kernel Learning

Both the ERF and EPC approaches are able to assess the similarity between
e-sequences. ERF captures aspects of the duration of the event intervals, while
EPC captures aspects of the temporal order and relations of the events. Hence,
it seems natural to integrate these complementary approaches.
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One way to integrate these two methods is to utilize a Multiple Kernel Learn-
ing (MKL) framework, which is commonly used with SVM for classification
tasks. Linear combinations of kernels can be used to solve SVM optimization
problems. In this framework, the problem is solved with respect to a new kernel
obtained as a weighted linear combination of a set of given kernels. Here, we use
this framework to combine the ERF and EPC distance functions as kernels in
order to obtain a new distance function, which is defined as follows:

EMKL(s, s′) =
∑

h

whφh(s, s′) (6)

where h > 1 is the number of kernels to be combined and wh is the weight of
function φh, φ = {ERF,EPC}.

4 Experiments

We evaluate the effectiveness of the EMKL method on the task of matching full-
length interval-based temporal sequences on eight real-world datasets, namely
ASL-BU [3], ASL-BU2 [3], Auslan2 [2], Blocks [2], Context [2], Hepatitis [1],
Pioneer [2], Skating [2]. The weights of ERF and EPC are set to 2/3 and 1/3,
respectively. We compare the 1-NN classification accuracy of EMKL with three
state-of-the-art algorithms, namely the DTW-based [7], Artemis [7], and IBSM
[8] methods. 1-NN classification accuracy is defined as follows:

Given database of e-sequences D and known class labels for every e-sequence,
the effectiveness of a distance function can be assessed according to its accuracy
when it is used for 1-NN classification. This accuracy is computed by making a
1-NN classification prediction for every s ∈ D and then recording the fraction of
correct predictions. To make a 1-NN classification prediction c′ for an e-sequence
s with class label c, first determine the matching set D′ as the set of e-sequences
in D − s that have the minimum distance to s. Then let c′ be the class label of
the majority of the e-sequences in D′, with ties broken arbitrarily. The prediction
c′ is correct if it is equal to c.

Table 1. Comparison of 1-NN classification accuracy of EMKL with baselines

Dataset EMKL IBSM Artemis DTW

ASL-BU 89.50 89.29 79.56 43.58

ASL-BU2 82.75 76.92 80.53 77.25

Auslan2 37.5 37.5 28.5 22

Blocks 100 100 99 87

Context 97.50 96.25 90 89

Hepatitis 77.11 77.52 72.09 74.03

Pioneer 98.13 95 97.5 93

Skating 94.72 96.79 84 77
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Table 1 shows a comparison of EMKL with the competitors on the 1-NN
classification accuracy for the datasets. We adopt the 1-NN classification results
of the Artemis and DTW-based methods, as reported in Table 2 in [8] and those
of IBSM reported in Table 5 in [9]. As shown, EMKL outperforms the Artemis
and DTW-based methods on all datasets. Comparing to IBSM: EMKL wins on
four datasets, ties on two datasets, and loses on two datasets.

5 Conclusion

We proposed three distance functions to match full-length event interval
sequences. The ERF function measures the distance of e-sequences based on the
relative frequency of the event intervals. The EPC function matches e-sequences
based on the position codes of the event intervals, which explicitly represents the
temporal order of event intervals and implicitly the temporal relations among
them. Lastly, the EMKL function combines the ERF and EPC functions to mea-
sure three aspects that contribute to the similarity of e-sequences. The experi-
mental evaluation of similarity matching, which was demonstrated by the 1-NN
classification accuracy, suggests that EMKL is a better choice compared to the
state-of-the-art methods. Overall, these results provide evidence that the EMKL
method is an effective approach to the task of matching of full-length interval-
based event sequences.
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Abstract. In this paper, we propose a joint model, composed of neural
and linguistic sub-models, to address classification tasks in which the
distribution of labels over samples is imbalanced. Different experiments
are performed on tasks 1 and 2 of the DEFT 2013 shared task [10]. In
one set of experiments, the joint model is used for both classification
tasks, whereas the second set of experiments involves using the neural
sub-model, independently. This allows us to measure the impact of using
linguistic features in the joint model. The results for both tasks show
that adding the linguistic sub-model improves classification performance
on the rare classes. This improvement is more significant in the case of
task 1, where state-of-the-art results are achieved in terms of micro and
macro-average F1 scores.

Keywords: Text classification · Deep learning · Linguistic features

1 Introduction

Different techniques have been used to address the task of text classification
throughout the years. In the era of statistical Natural Language Processing
(NLP), machine learning approaches were used to automatically extract dis-
criminative linguistic features that would be helpful for the specific task at hand.
With the availability of larger corpora and the advent of deep learning, neural
network architectures have become increasingly popular in performing different
NLP tasks [1], including text classification. However, despite the advances made
by deep learning and achieving state-of-the-art results in many tasks, not many
studies have addressed the challenge of an imbalanced dataset, which is the case
in many real-life scenarios and applications [13].

In this paper, we focus on 2 multi-class classification tasks with an imbalanced
distribution of labels over data and measure the effectiveness of different methods
in handling such a challenge. The tasks in question are the classification of
c© Springer Nature Switzerland AG 2020
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cooking recipes into one of 4 difficulty levels (Very Easy, Easy, Fairly Difficult,
and Difficult), and the classification of recipes based on meal type (Starter, Main
Dish, or Dessert). The datasets, which are both imbalanced, are taken from the
DEFT (Defi Fouille de Texte) 2013 shared task [10], tasks 1 and 2. To address the
tasks, we experiment with two different architectures. The first architecture is a
neural model which uses pretrained embeddings as input features. The second
architecture is a joint model that is composed of neural and linguistic sub-models.
We perform experiments using both architectures and 2 types of pretrained
embeddings and measure the effectiveness of using a joint model in handling an
imbalanced class distribution.

The rest of this paper is organized as follows: Sect. 2 goes over related previous
work. Section 3 presents a statistics summary of the datasets that are used. In
Sect. 4, the overall model architecture, the sub-models, and different utilized
model configurations are presented. Section 5 includes the results achieved by
different models and discusses their implications. Finally, Sect. 6 concludes this
work.

2 Related Work

According to [13], 3 general approaches for handling imbalanced data in machine
learning have been proposed:

1. Data-level approaches: These approaches involve changing the class distribu-
tion through under-sampling and over-sampling of training data to mitigate
the class imbalance. However, both under and over-sampling can pose new
challenges. Under-sampling decreases the number of samples, thus ignoring
information that is available to further train the model. Over-sampling can
lead to the creation of synthetic samples that are biased, since not all of the
minority samples are included in the over-sampling process [18].

2. Algorithmic approaches: Instead of making modifications to the training data,
algorithmic approaches adapt the process of learning to take into account the
class imbalance. An example of this would be using class weights in the loss
function to assign more penalty to a mistake made on a less frequent class
compared to a more frequent one. The challenge in using these approaches is
finding an optimal penalty matrix which can result in a better and less biased
learning. Moreover, for extremely imbalanced data, such a method can make
the classifier more prone to making mistakes on the more frequent classes,
leading to a drop in overall performance [14].

3. Hybrid approaches: Data-level and algorithmic approaches can be combined
for a better handling of an imbalanced distribution.

However, the mentioned approaches might not be helpful in the case of an
extreme class imbalance. One possible avenue is extracting discriminative fea-
tures, taking into account the imbalance present in the training samples [14].
Discriminative features which are extracted and used alongside distributed rep-
resentations in a deep architecture have been shown to improve results in a
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variety of tasks, even when the main challenge is not class imbalance. To do
non-factoid answer reranking, [3] use a recurrent architecture that encodes ques-
tions and answers, separately. A similarity matrix is calculated on the encoded
pairs, followed by a Multi-Layer Perceptron (MLP) that performs the prediction.
The results show that it is possible to improve the model by passing additional
discourse features to the MLP, alongside features that are learnt through the
recurrent architecture.

Researchers in [2] develop a model for Part-Of-Speech (POS) tagging that
is made up of a bidirectional Long Short-Term Memory (BiLSTM) network,
followed by a Conditional Random Field (CRF) layer that predicts the tags. They
enrich this model with manually designed features at the embedding layer and
achieve an improved performance, showing that combining manually designed
and automatically learnt features can benefit such a task in the absence of a
large annotated dataset.

For the classification of short texts, [19] employ a joint model which uti-
lizes both implicit (pretrained word embeddings and character embeddings) and
explicit (principal concepts in a text, extracted through a knowledge base) repre-
sentations of texts. Feeding these representations to a multi-branch convolutional
model, they achieve state-of-the-art results. Their results indicate that enriching
the sample features through a knowledge base can result in a better classification.

In this work, we experiment with the addition of linguistic features to neural-
based models and measure the difference in performance, with a focus on minor-
ity classes.

3 Datasets

The datasets that were used for our experiments have been taken from the DEFT
2013 shared task [10], task 1 and task 2. The dataset for task 1 consists of French
cooking recipes that have been labelled with their respective level of difficulty
on a 4 point scale that ranges from Very Easy to Difficult. As Table 1 shows, the
distribution of labels in this dataset is very imbalanced, with more than 90% of
the samples with either a Very Easy or Easy label, and a significantly smaller
number of samples with a Fairly Difficult or Difficult label.

The dataset for task 2 consists of French cooking recipes that have been
labelled with the recipe’s meal type, Starter, Main Dish, or Dessert. Although
the distribution of labels in this dataset is not as imbalanced as the dataset for

Table 1. Statistics of the train, development, and test datasets for task 1

Difficulty level Train Development Test

# of Samples Percentage # of Samples Percentage # of Samples Percentage

Very Easy 5569 50.2% 1393 50.2% 1132 49.0%

Easy 4601 41.5% 1151 41.5% 968 41.9%

Fairly Difficult 855 7.7% 213 7.7% 189 8.2%

Difficult 64 0.6% 16 0.6% 20 0.9%

Total 11089 100.0% 2773 100.0% 2309 100.0%
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Table 2. Statistics of the train, development, and test datasets for task 2

Meal type Train Development Test

# of Samples Percentage # of Samples Percentage # of Samples Percentage

Starter 2599 23.4% 647 23.3% 562 24.4%

Main Dish 5167 46.6% 1280 46.1% 1084 47.0%

Dessert 3323 30.0% 846 30.5% 661 28.6%

Total 11089 100.0% 2773 100.0% 2307 100.0%

task 1, nearly half of the samples belong to the class Main Dish, causing the
challenge of an imbalanced dataset in task 2, as well.

Finally, it should be noted that originally, for the DEFT 2013 shared task,
the data for both tasks was released in the two stages of training and testing.
For the experiments reported in this paper, 20% of the released training data
was set aside for model validation (referred to as Development data in Tables 1
and 2).

4 Model Design

The joint model that we have developed for the classification of recipes is com-
posed of two sub-models. The first sub-model is neural-based and the second
sub-model utilizes linguistic features.

In this section, first, the architecture of the neural sub-model is presented. We
then describe the linguistic features that were used to complement the extracted
neural features and how the two parts of the model are combined for the final
classification.

4.1 The Neural Sub-model

The Embedding Layer. The embedding layer is used to transform the concate-
nation of the preparation section (the main body) and the title of a recipe into
dense vectors. In this work, two different types of pretrained transformer-based
embeddings are used: the multilingual cased version of BERT embeddings [9],
and CamemBERT embeddings [17] which have been trained only on French
data using a BERT model. For both BERT and CamemBERT, only the features
from the last layer of the models are extracted, resulting in a contextual dense
representation of size 768 for each token.

It should be noted that all samples are limited to their first 100 tokens, and
zero padding is used for the samples with less than 100 tokens.

The output of the embedding layer is then passed to either a recurrent or a
convolutional architecture.

The Recurrent Architecture. For the hidden layer of the recurrent architecture,
Gated Recurrent Units (GRUs) [6] were used, since GRUs are less prone to
overfitting [7] because of having a smaller number of parameters (compared to
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LSTMs [12]). A bidirectional GRU is used to process the embeddings consecu-
tively in a forward and a backward pass. The output of the GRU layer is then
passed to an attention layer which calculates its weighted average using Eq. 1:

Attention =
n∑

t=1

ytωt (1)

In the equation above, yt stands for the output of the GRU layer at timestep
t and ωt refers to the weight assigned to yt by the attention mechanism. The
weight vector ω is calculated using the following process: First, a single N-to-
1 fully connected layer is applied on the output of the hidden layer at each
timestep (N being the size of the output representation at a timestep), resulting
in a scalar for each timestep. The scalars for all timesteps are then concatenated
and a softmax activation function is applied over them, producing the weight
vector ω.

The Convolutional Architecture. In some experiments, a convolutional archi-
tecture is used instead of a recurrent one. In these experiments, first, a Con-
volutional Neural Network (CNN) [15] is used to process N-grams of input (N
consecutive token representations) using convolution filters of size N. The hidden
layer is followed by a pooling layer which is either average or max pooling or
a combination of the two. Average pooling computes an average over the out-
puts of the hidden layer, while for max pooling, first, the output vectors of the
hidden layer are passed through a Concatenated Rectified Linear Unit (CReLU)
activation function.

4.2 The Linguistic Sub-model

The primary part of the linguistic sub-model is a feature extractor, which trans-
forms each sample into a set of linguistic features proposed by [5]. The features
extracted for each task are explained below.

Task 1 Features. For task 1, i.e. the classification of recipes based on their level
of difficulty, the following features are used:

The number of tokens in the recipe title, the number of tokens in the recipe
preparation part, the number of ingredients mentioned in the ingredient list of
the recipe, the cost of the meal on a 3-point scale, the presence of 22 predefined
words that have been identified to be discriminative, the presence of 48 prede-
fined discriminative trigrams, and finally, the number of verbs in the recipe that
belong to 3 different discriminative verb groups.

The extraction of these features results in a vector of size 77 for each recipe,
which is used by the linguistic sub-model.

Task 2 Features. For this task, which is the classification of recipes based on
meal type, the following features are used:
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Similar to task 1, the number of tokens in the recipe title, the number of
tokens in the preparation section, and the number of ingredients on the ingredient
list are computed as the first 3 features. The 4th features is the cost associated
with the meal on a 3-point scale. The remaining features consist of the presence or
absence of 1231 ingredient names in the recipe, the presence of 48 discriminatve
trigrams, and the number of verbs in the recipe belonging to each of the three
predefined verb families. In the end, a feature vector of size 1286 is extracted for
each recipe.

For a complete description of the selection process of the linguistic features,
see [5]. The extracted feature vectors are then passed into a single-layer feedfor-
ward neural network, mapping each feature vector to a vector of the same size,
resulting in output representations by the linguistic sub-model.

4.3 The Fusion Component

The fusion component first concatenates the output of the two sub-models, then
applies a fully connected layer over the resulting vector, mapping them to vectors
of size 4 in the case of task 1, and to vectors of size 3 in the case of task 2. The
fully connected layer is followed by a softmax activation function that outputs
the probabilities of the classes.

In order to measure the effect of the linguistic sub-model, some experiments
involved utilizing only the neural sub-model. In those experiments, the fusion
component was replaced with a fully connected layer, mapping the output of the
attention/pooling layer to the number of classes, followed by a softmax activation
function which produced the probability distribution over different classes.

4.4 Training

In order to train the models, a batch size of 32 was used. All models were
trained for 20 epochs. The final model parameters were taken from the epoch
that included the best micro score on the development dataset. Table 3 con-
tains details regarding the hyperparameters of different models. Some specific
important aspects of the training process are explained below.

Optimizer. AdamW [16] was used to optimize the training process. For all models
in both tasks 1 and 2, an initial learning rate of 10−3 was used. This learning
rate was adapted for CNN models to a rate of 10−4 after two epochs in task 1,
and after five epochs in task 2.

Class Weights. In order to counter the effect of the imbalanced distribution of
labels in both tasks, class weights were used in the utilized cross-entropy loss
function. For experiments that utilized only the neural model, weights were auto-
matically calculated, taking into account the proportion of the samples in each
class over the number of all training samples for the task. In experiments that
used the joint model, weights were manually set to 0.1, 0.1, 0.2, 0.6 (correspond-
ing to the Very Easy, Easy, Fairly Difficult, and Difficult classes, respectively)
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Table 3. Hyperparameters for each model, including neural models and joint models
with both neural and linguistic sub-models. #HL / #KH : Number of hidden layers in
recurrent models or kernel height in CNNs. #HN / #K : Number of hidden nodes in
each recurrent layer or number of kernels in CNNs.

Model Task 1 Task 2

#HL / #KH #HN / #K Pooling #HL / #KH #HN / #K Pooling

Neural CNN-BERT 300, 200, 100, 100 1, 2, 3, 4 max 2 200 max

GRU-BERT 1 64 attention 2 32 attention

CNN-CamemBERT 2, 3 250, 50 max 2 200 max,

average

GRU-CamemBERT 2 32 attention 2 64 attention

Joint CNN-BERT 2 250 max 2 200 max,

average

GRU-BERT 64 1 attention 2 32 attention

CNN-CamemBERT 1 400 max,

average

2 400 max,

average

GRU-CamemBERT 2 32 attention 2 32 attention

for task 1, and set to 0.6, 0.3, 0.1 (corresponding to classes Starter, Main Dish,
and Dessert, respectively) for task 2.

Regularization. In order to regularize the network, the optimizer was used with
a weight decay rate of 0.02. Moreover, a dropout layer with a probability of 0.2
was applied on the concatenation of the output of the two sub-models in the
fusion component in joint models, and on the output of the pooling/attention
layer in neural models.

Fine-tuning of BERT and CamemBERT Models. Since in the experiments which
involved joint and neural models, the embedding layer was kept frozen, BERT
and CamemBERT models were fine-tuned on the two tasks as additional exper-
iments. The results achieved by the fine-tuned models are reported in Tables 4
and 6.

5 Results and Discussion

For both tasks, the results have been reported in terms of micro-average score,
macro-average F1 score, macro-average precision and macro-average recall. The
micro-average score stands for micro-average F1, precision, and recall, all 3 of
which are equivalent in this work since evaluation is done on all classes.

The results of different experiments for task 1, alongside the results of DEFT
2013 teams achieving the best micro scores are shown in Table 4. Looking at the
results achieved by the models that we have developed, it can be seen that in
all cases, using a joint model has resulted in (often highly) superior performance
in terms of micro and macro F1 scores on both development and test data,
compared to a solely neural model. The improvement in results can be observed
in terms of macro precision and macro recall, as well. This shows that the features
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Table 4. Task 1 results.

Model Development Test

Micro

score

Macro

F1

Macro

P

Macro

R

Micro

score

Macro

F1

Macro

P

Macro

R

Neural CNN-BERT 61.5 39.3 41.1 37.6 58.8 37.7 39.4 36.1

GRU-BERT 59.9 38.5 38.5 38.4 58.0 36.8 37.0 36.7

Finetuned BERT 56.9 39.3 42.9 36.2 55.9 36.0 36.8 35.3

CNN-CamemBERT 60.9 42.7 43.4 42.0 59.3 38.6 39.9 37.3

GRU-CamemBERT 62.4 36.1 38.1 34.3 60.1 36.9 40.1 34.1

Finetuned CamemBERT 61.2 37.3 38.5 36.2 59.3 37.6 38.9 36.4

Joint CNN-BERT 64.5 49.1 60.0 41.6 62.0 47.3 59.3 39.3

GRU-BERT 65.8 41.7 45.5 38.5 63.1 39.3 42.1 36.8

CNN-CamemBERT 66.4 50.3 58.5 44.2 63.8 50.0 62.0 42.0

GRU-CamemBERT 65.3 51.1 68.5 40.8 63.1 40.5 42.5 38.7

Deft 2013

Top Teams

First Team [5] - - - - 62.5 48.4 68.2 37.5

Second Team [8] - - - - 61.2 45.1 52.4 39.5

Third Team [4] - - - - 59.2 45.3 63.3 35.3

which are captured by a neural network can be complemented by linguistic
features, resulting in a better classification.

A second observation is that the highest micro and macro scores (except
for macro precision for which the highest score was achieved by [5]) belong to
joint models that utilize pretrained CamemBERT embeddings in the neural sub-
model. This is to be expected since CamemBERT embeddings have been trained
exclusively on French data, as opposed to multilingual BERT embeddings used
by other models. Furthermore, Table 4 shows that the joint CNN-CamemBERT
model outperformed the best baseline in terms of micro score and macro F1 and
recall by the highest margin among all models, achieving state-of-the-art results
in task 1.

Table 5 includes per-class results in terms of F1 score for task 1. On both
development and test datasets, in 3 out of 4 classes, the best F1 score is achieved
by joint models, specifically the ones that utilize CamemBERT as pretrained
embeddings. Looking at the results by the 4 models that use CamemBERT
embeddings, it can be seen that in all but one case (the 0% F1 score on the
Difficult class by the GRU-CamemBERT models), adding linguistic features
has improved the per-class performance, while this cannot be said about the
models that use BERT, showing that the linguistic features have complemented
CamemBERT embeddings more effectively than the BERT embeddings.

On the test set, the joint CNN-CamemBERT model achieved F1 scores higher
than the best baseline model. This joint model also resulted in the highest F1
score of 25% on the Difficult class, which is the rarest among all classes. It should
be noted that only 3 out of the 8 models achieved an F1 score higher than 0
on the Difficult class, 2 of which are joint models that utilize linguistic features.
The per-class results show the effectiveness of linguistic features when the task
involves a highly imbalanced dataset.

Table 6 shows the results that were achieved on task 2, by the models that
we have developed alongside the models by the three top-performing teams in
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Table 5. Task 1 per-class results, in terms of F1 score.

Model Development Test

Very

Easy

Easy Fairly

Difficult

Difficult Very

Easy

Easy Fairly

Difficult

Difficult

Neural CNN-BERT 66.3 61.6 25.1 0.0 63.1 59.7 23.5 0.0

GRU-BERT 68.0 56.0 29.9 0.0 65.8 55.2 26.1 0.0

CNN-CamemBERT 71.0 51.9 22.6 19.5 69.9 51.2 19.2 9.8

GRU-CamemBERT 71.1 56.7 7.3 0.0 68.7 55.0 12.6 0.0

Joint CNN-BERT 72.1 60.8 24.9 21.1 70.0 58.1 22.5 17.4

GRU-BERT 73.9 61.1 22.6 0.0 72.0 58.1 18.9 0.0

CNN-CamemBERT 74.0 61.8 27.0 27.3 72.2 59.0 25.2 25.0

GRU-CamemBERT 74.4 58.3 27.9 11.8 72.5 56.3 29.4 0.0

Deft 2013

Top Teams

First Team [5] - - - - 71.7 56.2 18.8 9.5

Second Team [8] - - - - 69.2 57.0 26.1 16.0

Third Team [4] - - - - 68.6 52.5 15.6 9.5

DEFT 2013. The first observation is that, among our models, the finetuned
CamemBERT model achieved the best overall performance on the development
dataset. However, this model is outperformed by the joint CNN-CamemBERT
model, which was our best model in task 1, in the test phase. This shows that,
in general, the joint CNN-CamemBERT model can generalize better to new
samples. This model achieved the highest macro F1 score, alongside the top-
performing team of DEFT 2013, and also the highest recall among all models,
while it fell short of achieving the highest micro score by 0.3% and the highest
macro precision by 0.4%.

Table 6 shows that all joint models outperform their neural counterparts in
terms of micro and macro scores. However, unlike task 1, this improvement is
not big enough to result in state-of-the-art results in terms of the micro-average
score. One reason behind this performance can be the linguistic features that
were used for task 2. It is possible that, compared to task 1, these features are
not as representative of the classes. The higher sparsity of the linguistic feature
matrix for task 2 could be another factor. Looking at the results of task 1 in
Table 5, it can be observed that after the addition of the linguistic sub-model,
when there is improvement, the amount of improvement is significantly higher
in the case of rare classes. Therefore, it can be hypothesized that the strength
of the proposed joint model is handling an imbalanced distribution of labels,
resulting in a more significant improvement of results when the available dataset
is more imbalanced. Knowing that the distribution of labels in task 1 is starkly
more imbalanced than task 2, the joint model is more effective in the former
than in the latter case.

Finally, Table 7 includes the per-class F1 scores achieved by different mod-
els on task 2. It also shows the per-class F1 scores achieved by the three top-
performing teams in the DEFT 2013 shared task. Among the 8 models that we
developed, the results show that the joint CNN-CamemBERT model achieves
the highest F scores on all three classes on the test set. It also achieves state-of-
the-art results on the class Starter, which is the rarest class in the dataset. This
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Table 6. Task 2 results.

Model Development Test

Micro

score

Macro

F1

Macro

P

Macro

R

Micro

score

Macro

F1

Macro

P

Macro

R

Neural CNN-BERT 86.4 84.9 85.7 84.2 85.9 84.9 85.6 84.2

GRU-BERT 84.4 83.2 83.2 83.2 84.8 84.0 84.0 83.9

Finetuned BERT 86.3 85.8 85.1 86.5 86.4 86.2 85.6 86.8

CNN-CamemBERT 87.6 86.8 86.5 87.2 88.1 87.6 87.6 87.7

GRU-CamemBERT 86.5 85.6 85.5 85.6 87.1 86.5 86.6 86.4

Finetuned CamemBERT 88.2 87.1 87.3 86.9 88.1 87.4 87.5 87.3

Joint CNN-BERT 86.0 85.2 84.9 85.4 87.0 86.5 86.3 86.7

GRU-BERT 85.0 84.2 83.9 84.6 85.5 85.0 84.8 85.2

CNN-CamemBERT 87.5 86.8 86.4 87.1 88.6 88.2 88.0 88.3

GRU-CamemBERT 86.9 86.1 85.8 86.5 87.8 87.3 87.2 87.4

Deft 2013

Top Teams

First Team [4] - - - - 88.9 88.2 88.4 88.1

Second Team [5] - - - - 85.6 84.7 85.0 84.3

Third Team [11] - - - - 84.9 84.1 84.2 84.1

Table 7. Task 2 per-class results, in terms of F1 score.

Model Development Test

Starter Main

Dish

Dessert Starter Main

Dish

Dessert

Neural CNN-BERT 70.2 86.5 97.6 71.0 86.4 96.8

GRU-BERT 67.9 83.8 97.8 70.5 85.0 96.4

CNN-CamemBERT 75.1 87.1 98.2 77.1 88.0 97.7

GRU-CamemBERT 72.8 86.4 97.4 75.4 87.8 96.4

Joint CNN-BERT 72.0 85.6 97.7 75.0 87.2 97.3

GRU-BERT 70.7 84.5 97.2 72.6 85.8 96.5

CNN-CamemBERT 74.7 86.9 98.6 78.1 88.5 98.0

GRU-CamemBERT 73.4 86.3 98.5 76.7 87.8 97.5

Deft 2013 Top Teams First Team [4] - - - 77.3 88.8 98.6

Second Team [5] - - - 70.3 85.6 97.9

Third Team [11] - - - 69.4 84.8 98.2

is in agreement with the hypothesis that the strength of the joint model is in
the handling of rare classes.

6 Conclusion

In this paper, we proposed a joint model for the classification of imbalanced
data. The model, composed of a neural and a linguistic sub-model, was utilized
to address tasks 1 and 2 of the DEFT 2013 shared task [10], which involved the
classification of French recipes based on difficulty level and meal type, using the
datasets and the evaluation metrics specific to the two tasks. In order to measure
the effect of the linguistic sub-model, experiments were performed using the joint
model, while a second set of experiments involved using only the neural sub-
model, independently. The results from these experiments show that, in both
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tasks, the joint models outperform their neural counterparts. In task 1, the joint
model could achieve state-of-the-art results in terms of both micro and macro-
average F1 scores, showing the effectiveness of this model in cases of highly
imbalanced data.

Reproducibility

To ensure reproducibility and comparisons between systems, our source code is
publicly released as an open source software in the following repository:
https://github.com/cooking-classification/CAI2020.

The data could be obtained by contacting the DEFT 2013 shared task organizers
(see https://deft.limsi.fr/2013/index.php?id=1&lang=en).
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Abstract. Emotion recognition requires robust feature representation
and discriminative classification models. In this paper, we consider Fisher
vectors for feature representation and Fisher scoring algorithm for learn-
ing the proposed model. We first propose a new Fisher scoring algorithm
using an exact Fisher information matrix for the Dirichlet-multinomial
(DM) mixture model. Subsequently, we present an exact derivation of
the Fisher vectors for images representation and we analyze the intensity
of happiness from EMOTIC database by applying the proposed frame-
work. The obtained results prove the effectiveness and the robustness
using Fisher vectors for emotion recognition.

Keywords: Emotion recognition · Fisher vectors · Exact Fisher
information matrix · Dirichlet-multinomial mixture model · Fisher
scoring

1 Introduction

We all live intending to be happy; which rises the interest for many online thera-
pist applications in the interest of improving human mental health. The challenge
here is how to measure happiness? Starting from text recognition which is based
primarily on self-reported surveys to emotion recognition from images where
researchers have recently succeeded to categorize the happiest moments. The
majority of research works focused only on the six basic facial expressions rang-
ing in disgust, happiness, fear, anger, sad, surprise using Action Units to encode
the emotions. It has been shown in [4] that addressing only the face and the body
pose does not give enough information to understand the emotional states of a
person while adding scene context and more details recognize better the appar-
ent emotional states. Alternatively, scientists employ the VAD emotional state
model to express emotions through Valence which encodes the happiness and
the pleasure, Arousal that measures the human agitation level, and Dominance
to estimate the control level of such situation. Hence, using other visual features
apart from the face, the social context that may constitues relevant information,
plays a significant role to understand the emotional state of a person.
c© Springer Nature Switzerland AG 2020
C. Goutte and X. Zhu (Eds.): Canadian AI 2020, LNAI 12109, pp. 438–444, 2020.
https://doi.org/10.1007/978-3-030-47358-7_45
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In this paper, we model this combination of information in order to give
more significant understanding of the real happiness state. We propose a new
framework based on mixture of DM distributions and the use of the exact Fisher
information matrix. We introduce a novel Fisher scoring learning algorithm and
a different representation of images based on Fisher vectors.

2 Problem Statement

The DM has arisen to model count data in various contexts. In text modeling,
Madsen and Elkan have proposed to solve the problem of burstiness [6] using
the DM distribution. An important clue in every statistical model is the Fisher
information matrix which measures the amount of information of a local param-
eter and it is widely practical for several tasks such as the calculation of the
maximuum Likelihood Estimator (MLE) and for model selection. For the DM,
Neerchal and Morel [8] approximated the Fisher information matrix and con-
sidered the same as the one of the Dirichlet distribution for large size clusters.
However, as it is not always the case and clusters sizes are not all large, Paul
et al. [9] presented the exact Fisher information matrix for the DM where they
proved the difference between the exact and the approximate Fisher informa-
tion. These facts motivated us to propose learning of DM mixture models based
on the exact Fisher information matrix. A method that uses the Fisher scoring
technique for computing the maximum likelihood estimates and considers the
case where the sizes of the clusters are not all large.

3 The Mathematical Model

The DM distribution [7] is a combination between two distributions namely
the multinomial distribution and the Dirichlet distribution. For more simplicity,
another alternative representation for the DM was suggested by [3], and the
Gamma function was replaced by rising polynomials to the discrete probability
density function:

p(
−→
Y |−→φ , ϑ) =

(
s−→
Y

)∏D
d=1 φd(φd + ϑ) . . . [φd + (yd − 1)ϑ]

(1 + ϑ) . . . [1 + (s − 1)ϑ]
(1)

where
−→
Y = (y1, . . . , yD) is a D-dimensional count vector, s =

∑D
d=1 yd,−→

φ = (φ1, . . . , φD) is the proportion vector defined as φd = θd

|θ| , (d = 1, . . . , D),

ϑ is the overdispersion parameter ϑ = 1
|θ| and |θ| =

∑D
d=1 θd (θ is the parameter

of the Dirichlet distribution)
Given N clusters where the i-th cluster (i = 1, . . . , N) is represented with a

DM distribution, then a mixture of N DM distributions is given as follows

p(
−→
Y |Φ) =

N∑
i=1

πi DM(
−→
Y |−→φ i, ϑi) (2)

where πi is the mixing weight of the i-th cluster,
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Φ = (π1, . . . , πN , φ11, . . . , φDN , ϑ1, . . . , ϑN ) is the set of all the parameters, and
DM(

−→
Y |−→φ i, ϑi) is the DM distribution within the i-th cluster.

Suppose we have a set of W multimedia objects which could be text docu-
ments, images or videos, we represent each object by a vector of counts

−→
Y and

the finite set of objects with Y = (
−→
Y 1, . . . ,

−→
Y W ), the complete log-likelihood

apart from a constant is given by

L(Y|Φ) =
W∑

j=1

N∑
i=1

p(i|−→Y j)

{
log πi +

D∑
d=1

[ yjd∑
r=1

log(φid + (r − 1)ϑi) (3)

−
s∑

r=1

log(1 + (r − 1)ϑi)
]}

where p(i|−→Y j) is the posterior probability.
The Fisher scoring algorithm is based on the Fisher information matrix and

the first derivate of the log-likelihood. The major principle is to iterate the
following scoring equation

Φ(t+1) = Φt + F (Φ)−1g(Φ) (4)

where F (Φ) is the Fisher information matrix which is a symmetric definite
matrix where the elements of the exact matrix are determined based on the
Beta-binomial probability function rather than the DM as following

F =

[
E[− ∂2L

∂φ2
id

] E[− ∂2L
∂φid∂ϑi

]

E[− ∂2L
∂ϑi∂φid

] E[−∂2L
∂ϑ2

i
]

]
(5)

E[− ∂2L
∂φ2

id

] =
W∑

j=1

p(i|−→Y j)
s∑

r=1

p(yjd ≥ r)
(φid + (r − 1)ϑi)2

(6)

E[− ∂2L
∂φid∂ϑi

] =
W∑

j=1

p(i|−→Y j)
s∑

r=1

(r − 1)
p(yjd ≥ r)

(φid + (r − 1)ϑi)2
= E[− ∂2L

∂ϑi∂φid
] (7)

E[−∂2L
∂ϑ2

i

] =
W∑

j=1

p(i|−→Y j)
s∑

r=1

(r − 1)2
p(yjd ≥ r)

(φid + (r − 1)ϑi)2
− 1

(1 + (r − 1)ϑi)2
(8)

where p(yjd ≥ r) has a Beta-binomial probability density function of the vector
yjd that should be bigger than the sum of the features [9] and g(Φ) is the score
function calculated by the gradient of the log-likelihood with respect to the
parameters

∂L
∂φid

=
W∑

j=1

p(i|−→Y j)
yjd∑
r=1

1
φid + (r − 1)ϑi

(9)
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∂L
∂ϑi

=
W∑

j=1

p(i|−→Y j)
yjd∑
r=1

r − 1
φid + (r − 1)ϑi

−
s∑

r=1

r − 1
1 + (r − 1)ϑi

(10)

We explain the different steps of the complete approach in the following
algorithm.

Algorithm 1. Dirichlet-multinomial learning algorithm
Require: Y dataset, Number of components N ;
1: Initialization using K-means and the Method of Moment as in [1]
2: repeat
3: for each Component i do

4: Estimate the posterior distribution p(i|−→Y j) using Bayes rule

5: Estimate the mixing weight components πi = 1
W

∑W
j=1 p(i|−→Y j)

6: Update the parameters φid (d = 1, . . . , D) and ϑi using the Fisher scoring
algorithm

7: end for
8: until Convergence of Likelihood

Ensure:
−→
Φ ∗

4 Experimental Evaluations

For feature representation, we use two different methods. We propose to use a
new Fisher framework from the DM to represent the local features in images.
Second, we consider the well-known representation technique namely the “Bag-
of-visual-words” (BOV). Commonly, the Fisher information matrix is intractable
for several models and Fisher vectors are approximated empirically as F ≈
1

|Y |
∑

y g(Φ)g(Φ)T . However, this approximation, for such cases, can be used
only for the diagonal terms and leads to very poor approximation for a real
world modeling perspective. For this reason, we derive, for the first time, exact
Fisher vectors from the DM model.

Let
−→
Y j be one image in the given database and

−→
X = (x1, . . . , xT ) the set

of descriptors extracted from the images. We assume that those features are
generated by a mixture of DMs: p(

−→
X ) =

∑N
t=1 πtDM(

−→
X |−→φ , ϑ). The parameters

of DM(
−→
X |−→φ , ϑ) are estimated through the proposed Fisher scoring algorithm

(Algorithm 1) and based on those parameters, we derive the following Fisher
vectors

Ψ(Φ) = F (Φ)− 1
2 g(Φ) (11)

where F and g are the Fisher information matrix and score function, respectively,
defined in the previous section.

For our experiments, we employed the EMOTIC database [5] which is a
collection of 23,571 images of 34,320 annotated people containing 26 discrete
categories and three continuous dimensions of the VAD Emotional State Model.
This database covers a large-scale range of different emotional states, where
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we extracted a subset in the interest of analyzing the happiness intensity. We
consider the following related emotional states: affection, excitement, happiness,
peace, pleasure, sympathy. The considered categories represent a significant chal-
lenge as the emotions have similar scores and each image is annotated by five
different annotates. Another challenge in this database is that more than 25%
of people have their face partially occluded and not visible. For the sake of eval-
uating our results, we used the Average precision metric [2] which represents a
trade-off between precision and recall for a set of top documents existing after
each relevant document is retrieved. For both representations, we extract from
each image the SIFT features from 16 × 16 patches on a regular grid every
8 pixels. For the BOV representation, we extracted also the MBLBP feature
for the construction of the visual vocabulary. Following, we apply the proposed
Fisher scoring technique on the entire features extracted. In the FV represen-
tation, for each image, we learn the parameters of the DM mixture model, we
optimize the EM algorithm with Fisher scoring and we compute the exact and
the approximated Fisher vectors. Then, for testing, we employ Support vectors
machine technique. As a baseline comparison, we investigate the performance of
the exact Fisher vectors image representation against the BOV representation
and the related works. We found that Fisher vectors (exact and approximated)
representation combined with SVM classification achieves high average preci-
sion with an increase of 30% and 10% respectively as shown in Table 1. We
note also that in terms of accuracy rates, the proposed DM+FS+SIFT+EFV
reaches 87.65% versus 40.55% using the same learning method but with the BOV
representation DM+FS+SIFT+BOV, versus 34.36% and 37.04% for the BOV
structure with the Expectation-Maximization inference method. This confirms
our hypothesis about the Fisher scoring method and the Fisher vectors which
are based on the exact calculation of the Fisher information matrix that takes
into account the dependence between features especially the EMOTIC database
is a such challenging dataset. Furthermore, our results using the DM for the
both representation achieves better performance comparing to other methods
reported in the literature [4]. This includes the convolutional neural network

Table 1. Evaluation results

Models Accuracy mAP (%)

CNN (B+I (SL1)) [4] – 40.83

CNN (B+ I (LComb)) [5] – 41.09

DM+EM+SIFT+BOV 34.36 50.84

DM+EM+MBLBP+BOV 37.04 54.50

DM+FS+SIFT+BOV 40.55 65.01

DM+FS+MBLBP+BOV 38.27 67.73

DM+FS+SIFT+AFV 86.42 50.04

DM+FS+SIFT+EFV 87.65 67.44
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CNN (B+I (SL1)) with 40.83% mean average precision (mAP) and CNN (B+ I
(LComb)) with 41.09% mAP. In Table 2, we analyze the happiness intensity by
means of the average precision of each emotion class (affection, excitement, hap-
piness, peace, pleasure, sympathy). The results demonstrate that exact Fisher
vectors play a more important role than the approximated FV, the BOV in
image representation, and also the CNN framework.

Table 2. Happiness intensity using BOV and Fisher vectors

Affection Excitement Happiness Peace Pleasure Sympathy

CNN (B+I (SL1)) [4] 27.85 77.16 58.28 21.56 45.46 14.71

CNN (B+ I (LComb)) [5] 26.01 78.51 55.21 22.94 48.65 15.25

DM+EM+SIFT+BOV 50.19 83.33 47.73 36.11 41.67 46.04

DM+EM+MBLBP+BOV 57.91 57.54 38.94 41.67 64.29 66.67

DM+FS+SIFT+BOV 25.69 72.75 54.67 100 69.84 67.06

DM+FS+MBLBP+BOV 56.71 74.56 36.07 95 91.67 52.42

DM+FS+SIFT+AFV 49.56 52.24 54.79 61.89 39.96 41.82

DM+FS+SIFT+EFV 74.93 36.28 80.15 47.56 90.93 74.81

5 Conclusion

In this paper, we propose a novel and efficient model to represent images using
exact Fisher vectors. Based on the DM, we present the exact calculation of
Fisher information matrix and we offer a new mixture model inference using the
Fisher scoring algorithm to estimate the parameters of DM model. Compared to
the BOV structure, the Fisher vectors offer better image representation as they
encode statistics related to the DM rather than count of occurrences without
semantic information. In addition, comparing the exact and the approximated
calculation of FV, the exact one provides higher efficiency in terms of classifica-
tion accuracy and average precision.
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Abstract. In this work we develop a comprehensive approach for multi-
faceted trust modeling (MFTM) and use it to model trustworthiness of
peers in online social networks. We then show how this data-driven design
supports clustering-based personalization of trust prediction, yielding
better performance than competing solutions when applied to Yelp
datasets for an item recommendation task. In all we demonstrate the
promise of personalized trust modeling in social networks.

Keywords: Multiagent systems · Trust modeling · Social networks ·
Personalization

1 Introduction and Background

The aim of this research is to develop algorithms for presenting content in social
networks to users, based on a modeling of peer relationships and trustworthi-
ness. Predicting which reviews a user may benefit from the most on the Yelp
business review site would help to reduce information overload and then allow
the user to enjoy the most relevant services. We approach this problem through
the lens of trust modeling: we predict which users are most likely to be trust-
worthy for other users. Specifically, we make use of multi-faceted trust modeling
(MFTM) to approximate the trust formulation functions of users, then predict
new “trust links” based on these approximations, essentially suggesting new
potentially trustworthy users.

Our work is inspired by the works of Ardissono et al. and Mauro et al. [1,6],
and of Fang et al. [3]. While each of these approaches is valuable, the Ardissono
approach does not integrate data-driven learning of feature weights, while the
Fang model offers a modest number of generic features. We build upon these
proposals to offer a more comprehensive set of features, using a machine learning
approach to weigh feature importance, and doing so in a way that supports
personalization (through clustering) when applied to a content recommendation
task. We then present results to demonstrate the value of predicting trust links
using our methods, in comparison with competing approaches, running on a Yelp
dataset.
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Multi-Faceted Trust Modeling (MFTM) is a technique for predicting trust-
worthiness between users based on combinations of arbitrary suspected indi-
cators of trustworthiness and reputation. By “trust indicator”, we mean some
quality of an agent which counts as evidence that they should/should not be
trusted. For example, when choosing to hire a plumber, recommendations from
friends, online reviews, and a quality web site with clearly indicated prices may
all be relevant indicators of trustworthiness, which the judicious homeowner will
combine into a single implicit score, effectively inducing a ranking among can-
didates.

Given this example, it is relatively straightforward to cast the trust prediction
problem as a simplified binary classification task: for some agent requiring a
partner for an interaction (truster), predict whether each of the other agents
(trustee) is more likely to be trustworthy or untrustworthy. A dataset containing
information describing user attributes and the presence of trust between some
users can be used to train an off-the-shelf classifier to predict novel trust links.
This summarizes the basic ideas underlying MFTM.

2 Dataset and Trust Indicators

We conduct experiments using the Yelp dataset1. This dataset contains approx-
imately 1.6 million users and over 6 million reviews.

The main content produced by users on the site are reviews targeted at
businesses. Following the norm in recommender systems literature, we refer to
these businesses generically as “items”. Each review contains a text portion
and a final score in the range [1, 5], with 5 being the most positive. The reviews
generated by users can receive multiple types of feedback and endorsements from
other users. For our experiments, we sampled 10000 users from the dataset.

We combined trust indicators proposed in previous works, adapting some to
the specifics of the Yelp dataset. These trust indicators aim to quantify evidence
of trustworthiness with respect to single users and between pairs of users. From
[3] we implemented Benevolence, Competence and Integrity. Each of these indi-
cators is quite generic, focusing on similarity between review scores produced by
users. From [6] we implemented elitea, opLeadera (reflecting number of fans),
lupa, visa, fba, and relab. These indicators are relatively domain specific, being
tuned towards the data that is available in the Yelp dataset. For instance, elitea
is based on how many years user a has been deemed “elite” by the Yelp admin-
istrators. In addition to the indicators mentioned above, we computed some
important modifications. For example, we adjusted elitea, lupa, opLeadera and
visa to be sensitive to the number of years a user had been active on the site.
In addition, we calculated the Jaccard distance between users with respect to
items reviewed and categories of items reviewed.

Although space limits us from describing all these indicators, we define
two indicators here. Benevolence between a and b is the Pearson Correlation

1 https://www.yelp.com/dataset.

https://www.yelp.com/dataset
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Coefficient (PCC) between the scores given to items by the two users [3], while
relab is the Jaccard Similarity between the friend groups of the two users [6].

3 Experiment Description

At a high level, we aim to examine the performance of (P)MFTM by contrast-
ing multiple methods of predicting trust links in a dataset and evaluating the
accuracy of these links by measuring their impact on the performance of a trust
aware recommender system. The process is separated into three steps: clustering,
trust link prediction, and recommender evaluation2.

These 3 steps form a pipeline, with each step feeding results into the next.
We evaluate solutions with and without prediction and personalization. In the
case where personalization is not attempted, the Clustering step is skipped, with
all users assigned to a single cluster. In our baseline experiment, which uses just
the explicit friendship links in the Yelp dataset as a trust matrix, only the final
step is performed.

Clustering: As an approach towards the personalization of trust link prediction
(PMFTM), we clustered agents based on two distance measures present in the
dataset: review score correlation and social circle Jaccard similarity.

We used a simple clustering method parameterized by a cluster size m. The
first cluster is built by starting with a set containing only the most central
point in the dataset (i.e. the point with the lowest mean distance to all other
points). Points are added to the cluster in order of least mean distance to all
points already in the cluster. For example, after choosing the first point, p1, the
next point added to the set, p2, is the point pi that minimizes dist(p1, pi) (ties
are broken randomly). The third point added is the point pi that minimizes
1
2 (dist(p1, pi) + dist(p2, pi)). In general, the i’th point added to the cluster (for
i > 1) is the point that minimizes 1

i−1

∑i−1
j=1 dist(pj , pi). This process continues

until m points are in the set. The process then repeats to form the second cluster,
except only those points not already assigned to a cluster are considered. The
algorithm ends when all points are assigned to a cluster.

Trust Link Prediction: For each cluster of users (or for the totality of users, in
the case where clustering was not being performed), a logistic regression classifier
is learned to predict trust links between the users of that cluster and other users.
Learning distinct classifiers for each cluster of users implements personalization
of trust modeling. This solution has the capability to learn which factors are
most important in predicting trust links for relatively small groups of users.
However, in some cases the classifier learned for a cluster failed to converge to
a minimally useful classifier (less than 70% accuracy on training data). In these

2 The first two steps use all data and the last step reserves data for testing. While we
acknowledge this approach may allow influence of test data on training, it was taken
uniformly across the experiments compared in Sect. 4, allowing equal opportunity to
all approaches.
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cases, we substituted the predictions of the faulty classifier for a generic classifier
trained on all users.

We predicted two type of trust links: an explicit friendship link (Yelp users
can form up to 6000 mutual friendships each) and positive review PCC. Each is
relevant to predicting who a user should trust for advice on Yelp: they naturally
trust their friends, and they ought to trust users who have demonstrated similar
preferences.

Recommendation Evaluation: We used the TrustMF [10] recommender sys-
tem implementation distributed in LibRec [4] to evaluate the accuracy of pre-
dicted trust links. TrustMF is a collaborative filtering based matrix factoriza-
tion recommender system which combines the traditional user-item matrix with
a user-user social matrix in order to enhance recommendation. TrustMF is a
convenient platform to evaluate the accuracy of trust link predictions produced
by MFTM, as performance in the recommendation task ought to improve as the
accuracy of the set of trust links provided to the algorithm improves.

In each of the experiments, a TrustMF model is trained on 80% of available
ratings and all available trust links. The remaining 20% of rating data is reserved
for measuring the accuracy of predictions. Each model was allowed to train for
200 iterations and used latent factor dimensionality equal to 10.

Prediction accuracy was evaluated on the basis of Mean Squared Error and
Mean Absolute Error.

4 Experiments and Results

We ran a number of experiments in order to test the effects of applying different
procedures to the trust prediction process.

– Real Friends (Baseline): This experiment uses the original friend links in
the Yelp dataset. No prediction is performed.

– FriendPredict (MFTM): Based on a classifier trained on a balanced set of
all friend links in the dataset, predict whether each pair of users are friends.

– PCCPredict (MFTM): Based on a classifier trained on a balanced set of
PCC links in the dataset, predict whether each pair of users have a positive
review score correlation.

– Personalized Prediction (PMFTM): We clustered users following
the procedures outlined above, both on the basis of similar rating
behaviour and social circle overlap. After clustering, we trained classi-
fiers for each cluster of users to predict both similar review behaviour
and friendship links. This resulted in four experiments: PCCClus-
ter PCCPredict, PCCCluster FriendPredict, SocialCluster PCCPRedict and
SocialCluster FriendPredict.

MAE and MSE results for recommendation experiments are illustrated in
Figs. 1 and 2. For the sake of clarity, only the best results from each experiment
class (Baseline, MFTM, PMFTM) are illustrated. These figures show how rec-
ommendation performance alters as the Social Regulation factor of the TrustMF



Personalized Multi-Faceted Trust Modeling in Social Networks 449

system changes (this parameter controls the weight of social links in recomen-
dation and is referred to as λT in [10]).

Table 1. Best results
Experiment MAE MSE

RealFriends 0.871 1.352

PCCPredict 0.864 1.318

FriendPredict 0.858 1.293

PCCCluster FriendPredict 0.862 1.283

PCCCluster PCCPredict 0.857 1.267

SocialCluster FriendPredict 0.863 1.288

SocialCluster PCCPredict 0.857 1.273

A full summary of results (best
results are bolded, worst results are
italicized) is presented in Table 1.
All data points are the average of
three experiments, run with the spec-
ified configuration and distinct ran-
dom number generator seeds.

In summary, we show 1) notice-
able improvements delivered by our
MFTM trust link predictors in comparison to using explicit trust links, in the
context of TrustMF, 2) trust links predicted by PMFTM deliver improvements
on both methods of 1).

Fig. 1. MSE graph Fig. 2. MAE graph

5 Discussion and Conclusion

In this paper, we demonstrated the effectiveness of a personalized approach to
multi-faceted trust modeling, while combining some of the best features from
recent work in the field. We showed that the accuracy of a recommendation task
can be improved by clustering similar users together and learning classifiers with
respect to these clusters of users. Our best results were achieved by clustering
users based on their preference similarity (i.e. PCC of submitted review scores).

With respect to social networks, our work aims to improve online experiences
by supporting distinct presentation of content to differing users, achieved by rea-
soning about relationships with peers and the concept of trust. Our concern with
trustworthiness of content relates well to companion efforts devoted to analyzing
social networking posts in order to judge credibility [7] or to attempt to detect
digital misinformation [2,11]. Some work on this topic ultimately focuses most
on diffusion dynamics [5,9]: examining information spread is a distinct concern
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which may be interesting to explore as a basis for identifying clusters of users.
Our work also relates to social networking research that examines the challenge
of recommending content to users [8] through the networking relationships. In
our case, we specifically examine friend relations and predictions of trust through
rating behaviour.

While we find these results encouraging, many avenues for further experi-
mentation remain open. Experiments with other datasets and an expanded set
of metrics will offer further insight. We can imagine expanding our vision of the
data analysis to include dynamic factors of agent behaviour (such as changes
in values over time) and increasingly personalized predictions at the individual
level, rather than on the basis of clusters of users. It is important to emphasize
the potential of this research to address additional concerns with social networks.
While we chose to demonstrate effectiveness in a recommendation task, the trust
modeling we perform here, which identifies statistically likely trust links, has the
potential to assist with companion issues in social networks such as moderation
or detecting misinformation and hate speech.
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Abstract. Conditional probability tables (CPTs) in Bayesian Networks
(BNs) have exponential space on the family size. Local models based on
independence of causal influence (ICI) or context-specific independence
(CSI) have been applied separately to improve the efficiency. We propose
a framework to mix both local models in the same BN for improved
efficiency. In particular, we show that ICI and CSI are orthogonal, and
each is unable to express the other efficiently and accurately. We propose
a formalism to encode both types of local models in the same BN, and to
convert it into a homogenous representation to support exact inference.
We report experimental evaluation where significant efficiency gain is
obtained in exact inference.

Keywords: Bayesian networks · Probabilistic inference · Causal
independence models · Context-specific independence models

1 Introduction

Discrete Bayesian networks (BNs) [6] exploit conditional independence among
variables through directed acyclic graph (DAG) structures, and only quan-
tify dependence of variables on their parents by conditional probability tables
(CPTs). As tabular CPTs have exponential space, which extends to infer-
ence complexity, local models have been applied for further efficiency. Some
exploit independence of causal influence (ICI), e.g., noisy-OR [6], noisy-MAX
[4], DeMorgan [5], Non-Impeding Noisy-AND Tree (NIN-AND Tree or NAT)
[11], and cancellation model [10]. Other local models exploit context-specific
independence (CSI), e.g., CPT-trees [1], rule-based CSI [8], and algebraic deci-
sion diagrams [2].

These methods exploit ICI or CSI, but not both. Since ICI and CSI apply to
individual families of variables in BNs, they can co-exist in an environment (see
Sect. 7). In such cases, methods that exploit only one type of local models lose
the opportunity afforded by also exploiting the other type.

We propose a framework that exploits both ICI and CSI for more efficient
inference in BNs. When both exist, we apply NAT local models for ICI and CPT-
tree local models for CSI, encoding both in the same BN. We convert each type
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of local models accordingly to obtain a homogeneous runtime representation for
more efficient inference.

The remainder is organized as follows: Sect. 2 reviews background on NAT
and CSI. We establish their orthogonality in Sect. 3. We analyze alterna-
tives for mixing NAT and CSI in Sect. 4, and specifies our choice formalism.
Section 5 formalizes CPT-tree transformation, and Sect. 6 combines it with NAT
de-causalization [13] to obtain a homogeneous runtime representation. We report
experimental results in Sect. 7.

2 Background

2.1 NAT Modelling of ICI

We review NAT modelling (see [11,13] for more details). A NAT model encodes
dependency of an effect e on a set of uncertain causes C = {c1, ..., cn}, where
e ∈ {e0, ..., eν} (ν ≥ 1) and ci ∈ {c0i , ..., cmi

i } (i = 1, ...., n; mi ≥ 1). The effect
and cause are inactive at e0 and c0i , and are active at other values (may be
written as e+ or c+i ) where higher indices may denote higher intensity. C and e
form a family in BNs, where C is the parent set of e.

A causal event is a success or failure depending on if e is produced up to a
certain value, is single- or multi-causal depending on the number of active causes,
and is simple or congregate depending on the number of active effect values.
A simple single-causal success is an event that cause ci of value ci

j (j > 0)
renders e to occur at value ek (k > 0), when other causes are inactive. Its
probability is denoted P (ek ← cj

i ) = P (ek|cj
i , c

0
z : ∀z �= i, j > 0). A congregate

multi-causal success is an event where a set of active causes X = {c1, ..., cq}
caused e to occur at ek (k > 0) or higher intensity. Its probability is denoted
P (e ≥ ek ← cj1

1 , ..., c
jq
q ) = P (e ≥ ek|cj1

1 , ..., c
jq
q , c0m : cm ∈ C \ X), where ji > 0

for i = 1, ..., q, or P (e ≥ ek ← x+) for simplicity.

Fig. 1. (a) A direct NIN-AND gate. (b) A dual NIN-AND gate. (c) A NAT.

A NAT is composed of two types of NIN-AND gates, each over disjoint sets of
causes W1, ...,Wq. An input event of a direct gate (Fig. 1 (a)) is a causal success
e ≥ ek ← wi

+, and the output event is e ≥ ek ← w1
+, ..., wq

+. An input of a
dual gate (Fig. 1 (b)) is causal failure e < ek ← w+

i , and the output event is
e < ek ← w1

+, ..., wq
+. Probability of output event is the product of input event

probabilities.
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Let ek be an active effect value. R = {W1, ...,Wm}(m ≥ 2) be a partition of
a set X ⊆ C of causes, S ⊂ R, and Y = ∪Wi∈SWi. Sets of causes in R reinforce
each other relative to ek, iff ∀S P (e ≥ ek ← y+) ≤ P (e ≥ ek ← x+). They
undermine each other iff ∀S P (e ≥ ek ← y+) > P (e ≥ ek ← x+).

A direct gate encodes undermining interactions and a dual gate encodes
reinforcing interactions. They are combined in a NAT to express complex inter-
actions among causes. Figure 1 (c) shows a NAT with 3 gates. Causes h1 and h2

reinforce each other, and so do b1 and b2. The two groups undermine each other.
A BN is NAT-modelled if the CPT of each variable of 2 or more parents is a

NAT model. Its space is linear: O(N κ n), where N is the number of variables, κ
bounds variable domain sizes, and n bounds the number of parents per variable.

Common inference methods for BNs do not directly apply to NAT-modelled
BNs. Normalizing NAT models to full tabular CPTs loses efficiency of NAT-
modelling. Techniques to support efficient inference include multiplicative factor-
ization, where NAT-modelled BNs are converted to equivalent, efficient Markov
networks, and de-causalization, where they are converted to equivalent, efficient
tabular BNs. For NAT-modelled BNs with high treewidth and low density (mea-
sured by percentage of links beyond being singly connected), two orders of mag-
nitude speedup in inference has been demonstrated.

2.2 CPT-Tree Modelling of CSI

We review CSI (see [1] for more details). For a BN variable, a context is an
assignment of values to some parents. For disjoint sets of variables X, Y , Z,
and Cxt, X and Y are contextually independent given Z and context Cxt =
cxt, denoted Ic(X;Y |Z,Cxt = cxt), if P (X|Z, cxt, Y ) = P (X|Z, cxt) whenever
P (Z, cxt, Y ) > 0.

Fig. 2. (a) A BN family. (b) CPT-Tree for the family.

When CSI exists in a BN family, the CPT contain similar values. The BN
family in Fig. 2 (a) admits Ic(b; r|s, q = q0) and Ic(b; r|q = q1, s ∈ {s1, s2}). Its
CPT has 14 parameters, though P (b|q, r, s) generally has 36.

A CPT with CSI can be specified as CPT-tree (b)1. A CPT-tree for variable
x and parents π(x) is directed from the root. Each non-leaf is a variable in
π(x). Each path from the root to a leaf is a context, and the leaf specifies the

1 The example generalizes CPT-trees in [1] slightly as explained in Sect. 5.
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conditional probability distribution (CPD) of x, given the context. The CSI
above are expressed by the left subtree and the rightmost branch, respectively.

We refer to BNs where some families are modelled by CPT-trees as CPT-tree-
modelled BNs. Common inference methods for BNs do not directly apply to CPT-
tree-modelled BNs. Techniques that support inference with CPT-tree-modelled
BNs include network transformation and clustering [1], cutset conditioning [1],
and variable elimination [7].

3 Orthogonality of NAT and CSI Models

A fundamental question that may undermine efforts to exploit a mixture of NAT
and CSI is whether the local models are orthogonal. A negative answer renders
the effort invalid, since one type of local models can be encoded by the other. For
instance, alternative ICIs, noisy-OR, noisy-MAX, and DeMorgan, are all special
NAT models. Below, we empirically answer the question positively.

First, we show that CSI generally cannot be exactly expressed as NAT mod-
els. A batch of 100 seed CPTs P (x0|x1, x2, x3, x4, x5) are simulated, where vari-
ables have the same domain {1, 2, 3, 4, 5}.

Given a seed CPT P and a CSI, we generate a CSI CPT P ∗ as follows:
For Ic(x0;x1, x2, x3|x4, x5 = 5), P ∗ must satisfy P ∗(x0|x1, x2, x3, x4, x5 = 5) =
P ∗(x0|x′

1, x
′
2, x

′
3, x4, x5 = 5). For each distinct assignment (x0, x4), we arbitrarily

assign (x1, x2, x3), retrieve value P (x0|x1, x2, x3, x4, x5 = 5) from P , and assign
to every term P ∗(x0|x′

1, x
′
2, x

′
3, x4, x5 = 5).

We specified 3 alternative CSIs (Table 1). They allow different space reduc-
tion (2nd col.). Using the above method, we generated 3 CSI CPTs for each
of 100 seed CPTs (a total of 400 source CPTs). We then compress each source
CPT into NAT model, and evaluate the average Kullback-Leibler and Euclidean
distances between the NAT and source CPTs (4th and 5th cols.).

Table 1. Summary of experiments on representing CSI CPTs as NAT models.

CSI Statement # Src Para # NAT Para KL ED

No CSI 12,500 80 0.738 0.219

Ic(x0;x4, x5|x1 = 1, x2 = 2, x3 ∈ {3, 4}) 12,304 80 0.710 0.214

Ic(x0;x2, x3, x4, x5|x1 = 1) 10,004 80 0.692 0.210

Ic(x0;x2, x3, x4, x5|x1 ∈ {1, 2, 3, 4}) 2,504 80 0.501 0.176

Table 1 reveals that source CPTs take much more space than resultant NAT
models (>30 times). On the other hand, NAT models reduce space 30 to 150
times, but with errors. Though errors decrease as the numbers of source CPT
parameters, NAT models generally cannot express CSI CPTs exactly.

Next, we show that NAT models generally cannot be suitably expressed as
CSI models. Given a NAT CPT, if its probabilities can be grouped into tight
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clusters (small distance between member values), and the total number of such
clusters is significantly less than the number of NAT parameters, then it pays
to express the NAT CPT as a CSI model. A smaller number of clusters means
space saving, and tight clusters mean small approximation errors. Based on this
idea, given a NAT CPT and a distance bound δ (e.g., δ = 0.02), we group values
in the CPT into a set Ψ of clusters, such that the following conditions hold:

1. For each cluster Q ∈ Ψ and each pair of values p, q ∈ Q, |p − q| ≤ δ.
2. For each two clusters Q,R ∈ Ψ , let minQ,minR,maxQ,maxR be extreme

values in Q and R, respectively. Either maxQ < minR or maxR < minQ.
3. For clusters Q,R ∈ Ψ where maxQ < minR, we have minR − maxQ > δ.

Condition 1 bounds inner distance within each cluster. Condition 2 orders
clusters by member values. Condition 3 bounds inter-cluster distance.

The number of clusters obtained is a lower-bound of the number of parame-
ters when the NAT CPT is approximated by a CSI model. This is because values
in the same cluster may refer to incompatible contexts, and cannot be encoded
by the same CPT-tree leaf. We split such clusters as needed.

The clustering is applied to 100 generated NAT CPTs, each over a family
of 5 parent variables. All variables are binary, with 32 parameters per CPT.
Results with δ = 0.02 are shown in Fig. 3. Each bar counts NAT CPTs that
produced a particular number of clusters. As values in a cluster can be encoded
by a single value with error < δ, the number of clusters indicates the number of
parameters needed if those NAT CPTs are encoded as CPT-trees. As is shown,
all CPT-trees require at least 17 parameters, while the NAT CPT only needs 5.

Fig. 3. Experiment results on representing NAT CPTs as CSI models.

CSI modelling errors are evaluated as follows: Compute the centroid of each
cluster as the mean of its values, and use it as the CPT-tree parameter. The
error to model a NAT CPT as CPT-tree is the Euclidean distance between the
two CPTs. In Fig. 3, average modelling error for CPTs in each bar is at the top,
with the standard deviation below it.

To summarize, it is generally not possible to encode CSI CPTs exactly as
NAT models. When NAT CPTs are represented as CSI models, it generally not
only introduces error, but also increases the number of parameters required.
These evidences suggest that NAT models and CSI models are orthogonal.
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4 Mixed NAT-CSI Bayesian Networks

ICI and CSI can each be exploited to improve space and inference efficiency in
BNs. To our knowledge, no prior study considered inference on BNs that take
advantage of both simultaneously. For that purpose, we resolve issues below:

First, we observe that ICI and CSI are applicable to individual families in
BNs. Therefore, both can co-exist in an environment as well as in a BN: Some
family of variables follow ICI local models and others follow CSI local models.

Second, suitable representation is needed for each type of local models. For
ICI, we focus on NAT models for several reasons: They express both reinforcing
and undermining interactions. They can mix such interactions recursively among
cause subsets. They apply to multi-valued, ordinal, and nominal variables. They
generalize other ICI models including noisy-OR, noisy-MAX, and DeMorgan,
while having the same linear space.

For CSI, several formalisms are available. Rule bases and algebraic decision
diagrams (ADDs) have been used for inference by variable elimination [2,7].
When used to answer multiple queries (over multiple unobserved variables), the
compilation requires knowledge of evidence prior to inference. Loops in ADDs
tend to increase treewidth of the resultant structure. As we aim at computing
posteriors of all unobserved variables, with arbitrary evidence at inference time,
we selected CPT-trees [1] to encode CSI.

We define the representation of choice as mixed NAT-CSI Bayesian net
(MNCBN) (an example is given in Sect. 6):

Definition 1. A MNCBN is a BN (V,D, P ) over a set V of variables with
dependency structure DAG D. The set P of CPTs is composed of one CPT
per variable in V , partitioned into (TC,NM,CT ), where TC is a set of tabular
CPTs, NM is a set of NAT models, and CT is a set of CPT-trees.

Third, neither NAT models nor CPT-trees support common BN inference
algorithms directly. Each type of local models admits alternative processings
before inference. NAT modelled BNs admit multiplicative factorization or de-
causalization. CPT-tree-modelled BNs admit network transformation, cutset
conditioning, or variable elimination. To prepare MNCBNs for inference, we
have chosen to compile them into a homogeneous representation, by combining
de-causalization for NAT models and network transformation for CPT-trees,
as both convert local models into equivalent BN segments that tend to reduce
treewidth. This choice assumes no prior knowledge on evidence and supports
computing posteriors over all unobserved variables. In comparison, multiplica-
tive factorization for NAT models and cutset conditioning with CPT-trees do not
support a homogeneous representation. We demonstrate the choice in Sect. 6.
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5 Formalizing CPT-Tree Transformation

We apply network (CPT-tree) transformation to convert CPT-trees in MNCBNs
to BN segments. Although the idea is illustrated in [1] with a simple example
over binary variables, to the best of our knowledge, no general algorithm has
been formalized. We specify an algorithm suite, formalizing processing on multi-
valued variables, set-valued CPT-tree branches, and multiplexer CPTs.

Let dom(x) be the domain of variable x. A CPT-tree arc outgoing from node
t may be labeled by a subset of dom(t). A path from the root to a leaf, including
such arcs, defines a set of contexts, e.g., the rightmost branch in Fig. 2 (b). CPT-
trees with such set-valued arcs generalize those in [1], and allow more efficient
CSI encoding.

Algorithm SetDagSeg takes a CPT-Tree T over variable x and parents π(x),
and builds a BN segment with auxiliary variables, all of which have domain
dom(x). Each node of T is at a level with the root at level 0, and each child
of the root is at level 1. Transformation is driven by topology of T from level 0
onwards. For each node t in T , denote the path from root to t by path(t). The
output is a DAG G with a single leaf x, and G is constructed from x upwards.

Algorithm 1. SetDagSeg(x, π(x), T )

1 initialize empty graph G with nodes {x} ∪ π(x);
2 denote the root of T by ρ and set path(ρ) = {};
3 label x in G as xpath(ρ);
4 for level L = 0 to max level in T ,
5 for each node t in T at level L with path(t);
6 find node v in G that is labelled xpath(t) and add arc t → v in G;
7 if each child of t in T is leaf, continue;
8 denote partition of dom(t) by arcs outgoing from t as {sd1, ..., sdm};
9 for i=1 to m,
10 add node y to G with domain dom(x) and label it x{path(t),t∈sdi};
11 add arc y → v in G;
12 return G;

Fig. 4. Transformation of the CPT-Tree in Fig. 2.

For CPT-tree T in Fig. 2, SetDagSeg begins with G in Fig. 4 (a). For level
L = 0 of T , q in T is processed with resultant G in (b). For L = 1, 1st instance
of s in T is processed as in (c), followed by 2nd instance as in (d), where arcs
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outgoing from s partition dom(s) into subdomains {s0} and {s1, s2}. For L = 2,
r in T is processed to produce (e).

Node v in line 6 may not be processed by the for loop in line 9. If it is,
multiple parents are added to v, and v is called a multiplexer. In Fig. 4 (e), b{}
and bq=q1 are the only multiplexers.

Next, Algorithm AssignCpt assigns a CPT to each node in G except those
in π(x). They include x{} and nodes added by SetDagSeg line 10, divided as
follows.
Type 1: They are added in line 10 and never processed after by line 6. Hence,
they remain roots, e.g., bq=q1,s∈{s1,s2}. Type 2: They are processed in line 6 as
v and by the for loop in line 9. They are multiplexers such as b{} and bq=q1 .
Type 3: They are the remaining nodes that are processed in line 6 as v, passed
test in line 7, and skipped the for loop in line 9, e.g., bq=q0 and bq=q1,s=s0 .

For Type 1 node v in G, traverse its path in T from root to a leaf, and assign
its CPD to v. For bq=q1,s∈{s1,s2} in Fig. 4 (e), follow path (q = q1, s ∈ {s1, s2})
in Fig. 2 (b), and assign P (bq=q1,s∈{s1,s2}) over (b0, b1, b2) = (0.7, 0.2, 0.1).

For Type 3 node v, traverse its path in T to a node t. Since t passed test in line
7, each child of t is a leaf that specifies a CPD. Assemble them to form a CPT and
assign to v. For bq=q0 , follow path (q = q0) in Fig. 2 (b) to node s, retrieve CPDs,
and assign CPT: P (bq=q0 |s0) = (0.1, 0.6, 0.3), P (bq=q0 |s1) = ..., P (bq=q0 |s2) = ....
Algorithm AssignCpt formalizes the above, where CPTs for Type 2 nodes are
from SetSwitchCpt presented below.

Algorithm 2. AssignCpt(x, π(x), T,G)

1 for each node v in G,
2 if v ∈ π(x), continue;
3 if v is Type 1 with path(v),
4 traverse path(v) in T to leaf t;
5 retrieve CPD parameters at t and assign the CPD to v;
6 else if v is Type 3 with path(v),
7 traverse path(v) in T to node t;
8 for each child z of t in T , retrieve CPD parameters at z;
9 assemble the CPDs into CPT and assign to v;
10 else
11 denote the unique parent of v from π(x) by y;
12 call SetSwitchCpt(v, y, T,G) and assign the CPT returned to v;
13 return G;

Family of a Type 2 node v is created in SetDagSeg in line 6 (1st parent) and
11 (other parents). The 1st parent y is from π(x), and is identified in line 11 of
AssignCpt. Each other parent is auxiliary. CPT at v is to deterministically set
v value according to an auxiliary parent. The right parent is decided by y value
and path label of the parent. This is specified in Algorithm SetSwitchCpt.
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Algorithm 3. SetSwitchCpt(v, y, T,G)

1 initialize CPT P (v|y, u1, ..., uk) where {y, u1, ..., uk} is parent set of v in G;
2 for each assignment (v = v′, y = y′, u1 = u′

1, ..., uk = u′
k),

3 find ui in {u1, .., uk} whose path label = (path(v), y ∈ sdi) and y′ ∈ sdi;
4 if v′ = u′

i, P (v′|y′, u′
1, ..., u

′
k) = 1;

5 else P (v′|y′, u′
1, ..., u

′
k) = 0;

6 return P (v|y, u1, ..., uk);

Consider CPT for bq=q1 with parent s ∈ π(x) (Fig. 4 (e)). To set value
P (bq=q1 = b0|s = s1, bq=q1,s=s0 = b0, bq=q1,s∈{s1,s2} = b1), variable bq=q1,s∈{s1,s2}
is selected since s = s1 satisfies its path label. Value bq=q1,s∈{s1,s2} = b1 is then
compared with bq=q1 = b0. Since they do not match, it results in value 0 for the
above probability.

6 Inference with Mixed NAT-CSI Bayesian Networks

We outline and demo a framework for exact inference with MNCBNs, that
exploit both types of local models for improved efficiency.

First, the MNCBN is converted to standard BN: Each NAT model is de-
causalized into an efficiency preserving BN segment. Each CPT-tree is trans-
formed as described in Sect. 4. The result is a homogeneous, standard BN, encod-
ing the same joint probability distribution (JPD), with a treewidth lower than
that of MNCBN (if sparse). We refer to it as a de-causalized and transformed
BN (DTBN). The DTBN supports exact inference with any common method.

Consider a MNCBN with the DAG in Fig. 5 (a). Family of g is a NAT model
(b) and family of h is modelled by CPT-tree (c). All variables are ternary.
Figure 6 shows DAG of the DTBN. The BN segment de-causalizing g family
is dashed. In the dashed region, variables outside {g} ∪ π(g) are auxiliary. If all
CPTs are tabular, the MNCBN has a total CPT size of 4506, where the largest
CPT has size 2187. The DTBN has a total CPT size of 1267, where the largest
CPT has size 243.

Fig. 5. (a) BN DAG. (b) NAT model for family of g. (c) CPT-tree over family of h.
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Fig. 6. The DTBN.

7 Experiments

Our experimental study aims to (i) confirm co-existence of NAT and CSI in
real world BNs, (ii) evaluate computational gain by mixing NAT and CSI local
models, and (iii) compare effectiveness of NAT and CSI models.

The 1st experiment confirms co-existence of NAT and CSI local models. NAT
modelling has been applied to approximate 8 real world BNs from the bnlearn
repository with reasonable inference errors [12]. Here, we test the 2 binary BNs
from the 8, Andes and Win95pts, for CSI local models. We apply clustering in
Sect. 3 to each CPT where the variable has 2 or more parents. Similar proba-
bilities are grouped, subject to upper bound on inner-cluster distance and lower
bound on inter-cluster distance. We use bound δ = 0.02.

The results are shown in Table 2. The maximum number of parameters per
CPT (4th col.) is 64 (6 parents) and 128 (7 parents), respectively. The maximum
number of clusters found per CPT (5th col.) is 3 and 6, respectively. Hence, a
significant amount of CSI exists in these CPTs. If modelled as CPT-trees, the
Euclidean error for Win95pts is 0.041 (6th col.). The error for Andes is 0: For
each cluster, all values are identical.

Table 2. Summary of results from clustering Andes and Win95pts BNs.

BN #Node #Fmly Proced Max #Para/CPT Max #Clus/CPT Eu Dist

Andes 223 50 64 3 0

Win95pts 76 24 128 6 0.041

CSIs have also been identified by others from biological datasets, other BNs
in bnlearn, and UCI datasets, e.g., [3,9]. These studies, the result above, and
the NAT modelling study [12] suggest collectively co-existence of NAT and CSI
local models in practice.
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The 2nd experiment evaluates computational gain by mixing NAT and CSI
models. We simulated MNCBNs each of 100 variables (binary or ternary), where
50% of families of 2 parents or more are NAT-modelled and the remaining
50% are CSI-modelled. The largest number of parents per node is 12, and each
MNCBN has at least 2 such families. At least one such family is NAT-modelled,
and at least one is CPT-tree modelled. Structural density of MNCBNs is con-
trolled at d = 5% or 10% more links beyond being singly connected.

When each variable is unique in a CPT-tree, its transformation has no loop.
Duplicated variables, e.g., s in Fig. 2, induce loops (see Fig. 4 (e)), and increases
treewidth of the transformed structure. We control the number of variable dupli-
cations at k = 0, 2, 4, 7, 10. For each combination of (d, k), 30 BNs are generated.
Hence, a total of 300 distinct MNCBNs are generated. Each MNCBN is converted
into 4 standard BNs (encoding the same JPD) by methods D+N, D+T, N+N,
and N+T, where D refers to De-causalizing NAT models, T refers to Transform-
ing CPT-trees, and N referes to Normalizing NAT models and CPT-trees.

Fig. 7. Summary of inference runtimes

Each resultant BN is compiled for inference by lazy propagation (LP) (See
Sect. 8 for rationale). Each BN has 10 inference runs, each with different obser-
vations over 10 randomly selected variables. Inference runs by BNs from the
same MNCBN yielded the same posterior marginals (exact). Runtimes (2.9 GHz
desktop) are shown in Fig. 7.

In all (d, k) combinations, N+N is the slowest. Both D+N and N+T are
advantageous, even though they only exploit one type of local models. D+T is
on average two orders of magnitude faster than alternatives, demonstrating clear
computational advantage of exploiting both NAT and CSI in MNCBNs.

Relative performance of D+N and N+T is indiscernible in Fig. 7, partly due
to existence of normalized CPTs. To evaluate relative gain from alternative local
models, the 3rd experiment generated BNs in two steps: In the 1st step, only
DAGs are generated with 200 variables each (binary or ternary). The largest
number of parents per node is 12, and each DAG has at least 4 such families.
We use d = 5%, 10% and k = 0, 2, 4, 7, 10, a total of 10 combinations. For each
combination, we simulated 30 DAGs, resulting in 300 distinct DAGs. In the 2nd
step, a pair of BNs are created from each DAG: NM-BN where each family of 2
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parents or more is NAT-modelled, and CM-BN where such families are modelled
as CPT-trees. Hence, the pair share the DAG, and differ in JPDs.

Fig. 8. Summary of inference runtimes by NM-BNs and CM-BNs.

We de-causalize NM-BNs and transform CM-BNs for lazy propagation. Ten
inference runs are performed on each BN with random observations over 20
variables. The runtimes are shown in Fig. 8.

Runtimes of NM-BNs are the least, even relative to the most efficient CM-
BNs (k = 0). Let m be domain size of child variable of CPT-tree family. Assum-
ing single-valued CPT-tree arcs, each multiplexer has m + 1 parents. If CPT-
tree has k > 0, transformation has loops. On the other hand, every node in
de-causalized BN segment has at most 2 parents, and the segment is always
loop-free. Hence, NAT modelled BNs are generally more efficient than CPT-tree
modelled BNs, as confirmed by the experiment.

8 Conclusion and Remarks

The main contribution is a framework to mix ICI and CSI local models in BNs
for more efficient inference. They are shown to be orthogonal, and hence neither
subsumes the other. We have shown that NAT models and CPT-trees are suitable
ways for mixing, and combining de-causalization and transformation enables a
homogenous representation for exact inference. We report significant speedup in
inference relative to exploitation of only one type of local models.

Two questions were received from peer review, to which we respond below.
Due to space, we omit relevant references. (1) On why not adopt sum-product
networks (SPNs): Although exact inference in BNs is NP-hard and that in SPNs
is linear, when a general BN is compiled into a SPN, it incurs an exponential
blow-up. Hence, SPNs are one way to explore special conditions in BNs, e.g.,
CSI, but not the only way, as this work shows. (2) On why not adopt simple
propagation (SP): Published work on SP reported that SP is not always faster
than LP. Other BN inference methods also exist. This work shows significant
gains in inference efficiency by mixing ICI and CSI, and our performance com-
parison only necessitates identical inference method on BNs with and without
mixing. There is no need for the fastest method, nor do we claim that LP is so.

Acknowledgement. Financial support from NSERC Discovery Grant to 2nd author
is acknowledged.
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Abstract. Sexual harassment and abuse in rideshares is a growing prob-
lem. We propose a potential solution to this by using the voice recordings
from the rideshare to detect cases of sexual harassment. Emotions such
as fear, anger and disgust are most highly correlated to an individual
being sexually harassed. Our solution aims to identify these emotions
in a woman’s voice as an indicator of sexual harassment. The Ryer-
son Audio-Visual Database of Emotional Speech and Song dataset was
used and offered voice recordings from male and female actors speaking
sentences in different emotions. We extract the Mel-Frequency Cepstral
Coefficient (MFCC) of the recordings in the dataset and run it through
Machine Learning methods such as CNN (Convolutional Neural Net-
work), SVM (Support Vector Machines) and LSTM (Long-Short Term
Memory). We achieved an F1-score of 95% with the CNN model on our
dataset.

Keywords: Audio analysis · Emotion detection · Addressing
harassment in rideshares

1 Introduction

The rideshare industry in the last 7 years has completely disrupted the long-
standing taxi industry and consistently gen erates billions of dollars in revenue.
The major players such as Uber reported a compounding growth of over 150%
in 2016 [3]. What essentially started off as an American startup now has roots
in countries around the world. The only things that have grown faster than the
rideshare industry itself are the cases of sexual abuse and harassment against
woman in these rideshares. Through this research, we aim to propose a technical
solution for detecting cases of sexual harassment in the rideshare services through
identifying emotions in voice recordings of the female rider such as fear, anger
or disgust. The Ontario Human Rights Commission identifies sexual harassment
as “engaging in a course of vexatious comment or conduct that is known or
ought to be known to be unwelcome” [1]. This kind of behavior usually evokes
feelings of fear, anger and/or disgust which gets reflected in the individual’s
response. We use this emotion expressed in the sound of the victim as a means
c© Springer Nature Switzerland AG 2020
C. Goutte and X. Zhu (Eds.): Canadian AI 2020, LNAI 12109, pp. 464–469, 2020.
https://doi.org/10.1007/978-3-030-47358-7_48
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to identify cases of harassment. Our approach proposes feature engineering that
moves the audio recordings from the time-domain to the frequency domain. The
frequency domain, especially, expressed by Mel-Frequency Cepstral Coefficients
help capture pitch and emotion in the voice which we use as features to run our
Machine Learning algorithms over.

2 Relevant Work

We explore work that has been done in Machine Learning for Speech Processing.
Any Machine Learning problem has two primary steps to it – feature extrac-
tion and model selection. Feature extraction determines which features would
be instrumental in getting the Machine Learning model to learn the space of
the data and make reliable predictions. Feature extraction is very important in
speech recognition since the raw data can be noisy, high-dimensional since it
exists in time-domain, and very complex. Lithika et al. [5] famously proposed
the idea of using Mel-Frequency Cepstral Coefficients (MFCC) as a means to
model speech in order for Machine Learning algorithms to learn the features
to predict emotion. Many people used this feature extraction method and used
inherently linear classifiers such as Support Vector Machines (SVM) to detect
emotions. Milton et al. [8] used SVMs on the Berlin Dataset [9] and achieved an
accuracy of 68%. Lately, more and more researchers have shown the efficacy of
using Recurrent Neural Networks (RNNs) and Convolutional Neural Networks
(CNNs) on the MFCCs. Most famously, Lim et al. [6] used LSTMs, a special
kind of RNN that deal with the issue of vanishing gradients, and achieved an F1
score of 78%. They also used 1D CNNs and achieved an accuracy of 86%. We
primarily build upon these three methods, improve on their results and show
how the application of emotion detection could deter sexual abuse in rideshares.

3 Dataset and Data Preprocessing

We use the RAVDESS dataset [7] that contains around 1440 files of voice actors
speaking sentences in different emotions. The audio clips are 16 bit captured at
48 KHz in a .wav format. In particular, we have 12 male actors and 12 female
actors who have 60 trials each to speak different sentences in 8 different emo-
tions. These emotions include being sad, happy, neutral, calm, angry, disgusted,
fearful and surprised. As a part of our research, we also interviewed 25 women
from different nationalities to understand emotions that might be elicited in a
situation where they were being sexually harassed by the rideshare driver. The
most common emotions mentioned were anger, fear, and disgust. This gave us
an incredible starting point since we could extract female voice that sounded
angry, disgusted or fearful. We simply split the dataset into two parts, women
who sounded angry, scared or disgusted and every other emotion and gender.
This gave us a binary classification problem that we now attempt to solve.

Broadly speaking, the audio from the voice actors in the dataset can be
broken down into two different kinds of features – time domain and frequency
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domain. The time domain usually represents the pressure that is captured by
the microphone and is represented along with time as the X-axis. While this
is helpful in many domains that use the time domain and need timestamps for
application, it is relatively unhelpful in tasks such as Emotion Detection since
we base our features on the pitch, rhythm and melody. For this reason, we move
our audio to the frequency domain that give us more information about the
aforementioned characteristics of the audio captured. In a nutshell, moving the
audio to frequency domain allows us to separate the different sources of sound
that comprise the audio clip. One of the most common ways of converting time
to frequency domain is through a Fourier Transformation. It might be helpful to
think of Fourier Transformation as a way of separating different audio sources
from one unified audio clip, almost analogous to distinguishing all the different
colors from a mixed color on a paint palette. Since Fourier Transformation simply
gives us the different frequencies that make up the audio, we can go a step further
and use Mel-Frequency Cepstral Coefficients (MFCCs) [10]. MFCC essentially
model audio for computers to understand the same way humans perceive audio.

Fig. 1. Original audio signal Fig. 2. MFCC of the audio signal

Fig. 3. Average MFCC bands of distressed women and non-distressed individuals

Pitch is one of the most important features of an audio signal and is calcu-
lated using the frequency of the signal. The following figures help visualize the
difference between time domain audio-signal (see Fig. 1) and MFCCs (see Fig. 2).
To visualize the statistical difference between our two classes – (1) a woman’s
voice eliciting disgust, anger, or fear; (2) men’s and women’s voices depicting
other emotions – we can take the mean over the Mel Frequency bands over time
(see Fig. 3) that we use as the input features to train our models. With the mean
band values, we aim to train our models to differentiate between the positive
and negative class.

4 Experiments and Analysis

Our input is the mean value over the MFCC bands (see Fig. 3) taken over time.
This gives us an input size of 216 features that we can use to train our models
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Fig. 4. CNN architecture

to recognize whether the input corresponds to the sound of a distressed woman
or not. We divide our dataset – 720 negative samples and 192 positive samples –
into a 70-15-15 split of training, testing and validation sets. We tune all our
hyperparameters on the validation set. The results presented in Table 1 are from
a test set of 228 samples.

Support Vector Machines: SVMs [2] are ideal for binary classification prob-
lems since they attempt to drop an optimal hyperplane between the features
space of two classes. We train our SVM model with a Gaussian kernel, C = 2,
and gamma = 0.05. We managed to achieve an F1 score of 91% on our test set
with these configurations.

Convolutional Neural Networks: CNNs [11] allows vanilla NNs to learn
different features in the feature space by focusing on having connections between
localized regions of the input between the layers through the use of filters. We
trained our model (see Fig. 4) and achieved an F1 score of 95% with our dataset.

Long-Short Term Memory: LSTMs [4] can deal with long term dependencies
such as time series data and effectively model the feature space to make classifi-
cations. We used a stacked LSTM model with 3 LSTM layers each with 64 units
stacked on top of each other. Further, we used a dropout of 0.2, 0.3 and 0.5 for
each layer, respectively. With 50 epochs, we got an F1 score of 90%.

Table 1. Performance across different models

Algorithm Precision Recall F1-Score FPR FNR

SVM 100% 84% 91% 0% 16%

LSTM 87% 92% 90% 43% 7%

1D-CNN 92% 98% 95% 25% 1%

All the results presented above are very competitive. However, we would hail
1D CNN as our best performer because it had the highest F1-Score and the lowest
FNR (False Negative Rate). FNR corresponds the model classifying distressed



468 S. Sakhuja and R. Cohen

emotion as a regular one. Our goal was to minimize the FNR since we shouldn’t
tolerate even a single instance of sexual harassment that might slip through
our system. It is important to note here that we focus less on false positives. If
the system flags a case of distressed female in rideshare, we can have the rideshare
company either alert the driver/passenger to determine whether everything is
okay or have manual curators listen in on the conversation to ensure the safety
of the passengers.

5 Threats to Validity

Distress Might Not Always Mean Sexual Harassment: Most of the
women we interviewed as a part of the research expressed that they would feel
and sound scared, angry or disgusted if they were being sexually harassed. How-
ever, a woman could express these emotions without being sexually harassed or
for another reason entirely. This would result in a higher FPR but still minimize
the FNR. Low FNR is desirable because we can be certain that no potential case
slips through the cracks. More oversight when a positive case is suspected may
help to identify false labelling. And while manual curation of content may be of
assistance, automated intelligent analysis of words and connotations of speech
may also be of some help.

Privacy Violation: Bugging the rideshare with audio recorders might pose as a
privacy violation for some. However, rideshares are an intrinsically public space
and raising concern with having audio recorded in rideshares sounds similar to
customers raising concerns about video cameras in stores and other public spaces.
That being said, the rideshare users would be notified that the audio in the
rideshare is going to be recorded. They will have to manually accept and consent
to allow the audio recording to be uploaded to the cloud. Further, if having voice
recording systems in rideshares can deter cases of sexual harassment, it seems
like one of the most obvious cases of choosing the lesser evil. In our interviews,
we did not come across any individual who raised concern against having their
conversation with the rideshare driver uploaded to the cloud if it helped with
the rampant issue of sexual harassment in rideshares and allowed women to feel
safer.

6 Future Work and Conclusion

In this work, we judged instances of sexual harassment solely by assessing the
emotion of a recorded conversation from a rideshare. This approach can be fur-
ther improved by analyzing the content of the conversation in the rideshares, as
a powerful tool in deterring sexual harassment. A dataset of rideshare conversa-
tions doesn’t exist yet, but we could begin by looking at similar content on social
media. It is also useful to expand our consideration of harassment cases and of
the responses from victims. For instance, members of the trans and non-binary
communities may be at even greater risk. And responses to trauma may well
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be less emotional, trying to prevent unsafe outcomes by aiming not to provoke
the harasser. These realities may require new models for making use of audio
transcripts towards addressing unwanted behaviour in rideshares.

The algorithms presented in this work can accurately classify a woman who
sounds angry, disgusted or scared simply through the audio recording in a
rideshare. Our CNN model enabled us to get a 1% FNR and an F1 score of
95% on our dataset. We hope that this work serves as motivation for researchers
to collect a dataset of conversations from within rideshares. This would allow us
to deploy this emotion recognition system and also train a model to analyze the
content of the conversation to ensure safety in rideshares.

Acknowledgements. Thanks to Alice Kates for her valuable feedback and Yash
Gupta for his initial suggestions on the topic.
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Abstract. Automatic identification of duplicate bug reports is a critical
research problem in the software repositories’ mining area. The aim of
this paper is to propose and compare amalgamated models for detecting
duplicate bug reports using textual and non-textual information of bug
reports. The algorithmic models viz. LDA, TF-IDF, GloVe, Word2Vec,
and their amalgamation are used to rank bug reports according to their
similarity with each other. The amalgamated score is generated by aggre-
gating the ranks generated by models. The empirical evaluation has been
performed on the open datasets from large open source software projects.
The metrics used for evaluation are mean average precision (MAP), mean
reciprocal rank (MRR) and recall rate. The experimental results show
that amalgamated model (TF-IDF + Word2Vec + LDA) outperforms
other amalgamated models for duplicate bug recommendations. It is also
concluded that amalgamation of Word2Vec with TF-IDF models works
better than TF-IDF with GloVe. The future scope of current work is to
develop a python package that allows the user to select the individual
models and their amalgamation with other models on a given dataset.

Keywords: TF-IDF · Word2Vec · GloVe · LDA

1 Introduction

Software bug reports can be represented as defects or errors’ descriptions iden-
tified by software testers or users. These are generated due to the reporting of
the same defect by many users. These duplicates cost futile effort in identifi-
cation and handling. Developers, QA personnel and triagers consider duplicate
bug reports as a concern. It is crucial to detect duplicate bug reports as it helps
in reduced triaging efforts. The effort needed for identifying duplicate reports
can be determined by the textual similarity between previous issues and new
report [13]. Various approaches have been proposed to automate duplicate bug
reports’ detection. In early approaches, NLP [16], machine learning [1,10,20],
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information retrieval [19], topic analysis [1,9], deep learning [3], and combina-
tion of models [3,23] have been applied. Figure 1 shows the hierarchy of most
widely used sparse and dense vector semantics [7].

Fig. 1. Vector Representation in NLP

Our study has combined sparse and dense vector representation approaches
to generate amalgamated models for duplicate bug reports’ detection. The one
or more models from LDA, TF-IDF, GloVe and Word2Vec are combined to cre-
ate amalgamated similarity scores. The similarity score presents the duplicate
(most similar) bug reports to bug triaging team. The proposed models takes
into consideration textual information (description); and non-textual informa-
tion (product and component) of the bug reports. TF-IDF signifies documents’
relationships [16]; the distributional semantic models, Word2Vec and GloVe, use
vectors that keep track of the contexts, e.g., co-occurring words.

LDA presents relationships between documents by transforming into a lower
dimensional space. An amalgamated score is computed by merging the similarity
scores from individual approaches. Thus, this score makes the basis for top k
duplicate bug recommendations. The empirical evaluation has been performed
on three datasets, namely, Apache, Eclipse, and KDE [17] with bug reports as
discussed in Table 1. The effectiveness of the proposed approach is evaluated
by three established performance metrics, viz. mean average precision (MAP),
recall-rate@k, and mean reciprocal rank (MRR).
This study investigates and contributes into the following items:

– An empirical analysis of amalgamated models to rank duplicate bug reports.
– Effectiveness of amalgamation of models.
– Statistical significance and effect size of proposed models.

The paper has been divided into eight sections. The following section
describes related work in detail. In third section, dataset and steps followed
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in pre-processing as given in [19] have been explained. The fourth section elab-
orates the methodology followed. The fifth section provides the insights into
evaluation metrics. The sixth section discusses the results generated from the
proposed models. The seventh section presents the threats to validity. In the
final section, the paper is concluded and directions for future work are provided.

2 Related Work

Extensive research has been conducted in the area of detecting the duplicate
bug reports automatically. Several methods have been developed focusing on
these research areas [1,5,10,23]. A TF-IDF model has been proposed by mod-
eling a bug report as a vector to compute textual features similarity [12]. An
approach based on n-grams has been applied for duplicate detection [21]. All
of the above methods are primary term-based methods and can diagnose the
lexical duplicate bug reports. In addition to using textual information from the
bug reports, the researchers have witnessed that additional features also support
in the classification or identification of duplicates bug report.

The first study that combined the textual features and non-textual features
derived from duplicate reports was presented by Jalbert and Weimer [6]. In
year 2008, the execution traces were combined with textual information by
Wang et al. [22]. In recent times, software engineering has witnessed the shift
in the research focus towards the usage of Vector space models (VSMs). Word
embedding is one of the most popular representation of document vocabulary.
A method was proposed to use software dictionaries and word list to extract the
implicit context of each issue report [1].

It has also been researched that Latent Dirichlet Allocation (LDA) provides
great potential for detecting duplicate bug reports [5,9]. A combination of LDA
and n-gram algorithm outperforms the state-of-the-art methods has been sug-
gested Zou et al. [24]. Recently, deep learning technique for duplicate bug reports
has been proposed by Budhiraja et al. [3]. Although in prior research many mod-
els have been developed and a recent trend has been witnessed to ensemble the
various models. There exists no research which amalgamated the statistical, con-
textual, and semantic models to identify duplicate bug reports.

3 Dataset and Pre-processing

3.1 Dataset

A collection of bug reports that are publicly available for research purposes
has been proposed by Sedat et al. [17]. The repository1, presented three defect
datasets extracted from Bugzilla in “.csv” format [17]. It contains the datasets
for open source software projects: Apache, Eclipse, and KDE. The datasets con-
tain information about approximately 914 thousands of defect reports over a

1 https://zenodo.org/record/400614#.XaNPt-ZKh8x, last accessed: March 2020.

https://zenodo.org/record/400614#.XaNPt-ZKh8x
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period of 18 years (1999–2017) to capture the inter-relationships among dupli-
cate defects. Descriptive statistics are illustrated in Table 1. The dataset contains
two categories of feature viz. textual and non-textual. The textual information is
description given by the users about the bug i.e. “Short desc”. The non-textual
information is presented by the features viz. “Product” and “Component”, “Pri-
ority”, “Bug severity”, “Version”, “Bug status”, “current status” and “duplicate
list”. From these non-textual features “Product” and “Component” are used as
filter, and “duplicate list” is used to create the ground truth for evaluation of
the metrics.

Table 1. Dataset description

Project Apache Eclipse KDE

# of reports 44,049 503,935 365,893

Distinct id 2,416 31,811 26,114

Min report opendate 2000-08-26 2001-02-07 1999-01-21

Max report opendate 2017-02-10 2017-02-07 2017-02-13

# of products 35 232 584

# of components 350 1486 2054

3.2 Pre-processing of Textual Features

Pre-processing and term-filtering were used to prepare the corpus from the tex-
tual features. In further processing steps, the sentences, words and characters
identified in pre-processing were converted into tokens and corpus was prepared.
The corpus preparation included conversion into lower case, word normalisation,
elimination of punctuation characters, and lemmatization.

4 Methodology

The flowchart shown in Fig. 2 depicts the approach followed in this paper.

4.1 Latent Dirichlet Allocation

The bug reports textual information is the perfect example of the unstructured
data as the content is written in natural language and LDA has emerged as
efficient approach for pattern identification from unstructured data [18]. In this
paper, LDA has been applied for querying the corpus data and identifying the
latent patterns and the heuristic parameters proposed by Arun et al. [2] and Cao
et al. [4] were used for deciding the topic count.
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Fig. 2. Overall Methodology

4.2 Term Frequency-Inverse Document Frequency

The main idea behind the Term Frequency-Inverse Document Frequency (TF-
IDF) is that the count of a term’s occurrence in documents may be used to
differentiate the documents. The weighted scheme for TF-IDF was adopted for
representing one entity’s significance relative to the other entities in the pre-
pared corpus. The weight of an entity increases proportionally with a count of
occurrences for a word in the document.

TF is document’s local component measuring a normalized frequency of term
occurrence; whereas the global component is represented by the inverse docu-
ment frequency (IDF), i.e., log[((1 + nd)/(1 + dfi, j)] + 1.

4.3 Word2Vec

Word2Vec is capable of capturing context of a word in a document, semantic and
syntactic similarity, relation with other words, etc. Two variants of Word2Vec
models namely, continuous bag-of-words (CBOW) and skip-gram are available.
Both are capable to capture interactions between a centered word and its context
words differently.

For a word vector r̂ (predicted) and a word vector wt (target), softmax func-
tion is applied to find the probability of the target word as given in Eq. 1.

P (wt|r̂) =
exp(wt, r̂)∑

w∈W exp(w′ , r̂)
(1)

Here W is the set of all target word vectors, where exp(wt, r̂) computes the
compatibility of the target word wt with the context r̂. In this paper, gensim
implementation of word2vec (skip-gram) pre-trained Google News corpus (3 bil-
lion running words) word vector model (3 million 300-dimension English word
vectors) is used.
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4.4 Global Vectors for Word Representation

Global Vectors for word representation (GloVe) is an unsupervised learning algo-
rithm that combines the features of two model families, namely the global matrix
factorization and local context window methods [8]. In this paper, GloVe used
Google News pre-trained model to reduce the error between the dot product of
(any two) word embedding vectors to the log of the co-occurrence probability.
GloVe is based on matrix factorization on the word-context matrix. The model
can be represented as in Eq. 2. In this, w and w̃ are word vectors.

F (wi, wj , w̃k) =
Pik

Pjk
(2)

Where i, j, and k are three words and the ratio Pik/Pjk depends upon them.

4.5 Proposed Amalgamated Model

It has been identified that even the established similarity recommendation mod-
els such as NextBug [15] does not produce optimal and accurate results. There-
fore, the current study created amalgamated models those merge one or more
approaches viz. LDA, Word2Vec, GloVe and TF-IDF. The similarity scores vec-
tor (S1, S2, S3, S4) for k most similar bug reports is captured from individual
approaches as shown in Fig. 2. Since the weights obtained for individual method
have their own significance; therefore a heuristic ranking method is used to com-
bine and create a universal rank all the results. The ranking approach assigns
new weights to each element of the resultant similarity scores vector from the
individual approach and assign it equal to the inverse of its position in the vector
as in Eq. 3.

Ri =
1

Positioni
(3)

Once all ranks are obtained for each bug report and for each model selected,
the amalgamated score is generated by summation of the ranks generated as
given in Eq. 4, the ranks would be zero for left out models. It creates a vector of
elements less than or equals to nk, where k is number of duplicate bug reports
returned from each model and n is number of models being combined.

S = (R1 + R2 + R3 + R4) ∗ PC (4)

Where S is amalgamated score (rank) of each returned bug report and R1,
R2, R3, and R4 are the ranks returned from LDA, Word2Vec, GloVe, and TF-
IDF, respectively as given in Eq. 3. Here PC is the product & component score
and works as a filter. For instance, if two bug reports belong to same product
and component then their similarity depend on the document similarity score.
But if they belong to different product and component, then they are unlikely
to be similar even if their document similarity score is high, thus made zero.
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5 Evaluation Metrics

The evaluation metrics used to evaluate the one or more amalgamation of models
are: recall-rate@k; mean average precision (MAP); and mean reciprocal rank
(MRR). These metrics have been frequently used in recommendation systems to
solve software engineering tasks [5,6,9,15,19].

5.1 Recall-Rate@k

Recall-rate is used to check the usefulness of top k recommendation. For a query
bug q, it is defined as given in Eq. 5 as suggested by previous researchers [5,19,
23].

RR(q) =

{
1, if ifS(q) ∩ R(q) �= 0
0, otherwise

(5)

Given a query bug q, S(q) is ground truth and R(q) represents the set of
top-k recommendations from a recommendation system.

5.2 Mean Average Precision (MAP)

MAP is defined as the mean of the Average Precision (AvgP ) values obtained
for all the evaluation queries given in MAP =

∑|Q|
q=1

AvgP (q)
|Q| . In this equation,

Q is number of queries in the test set.

5.3 Mean Reciprocal Rank (MRR)

Mean Reciprocal Rank (MRR) is calculated from the reciprocal rank values
of queries. MRR(q) =

∑|Q|
i=1 ReciprocalRank(i) calculates the mean reciprocal

rank and RR is calculated as in ReciprocalRank(q) = 1
indexq

.

6 Results and Discussion

This section presents the results of the empirical evaluation. For evaluation of
results, we used a Google Colab2 machine with specifications as RAM: 24 GB
Available; and Disk: 320 GB.

The amalgamated models compares the incoming query bug report against
the already existing resolved bug report database and return the top-k duplicate
bugs. The current research implements the algorithms in Python 3.5 and used
“nltk”, “sklearn”, “gensim” [14] packages for model implementation. The default
values of the parameters of the algorithms were used. The values of k has been
taken as 1, 5, 10, 20, 30, and 50 to investigate the effectiveness of proposed
approach.
2 https://colab.research.google.com.

https://colab.research.google.com
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The current study has investigated the proposed models in comparison with
the other combination of established approaches for duplicate bug report rec-
ommendation. For the empirical validation of the results, the developed models
have been applied to open bug report data (discussed in Sect. 3) consisting of
three datasets of bug reports. The datasets were divided into train and test data.
In the open source software (OSS) bug repository datasets, one of the column
contained the actual duplicate bug list i.e. if a bug report actually have duplicate
bugs then the list is non-empty otherwise it is empty (‘NA’). This list worked
as ground truth to validate the evaluation parameters. All the bug reports with
duplicate bug list are considered as test dataset for validation of the amalga-
mated models. The number of bug reports for test dataset for Apache, Eclipse,
and KDE projects were 2,518, 34,316, and 30,377, respectively. The training
dataset was used to convert the existing textual information into the vector rep-
resentation for the models. The test data was used to detect the duplicate bug
reports from the train dataset considered resolved. This helped to identify the
duplicate bug reports and evaluate the models.

Table 2. Mean average precision of individual and amalgamated models using all
dataset.

Models Apache Eclipse KDE

TF-IDF 0.076 0.108 0.045

Word2Vec 0.115 0.171 0.132

GloVe 0.060 0.105 0.094

LDA 0.012 0.029 0.008

TF-IDF + LDA 0.149 0.127 0.082

TF-IDF + GloVE 0.138 0.128 0.098

TF-IDF + Word2Vec 0.144 0.173 0.126

TF-IDF + Word2Vec + LDA 0.161 0.166 0.158

TF-IDF + GloVe + LDA 0.163 0.123 0.130

6.1 Empirical Analysis

The empirical analysis of the proposed ensemble model has been performed on
OSS datasets. The models take textual information from training dataset and
create vocabulary to be used for finding the duplicates of test bug reports.

Apache Dataset. Apache dataset is smallest dataset of three datasets and
contains 44,049 bug reports. These bug reports are generated for 35 products
and 350 components. Figures 3(a) and 3(b) show that the amalgamation of mod-
els produces more effective results than the individual established approaches.
Table 2 represents MAP values for the models. For the results, it is revealed that
not all combinations produces good results.
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Eclipse Dataset. The dataset of Eclipse contained 503,935 bug reports, and
31,811 distinct ids. It includes 232 products and 1486 components bug reports.
Due to large dataset the random sampling of the full dataset was performed to
select 10% of the dataset. The values of recall rate and MRR are presented in
Figs. 3(c) and 3(d) respectively. The results obtained reveal that the amalga-
mated score has better value as compared to the scores obtained from individual
approaches.

(a) RR of Apache
Dataset

(b) MRR of Apache
Dataset

(c) RR of Eclipse
Dataset

(d) MRR of Eclipse
Dataset

(e) RR of KDE (f) MRR of KDE

Fig. 3. Performance of (a)–(b) Apache dataset, (c)–(d) Eclipse dataset, (e)–(f) KDE
dataset

KDE Dataset. This dataset contains 365,893 bug reports of 584 products
out of which 2054 were used. Due to large dataset the random sampling of the
full dataset was performed to select 10% of the dataset. The evaluation metrics
obtained from this dataset are depicted in Fig. 3(e) and 3(f).

6.2 Effectiveness of Amalgamation of Models

The results have demonstrated the superiority of the amalgamated models to
identify the duplicate report as compared to individual approaches. Figure 3
shows the comparative performance of the proposed approach and the estab-
lished approaches with parameter k varying for all the datasets. Further, it has
been revealed that for two datasets Apache and KDE, the amalgamated model
(TF-IDF + Word2Vec + LDA) produced the best results. Whereas for Ecilpse
dataset a amalgamated model (TF-IDF + LDA) generated better than model
(TF-IDF + Word2Vec + LDA). Another, conclusion from the results is that
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Word2Vec individually is also very powerful to detect the duplicate reports.
This study proposes the amalgamated model of TF-IDF + Word2Vec + LDA,
that outperform other amalgamated models. It has also been concluded that
Word2Vec and its combination produces better results as compared to GloVe.

6.3 Statistical Significance and Effect Size

To establish the obtained results of the proposed model, we performed the
Wilcoxon signed-rank statistical test to compute the p-value, and measured
the Cliff’s Delta measure [11], and Spearman correlation. Table 3(a) depicts the
interpretation of Cliff’s Delta measure. By performing the Shapiro-Wilk test, the
normality of the results was identified. Since it turned out to be non-Gaussian,
non-parametric test Spearman correlation was applied to find out the relation-
ship between the results of different approaches.

Table 3. Statistical significance and effect size

(a) Interpretation of Cliff’s Delta Scores [11]

Effect Size Cliff’s Delta (δ)

Negligible −1.00 ≤ δ < 0.147

Small 0.146 ≤ δ < 0.330

Medium 0.330 ≤ δ < 0.474

Large 0.474 ≤ δ ≤ 1.00

(b) p-value of Wilcoxon

signed-rank test, Cliff’s Delta

and Spearman’s correlation

coefficient comparing the

metrics of amalgamated

(TF-IDF + Word2Vec + LDA)

model with TF-IDF for

Apache dataset

Metrics Spearman’s r Cliff’s Delta p-value

Recall 0.99 0.4032 0.00051

MRR 0.99 0.8244 0.00043

Table 3(b) presents the p-value, Cliff’s Delta measure and Spearman’s cor-
relation coefficient of amalgamated (TF-IDF + Word2Vec + LDA) model with
TF-IDF in terms of two metrics for Apache dataset and KDE, respectively.
The TF-IDF model has been compared with the amalgamated approach as TF-
IDF has been presented as benchmark model in most of the previous studies.
Table 3(b) presents that the results have a positive correlation, whereas there
is a medium or large effect size, which means improvement is happening by
amalgamation of models.

7 Threats to Validity

Internal Validity. The dataset repository contains the bug reports that contains
dataset till the year 2017. The threat is that the size of textual information is
small for each bug report. But, the current work applied the well-established
methods of natural language processing to preparing the corpus from these large
datasets. Therefore, we believe that there would not be significant threats to
internal validity. While using LDA, a bias may have been introduced due to
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the choice of hyper-parameter values and the optimal number of topic solutions.
However, to mitigate this, the selection of the optimal number of topic solutions
was done by following a heuristic approach as suggested by Arun et al. [2] and
Cao et al. [4].

External Validity. The generalization of results may be another limitation of this
study. The similarity score was computed by following a number of steps and
each of these steps has a significant impact on the results. However, verification of
results is performed using open source datasets to achieve enough generalization.

8 Conclusion

The main contribution of this paper is an attempt to amalgamate the estab-
lished natural language models for duplicate bug recommendation using bug
textual information and non-textual information (product and component). The
proposed amalgamated model combines the similarity scores from different mod-
els namely LDA, TF-IDF, Word2Vec, and GloVe. The empirical evaluation has
been performed on the open datasets from three large open source software
projects, namely, Apache, KDE and Eclipse. From the validation, it is evident
that for Apache dataset the value of MAP rate increased from 0.076 to 0.163,
which is better as compared to the other models. This holds true for all three
datasets as shown in experimental results. Similarly, the values of MRR for amal-
gamated models is also high relative to the other individual models. Thus, it can
be concluded that amalgamated approaches achieves better performance than
individual approaches for duplicate bug recommendation. This study proposes
the amalgamated model (TF-IDF + Word2Vec + LDA), that outperform other
amalgamated models.

The future scope of current work is to develop a python package that allows
the user to select the individual models and their amalgamation with other
models on a given dataset. This would also allow the user to select combination
of textual and non-textual features from dataset for duplicate bug detection.
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Abstract. Research publications reflect advancements in the corre-
sponding research domain. In these research publications, scientists often
use citations to bolster the presented research findings and portray the
improvements that come with these findings, at the same time, to make
the contents more understandable to the audience by navigating the flow
of information. In the science domain, a citation refers to the document
from where this information originates, but doesn’t specify the text span
that is actually being cited. This paper develops a framework which can
create a linkage between the citing sentences from the ongoing research
article and the related cited sentences from the corresponding referenced
documents. Eventually, it will reduce the burden of the readers to go
through all the sentences in the documents while acquiring the required
background information. This citation linkage problem has been mod-
elled as a semantic relatedness task where given a citing sentence the
framework generates the sentence pairs with the citing sentence and each
of the sentences from the reference document and then tries to determine
which sentence pair is semantically similar and which pair is not. Con-
struction of the citation linkage framework involves corpus creation and
utilizing deep-learning models for semantic similarity measurement.

Keywords: Citation linkage · Textual semantic relatedness · Corpus
creation

1 Introduction

Different types of written documents have different formats, writing patterns
and serve different objectives. A research article can reflect research trends,
a new invention, or perspectives to solve a problem in a particular domain.
While writing a research document, the author discusses previous research that
is either prominent to solve the same problem or has influenced the author’s
ideas presented in the ongoing research paper. This referencing to some other
document while writing a research article is called a citation [10]. Thus, citations
create links between various research articles. Usage of citations reduces the
writing overload of authors as they don’t have to write down the same thing.
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At the same time, it helps the readers to achieve some background knowledge
over a topic which may be required to understand the ideas in the ongoing article.

In 1964 the idea of citation indexing was introduced [7]. As citation indexing
became increasingly popular, more fine-grained analysis of citing were proposed.
Garzone and Mercer [8] gave a method to identify the purpose of a citation in
biochemistry and physics research articles. As well, modern applications such as
multiple document summarization [25] and argumentation mining [24] use these
citation links.

In the case of scientific research articles, a citation refers to the document
from where the idea stated in the citing sentence originates. However, a citing
sentence in an experimental biomedical research article typically refers to a small
portion of the referenced document. If it were possible to pull out that specific
text span from the reference document, it would be advantageous for applications
such as those mentioned above. Additionally, it would reduce the burden of the
readers having to read the complete document to find the piece that is being
cited.

The objective of this paper is to establish a relationship between the citation
sentence and its corresponding reference sentences from the cited paper. This
task is called citation linkage. In this study, citation linkage is modelled as a
textual semantic relatedness measurement task and the text span is delimited to
a single sentence. Hence, this is why the citation linkage problem is formulated
as a textual matching operation between a citation sentence and every sentence
in the corresponding cited paper.

The major contributions of this work are creating a synthetic corpus for the
citation linkage task containing more than sixty thousand sentence pairs from
the biomedical domain, and building a framework to determine the appropriate
cited sentences from a cited paper given a citation sentence. The rest of the
paper is structured as follows: Sect. 2 elaborates on the citation linkage problem
and Sect. 3 gives some related works on the citation linkage task as well as some
deep-learning models for measuring textual semantic relatedness at the sentence
level. Section 4 describes the data cleaning and pre-processing steps and how
the corpus is built. A detailed description of the citation linkage framework
is presented in Sect. 5. In Sect. 6 the results are provided and analysed, and a
comparison with some previous work is given. We conclude the paper with a
summary of the current work and present some directions for future study.

2 Citation Linkage

Citations establish a semantic link between the citing and the cited papers. A
citation in a research paper indicates a portion of the reference paper called the
citation context [10]. Usually, the citation context refers to some specific idea
or topic introduced in the cited paper. The citation context contains few full
sentences mentioning the method names, used appliances, or the findings and the
hypothesis presented in the cited paper. However, citations don’t specify which
portion of the cited article is actually being referred to, rather a citation states
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Table 1. Sample citation and corresponding target reference sentence [10]

Example 1 Citation sentence Formalin fixation, the most widely used fixative
in histopathology, has many advantages such as
the ease of tissue handling, the possibility of
long-term storage, an optimal histological quality
and its availability in large quantities at low
price [11]

Target sentence The advantages of formalin fixation are the ease
of tissue handling, the possibility of long-term
storage of wet material, and its low price [12]

Example 2 Citation sentence Sample DNA is often damaged by exposure to
formaldehyde and a potentially extremely acidic
environment [26]

Target sentence However, DNA is relatively stable in mildly
acidic solutions, but at around pH4 the beta
glycosidic bond is in the purine bases are
hydrolysed [5]

Example 3 Citation sentence Different PCR buffer systems and/or different
Taq poly-merases may yield different real time
PCR results [11]

Target sentence A significant difference can be seen between the
results from the different DNA polymerase-buffer
systems [27]

only the name of the cited document. So, if a reader needs some background
knowledge about that topic, he/she needs to read the whole referenced document.
However, readers prefer to have precise information about the discoveries of the
research work in a research article. For this they require concise background
information which has influenced the work.

This paper investigates the ways to determine the referenced sentences from
the cited paper given a citation sentence by means of measuring semantic relat-
edness. This problem is named as citation linkage and we have tried to solve
it using different deep-learning methods. The citation context span may con-
tain one or more than one sentences. However, for this work this span has been
restricted to only one sentence and the citation linkage task has been designed
as a semantic relatedness measurement task at the sentence level. This semantic
relatedness task is actually a two class classification which operates on sentence
pairs. Given a sentence pair it tries to predict whether they are semantically
similar or not.

Table 1 shows a few examples of citation sentences and their correspond-
ing reference sentences from the cited paper. Example 1 gives the sentence pair
where the citation sentence is the paraphrase of the cited sentence and contains
common words in a different order. In the second example, the citing sentence
replaces the term “pH4” by “extremely acidic environment”. To establish a link-
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age between these two terms a mapping is required between the scaling of pH
to the acidic condition (which is currently beyond the methods used in this
paper). In Example 3, the citing sentence interprets the information from the
target sentence. From these examples it is clear that, for establishing linkage
between citation and cited sentence, the proper mapping is essential in between
sentences as well as words. As the final models used in the experiments for the
textual semantic relatedness measurement are deep-learning techniques, proper
word and sentence embedding techniques are required prior feeding the data
to these models. Furthermore, while measuring semantic relatedness between
two sentences, only few words rather than all the words in the sentences play
the vital role. That’s why the attention mechanism is influential to give proper
importance to individual words.

3 Related Work

Interest in citations in scientific research literature has led to much work ana-
lyzing citations [7,8]. One type of analysis is: Given a citation sentence, cita-
tion analysis attempts to determine which section (i.e., abstract, introduction,
methodology, result, and discussion) of the cited paper is being referred to by
this sentence. However, this type of analysis is unable to specify the more precise
citation span.

The ongoing CL-SciSumm Shared Task looks at three aspects of the cita-
tion linkage task: for each citation sentence (“citance”) find the text span of
the referenced paper that most accurately reflects the citance; for each cited
text span, identify its discourse facet; and generate a summary of the referenced
paper based on the text spans that are cited by multiple citances. The latter
two subtasks are beyond the scope of this paper. The granularity of the text
span can be a sentence fragment, a full sentence, or up to five consecutive sen-
tences. We have focused on the single sentence text span in this paper. The
CL-SciSumm Shared Task uses a corpus comprised of computational linguistics
research papers. For the CL-SciSumm-17 shared task, Li et al. [15] applied a
ruled-based approach using inverse document frequency and Jaccard similarity
to determine the citation linkage between citing and cited sentence pairs. Later,
they represented the sentences as the concatenation of word vectors in the sen-
tence and calculated the cosine similarity between the sentence vectors [14]. In
their work for the CL-SciSumm-19 shared task, they ran a convolutional neural
network (CNN) over the sentence representations to generate better feature rep-
resentations and then computed cosine similarity between the citing and cited
sentences [16]. Other works, such as AbuRa’ed et al. [1] have also worked with
the CL-SciSumm corpus.

Unfortunately, only a few works have approached this citation linkage task
in the biomedical domain. In 2017, Houngbo and Mercer [9] developed a frame-
work for the citation linkage task using a textual matching operation and built
a small expert-annotated corpus comprised of sentence pairs from the biomedi-
cal domain. For the similarity measurement task, they used various traditional
machine learning models. However, the accuracy they achieved was low.
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Recently, deep learning based models are being used to generate the word
embeddings which feed the neural network architectures described below. The
models proposed by Bengio et al. [3] followed by Mikolov et al. [19,20]
(Word2Vec) generate fixed-sized vector representations of words. However, these
two models can’t generate embeddings for the out of the vocabulary words. To
solve this issue, Bojanowski et al. [4] proposed a model (fasttext) that gener-
ates the word embeddings from sub-word information. As the names of the very
same chemical in the biomedical research articles come with different patterns
(i.e., carbon dioxide is presented by CO2, C-O2, etc.), sub-word information is
required to generate the embeddings for the chemical names. To cope with this
issue, we have used fasttext for generating the word embeddings.

Currently, only one human annotated dataset is available for the citation link-
age task in the biomedical domain [9]. It is too small to train the data thirsty deep
learning models. To overcome this problem and to generate a synthetic dataset
with more sentence pairs for the citation linkage task, different unsupervised
methods for sentence embedding have been investigated. Kiros et al. [13] and
Logeswaran and Lee [18] proposed unsupervised sentence embedding models.
However, both of these models require pre-trained word embeddings as input
and can’t work with out of vocabulary words. To solve this issue, Pagliardini
et al. [22] proposed a sentence embedding model (Sent2Vec) using compositional
n-gram features. Here sentences are represented as fasttext CBOW generated
pre-trained word vector’s weighted mean. Because of its ability to work with
unseen words, while generating synthetic data, we use Sent2Vec.

The inherent meaning of a sentence is typically provided by few words present
in the sentence. To focus on portions of a sentence various attention mechanisms
have been introduced in recent times. Badhanau et al. [2] introduced the idea
of attention in the task of neural machine translation, Liu et al. [17] proposed a
sentence encoding model for text entailment recognition task which they named
“Inner Attention”, Yang et al. [28] proposed a two-leveled hierarchical attention
architecture to classify documents, and finally, Conneau et al. [6] utilized differ-
ent attention mechanisms which have subsequently been named Infersent. They
used multiple architectures like Bi-LSTM with max-pooling, hierarchical CNN,
inner attention and hierarchical attention mechanisms. These models showed
very prominent result over the semantic relatedness measurement task. In this
paper, for the citation linkage task this Infersent [6] model is used.

4 Citation Linkage Corpus Creation

The only corpus available for the citation linkage task in the biomedical domain
is from Houngbo and Mercer’s work [9] which contains only method citations.
Although in scientific research papers the citation span can be one or more
sentences (or part of a sentence), for the above work, it is limited to a single
sentence, so the citation linkage task involves sentence pairs. They had an expert
annotate 3857 sentence pairs on a scale of 0 (not similar) and 1 (lowest similarity
score) to 5 (highest similarity score). The dataset is highly imbalanced. Only 81
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pairs are annotated with rating 4 or 5. Thus it becomes very hard to train
deep-learning models with this dataset. At the same time, human annotation of
a sufficient amount of data from biomedical research articles for this task is a
costly process. To overcome this issue, we have developed a synthetic corpus of
68,898 sentence pairs over three biomedical topics: cell biology, biochemistry, and
chemical biology. We are calling it a synthetic corpus, as it is developed not with
any human annotation, but rather with an unsupervised sentence embedding
technique called Sent2Vec. However, we have used the corpus built by Houngbo
and Mercer [9] for the validation and test purposes with a few changes in the
scoring factor. Scores 4 and 5 in this corpus are replaced with 1 and the remaining
scores are replaced with 0.

Like other unsupervised sentence embedding models, Sent2Vec requires a lot
of data for training. For this reason, 4,843,756 sentences from 28,310 research
documents are collected. These documents, collected from BioMed Central, are
from 90 biomedical domains like cell biology, bioinformatics, biochemistry, etc.
As, these data are from different domains, they differ in format. Moreover, the
same equation may have different variable names and symbols. For this reason
all the equations are required to be replaced with the same symbol. The same
replacement operation is needed for numbers as well. All of the equations are
replaced with “< equ >” and all of the standalone numbers are replaced with
“< num >”. The sentences also contain a few unnecessary symbols in terms
of their semantic representations which can be deleted. Furthermore, some sen-
tences contain the citation numbers like “[xx]” which are unnecessary as well.
These citation numbers are also deleted. Some confusions are found for the α
letter. This symbol may appear in a equation to indicate in proportion to, or
it may appear with a chemical name like “AUCO-α”. For chemical names, this
sign is replaced with the term “alpha”. The symbol is kept as it is if it appears
as a part of an equation. The reason to do this is its presence in a chemical
name where only this symbol is different indicates a different chemical. Similar
substitutions are done for other Greek letters. However, if a number appears as
a part of a chemical name, it is preserved in its original form. In the next step,
all the symbols with different representation formats are replaced with their cor-
responding common format representations. Table 2 shows the regex commands
used for cleaning the data. Finally, all the characters are lower-cased.

After having cleaned the sentences, the next step is to train an unsupervised
sentence embedding model. This step is important for the annotation of the
sentence pairs. That is why Sent2Vec is trained with various parameter settings
over the data. To generate the sentence pairs with citing and cited sentences,
among 28,310 research articles, 112 were randomly selected from Biochemistry,
Cell Biology and Chemical Biology. For these papers, 2289 papers which have
cited them were manually collected. From these papers only the corresponding
citation sentences are extracted. After cleaning the data, sentence pairs are gen-
erated, the first sentence in the pair being a sentence from the cited article and
the second being the citing sentence such that there is one sentence pair for each
sentence in the cited article. This step generates 475,807 sentence pairs.
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Table 2. Regex for capturing different pattern throughout the data

Individual sentences of each sentence pair are then fed to the already trained
Sent2Vec model to get the vector representation. Cosine similarity is measured
between the sentence vectors for each sentence pair. For different cutoff cosine
similarity values, the performance is tested against a validation set which is a
part of the human annotated data from Houngbo and Mercer’s work [9]. Sentence
pairs with cosine similarity values which are greater than or equal to the selected
cutoff values are annotated with similarity value 1 (indicating the sentences in
the pair are similar) and the remainder are annotated with 0 (indicating the sen-
tences in the pair are not similar). However, among these 475,807 sentence pairs
most of the pairs are annotated with zero value. If the models discussed below
are trained with this data, they will likely be biased. For this reason, from these
sentence pairs, 68,898 samples are chosen to balance the proportion of positive
and negative samples. When choosing these samples, all of the sentence pairs
annotated with similarity value 1 are kept. Then, for each citation sentence, n
negative samples are chosen, where n is the number of positive samples found for
that citation sentence. For the few citation sentences that have no correspond-
ing positive cited sentences, five randomly chosen samples are inserted into the
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dataset. Thus, the dataset of 68,898 samples is created. This dataset contains
31,624 positively annotated sentence pairs, which is 45.89% of the samples.

5 Citation Linkage as a Semantic Similarity Measurement
Task

Our goal is to link text in the cited document with a citing sentence. As we
have restricted this text span to one sentence, we have posed this problem as
a sentence level semantic similarity measurement task using various supervised
deep-learned models.

To generate the word embeddings for the semantic similarity measurement
models, fasttext [4] is trained using different parameter settings with the words
from 28,310 research documents over 90 sub-domains of biomedicine as this
model has the ability to generate word vectors for unseen words by utilizing the
sub-word embeddings. The model with the best pearson and spearman values
over the UMNSRS-Sim [23] dataset is chosen for the following experiments.

To solve the citation linkage task as a semantic relatedness measurement
problem, the Infersent [6] model with various architectures is used. Infersent is
a supervised sentence representation model which follows the siamese structure
[21] in the core. Figure 1 gives an overview of the training process of the Infersent
model for the citation linkage task. Two identical neural network architectures
with identical parameter values are used as sentence encoders. One encoder is
responsible to generate a sentence vector for the citing sentence (Sciting) while
the other one is responsible for the cited sentence (Scited). Then, a feature map
is generated which accommodates the concatenation, absolute point-wise differ-
ence, and point-wise multiplication of these two sentence vectors. This feature
map is then fed to the following dense and softmax layers to get the class pre-
diction. To model the citation linkage task, the Infersent architecture is designed
as a binary class classifier where class labels are 0 and 1. Here, 1 indicates that
the citation sentence is citing the cited sentence where 0 indicates the opposite.
In our experiments, we have tried four different models as the sentence encoder:
Bi-LSTM with max-pooling, hierarchical CNN [29], inner attention [17] and hier-
archical attention mechanism [28] over Bi-LSTM.

Fig. 1. Infersent training mechanism for the citation linkage task.
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Finally, bootstrapping approaches are utilized for the citation linkage task.
Bootstrapping is performed with the variants of the Infersent architectures. For
this, the sentence pair dataset is separated into three portions. The annotation
got after running Sent2Vec is kept as is for the first portion. Then with this
data, the Infersent model is trained and validated against the human annotated
validation data. The model with best validation accuracy is saved and used to
annotate the second portion of the data. After annotating the second portion of
the data, this data is added with the previously trained set and this combined
data is used to train the Infersent model again. This time, the model is used
to annotate the third portion of the data. After this third run is done, this
annotated data is also added to the training set and Infersent is trained one more
time with the latest trained dataset. The performance is then tested against the
human annotated dataset. For a single bootstrapping, the same neural network
architecture is used in all the trials, hence, four bootstrapping runs are made for
the experiments.

6 Experimental Setup and Analysis of the Results

Citation linkage is posed here as a sentence level semantic relatedness problem.
For this task, word embeddings, sentence embeddings, and supervised semantic
similarity measurement models are used. To analyze the performance of the
models this section is divided into two parts. Section 6.1 discusses our attempts
to optimize the parameter settings of the different word embeddings, sentence
embeddings, and Infersent architectures. The results of the models are discussed
in detail in Sect. 6.2.

6.1 Network Parameters and Settings

For training fasttext, we have tried both the skip-gram and CBOW architectures.
We have also varied the word embedding dimension, number of epochs, and
window size. The n-grams at both character and word levels are kept static.
Table 3 lists the different hyper-parameter configurations used for training and
shows the selected model.

Table 3. Hyper-parameter settings for the training of the fasttext model.

Hyper-parameter Ranges Selected

Embedding dimension 200/300/600 300

Epochs 5/7/10 10

Window size 5/10/20 5

Maximum number of subwords 5 5

Learning rate 0.01/0.05/0.1 0.05

Architecture type Skip-gram/CBOW Skip-gram
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Table 4. The hyper-parameter setting for Sent2Vec sentence embedding architecture

Hyper-parameter Ranges Selected

Embedding dimension 200/300/400/500/600/700/800 500

Epochs 5/7/10/15/20 10

Window size 10/20 20

Learning rate (LR) 0.01/0.05/0.1/0.2 0.2

Number of negative samples 10 10

Loss function Negative sampling/

Hierarchical softmax/

Softmax

Negative sampling

Sampling threshold 0.0001 0.0001

Using the fasttext CBOW architecture, Sent2Vec generates the sentence vec-
tors. For the training of the Sent2Vec architecture, various hyper-parameter val-
ues are tested. Table 4 shows the different values. The best sentence embedding
hyper-parameter values are shown as well.

For the final Infersent architecture, the learning rate has been set to 0.1.
Gradient clipping is used while training. For a decrease in validation set accuracy,
the learning rate accuracy is divided by 5. The batch size we have tested with for
all the architectures is 50 and the learning rate threshold is set to 0.0001. For the
final Multi-Layer Perceptron, the hidden layer dimension is set to 512 and for the
input of the LSTMs, 300 dimensional word vectors are used. For the training
of the architectures, stochastic gradient descent is used. For the hierarchical
CNN, four layers of convolution operations where each layer is followed by a
max-pooling are used. Finally, the concatenation of each layer’s output is used
as the sentence representation. In case of both inner and hierarchical attention
mechanism, four context vectors are used to focus on four different parts of the
citing and cited sentences and finally, these feature maps are concatenated.

Finally, for the validation set, 800 samples from the human annotated corpus
are chosen. As the human annotated dataset is highly imbalanced and only 81
positive samples are present, we randomly chose 20 positive samples to use in
the validation set. The test set is separated with 3057 samples which contains
61 positive samples.

6.2 Performance Analysis

This section describes the results obtained throughout the citation linkage task
experimentation. To analyze the performance of the word embedding models,
pearson and spearman metrics are used. The best performance—pearson and
spearman values are 0.519 and 0.403, respectively—is achieved for 300 dimen-
sional word vector representations. For the training of Sent2Vec, different param-
eter settings are used and for each parameter setting, different cutoff values of
cosine similarity between the vectors of the citing and the candidate cited sen-
tence are tried. If the cosine similarity between any sentence pair goes above
that cutoff point, that pair is annotated with value 1, else 0. Looking at MCC
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Table 5. Performance analysis of different models for the citation linkage task. The
models are: M1: Hierarchical ConvNet, M2: Bi-LSTM with max-pooling, M3: Bi-LSTM
with inner attention, M4: Bi-LSTM with hierarchical attention. Furthermore, these four
methods are also bootstrapped. The notation used is “Boot-” placed in front of each
method name. The column headings: TP and FP: true and false positives, respectively;
TN and FN: true and false negatives, respectively; P: Precision; R: Recall; F1: F1-
score; TNR: True Negative Rate, (True Positive Rate not shown because it is the
same as Recall); FPR and FNR: False Positive and Negative Rate, respectively; MCC:
Matthews correlation coefficient; Acc.: Accuracy; and BACC: Balanced accuracy.

Model TP FP TN FN P R F1 FPR TNR FNR MCC Acc. BACC

(in %) (in %)

M1 44 580 2416 17 0.07 0.72 0.13 0.19 0.81 0.27 0.18 80.5 76.38

M2 53 365 2631 8 0.13 0.87 0.22 0.12 0.88 0.13 0.30 87.81 87.35

M3 54 358 2638 7 0.13 0.89 0.22 0.12 0.88 0.11 0.31 88.07 88.28

M4 55 356 2640 6 0.13 0.90 0.23 0.12 0.88 0.09 0.32 88.17 89.14

Boot-M1 46 576 2420 15 0.07 0.75 0.13 0.19 0.81 0.25 0.20 80.69 78.09

Boot-M2 53 359 2637 8 0.13 0.87 0.22 0.12 0.88 0.13 0.31 88.02 87.45

Boot-M3 54 349 2647 7 0.13 0.89 0.23 0.12 0.88 0.11 0.32 88.38 88.43

Boot-M4 56 339 2657 5 0.14 0.92 0.25 0.11 0.89 0.08 0.34 88.75 90.24

Houngbo et al. [9] 34 995 2001 27 0.03 0.56 0.06 0.33 0.66 0.44 0.07 66.58 61.26

Li et al. [14] 39 779 2217 22 0.05 0.64 0.09 0.26 0.74 0.36 0.12 73.81 68.97

and BACC, which are the best metrics for imbalanced datasets, the best result
is achieved for 500 dimensional sentence vectors with cutoff 0.57.

Table 5 shows the performance metrics found for different Infersent architec-
tures. Among the four different Infersent architectures, the best result in terms
of test set accuracy is found for Infersent with hierarchical attention mechanism
and the worst performance is found for Hierarchical Convnet. For Hierarchical
Convnet, not only is its accuracy is lower, but also it captures fewer true posi-
tives. For both the Bi-LSTM with hierarchical attention and bootstrapping with
Bi-LSTM and hierarchical attention model, the true positive samples captured
by the models are the same. Both of these models capture 56 true positive sam-
ples. However, the bootstrapping model captures fewer false positive samples
compared to the other models. From the results with bootstrapping approaches,
it is clear that the performance has improved in all cases, though the improve-
ments are not significant. To compare the performance of the model with the
existing models, we have trained those models with our synthetic corpus and
then tested against the human annotated corpus. From Table 5 it is clearly visi-
ble that the models used here surpass the previous works’ performances. In their
own work, Houngbo and Mercer [9] reported that their approach captured only
48.5% positive samples out of 81 whereas if their model is trained with our syn-
thetic dataset, it captures 55.73% positive samples, a significant improvement.
This result gives proof of the fact that this synthetic dataset has been important
for the citation linkage task in the biomedical domain.
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7 Conclusions and Future Work

In this study, we have built a synthetic corpus for the citation linkage problem
and we have shown that deep-learning models can achieve good performance
to ascertain the cited sentences from a cited document given a citing sentence.
However, in this work the citation linkage problem has been formulated as a
sentence level semantic similarity measurement problem. In future, work can be
done to map the citing sentence to a text span in the referenced document which
is not limited to one sentence. Moreover, tree structured models can be applied
to this task. So, for instance, chemical names containing multiple words can be
treated as a single entity, which cannot be achieved bu the linear models used
in this study.
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Abstract. Probabilistic topic models are broadly used to infer meaning-
ful patterns of words over a mixture of latent topics that are commonly
used for statistical analyses or as a proxy for supervised tasks. However,
models such as Latent Dirichlet Allocation (LDA) assume independence
between topic proportions due to the nature of the Dirichlet distribution;
this effect is captured with other distributions such as the logistic nor-
mal distribution, resulting in a complex model. In this paper, we develop
a probabilistic topic model using the generalized Dirichlet distribution
(LGDA) in order to capture topic correlation while maintaining con-
jugacy. We make use of Expectation Propagation to approximate the
posterior, resulting in a model that achieves more accurate inferences
compared to variational inference. We evaluate the convergence of EP
compared with the classical LDA by comparing the approximation to
the marginal distribution. We show the obtained topics by LGDA and
evaluate its predictive performance in two text classification tasks, out-
performing the vanilla LDA.

Keywords: Topic modelling · Expectation propagation · Topic
classification

1 Introduction

Topic models are among the best-known models to automatically organize doc-
uments. Especially, probabilistic topic models [3] have received great attention
from the research community. They use statistical methods for uncovering top-
ics from a collection of documents and are commonly used for annotating or
organizing documents. Latent Dirichlet Allocation (LDA) [7] was proposed as
an improvement of probabilistic Latent Semantic Analysis [16] and has become
the most popular topic model since its introduction. Many variations have been
introduced leading to applications [9] in a variety of domains. These applications
have been possible due to the flexibility of the LDA model. LDA can be extended
with other more complex models and adapted to a specific problem.

It is noticeable that the applicability of topic models are endless and due to
digitalization, there is an exponential growth of information available online.
Thus organizing and annotating those documents can be overwhelming and
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obtaining better topic models can substantially ease these tasks. For doing so,
a lot of emphasis has been put in approximate inference since these models
need to compute a posterior distribution which is intractable. Commonly sam-
pling methods or deterministic approaches are used to deal with this intractable
integral. For instance, Markov Chain Monte Carlo, a sampling method, is usu-
ally implemented using a Gibbs sampling algorithm [14,24]. Similarly, there are
deterministic approaches such as Expectation Propagation (EP) and [20] and
Variational Inference (VI) [4]. VI has been an active area of research having
variations that are much faster and scale to great amounts of data by using
stochastic optimization [15] or Autoencoding variational Bayes [23] that uses
neural networks for approximating the posterior distribution.

In this work, we introduce a variation of LDA that models topic correlations
leveraging the advantages of EP for approximating the posterior distribution.
Topic correlations are important when, for example, a document about sports
has content about soccer and athletics but lacks information about basketball.
This correlation cannot be captured by LDA for the intrinsic nature of the
Dirichlet distribution. However, the Generalized Dirichlet (GD) distribution is
a generalization of the Dirichlet distribution that solves the limitations of its
negative covariance matrix. It has been used successfully with count data [8],
and apart from solving the restrictions of the Dirichlet distribution, maintains
conjugacy in the LDA model. EP factorizes the joint distribution for later com-
bining each factor with an approximation, and as a result, obtaining an overall
approximation of the posterior distribution. This is appealing for models such as
LDA since data partition allows EP to be distributed and scale to large datasets.
In addition, EP has shown to obtain a better approximation than VI [19], which
are biased.

The rest of this paper is organized as follows. First, Sect. 2 revisits the core
methods upon our work is built on and related work in Sect. 3. Next, in Sect. 4,
we outline the LGDA model, describe the expectation propagation approach,
and derive a complete learning approach. Section 5 describes our experimental
setup and evaluation of our proposed method. Finally, we conclude the paper in
Sect. 6.

2 Background

This section gives groundwork of the main components upon our work is built
on and introduces the notation used throughout this work.

2.1 Latent Dirichlet Allocation

LDA [7] is the most popular probabilistic topic model and since its introduction,
it has become the most conventional and known unsupervised topic model for
the discovery of latent topics. It can be described as a generative model, meaning
that uses a probabilistic approach allowing to generate documents.
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Following this generative process, each topic βk is a distribution over a vocab-
ulary V and a document has a mixture of topics β = (β1, . . . ,βK), where K
is the number of topics, which has to be known beforehand. All documents in
the corpus share the topics β, but each document can express a topic in a dif-
ferent proportion θd. The generative process continues by drawing a word wd,n

from topic βzd,n
, where zd,n is the topic assignment for the word wd,n. The topic

assignment zd,n is drawn from a distribution over the document proportion θd.
Commonly, the document proportion is modeled with a Dirichlet distribution,

and the topics and words with a Multinomial distribution. However, the evidence
p(w) of this model is intractable due to the coupling of θ and β. Thus, the
posterior is frequently approximated with VI using the mean-field variational
family, and by integrating out the latent variables, LDA is capable to infer the
topic structure of a set of documents.

2.2 Expectation Propagation

EP [20] is a generalization of assumed density filtering (ADF), which is a one-
pass sequential method. Unlike ADF, EP reuses data points to perform iterative
refinements. In other words, EP handles partitioned data and combines parti-
tions iteratively through message passing. In fact, EP is more computationally
efficient than Markov Chain Monte Carlo [22] and has shown to be more accurate
than VI [20,21].

Having the latent variable θ, EP approximates a target distribution p(θ | X ),
which is commonly the posterior, with a global approximation q(θ) that belongs
to the exponential family. The target distribution must be factorizable such
that the posterior can be split in V sites p(θ) ∝ t0(θ)

∏V
w tw(θ); the initial site

t0 is commonly represented with the prior distribution and the remaining tw
sites represent the contribution of each term to the likelihood. The approximat-
ing distribution must admit a similar factorization, i.e q(θ) ∝ ∏V

w t̃w(θ). Each
approximating site has to be initialized and belongs to the exponential family.
Consequently, each site is refined to create a cavity distribution by dividing the
global approximation over the current approximate site q\w(θ) ∝ q(θ)/t̃w(θ).

Additionally, in order, to approximate each site, a new tilted distribu-
tion is introduced using the cavity distribution and the current site q∗

w(θ)
∝ tw(θ)q\w(θ). Subsequently, a new posterior is found by minimizing the Kull-
back Leibler divergence DKL(q∗

w(θ) || qnew(θ)) such that t̃w(θ) ≈ tw(θ). This
minimization is equivalent to match the moments of those distributions [2,21].
Finally, the revised approximate site is updated by removing the remaining terms
from the current approximation t̃w(θ) ∝ qnew(θ)/q\w(θ).

2.3 Generalized Dirichlet Distribution

A Dirichlet distribution can only capture negative correlations due to its negative
covariance matrix. Additionally, when it is used as a prior, posing only one
degree of freedom which hinders the ability to introduce variance information
to each component of the random vector. Therefore the GD distribution [11,25]
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was introduced to alleviate these problems. It has positive parameters α =
α1, . . . , αK and κ = κ1, . . . , κK , and a random vector θ = θ1, . . . , θK , where∑K

k θk ≤ 1 and 0 < θk < 1 for k = 1, . . . ,K. GD’s PDF is illustrated in Eq. 1.

p(θ | α,κ) =
K∏

k

Γ (αk + κk)
Γ (αk)Γ (κk)

θαk−1
k (1 −

k∑

j=1

θj)γk , (1)

where γk = κk − αk+1 − κk+1 for k = 1, . . . ,K − 1 and γK = κK − 1; Γ (·) is the
Gamma function. The mean and variance are shown in Eqs. 2 and 3 respectively.

μk =
αk

αk + κk

k−1∏

j=1

κj

αj + κj
(2)

V ar(θk) = μk

⎛

⎝ αk + 1
αk + κk + 1

k−1∏

j=1

κj + 1
αj + κj + 1

− μk

⎞

⎠ (3)

Additionally, Eq. 4 illustrates the covariance matrix, which has a more general
structure. For instance, the Dirichlet distribution is just an special case of the
GD distribution when κk = αk+1 + κk+1.

Cov(θm, θn) = μn

⎛

⎝ αm

αm + κm + 1

m−1∏

j=1

κj + 1
αj + κj + 1

− μm

⎞

⎠ (4)

It is noteworthy that the GD distribution has K degrees of freedom which
makes it more flexible and suitable for modeling correlated topics.

3 Related Work

The work in [19] proposes an inference alternative using Expectation Propaga-
tion (EP) for LDA model that does not bound the marginal probability as in [7]
and leads to higher accuracy. However, in general, the LDA model is incapable
of capturing topic correlation due to the limitation of the Dirichlet distribution
for the document-topic probability. The Correlated Topic Model (CTM) [5] is
proposed in order to capture a correlation of the topic proportions using a logis-
tic normal distribution which results in a complicated model since the conjugacy
with the Multinomial distribution is lost. Thus, [10] showed that the CTM can
be modeled using a Generalized Dirichlet distribution (denominated GD-LDA or
LGDA), maintaining conjugacy and leading to faster inference. Finally, the work
of [1] and [17] propose inference alternatives to the LGDA model using collapsed
variational bayes inference and variational bayes inference respectively.

4 Latent Generalized Dirichlet Allocation

This section provides an overview of the LGDA model and an approach to per-
form inference and estimation using expectation propagation.
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4.1 Model

LGDA is a generative probabilistic model for count data. The generative pro-
cess is similar to the vanilla LDA [7] with the difference that document-topic
proportions θd are drawn from a GD distribution.

1. Choose θ ∼ GenDir(α,κ)
2. For each of the N words wn:

(a) Choose a topic zn ∼ Multinomial(θ)
(b) Choose a word wn from p(wn | zn,β)

The model has the corpus level hyperparameters α and κ for the prior GD
distribution and β for the topics. Words are observed and represented with w.

Given the hyperparameters, the joint distribution for a document of the
model is given in Eq. 5.

p(θ,z,w | α,κ,β) = p(θ | α,κ)
N∏

n=1

p(zn | θ)p(wn | zn,β) (5)

We can impose that each word among the documents belongs to a fixed
vocabulary of size V . Then, because we assume there are K fixed topics in the
corpus, and we are using a GD distribution prior, the word-topic probability
matrix β is K + 1 × V . Additionally, since we are dealing with probabilities, the
topic proportions have to sum up to one

∑K+1
k=1 θk = 1. It is evident that θ is a

different sample for each document, and as a result, each document exhibits a
different topic proportion.

The topic assignment dictates which component to select from the topic
mixture such that p(zn|θ) = θzn

. Similarly, a word topic probability is selected
from β in a manner that p(wn | zn,β) = βzn,wn

. Thus, we rewrite the joint
distribution as a sum over the topic assignments zn, obtaining Eq. 6.

p(θ,w | α,κ,β) = p(θ | α,κ)
N∏

n=1

K+1∑

k=1

θkβk,wn
(6)

Each document has length N yet we can use a fixed vocabulary to represent
the words over the collection of documents, and because of the ex-changeability
assumption [7], the order of words is not relevant. Thus, the joint for a fixed
vocabulary is represented in Eq. 7.

p(θ,w | α,κ,β) = p(θ | α,κ)
V∏

w=1

(
K+1∑

k

θkβk,w

)nw

, (7)

where nw is the number of times that word w appears in the document.
Finally, the marginal probability of a document is obtained by integrating

out the mixing topics θ such that p(w) =
∫

p(θ,w)dθ. Now, it is more evident
the coupling between θ and β, which makes the posterior intractable [12]. Thus,
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in this work, we will make use of EP to approximate the posterior distribution.
For instance, the probability of a collection of documents C is shown in Eq. 8.

p(C | α,κ,β) =
D∏

d=1

∫

p(θd | α,κ)
V∏

w=1

(
K+1∑

k=1

θd,kβk,w

)nd,w

dθd (8)

4.2 Inference

As it is common in any Bayesian setting, the posterior distribution is defined
by the hidden variables given the observed words p(θ, | w,α,κ,β) ∝ p(θ,w |
α,κ,β). Hence, LGDA’s evidence is intractable. Thus, we generate an approxi-
mation to p(w) using EP since it has been shown that generates more accurate
approximations [19,20]; unlike VI that tends to create biased approximations.
Then, EP can provide an estimate for both the posterior and evidence, and sites
can be defined as show in Eq. 9.

tw(θ) =
K+1∑

k=1

θkβk,w (9)

So, the posterior distribution can be factorized as shown in Eq. 10, where we
use a GD distribution as prior.

p(θ, | w,α,κ,β) ∝ p(θ | α,κ)
V∏

w=1

tw(θ)nw (10)

The approximate sites have a product form (Eq. 11). The parameter φ is a
matrix V × K + 1 and sw is a normalization constant for the site w.

t̃w(θ) = sw

K+1∏

k=1

θ
φw,k

k (11)

By making use of the approximate sites and the GD prior, an approximate
posterior distribution can be calculated. Notice that because of conjugacy, we
obtain an approximate GD distribution (Eq. 12)

q(θ | α′,κ′) ∝ p(θ | α,κ)
V∏

w=1

t̃w(θ)nw , (12)

where γ′
k = κ′

k − α′
k+1 − κ′

k+1 for k = 1, . . . ,K − 1 and γ′
K = κ′

K +
∑V

w=1 φw,K+1nw − 1, and its parameters are shown in Eqs. 13 and 14 respec-
tively.

α′
k = αk +

V∑

w=1

φw,knw for k = 1, . . . , K (13)
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κ′
k = κk +

K+1∑

j=k+1

V∑

w=1

φw,jnw for k = 1, . . . ,K (14)

In order to update the approximate site t̃w(θ), a cavity distribution is intro-
duced by removing it from the approximate posterior q\w(θ) = q(θ)/t̃w(θ). We
obtain a cavity distribution that is another GD distribution with parameters
α\w and κ\w shown in Eqs. 15 and 16, where γ

\w
k = κ

\w
k − α

\w
k+1 − κ

\w
k+1 for

k = 1, . . . ,K − 1 and γ
\w
K = κ

\w
K +

∑V
w=1 φw,K+1nw − φw,K+1 − 1.

α
\w
k = α′

k − φw,k for k = 1, . . . ,K (15)

κ
\w
k = κ′

k −
K+1∑

j=k+1

φw,j for k = 1, . . . ,K (16)

Next, the tilted posterior distribution can be obtained by using the site tw(θ)
and the cavity distribution such that

q∗
w(θ) =

1
zw

tw(θ)q\w(θ), (17)

where the normalization constant zw(α\w,κ\w) is shown in Eq. 18.

zw = βK+1,w +
K∑

k=1

(βk,w − βK+1,w)
α

\w
k

α
\w
k + κ

\w
k

k−1∏

j=1

κ
\w
j

α
\w
j + κ

\w
j

(18)

Once found the tilted distribution, we proceed to match the moments with
the approximate distribution in order to approximate the current site tw with
the approximate site t̃w. Since moment matching is equivalent to minimizing the
KL divergence, we obtain an optimal distribution qnew(θ) with parameters αnew

and κnew that can be obtained from the system of equations shown in Eqs. 19
and 20. The values of the parameters can be obtained with fixed-point iteration
method.

Ψ(αnew
k ) − Ψ(αnew

k + κnew
k ) =

1
zw

∂zw

∂α
\w
k

+ Ψ(α\w
k ) − Ψ(α\w

k + κ
\w
k ) (19)

Ψ(κnew
k ) − Ψ(αnew

k + κnew
k ) =

1
zw

∂zw

∂κ
\w
k

+ Ψ(κ\w
k ) − Ψ(α\w

k + κ
\w
k ) (20)

After matching the moments, the approximate site can be updated using the
tilted distribution. In order to accomplish faster convergence and obtain a better
representation of the global approximation, we use damping [13] with a step size
μ. Notice when μ = 1, no damping is applied. Hence, the factor updates are
expressed in Eqs. 21 and 22.
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s′
w = zw

K∏

k=1

Γ (αnew
k + κnew

k )
Γ (αnew

k )Γ (κnew
k )

Γ (α\w
k )Γ (κ\w

k )

Γ (α\w
k + κ

\w
k )

(21)

φ′
w,k = μ(αnew

k − α
\w
k ) + (1 − μ)φw,k

φ′
w,K+1 =

μ

2

(

κnew
K − κ

\w
K + φw,K+1 −

∑

w

φw,K+1nw

)

+ (1 − μ)φw,K+1 (22)

Finally, we incorporate the contribution of the optimized site in the global
approximate distribution q∗(θd) by employing the cavity distribution and the
optimal site; the updates are shown in Eq. 23.

α′new
k = α′

k + nw(φ′
w,k − φw,k)

κ′new
k = κ′

k + nw(
K+1∑

j=k+1

φ′
w,j − φw,j) (23)

4.3 Parameter Estimation

Finally, we obtain estimates of the model parameters by maximizing the ELBO
with respect to α, κ, and β. Thus, we can write the ELBO as shown in Eq. 24.

L(α,κ,β) =
D∑

d=1

Eq [log p(θd)] +
D∑

d=1

Eq

[
V∑

w=1

nd,w log(
K+1∑

k=1

θd,kβk,w)

]

+ C (24)

Maximizing this expression with respect to αk and κk lead us to the following
system of equations (Eq. 25, which has no closed-form and can be approximated
using Newton’s method [18].

D [Ψ(αk + κk) − Ψ(αk)] =
D∑

d

[ − Ψ(α′
d,k) + Ψ(α′

d,k + κ′
d,k)

]

D [Ψ(αk + κk) − Ψ(κk)] =
D∑

d

[ − Ψ(κ′
d,k) + Ψ(α′

d,k + κ′
d,k)

]
(25)

Next, we find the optimal topics by maximizing the ELBO w.r.t. βk,w (see
Eq. 26) where we find an expectation that can be approximated using second-
order Taylor expansion about E [θd].

βk,w ∝
D∑

d

nd,wEq

[
θd,kβk,w

∑K+1
k=1 θd,kβk,w

]

(26)
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5 Results

In this section, we test convergence by comparing the lower bounds and evaluate
the LGDA model on a text classification task in order to evaluate the predictive
performance due that correlation can lead to better predictive distributions.

Dataset. We use the Reuters-215781 corpus which is a collection of labeled
newswire articles. The dataset consists of 21, 578 documents, including docu-
ments without topics and typographical errors. Thus, we use the top-6 categories
following the experiment performed by [1], resulting in approximately 9, 000 doc-
uments. Table 1 summarizes the selected categories and number of documents
per class. We preprocess the selected corpus by lowercasing words and removing
punctuation. Next, words in third person are changed to first person and tenses
are changed to present by using a standard lemmatizer. Stop words and words
with less than three characters are filtered. Finally, we use a stemmer to reduce
all the remaining words to its root form and tokenize to form the vocabulary.

Table 1. Classes and number of documents extracted from Reuters dataset

Category Num. docs

acq 2369

crude 578

earn 3964

grain 582

interest 478

money-fx 717

Models. We compare the performance of LGDA-Expectation Propagation with
LDA since it is the most commonly used topic model and has not only similar
conjugacy properties but also a similar generative process. We use an implemen-
tation of LDA with variational Bayes inference2.

Experiment Description. As noticed by [1], LGDA has a similar predictive power
as LDA yet LGDA is better at discriminating related categories due that topics
are correlated. Thus, we use train/test splits as specified in [1] and build two
classifiers, a supervised LASSO regression with a Multinomial and Bernoulli
distribution for multiclass and binary classification. We use the full dataset for
the multiclass classifier which has a vocabulary size of V = 10, 123 words, and
similarly for the binary classifier, we use two related categories (i.e. interest and
money-fx ) resulting in a vocabulary size of V = 4, 233 words. We use the number
of topics K reported in [1].
1 http://www.daviddlewis.com/resources/testcollections/reuters21578/.
2 We use an implementation of LDA where no smoothing is applied [6].

http://www.daviddlewis.com/resources/testcollections/reuters21578/
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Fig. 1. Comparison of LGDA-EP and LDA
in terms of evidence lower bound for K =
15 and K = 30 topics.

Table 2. Top five words on the full
dataset with vocabulary size 10, 123 and
K = 15 topics.Results of 5-fold cross-
validation for aspect-specific sentiment
extraction using different feature combi-
nations.

LGDA-EP topics

bank dlrs stock say

market billion record share

say loss april company

billion profit dividend dlrs

money year prior offer

Topic Interpretability. We train LGDA-EP and LDA and evaluate the lower
bounds using the full dataset with K = 15 and K = 30 topics as shown in
Fig. 1. For EP, we initialize the approximate factors t̃w = 1, and for LDA-VI,
we initialize the variational parameters randomly. We can notice that LGDA-
EP not only converged considerably faster but also reaches a better solution by
looking at the approximate evidence. terms of ELBO.

We next look at the learned topics. Table 2 displays the 4 most used topics for
LGDA-EP, as given by the average of the topic proportions θd. LGDA provide
interpretable topics.

Topic Classification. We evaluate the predictive power of LGDA-EP and com-
pare the obtained results with LGDA using variational Bayes inference (LGDA-
VI) [1] and LDA [6]. We evaluate the models’ performance in terms of accuracy.
First, we build a binary classifier in order to evaluate the ability of LGDA to dis-
criminate similar categories. We select the optimal number of topics as proposed
by [1]. Table 3 illustrates the results of binary classification for the categories
money-fx and interest. As expected LGDA is slightly better at discriminating
similar categories obtaining 71% of accuracy.

Consequently, we build a classifier using the full-dataset, and as expected
LGDA-EP provides similar or better predictive performance than the vanilla
LDA as shown in Table 3. Figure 2 illustrates the confusion matrix for both LDA
and LGDA with K = 15 topics. It is noticeable that LGDA is better not only
at discriminating distinct categories but also similar categories which accounts
for the accuracy’s jump.
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Table 3. Results for binary classification with K = 15 and multi-class classification
with K = 15 and K = 30. Comparison using accuracy. VI: variational inference model;
EP: expectation propagation.

Models Accuracy

money-fx vs. interest All classes

K = 15 K = 15 K = 30

LDA 69% 81% 78.8%

LGDA-VI [1] 70% 64.9% 64.8%

LGDA-EP 71% 84% 78.9%

(a) LDA K = 15 topics (b) LGDA K = 15 topics

Fig. 2. Confusion matrix

6 Conclusions

In this paper, we propose the use of Expectation Propagation (EP) for the Latent
Generalized Dirichlet allocation model to learn a mixture of latent topics over
documents and a vocabulary while maintaining topic correlation. We make use
of EP in order to have accurate approximations since as opposed to variational
inference, EP doesn’t need to be bounded to create an approximation to the
posterior. We additionally develop a method for parameter estimation. We eval-
uate topic interpretability by looking at the resulting topics and the predictive
power of LGDA-EP showing the efficacy of the proposed method and showing
superior results to the traditional LDA.
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Abstract. Theexponential growthof the Internet ofThings (IoT) devices provides
a large attack surface for intruders to launch more destructive cyber-attacks. The
intruder aimed to exhaust the target IoT network resources with malicious activity.
New techniques and detection algorithms required a well-designed dataset for
IoT networks. Firstly, we reviewed the weaknesses of various intrusion detection
datasets. Secondly, we proposed a new dataset namely IoTID20 generated dataset
from [1]. Thirdly we provide a significant set of features with their corresponding
weights. Finally, we propose a new detection classification methodology using the
generated dataset. Our proposed IoT botnet dataset will provide a reference point
to identify anomalous activity across the IoT networks. The IoT Botnet dataset
can be accessed from [2]. The new IoTID20 dataset will provide a foundation for
the development of new intrusion detection techniques in IoT networks.

Keywords: Internet of Things · Intrusion detection · IDS · Dataset · DoS ·
Anomaly detection system · Flow-based intrusion detection · Infiltration ·
Cybersecurity

1 Introduction

Computer systems have become an important part of our daily life and IoT has recently
gained tremendous attention in the IT industry because of its many benefits. The Internet
of Things (IoT) incorporates physical objects from different domains and the Internet.
IoT becomes an important technology to develop smart infrastructure and the adap-
tion increased due to its analytics and the interconnectivity of machines and personal
devices. A smart infrastructure would transform the way we manage critical services,
the way we do business and the way we entertain ourselves. Smart grid, smart home,
smart building, which are large-scale IoT applications are examples of smart infrastruc-
ture. The integration of IoT devices permits a smart infrastructure to achieve consistent
and effective operations to reduce the operational cost significantly. Figure 1 shows a
comparison of the world population and the number of IoT devices that need protection
against the intruders. The exponential growth will make an IoT a smart object for the
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attackers to accomplish malicious activities and increase the attack surface of IoT net-
works. The effects of cyber-attacks becomemore destructive as a result many institutions
experienced disruption of services, therefore, IoT devices required a sophisticated tool to
identify malicious activity in the smart infrastructure. There are manyDistributed Denial
of Service (DDoS) launched via millions of IoT devices that slowdown or shutdown a
dozen websites. A signature-based IDS can’t detect novel attacks because the signature
of each attack must be identified before a decision system can detect the attack. The
complexity used by attackers and the increase in the zero-day attacks, an anomaly-based
IDS considered well suited to the current environment.

Fig. 1. Projecting the ‘Things’ behind the Internet of Things [3]

The IoT systems improve our life quality, make communication easier and increase
data transfer and information sharing. Computer security is becoming more significant
and essential due to the substantial expansion of IoT networks and increases the num-
ber of applications running in these IoT devices. A reliable and effective IoT service
required a secure communication mechanism to improve the IoT sensing platforms. A
security mechanism required to protect IoT devices to provide appropriate assurance for
authentication, integrity, confidentiality, and non-repudiation.

Anomaly identification in big data becoming a challenging task in network security.
Data mining and machine-learning methodologies play a significant role in evolving and
developing anomaly-based intrusion detection systems. Data mining generally includes
association rules learning, regression, classification, clustering, and visualization. Clas-
sification is the frequently used technique in supervised data mining practices. The
objective of classification is to construct a model from categorized items to classify
entities as correctly as possible. Modern intrusion detection algorithms and techniques
evaluation required a new sophisticated dataset. In this paper, we developed a newdataset
set adopted from [1] for detecting malicious activity in the IoT network.

The remainder of this paper is organized as follows. The related work is discussed
in Sect. 2, followed by the testbed architecture for generating the IoTID20 dataset in
Sect. 3. InSect. 4wepresent an analysis of different classification algorithms for intrusion
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detection using the generated dataset. Finally, in Sect. 5 we conclude the paper and offer
ideas for future work.

2 Related Work

IoT provides a wide range of applications built on the merging smart objects and the
Internet. The smart objects integrate the physical assets of an infrastructure to provide
better utilization and effective management of resources. IoT brings many opportunities
to the operations and services of many organizations. The main goal of the IoT is to
provide a digital means for social needs in everyday transactions. Themain challenges in
IoT networks are Security;DataManagement; Cost; Efficiency; Scalability;Availability;
Application Development. Among these challenges, security is considered as one of the
most prominent challenges in the development of smart infrastructure. An IDS monitors
network traffic to identify malicious events or rules violations to generate an alert to
a control station or implement a pre-emptive measure against a detected threat. The
intrusion detection algorithmcan be tested and evaluated via a dataset. Themost common
datasets for intrusion detection are the DARPA 98/99 [4, 5], which were developed at
MITLincoln Lab via an emulated network environment. TheDARPA98 dataset contains
seven days whereas the DARPA 99 contains five weeks of network traffic. However, the
DARPA98/99 datasets arewidely used for network intrusion detection, but these datasets
are frequently criticized because these datasets contain many redundant records. Lee and
Stolfo [6] developed a framework to construct and extract features from DARPA 98/99
and named the new dataset KDD99. The KDD99 dataset is the most widely used dataset
for intrusion detection. The KDD99 dataset contains TCP attributes but failed to give
information about IP addresses. The KDD99 dataset contains 5 million of data instances
and more than 20 different types of attacks. The dataset is publicly available with an
explicit test subset.

Sperotto et al. [7] proposed a flow-based intrusion detection dataset for high-speed
networks in 2008 at the University of Twente. This dataset was the first publicly available
label dataset for flow-based intrusion detection. The dataset contains six days of network
traffic collected from a honeypot server that offers SSH, Web and FTP services. Nearly
all flows are malicious without the normal network flows because all data were collected
from a honeypot. These high ratio malicious instances affect the learning algorithm to
be biased in the direction of more frequent class and stop the detection algorithm from
learning the least common class. On the other hand, these high ratio malicious instances
in the testing set also cause the machine learning algorithm to produce biased evaluation
results by a method which has better detection rates on the frequent records. Sangster
et al. [8] established a combat competition to generate a labeled dataset for intrusion
detection. The dataset contains four days of network traffic of the warfare competition.
They comprehensively discussed the advantages and disadvantages of using warfare
competition in developing a modern labeled dataset for intrusion detection. The dataset
contains normal user actions as well as various types of attacks. The dataset is publicly
available.

The ISCX dataset [9] was developed using a systematic approach to generate normal
user behavior and malicious network traffics. The dataset contains seven days of net-
work traffic for FTP, POP3, IMAP, SSH, SMTP, andHTTPprotocols.Amultistage attack
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scenario considered generating the malicious part of the dataset. The ISCX is a labeled
dataset with realistic network traffic and diverse intrusion scenarios. The dataset is pub-
licly available and can be downloaded from thewebsite [10]. TheNSL-KDD [11] dataset
derived from the KDD99 dataset. The NSL-KDD removed redundant records from the
KDD99 dataset. The training data of KDD99 contains 78% redundant instances while
the testing data contains 75% redundant instances [11]. These redundant records produce
biased results for frequent instances. TheUNSW-NB15 dataset released by defense force
academy University of New SouthWales Australia [12]. The UNSW-NB15 dataset con-
tains comprehensivemodern normal network traffic aswell as diverse intrusions scenario
with a deep structured network traffic information. The UNSW-NB15 dataset comprises
of realistic normal network traffic along with nine modern attack categories. The dataset
consists of 49 features which are group into Flow, Basic, Content, Time, Additional Gen-
erated features, Connection and Labeled features. The UNSW-NB15 attack categories
are Worm, Shellcode, Reconnaissance, Generic, Fizzers, Exploit, DoS, Backdoor and
Analysis [12]. AWID dataset [13] focused on 802.11 networks and is publicly available
at the website [14]. The AWID dataset contains 37 million packets and 156 features. The
AWID dataset malicious traffic was created by implementing 16 detailed attacks against
the Wi-Fi network. The AWID dataset labeled in two ways (4 classes and 16 classes)
and split into a training and a test subset.

Ghorbani et al. [15] developed the CICIDS2017 dataset within an emulated environ-
ment at the Canadian Institute for Cybersecurity (CIC), University of New Brunswick
Canada. The CICIDS2017 dataset consists of modern normal and malicious network
traffic. The dataset consists of 80 network features and provides a reliable normal and
malicious network flows. The data were collected for five days. ISCXFlow meter used
to generate the CSV files of the dataset from Pcap files [16]. Normal user behavior and
background network traffic generated via a B-Profile system. The CICIDS2017 dataset
extracts normal and malicious behavior based on the SSH, FTP, HTTP, HTTPS, and
email protocols. Distributed Denial of Service (DDoS) attack is a thoughtful threat to
the computer networks that aimed to exhaust the network with abnormal network traffic.
Ghorbani et al. [17] developed the CICDDOS2019 dataset with up-to-date normal and
malicious DDOS network traffic. They used a B-Profile system to generate realistic nor-
mal background network traffic. The malicious part of the dataset consists of 12 DDoS
attacks. TheCICDDOS2019 dataset is publicly available at thewebsite [10]. This dataset
provides comprehensive metadata about IP addresses and malicious network traffic.

Moustafa et al. [18] developed an IoT botnet dataset via legitimate and emulated
IoT networks. Smart fridge, Weather station, Motion-activated lights, Smart thermostat
and Remotely activated garage door IoT services implemented using the Node-Red
tool. A typical smart home configuration designed which contains five IoT devices
operated locally and connected to the cloud infrastructure via aNode-Red tool to generate
normal traffic. MQTT protocol used to transfer messages from IoT devices to the Cloud.
The dataset is publicly available and consists of 49 features. IoT devices can be easily
compromised than computer systems, which result in more IoT-based botnet attacks as
compared to the computer systems. Meidan et al. [19] developed an IoT botnet dataset.
The dataset was generated using nine commercial IoT devices and two IoT-based botnets
BASHLITE andMirai. The dataset contains 115 network features that provide a reliable
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normal and malicious network flow. The dataset consists of separate benign network
traffic for each commercial device to ensure the normal network behavior for the training
dataset.

Fig. 2. IoTID20 dataset testbed environment [1]

Fig. 3. IoTID20 dataset attack taxonomy
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3 Testbed Architecture

The testbed for the IoTID20 dataset is a combination of IoT devices and interconnect-
ing structures. A typical smart home environment was implemented which consists of
smart home device SKTNGUandEZVIZWi-Fi camera to generate the IoTID20 dataset.
Figure 2 shows the testbed environment for the IoTID20 dataset. These two IoT devices
connected to a smart home Wi-Fi router. Other devices connected to the smart home
router include laptops, tablets, smartphones. The SKT NGU and EZVIZ Wi-Fi camera
are IoT victim devices and all other devices in the testbed are the attacking devices. The
newly developed IoTID20 dataset adopted from the Pcapfiles available at thewebsite [1].
Figure 3 shows the attack taxonomy of our proposed dataset.

We used CICflowmeter [16] application to extract features from Pcap files and gen-
erate a CSV format of the IoTID20 dataset. The next step is to label each instance of the
IoTID20 dataset. The IoTID20 dataset consists of 80 network features and three label
features. The label features are binary, category, and sub-category. Table 1 shows binary,
category and sub-category labels of the IoTID20 dataset.

Table 1. Binary, category, and sub-category of IoTID20 Dataset

Binary Category Subcategory

Normal, Anomaly Normal
DoS,
Mirai,
MITM,
Scan

Normal,
Syn Flooding,
Brute Force, HTTP Flooding, UDP Flooding
ARP Spoofing
Host Port, OS

Table 2. Normal and attacked instances in IoTID20 Dataset

Binary label
distribution

Subcategory distribution

Normal 40073 Type Instances

Anomaly 585710 Normal 40073

DoS 59391

Category label
distribution

Mirai Ack Flooding 55124

Type Instances Mirai Brute force 121181

Normal 40073 Mirai HTTP Flooding 55818

DoS 59391 Mirai UDP Flooding 183554

Mirai 415677 MITM 35377

MITM 35377 Scan Host Port 22192

Scan 75265 Scan Port OS 53073
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Table 3. IoTID20 dataset correlated features

Total features Feature name

12 Active_Max, Bwd_IAT_Max, Bwd_Seg_Size_Avg, Fwd_IAT_Max,
Fwd_Seg_Size_Avg, Idle_Max, PSH_Flag_Cnt, Pkt_Size_Avg,
Subflow_Bwd_Byts, Subflow_Bwd_Pkts, Subflow_Fwd_Byts,
Subflow_Fwd_Pkts

The most important benefits of the IoTID20 dataset; it replicates a modern trend
of IoT network communication; it is among the few publicly available IoT intrusion
detection dataset. The final version of the IoTID20 dataset consists of 83 network features
and three label features. The IoTID20 intrusion detection dataset binary, category, and
subcategory instances distribution are presented in Table 2.

The IoTID20 dataset analyzed and evaluated for features correlation, feature ranking
and various machine-learning algorithms for classification. A preprocessing process of
the IoTID20 dataset required because the data types and the format of some features
are not suitable for machine learning algorithms. We used supervised machine learning
algorithms and column normalization techniques to normalize and evaluate the IoTID20
dataset. The correlated features degrade the detection capability of a machine learning
algorithm. Correlated features were removed from the IoTID20 dataset. A correlation
coefficient of 0.70 was used to remove a list of correlated features. Table 3 shows a list
of correlated features that removed from the IoTID20 dataset.

The features of the IoTID20 dataset were ranked using the Shapira-Wilk algorithm.
The Shapira-Wilk algorithm measures the regularity of the distribution of occurrences
with respect to the feature. Figure 4 shows feature ranking using the Shapiro-Wilk
algorithm. More than 70% of the feature ranked with a value greater than 0.50. These
high ranked features will improve the classification capability of detection algorithms
and techniques. These high-rank features also support the feature selection process to
improve the detection capability of the machine learning algorithms and to decrease the
training time machine learning algorithms.
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4 Analysis

Data mining and machine learning techniques play a significant role in developing an
anomaly-based intrusion detection system. Data mining generally includes association
rules learning, regression, classification, clustering, and visualization. Classification fre-
quently used technique in supervised data mining practices. The objective of classifica-
tion is to construct a model from categorized items to classify entities as correctly as
possible. The accuracy of existing machine learning algorithms needs to be improved
to detect new attacks because the attack patterns are changing every day. The IoTID20
dataset consists of 83 network features and 3 label features. There are many procedures
to determine the performance of an estimator. Some of the most common measures are
accuracy, precision, recall, F-measure.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision = TP

TP+ FP
(2)

Recall = TP

TP+ FN
(3)

F−measure = 2Precision · Recall
Precision + Recall

(4)

In machine learning, different cross-validation tests such as K-fold cross-validation,
jackknife, and independent tests are used to evaluate the success rates of a classifier.
Jackknife test is efficient and reliable but, the computational time of jackknife is an
issue, especially using large datasets. Therefore, to minimize the running time, we used
various K-fold cross-validation tests to evaluate the performance of the different classi-
fiers. The IoTID20 dataset contains three labels for classifying normal network traffic
and anomalous network traffic so we analyzed the dataset for binary, category and sub-
category labels. Machine learning models developed through SVM, GaussianNB, LDA,
Logic Regression, Decision Tree, Random Forest, and Ensemble classifiers.

50

55

60

65

70

75

80

85

90

95

100

32000 40000 48000 56000 64000 72000 80000 88000 96000 102000

F-
Sc

or
e 

Training Instances 

Training-Binary
Testing-Binary
Training-Category
Testing-Category
Training-Sub-Category
Testing-Sub-Category

Fig. 5. Learning curve for label, category, and sub-category



516 I. Ullah and Q. H. Mahmoud

50

55

60

65

70

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10

F-
Sc

or
e

max_depth 

Training-Binary
Testing-Binary
Training-Category
Testing-Category
Training-Sub-Category
Testing-Sub-Category
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The learningcurveshowsa relationshipbetween the trainingandvalidationofanalgo-
rithm using various training samples. The learning curve determines how the algorithm
can benefit by providingmore data or the data provided enough for better performance of
the algorithm. Figure 5 shows the F score learning curve for Binary, Category, and Sub-
Category label classification using the decision tree algorithm. We used F-Score for the
learning curve because the F-score is the harmonicmean of precision and recall. From the
learning curve, it is concluded that a minimum of seventy thousand instances required to
get better performanceofdecision tree forBinary,CategoryandSub-Category labels clas-
sification. We also analyzed the learning curve of the IoTID20 dataset via GaussianNB,
LDA,LogicRegression, RandomForest, SVM, and ensemble classifiers. After the inves-
tigation, it is determined that a minimum of seven thousand instances required to get a
better classification score.
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A validation curve shows how effective a classifier on the data it is trained as well as
how operative the classifier to the new input test data. A hyperparameter of a classifier
essential to maximize the classification score. We used the max_depth of the decision
tree with a depth value of 10 to produce the validation curve. The result of the valida-
tion curve for binary Label, Category, and Sub-Category classification are presented in
Fig. 6. The classifier score converged after max_depth of 2 for binary label classification.
The classifier score converged after max_depth of 6 for category and subcategory label
classification. The classifier is not over fitted for the binary label and sub-category label
classification but overfitted for category label classification.
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4.1 Binary Classification

The binary label classifies the dataset as normal network traffic or malicious network.
SVM, Gaussian NB, LDA, and Logic regression poorly performed for binary label
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classification while the decision tree, random forest, and ensemble performed very well
for binary label classification. Figure 7 shows the F-score of the various classifiers used
in this paper. We used a 3, 5 and 10 fold cross-validation test to check the overfitting of
these classifiers against the IoTID20 dataset. The result of the cross-fold validation test
remains unchanged.

4.2 Category Classification

The category label classifies the dataset as normal network traffic or any of the following
attack category DoS, Mirai, MITM or Scan. Decision tree estimator performs very
well for all attack categories while logic regression, LDA, Gaussian NB, and SVM
performance were very poor for most of the attack categories. Cross fold validation test
with a K value of 3, 5, 10 used to check the overfitting of these classifiers. The outcome
of the cross-fold validation assessment remains persistent. Figure 8 shows F-score for
the category label classification.

4.3 Sub-category Classification

The sub-category label classifies the dataset into normal network traffic or any one of
the categories as shown in Fig. 9. A better performance achieved by the decision tree
classifier for the sub-categories but the classifier’s logic regression, LDA, Gaussian NB,
and SVM poorly performed for most of the attack sub-categories. Figure 9 shows the
F-score for the sub-category label of the IoTID20 dataset. Some of these sub-category
attacks were misclassified and we aimed to design and develop a machine learning
model to improve the accuracy, precision, recall and F score of the sub-categories of the
IoTID20 dataset. Table 4 shows an average accuracy, precision, recall and F-score of
different algorithms used to analyze the subcategory of the IoTID20 dataset.

Table 4. IoTID20 dataset performance results

Algorithm Accuracy Precision Recall F Score

SVM 40 55 37 16

Gaussian NB 73 70 66 62

LDA 70 71 71 70

Logistic Regression 40 25 39 30

Decision Tree 88 88 88 88

Random Forest 84 85 84 84

Ensemble 87 87 87 87
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5 Conclusion

The main contribution of this paper is a new IoTID20 dataset for anomalous activ-
ity detection in IoT networks and the evaluation of various machine learning algorithms
through the IoTID20 datasets. The IoTID20 dataset contains various types of IoT attacks
and families. We also reviewed various intrusion detection datasets and discussed weak-
nesses. Our proposed dataset includes 8 attack types to evaluate intrusion detection
algorithms in IoT networks. Also, we provided a list of highly correlated and significant
features for feature importance and feature ranking. We analyzed the dataset via the 7
most popular machine learning algorithms. According to the weighted average of Pr, Rc
and F1 score, the highest score achieved by decision tree and ensemble algorithms. Our
proposed dataset will provide a basis to develop a new methodology to detect malicious
activity in IoT networks.

For future work, we plan to develop and evaluate a framework for anomalous activity
detection models for IoT networks to improve accuracy.
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Abstract. This paper presents our work on using part-of-speech
focused lexical substitution for data augmentation (PLSDA) to
enhance the prediction capabilities and the performance of deep learning
models. This paper explains how PLSDA uses part-of-speech informa-
tion to identify words and make use of different augmentation strategies
to find semantically related substitutions to generate new instances for
training. Evaluations of PLSDA is conducted on a variety of datasets
across different text classification tasks. When PLSDA is applied to four
deep learning models, results show that classifiers trained with PLSDA
achieve 1.3% accuracy improvement on average.

Keywords: Data augmentation · Text classification · Lexical data
augmentation · Deep learning

1 Introduction

Text classification aims to assign a set of pre-defined categorical labels to text.
Typical classification applications include spam detection, topic modelling, sen-
timent analysis, fake news detection and etc. Deep learning methods, with more
powerful data learning capability, have achieved significant improvements in text
classification tasks. Recently proposed transformer-based methods such as BERT
[1] and RoBERTa [3] have brought even more significant performance gains. How-
ever, more comprehensive learning models normally requires more training data.
Yet, well-annotated training data is too expensive to get sufficient amount for
any specific classification task, limiting the amount of tuning that can be done
for a deep learning model. Data augmentation aims to use systematic ways to
provide more training data for fine tuning.

Augmentation techniques have been used in some NLP studies such as
machine translation, dialog systems, question answering as well as text classifi-
cation. Lexical augmentation is a fundamental and efficient strategy in NLP aug-
mentation studies [6,7] without changing syntactic structures. An early lexical
c© Springer Nature Switzerland AG 2020
C. Goutte and X. Zhu (Eds.): Canadian AI 2020, LNAI 12109, pp. 521–527, 2020.
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augmentation method used a thesaurus to replace words with available synonyms
[7]. WordNet [2] is another commonly used resource for synonym replacement
[6]. In addition to using well-structured knowledge resources, interpolation by
word embedding is also a feasible way to make use of semantically-close candi-
dates for substitution [5]. Recent work proposed by Wei and Zou [6] extended
word substitution by lexical insertion, deletion and swap methods for data aug-
mentation. However, lexical insertion, deletion and swap process may infringe
the semantic completeness and syntactic correctness.

In this paper, we conduct an in-depth study of data augmentation via lexical
substitution to further improve the augmentation performance in text classifica-
tion tasks. The proposed part-of-speech focused lexical substitution for
data augmentation (PLSDA), as a lexical augmentation method, aims to cre-
ate useful training data for natural language samples, and the substitution must
consider both syntactic correctness as well as semantic closeness and diversity.
More specifically, PLSDA first makes use of POS tags to determine words to be
replaced for syntactic consistency. WordNet is then used to obtain synonyms for
replacement with consideration of both similarity and diversity.

2 Design Principles of PLSDA

Lexical substitution refers to methods which create new instances from a given
dataset by replacing a number of words in a text sampling with substitutes
according to certain principles. POS focused Lexical Substitution Augmenta-
tion (PLSDA) consists of two main Parts: Substitution Candidate Selection and
Instance Generation. For a given training sample Substitution Candidate Selec-
tion first follows its syntactic consistency principle and uses POS constraints
to select candidate words for substitution. It then follows the semantic con-
sistency principle to identify lexical units via semantic relatedness for each
selected word to form a Substitution Candidate Lists (SCLs). In the Instance
Generation, whether a word is replaced or not is determined by sampling from
Bernoulli distribution of SCLs, to form the final Substitution Collection (SC).
Lastly, substitutes in SC with respect to each position are used to generate
augmented instances.

2.1 Substitution Candidate Selection

Let I denote a training instance with n words, I = {w1, w2, wi, ..., wn}. For
each wi, its POS tag twi

, can be readily obtained from available tools such as
the Stanford NLP pipeline [4]. Replacement words for augmentation with the
same POS tag, as the principle of syntactic consistency constraint, ensures
that new text samples are syntactically identical to I. Candidates with the same
POS for each wi in I are obtained from WordNet. For example, a verb “chair”
(a chairperson of an organization, meeting, or public event) will not be replaced
with the noun “bench”. In this work, substitutions are allowed only on certain
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word classes so that the newly created samples are likely to make sense. All wi

that satisfy the constraints are marked as replaceable.
Let SCLwi

denote the substitution candidate list for each wi with m syn-
onyms. SCLwi

is then obtained according to the following formula:

SCLwi
= {c1wi

, c2wi
, ...cmwi

| cjwi
∈ Syn(wi, j) & twi

= tcjwi
, } (1)

where cjwi
is the j-th synonym for word wi. Syn(wi, j) refers to the synonym

set of wi, where j is the membership subscript. Only wi with at least one or
more synonyms will be considered in Instance Generation (m > 0).

2.2 Instance Generation

To control the number of generated instances, Instance Generation selects appro-
priate candidates from the list of SCLs, each of has two values k and s, where k
is the length of sentence I and s is the average number of substitutes, both can
be determined for each given I. A sampling method is used to select a position
i as a variable such that wi is to be replaced. Bernoulli distribution Ber(ps)
is applied to for every wi having SCLs, where ps as a probability is an algo-
rithm parameter. For lack of any prior-knowledge, ps = 0.5 can be used naively.
The Bernoulli distribution below decides whether wi with a non-empty SCL is
selected as replacement points to forms the final SC.

P (wi) = pxs (1 − ps)1−x

{
x = 1 wi is selected, SC = SC ∪ SCLwi

x = 0 wi is not selected.
(2)

As there are typically multiple members for each SCLwi
, two proposed strate-

gies are investigated to select candidates from the average of s substitutes for
each selected wi. The first augmentation strategy is the stochastic strategy,
which randomly picks a candidate from the words in SCLwi

to avoid a rigorous
selection algorithm. This random process samples from categorical distribution
Cat(p1wi

, p2wi
, ..., pjwi

, ..., pmwi
), where

∑
pjwi

= 1.

P (X = cjwi
) = pjwi

, j ∈ [1,m] (3)

The second strategy is the similarity-first strategy, which makes use of
similarity measures to pick candidates, exploiting similarity ranking. To use this
strategy, candidates {c1wi

, c2wi
, ...cmwi

} for a word wi need be sorted according to
their cosine similarity of word vectors. Augmented instances are picked according
to their ranks.

3 Performance Evaluation

Eight benchmark datasets are used for NLP classification tasks: (1) SST-2:
Stanford Sentiment Treebank dataset, (2) Subj: Subjectivity classification, (3)
MR: movie review dataset, (4) IMDB, IMDB movie review dataset, (5) Twit-
ter twitter sentiment classification dataset, (6) AirRecord airline customer
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service dataset, (7) TREC: question type identification dataset, and (8) Liar:
fake news detection dataset. Four deep learning models are used in Performance
evaluation including LSTM, BiLSTM-AT, BERT and RoBERTa.

Table 1. Accuracy of the models: the best is in bold and the second-best is underlined.

SST-2 Subj MR IMDB Twittter AirRecord TREC Liar

LSTM 80.2 90.8 77.0 80.3 74.7 80.5 88.8 25.3

+EDA 80.9 91.3 77.6 81.2 75.7 81.2 89.3 26.0

+PLSDA 81.0 91.9 78.1 82.6 77.2 81.4 89.3 27.0

BiLSTM-AT 78.2 91.0 75.9 80.5 75.9 81.3 88.3 25.7

+EDA 78.9 91.5 76.6 81.8 76.9 81.9 88.9 26.3

+PLSDA 79.7 92.1 76.8 83.0 77.6 82.0 88.8 26.5

BERT 91.3 97.2 87.1 88.1 82.0 83.2 96.8 27.9

+EDA 92.0 97.4 88.0 88.9 82.7 83.9 97.5 28.2

+PLSDA 92.3 98.4 88.7 89.6 83.2 84.4 97.6 29.0

RoBERTa 93.0 97.3 90.3 89.1 83.3 84.3 96.5 27.2

+EDA 93.7 97.4 90.7 90.0 84.1 85.5 97.5 27.7

+PLSDA 93.9 98.2 91.6 90.8 84.7 85.9 97.8 28.3

3.1 Overall Performance

The performance of training with original training datasets, the current state-of-
the-art augmentation method EDA, and PLSDA are presented in Table 1. Table 1
shows that BERT and RoBERTa, the recently proposed transformer models,
significantly outperforms the previous deep learning models. BiLSTM-AT gen-
erally performs better than LSTM because BiLSTM-AT can obtain additional
information from the reversed order and benefit from attention mechanism. Indi-
vidual gains after training with PLSDA with respect to (w.r.t.) original training
data range from 0.5% to 2.5%. Further calculation shows that the overall gain
is 1.3% and 0.7% for PLSDA and EDA, respectively. This implies that lexi-
con substitution with appropriate syntactic constraint can further contribute to
performance.

Fig. 1. Absolute performance gains (%) on average accuracy by PLSDA.
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Figure 1 shows the absolute performance gains by using PLSDA. The left
figure shows average performance gains w.r.t. datasets. The right figure shows
average performance gains w.r.t. classifiers. Obviously, improvement on binary
classification is more impressive than that on multi-class tasks. By observing dif-
ferent classification models, LSTM gains the largest improvement from PLSDA.
Although BERT and RoBERTa are the state-of-the-art methods, they still obtain
significant improvement through PLSDA.

3.2 Effectiveness of POS Types

The second experiment illustrates the effect of three different types of POS tags:
Adjective/Adverb(A), Noun(N), Verb(V) and their combinations. The evalua-
tion is conducted on BERT and RoBERTa. One dataset for each type of classi-
fication task is selected: Subj, IMDB, TREC and Liar.

Fig. 2. Heatmaps of Lexicon POS; Accuracy bar is given besides each heatmap

Accuracy for each POS setting is shown as heatmaps in Fig. 2. Each model
without PLSDA, denoted as ORIG (original), is reported in the first row as a ref-
erence. Generally, the performance of Adjective/Adverb and Noun replacement
outperform Verb replacement. POS combinations A+N can be the best choice
to get the best performance. A+N+V also results in a considerable accuracy
although it is does not seem to be the best performed setting.

Fig. 3. Heatmaps of Sampling Strategy; Accuracy bar is given besides each heatmap
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3.3 Sampling Strategy

The third experiment evaluates the two augmentation strategies. Evaluations
are conducted for BERT and RoBERTa on Subj, IMDB, TREC and Liar. The
combination of Adjective/Adverb and Noun is used.

Accuracy for the two augmentation strategies compared to their respective
classifiers are shown as heatmaps in Fig. 3. This experiment gives a strong indi-
cation that even though both strategies are effective, stochastic substitution
introduces more diversity in the augmentation and it is thus more appropriate
for deep learning models.

4 Conclusion

In this paper, we present a part-of-speech focused lexical substitution approach
for data augmentation, and investigate the effect of different lexical substitution
strategies for eight text classification tasks. Performance evaluation shows that
data augmentation improves the performance of deep learning models includ-
ing state-of-the-art transformer-based models. Our investigation also found that
nouns and adjectives/adverbs work better as replacement types even though
their numbers of candidates are not necessarily large. Experimental results show
that using stochastic sampling to find replacement outperform similarity-first
strategy which indicates that augmentation by introducing diversity is better
for training. In summary, data augmentation is as important in the deep learn-
ing age as it was during the conventional machine learning age.

Future work includes two directions. One is to investigate the performance of
PLSDA on more publicly accessible datasets. The other direction is to explore
the feasibility of PLSDA in other NLP tasks.

Acknowledgements. We acknowledge the research grants from Hong Kong Poly-
technic University (PolyU RTVU) and GRF grant (CERG PolyU 15211/14E, PolyU
152006/16E).
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Abstract. Machine learning, especially deep learning, has been success-
fully applied to a wide array of computer vision classification tasks in
recent years. Infamous for requiring massive amounts of data to perform
well at image classification problems, deep learning has so far been unable
to solve Bongard problems (BPs), a set of abstract visual reasoning tasks
invented in the 1960s. Each BP can be seen as a supervised learning task,
with few training samples (6 for positive and 6 for negative), and often
requiring highly abstract features to learn well. Automatically solving
Bongard problems directly from images remains an ambitious goal, with
very little machine learning literature on the topic. In this paper, we
discuss several special properties of BPs as well as what it means to
solve a BP. Making use of an expanded set of BP-like tasks to allow for a
more careful evaluation of automated solvers, we develop and benchmark
a deep learning based approach to solve these problems. To encourage
work on this interesting problem, we also make freely available a dataset
of over 200 BPs (https://github.com/XinyuYun/bongard-problems).

Keywords: Bongard problems · Convolutional neural networks ·
Feature extraction · Few-shot learning

1 Introduction

Despite recent successes in machine learning on many problems previously con-
sidered beyond the reach of artificial intelligence, tasks requiring divergent think-
ing, abstraction, and few-shot learning continue to be a challenge. While other
tasks requiring one or more of these properties have seen recent attention and
progress [9,12], Bongard problems (BP), which appear to require the solver to
possess all three of these skills, continue to be largely unstudied. Created in the
1960s by Mikhail Bongard, these problems were designed to demonstrate the
inadequacy of the standard pattern recognition tools of the day for achieving
human-level visual cognition [1].

A typical Bongard problem consists of 12 tiles evenly divided into a left and
a right class. To gauge the cognitive abilities of a test subject, the subject is
shown the 12 tiles and then asked to provide a rule which distinguishes the tiles
appearing on one side from the tiles on the other. For example, the intended rule
for the second problem in Fig. 1 is ‘clockwise spirals on the left, counterclockwise
spirals on the right’.
c© Springer Nature Switzerland AG 2020
C. Goutte and X. Zhu (Eds.): Canadian AI 2020, LNAI 12109, pp. 528–539, 2020.
https://doi.org/10.1007/978-3-030-47358-7_54
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Fig. 1. Examples of easy, intermediate, and difficult Bongard problems.

As a classification task, BPs possess several properties which make it both
interesting and difficult with respect to machine learning. A few of these prop-
erties are shared with other well-studied tasks, however, other properties also
establish the Bongard problems as uniquely difficult1.

Divergent Thinking. The three Bongard problems in Fig. 1, ranging from easy
to difficult demonstrate the typical variation, both visually and in terms of solu-
tions. Since there are a very large number of potential features to consider and
many ways these features can be combined to define different rules, divergent
thinking is required to perform well at Bongard problems. This property is also
partially shared by Raven’s Progressive Matrices (RPM) task [11], where decid-
ing upon the tile which best completes the matrix requires considering many
alternative hypotheses to find the one requiring the simplest justification. using
a fixed set of visual features and sequence progression relations. There is consid-
erably more diversity in the visual elements and rule types in Bongard problems.

Abstract Thinking. To solve second problem in Fig. 1, recognizing that the
shapes have the characteristic of spiraling requires abstract thinking, because the
property of spiraling is not physically present, but exists as non-trivial relation-
ship between points on a curve. The patterns required to be identified to solve
the problem often are not directly visible, but exists as a complex relationship
between other abstract features. For example, finding the intended rule for the
third problem in Fig. 1 likely requires observing that the individual shapes of a
particular type should be grouped together to form the outlines of larger shapes.

Few-Shot Learning. To recognize that all objects on a given side share one
potentially complex property among innumerable alternatives given only six
samples per class requires few-shot learning. In contrast, datasets for image
classification problems often have orders of magnitude more samples per class.
This few-shot learning property is shared with both the popular Omniglot task
(concerned with classification of hand-written characters) [9] and Raven’s Pro-
gressive Matrices (matrix completion) [11].

For most of these properties, machine learning has had some success on asso-
ciated problems. However, when multiple properties are present, as in the case

1 A description of what does and does not make for a valid BP can be found here:
http://www.foundalis.com/res/invalBP.html.

http://www.foundalis.com/res/invalBP.html
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of BPs, learning to automatically solve the tasks becomes much more difficult.
Due to this large performance gap and the unique challenges of BPs, we believe
studying BPs is an efficient route towards reaching human-level performance
across a variety of tasks.

Towards this end, the main contributions of the present work are as follows.

– We adapt a deep learning based approach to solve Bongard problems and
overcome weaknesses in previous approaches (Sect. 3).

– We consider the set of properties which make BPs uniquely difficult and pro-
pose a set of metrics for automatic evaluation of BP solvers, which interprets
BPs as few-shot classification tasks (Sect. 4).

– We evaluate our deep-learning based approaches on the BPs while examining
the effects of pre-training and feature extraction methods (Sect. 5).

2 Related Work

Due to the difficulty of automatically solving BPs or the lack of awareness of
them, few attempts at the task have been made.

Motivated by the appearance of Bongard problems in Godel, Escher, Bach
[6], Hofstadter’s own graduate student, Harry Foundalis, decided to approach
the problem of automatically solving them in his dissertation [5]. Foundalis’
approach consists of a cognitive architecture for visual pattern recognition called
Phaeaco, which tries to solve BPs with the following process. First, working at
the pixel level, Phaeaco attempts to explicitly extract the geometric primitives
contained in each of the 12 tiles of a problem. Next, features shared among the
tiles for each side are identified. This is repeated either until a rule is found
or some stopping criterion is reached. The Phaeaco model is capable of finding
solutions for up to 15 problems out of 2002. Due to the non-deterministic nature
of the program, the success rate of each of these problems varies dramatically,
between 6% and 100%.

A more recent approach of solving Bongard problems is provided by [3]. Sim-
ilar to Phaeaco, their pipeline begins with explicit extraction of visual features.
Additionally, these visual features are then translated into a symbolic visual
vocabulary. Candidate rules which split the 12 tiles are scored based on assigned
prior probabilities of the grammar’s production rules which produced the rule in
such a way that shorter, less complex rules are preferred. Under this restriction,
only 39 BPs are considered. The approach solves 35 of the 39 problems.

A recent approach utilizing deep learning to solve BPs was proposed in an
intriguing blog post by [7]3. While this approach does not entirely avoid manually
defining the type of visual features that are important to consider, it comes close,
and is the inspiration for the model we present in Sect. 3. Kharagorgiev’s app-
roach works roughly as follows: first, an image dataset of simple shapes is auto-
matically constructed and used to train a convolutional neural network (CNN)
2 Phaeaco results can be found here: http://www.foundalis.com/res/solvprog.htm.
3 https://k10v.github.io/2018/02/25/Solving-Bongard-problems-with-deep-

learning/.

http://www.foundalis.com/res/solvprog.htm
https://k10v.github.io/2018/02/25/Solving-Bongard-problems-with-deep-learning/
https://k10v.github.io/2018/02/25/Solving-Bongard-problems-with-deep-learning/
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as domain knowledge. Second, feature vectors are extracted and binarized with
a manually chosen threshold for each of the 12 tiles with the CNN by taking
globally-averaged feature maps, as proposed in [10]. Finally, finding a solution to
a BP is then reduced to locating a feature where all tiles from each side have the
same value, unique to that side. Of the 232 problems assembled by Foundalis4,
47 problems are considered solved, 41 of which are correctly solved.

3 Our Models

Due to the uniqueness (both visually and in terms of solutions) of Bongard
problems and the small size of the problem set compiled over the years (currently
around 300), training a meta-learning model on a subset of the problems to
try apply to new problems is difficult without overfitting to the specific rules
types present in the training data. These properties make recent state-of-the-
art approaches for few-shot classification problems [14], ill-suited for Bongard
problems. In an attempt to overcome these hurdles, we apply transfer learning, a
common deep learning based approach to learning with small data. The approach
we take is to pre-train a convolutional neural network with synthetic images
that contain visual features commonly present in BP tiles, then train a simple
classifier on feature vectors for the 12 tiles produced by the CNN feature maps.
Figure 2 provides a high level view of this process.

Pre-training Samples

Fig. 2. Bongard problem solver pipeline.

Pre-training. Pre-training for image classification, as described in [4], pop-
ularized the insight that rather than learning to perform a new classification
task from scratch, one can take advantage of knowledge coming from previously
learned categories. By training a machine learning model to perform one task,
it may implicitly discover features useful to learning to perform another similar
4 The set of original BPs by Mikhail Bongard as well as those proposed by others can

be found here: http://www.foundalis.com/res/bps/bpidx.htm.

http://www.foundalis.com/res/bps/bpidx.htm
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task. Compared to past approaches to solving BPs which extracted visual and
abstract features using hard-coded feature detectors and routines [3,5], we can
influence what patterns a CNN discovers by simply augmenting the training task
to require discovering those patterns, a much easier task than manually writing
algorithms to detect those particular features. To ensure that the features we
extract from the feature maps that are relevant to visual patterns presenting in
BPs, and we pre-train the CNN on a related task: shape classification. Figure 2
shows some pre-training samples as well. In Sect. 5.2, we examine the effects of
increasing variety of shapes on final BP solver performance.

Feature Extraction. To extract features for a given BP tile, we use global-
averaged feature map activation, which computes the spatially averaged activa-
tion value for each kernel [10]. The magnitude of a globally-averaged value can
be interpreted as the prevalence of a particular feature in the input image, with
features in earlier layers often corresponding to simple visual features and later
layers detecting features corresponding to more abstract concepts specific to the
dataset and task [15]. In Sect. 5.2, we examine the effects of extracting features
from layers of different depths in the pre-trained CNNs.

Classification. After calculating feature vectors for each tile in a BP, we train
a classifier to distinguish between the two classes. While any classifier may be
used, careful consideration should be made to influence the type of rule we want
it to learn. In Sect. 4, we discuss the different types of solutions and rules to
Bongard problems. In Sect. 5.2, we also observe the effects of the classifier on
performance.

4 Evaluating Bongard Problem Solvers

To understand how to automatically evaluate a BP solver, it helps to under-
stand what properties a solution may possess. In the present work, we consider
proposed solutions to possess (or lack) the following properties.

Validity. We consider a proposed rule to be valid if it is able to correctly split
(classify) the original 12 tiles, and invalid otherwise. We consider a rule to
be a condition that can categorize tiles into left or right (either correctly or
incorrectly), whereas a solution is a rule which is valid and can thus correctly
categorize the 12 original tiles.

Robustness. We consider a solution to be robust if it is able to not only classify
the original 12 tiles, but also additional ones which are classified left or right
according to the intended rule, defined by the author of the problem.

Simplicity. An intuitive definition, although often impractical to use for evalu-
ation, is that a simple solution takes few words to state. The opposite of a simple
rule is a complex rule.

Figure 3 illustrates how valid rules (solutions) to a given problem may vary
in robustness and simplicity. In Sect. 4.1 we discuss how to evaluate a solver with
respect to validity, and in Sects. 4.2 and 4.3, we discuss evaluation with respect
to robustness and simplicity.
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Fig. 3. Bongard #5 and various valid solutions (assuming each tile is 100 px by 100 px).

4.1 Measuring Validity

A model is said to produce a valid solution for a BP if the proposed rule correctly
splits the 12 tiles into two groups. This corresponds to the evaluation method
used by [5] and [3] (without the next step of subjective analysis). To condense
the validity performance of a model into a single value, we average the validity
scores across a set of Bongard problems:

validity =
1

#BPs

∑

p∈BPs

pCC (1)

where pCC is the set of all tiles in p correctly classified.
To accompany the validity score, we consider the average problem number

where a valid solution is found. This allows us to observe whether our models
have a bias, similar to humans, of solving more easy than difficult problems. This
works due to the trend of problem difficulty increasing with problem number in
the set of 200 BPs compiled by [5].

4.2 Measuring Robustness

Since the only way a solution can be robust is with respect to the intended
solution, we use a functional definition of robustness. If a rule is able to correctly
classify unseen samples from each class then it can be considered robust.

Here we define a subset BPs(v) to represent Bongard Problems with valid
solutions found by our model, and the set #BP (v) contains the total numbers
of BPs for which valid rules are found. We average the robustness score based
on BPs(v):
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robustness =
1

#BPs(v)

∑

p∈BPs(v)

newTilesCC (2)

where newTilesCC if the fraction of new tiles for p correctly classified.
As noted by [3], Bongard problems are unlike usual classification problems

in that the small number of examples for each class are often carefully chosen to
have a single property in common while ruling out as many alternatives as pos-
sible. Leaving out even one or two tiles opens up to possibility for finding many
non-intended solutions. Additionally, this interpretation of robustness ignores
the case where a rule acts unexpectedly when presented with tiles that do not
clearly belong to either side. If left vs right is circles vs. squares, what does it
mean if a picture of a lamp is classified left? We therefore only consider robust-
ness under the assumption that all tiles presented will belong to either the left
or right.

4.3 Measuring Simplicity

Measuring the simplicity of a tile classification rule learned by an automated
solver may be extremely difficult. This problem of interpreting how a deep learn-
ing model works is well studied with regards to image classification and often
done with saliency maps, which show the parts of the input image which most
influence the classification results [13,15]. In the present work, we do not attempt
to define a rule simplicity measure, however, in Sect. 5.3, we consider visualizing
activation maps to gain insight into the types of rules discovered by out models.

5 Experiments and Results

In this section we analyze the performance and effects of hyperparameters of
three variations of our problem solving model. The first model, PT+SF, uses
pre-training and single feature classification (a decision tree of depth 1). Second
is PT+LR, which also utilizes pre-training, but can propose rules combining
many features using a logistic regression classifier.

First we discuss the experimental setup in Sect. 5.1, then we discuss observa-
tions made in 5.2, and in Sect. 5.3 we produce visualizations of the rules implicitly
learned by a solver and examine their utility.

5.1 Setup

To observe the effect of feature abstraction on BP solver performance with as
few confounding variables as possible, we use the same hyperparameters for each
of the convolutional layers (architecture shown in Fig. 4):

– 64 kernels of size 3 × 3 with stride 1, ReLU non-linearity, and followed by
2 × 2 max-pooling with stride 2.
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Fig. 4. Neural network architecture used. Four convolutional layers with the same
hyperparameters are used.

– For the PT+SF and PT+LR models, the output of the last convolutional
layer is mapped to shape class probabilities with a dense layer and softmax
activation

The models are trained with categorical cross-entropy loss and the Adam
optimizer [8] with the default hyperparameters defined by Keras [2].

We use 100,000 tiles (80/20 train/validation split) of size 96 × 96 × 1. Table 1
contains the details of the five different pre-training data types of increasing com-
plexity we experiment with and the number of training epochs we found to produce
stable validation scores without overfitting. The final validation accuracy ranged
from 100% for the easiest pre-training set to 93% for the most complex set.

Table 1. Pre-training data details.

Pre-training
data type

Shape classes # Shape classes Training epochs

1 Single-segmented lines, dots,
curves

3 3

2 #1, circles, ellipses 7 6

3 #2, 3-gons, equilateral 3-gons 11 20

4 #3, 2- and 3-segmented lines,
4-gons, equilateral 4-gons

17 20

5 #4, 5- and 6-gons, equilateral
5- and 6-gons

25 20

To evaluate the overall validity power of our models, we incrementally com-
bine and keep all useful features from each convolutional layer, including the
output with small size of shape classes that may carrying simple shape infor-
mation to solve certain BPs, to obtain a consistent evaluation results. Sample
layers would be like:

output, output + CL3, output + CL3 + CL2, ....
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5.2 Results and Observations

At first, we evaluate the validity scores and average values of BP#(v) as defined
in Sect. 4.1 for the 200 BPs. Then we manually created two additional test tiles
for each problem (1 for each side) in order to estimate robustness based on the
model’s validity. All experiments results for PT+SF and PT+LR are averaged
across 5 trials.

In Table 2 and Table 3 we see the validity and robustness for the proposed
PT+SF and PT+LR models, containing the results with respect to the pre-
training type and combined layers for feature extraction.

Table 2. Effects of pre-training and CNN combined layers used for feature extraction
on PT+SF performance with 5 trials. CLi refers to the ith convolutional layer. The
highest scores for each metric are bolded, and second and third highest underlined.

Metric Layers Pre-training type

1 2 3 4 5

Validity

(avg

BP#(v))

output 1.2% (89) 3.3% (50) 3% (21) 2.6% (49) 1.9% (66)

output+CL3 14.3% (78) 18.6% (84) 19.5% (79) 22.1% (85) 19.2% (84)

output+CL3+CL2 18.8% (83) 22.1% (86) 25% (84) 27% (90) 24.7% (90)

output+CL3+CL2+CL1 21.5% (87) 25.1% (87) 26.4% (85) 28.6% (90) 28.0% (91)

output+CL3+CL2+CL1+CL0 23.3% (90) 26.4% (88) 27.7% (88) 30.2% (93) 28.6% (91)

Robustness output 97.50% 81.90% 64.94% 66.16% 84.16%

output+CL3 61.18% 60.58% 62.92% 64.74% 66.30%

output+CL3+CL2 62.50% 62.36% 61.84% 62.66% 65.64%

output+CL3+CL2+CL1 62.30% 63.30% 62.50% 64.58% 67.52%

output+CL3+CL2+CL1+CL0 63.86% 60.84% 63.36% 63.34% 66.26%

Table 3. Effects of pre-training type and CNN layers used for feature extraction on
PT+LR performance. For the results shown, the logistic regression penalty is fixed to
l2 and inverse regularization strength is chosen from C = [1, 2, 4, 8, 16, 32, 64, 128]. The
highest scores for each metric are bolded, and second and third highest underlined.

Metric Layers Pre-training type

1 2 3 4 5

Validity

(avg

BP#(v)

output 1% (78) 2.7% (67) 1.8% (49) 2.5% (22) 3.7% (43)

output+CL3 71.9% (96) 94.7% (96) 96.4% (97) 98.1% (98) 99.7% (99)

output+CL3+CL2 78.8% (99) 95.9% (97) 97.9% (98) 98.6% (98)99.8% (99)

output+CL3+CL2+CL1 79.2% (100) 95.9% (97) 98.1% (98) 98.7% (98)99.8% (99)

output+CL3+CL2+CL1+CL0 78% (100) 95.9% (97) 98.1% (98) 98.7% (98)99.8% (99)

Robustnessoutput 100.00% 84.28% 58.00% 74.32% 60.56%

output+CL3 57.88% 54.64% 56.74% 54.74% 55.76%

output+CL3+CL2 56.08% 54.52% 56.68% 55.08% 55.92%

output+CL3+CL2+CL1 56.40% 54.34% 56.86% 55.42% 56.72%

output+CL3+CL2+CL1+CL0 57.00% 54.34% 56.86% 55.22% 56.92%
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Effects of Pre-training Complexity. For both PT+SF and PT+LR, increas-
ing the variation of the shape set led to an improvement in both validity and
robustness, with the effect being stronger when using the logistic regression
classifier. The only exception is when the output class distributions are the only
extracted features, in while case the robustness scores may be unusually high
due to the smaller value of BPs(v)

Effects of Layers Combination. For both pre-trained models, it appears that
including more convolutional layers produces better features when measuring
validity, but robustness is less affected. This may be due to the deeper convolu-
tional layers learning features specific to the shape classification task and thus
less applicable to other tasks [15]. We can also observe that the PT+LR model
can be seen as over-fitting when measuring validity (as indicated by the low
corresponding robustness).

The output layer consistently performs poorly for both PT+SF and PT+LR
in terms of validity, likely due to the small number of shape classes as listed in
Table 1. This also suggests that just knowing what basic shapes are present in
the image is helpful for solving only a small set of simple Bongard problems.

Effects of Classifier. In the PT+SF model, we used a decision tree with depth
1 to choose a single visual feature to serve as a rule for each Bongard prob-
lem. From the results, this very simple classifier has generally smaller validity
scores compared with the PT+LR model, but is more robust. This observation
matches the nature of BPs: they are often designed to be solved with only one
abstract rule or feature as an intended solution. Thus, PT+SF may score higher
in simplicity than PT+LR. The PT+LR model, using logistic regression, lin-
early combines many features. Not surprisingly, this more expressive classifier is
capable of producing much higher validity.

Overall Performance. While direct performance comparisons should not be
drawn to previous approaches due to differences in the types of rules automati-
cally produced, our approaches are capable of finding valid solutions to a greater
fraction of problems than previous approaches. Our PT+SF model finds valid
solutions for up to 30.2% of the problems (∼60/200) and correctly classifies two
new test tiles for 66.3% of the problems(∼38/60). The PT+LR achieve almost
100% validity, but at the cost of more complex solution rules. In contrast, [5]
reports ∼7.5% and the previous work most similar to ours and without further
test set validation, [7], reported 18% of 232 problems solved (and 19% of the 200
problems we use).

5.3 Rule Visualization

In Fig. 5 we present 8 problems for which a valid solution was found by a PT+SF
model which used pre-training set #4 and tile embeddings from the feature maps
in the last convolutional layer. Highlighted areas indicate higher values in the
activation map chosen by the BP solver for that problem. The intended rules
are provided for each problem.
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(a) BP #21 - small figure 
present vs. no small figure 
present

(b) BP #25 - filled figure is 
triangle vs. fill figure is circle

(c) BP #94 - filled circle not at 
endpoint vs. filled circle at 
endpoint

(d) BP #183 - same curvature 
close to the middle vs. change 
of curvature close to middle

(e) BP #8 - on the right side vs. 
on the left side

(f) BP #17 - angle directed 
inwards vs. no inward angle

(g) BP #101 - parallel dents vs. 
perpendicular dents

(h) BP #164 - number of objects 
is one less than sides vs. number 
of objects is more than sides

Fig. 5. Examples of interpretable (a to d) and non-interpretable (e to h) visualizations
of valid rules found by the PT+SF model for Bongard problems.

Problems (a) to (d) in Fig. 5 have arguably interpretable rules. The intended
rule for (a) is ‘small shapes present on the left but not the right’, and as expected,
small figures are highlighted by the activation map of the automatically chosen
filter. In both (b) and (c), the shapes clearly associated with the intended rules
are highlighted. However, for (d), it appears that a valid, although non-intended
solution was identified: there is more empty space around the corners on the
right than on the left. The intended solution for this problem is ‘same curvature
close to the middle vs. change of curvature close to middle’. Problems (e) to (h)
have also had valid solutions identified, but serve to demonstrate that a standard
method of visualizing what a CNN has learned is frequently not well-suited for
Bongard problems, as it is not always clear what part of the tiles should be
highlighted to make the discovered rule more visible.

6 Conclusions

Bongard problems are a kind of visual puzzle which require skills central to
human intelligence: divergent thinking, abstract thinking, and the ability to learn
from little data. To solve these problems given raw images, we train a CNN to
perform the related task of shape classification and use the globally-averaged
feature maps to produce feature vectors for the tiles of a BP. We observed that
increasing the shape variation of the pre-training data as well as extracting
features from deeper convolutional layers tended to improve the quality of the
extracted feature vectors, increasing the number of problems for which valid and
robust solutions could be discovered.

The present work hints at many promising avenues. While the author of a
problem may have a particular rule in mind, an automated solver may identify
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many valid solutions. Adding an active learning component to the Bongard prob-
lem requiring automated solvers to strategically test highly abstract hypotheses
may be interesting. Developing a visualization technique capable of conveying
the abstract rules learned by an automated solver is another task which may
prove to be important.
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Abstract. We investigate a finer-grained understanding of the charac-
teristics of particular deterministic finite automata (DFA). Specifically,
we study and identify the transitions of a DFA that are more important
for maintaining the correctness of the underlying regular language asso-
ciated with this DFA. To estimate transition importance, we develop an
approach that is similar to the approach widely used to expose the vul-
nerability of neural networks with the adversarial example problem. In
our approach, we propose an adversarial model that reveals the sensitive
transitions embedded in a DFA. In addition, we find for a DFA its critical
patterns where a pattern is a substring that can be taken as the signa-
ture of this DFA. Our defined patterns can be implemented as synchro-
nizing words, which represent the passages from different states to the
absorbing state of a DFA. Finally, we validate our study through empir-
ical evaluations by showing that our proposed algorithms can effectively
identify important transitions and critical patterns. To our knowledge,
this is some of the first work to explore adversarial models for DFAs and
is important due to the wide use of DFAs in cyberphysical systems.

Keywords: Deterministic Finite Automata · Transition importance ·
Critical patterns · Adversarial model

1 Introduction

There has been a great deal of work on the computational power of deterministic
finite automata (DFA, level 3 in the Chomsky hierarchy). Although DFA models
can be significantly different in terms of the number of states, accepted strings,
and complexity [12], the family of DFA models is usually studied as a whole for
their computational power and compared with other formal computation models
in the Chomsky hierarchy [8]. As such, our understanding of DFA remains at a
relatively coarse-grained level. We believe it is still an open question regarding
on how to differentiate different DFAs.

Here, we study individual DFAs for their fine-grained characteristics, includ-
ing transition importance and critical patterns. Specifically, we examine the
c© Springer Nature Switzerland AG 2020
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importance of transitions by relating this task with the adversarial example
problem [10] often seen in deep learning. This problem describes the phenomenon
where a model, which generalizes well on clean datasets, is strikingly vulnera-
ble to adversarial samples crafted by slightly perturbing clean samples. Because
string identification is an important problem in time series, speech, and other
scenarios, this motivates research into understanding complicated learning mod-
els such as neural networks. One particular approach is to identify feature-level
perturbations that significantly affect a learning model. Similar approaches have
been used for examining the sample-level importance in building a learning
model [9]. These studies use adversarial examples as a data-driven tool for prob-
ing the learning model’s vulnerability, hence indirectly gaining an understanding
of complicated learning models. In order to directly gain a better understand-
ing of a DFA, we follow a similar approach but study the sensitivity of a DFA
through model-level perturbations.

Next, we study critical patterns that can be used for identifying a specific
DFA. Specifically, we formally define a critical pattern as a substring, which
effectively identifies all strings accepted by a certain DFA. We show that for
certain classes of DFA, we can identify these strings statistically by checking
the existence of critical patterns embedded in their generated strings without
exhaustively searching all possible strings or querying the underlying DFA [1,13].
We then develop an algorithm for finding the critical patterns of a DFA by
transforming this task as a DFA synchronizing problem [6]. Last, we provide a
theoretical approach for estimating the length of any existing perfect patterns
and validate our analysis with empirical results.

We feel that our analysis on DFA models will help in research on the security
of cyberphysical systems that are based on working DFAs, e.g., compilers, VLSI
design, elevators, and ATMs. This could be especially for the case when the
actual state machine is exposed to adversaries and be attacked. It is the intent
of this work to open a discussion on these issues.

2 Transition Importance of a DFA

DFAs are one of the simplest automata in the Chomsky hierarchy of phrase
structured grammars [4]. More formally, a DFA can be described by a five-tuple
A = {Σ,S, I, F, T}, where Σ is the input alphabet (a finite, non-empty set of
symbols), S denotes a finite and non-empty set of states, I ∈ S represents the
initial state while F ⊆ S represents the set of accept states, and T is a set of
deterministic transition rules. The transition rules of a certain DFA essentially
describe how that DFA will process a string as it traverses its states. Throughout
this paper all DFAs are complete minimal DFAs. Due to its deterministic nature,
it is natural to assume different transitions are equally important for identifying
a DFA. However, as will become clear from our analysis, this assumption does
not generally hold. Here we illustrate this with the a DFA associated with the
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Fig. 1. Example for the Tomita-7 grammar. Red (Black) states are the accept (reject)
states (Color figure online).

Tomita-7 grammar1 shown in Fig. 1. Among all transitions, the cyclic transition
(with input a) associated with state-4 is the most important one. This is because
by substituting this transition by a transition to state-1 with the same input,
we can add significantly more strings to the set of accepted strings.

2.1 Transition Importance Estimation as an Adversarial Model
Problem

To estimate the importance of each transition and identify more important ones,
we take an approach that is complementary to the approach used to identify
sensitive features of a data sample viewed by a deep neural network (DNN) in the
context of the adversarial example problem. As such, the transition importance
estimated by our approach essentially reflects the sensitivity of a DFA with
respect to a transition.

A typical formulation of the adversarial example problem is to maximize a
loss function L with respect to a normal sample x0 and a model f . Then finding
an adversarial sample x̂ is conducted by solving the following problem:

x̂ = arg max
|x−x0|≤ε

L(x, f), (1)

where ε denotes some predefined constraint on the scale of perturbation. Here
we propose to transform the adversarial example problem (Eq. (1)) into the
adversarial model problem, which considers model-level perturbations. Explicitly,
given a model f0 and a fixed set of string samples X, we try to solve the following
problem:

f̂ = arg max
|f−f0|≤ε

∑

x∈X

L(x, f). (2)

Eq. (2) describes the problem of perturbing a target model in a constrained man-
ner to cause maximal loss and provides an alternative view of the adversarial

1 Tomita [11] defined the following grammars with a binary alphabet: (1) a∗, (2)
(ab)∗, (3) an odd number of consecutive ′a′s is always followed by an even number of
consecutive ′b′s, (4) any binary string not containing “bbb” as a substring, (5) even
number of bs and even number of ′a′s, (6) the difference between the numbers of ′b′s
and ′a′s is a multiple of 3, (7) b∗a∗b∗a∗. These grammars have been widely used in
grammatical inference.
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example problem. Specifically, given an ideal mapping f from some functional
space F for a certain learning task, and an arbitrarily small approximation
error ε, the universal approximation theory [5] states that one can always find
a candidate f ′ in some other functional space F ′ (generally taken as a subset
of F) satisfying ‖f − f ′‖ < ε. Given that DNNs already have very complicated
architectures2, we can only measure the difference between f and f ′ numeri-
cally, although these two functions might be quite different. Since these models
built through analytical approaches may not necessarily have actions aligning
with our intuition and expectation, we cannot easily, if not impossibly, establish
a physical understanding of the gap between f ′ and f . Furthermore, in prac-
tice the gap between these two functions may be amplified by formulating the
approximation problem as an optimization problem, and then applying various
techniques to solve the latter [2]. These combined effects imply that the root
cause of the adversarial example problem lies in both the ambiguity of the the-
oretical foundation for building a learning model and the imperfection in the
practice of applying a learning model. Moreover, it is important to note that our
transformation cannot be easily applied to complicated models like DNNs. The
function represented by a DNN has too many parameters, including weights,
neurons, layers, and all sorts of hyper-parameters. This results in an enormous
perturbation space.

On the other hand, for a DFA, the perturbation space is significantly lim-
ited to only include its transitions and states. Furthermore, the perturbation of
a state can be represented by a set of perturbations applied to the transitions
associated with this state. Therefore, in the following, we only consider transi-
tion perturbations as they provide a more general description of the adversarial
perturbations of a DFA. In addition, we only consider perturbations that make
substitution operations on the transitions. This is because for a given DFA,
inserting transitions is not allowed since this DFA is already complete and min-
imal. Also, removing a transition is equivalent to substituting this transition to
the transition that connects the current state to an absorbing state, of which
the outward transitions all loop back to itself. Our study of the adversarial DFA
can be taken as a step in studying the adversarial phenomenon by restricting
the underlying models to be physically interpretable and directly investigating
the vulnerability of that model.

2.2 Transition Importance

The deterministic property of a DFA enables it to be naturally immune to adver-
sarial examples. However, when the adversarial perturbation is applied to a DFA,
it is possible to generate an adversarial DFA, which only differs from the origi-
nal DFA by a limited number of transitions, yet recognizes a regular grammar
that is dramatically different from the one associated with the original DFA. To
quantitatively evaluate the difference between two sets of strings accepted by
different DFAs, here we introduce the following metric:
2 Recent research [7] on explaining DNNs have demonstrated the difficulty of analyzing

and inspecting these powerful models.
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Definition 1 (Intersection over Union (IoU)). Given two arbitrary DFAs
represented by A and Â, and their accepted sets of strings denoted by X and X̂,
respectively, then

IoU(A, Â) =

∣∣∣X ∩ X̂
∣∣∣

∣∣∣X ∪ X̂
∣∣∣
. (3)

It is easy to notice that the metric IoU is well-defined and lies between 0 and 1.
One can apply the L’Hopital’s rule to calculate it if both the numerator and the
denominator approach infinity. By using the above definition of IoU , we express
the adversarial model problem for a DFA as perturbing the transitions of a given
DFA to reach a low IoU . Then we have the following theorem.

Theorem 1. Given a DFA with alphabet Σ = {a1, a2}, we use A1 and A2 to
denote its transition matrices associated with the first and second input symbol.
Similarly, let Â1 and Â2 denote the transition matrices of perturbed DFA yielding

IoU(A, Â) =

(∑∞
n=1(1 ⊗ p)T(M1 ⊗ (A1 +A2) +M2 ⊗ (Â1 + Â2))n(1 ⊗ q)∑∞

n=1(p ⊗ p)T(A1 ⊗ Â1 +A2 ⊗ Â2)n(q ⊗ q)
− 1

)−1

. (4)

where p ∈ B
n is a one-hot encoding vector to represent the initial state, and

q ∈ B
n denotes the set of accept states of a DFA with n states. We also have

1 =
[
1
1

]
, M1 =

[
1 0
0 0

]
, M2 =

[
0 0
0 1

]
, and ⊗ denotes the Kronecker product.

Due to space constraints, we only provide a sketch of this proof. For this
we construct a new automaton that represents the union of two source DFAs.
The initial state vector, accepting state vector, and the adjacency matrix of this
constructed automaton are denoted as 1⊗ p, 1⊗ q, and M1 ⊗ (A1 +A2)+M2 ⊗
(Â1 + Â2), respectively. Similarly, for the DFA that recognizes the intersection
of two sets of strings accepted by two DFAs, we denote its initial state vector,
accepting state vector, and the adjacency matrix as p ⊗ p, q ⊗ q, and A1 ⊗ Â1 +
A2 ⊗ Â2, respectively. In order to compute the cardinality of the union set and
the intersection set, we need to sum the number of strings for which the length
varies from 1 to infinity. Now assume that there are two column vectors sI and
sE , which represent the set of initial and ending states. Then the number of
N -length strings that reach sE from sI is sTI PNsE .

Theorem 1 provides directly an explicit formulation for computing our
defined IoU . As such, the original adversarial model problem for the DFA can
be transformed to an optimization problem. Furthermore, we require that this
manipulation only allows one transition substitution to be applied to one of the
transition matrices associated with different inputs. The allowed single transition
substitution causes the Frobenius norm of the manipulated transition matrix to
be changed by

√
2. This also avoids changes to the absorbing states of the source

DFA (if they exist), so that any existing absorbing states will not be affected.
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In addition, we require the set of accepted states remains the same. Therefore,
we have the following optimization problem3:

min
Â1,Â2∈T

∑∞
n=1(p ⊗ p)T(A1 ⊗ Â1 + A2 ⊗ Â2)n(q ⊗ q)

∑∞
n=1(1 ⊗ p)T(M1 ⊗ (A1 + A2) + M2 ⊗ (Â1 + Â2))n(1 ⊗ q)

s.t. &
∥∥∥Â1 − A1

∥∥∥
2

F
+

∥∥∥Â2 − A2

∥∥∥
2

F
= 2;

y(A1 + A2) = y(Â1 + Â2);

(A1 + A2)yT = (Â1 + Â2)yT.

(5)

where y = 0 when the source DFA does not have an absorbing state and y =
[0, 0, · · · , 1]. Otherwise, T denotes the set of transition matrices which contains
exactly one 1 in each row, and ‖·‖F denotes the Frobenius norm.

In practice, it is possible that some additional constraints can be added to
the above formulation. Specifically, here we require the perturbed DFA to remain
strongly connected and no new absorbing states will be created. Since it is diffi-
cult to formulate these constraints in Eq. (5), we manually examine their viola-
tions in the obtained solutions. Note that these constraints can be easily checked
by analyzing the spectrum of the perturbed transition matrix.

2.3 Evaluation of DFA Transition Importance

In the following, we use the Tomita grammars to demonstrate our estimation of
the transition importance of DFAs. Since this is the first work on studying the
adversarial scheme of formal computation models, our evaluation mainly focuses
on examining the effectiveness of our proposed approach.

In the experiments, we select the Tomita-3/5/7 grammars as examples. These
grammars are selected as they are representative of the exponential, propor-
tional, and polynomial classes [12] of regular grammars with the binary alpha-
bet, respectively (These classes are introduced in Sect. 3). Since it is impossible
to sum up to infinity, for our evaluation we fix the maximum length N of binary
strings to 20. Also, instead of solving the original objective which takes a quo-
tient form, we apply the symmetry difference of two sets as an alternative. This
choice is reasonable since the objective functions capture the same essence of
minimizing the cardinality of the intersection and maximizing the cardinality
of the union of two sets. Furthermore, as the original problem is formulated
as a high-order integer programming problem, which is difficult to solve with
existing solvers, we relax the constraints such that Â1 and Â2 are constrained
as row-wise stochastic matrices as their entries. As such, we determine the final
perturbation by selecting the one with the maximal value, which represents the
maximal transition probability. We notice that our approximation may not yield
the real optimal solution; however, as shown by the results in Table 1, it provides
satisfying results in analyzing the transition importance.

3 The constant number 1 is omitted for simplicity.
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Table 1. Optimization results for the Tomita-3/5/7 grammars.

IoU

Value from optimization Value from randomization

The 3 1.48e-3 0.342

Tomita 5 0.152 0.289

Grammars 7 0.025 0.225

Fig. 2. Illustration of identified important transitions for example DFAs. The marked
(with a yellow cross) and dashed lines demonstrate the most sensitive transitions of
the original DFAs and the perturbed transitions, respectively. (Color figure online)

The effectiveness of our optimization approach when comparing it with a
randomization approach is shown in Table 1. Specifically, for the randomization
approach, we randomly select five legitimate perturbations (manually checked
according to the constraints described above) and calculate and average the
resulting IoUrand. We then compare IoUrand with the IoUopt obtained by our
optimization. It is clear that the results provided by the optimization approach
are much more desirable. We also provide a visualization of the perturbations
generated by our approach for each investigated grammar in Fig. 2.

3 Critical Patterns of DFA

3.1 Different Types of Critical Patterns

Here, we provide a relatively coarse-grained view, in contrast to what we
described regarding transition importance, to investigate the characteristics of
a DFA. Specifically, we identify critical patterns of a DFA, defined as:

Definition 2 (Absolute and relative patterns of a DFA). Given the
alphabet Σ of a DFA and a data space X ⊆ Σ∗, X is the union of two dis-
joint sets, i.e., X = P ∪ N4, and we define the following patterns:

Absolute pattern : m̂ = arg max
|m|=k

∣∣Prm∼fy(y ∈ P ) − Prm∼fy(y ∈ N)
∣∣ . (6)

4 For a DFA, P (N) represents the space of strings accepted (rejected) by this DFA.
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Relative pattern : m̂ = arg max
|m|=k

|Pry∈P (m ∼f y) − Pry∈N (m ∼f y)| , (7)

where y is a string in X and m ∼f y indicates that m is a factor (consecutive
substring) of y.

b = # strings in 
N with m

a = # strings in 
P with m

d = # strings in 
N w/o m

c = # strings 
in P w/o m

Set P Set N

with m

w/o m

Fig. 3. An illustration of the difference between absolute and relative patterns.

Here we focus on the general case where all the strings follow the uniform
distribution without using any particular prior knowledge. We illustrate the dif-
ference between the absolute and relative patterns with the example in Fig. 3 by
splitting the entire data space X into four parts denoted as {a, b, c, d}. Accord-
ing to Eq. (6), an absolute pattern describes the substring m (has the length
of k) such that, among all strings that contain m, it causes the largest discrep-
ancy between the probabilities of a string that belongs to different disjoint sets.
Thus, the absolute pattern differentiates strings in {a, b}, and the objective in
Eq. (6) are equal to |a−b|

a+b . In contrast, a relative pattern is identified by consid-
ering the statistics of the entire data space, with the objective in Eq. (7) equal to∣∣∣ a
a+c − b

b+d

∣∣∣. Note that these two patterns are equivalent to each other under cer-
tain circumstances. For example, consider a DFA that rejects any binary string
containing “bbb” as a substring5. In this case, both the absolute and relative pat-
terns identify the factor “bbb”. Here, we are concerned with the absolute pattern
since it provides better insight as to the connection between identified patterns
and the underlying DFA. In contrast a relative pattern mainly provides a con-
ceptual understanding from a statistic perspective. Furthermore, we introduce
the following definition:

Definition 3 (Perfect absolute pattern of a DFA).
Let Ap = {m | maxm

∣∣Prm∼fy(y ∈ P ) − Prm∼fy(y ∈ N)
∣∣ = 1}, then the

perfect absolute pattern is defined as:

m̂ = arg min
m∈Ap

|m| . (8)

5 The example DFA is associated with the Tomita-4 grammar.
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A perfect absolute pattern describes a substring, which has minimal length
among all absolute patterns and perfectly differentiates the strings from different
disjoint sets. However, not all DFAs have perfect absolute patterns. Some DFAs,
which have a cyclic property, contain recurrent or persistent states that contain
both accepting and non-accepting states. This indicates that these DFAs can
never determine the label of a string until they finish processing the entire string.
These DFAs with a binary alphabet, as previously determined [12], belong to
one of three classes, which are then categorized according to the complexity of
different DFAs. Specifically, the complexity of a DFA is measured by its entropy
value, which essentially reflects how balanced are the sets of strings accepted
or rejected by a DFA. As such, a grammar with a higher complexity has a
higher entropy value, hence recognizing more balanced string sets. Based on
the entropy values of different DFAs, they can be categorized into three basic
classes (1) polynomial class, where the number of accepted strings of a certain
length is a polynomial function of the length; (2) exponential class, where the
number of accepted strings of a certain length takes an exponential form of the
length with the base value smaller than 2; (3) proportional class, where the
number of accepted strings of a certain length is proportional to number of all
binary strings with the same length. Interestingly, except for the proportional
class, which contains DFAs with either 0 or 2 absorbing states, DFAs from other
classes have exactly one absorbing state. See Wang et al. [12] for more details.

Upon inspection, it is just a random guess for identifying a string accepted by
a DFA which has no absorbing state and by only checking its contained factors.
Also, determining the pattern of a DFA, which contains two absorbing states,
can be taken as performing a random guess twice. As such, we only focus in
the following analysis on DFAs belonging to the polynomial and the exponential
classes. Importantly, we find that identifying a perfect absolute pattern of a DFA
is essentially analogous to designing a synchronizing word [6] for the absorbing
state of a DFA. Therefore, instead of solving the optimization problem in Eq. (6),
we propose a DFA synchronizing word approach and design a metric to evaluate
the confidence for determining whether a certain string belongs to a particular
class. We show that our metric is highly correlated with the probability in Eq. (6).

3.2 DFA Synchronizing Algorithm

Recall that the synchronizing word (or the reset sequence) is a substring that
sends any state of this DFA to the same state. An absorbing state naturally fits
this synchronizing scheme. As such, we can set the absorbing state as the state
to be synchronized. And since all states will result in an absorbing state when
applying the same substring to these states, the label of a string containing the
substring can be determined definitely.

However, given a string of fixed length k, there is no guarantee that we
can always reach an absorbing state. Thus, we design the following algorithm
and metric to evaluate the efficiency of identifying an absolute pattern. More
specifically, given a DFA with n states and a predefined length k, we then have
its k-order transition matrix Ak

Σ by multiplying the transition matrix AΣ by
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itself k times. We focus on the column associated with the absorbing state. This
column represents the prefixes coming from all states to this absorbing state. We
now choose the most frequent substring m appearing in this column. We denote
that number of occurrences as n̂ and determine m since an absolute pattern has
confidence of n̂/n. For the perfect absolute pattern, the confidence is 1, since
the substring sends all other states to the absorbing state and it will appear in
each entries of the column associated with the absorbing state of the k-order
transition matrix. In experiments presented in the latter part of this section, we
demonstrate the results of applying this algorithm.

Furthermore, given a DFA with one absorbing state, similar to the Černý’s
conjecture [3], we can estimate the length of a perfect absolute pattern associated
with a DFA by providing a loose upper bound. That is, given a DFA with an
absorbing state, we have the following theorem for estimating the minimal length
of a synchronizing substring, which leads all states to the absorbing state.

Theorem 2. The length of a perfect absolute pattern of a DFA with n states is
at most n(n − 1)/2.

To obtain an upper bound of the length of a perfect absolute pattern, we need
to consider the worst case. Specifically, the distance between each state and the
absorbing state is 1, 2, · · · , n−1, respectively. In addition, at step t, synchronizing
the nearest state is the optimal choice. Furthermore, after synchronizing the t-
step nearest states, the distances between the rest n− t states and the absorbing
state range exactly from t + 1 to n − 1 during this iterative process. As such, to
synchronize all states in the worst case, we have the length of a synchronizing
substring at most 1 + 2 + · · · + (n − 1), which is equal to n(n − 1)/2.

It is straightforward to check that the upper bound in Theorem 2 holds for
any size of alphabet. As such, we conjecture that there exists a tighter upper
bound, which depends on the number of states and the DFA alphabet size. Next,
we provide some examples in order to further investigate the pattern length.

We demonstrate in Fig. 4a and b that when the number of states of a DFA is
set to 3 or 4, we can construct a DFA for which the perfect absolute pattern meets
the upper bound exactly. Specifically, for the DFAs shown in Fig. 4a and b, their
associated patterns are bab and babaab. However, it is impossible to construct
a 5-state DFA, for which the perfect absolute pattern has a length that reaches
the upper bound in Theorem 2. More specifically, we have the following result:

Theorem 3. The length of a absolute pattern of a 5-state DFA is at most 9.

This theorem can be proved by using combinatoric and enumeration tech-
niques, and is omitted due to space constraints. In Fig. 4c, we construct an
example five-state DFA that has a pattern with a length of 9 in the worst case.
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Fig. 4. DFA examples that illustrate Theorem 2.

Table 2. Transition matrices for example DFAs. Aσ(s1, s2) represents a transition from
state s1 to s2 via σ. We only provide the transitions matrices for DFA-3/4/5 and omit
the matrices for DFA-1/2 (Tomita-4/7) due to space limit.

Transition matrix

DFA 3 Aa(1, 4) Aa(2, 3) Aa(3, 4) Aa(4, 3) Aa(5, 4) Aa(6, 6)

Ab(1, 2) Ab(2, 3) Ab(3, 3) Ab(4, 5) Ab(5, 6) Ab(6, 6)

DFA 4 Aa(1, 5) Aa(2, 4) Aa(3, 2) Aa(4, 1) Aa(5, 6) Aa(6, 1) Aa(7, 7)

Ab(1, 2) Ab(2, 3) Ab(3, 2) Ab(4, 3) Ab(5, 6) Ab(6, 7) Ab(7, 7)

DFA 5 Aa(1, 2) Aa(2, 3) Aa(3, 4) Aa(4, 8) Aa(5, 3) Aa(6, 8) Aa(7, 4) Aa(8, 8)

Ab(1, 6) Ab(2, 1) Ab(3, 5) Ab(4, 7) Ab(5, 2) Ab(6, 7) Ab(7, 1) Ab(8, 8)

Table 3. Patterns and their corresponding confidence for example DFAs. When several
patterns have the same length, we randomly show only one of them.

Length DFA 1 DFA 2 DFA 3 DFA 4 DFA 5

Pattern Con. Pattern Con. Prob. Pattern Con. Pattern Con. Pattern Con.

2 bb 2/3 ab 3/5 0.674 bb 1/2 ab 3/7 aa 5/8

3 bbb 1 bab 4/5 0.912 abb 1/2 abb 3/7 aaa 7/8

4 abab 1 1.0 abba 1/2 aabb 4/7 aaaa 1

5 baabb 2/3 aaabb 5/7

6 bbaabb 1 aaaabb 5/7

7 aaaabbb 5/7

8 bbaaaabb 1

3.3 Evaluation of DFA Pattern Identification

In the following experiments, we use the Tomita-4 and Tomita-7 grammars
(indexed as DFA-1 and DFA-2), which are representative grammars for the expo-
nential and the polynomial classes [12], respectively, and also use randomly gen-
erated other DFAs as shown in Table 2. For all DFAs, we set their starting state
as state 1 and their absorbing states as the states with the largest indexes. By
applying the algorithm we previously introduced, we obtain and demonstrate in
Table 3 identified patterns for all evaluated DFAs.
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We observe in Table 3 that our algorithm successfully identified the perfect
absolute pattern for the Tomita-4 (DFA-1) grammar. We also find that the
length of an identified perfect absolute pattern does not necessarily increase as
the number of states increases. Moreover, we observe that the confidence for
determining an absolute pattern for all DFAs is non-decreasing as the length of
the identified pattern increases. To further understand the relationship between
the confidence and the probability introduced in the definition of the absolute
pattern, we design the following experiment and use DFA-2 as our demonstra-
tive example. Specifically, we generate 1000 strings for each identified pattern
with their lengths less than 15. We then calculate the frequency of the generated
strings that appear in both the accepted and rejected sets, respectively. In par-
ticular, we use that frequency to approximate the probability by using the law
of large numbers. We show in Table 3 that the probability difference and con-
fidence have a positive correlation. Although we do not establish a theoretical
relationship between the above mentioned two statistics, we empirically show
that it is reasonable to replace the probability with the confidence. As such, we
believe these results validate the effectiveness of our algorithm.

4 Conclusion

Here we have defined transition importance and critical patterns for DFAs, which
we believe gives insight into understanding and identification of specific DFAs.
Specifically, we transformed the widely-accepted adversarial sample scheme to an
adversarial model scheme, which reveals the sensitivity of a model with respect
to its components. For the case of a DFA, we focus on the components repre-
sented by its transitions. In addition, we have designed an effective synchronizing
algorithm to find critical patterns of a DFA and studied the upper bound of the
length of a perfect absolute pattern. Finally, we empirically validated our algo-
rithms and the practicability of our metric with several grammars. Future work
could focus on extending this work to understand more complex models and
DFAs used in real applications.
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Abstract. Accurately predicting their future performance can ensure
students successful graduation, and help them save both time and money.
However, achieving such predictions faces two challenges, mainly due to
the diversity of students’ background and the necessity of continuously
tracking their evolving progress. The goal of this work is to create a
system able to automatically detect students in difficulty, for instance
predicting if they are likely to fail a course. We compare a naive app-
roach widely used in the literature, which uses attributes available in the
data set (like the grades), with a personalized approach we called Per-
sonalized Student Attribute Inference (PSAI). With our model, we create
personalized attributes to capture the specific background of each stu-
dent. Both approaches are compared using machine learning algorithms
like decision trees, support vector machine or neural networks.

Keywords: Big data · Educational data mining · Knowledge tracing ·
Machine learning

1 Introduction

As all academic institutions aim to improve the quality of education, the success
of their students is essential. To make university affordable and worthwhile, it
is hence important to ensure that most of the students enrolled in a program
succeed it and graduate on time. Therefore, early interventions for students who
most likely will fail their courses can help them save both time and money.
A possible solution towards this end is to build an automatic system that would
successfully predict their future outcome. However, predicting students’ perfor-
mance is complex. The attributes frequently used by researchers are the Grade
Point Average (GPA), internal assessment and students’ demographic (gender,
age etc). The issue with those attributes is that they tell nothing valuable about
the student background and what s/he has been through. For that reason, pre-
dicting methods need to incorporate a way to capture students’ background along
with the historical student accomplishments (grades, credits obtained, GPA).

We developed a personalized model called Personalized Student Attribute
Inference (PSAI), which creates personalized attributes to capture the spe-
cific background of each student. We compare our model with a naive app-
roach, which uses directly the attributes available in the data set (like the
grades, credits obtained, GPA, etc.). The next section explains our approach.
c© Springer Nature Switzerland AG 2020
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Section 3 describes our experimental process and results, and finally, Sect. 4
discusses limitations and concludes.

2 Personalized Models

We focus on personalized models, which take into account as much as possible
the specifics of each student profile, and therefore emphasizes the student’s back-
ground. Grades, GPA, credits obtained, etc. are not sufficient since they cannot
model a student’s knowledge. For example, students SA and SB have both a GPA
of 3.7 but SA took only easy courses (3 courses in total) and SB took the most
difficult ones (5 courses in total). Both have the same GPA so we cannot auto-
matically determine who is the most talented. It shows that static attributes
(the ones that are recorded directly like the grades) do not actually provide
much profile details about a student. Thus, for accurately predicting student
performance, one should consider other attributes as for instance the difficulty
of the courses. To do so, we grouped courses by similar level of difficulty then we
assigned them a weight, increasing with difficulty. Also, we assigned a score to
each student depending on the total number of courses s/he took, their difficulty
and the grades s/he obtained.

2.1 Personalized Student Attribute Inference (PSAI)

For assigning weights to courses according to their difficulty, we take a scale
which limits are the weights of “extremely” easy courses and those of courses
“extremely” difficult. We experimentally assign weights as follows: “extremely”
easy courses get a weight of 0.5 and “extremely” difficult courses get a weight
of 2. An “extremely” difficult course is hence 4 times more difficult than an
“extremely” easy course. By analyzing University marks system (where our data
came from), for the “extremely” easy courses, we consider an average mark of
4.15 (between A (4.0) and A + (4.3)) and for the “extremely” difficult courses,
an average of 1.15 (between D (1.0) and D + (1.3)).

Subsequently, in order to be able to assign a weight to a course according
to the average mark obtained, we must consider a parametric function that will
take this average mark as input and output the associated weight in accordance
with the limits established above. The function must also be decreasing, i.e. if
the input (the average mark) increases, the output (the weight) must necessarily
decrease. Let β × exp (−αx) be an exponential function where β and α are
parameters to be determined, and x is the average of the marks obtained by the
students who took the course. To estimate the parameters β and α, we use the
limits we fixed. Solving the following equations system:{

β × exp (−1.15α) = 2
β × exp (−4.15α) = 0.5

provides: α = ln(4)
3 and β = 2 exp (1.15 ln(4)

3 )
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Making use of this function that assigns a weight to a course according to
its difficulty, we present in the following subsection our algorithm to create a
personalized data set, which will be used to train machine learning algorithms
and make performance predictions.

2.2 PSAI Algorithm

Algorithm 1. PSAI Algorithm for course A

Input: Prior information on courses (average mark in the course, marks obtained)
took by students that took course A

1: α ← ln(4)
3

2: β ← 2 exp ( 1.15 ln(4)
3

)
3: For each student that took course A:
4: For each course i taken before course A:
5: Let mi be the average mark in the course i (according to all students that

took this course)
6: Let ni be the mark of the current student in course i
7: Compute the score of the student in the course i: Si = ni ×β ×exp (−αmi)
8: End For
9: Compute the total score of the student: S = mean of Si

10: End For
11: Compute the weight of the course A: WA = β × exp (−αmA) where mA is the

average mark in course A
Output: A score for each student and the computed weight for course A

Algorithm 1 provides a dataset that will be used to train the prediction
model. This dataset contains a score for each student and the weight of the
course for which we want to predict the student performance. We also add as an
attribute the overall success rate in the course.

3 Experiments and Results

For the sake of brevity, we present our results only for the following course
(acronyms changed for non-disclosure reasons): ABC2222 : 6483 students with
5256 success and 1227 failures. The question asked to our models is the following:
will a given student fail the course? The method of training and testing in our
experiments is the cross validation [5]. We used the following machine learning
algorithms : decision trees [6], K-Nearest Neighbors [3], Support Vector Machine
(SVM) [2], random forest [1], an ensemble learning model (AdaBoost) [4] and
neural network [7]. The evaluation metric is the F-measure (or F1-score) [8].

Tables 1 shows the results obtained with the different machine learning algo-
rithms. We compare our results with those obtained using a direct (naive)
method (the standard method) which only uses the attributes related to the
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course and the students present in the database. In our case these attributes
are: admission base, citizenship, previous program, legal status, college program,
age, gender, number of course credits obtained and GPA.

Table 1. Failure prediction in ABC2222 results

ABC2222

Algorithm Naive method PSAI

F-measure (%) F-measure (%)

Neural network 32,87 68,47

Decision tree 44,37 66,37

Adaboost 45,70 69,57

k-NN 37,07 64,31

Random forest 47,36 58,30

SVM 27,81 62,75

4 Conclusion

PSAI outperforms standard methods. Despite the imbalanced nature of the data
set including fewer failures than successes, our approach detects many of these
failures. It proves the need to consider several “hidden” aspects including the
difficulty of the courses taken. The main limitation of the approach is related
to the data set itself. Some essential data are missing to improve the model.
We do not have the information of students before their first registration at the
university. Hence, our model can only be used from the second course taken by
the student. In addition, as often when dealing with real data collected over a
long period of time, a large part of the records is unusable because of missing
data and errors/noises.

Reproducibility. This project is publicly released as an open source software
in the following repository: https://gitlab.ikb.info.uqam.ca/khalid/psai
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Abstract. Vehicular traffic is an important planning concern for com-
muters and businesses. However, there is no application available which
can estimate traffic congestion and flow in the future up to five days.
The problem is to develop an application that can predict vehicular traf-
fic density and flow rate based on weather data, calendar data and special
events data. This information would be valuable for commuters planning
short or long- distance trips, and for transportation and infrastructure
departments for better planning the maintenance of roads. The proposed
research will combine image processing and machine learning methods.

Keywords: Traffic estimation · Machine learning · Image processing ·
Weather data · Calendar data

1 Introduction

People have access to the weather forecast and the current traffic situation, but
they do not have a forecast for the traffic over the next couple of days taking into
consideration of the forecasted weather. Future traffic information is important
for if people can be informed about the traffic situation in advance, they can plan
their travel accordingly. There is a need for an application that allows travelers
to make better decisions about travel time and routes based on knowledge of
forecasted weather and special events. Our challenge is to estimate traffic flow
rate and density up to five days in advance for the Mackay Bridge in Halifax,
Nova Scotia.

2 Background

There is a lot of research that has been done in the area of vehicle counting using
video image processing and machine learning with good end results. Manchun
et el. [1] presents a method to detect and count vehicle in complex scenes. Adap-
tive real-time block-wise background updating algorithm introduced in [2] pro-
duces highly accurate detection results. However, video data has been used in
these methods for vehicle counting while in our case image data from NS web-
cam has variable interval of two to seven seconds between consecutive images
c© Springer Nature Switzerland AG 2020
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and in addition to weather data, special events data also influence the prediction
accuracy of traffic flow rate and density.

Prediction of traffic information can be affected by considering the impact of
weather. Rainfall affects traffic volume and the inclusion of rainfall as a model
input improves the prediction accuracy during rainfall events [3]. Jia et al. [4]
concludes that the LSTM family can outperform the DBN in learning the time
series characteristics of traffic data and the results highlights the importance of
considering weather impacts and the considerable improvements attainable in
prediction accuracy. Using deep learning, weather information has also used to
improve the traffic flow prediction using data fusion at decision level. [5].

3 Approach

To predict traffic flow rate and density we need historical traffic data to train and
test prediction models. This data will be extracted from Nova Scotia webcam [6]
images. Parameters like camera position, image quality and frame rate affect the
accuracy of the method. In the image data from NS webcam, varying capture
intervals and the location of the camera, angled from the top left side of the
bridge, makes this task more challenging.

Historical weather data will be obtained from Environment Canada while
special event data, like Christmas or Natal Day, will be extracted from various
web calendars. While weather data and calendar data are the primary factors
affecting traffic density, time of day also plays a vital role as there is an increased
number of cars on the road before and after office hours as compared to other
times of the day.

3.1 Number of New Vehicles per Image Prediction

To estimate traffic flow rate and density, we need historical traffic information
that contains flow rate and density per hour. To get this historical traffic data
we are using image sequence data obtained from NS webcam over a 15-month
period of the Mackay bridge in Halifax (Fig. 1(a)). Image processing and machine
learning techniques are applied to the image sequence data to help estimate
traffic count.

Before passing the images to the machine learning system they are prepro-
cessed to make the learning task easier by identifying the moving objects and
removing background from each image. The Background Subtraction algorithm
is used to identify moving vehicles in an image sequence. The algorithm accepts a
series of images as input and outputs masked images. Where vehicles are identi-
fied as a group of white pixels on an all black background. The image processing
function called Closing is used to remove noise from the vehicles identified in
the current frame. The closing operation is applied on the masked images to fill
small holes inside the detected foreground vehicles.

By implementing element-wise multiplication between an original image and
its closed transform, we get the actual vehicles without a background. To obtain
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the Region of Interest, unnecessary areas are cropped in each image. The NS
Webcam images contain both inbound and outbound lanes of the bridge, but
since the focus of this research is on the outbound lane of the bridge, we crop
out the inbound lane from the image. After applying all these image processing
techniques, the result is a relatively small image of three channels containing
only vehicles (Fig. 1(e)).

The processed images are used to train a CNN-LSTM machine learning model
as shown in Fig. 2. The goal is to train the model to predict the number of new
vehicles in each frame. Each vehicle takes an average of 3 frames to pass the
Region of Interest. Therefore, to predict the number of new vehicles in a given
image, the model accepts a sequence of three consecutive frames (images) and
the time in milliseconds since the last frame.

Fig. 1. Image Processing

Fig. 2. CNN LSTM
architecture

Fig. 3. Auto-regression

3.2 Traffic Flow Rate and Density Prediction

An LSTM model will be trained to predict the traffic flow rate and density for
the next hour using weather data, calendar data and special event data for each
hour of every day over 2019. The model will be rolled forward to predict the
traffic flow rate and density for each hour up to the next five days in the future.

For Data preparation, vehicular count must be converted into traffic flow
rate and density on an hourly basis. To do this, we aggregate the predictions
made by the “number of new vehicles” CNN-LSTM model for the given hour
and apply the equations. To calculate the flow rate, f = m/Δt where, m is the
number of vehicles and Δt is the time period for which we are calculating traffic
flow rate. To calculate the density, d = n/Δx where n is the number of vehicles
and Δx denotes an Area.

We are using weather data, calendar data and special event data formatted
sequentially. To train a model to predict up to five days in advance, we will use
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our model to predict traffic for the next hour and then we will use that prediction
as an auto-regressive value to predict the traffic flow rate and density for the
next hour, up to five days into the future. Initially, the LSTM model will have
one hidden layers. The results will be analyzed and the model will be modified
to achieve the best accuracy.

Figure 3 illustrates the auto-regressive process, where FRt(i) and FRt(i+1)
are the traffic flow rates for ith hour and i + 1 hour respectively, Dt(i) and
Dt(i + 1) are traffic densities for ith hour and i + 1 hour respectively, Wt(i) is
weather data, Ct(i) is calendar data, and SPt(i) is special event data.

4 Empirical Studies Thus Far

We will use the first 12 months of data to train the models and the remaining
3 months to test the models. The mean absolute error (MAE) is used as the
performance measure for both models. We have developed a CNN-LSTM model
as described in Sect. 3.1, that produces MAE = 0.67 counts using a small dataset
of only 150 images over only 6 min of time. By aggregating the vehicle counts
the accuracy is 90.4%. Our goal is to develop a model that predicts traffic flow
rate with a MAPE >85% and predicts traffic density >85%.

5 Conclusion

The result shows that the approach is promising with a small dataset. CNN-
LSTM networks have the potential to solve the vehicular counting problem. The
future work is to train a model with a large data set and then convert the results
into traffic flow rate and density. These will be used as a label data for the model
that will predict traffic flow rate and density based on weather data, calendar
data and special event data.
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Abstract. Patients with dementia will have difficulty properly com-
municating life’s challenges which can cause them to become agitated,
resulting in verbal or physical aggression. Monitoring the risk of a resi-
dent harming themselves or others due to aggressive behaviour is a prior-
ity within a long-term care facility where dementia is present. Caregivers
at long term care facilities record resident health and behaviour digitally
either as structured data or unstructured text, providing an on-going log
of each resident’s patient history. We aim to use natural language process-
ing (NLP) and machine learning (ML) techniques to develop models that
can predict the probability of a resident exhibiting aggressive behaviours
that may harm themselves or others within the next week.

Keywords: Natural language processing · Dementia · Machine
learning · Aggressive behaviour

1 Introduction

Dementia is a general term for progressive diseases that cause a decline in mem-
ory, language, critical thinking and other reasoning aptitudes that influence an
individual’s capacity to perform regular activities. Difficulty in communicating
makes dementia patients agitated and results in verbal or physical aggression.
Caregivers at long term care facilities record resident health and behaviour dig-
itally either as structured data or unstructured text, providing an on-going log
of each resident’s patient history. NLP techniques have been used to extract key
features of persons’ behaviour or social interactions from text such as emails,
blogs, tweets, Facebook entries, etc. These features have been used to build
ML models that can predict the persons’ sentiments, propensity to purchase,
and likely next action [1]. Similar work in this area requires additional data to
be recorded from residents using sensors [3]. We propose that it is possible to
develop similar ML models to predict the probability of a resident’s aggressive
behaviour based on structured and unstructured data that long term care facili-
ties have in their computing system. Our objective is to train a deep LSTM-RNN
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model to predict the probability of an aggressive act by a resident each day for
the next seven days. Our approach will be split into six sections: 1. Structured
and Unstructured data collection 2. Data cleaning 3. Feature Creation 4. Fea-
ture Consolidation 5. Development and Testing of deep RNN 6. Prediction and
Visual Comparison.

1.1 Problem Statement

Patients with dementia will eventually experience a significant loss of cogni-
tive function. As a result, they will have difficulty solving and communicat-
ing their physical problems and emotional pain appropriately. This is clinically
described as the behavioural and psychological symptoms of dementia or respon-
sive behaviours [8]. These can range from lower-risk behaviours such as restless-
ness and repetitiveness to higher risk behaviours such as agitation and verbal
or physical aggression. Therefore, monitoring the risk of a resident harming
themselves or others is always a priority within a long-term care facility where
dementia is present. Caregivers are trained to recognize signs of degrading states
of dementia and commons sources of stress for people with dementia but predict-
ing when the aggressive behaviour is going to happen needs more investigation.
We believe by using machine learning (ML) techniques we can predict the prob-
ability of a resident exhibiting aggressive behaviours.

2 Approach

At the long-term care facilities we are working with, care providers record res-
ident behaviour using the following four EHR documentation tools: patients
check-in demographic record, assessment reports (every 90 days), progress notes
made routinely, and incident reports following a significant occurrence such as
a violent outburst. Each of these are recorded digitally as structured data or
unstructured text by the facilities’ staff and provide an on-going log of each
resident’s patient history. When a violent situation occurs, often caregivers will
review recent portions of the progress notes or assessment report to help deter-
mine the potential cause of such incidents. However, this commonly happens
after the incident, to better understand why it occurred. Shannex, a family-
owned and operated provider of long-term care in Nova Scotia, is exploring
how to develop a system that predicts the probability of resident aggressive
behaviours prior to an incident occurring.

A computerized clinical decision support (CDS) aims to aid decision making
of health care providers and the public by providing easily accessible health-
related information at the point and time it is needed [2]. NLP is instrumental
in using free-text information to drive CDS, representing clinical knowledge and
CDS interventions in standardized formats, and leveraging clinical narrative [5].
In principle, NLP could extract the facts needed to represent clinical knowl-
edge and to develop many kinds of decision rules to be used within a long-term
care facility. The following structured data and unstructured textual data for
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each patient will be collected: patients check-in demographic record, assessment
reports progress notes made routinely, and incident reports and organized by
date and time. Features will be created from the structured data using data
engineering methods. Standard data engineering methods will be developed using
Python and associated libraries such as Pandas. Features will be created from
the unstructured textual data using NLP methods and data engineering meth-
ods. We will create an array of features using a bag-of-words approach that
will include keywords (stop word removal, stemming), word letter capitaliza-
tion, part-of-speech tagging, and n-grams of words using NLTK [4] and Stanford
CoreNLP [7]. All features will be consolidated into a set of temporal records for
each resident and include a date and time stamp as well as a label indicating
the degree of aggression that has (or has not) occurred at that time. Assistance
will be needed from Shannex personal in order to annotate records associated
with aggressive behaviour. Our approach will be to create data covering from
2010 to 2019 up to 4010 residents on 15 Shannex facilities for developing and
testing predictive models. Deep recurrent neural network (RNN) models will be
developed to predict the probability of an aggressive act by a resident in the next
7 days given the resident’s temporal record sequence to date. The model will be
tested using an independent set of resident temporal records for residents who
have and who have not harmed themselves or others at the facility. The success
of the approach will be analyzed, and improvements will be made to increase
the performance of the predictive model, in accordance with the success criteria.

2.1 Data Preparation

To protect patients’ confidentiality from the academic research team, there are
some privacy-preserving data sharing techniques for medical text data focusing
on detection and removal of patient identifiers from the dataset. Anonymization
or de-identification is one of the techniques to protect patients’ privacy in sharing
medical and healthcare data. In our approach, we use the Stanford CoreNLP
system [7], an annotation-based NLP processing pipeline to tokenize and label
the text. After anonymizing names, all features will be consolidated into a set of
temporal records for each resident. Each patient’s record consists of an incident
report. In the incident reports, there is a category called “struck out” where
all aggressive behaviours are recorded. Via NLP techniques, we will train our
model to extract words such as punch, kick, swear, etc. indicating aggression
and train our model to learn where and when an incident of aggression occurs.
Each record will include a label indicating the degree of aggression that has (or
has not) occurred at that time.

2.2 Recurrent Neural Network Model Development

Recurrent Neural Networks (RNNs), are good at processing sequence data using
sequential memory for prediction [6]. Sequential memory is a mechanism that
makes it easier for the human brain to recognize sequences over time. Sequence
data comes in many forms and text is one such form. It can be broken up into
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a sequence of words to predict the possibility of an event such as a record of
an aggressive act that would be recorded in an incident report. Models will be
trained on residents who are not in the test set to ensure predictions generalize
on unseen residents’ records. Ultimately, to evaluate our approach we will use 5-
fold cross-validation. F1 score will be used as our evaluation metric since binary
accuracy may be affected by an unbalanced class presence.

3 Conclusion and Future Work

We aim to develop models using natural language processing (NLP) and machine
learning (ML) techniques that can predict the probability of a resident exhibiting
aggressive behaviours that may harm themselves or others within the next week.
In the future, Shannex may use the predicted level of aggression, to electronically
generate an alert for staff so that steps can be taken to reduce the probability
of verbal or physically aggressive behaviour.
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Abstract. The importance of performing sentiment analysis is noticed
in various fields, such as politics, education, marketing, and so forth.
However, in the Arabic language domain, there are limited studies that
focus on analyzing the sentiments in the text in comparison to the
English language. There is a lack of available annotated Arabic datasets
covering specific domains (such as real-estates and automobiles) and con-
taining data written in both modern standard Arabic (MSA) and the
Gulf Cooperation Council (GCC) dialect. Furthermore, the limited and
inadequate adoption of natural language processing and machine learn-
ing techniques is noteworthy in the current sentiment analysis contribu-
tions targeting the Arabic language. Therefore, the gap could be bridged
by creating real-estates and automobiles datasets. Moreover, customiz-
ing, enhancing, and applying suitable natural language processing tech-
niques and machine learning algorithms to analyze the sentiments in
these datasets will also contribute to filling the current gap. Performing
these steps will benefit the people interested in analyzing the sentiments
related to real-estates and automobiles, and will add a new scope to the
Arabic sentiment analysis field. Future researchers in this field could also
be benefited by using the datasets that will be freely available. The afore-
mentioned factors encouraged the researcher to conduct this research in
order to fill the current gap in this area.

Keywords: Sentiment analysis · Arabic language · Automobiles ·
Real-estates · Machine learning

1 Problem Statement and Motivation

Sentiment analysis is a key research area in the field of applied linguistics. How-
ever, the sentiment analysis contributions addressing the Arabic language are
not as mature as the contributions addressing the English language [5]. There
is a lack of contributions specifically addressing sentiment analysis in automo-
bile and real-estates online reviews in the Arabic language, particularly in the
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GCC dialect. To fill this gap, it is required to develop a special linguistic treat-
ment and create dedicated datasets that work with specially adjusted machine
learning classifiers to analyze the sentiments in the Arabic text. This challenge
motivated the author to conduct this research.

2 Literature Review

The researchers in [1] proposed a system that applied a multi-way sentiment
analysis approach to Arabic reviews. The dataset contains 63,257 reviews about
books written in both colloquial and MSA. The highest accuracy result they
found is 57.8% by the K-Nearest Neighbor for the classification approach that
has four-levels hierarchical structure applied on five different partitions of the
dataset. Another research conducted by the researchers in [4], targeted the clas-
sification of 54,716 Arabic tweets related to Egypt. The highest accuracy result
they obtained is 69.10% by the SVM classifier.

3 Research Methodology

The novelty of this research lies in filling the gap of lacking a specific sentiment
analyzer that works on datasets containing data written in both MSA and GCC
dialect and are related to real-estates and automobiles. The proposed solution
is composed of main stages, which are briefly described below.

3.1 Data Gathering and Annotation

The data related to automobile and real-estates is automatically gathered through
specifically created web scrappers (developed using Python’s BeautifulSoup
library) from the three famous websites in GCC “Haraj for automobile data,
Hawamer and Aqarcity for real-states data,” and then filtered to leave data records
containing sentiments (positive, negative or mixed). The automobiles dataset con-
tains around 6,585 comments divided into three sentimental categories (positive,
negative and mixed), and it is focusing on almost 29 topics related to automo-
biles. On the other hand, the real-estates dataset contains around 6,434 comments,
and it is divided into three sentimental categories (positive, negative and mixed),
and it focuses on almost 85 topics related to real-estates. For instance, the Arabic
sentence " "
which means “Young men and women could not marry because of the high
cost of real estate” represents negative records. Moreover, the Arabic
sentence " "
which means “The Pajero is an excellent and a strong motor, but I think its spare
parts are a little bit expensive” represents mixed records. Finally, the Arabic sen-
tence " "which means “Altima is excellent and
very affordable” represents positive records.
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The data in both datasets is annotated by three annotators. Following that,
the inter-rater agreement is computed through Fleiss Kappa to show the consis-
tency and agreement level between annotators. For both datasets, the computed
Fleiss Kappa degree for inter-rater agreement exceeded 82%, which reflects a
degree of almost perfect agreement.

3.2 Data Preprocessing and Features Selection

The system is developed using Python programming language and libraries. The
data is cleaned to ensure it does not contain irrelevant and noisy data and it
is suitable for classification. A special treatment exclusively related to Arabic
language text is followed in this stage to clean and normalize the data. This
treatment includes addressing regular expressions and diacritics. Furthermore, a
list containing around 683 Arabic stop words is prepared. These stop words are
excluded from the text as they are considered redundant words lacking valuable
semantics. In features selection step, the initial features are decreased and a
subgroup retaining sufficient information for acquiring satisfactory performance
outcomes is chosen. As part of features selection, both Stanford POS tagger and
lemmatizer specifically developed to work on Arabic text are adopted. Moreover,
Term Frequency-Inverse Document Frequency (TFIDF) and the N-Gram feature
are also selected as features to reduce the dimensionality of the dataset [2].

3.3 Datasets Preparation

The datasets are divided into training and testing datasets. Before splitting
the datasets, the datasets are randomly shuffled to redistribute and reorganize
the data into suitable sections. The case of an unbalanced dataset is treated
as well to avoid inadequate representations of minority classes in the training
dataset. SMOTENC is adopted to perform oversampling on the minority classes.
Following that, the datasets are partitioned into 70% for the training set and
30% for the testing set to ensure attaining adequate training and testing.

3.4 Data Processing and Visualization

A total of 22 machine learning classifiers are adopted to perform the classification
process. The hyperparameter tuning process is performed to select the most
optimum hyperparameters for those classifiers. The selected hyperparameters
rendered the best scores when tested in the training stages. A random search
is adopted to perform the hyperparameter optimization as it has proven to be
more efficient than the manual and the grid search approaches [3]. Further, the
word cloud is adopted to visually depict the most frequent and sentiment words
in the datasets, and the ROC curve is chosen to plot the true and false-positive
rates.
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4 The Results

For the automobile dataset, both the Ridge and the Ridge CV classifiers out-
performed all other adopted classifiers, scoring 82.6% in the accuracy results.
In terms of the precision weighted averages, the Ridge, the Ridge CV, and the
Logistic Regression classifiers topped the other classifiers by scoring 83%. In
terms of the recall weighted average, both the Ridge and the Ridge CV clas-
sifiers exceeded the other classifiers by scoring 83%. Finally, in terms of the
F1-score weighted averages, the Ridge, the Linear Support Vector, the Ridge
CV and the Logistic Regression classifiers had the highest result of 82%. For the
real estate dataset, the Ridge CV classifier outperformed all other classifiers by
scoring 77.4% in the accuracy results. In terms of the precision weighted aver-
ages, the Ensemble Soft Vote and the Ridge CV classifiers outperformed all other
classifiers by scoring 77%. In terms of the recall weighted average, the Ridge, the
Ensemble Soft Vote, the Linear Support Vector, the Logistic Regression CV and
the Ridge CV classifiers surpassed all other classifiers by scoring 77%. Finally, in
terms of the F1-score weighted averages, the Ridge CV classifier outperformed
the other classifiers by scoring 76%.

Finally, these results are competitive when compared with other contribu-
tions’ results addressing the Arabic language; some of these contributions are
shown in the literature review. This shows that the proposed system has an
opportunity to be adopted and further enhanced in future contributions due to
the satisfactory results.

5 Conclusion and Future Work

Notwithstanding the suggested improvements in the near future outlined below,
the current outcomes of the proposed system in this research reflect a promising
future. Nevertheless, in the near future, more experiments and studies could be
conducted on how to enhance the results through improving the data cleaning
process, addressing negated phrases, including a dictionary as a hybrid approach,
and adopting advanced deep learning techniques. Moreover, the datasets could
be enlarged to contain more positive, negative and mixed samples, which should
improve the classification results.
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