
Emotional Contagion in Open Software
Collaborations

Luigi Benedicenti(B)

University of New Brunswick, Fredericton, NB E3B 5A3, Canada
luigi.benedicenti@unb.ca

Abstract. Emotional contagion is a mechanism by which affect experienced by
one person in a group is transmitted to others in the same group. When this hap-
pens, the group dynamic is influenced. This paper provides a method to analyze an
Open Software project to determine the connection between emotional contagion
and software production in such an environment, if any. The project change man-
agement database is mined to extract change comments in chronological order
and by user id. Sentiment analysis is employed to determine affect in the change
originating from each userid. File changes are tracked to link them together in the
same areas, using a temporal and file locality principle. The correlation between
affect and area is then used to prove or disprove whether or not emotional con-
tagion influences open software production. Although in this paper the proposed
method is applied to only one project, the method is general and can be reused for
experimental validation.

Keywords: Emotional contagion · Software Engineering · Open software ·
Affect Theory

1 Introduction

The application of Affect Theory to Software Engineering is becoming relevant in mod-
ern software development that involves collaboration [1–3]. This is particularly relevant
in environments in which collaboration occurs remotely, because it is a very well-known
fact that online comments allow and sometimes encourage a less respectful engagement.
Open Source Systems (OSS) are a particularly apt instance of this trend.

One particularly relevant aspect of Affect Theory in the case of OSS is Emotional
Contagion. Emotional Contagion occurs when the affect inherent in a behavior, or in the
case of online collaboration a message, is shared with others. The emotional content of
the message can alter the affect associated with people who read the message, enacting
a propagation of affect that resembles the spread of a contagion [4].

This paper describes a systematic method to analyze an OSS project to determine
whether emotional contagion occurs. This method is relevant to validate the hypothesis
that emotional contagion occurs in OSS projects, and to determine the point in time
when this happens, to create the opportunity to assess how the emotional contagion may
be affecting the development process and the quality of its output. The method presented

© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
V. Ivanov et al. (Eds.): OSS 2020, IFIP AICT 582, pp. 47–54, 2020.
https://doi.org/10.1007/978-3-030-47240-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47240-5_5&domain=pdf
http://orcid.org/0000-0003-4036-9593
https://doi.org/10.1007/978-3-030-47240-5_5


48 L. Benedicenti

in this paper is sufficiently general to be repeatable, allowing for comparisons and meta-
analyses that can quantify the degree of emotional contagion occurrence in OSS and
support future analyses and the creation of new development processes.

2 Previous Work

There is a growingbodyofworkonAffect Theory applied toSoftwareEngineering [1–3].
The research in this area is an attempt to characterize the influence of affect on software
production from different points of view. Although initially thework has concentrated on
the correlation between affect and productivity or quality, gradually this focus has been
expanded to amore holistic approach that involves attributes of the development process,
qualities of the artifacts produced, and well-being of the participant in the process [4].

Some of the more recent focus of such research is in the agile requirements field
[5]. Part of the author’s own research has focused on optimization of requirements
prioritization methods using decision methods to reduce the occurrence of emotional
contagion [6]. In such a knowledge-intensive activity, cognitive trust plays an important
role, but so does affective trust, which encompasses the social perspective of trust [3].

In distributed OSS development, interactions are more severely limited, as in most
cases opportunities for face-to-face meetings and teleconferences are non-existent. All
that remains is, at best, a combination of social networks, email lists, and comments
in software repositories. In most cases, in fact, software repositories are all that links
together each developer.

The constraints imposed by repository-based online interactions in turn limit the
opportunities for cognitive trust, as the information on contributors only comes from a
single source. However, given that the source contains a number of artifacts and docu-
mented interventions, cognitive trust is not severely impaired.On theother hand, affective
trust can only be based on the tone of comments in the repository. This limited amount
of information can lead to misunderstandings, creating an environment that is ripe for
emotional contagion.

3 Method Workflow

The development of amethod to analyze the influence of affect onOSS development, and
in particular the presence of emotional contagion, is grounded in a series of principles
and assumptions. These principles and assumptions help define the scope of the method,
which is important in determining its applicability.

The method presented in this paper works under the assumption that face-to-face
interactions among developers are severely limited or non-existent. This assumption is
paramount to the definition of the data set for the analysis. Therefore, the applicability
of this method on teams in, for example, a company, is not considered.

This method also relies on the locality principle, in that the influence of affect in
standard working conditions is mitigated by time and by the location of each change.
In other words, recent changes to a common artifact have higher impact than changes
distributed over several days and artifacts. This is because most emotions and moods



Emotional Contagion in Open Software Collaborations 49

change relatively rapidly (over a period of hours) and the sense of ownership for a specific
artifact lowers as the developer’s focus shifts.

A further assumption is that there exists a repository that contains a documented
evolution of the software being produced. An example of such a repository is GitHub [7].

Given these assumptions and principles, it appears reasonable to limit the scope of
the method to situations that do not allow direct face-to-face interaction and that involve
a relatively large number of developers. OSS development falls within this scope, and
is what this paper focuses on.

The method’s workflow, therefore, is as follows.

1. Retrieve data from a repository
2. Sort it by locality
3. Evaluate the affective content of the data
4. Determine if episodes of contagion exist

Each of these steps is described below. To illustrate the method, we will use an example
that will be further discussed in the next section.

3.1 Retrieve Data from a Repository

Data retrieval from a repository is a relatively straightforward operation. To keep things
as simple as possible, the retrieval makes use of generally available tools like a text editor
and a spreadsheet, and adopts general file formats like text and comma-separated values.
Even with these simplifications, the data retrieval procedure remains delicate and needs
to be checked for accuracy.

The requirements for the choice of a repository is that it contain the information
needed to perform an analysis of the affect of a contribution, in a chronological order,
and with an indication of the artifacts that have been changed. At a minimum, therefore,
the data needed for the analysis is the date of the contribution, the file(s) affected by the
contribution, and a comment explaining the contributions made.

Our primary choice for a repository is GitHub [7]. This repository contains all the
needed information, is free for most open software development, and it is very popular,
although it might not be considered the most advanced software repository currently
available. Another advantage is that the software program that allows interaction with
the repository, Git, is a free and open source software available on most platforms, has
been proven extensively, and is supported by a large community of developers [8].

To retrieve the data from the repository, we first clone it on the local machine. After
that, we extract the information we need using Git commands. In particular, the log
command can be used to obtain all change information with the exception of the files
affected. For that, we need to use the diff command. Depending on the next steps, it might
be necessary to further process the data into a format that is readable by the analytical
tool. In our case, we have processed the data to create a comma-separated value list that
is readable by Wolfram Mathematica, our choice of analytical too [9].



50 L. Benedicenti

3.2 Sort It by Locality

The sorting by locality is accomplished in two ways. The sorting by date is simple, as
we can access the change log and sort it accordingly. The sorting by file is a bit more
complex, as a change item can encompassmultiple files. In this case, we resort to creating
an entry for each file, and then sorting them into separate bins, one per file. This results
in a set of bins, one per file, each of which is sorted by date.

3.3 Evaluate the Affective Content of the Data

To evaluate the affective content of the datawemake use of a sentiment analysis classifier.
BecauseMathematica provides an existing classifier, we adopted it, keeping in mind that
this built-in classifier only works for English words.

Sentiment Analysis is an effective tool for the determination of affective content, but
it has its limitations. Firstly, the classifier comes with a customizable level of confidence.
Secondly, it is based on amachine learning algorithm that depends on the level of training
that the classifier has received. Thirdly, sentiment analysis only provides an indication
of the type of affect in a sentence (Positive, Neutral, or Negative); but not the intensity
of the affect.

This can be problematic in many ways. The customizable level of confidence needs
to be declared in any analysis to make it repeatable. Further, the use of a preset classifier
means that it is not possible to control the type of training the classifier has received. Our
reliance on a general-purpose sentiment analysis tool is a restriction of the usefulness of
the method, because to make this repeatable we need to ensure that the same classifier
is used on every data set.

Additionally, the classifier result is discrete. The provision of an intensity value for
sentiment analysis is not available in most tools, which limits the level of refinement of
the analysis.

3.4 Determine If Episodes of Contagion Exist

Numerous options exist for this determination. The simplest of these options is to gener-
ate a series of affect sequences, which are chronological representations of the changes
classified by the sentiment analysis tool for a specific file, and then perform a manual
inspection of each generated affect sequence.

Other possibilities include more sophisticated analyses, which involve a pattern
recognition algorithm to detect a change in affect following a single change comment
(i.e., influencing), or even convolutional analysis with kernels designed to highlight
emotional contagion.

Our implementation of this stage is to translate the results of the affect sequence into
numerical data: −1, 0, and 1 for positive, neutral and negative values respectively, then
integrate these numerical sequences over time, and provide a graphical representation
that can be further analyzed.

It is important to note, however, that the preceding data collection and processing
is fully repeatable, and that should additional algorithms become available, it would be
possible to apply the new algorithms to the same data sets without any loss of generality.



Emotional Contagion in Open Software Collaborations 51

4 Example

The simple example we present in this section exemplifies the steps presented in the
previous section.The example has been chosenpurposely tomake it as simple as possible,
rather than as comprehensive as possible. Thus, this example has limited external validity.

Github has a large number of OSS projects. A small but representative one is opencv
[10]. This open source computer vision library has received contributions from more
than 1,000 contributors and has a change log with more than 27,000 entries. Although
not the largest contribution by any means, it is sizeable enough to prove interesting for
this example.

To acquire the original data set, we cloned the GitHub library in a local directory
on the research machine (an iMac Pro with 64 GB of RAM and a 10-core Intel Xeon
W processor). We then extracted the information we needed from the repository with a
combination of Git commands, an example of which is below (see Fig. 1).

Fig. 1. GitHub commands for data set extraction (Sample).

Following the extraction, we prepared the data for ingestion by Mathematica, and
then loaded it (see Fig. 2).

Fig. 2. Importing the data into Mathematica.

Sentiment analysis and locality can be applied very simply, when the data is already
binned; it is then possible to create an affect sequence (see Fig. 3).

The resulting sequence can be integrated and plotted. In Fig. 4, we show the first 500
data points in the affect sequence and highlight a few instances of emotional contagion
found in it. The X axis is time, and the Y axis is the emotional accumulation level.



52 L. Benedicenti

Fig. 3. Sentiment analysis, sorting, and affect sequence creation.

Fig. 4. Affect sequence plot.



Emotional Contagion in Open Software Collaborations 53

5 Discussion

There are a number of restrictions that come from the adoption of principles and assump-
tions detailed in Sect. 3. These restrictions affect the applicability of the method and its
validity.

In terms of applicability, not all repositories are suitable for this kind of analysis.
Repositories wherework is checked in by a very small group of developers are unsuitable
for analysis because the assumption of low cognitive and affective trust is not true. In
general, small communities are able to organizemuchmore tightly, which leads to higher
levels of cognitive and especially affective trust. This may happen in larger communities
too (consider the level of affective trust offered to longstanding community contributors
such as Linus Torvalds, for example), but it is much rarer.

As well, repositories where contributors all work in close proximity will not be
suitable as the increased level of communication, especially for face-to-face commu-
nications, increases the level of affective trust. If this higher level of affective trust is
verified, however, these repositories may be used to detect whether a higher level of
affective trust changes the occurrences of emotional contagion.

In terms of validity, internal validity greatly depends on the availability of a large
number of check-in information, and the ability of the developers to provide clear
commentary with some sort of emotional content (either explicit or implied).

The more difficult form of validity, however, is external validity. Results from a
single data set have no external validity and can only be representative of the repository
they come from. To obtain a degree of external validity, many repetitions will be needed
and a common format for the presentation and archival of results will be necessary. If
this happens, then a distribution of results will be created that can be representative of a
category of software development falling within the scope of this method.

6 Conclusions

This paper presented a method to determine whether emotional contagion occurs in OSS
development. The method relies on the locality principle, and assumes that in-person
interactions are limited, and that contributors rely on the comments in the repository
to coordinate their work. The method works by analyzing the emotional content of
developers comments in code check-ins to repositories. The example provided shows that
the method is able to detect patterns in emotional content showing emotional contagion
in a specific repository.

Themethod is limited in its scope and validity by the assumptionsmade in developing
it. As well, its external validity cannot be assessed through a single example. Future
work includes further streamlining of the data collection, a modified analysis method
that relies on interpolated points to perform convolutional analyses in addition to the
standard visual inspection, and a better structured manner to integrate the results from
each local file bin.



54 L. Benedicenti

References

1. Graziotin, D.: Towards a theory of affect and software developers’ performance. Ph.D. Dis-
sertation as defended on January 12, 2016 at the Faculty of Computer Science of the Free
University of Bozen-Bolzano (2016)

2. Graziotin, D., Fagerholm, F., Wang, X., Abrahamsson, P.: On the unhappiness of soft-
ware developers. In: Proceedings of the 21st International Conference on Evaluation and
Assessment in Software Engineering (EASE 2017), pp. 324–333. ACM, New York (2017)

3. Calefato, F., Lanubile, F.: Affective trust as a predictor of successful collaboration in dis-
tributed software projects. In: Emotional Awareness in Software Engineering (SEmotion),
IEEE/ACM International Workshop, pp. 3–5. IEEE (2016)

4. Graziotin, D., Fagerholm, F., Wang, X., Abrahamsson, P.: What happens when software
developers are (un)happy. J. Syst. Softw. 140, 32–47 (2018)

5. Ochodek, M., Kopczynska, S.: Perceived importance of agile requirements engineering
practices–a survey. J. Syst. Softw. 143, 29–43 (2018)

6. Alhubaishy, A., Benedicenti, L.: Toward amodel of emotion influences on agile decisionmak-
ing. In: Proceedings of the 2nd International Workshop on Emotion Awareness in Software
Engineering, pp. 48–51. IEEE Press (2017)

7. GitHub homepage. http://www.github.com. Accessed 02 Jan 2020
8. Git homepage. http://git-scm.com. Accessed 02 Jan 2020
9. Wolfram Mathematica homepage. http://www.wolfram.com. Accessed 02 Jan 2020
10. Opencv GitHub page. https://github.com/opencv/opencv. Accessed 02 Jan 2020

http://www.github.com
http://git-scm.com
http://www.wolfram.com
https://github.com/opencv/opencv

	Emotional Contagion in Open Software Collaborations
	1 Introduction
	2 Previous Work
	3 Method Workflow
	3.1 Retrieve Data from a Repository
	3.2 Sort It by Locality
	3.3 Evaluate the Affective Content of the Data
	3.4 Determine If Episodes of Contagion Exist

	4 Example
	5 Discussion
	6 Conclusions
	References




