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Abstract

Neuregulins, members of the largest subclass 
of growth factors of the epidermal growth fac-
tor family, mediate a myriad of cellular func-
tions including survival, proliferation, and 
differentiation in normal tissues through bind-
ing to receptor tyrosine kinases of the ErbB 
family. However, aberrant neuregulin signal-
ing in the tumor microenvironment is increas-
ingly recognized as a key player in initiation 
and malignant progression of human cancers. 
In this chapter, we focus on the role of neu-
regulin signaling in the hallmarks of cancer, 
including cancer initiation and development, 
metastasis, as well as therapeutic resistance. 
Moreover, role of neuregulin signaling in the 
regulation of tumor microenvironment and 
targeting of neuregulin signaling in cancer 
from the therapeutic perspective are also 
briefly discussed.
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1.1  Introduction

Over the past two decades, tumor has increas-
ingly been recognized as organ that results from 
the co-evolution of malignant cells and their 
direct environment [1, 2]. The tumor microenvi-
ronment (TME) encompasses extracellular 
matrix (ECM) and various non-transformed cells 
including fibroblasts, immune infiltrates, and 
vascular vessels recruited from nearby local or 
distant tissues [3]. Through providing matrices, 
cytokines, growth factors, as well as vascular net-
works for nutrient and waste exchange, the TME 
plays an essential role in tumor initiation, pro-
gression, invasion, metastasis, and resistance to 
therapy [4].

Cumulative studies have demonstrated that 
the cross talk between cancer cells and their TME 
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involves reciprocal juxtacrine and paracrine sig-
naling pathways. Among them, neuregulin 
(NRG) signaling has long been recognized as an 
important player in regulating tumor progression 
[5]. Neuregulins (NRGs) are members of the 
largest subclass of polypeptide factors that bind 
to receptor tyrosine kinases of the ErbB family 
and mediate a myriad of cellular functions includ-
ing survival, proliferation, and differentiation in 
normal tissues [6]. However, there is mounting 
evidence that dysregulated neuregulin signaling 
plays important role in initiation and develop-
ment of a variety of human cancers via regulating 
cancer cells and/or the TME [7, 8]. Thus, the neu-
regulin signaling is emerging as therapeutic tar-
get in exploring novel strategy against cancer [9, 
10]. The aim of this chapter is to discuss how 
neuregulin signaling takes an important part in 
regulating the tumor biology. We also address the 
targeting of neuregulin signaling in cancer from 
the therapeutic perspective.

1.2  Overview of Neuregulin 
Signaling

NRGs are a family of structurally related signal-
ing proteins that mediate cell–cell interactions in 
a broad spectrum of tissues including breast, 
heart, nervous system, and others [11, 12]. 
Identified independently over two decades ago by 
several different research groups, these peptide 
growth factors were originally described as neu 
differentiation factor (NDF) [13], heregulins 
(HRGs), acetylcholine receptor-inducing activity 
(ARIA) [14], glial growth factors (GGFs) [15], 
and sensory and motor neuron-derived factor 
(SMDF) [16]. NRG was first characterized in rat 
and human as a putative ligand for the ErbB2 [13, 
17, 18]; however, it was later showed that the 
actual receptors of NRG were ErbB3 and ErbB4 
[19, 20]. Currently, 4 NRGgenes, NRG-1, NRG- 
2, NRG-3, and NRG-4, encoding more than 30 
different isoforms through multiple promoter 
usage and alternative splicing, have been 
described [7, 21–24]. Moreover, studies are 
 continually revealing that the family of NRGs 
may be larger than currently known [25–27].

The structures and distribution of different 
isoforms of NRG had been well reviewed [8, 11]. 
All NRGs share a typical EGF-like domain, an 
important structure which it alone is sufficient for 
receptor binding and the activation of intracellu-
lar signaling pathways. This extracellular domain 
contains about 50 amino acids and is character-
ized by 3 pairs of cysteines that are important for 
its tertiary structure and biological function. The 
differences in EGF-like domain define the α and 
β isoforms of NRG. Among the four members of 
NRG gene, NRG-1 is the best characterized one 
whose biological functions had been extensively 
studied. Transcribed from the same NRG-1 gene 
located on human chromosome 8p12, the iso-
forms of NRG-1 mRNA differ in their coding 
segment composition due to initiation of tran-
scription from different NRG-1 gene promoters 
and alternative splicing which give rise to six 
types of NRG-1 (types I, II, III, IV, V, and VI). 
These different types of NRG-1 are also divided 
based on the differences in their extracellular 
amino-terminal domains with types I, II, IV, and 
V sharing an immunoglobulin-like (IgG-like) 
domain followed by a glycosylation-rich region 
(type I) or a GGF-specific (kringle) domain (type 
II) while type III of NRG-1 containing a cysteine- 
rich domain (CRD) that loops back intracellu-
larly along with its N-terminal sequence. In 
addition, whether the isoform is initially synthe-
sized as a transmembrane or nonmembrane pro-
tein adds more dimensionality to different 
isoforms of NRG.  The human NRG-2 gene 
located on chromosome 5q31.2 encodes six iso-
forms of NRG-2 (α, β, αν, βν, α*1, and α*2) [21, 
28–30]. The human NRG-3 and NRG-4 genes 
were mapped to chromosome 10q23.1 and 
15q24.2, respectively [31, 32]. While the NRG-1 
transcripts were evidenced to be broadly 
expressed in multiple tissues, both NRG-2 and 
NRG-3 were found to be mainly expressed in the 
nervous system. Although the expression of 
NRG-4 mRNA has only been detected in the pan-
creas and to a lesser extent in muscle [24], NRG-4 
protein expression was found in bladder as well 
as prostate cancer [32, 33]. Structurally, NRG-4 
is distinct from other NRGs, which contain no 
recognizable motifs other than the EGF-like 
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domains. Most NRGs are synthesized as large 
transmembrane precursor proteins with the EGF- 
like domain connected to the transmembrane 
domain by a juxtamembrane linker. These NRGs 
can be activated and released from the membrane 
through proteolytic processing, which has also 
been extensively studied and reviewed [34–37].

In the current body of knowledge, NRGs 
mainly elicit their biological functions via bind-
ing of ErbB3 or ErbB4 in an autocrine, paracrine, 
or juxtacrine way (Fig. 1.1) [5, 38, 39]. The ErbB 
subfamily of transmembrane receptor tyrosine 
kinases (RTKs) consists of four closely related 
transmembrane receptors: ErbB1 (also known as 
EGFR or HER1), ErbB2 (HER2), ErbB3 (HER3), 
and ErbB4 (HER4) [40]. Among all four ErbB 
subfamily members, NRGs can directly bind to 
the ErbB3 and ErbB4 receptors. All products of 
four NRG genes can bind ErbB4, whereas only 
NRG-1 and NRG-2 proteins can bind ErbB3 [41, 
42]. Binding of ligands to the extracellular 
domain of ErbB3 or ErbB4 induces the formation 
of kinase active homo- or hetero-oligomers, 
which further induces transphosphorylation of 
the ErbB dimer partner and stimulates down-

stream intracellular pathways including RAS/
RAF/MEK/ERK, PI3K/Akt/mTOR, Src kinases, 
and JAK/STAT [43, 44]. To date, there is no 
known ligand for ErbB2; however, ErbB2 is con-
stantly in a conformation that resembles a ligand-
activated state and favors dimerization [45, 46]. 
Unlike other ErbB receptors, ErbB3 can bind 
ATP and catalyze autophosphorylation, whereas 
it has a weak kinase activity [47]. Interestingly, 
ErbB3 possesses most tyrosine residues in its 
intracellular domain ready to be phosphorylated. 
It must interact with other RTKs to exhibit its 
biological functions [48]. Among many interac-
tive partners of ErbB3, ErbB2 is the most impor-
tant one [49]. Upon ligand binding, ErbB3 
triggers the formation of ErbB2/ErbB3 heterodi-
mer, in which ErbB3 benefits from ErbB2’s 
strong kinase activity for phosphorylation on its 
intracellular tyrosine residues. Thus, the “dumb” 
ErbB3 (weak kinase activity, but has ligands) and 
the “deaf” ErbB2 (no known ligand, but has 
kinase activity) make a perfect sense to form a 
potent ErbB2/ErbB3 heterodimer leading to acti-
vation of the downstream signaling pathways 
(Fig.  1.2) [42]. Accordingly, co-expression of 

Fig. 1.1 Schematic diagram of acting models of NRGs
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ErbB3 and ErbB2 in normal or cancer tissues is 
frequently observed [50, 51], and ErbB3 has been 
increasingly evidenced to play a critical role in 
ErbB2-mediated cancer development as well as 
therapeutic resistance [52–56].

1.3  Role of Neuregulin Signaling 
in Hallmarks of Cancer

NRG is initially identified as an important regula-
tor in the development of nervous system [57]; 
however, NRG-induced signaling has also been 
shown to play a pivotal role in a wide variety of 
tissues, including breast [58, 59], heart [60], lung 
[61], muscle [62], and stomach [63]. Given the 
importance of ErbB receptors in hallmarks of 
cancer [64, 65], it has been evidenced that aber-
rant activation of the NRG signaling acts as a key 

player in the development and progression of 
various human cancers, which will be discussed 
in detail in the following section of this chapter 
(Table 1.1) [5, 7, 8].

1.3.1  Role of Neuregulin Signaling 
in Cancer Initiation 
and Development

Cancer is a genetic disease. Several lines of evi-
dence indicate that tumorigenesis is a multistep 
process and that these steps reflect genetic altera-
tions that drive the progressive transformation of 
normal cells into highly malignant derivatives 
[66]. Among the eight distinctive and comple-
mentary capabilities—hallmarks of cancer—
enabling tumor growth and metastatic 
dissemination proposed by Hanahan et al. [2, 66], 

Fig. 1.2 Schematic diagram of NRG signalings and their biological consequences
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sustaining proliferative signaling is fundamental 
in cancer initiation and development.

In normal tissues, the production and release 
of growth-promoting signals governing cell 
growth and proliferation is strictly controlled, 
thereby ensuring a homeostasis of cell number 
and thus maintenance of normal tissue architec-
ture and function. In contrast, malignant cells 
acquire the ability to sustain proliferative sig-
naling via accumulating genetic as well as epi-
genetic alterations. The mitogenic signals are 
largely conveyed by growth factors that bind 
cell surface receptors such as RTKs, typically 
containing intracellular tyrosine kinase domains. 
The RTKs proceed to elicit signals via branched 
intracellular signaling pathways that regulate 
progression through the cell cycle as well as cell 
growth [67, 68].

Over the past several decades, it has become 
evident the ErbB subfamily members of RTKs 

have a prominent role in the initiation and devel-
opment of several types of cancer. The evidence 
for a role of ErbB receptorsin cancer was first 
inferred from a study on ErbB2, a human ortho-
log of rat Neu, as forced overexpression of human 
ErbB2 was shown to transform diploid cells [69]. 
Almost at the same time, the EGFR was initially 
identified as an oncogene owing to its homology 
to v-erb-B [70]. Overexpression of wild-type Neu 
or ErbB2 under the control of a mammary- 
specific promoter was latterly shown to lead to 
metastatic mammary tumors in transgenic mice 
[71, 72]. Consistently, the amplification and/or 
overexpression of ErbB2 was found to be signifi-
cantly and independently associated with a worse 
prognosis for breast cancer patients [73, 74]. 
Less frequent activating mutations of ErbB2 in 
several cancer types without gene amplification 
were further unveiled [75]. Comparably, the 
causal role of EGFR in tumorigenesis of a rela-

Table 1.1 Neuregulin genes, products, and expression in human tumors

NRG 
gene

Location on 
chromosome Protein product Type of tumor

Representative 
references

NRG-1 8p12 NRG-1/HRG-1/NDF/
ARIA/GGF/SMDF

Breast cancer Aguilar et al. [83]

Colon cancer Venkateswarlu et al. 
[124]

Endometrial cancer Srinivasan et al. [148]
Gastric cancer Noguchi et al. [63]
Glioma Westphal et al. [139]
Hepatocellular carcinoma Hsieh et al. [149]
Lung cancer Gollamudi et al. [106]
Medulloblastoma Gilbertson et al. [150]
Melanoma Buac et al. [151]
Ovarian cancer Gilmour et al. [152]
Pancreatic cancer Kolb et al. [154]
Papillary thyroid cancer Fluge et al. [155]
Prostate cancer Leung et al. [157]
Squamous cell carcinomas of the 
head and neck

Shames et al. [158]

Vestibular schwannoma Hansen et al. [141]
NRG-2 5q31.2 NRG-2/HRG-2 Breast cancer Carraway et al. [21]

Schwannoma Stonecypher et al. 
[142]

NRG-3 10q23.1 NRG-3/HRG-3 Breast cancer Hijazi et al. [159]
NRG-4 15q24.2 NRG-4/HRG-4 Bladder cancer Memon et al. [32]

Prostate cancer Hayes et al. [33]

NRG neuregulin, HRG heregulin; NDF, neu differentiation factor,;ARIA, acetylcholine receptor-inducing activity, GGF, 
glial growth factor, SMDF, sensory and motor neuron-derived factor
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tively broad spectrum of cancers was well recog-
nized thereafter its first identification as oncogene 
[76–78]. Although mutations in both ErbB3 and 
ErbB4 were identified in human cancers [79–81], 
the involvement of ErbB3 and ErbB4  in cancer 
was mainly revealed as partners in promoting 
signaling from EGFR and ErbB2 currently [44].

As aforementioned, most of the time, homo- 
or hetero-dimerization of ErbB receptors trig-
gered by binding of ligand is prerequisite for 
fulfilling their biological function. Ever since 
NRGs were identified as the ligands of ErbB3 
and/or ErbB4, the role of NRGs in cancer initia-
tion and development has attracted much research 
interest. While forced overexpression of NRGs in 
the mammary gland of transgenic mice was 
shown to provoke the development of breast ade-
nocarcinomas [82], NRGs were also evidenced to 
function as potent stimulators of proliferation of 
both malignant human breast and ovarian epithe-
lial cells in vitro [83]. Moreover, development of 
an autocrine NRG signaling loop results in trans-
formation of breast epithelial cells into malignant 
derivates [84]. Consistently, NRG is overex-
pressed in about 30% of breast cancer biopsies 
that do not overexpress ErbB2, and this overex-
pression is sufficient to promote tumorigenesis 
and metastasis of breast cancer cells [85, 86]. In 
addition to growth factors, the development of 
breast cancer is also regulated by a plethora of 
signals mediated by steroid receptors such as 
estrogen receptor (ER) and progestogen receptor 
(PR) [87, 88]. Importantly, although NRG was 
showed to induce an estrogen-independent phe-
notype of breast cancer cells [85, 89], the interac-
tions between progestins and NRG signaling 
pathways were unveiled in the development of 
mouse mammary adenocarcinomas [90]. NRG 
not only induces transcriptional activation of the 
progesterone receptor via an ErbB2-dependent 
manner in breast cancer cells [91] but also drives 
breast cancer growth through the co-option of 
progesterone receptor signaling [92]. 
Mechanistically, while the extracellular region of 
NRG was shown to promote mammary gland 
proliferation and tumorigenesis [93], a recent 
study demonstrated that the Ig-like region of 
NRGs may exert an important role in their capa-

bility to activate ErbB receptors and mitogenic 
responses [94]. Consequently, circulating NRG1 
has been demonstrated to be additional biomark-
ers indicative of prognosis and outcomes for 
breast cancer patients [95].

Lung cancer remains the most commonly 
diagnosed cancer and the leading cause of cancer- 
related deaths worldwide [96]. Of all pathologi-
cal types, non-small-cell lung cancer (NSCLC) 
accounts for approximately 85% of all lung can-
cers [97]. Extensive genomic characterization of 
NSCLC has led to the identification of molecular 
subtypes of NSCLC that are oncogene addicted, 
including overexpression and/or activating muta-
tions in epidermal growth factor receptor (EGFR) 
[98]. However, there is mounting evidence that 
substantial molecular and clinical heterogeneity 
exists within oncogenic driver-defined subgroups 
of NSCLC [99, 100]. In comparison with a higher 
prevalence of EGFR mutations in NSCLC [78], 
the aberrations of other ErbB subfamily members 
have also been observed in NSCLC but with a 
relative low frequency [101]. The mutations of 
ErbB2, ErbB3, and ErbB4 were reported to occur 
in about 4% [102], 1% [79], and 5.4% [103] of 
human primary lung tumors, respectively. 
Nevertheless, in addition to EGFR, the overex-
pression of other ErbB subfamily members was 
frequently detected in NSCLC [102, 104]. While 
ErbB2, ErbB3, ErbB4, and NRG were found to 
be differentially expressed in normal bronchial 
epithelial and NSCLC cell lines [105], an auto-
crine activation of ErbB2/ErbB3 receptor com-
plex by NRG-1 was further unraveled in NSCLC 
cells [106]. These studies raised the potential role 
of NRG signaling in initiation and development 
of NSCLC. More importantly, through transcrip-
tome sequencing of 25 lung adenocarcinomas of 
never smokers, a novel somatic gene fusion, 
CD74–NRG1, was identified [107]. The CD74–
NRG1 was demonstrated to give rise to the extra-
cellular expression of the EGF-like domain of 
NRG1 III-β3 which acts as the ligand for ErbB2/
EebB3 receptor complexes. Thereafter, NRG1 
fusions were reported in different populations 
with different frequencies in NSCLC [108–111]. 
In addition to canonical NRG signaling, a recent 
study demonstrated that EGF and NRG may 
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induce phosphorylation of ErbB3 by EGFR using 
distinct oligomeric mechanisms which even 
broadens our understanding of NRG signaling in 
cancer development [112]. The increasing recog-
nition of the role of NRG signaling in lung cancer 
has raised the possibility that specific inactivation 
of NRG signaling may have therapeutic potential 
in this malignant disease [113]. More detailed 
information regarding the NRG signaling- 
targeted therapy for cancer treatment will be dis-
cussed in the rear part of this chapter.

Dysregulated ErbB signaling has also been 
reported to be involved in development of neo-
plasms of gastrointestinal tract, which mainly 
include esophageal carcinoma, gastric cancer, 
liver cancer, colorectal cancer (CRC), and pan-
creatic cancer accounting for more than 26% and 
35% of all new cancer cases and deaths world-
wide [44, 96]. Overexpression of ErbB2 in gas-
tric cancer was firstly reported in 1986 [114]. 
Thereafter, accumulated data indicates the asso-
ciation of ErbB2 and/or ErbB3 overexpression 
with poor prognosis of patients with this disease 
[115–117]. While HRG-α was showed to affect 
epithelial cell proliferation through mesenchy-
mal–epithelial interaction in the gastric mucosa 
[63], an interesting study demonstrated that over-
expression of NRG1 could promote progression 
of gastric cancer by regulating the self-renewal of 
cancer stem cells [118]. In contrast to EGFR and 
ErbB2, which have been widely studied in CRC 
[119], the role of ErbB3 and ErbB4 in CRC is 
largely underestimated previously. Although the 
expression of ErbB3  in CRC was reported to 
range from 36 to 89% [120, 121], the information 
regarding its prognostic role in CRC was ever 
limited. This situation changed when two groups 
reported that ErbB3 overexpression was signifi-
cantly associated with decreased time to CRC 
progression [122, 123]. Actually, autocrine 
heregulin has been demonstrated to generate 
growth factor independence and block apoptosis 
in CRC cells as early as in 2002 [124]. 
Interestingly, bone marrow-derived mesenchy-
mal stem cells (MSCs) in TME were evidenced 
to promote CRC progression through paracrine 
NRG1/ErbB3 signaling [125]. In addition to act-
ing on cancer cells themselves, NRG signaling 

was shown to induce expression of vascular 
endothelial growth factor (VEGF) in colon can-
cer cells, which might further affect the growth of 
colon cancer in vivo [126]. ErbB4 is the least rec-
ognized ErbB subfamily member. However, 
phosphorylated ErbB4 and NRG have also been 
demonstrated to contribute to poorer patient 
prognosis in CRC [127, 128].

The worldwide mortality of pancreatic cancer 
ranks the seventh among all cancers in both sexes 
accounting for about 4.5% of all cancer deaths 
[96]. Extensive genetic studies have revealed that 
during the progression of three broad stages of 
pancreatic cancer, acquired somatic mutations in 
oncogenes and tumor suppressor genes accumu-
late and account for initiation and aggressive 
development of this malignant disease. These 
mutations occur most frequently in KRAS, 
CDKN2A, TP53, and SMAD4 [129–131]. 
Activating mutations of the KRAS oncogene, 
which encodes a member of the RAS family of 
GTP-binding proteins, are the most common 
genetic abnormality presenting in approximately 
95% of pancreatic tumors analyzed [132, 133]. In 
addition, wild-type KRAS is also normally acti-
vated in response to the binding of extracellular 
signals such as growth factors to RTKs [134]. 
Accumulating evidence shows that the ErbB 
receptors are overexpressed in approximately 
60% of pancreatic cancers [135]. Recently, sev-
eral studies have uncovered that recurrent gene 
rearrangements such as NRG1 fusions are preva-
lent in patients with KRAS wild-type pancreatic 
cancer [136, 137]. Thus, in a subset of KRAS 
wild-type pancreatic cancer cases, NRG signal-
ing may act as targetable oncogenic driver, pro-
viding a potential treatment strategy in this 
disease [138].

Given the role of NRG in the development of 
nervous system, it is thus not surprising that aber-
rant NRG signaling could result in development 
of glioma and schwannoma [139–142]. Gliomas 
are the leading cause of death among adults with 
primary brain malignancies due to lack of effec-
tive remedy [143, 144]. In an attempt to search 
for novel target therapy against glioma, an RNAi- 
based inhibition of presenilin 2 was demonstrated 
to inhibit glioma cell growth and invasion via 
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regulation of NRG1/ErbB signaling [145]. 
MicroRNA is emerging as important player in 
tumor biology [146]. It was revealed that the 
expression of miR-125a-3p was significantly 
decreased in malignant glioma and lower expres-
sion of miR-125a-3p was associated with a poor 
prognosis of patients with glioblastoma. Further 
mechanistic study suggested that miR-125a-3p 
might perform an important role in development 
of glioma via direct targeting of NRG-1 [147]. In 
addition to aforementioned cancer types, the 
aberrant NRG signaling was also involved in 
development of many other cancers derived from 
different tissues as listed in Table 1.1 which will 
not be discussed in detail [148–159].

1.3.2  Role of Neuregulin Signaling 
in Cancer Metastasis

Currently, metastatic disease is largely incurable 
and remains the main cause of cancer-related 
deaths worldwide [160]. Metastasis is the end 
result of a multistage process that includes acqui-
sition of invasive phenotype of primary tumor 
cells, local invasion, intravasation into the blood 
or lymphatic system, survival in circulation, 
arrest at a distant organ, extravasation, survival in 
a new environment, and adaptation and prolifera-
tion to form metastases [161]. Each of these steps 
in the complex metastatic cascade depends on the 
genetic and epigenetic alterations acquired by 
primary tumor cells, as well as interactions with 
the host microenvironment and the immune sys-
tem [162, 163].

Change in cell phenotype between epithelial 
and mesenchymal states, defined as epithelial–
mesenchymal transition (EMT), has been increas-
ingly recognized as an initial step of tumor 
metastasis [164]. The EMT program is generally 
induced in epithelial cells by heterotypical sig-
nals, among which the transforming growth 
factor-β (TGFβ) family of cytokines are the best 
characterized inducers of EMTs [165]. In addi-
tion, RTK signaling has also been shown to play 
crucial roles in the induction of EMT [166]. 
NRG-1 was able to enhance motility and migra-
tion of human glioma cells via not only activation 

of focal adhesion kinase (FAK) [167] but also 
induction of expression of cell adhesion molecule 
L1 [168]. While the constitutive activation of 
ERBB3-dependent signaling driven by an 
NRG-1/ERBB3 autocrine mechanism was 
strongly associated with microscopic vascular 
invasion and poor prognosis of hepatocellular 
carcinoma (HCC) [149], a recent study further 
demonstrated that miR-296-5p suppressed EMT 
of HCC via targeting NRG1/ErbB2/ErbB3 sig-
naling [169].

Metastatic lesions develop from disseminated 
cancer cells (DCCs) that can remain dormant 
[170]. Accumulating data suggest that metastatic 
dissemination often occurs early during tumor 
formation [171, 172]. Progesterone-induced sig-
naling was shown to trigger migration of cancer 
cells from early lesions shortly after HER2 activa-
tion in a HER2-driven mouse mammary tumor 
model which exhibited capability for early meta-
static dissemination [173]. Using the same mam-
mary tumor model, a subpopulation of 
Her2+p-p38lop-Atf2loTwist1hiE-cadlo early cancer 
cells with invasive ability to spread to target 
organs was identified in the early lesions of the 
transgenic mice [174]. These studies strongly 
suggested that aberrant ErbB2 signaling played a 
pivotal role in early dissemination of breast can-
cer cells. Furthermore, while the NRG expression 
in breast tumors was evidenced to be associated 
with lymph node invasion and poor patient out-
come, it was demonstrated that NRG expression 
favored in situ tumor growth, local spreading, and 
metastatic dissemination via an ERK1/2 kinase-
dependent upregulation of collagenase- 3 [175].

Tumor-associated macrophages (TAMs), 
derived from recruited circulating monocytes by 
a wide variety of growth factors such as colony- 
stimulating factor 1 (CSF1), are critical for regu-
lating processes of tumor including various steps 
in the metastatic cascade [176–179]. The first 
direct evidence for a synergistic interaction 
between macrophages and tumor cells during cell 
migration in  vivo was provided in 2004 [180]. 
Macrophages are conventionally subdivided into 
antitumor pro-inflammatory M1 or pro-tumor 
immune-suppressive M2 phenotypes; however, 
the diversity of macrophage types in different tis-
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sues and cancers indicates that this classification 
is an oversimplification [181]. Accumulating data 
have revealed different TAM behaviors linked to 
their locations, including migration-associated 
streaming and perivascular populations [182–
184]. Perivascular macrophages are an essential 
component of structures termed TMEM (tumor 
microenvironment of metastasis) that consist of a 
TAM in direct contact with a Mena-overexpressing 
tumor cell and endothelial cell [185]. While the 
EGF–CSF1 paracrine loop between the tumor 
cells and macrophages was shown to mediate 
pairing and stream formation [186], it was further 
demonstrated that the hepatocyte growth factor 
(HGF) supplied by endothelial cells is required 
for sustained directional migration of both tumor 
cells and macrophages toward blood vessels 
[184]. Moreover, the temporal aspects of macro-
phage subtype specification within primary 
tumors and the possibility of interconversion 
among subtypes had been verified by Arwert and 
colleagues whose study indicate that a unidirec-
tional transition from migratory to perivascular 
macrophage is required for tumor cell intravasa-
tion [187]. Notably, the EGF/CSF-1 paracrine 
invasion loop has been reported to be triggered 
by HRG-β1 and CXCL12 [188]. In addition, 
heregulin/ErbB3 signaling has also been shown 
to enhance breast cancer cell motility via 
hypoxia-inducible factor 1α (HIF-1α)-dependent 
upregulation of CXCR4, the receptor of SDF-1/
CXCL12 [189].

The Notch signaling pathway regulates many 
aspects of cancer biology, including metastasis 
[190]. Upon ligand binding, the transmembrane 
Notch receptor is cleaved sequentially, leading to 
the release of the Notch intracellular domain 
(NICD). The NICD translocates to the nucleus 
where it orchestrates the transcription of specific 
genes. Ligands of Notch receptor expressed by 
the signal-sending cell are transmembrane pro-
teins of the Delta/Serrate/LAG-2 (DSL) family 
which comprises three delta-like ligands (Dll1, 
Dll3, and Dll4) and two jagged ligands (Jagged 1 
and Jagged 2) in mammals. It has been demon-
strated that tumor-derived Jagged 1 (JAG1) could 
promote osteolytic bone metastasis of breast can-
cer by engaging Notch signaling in bone cells 

[191]. Interestingly, stimulation of macrophages 
by tumor cell-derived NRG-1 results in upregula-
tion of JAG1, which in turn enhances transendo-
thelial migration and intravasation of breast 
cancer cells [192]. The cross talk between differ-
ent signaling pathways may play a synergistic 
role in tumor biology. Through a transcriptome 
meta-analysis, higher number of gene fusions 
affecting core members of the Hippo pathway, 
Neurofibromatosis 1 (NF1), and NRG1 genes 
was shown to be an independent prognostic fac-
tor for poor survival in lung cancer [193]. A direct 
evidence of cross talk between Hippo and NRG 
signaling in regulating aggressive behavior of 
tumor cells was provided by Haskins and col-
leagues, whose study demonstrated that NRG 
1-activated ErbB4 interacted with YAP to induce 
Hippo pathway target genes and promoted cell 
migration [194].

The dysregulated NRG signaling in develop-
ment of lung cancer has been described in the 
front part of this chapter. In respect to metastasis, 
some significant differences in ErbB family 
receptor-related abnormalities have been shown 
in NSCLC brain metastases in comparison with 
primary lung tumors [195]. As aforementioned, 
oncogene fusions have increasingly been identi-
fied as driver mutations in lung adenocarcinoma. 
In an attempt to identify druggable oncogenic 
fusions in invasive mucinous adenocarcinoma 
(IMA) of the lung, Nakaoku and colleagues 
found that two oncogenic fusions involving 
NRG1 (CD74–NRG1 and SLC3A2–NRG1) 
occurred mutually exclusive with KRAS muta-
tions [196]. The SLC3A2–NRG1 fusion was fur-
ther demonstrated to increase cell migration via 
promoting ErbB2–ErbB3 phosphorylation and 
heteroduplex formation and activating the down-
stream PI3K/Akt/mTOR pathway through para-
crine signaling [197].

1.3.3  Role of NRG Signaling 
in Therapeutic Resistance 
in Cancer

Rapid progress in our understanding of cancer 
biology has dramatically improved our therapeu-
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tic strategies against cancer. In addition to the 
conventional operations, such as chemotherapy 
and radiotherapy, molecularly targeted therapies 
and immunotherapy recently emerge as the prin-
cipal modes of cancer treatment. However, resis-
tance to these therapies frequently occurs and 
currently represents a major clinical problem. 
Therapeutic resistance can be divided into two 
broad categories: primary (de novo) or acquired. 
Primary resistance is usually caused by 
resistance- mediating factors pre-existing in the 
bulk of tumor cells, which make the therapy inef-
fective. Acquired resistance can develop during 
the treatments of cancers that are initially sensi-
tive. Both primary and acquired resistances can 
occur at many levels, including increased drug 
efflux and decreased drug influx, drug inactiva-
tion, alterations in drug target, processing of 
drug-induced damage, and evasion of apoptosis 
[198].

Acquired resistance can arise through therapy- 
induced selection of a resistant subpopulation of 
cells that is present in the original tumors with a 
high degree of heterogeneity [199]. It can also be 
caused by mutations arising during the treat-
ments, by increased expression of the therapeutic 
target, as well as through various other adaptive 
responses such as activation of the compensatory 
signaling pathways [200].

1.3.3.1  Resistance to Chemotherapy
Chemotherapy, as an important conventional 
treatment for human cancers, usually induces 
cancer cell death by cytotoxicity, thereby reduc-
ing the tumor bulk [201]. The mechanism of anti-
tumor activity of chemotherapeutic drugs is 
complex and involves various biological path-
ways, including apoptosis, autophagy, necrosis, 
and mitotic catastrophe [202]. Consequently, the 
mechanisms of chemoresistance are intricate and 
not fully understood. Taking into consideration 
that many clinically used chemotherapeutic drugs 
mainly exert antitumor activity via induction of 
apoptosis, it is understandable that cancer cells 
with enhanced survival signaling and/or defects 
in apoptotic pathways may escape from those 
therapies [203]. Since the PI3K/Akt pathway is 
an important survival signaling and readily acti-

vated by RTKs, including ErbB3, it is rational 
that aberrant NRG signaling may result in che-
moresistance in cancer treatment [204]. In an 
early study, the co-expression of ErbB2 and 
ErbB3  in human breast cancer cell lines was 
shown to be associated with an increased resis-
tance to multiple chemotherapeutic agents, such 
as paclitaxel, doxorubicin, 5-fluorouracil, etopo-
side, and camptothecin, via activation of PI3K/
Akt signaling [205]. In our own attempt to iden-
tify the key downstream mediator of ErbB3 sig-
naling that contributed to chemoresistance, we 
discovered that elevated expression of ErbB3 
conferred paclitaxel resistance in ErbB2-positive 
breast cancer cells via PI3K/Akt-dependent 
upregulation of Survivin [56]. MSCs are connec-
tive tissue progenitor cells that contribute to 
fibrotic reactions during tissue remodeling and 
repair in places of wounding and inflammation. 
In response to chemokines from tumor cells, 
MSCs are continuously recruited to and become 
integral components of the tumor microenviron-
ment [206, 207]. MSCs in tumor microenviron-
ment have been shown to influence multiple 
hallmarks of cancer, including resistance to che-
motherapy [208, 209]. More recently, we demon-
strated that the aforementioned ErbB2/
ErbB3 →  PI3K/Akt →  Survivin signaling axis 
underlying paclitaxel resistance in breast cancer 
cells could also be activated via the paracrine 
stimulation by MSCs-derived NRG-1 [210]. 
Doxorubicin is another widely used drug in che-
motherapy against multiple types of cancer. It 
was reported that treatment with doxorubicin 
resulted in activation of the ErbB3–PI3K–Akt 
signaling cascade in ovarian cancer cells through 
transcription-dependent upregulation of NRG1 
and specific blockade of ErbB3 enhanced the 
doxorubicin-induced apoptosis [211]. These data 
suggest that an activated NRG1/ErbB3 autocrine 
loop may account for doxorubicin resistance in 
ovarian cancer cells.

1.3.3.2  Resistance to Targeted Therapy
Multiple processes of cancer initiation and devel-
opment involve the progressive acquisition of 
genetic mutations and epigenetic abnormalities 
in the expression of various genes with highly 
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diverse functions. Nonetheless, the observation 
that some cancer cells can seemingly exhibit 
dependence on a single oncogenic pathway or 
protein for their sustained proliferation and/or 
survival has led to a new concept referred to as 
oncogene addiction [212]. The notion of onco-
gene addiction reveals a possible “Achilles’ heel” 
within the cancer cells that can be therapeutically 
targeted [213, 214].

Owing to the improved understanding of the 
oncogenic driver mutations in NSCLC, targeted 
therapy has been extensively exploited while 
combating this malignant disease. Systematic 
analysis has revealed that almost two-thirds of 
patients with NSCLC harbor an oncogenic driver 
mutation, approximately half of whom have a 
therapeutically targetable lesion [215]. Although 
treatment with a targeted therapy improves out-
comes in patients with NSCLC, responses to the 
therapeutic agents are generally incomplete and 
temporary followed by resistance [216]. Cancer 
cells develop several mechanisms of resistance to 
targeted therapy, which can be classified as “on- 
target” or “off-target” [217]. Alterations of the 
primary target of the drug typically result in on- 
target resistance [218]. In the circumstance of 
off-target resistance, activation of collateral sig-
naling events that are parallel to, or downstream 
of, signaling by the driver oncoprotein bypass the 
requirement of the driver oncoprotein for cell 
survival and growth. Among the expanding spec-
trum of oncogenic driver mutations identified in 
NSCLC, somatic activating mutations in EGFR 
are the most common ones occurring in ~16% of 
patients with advanced lung adenocarcinoma 
[219]. Currently, two strategies including block-
ing antibody such as cetuximab and tyrosine 
kinase inhibitors (TKIs, such as gefitinib, lapa-
tinib, and erlotinib) are mainly used in EGFR- 
targeted therapy in clinic [220]. Cumulative data 
have indicated that activation of NRG/ErbB3 sig-
naling is one of the major mechanisms contribut-
ing to the resistance to EGFR-targeted therapy 
[221–224]. It has been reported that MET ampli-
fication leads to gefitinib resistance in lung can-
cer treatment by activating ErbB3 signaling 
[225]. Besides, NRG/ErbB3 signaling was also 
shown to induce resistance to lapatinib-mediated 

growth inhibition of ErbB2-amplified gastric 
cancer cells and cetuximab-based therapy in 
colorectal cancer, respectively [226, 227]. The 
EML4–ALK fusion gene was detected in 3% to 
7% of patients with NSCLC [228, 229]. It has 
been demonstrated that crizotinib, an ALK inhib-
itor, shows remarkable antitumor effect in 
EML4–ALK- positive lung cancer [230]. However, 
patients receiving treatment with crizotinib even-
tually acquire resistance to this drug. While para-
crine receptor activation by ligands from the 
microenvironment was demonstrated to trigger 
resistance to ALK inhibitors in EML4–ALK lung 
cancer cells [231], an analysis of patient-derived 
cancer cell further revealed that activation of neu-
regulin/ErbB3 signaling accounted for crizotinib 
resistance in EML4–ALK lung cancer [232]. In 
addition, paracrine effect of NRG1 was also evi-
denced to drive resistance to MEK inhibitors in 
metastatic uveal melanoma [233].

The finding that amplification and/or overex-
pression of ErbB2 occurs in approximately 25% 
of invasive breast cancer and is significantly 
associated with a worse prognosis for breast can-
cer patients has made ErbB2 an attractive thera-
peutic target [73, 74, 234]. ErB2-targeted therapy 
in breast cancer is thus another paradigm in can-
cer research. As the first ErbB2-targeted agent 
approved by the US Food and Drug Administration 
(FDA), trastuzumab (also known as Herceptin, a 
humanized monoclonal antibody against ErbB2) 
has demonstrated significant activity in the treat-
ment of both early-stage and metastatic ErbB2- 
overexpressing (ErbB2+) breast cancer 
[235–238]. Subsequently, lapatinib, an orally 
bioavailable small molecule TKI dual targeting 
ErbB2 and EGFR, was also approved by FDA for 
the treatment of patients with advanced ErbB2+ 
breast cancer in combination with capecitabine 
[239]. Unfortunately, resistance to both trastu-
zumab and lapatinib has greatly limited the effi-
cacy of ErbB2-targeted therapy [240]. Numerous 
mechanisms including loss of phosphatase and 
tensin homolog (PTEN) and activating mutations 
in genes coding for components of the PI3K/Akt/
mTOR pathway have been proposed that may 
mediate de novo and acquired resistance to 
trastuzumab and lapatinib [241, 242]. Moreover, 
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our studies and others have demonstrated that 
increased activation of ErbB3 signaling plays a 
critical role in the resistance to ErbB2-targeted 
therapy in breast cancer [243–245]. These find-
ings are further confirmed by a study indicating 
that ADAM10-mediated release of heregulin 
confers resistance to trastuzumab by activating 
ErbB3 [246]. Recently, to explore the influence 
of microenvironment signals on HER2-targeted 
TKI response, Watson et al. assessed the effects 
of >2500 different combinations of 56 soluble 
and 46 matrix microenvironmental proteins on 
outgrowth of lapatinib-treated HER2+ breast 
cancer cells using an emerging technology 
termed microenvironment microarrays (MEMA) 
[247]. It was demonstrated that NRG1β and 
hepatocyte growth factor (HGF) are the most sig-
nificant factors to enhance outgrowth of HER2+ 
breast cancer cells in the presence of lapatinib. 
Specifically, NRG1β attenuated the response of 
the luminal-like HER2+ (L-HER2+) cells to 
lapatinib, whereas HGF attenuated the lapatinib 
sensitivity in the basal-like (HER2E) cells. This 
elegant work suggests that different mechanisms 
underlying resistance to HER2-TKI lapatinib 
may be due to the complexity of microenviron-
ment as well as differences in signaling network 
wiring and architecture in different subtype cells. 
These findings reinforce the notion that tissue 
microenvironments are remarkably complex and 
intertwined in cancer biology [248].

1.3.3.3  Resistance to Other Therapy
Endocrine therapy such as tamoxifen, an anties-
trogen agent, is commonly used in the treatment 
of patients with estrogen receptor-positive (ER+) 
breast cancer, a subtype accounting for about 
80% of all breast cancers [249]. Although 
patients benefit a lot from tamoxifen treatment, 
resistance to this agent is a serious problem in 
clinic [250]. In the current body of knowledge, 
multiple mechanisms responsible for endocrine 
resistance have been proposed and include 
deregulation of various components of the ER 
pathway itself [251], alterations in cell cycle 
regulators such as MYC or cyclin D1, and the 
activation of alternative signaling pathways 
[252]. Among these, increased expression or 

aberrant activation of ErbB signaling has been 
extensively investigated and associated with 
both experimental and clinical endocrine therapy 
resistance [204, 253]. ER+ breast cancer patients 
with co-expression of ErbB2 and ErbB3 were 
significantly more likely to relapse on tamoxifen 
[254]. Direct evidence of the involvement of 
neuregulin/ErbB3  in tamoxifen resistance was 
provided by Liu et al. whose studies showed that 
downregulation of ErbB3 by a siRNA abrogated 
ErbB2-mediated tamoxifen resistance in breast 
cancer cells [55]. Furthermore, overexpression 
of HRG-β2 was reported to induce hormone-
independent phenotype of ER+ breast cancer 
cells and resistant to tamoxifen via constitutive 
activation of ErbB signaling [89].

1.4  Role of Neuregulin Signaling 
in Regulation of Tumor 
Microenvironment

As an important part of immune infiltrates in 
TME, tumor-educated macrophages at the pri-
mary site promote tumor initiation and malignant 
progression via supporting tumor-associated 
angiogenesis; enhancing tumor cell invasion, 
migration, and intravasation; as well as suppres-
sion of antitumor immune responses [255, 256]. 
As earlier mentioned, a paracrine interaction 
involving reciprocal signaling between carci-
noma cells and macrophages involving EGF and 
CSF-1 has been demonstrated to be required for 
tumor cell migration in mammary tumors [180, 
257]. The finding that this EGF/CSF-1 paracrine 
invasion loop can be triggered by HRG-β1 [188], 
along with the fact that tumor cell-derived NRG-1 
induces upregulation of JAG1  in macrophages 
[192], indicates that macrophages are subjected 
to a fine tune regulated by NRG signaling.

Nerves in the TME also play roles in tumor 
progression [258, 259]. It has been shown that, in 
addition to vascular and lymphatic systems, 
nerve system may serve as an alternative route 
for dissemination of cancer cells [260]. Cancer 
cells can grow around existing nerves and even-
tually invade them, in a process defined as peri-
neural invasion (PNI) [261]. To date, PNI has 
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been observed in a variety of cancers, including 
pancreatic, prostate, colorectal, and others. PNI 
is generally associated with a poor prognosis and 
can cause severe pain in patients [262]. In a land-
mark publication, Magnon and colleagues pro-
vided experimental evidence showing that 
autonomic nerve sprouting in prostate tumors 
was essential for the progression of prostate can-
cers [263]. Later on, vagal innervation was dem-
onstrated to contribute to gastric tumorigenesis 
via M3 receptor-mediated Wnt signaling in the 
stem cells [264]. Further investigation revealed 
that Dclk1+ tuft cells and nerves were the main 
sources of acetylcholine (ACh) within the gastric 
mucosa [265]. While cholinergic stimulation was 
evidenced to induce nerve growth factor (NGF) 
expression in the gastric epithelium, NGF/Trk 
signaling in turn was demonstrated to regulate 
mucosal innervation and promote carcinogenesis 
[265]. Considering the importance of NRG sig-
naling in the development of nervous system [12, 
266], these findings have shed a new light on the 
possible nerve-dependent mechanism of NRG 
signaling in regulating tumorigenesis [267].

Inducing angiogenesis is one of the key hall-
marks of both primary and metastatic cancer [2]. 
When the primary tumor or metastases grow to a 
certain extent, oxygen and nutrient supply and the 
discharge of metabolic wastes and carbon dioxide 
are insufficient. Thus, the diameter of cancer can 
rarely exceed 2–3 mm without neovascularization. 
Hypoxia in TME is a key driver of transition from 
pre-vascular hyperplasia to highly vascularized and 
progressively outgrowing tumors termed “angio-
genic switch,” a process being fine-tuned by factors 
that either induce or inhibit angiogenesis [268, 
269]. Among many reported pro-angiogenic pro-
teins, vascular endothelial growth factor (VEGF) 
mainly secreted by cancer cells is now known to be 
central to this process [270]. Moreover, a large 
body of evidence indicates that angiogenic pro-
gramming of tumor tissue is regulated by TME in 
concert with cancer cells [271]. Once the blood 
vessels grow into the tumor, the way of supplying 
nutrients and oxygen to the tumor tissue changes 
from peripheral diffusion to blood perfusion, and 
its metabolic wastes can be eliminated in time. In 
addition, tumor blood vessels can also determine 

the pathophysiology, growth, invasion, and metas-
tasis of cancer, as well as its response to various 
treatments [272]. In normal condition, the neuregu-
lin signaling has been demonstrated to play an 
important role in development of cardiovascular 
system [273, 274]. In a recent study, Nrg4 was also 
showed to be an angiogenic factor involved in 
maintaining adipose tissue vasculature [275]. 
Given the findings that the expression of pro-angio-
genic proteins can be induced by several activated 
oncogenes including ErbB2 [276, 277], the role of 
neuregulin signaling in the process of tumor angio-
genesis has attracted much research interest as 
early as in the very beginning of this century. It was 
revealed by Yen et al. for the first time that HRG β1 
can selectively upregulate the expression of VEGF 
in ErbB2- overexpressing breast cancer cells [278]. 
The induced expression of VEGF by HRG β1 was 
further confirmed by two independent research 
groups thereafter [279, 280]. Furthermore, HRG 
signaling-induced VEGF expression was also 
found in colon cancer [281].

Upon activation, normally quiescent vascula-
ture sprouts new vessels to sustain the expanding 
growth of tumor. During this process, the recruit-
ment of pericytes by platelet-derived growth fac-
tor- B (PDGFB) in TME was demonstrated to 
play an important role in maintaining appropriate 
vascular morphogenesis [282–284]. Pericytes 
vary not only in their morphology but also in pro-
tein markers they expressed as well as their origin 
[285]. Importantly, only type-2 pericytes were 
demonstrated to participate in normal and 
tumoral angiogenesis [286]. Taking into consid-
eration the role of HIF signaling in regulating the 
secretion of PDGFB by endothelial cells [287], 
as well as the reported cross talk between HER2 
and HIF signalings [288, 289], it is of great inter-
est to explore the more exact role of NRG signal-
ing in tumor angiogenesis.

1.5  Targeting of Neuregulin 
Signaling in Cancer Therapy

Given the pivotal oncogenic role of aberrant 
NRG signaling in a wide variety of human can-
cers, therapeutic targeting of NRG signaling in 
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cancer treatment has long been proposed and 
extensively studied. Strategies developed for 
NRG signaling-targeted therapy are different 
owing to the broad spectrum of casual mutations/
aberrations unraveled. Some of them have been 
successfully approved for clinic application in 
cancer therapy and achieved favorable outcome. 
Since both EGFR- and ErbB2-targeted therapies 
have been extensively reviewed [290–292], our 
discussion mainly focuses on, but is not restricted 
to, NRG/ErbB3-targeted therapy in the following 
section.

Unlike its close relatives EGFR and ErbB2, 
less attention has been paid to the oncogenic 
functions of ErbB3 due to its weak kinase activ-
ity. However, during the last two decades, ErbB3 
has been shown to be a direct therapeutic target 
in cancer treatment because of its role in tumor 
biology [293]. Currently, strategies developed 
for ErbB3-targeted therapy are mainly focused 
on blocking its activation through antibodies. 
The various ErbB3-targeted antibodies, includ-
ing seribantumab (also known as MM-121/
SAR256212) [294], LJM716 [295], and patri-
tumab (or U3–1287) [296], have been demon-
strated to inhibit ErbB3 pathway activation via 
different ways. MM-121, a fully humanized 
monoclonal antibody that interferes in binding 
of HRG to ErbB3, has been shown to effectively 
block ligand-dependent activation of ErbB3 
induced by either EGFR, HER2, or MET [297]. 
In our own studies, we found that targeting of 
ErbB3 with MM-121 not only potentiated antitu-
mor activity of paclitaxel against ErbB2+ breast 
cancer [298] but also had a potential of reversing 
trastuzumab resistance [299]. Recently, patri-
tumab was evidenced to overcome ligand- 
mediated resistance to trastuzumab in ErbB2+ 
breast cancer via synergistically targeting of 
ErbB2/ ErbB3 signaling axis [300]. With the sig-
nificant advances in antibody engineering tech-
nologies, strategies that simultaneously target 
multiple receptors with bispecific or multi- 
specific antibodies have been developed and 
demonstrated to circumvent the limitations of 
conventional mono-specific therapies and 
achieved enhanced therapeutic efficacy [301]. 
MEHD7945A, a monoclonal antibody that 

dually targets EGFR and ErbB3 [302], has been 
shown to be more effective than a combination 
of cetuximab and anti-HER3 antibody at inhibit-
ing both EGFR/HER3 signaling and tumor 
growth [303]. Although multiple phase I and II 
trials have been opened for various ErbB3-
targeted antibodies [304, 305], clinical benefits 
of the antibodies as single agents have not been 
reported. In a randomized phase II trial of pacli-
taxel with or without seribantumab in patients 
with advanced platinum-resistant or platinum-
refractory ovarian cancer, although no difference 
in progression- free survival (PFS) between the 
two arms was reported, the authors’ exploratory 
analyses suggested that high HRG and low 
ErbB2 might be predictive of seribantumab ben-
efit [306]. More recently, it was reported that the 
combination of SAR256212 and PI3K inhibitor 
SAR245408 for patients with metastatic or 
locally advanced solid tumors resulted in stable 
disease as the best response without effect on the 
pharmacokinetics of either drug, and the side 
effects seen in combination were similar to the 
profiles of each individual drug [307]. These 
results of clinical trials indicate that deliberate 
selection of patient and combinatory application 
with other treatments will be critical for the clin-
ical practice of ErbB3- targeted therapy in the 
future [308].

In addition to blocking antibody, novel 
approaches targeting ErbB3 have also been pro-
posed [309]. EZN-3920, a locked nucleic acid 
(LNA)-based ErbB3 antisense oligonucleotide, 
has been demonstrated to inhibit growth of xeno-
graft models of breast and lung cancer cell lines 
via specific downregulation of ErbB3 [310]. As 
alterations in chromatin structure by histone 
modification and/or DNA methylation have been 
extensively correlated with cancer development, 
progression, and resistance to therapy [311, 312], 
epigenetic targeting is emerging as a promising 
therapeutic strategy for cancer treatment [313]. 
Histone deacetylases (HDACs), whose deregula-
tion is evidenced to play an important role in 
aberrant gene expression in tumorigenesis, have 
long been recognized as druggable targets [314]. 
We previously reported that the class I HDAC 
inhibitor entinostat (also known as MS-275 or 
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SNDX-275) specifically enhanced expression of 
miR-125a, miR-125b, and miR-205, which acted 
in concert to downregulate ErbB2 and ErbB3 and 
selectively induced apoptosis in ErbB2- 
overexpressing breast cancer cells [315–317]. 
Recently, we found that valproic acid (VPA), a 
safely used anticonvulsant drug with reported 
HDACi capability, held an antitumor activity 
selectively against EGFR/ErbB2/ErbB3- 
coexpressing pancreatic cancer via induction of 
ErbB family members-targeting microRNAs 
[318]. Thus, miRNA-mediated epigenetic regula-
tion may represent a new mechanism inactivating 
ErbB2/ErbB3 [319].

Since ligand binding is indispensable for 
successful eliciting of NRG/ErbB signaling, it is 
rational that specific downregulation of NRG 
and/or blocking its binding to ErbB3 should be 
an attractive strategy for interrupting this signal-
ing. Actually, in the very beginning of this cen-
tury, it was discovered that blockade of HRG 
expression using an antisense nucleotide tech-
nology resulted in inhibition of cell prolifera-
tion and anchorage-independent growth, as well 
as suppression of invasive potential of breast 
cancer cells in  vitro [320]. Targeting of 
ADAM17, a major ErbB ligand sheddase, was 
also reported to inhibit ErbB3 and EGFR path-
ways through preventing the processing and 
activation of multiple ErbB ligands [38]. 
Neutralization antibodies have been extensively 
explored in targeting excess ligands in cancer 
therapeutics. By using two self-developed 
blocking antibodies of NRG1, Hegde et  al. 
reported a successful inhibition of NRG1 sig-
naling in NSCLC, leading to an enhanced dura-
tion of the response to chemotherapy [321]. 
Moreover, a NRG1-specific antibody 7E3 has 
been demonstrated as a promising antitumor 
agent against pancreatic cancer recently. 7E3 
not only promotes antibody-dependent cellular 
cytotoxicity (ADCC) in NRG1-positive pancre-
atic cancer cells and cancer-associated fibro-
blasts (CAFs) and inhibits NRG1-associated 
signaling pathway induction in vitro; it also sup-
presses migration and growth of pancreatic can-
cer cells co-cultured with CAFs, both in  vitro 
and in vivo using orthotopic pancreatic cancer 

xenografts [322]. Large body of functional stud-
ies has confirmed that miRNA dysregulation 
plays a causal role in many cases of cancer. 
Insights into the roles of miRNAs in cancer have 
made them attractive tools and targets for novel 
therapeutic approaches [323]. MiRNAs may act 
as tumor suppressors or oncogenes (oncomiRs), 
and miRNA mimics and molecules targeted at 
miRNAs (antimiRs) have shown promise in pre-
clinical development. In a recent study, miR-
296-5p was demonstrated to be significantly 
downregulated in HCC tissues, and introduced 
miR-296-5p was able to suppress EMT of HCC 
via direct targeting of NRG1 [169]. Thus, these 
findings have raised the possibility of miRNA 
therapeutics in NRG1-targeted therapy, which 
deserves further investigation. In addition, with 
the landmark finding of CD74–NRG1 gene 
fusions in lung adenocarcinoma in 2014 [107], 
much effort has been made in exploring NRG1 
fusion-targeted therapy in cancer management 
[324]. Although strategies proposed for NRG1 
fusion-targeted therapy are still focused on 
interruption of downstream ErbB signaling 
[325–327], whether NRG1 fusion itself may act 
as a direct druggable target is of great interest.

1.6  Conclusions and Future 
Perspectives

Although extensive effort has concentrated on 
elucidating the role of NRG signaling in the tumor 
microenvironment, several critical questions have 
been raised owing to the progress in some rapidly 
evolving fields of cancer research. Firstly, with 
the increasing recognition of link between the 
microbiota and cancer [328], the identification of 
intratumor microbiota has broadened the dimen-
sion of complexity of TME [329]. Microbiota has 
been demonstrated to play a key role in carcino-
genesis and regulation of the response to therapy 
through a variety of mechanisms such as bacterial 
dysbiosis, production of genotoxins, pathobionts, 
and disruption of the host metabolism [330]. In a 
cross-sectional study, Tsay et  al. reported that 
enrichment of the lower airway microbiota with 
oral commensals was associated with upregula-
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tion of the PI3K signaling pathway in lung cancer 
[331]. Since the underlying mechanism of micro-
biota-induced upregulation of PI3K pathway 
remains undiscovered, whether NRG signaling is 
involved in this biological process deserves fur-
ther exploration. Secondly, although anticancer 
immunotherapies involving the use of immune 
checkpoint inhibitors or adoptive cellular transfer 
have achieved promising clinical outcome, resis-
tance to immunotherapy is still a major obstacle 
to be overcome [332, 333]. As has been revealed 
by two independent groups, loss of PTEN results 
in resistance to T-cell-mediated immunotherapy 
[334, 335]. These findings may hint a causal role 
of aberrant NRG signaling in resistance to immu-
notherapy. Thus, it will be of special interest to 
figure out whether simultaneous targeting of NRG 
signaling may enhance the efficacy of immuno-
therapy. Finally, exosome-mediated communica-
tion within TME has been recognized as an 
important player in regulating tumor progression 
[336]. An improved understanding of whether 
NRGs may be present in exosome and act locally 
and/or distantly on eliciting downstream signal-
ing will be of great help in the guidance of devel-
oping novel NRG-targeted therapy, such as 
eliminating oncogenic exosomes with aptamer-
functionalized nanoparticles [337]. In conclusion, 
we believe that the answer of these questions will 
offer a clearer understanding of the role of NRG 
signaling in the TME and point out the future 
direction of mechanism-based NRG signaling-
targeted therapy.
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