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Preface

This volume contains a selection of the papers presented at TFP 2019: the Symposium
on Trends in Function Programming 2019, held June 12–14, 2019, in Vancouver, BC,
Canada. TFP is an international forum for researchers with interests in all aspects of
functional programming, taking a broad view of current and future trends in the area. It
aspires to be a lively environment for presenting the latest research results and other
contributions, described in draft papers submitted prior to the symposium. This edition
of the symposium is the second to use a new format for selecting articles for publi-
cation. In the new format, authors can choose to have their submissions formally
reviewed either before or after the symposium. Four full papers were submitted for
formal review before the symposium, out of which two were accepted by the Program
Committee for presentation and later publication. Each submission was reviewed by at
least three reviewers. The Program Committee was asked to either accept or reject the
paper as usual, but could also elect to reject a paper and invite it for presentation at
TFP. For the remaining six submissions, the Program Committee checked that the
drafts were within the scope of TFP and thus worthy of presentation at TFP, and
provided a full review to an updated submission after the symposium.

The TFP 2019 program consisted of two keynotes, two other invited talks and seven
presentations. The keynote talks were given by Nikhil Swamy (Microsoft Research,
USA) on “Structuring the Verification of Imperative Programs with Functional Pro-
gramming,” and Frank Wood (University of British Columbia, Canada) on “Proba-
bilistic Programming.” Out of the seven presentations, two full papers were accepted
for publication before the symposium as mentioned earlier, whereas a further six full
papers were submitted to the formal post-refereeing process. The Program Committee
selected four more papers for publication from these, which brings us to the total of six
that are included in these proceedings.

We are grateful to everyone at University of British Columbia for their help in
preparing and organizing TFP 2019, in particular Lara Hall and Holly Kwan. We also
gratefully acknowledge the assistance of the TFP 2019 Program Committee and the
TFP Steering Committee for their advice while organizing the symposium.

March 2020 William J. Bowman
Ronald Garcia
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Quotients by Idempotent Functions
in Cedille

Andrew Marmaduke(B), Christopher Jenkins, and Aaron Stump

The University of Iowa, Iowa City, IA 52242, USA
{andrew-marmaduke,christopher-jenkins,aaron-stump}@uiowa.edu

Abstract. We present a simple characterization of definable quotient
types as being induced by idempotent functions, and an encoding of this
in Cedille (a dependently typed programming language) in which both
equational constraints and the packaging that associates these with ele-
ments of the carrier type are irrelevant, facilitating equational reasoning
in proofs. We provide several concrete examples of definable quotients
using this encoding and give combinators for function lifting (with one
variant having zero run-time cost).

Keywords: Quotients · Quotient types · Type theory · Cedille

1 Introduction

Every dependently typed programming language has some built-in notion of def-
initional equality of expressions which is induced by its operational semantics.
This notion can then be internalized as an equality type within the language,
called propositional equality. Propositional equality often enjoys a privileged sta-
tus, with language and library authors providing support for reasoning with it in
the form of, e.g., special rewriting syntax or tactics specifically for it. However,
it sometimes occurs that the programmer wishes to consider two expressions
of some type A equal up to some arbitrary equivalence relation ∼, which will
not have the same support as propositional equality. Quotient types provide
a solution to this problem by allowing the formation of a new type A/∼ for
which the equivalence a ∼ b corresponds precisely to propositional equality of
the equivalence classes [a] and [b] of type A/∼.

As an example, the rational numbers constitute an archetypal application of
quotients. First, fractions are defined as a pair of two natural numbers. Next, an
equivalence relation is defined between fractions such that a/b is equivalent to c/d
if and only if ad = cb. The quotient type with respect to this equivalence relation
constructs the rational numbers. Alternatively, we can decide whether a/b and
c/d are equivalent by comparing canonical representatives of their equivalence
classes, computed by dividing both numerator and denominator by their greatest
common divisor. Observe that this canonical choice operation for rationals is
necessarily idempotent. Generalizing, it turns out that rational numbers and all
other definable quotient types (in the sense of Li [15]) can be characterized by
c© Springer Nature Switzerland AG 2020
W. J. Bowman and R. Garcia (Eds.): TFP 2019, LNCS 12053, pp. 1–20, 2020.
https://doi.org/10.1007/978-3-030-47147-7_1
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2 A. Marmaduke et al.

the set of fixpoints of some idempotent function on the carrier type. We call this
quotients by idempotent functions, and to the best of our knowledge are the first
to work with this characterization of definable quotients explicitly.

Of course, definable quotients are, for any suitable characterization of them,
definable already in existing proof assistants like Agda or Coq [4,15]. In this
work, we argue that certain features of Cedille’s type theory makes the encoding
of our formulation especially simple, as in particular not only are all required
proofs erased (as one expects already in theories with proof irrelevance) but
indeed the very packaging used to associate terms with their equational con-
straints is also erased during equational reasoning. In summary, our contribu-
tions are:

1. a novel and simple characterization of definable quotients by idempotent func-
tions;

2. an encoding of this characterization that takes advantage of Cedille’s extrinsic
typing and notion of erasure to allow every definable quotient to be defini-
tionally equal to an element of the carrier type;

3. examples of definable quotients formalized in Cedille (with a code reposi-
tory available at github.com/cedille/cedille-developments/tree/master/idem-
quotients) including:

– a quotiented identity type (the carrier of which lacks decidable equality);
– naturals modulo some k;
– the even and odd subset types of naturals considered as quotient types;
– finite sets as lists whose elements have decidable equality, whose combi-

nation with other definable quotient types highlights the advantages of
our encoding;

– integers as a definable quotient inductive type, with constructors com-
patible with the intended equivalence relation and an induction principle
in terms of these;

4. combinators for lifting of functions, which for compatible functions can be
done such that the lifted function is definitionally equal to the original.

This version of the paper improves upon an earlier draft by more clearly iden-
tifying the class of quotient types to which quotients by idempotent functions
belong, emphasizing that the advantage of our encoding in Cedille is the disap-
pearance in equations of explicit type coercions between quotient and carrier,
focusing on examples of quotients by idempotent functions that contribute to
the central argument of the paper, and better contextualizing our contributions
in the existing literature on quotient types.

We begin the paper with a brief overview of Cedille’s type theory and lan-
guage features (Sect. 2). Next, we give a general definition of quotients by idem-
potent functions in Cedille and consider several examples (Sect. 3). Then, we
present the satisfied properties of and combinators for our quotients by idem-
potent functions (Sect. 4). After, we consider the benefits and limitations of our
work with respect to the existing literature on quotient types (Sect. 5). Finally,
we conclude the paper and reflect on our contributions (Sect. 6).

http://github.com/cedille/cedille-developments/tree/master/idem-quotients
http://github.com/cedille/cedille-developments/tree/master/idem-quotients
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(a) Equality

FV (t t′) ⊆ dom(Γ )

Γ � β{t′} : {t � t}
Γ � t : {t1 � t2} Γ � t′ : [t2/x]T

Γ � ρ t @ x.T − t′ : [t1/x]T
Γ � t : {t1 � t2} Γ � t1 : T

Γ � ϕ t − t1 {t2} : T

|β{t′}| = |t′|, |ρ t @ x.T − t′| = |t′|, |ϕ t − t1 {t2}| = |t2|,
(b) Dependent Intersection

Γ � t1 : T1 Γ � t2 : [t1/x]T2 |t1| = |t2|
Γ � [t1, t2] : ι x :T1. T2

Γ � t : ι x :T1. T2

Γ � t.1 : T1

Γ � t : ι x :T1. T2

Γ � t.2 : [t.1/x]T2

|[t1, t2]| = |t1|, |t.1| = |t|, |t.2| = |t|,
(c) Implicit Products

Γ, x : T � t′ : T ′ x �∈ FV(|t′|)
Γ � Λ x :T. t′ : ∀ x :T. T ′

Γ � t : ∀ x :T ′. T Γ � t′ : T ′

Γ � t -t′ : [t′/x]T

|Λ x :T. t| = |t|, |t -t′| = |t|

Fig. 1. Typing and erasure for a fragment of Cedille

2 Background

2.1 CDLE

Cedille’s core theory is the Calculus of Dependent Lambda Eliminations (CDLE)
[21,22]. CDLE is an extension of the impredicative extrinsically-typed Calculus
of Constructions [5] with three additional type formers: the dependent intersec-
tions ι x :T1. T2 of Kopylov [14]; the implicit products ∀x :T1. T2 of Miquel [18]
(which we may write T1 ⇒ T2 if x /∈ FV (T2)); and an equality type {t1 � t2} of
untyped terms. The term language of CDLE is just the untyped λ-calculus, so to
make type checking algorithmic Cedille requires users provide some type annota-
tions, and definitional equality of terms is modulo erasure of these annotations.
Figure 1 gives the term annotations in Cedille associated with these additional
type constructs and their erasures. In particular, the erasure of the β axiom and
dependent intersections is essential to our encoding of quotients by idempotent
functions.

Equality {t1 � t2} is the type of proofs that t1 and t2 are equal, where these
two terms are only required to be well-scoped. It is introduced with β{t′} (for
an unrelated t′, discussed below) if |t1| and |t2| (the erasures of t1 and t2) are
βη-convertible. If t has type {t1 � t2} it can be eliminated using ρ or ϕ where
ρ t @ x.T − t′ (which erases to |t′|) rewrites all occurrences of t2 in the type
[t2/x]T with t1 using the guide @ x.T , and ϕ t − t1 {t2} (which erases to |t2|)
casts t2 to the type T assuming that t1 has type T . For convenience in equational
reasoning, Cedille allows the guide to be omitted when the type [t1/x]T of the
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ρ-expression is known contextually, and provides the alternative form ρ+ t − t′

which normalizes the expected type until it finds occurrences of t1 to rewrite.
The fact that β may erase to an arbitrary (well-scoped) given term is called

the Kleene trick [22] as it goes back to Kleene’s numeric realizability: any evi-
dence at all may stand as proof for a trivially true equation (in Cedille, if β is
written without some desired erasure t′ then by default it erases to λx. x). In
practice, when combined with dependent intersections the Kleene trick enables
the formation of a kind of equational subset type where elements of a carrier type
may also act as proof that some equation concerning them holds, provided the
equation is indeed true.

Dependent Intersection ι x :T1. T2 is the type of terms t which can be seen to
have both the types T1 and [t/x]T2. The introduction form [t1, t2] is conceptually
similar to that of a dependent pair, except that |t1| must be βη-equivalent to
|t2|, thus allowing the erasure of this introduced intersection to simply be |t1|.
If t has type ι x :T1. T2, then the projections t.1 and t.2 resp. have types T1 and
[t.1/x]T2. Both projections erase to |t|.

We provide a simple example of the technique employed in our construction of
definable quotients in Cedille: assume we have the type Nat of natural numbers
with constructor zero: Nat and function pred : Nat Nat defined in the
usual way. Then, the expression [zero, β{zero}] has type ι x :Nat. {x � pred x}
and erases to zero.

Implicit Product ∀x :T1. T2 is the type of functions whose argument x of type
T1 is erased and thus not used to compute the result value of type T2. It is
introduced by Λx. t2 (which erases to |t2|), provided that t2 has type T2 and
further that x does not occur in the erasure of t2. If t has type ∀x :T1. T2 and t1
has type T1, then we may form an erased application t -t1 (which erases to |t|)
of type [t1/x]T2. Our use of implicit products in this paper is necessary for the
result described in Sect. 4.1 where it allows a function that is compatible with
an equivalence relation of some carrier type to be lifted to a function over the
(definable) quotient in such a way that the lifted function is definitionally equal
to the original.

Additional term and type constructs not given in Fig. 1 are summarized
here. All types are quantified over with ∀ (such as ∀X : 	.X → X) and within
terms abstracted over with Λ (such as ΛX. λx. x). Term-to-type and type-to-
type applications are written with a center-dot (such as t · T ). Local definitions
are written [x = t] − t′, analogous to let x = t in t′ in other languages.
Cedille also provides a built-in operator ς for symmetry of equality – this could
be replaced by a definition using ρ but is provided for convenience.

2.2 Datatypes in Cedille

CDLE lacks a primitive notion of inductive datatype. Firsov et al. [7] show how
these may be derived generically (in the sense of for any covariant signature
functor). As of version 1.1.0, the Cedille tool incorporates this result by allowing
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users to declare inductive datatypes with usual notation. For example, natural
numbers and pairs can be declared with:

data Nat : � =
| zero : Nat
| succ : Nat Nat.

data Pair (A: �) (B: �) = pair : A B Pair.

Cedille also has facilities for simple pattern-matching using operator μ′, and
for combined pattern-matching and recursion with operator μ:

fst : ∀ A: �. ∀ B: �. Pair·A·B A
= Λ A. Λ B. λ p. μ’ p { pair a b a }.

add : Nat Nat Nat
= λ m. λ n. μ addN. m { zero n | succ m’ succ (addN m’) }.

The operational semantics of μ′ is case-branch selection, so for example fst
(pair zero (succ zero)) reduces to zero. The operational semantics of μ is
combined case-branch selection and fixpoint unrolling. For example, for any m
and n of type Nat, add (succ m) n reduces to succ (μ′ addN . m { zero →
n | succ m′ → succ (addN m′)}).

Declared datatypes automatically come with an induction principle invoked
by pattern-matching and recursion with μ (and similarly a non-recursive “proof-
by-cases” principle invoked by μ′). An example of this is given below in the proof
addZeroRight showing zero is a right-identity of addition.

addZeroRight : Π n: Nat. {add n zero � n}
= λ n. μ ih. n @(λ x: Nat. {add x zero � x}) {

| zero β
| succ n’ ρ (ih n’) @ y. {succ y � succ n’} - β
}.

Here, a guiding type annotation is given explicitly with @ to help type check
each case branch, with the bound variable x replaced with the corresponding
constructor pattern. In the zero case the expected type is {add zero zero �
zero}, which holds by β (the Cedille tool also considers the operational semantics
of μ and μ′ when checking convertibility of terms in an equation). In the succ
case the expected type is {add (succ n′) zero � succ n′}. A guide for rewriting
is given with @ where the expected type is first checked to be convertible with
{succ (add n′ zero) � succ n′}, then the inductive hypothesis ih n′ is used to
perform a rewrite, and finally β is checked against type {succ n′ � succ n′}

Cedille uses a type-based approach to termination checking of recursive func-
tions defined with μ [13]. However, this method sometimes requires type coer-
cions be used explicitly on the recursive subdata revealed in case patterns. Most
of the recursive functions and proofs in this paper do not require the full power of
Cedille’s termination checker. Thus, for clarity, we remove these type coercions
to de-clutter our presentations and indicate explicitly those functions for which
a syntactic guard (as described by Giménez [10]) would be insufficient to ensure
termination.
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3 Quotient Types by Idempotent Functions

3.1 General Construction

We now present in Cedille quotient types by idempotent functions, which we
prove in Sect. 5 precisely characterizes definable quotients.

IdemFn : � � = λ A: �. ι f: A A. Π a: A. {f (f a) � f a}.

Quotient : Π A: �. IdemFn·A �
= λ A: �. λ f: IdemFn·A. ι a: A. {f a � a}.

qcanon : ∀ A: �. Π f: IdemFn·A. A Quotient·A f
= Λ A. λ f. λ a. [f.1 a, ρ (f.2 a) - β{f.1 a}].

For any carrier A, IdemFn·A is the type of functions f over A which also prove
themselves idempotent. Thanks to the Kleene trick, this obligation amounts to
requiring only that they are idempotent. Similarly, Quotient·A f (for any type
A and f : IdemFn·A) is the type of elements of A which are the fixpoints of f ,
and for any element a of the carrier qcanon f maps a to a representative of type
Quotient·A f by simply applying (the first projection of) f to a and discharging
the proof obligation that {f (f a) � f a} by idempotency of f . The intended
equivalence relation a ∼ b on A then implicitly arises from the propositional
equality {qcanon a � qcanon b}, and need not be given explicitly.

Our motivation for this characterization of definable quotients is its two-
fold simplicity, which we reinforce with examples given in the remainder of this
section: first, the number of required components is small, being only a car-
rier type, unary operation, and proof this operation is idempotent; second, the
additional term-level structure packing components with these properties is all
erasable, convenient for equational reasoning within proofs and especially so
when these proofs concern multiple quotient types. From this second feature
arises in particular the pleasing fact that every element of the quotient type is
definitionally equal to some element of the carrier type. This can be demon-
strated within Cedille by a kind of internalized subtyping relation: the existence
of a coercion qcoerce from Quotient·A f (for every A and f) to A which is
definitionally equal to λx. x.

qcoerce : ∀ A: �. ∀ f: IdemFn·A. Quotient·A f A
= Λ A. Λ f. λ q. q.1 .

qcoerceId : {qcoerce λ q. q} = β.
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3.2 Typed Equality with UIP

An important property of equality within type theory is whether it validates the
principle of uniqueness of identity proofs (UIP), which is the statement that any
two proofs p1 and p2 of {t1 � t2} (for any t1 and t2) are themselves equal. The
Kleene trick causes Cedille’s built-in equality to be anti-UIP because e.g. both
β{λx. λ y. x} and β{λx. λ y. y} prove {λx. x � λx. x}. However, if UIP is desired
then it is possible to construct as a definable quotient an equality type Id that
validates UIP. This construction is simple but rather interesting as, unlike other
examples we consider, the carrier of this quotient type has undecidable equality
(it contains divergent λ-expressions). Yet, this does not impede our choosing a
canonical representative – for any proof eq we return an equivalent proof which
erases to λx. x.

eqRep : ∀ A: �. Π a: A. Π b: A. {a � b} {a � b}
= Λ A. λ a. λ b. λ eq. ρ eq - β.

eqRepIdemFn : ∀ A: �. Π a: A. Π b: A. IdemFn·{a � b}
= Λ A. λ a. λ b. [eqRep a b, λ eq. β].

We retain typing information by using indices for the quotient type Id.

Id : Π A: �. A A �
= λ A: �. λ a: A. λ b: A. Quotient {a b} (eqRepIdemFn a b).

Note that we choose a homogeneous identity type for ease of demonstration, but
a heterogeneous or untyped version with UIP is also possible. Finally, we prove
that Id validates UIP.

UIP : ∀ A: �. Π a: A. Π b: A. Π p: Id·A a b. Π q: Id·A a b.
Id·(Id·A a b) p q

= Λ A. λ a. λ b. λ p. λ q. [ρ ς p.2 - ρ ς q.2 - β, β].

3.3 Natural Numbers Modulo k

The natural numbers modulo k is a family of quotient types where two numbers
are equivalent modulo k if their remainders with respect to k are equal. Below, we
define the remainder function rem1 and show with remIdem that it is idempotent.
Note that some definitions are omitted (indicated by <..>) in the paper but
available in the supplementary code repository2.

1 The listing of function rem omits necessary type coercions for Cedille to ensure that
the recursive call on minus n’ k’ is well-founded.

2 github.com/cedille/cedille-developments/tree/master/idem-quotients.

http://github.com/cedille/cedille-developments/tree/master/idem-quotients
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rem : Nat Nat Nat
= λ n. λ k. μ rec. n {

| zero zero
| succ n’

[k’ = pred k]
- if (lt n’ k’) (succ n’) (rec (minus n’ k’))

}.
remIdem : Π n: Nat. Π k: Nat. {rem (rem n k) k � rem n k} = <..>

remIdemFn : Π k: Nat. IdemFn·Nat
= λ k. [λ n. rem n k, λ n. ρ+ (remIdem n k) - β{rem n k}].

Mod : Nat � = λ k: Nat. Quotient Nat (remIdemFn k).

In the case of Mod k the idempotent function λn. rem n k canonicalizes the
input natural number to a value in the range [0, k − 1].

Functions on the natural numbers can be lifted to Mod k either by canonical-
izing the output or proving that all outputs of the function are fixpoints of rem.
For instance, we can lift natural number addition to Mod k by coercion from Mod
k to Nat, followed by addition and canonicalization of the output.

addMod : Π k: Nat. Mod k Mod k Mod k
= λ k. λ n. λ m. qcanon (remIdemFn k) (add n.1 m.1).

Li argues that definable quotients aid in reasoning about the quotient type
because both setoid and set views of the data are available [15]. We show that
facts about the carrier type that are preserved in the quotient type can be easily
demonstrated. Here, it is easy to show that addMod is commutative and has an
identity element by appealing to the fact that add has these properties.

addModComm : Π k: Nat. Π a: Mod k. Π b: Mod k.
{addMod k a b � addMod k b a}

= λ k. λ a. λ b.
ρ (addComm a.1 b.1) @ x. {rem x k � addMod k b a} - β.

addModIdLeft : Π k: Nat. Π a: Mod k. {addMod k a zero � a}
= λ k. λ a. ρ (addZeroRight a.1) @ x. {rem x k � a}

- ρ (a.2) - β.

addModIdRight : Π k: Nat. Π a: Mod k. {addMod k zero a � a}
= λ k. λ a. ρ (a.2) - β.

Notice in the proofs addModIdLeft and addModIdRight that we may use zero
directly when reasoning about it as an identity element for addMod. This is possi-
ble thanks to Cedille’s equality being for untyped terms, and sensible because we
know that (for all k) qcannon (remIdemFn k) zero is zero by definition. Thus,
explicit canonicalization of zero is neither required nor desired.
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3.4 Even and Odd Natural Numbers

As we have seen, the elements of quotients by idempotent functions in Cedille
have (definitionally) equal elements in the carrier type. With this property in
mind, we construct the type of even natural numbers and odd natural numbers.

toEven : Nat Nat
= λ n. μ rec. n {

| zero zero
| succ n’ μ’ n’ {

| zero zero
| succ n’’ succ (succ (rec n’’))
}

}.
toOdd : Nat Nat = λ n. succ (toEven n).

toEvenIdem : Π n: Nat. {toEven (toEven n) � toEven n} = <..>
toEvenIdemFn : IdemFn·Nat = <..>

toOddIdem : Π n: Nat. {toOdd (toOdd n) � toOdd n} = <..>
toOddIdemFn : IdemFn·Nat = <..>.

Even : � = Quotient Nat toEvenIdemFn.
Odd : � = Quotient Nat toOddIdemFn.

The idempotent function toEven relates every two consecutive natural numbers,
picking the smaller number as the canonical representative. The idempotent
function toOdd is similar but chooses the larger number instead. The pair of
idempotent functions toEven and toOdd define the same equivalence relation
with the only difference being which of the two related numbers are picked.
This is in contrast to Mod k where the equivalence relation alone gives a desired
computational behavior or algebraic structure. Indeed, the algebraic structure
of Mod k is present regardless of the selection of the canonical elements. But for
Even and Odd as quotients we are interested in the particular fixpoints of the
functions toEven and toOdd.

A fundamental property about even numbers is that addition by two produces
an even number. By defining addition by two first on the natural numbers we
can lift the function to Even. However, unlike the lifting we did previously we
can avoid having to apply toEven on the result and instead prove it is already
a canonical representative.

succSucc : Nat Nat = λ n. succ (succ n).

evenSSCompat : Π e: Even. {toEven (succSucc e) � succSucc e}
= <..>

evenSuccSucc : Even Even
= λ e. [succSucc e.1, ρ (evenSSCompat e) - β{succSucc e}].
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Of course, a similar development can be carried out for odd natural numbers.
We call this version of function lifting compatible, following Cohen [4]. With
compatible lifting the resulting function is definitionally equal to the original
function.

A core benefit to our approach is that we can mention elements of the carrier
type and the quotient type in equational contexts without any additional type
coercions such as projections for dependent records. In a property that decom-
poses a natural number into an even or odd number we can directly say that
the natural number is equal to the corresponding even or odd number (in the
return type of evenOrOdd below, Or is the disjoint union type, and the dependent
intersections should be read as a kind of existential quantification):

evenOrOdd : Π n: Nat. Or·(ι x: Even. {n � x})·(ι x: Odd. {n � x})
= <..>

3.5 List as Finite Set

As Cohen argued, quotients are a useful feature in formalizing mathematics
[4]. However, they can also be a useful abstraction for computer science. As
an example, finite sets are usually defined in terms of trees where an order on
the elements is needed. With quotients, we can instead form finite sets as an
abstraction over those lists whose elements have decidable equality.

EqFn : � � = λ A: �. ι f: A A Bool.
(Π a: A. Π b: A. {f a b � true} ⇒ {a � b}).

distinctCons : ∀ A: �. EqFn·A A List·A List·A
= Λ A. λ eq. λ a. λ l. μ’ (find eq a l) {

| tt l
| ff cons a l
}.

distinct : ∀ A: �. EqFn·A List·A List·A
= Λ A. λ eq. λ l. μ rec. l {

| nil nil·A
| cons a l distinctCons eq a (rec l)
}.

distinctIdem : ∀ A: �. Π eq: EqFn·A. Π l: List·A.
{distinct eq (distinct eq l) � distinct eq l} = <..>

distinctIdemFn : ∀ A: �. Π eq: EqFn·A. IdemFn·(List·A) = <..>

ListSet : Π A: �. EqFn·A �
= λ A: �. λ eq: EqFn·A. Quotient·(List·A) distinctIdemFn.

We need an equality function that decides the equality of terms of the parameter
type in order to prove that distinct is idempotent. A quotient of List provides
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a guarantee about the list that does not alter the underlying structure and does
not need to be proven because the list can always be canonicalized. If we allow
ourselves an ordering on the elements of A in addition to decidable equality,
then we could quotient by a sort function to construct a SortedList type.
Alternatively, we could quotient a tree instead of a list to form a TreeSet type.

Throughout the paper, we have highlighted that elements of the quotient type
are definitionally equal to certain elements of the carrier type. The advantage of
our encoding, and its interaction with Cedille’s equality type, is most apparent
in the combination of ListSet with other definable quotient types. If for exam-
ple we wished to define a specialized notion of equality between List·Nat and
ListSet·Even, it would be as simple as asking that two terms are equal.

EqEvenSet1 : List·Nat ListSet·Even eqEven �
= λ l1: List Nat. λ l2: ListSet Even eqEven. {l1 l2}.

However, if we were to use an encoding of definable quotients based on a depen-
dent record or pair type, we would be required to use a homogeneous equality
type like Id (Sect. 3.2) and explicit coercions between the two sets of quotient
and carrier types.

EqEvenSet2 : List·Nat ListSet·Even eqEven �
= λ l1: List·Nat. λ l2: ListSet·Even eqEven.

Id·(List·Nat) l1
(map (qcoerce -evenIdemFn)

(qcoerce -(distinctIdemFn eqEven) l2)).

With EqEvenSet1 l1 l2 we know that l1 and l2 are (propositionally) equal.
An intrinsically typed theory (like Coq or Agda) however must use EqEvenSet2,
where qcoerce would be implemented by record accessors or product projections
rather than an identity function. As such, they would remain in proof obliga-
tions unless explicitly discharged, meaning for this example we would have to
more carefully track coercions for the ListSet and the Even elements when
manipulating terms in proofs.

3.6 Quotient Inductive Integers

In prior examples where the carrier type had an induction principle, we would
expect that the quotient type constructed from it is also inductive with respect
to some canonicity-preserving constructors. Take for example a non-canonical
encoding of integers (which we call the pre-integers).

data PreInt : � =
| pzero : PreInt
| psucc : PreInt PreInt
| ppred : PreInt PreInt.

When phrased as a quotient inductive type, the definition includes the following
axioms.

spCancel : Π p: PreInt. {psucc (ppred p) p}
psCancel : Π p: PreInt. {ppred (psucc p) p}
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However, these axioms are false because of how type theories like Cedille, Agda,
and Coq encode the constructors of PreInt. To fix this problem the axioms must
be considered as part of the definition of the type. In systems like Cubical Agda
the solution is to extend the notion of inductive types to higher inductive types
which are allowed to specify path constructors that may depend on previously
defined constructors [24]. The underlying semantics of the system then encodes
the type appropriately so that all path constructors are satisfied.

With quotient types by idempotent functions we can take a different app-
roach to the problem by defining canonicity-preserving constructors on the type
PreInt:

psucc’ : PreInt PreInt
= λ p. μ’ p {

| pzero psucc pzero
| psucc x psucc (psucc x)
| ppred x x
}.

ppred’ : PreInt PreInt
= λ p. μ’ p {

| pzero ppred pzero
| psucc x x
| ppred x ppred (ppred x)
}.

We do not need to define a pzero’ constructor because it would be definitionally
equal to pzero. Next, we define the idempotent function which induces the
intended equivalence relation by noticing that it should replace every PreInt
constructor with the corresponding canonicity-preserving version.

integer : PreInt PreInt
= λ p. μ rec. p {

| pzero pzero
| psucc x psucc’ (rec x)
| ppred x ppred’ (rec x)
}.

When a quotient type is designed with the constructors (psucc’ and ppred’)
first and the canonizer (integer) second, then the proof that the canonizer is
idempotent is equivalent to knowing that the constructors commute with it. To
show that psucc’ and ppred’ commute with integer we need to know that
the equational axioms hold. That is, we need to show that the canonical choice
for any pre-integer satisfies the cancellation axioms of the canonicity-preserving
constructors.
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EqSP : PreInt � = λ p: PreInt. {psucc’ (ppred’ p) � p}.
eqSP : Π p: PreInt. EqSP (integer p) = <..>

EqPS : PreInt � = λ p: PreInt. {ppred’ (psucc’ p) � p}.
eqPS : Π p: PreInt. EqPS (integer p) = <..>

integerIdem : Π p: PreInt. {integer (integer p) � integer p}
= <..>
integerIdemFn : IdemFn PreInt = <..>

With these lemmas, eqSP and eqPS, the function integer can be shown idem-
potent without difficulty.

Next, we define the quotient type Int, its corresponding constructors, and
prove the cancellation properties.

Int : � = Quotient·PreInt integerIdemFn.

izero : Int = [pzero, β{pzero}].
isucc : Int Int = <..>
ipred : Int Int = <..>
sp : Π i: Int. {isucc (ipred i) i} = <..>
ps : Π i: Int. {ipred (isucc i) i} = <..>

Finally, we can prove an induction principle on Int that references the quotient
constructors by induction on the underlying PreInt.

induct : ∀ P: Int �. P izero
(Π x: Int. P x P (isucc x))
(Π y: Int. P y P (ipred y))
Π i: Int. P i = <..>

Furthermore, we can use the induction principle to define addition on the quo-
tient inductive integers as expected.

iadd : Int Int Int
= λ x. λ y. induct·(λ x: Int. Int) y

(λ a. λ b. isucc b)
(λ a. λ b. ipred b)
x.

In contrast to a Cubical Agda definition of quotient inductive integer our
construction does not mention a coherence condition about the equational con-
straints ps and sp. Both the coherence condition and the set truncation condi-
tion described by Pinyo and Altenkirch [20] are not true for the equality type
of Cedille. However, the type PreInt has a decidable equality. This implies that
Int also has a decidable equality because every element can be coerced to an
element in PreInt. Thus, construction of quotient inductive types using idem-
potent functions will always have decidable equalities if the underlying carrier
type does. This means that these types, in a Homotopy Type Theory setting,
are already sets which is why a coherence condition is not needed. Also, it is
important to note that quotient inductive types, as described in Cubical Agda,
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are more expressive than quotients by idempotent functions. Indeed, we have
only the definable quotient inductive types.

4 Properties of Quotient Types by Idempotent Functions

In the literature several desired properties of quotient types are listed. Li lists
soundness and completeness of the canonicalization function relative to the
equivalence relation as requirements [15]. Cohen lists, additionally, a surjection
property and lifting properties [4]. First, we briefly demonstrate that some of
these properties trivially hold for quotients by idempotent functions. Second, we
demonstrate function and property lifting in Sect. 4.1.

In this section we will use abbreviations for the idempotent function, carrier
type, and quotient type.

import quotient-defs.
module quotient (A: �) (f: IdemFn·A).
Q : � = Quotient·A f.
canon : A Q = λ a. qcanon f a.

Here, quotient-defs contains the definitions found in the beginning of Sect. 3.
Now, we define the equivalence relation Equiv on A that arises from f and show
that canon is sound and complete (as defined by Li for definable quotients) with
respect to it.

Equiv : A A � = λ a: A. λ b: A. {f a f b}.

sound : Π a: A. Π b: A. Equiv a b {canon a canon b}
= λ a. λ b. λ eq. eq.

complete : Π a: A. Equiv (f.1 a) a
= λ a. ρ (f.2 a) @ x. {x f a} - β.

In Sect. 5 we expand on the equivalence between Li’s definable quotients and
quotients by idempotent functions. It is also straightforward to show the surjec-
tion property of Cohen.

surjection : Π q: Q. ι a: A. {q canon a}
= λ q. [q.1, ρ ς q.2 @ a. {a canon a} - β{q.1}].

Function and property lifting are more interesting in Cedille because Q terms
have corresponding A terms that are definitionally equal.

4.1 Function and Property Lifting

When working with the quotient type Q, there may be functions on the carrier
type A that would be useful to use on Q. We have seen this briefly already for both
Mod k (where addition on Nat was lifted) and Even (where applying the successor
twice on Nat was lifted). These two applications are different. Addition on Nat
was lifted by restricting the input arguments and canonicalizing the output.
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Successor twice on Nat was lifted by proving that the output returns a canonical
element for any canonical input.

We abstract lifting by canonicalization to automatically lift any simply typed
function on A to a simply typed function (with the same shape) on Q. This
requires that the output of any higher-order inputs are also canonicalized. To
accomplish this in Cedille we use an inductive relation IsSimple.

data IsSimple : (� �) � =
| base : IsSimple·(λ x: �. x)
| any : ∀ T: �. IsSimple·(λ x: �. T)
| arrow : ∀ A: � �. ∀ B: � �.

IsSimple·A → IsSimple·B → IsSimple·(λ x: �. A·x B·x).

liftByCanon : ∀ F: � �.
IsSimple F Pair (F A F Q) (F Q F A) = <..>

This construction allows for both instances of A where it is replaced by Q (using
the base constructor) and also instances of A that are not replaced (using the
any constructor). In the unary case applying liftByCanon is definitionally equal
to applying canon on the output of the operation.

liftByCanon1 : (A A) Q Q
= λ op. (fst (liftByCanon (arrow base base))) op.

liftByCanon1’ : (A A) Q Q
= λ op. λ q. canon (op q.1).

liftByCanon1Eq : Π op: A A.
{liftByCanon1 op � liftByCanon1’ op}

= λ op. β.

Although lifting by canonicalization is very flexible there may be some
idempotent functions that are either expensive to compute or would otherwise
be unnecessary to re-apply. For example, applying a filter function over a
ListSet would not invalidate the fact that it is a fixpoint of distinct but
reapplying distinct to the output of filter will change the complexity from
linear to quadratic. This is because distinct replaces every cons with the
distinct cons operation, every application of which destructs and rebuilds (in
linear time) the entire list set. To avoid this, an additional compatibility property
about the operation to be lifted needs to be proven.

Compatible : Π T: �. (T A) �
= λ T: �. λ op: T A. Π t: T. {f (op t) � op t}.

liftArg : ∀ R: �. Π op: A R. Q R
= Λ R. λ op. λ q. op q.1.

lift : ∀ T: �. Π op: T A. Compatible·T op T Q
= Λ T. λ op. Λ c. λ t. [op t, ρ (c t) - β{op t}].
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Knowing that the operation is compatible with the idempotent function is only
necessary for lifting the return type of the operation op. Lifting arguments of
the function, as long as they are not higher order arguments, is always possible.
With liftArg and lift binary functions can be lifted by applying inputs to the
operation in the compatibility evidence.

lift2 : Π op: (A A A). (Π a: A. Compatible·A (op a))
Q Q Q

= λ op. Λ c. λ x. liftArg (lift (op x.1) -(c x.1)).

A similar approach is possible for any n-ary function. As expected, compatible
lifting will return a definitionally equal operation.

liftArgId : ∀ R: �. Π op: A R. {liftArg op � op}
= Λ T. λ op. β.

liftId : ∀ T: �. Π op: T A. {lift op � op}
= Λ T. λ op. β.

Aside from lifting functions we also wish to lift properties. Given a property
on A we lift it to a property on Q by forgetting the fixpoint evidence.

Lift : (A → �) → Q → � = λ P: A → �. λ q: Q. P q.1.

dlift : ∀ P: A → �. (Π a: A. P a) → Π q: Q. Lift·P q
= Λ P. λ p. λ q. p q.1.

Alternatively, as stated by Hofmann, we have quotient induction where we start
with a property on Q and show that it holds for all elements of Q if it holds for
the canonical representatives of elements of A.

qind : ∀ B: Q �. (Π a: A. B (canon a)) Π q: Q. B q
= Λ B. λ c. λ q. ρ ς q.2 - c q.1.

Quotient induction lets us prove, by induction on A, a fact about the quotient
type. However, this is not the same as being able to perform induction directly on
Q using canonicity-preserving constructors as we showed for quotient inductive
integers in Sect. 3.6.

5 Related Work

Quotients have been explored in several existing systems including: Agda, Coq,
HOL Light, NuPRL, and others. We survey the existing literature and comment
on what is relevant to results presented in this work.

Definable quotients as given by Li [15] are closely related to quotients by
idempotent functions. In Li’s thesis he formalizes, in Agda, examples of definable
quotients and additionally proves that not all quotients of interest are definable.
One such example is unordered pairs that lack a total ordering of its components.
The type of unordered pairs is also undefinable with an idempotent function.
Indeed, the idempotent function must either keep the order of elements or swap
the elements and neither choice is fixed without an imposed order.
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Li also provides and proves equivalent to definability a notion of quotients
by normalization. We now show that our formulation of quotients by idempotent
functions is an equivalent condition to this. The quotient A/∼ of a setoid (A,∼)
is definable by normalization if:

1. there is a function f : A → A;
2. which is sound, ∀a, b : A, a ∼ b ⇒ f(a) = g(b);
3. and complete, ∀a : A. f(a) ∼ a

and definable by an idempotent function if:

1. there is a function g : A → A;
2. which is idempotent, ∀a : A. g(g(a)) = g(a);
3. and is image equivalent, ∀a, b : A. a ∼ b ⇔ g(a) = g(b)

Theorem 1. The two conditions above on setoid (A,∼) are equivalent.

Proof. (⇒) Assume a function f which is sound and complete. We wish to
provide some function which is idempotent and image equivalent. We pick f : for
all a : A, we have by completeness that f(a) ∼ a, and applying soundness to
this yields f(f(a)) = f(a), so f is idempotent. For all a, b : A, we have already
by soundness that a ∼ b ⇒ f(a) = f(a), and assuming that f(a) = f(b) we have
by completeness that a ∼ f(a) = f(b) ∼ b, so f is image equivalent.

(⇐) Assume a function g which is idempotent and image equivalent. We
wish to provide some function which is sound and complete. Pick g: we have
soundness as a direct consequence of image equivalence. For all a : A, we have
by idempotence that g(g(a)) = g(a), so by image equivalence we have g(a) ∼ a
showing g is complete. 
�

In Coq, Cohen [4] developed two notions of quotient types. The first consists
of two functions pi : Q → T and repr : T → Q where ∀x : T. pi(repr(x)) = x;
much like as in our presentation, the equivalence relation x ∼ y then arises from
the equality repr x = repr y. The second notion arises from carrier types T
with a choice structure which guarantees that, for every equivalence relation,
labeled ∼, there exists a canonical choice operation canon : T → T [9]. In
translating from the second notion of quotient to the first, Cohen shows that
choice structure guarantees that canon is idempotent and defines the quotient
type Q as a dependent record containing an element of T and a proof that it is a
fixpoint of canon. Though this is similar to quotients by idempotent functions,
we start with the requirement that the canonical choice operation is idempotent
rather than deriving it as a consequence of the seemingly stronger requirement
that T has a choice structure.

Moreover, because Coq is an intensional type theory the packaging of the
dependent record will not be erased when reasoning about terms of the quotient
type Q. Also, the lack of a truly heterogeneous equality type (as opposed to
John Major equality [17]) in Coq will prevent the direct equational reasoning
between carrier and quotient type that is possible in Cedille. This situation is
also the same for constructing quotient by idempotent functions in Agda: even
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using Prop or irrelevant record fields so that Q is in a sense a subtype of T , it
is not the case that every q of type Q is definitionally equal to some element
of type T , and so coercions between these the two must be managed explicitly
when performing equational reasoning.

Quotient types in type theory have been studied as early as the 1990s
with Hofmann’s work on interpreting quotient types in both predicative and
impredicative variants of the Calculus of Constructions [11]. Hofmann’s work is
expanded upon by Veltri who works with impredicative encodings and some addi-
tional primitive types to show versions of dependent lifting for quotients [23].
The approach of utilizing normalization is explored in Courtieu’s work where
he expands the Calculus of Inductive Constructions with type constructors for
“normalized types” [6].

Outside of intensional proof assistants like Coq and Agda, Nogin has worked
on modular definitions of quotients in the NuPRL system to ease the develop-
ment burden when using quotients [19]. Prior to Nogin’s work NuPRL included
quotients as a primitive construct. In modern NuPRL types are identified as
partial equivalence relations and quotient types are constructed from this inter-
pretation directly [2]. Quotients are also defined and used in HOL Light and
similar systems [12].

In this work we have focused on definable quotient types, but there are sev-
eral interesting quotients that do not fit into this category. For instance, higher
inductive types (of which quotient inductive types are a special case) have been
used to model type theory in type theory [1] and finite sets [8]. With the existence
of a small core of higher inductive types (one of which is the higher inductive
quotient), all set-truncated higher inductive types have been shown to be deriv-
able [25]. Although there are some quotient inductive types that can be modeled
as quotients by idempotent functions (such as the quotient inductive integers)
it is clear that quotient inductive types are a more expressive formalism.

The presence of non-definable quotients in type theories can have significant
consequences. Indeed, Maietti demonstrates that when effective quotients are
added to constructive set theory and two universes are postulated that the law
of the excluded middle holds for small sets [16]. Likewise, Chicli et al. show in
Coq that if quotients of functions spaces are available, where all such quotients
have a section mapping, and there is an impredicative universe then the theory is
inconsistent [3]. With a theory like Cedille that does not have a universe hierarchy
and has impredicative quantification, caution must be used in extending the
theory with undefinable quotients (or more generally higher inductive types) as
it could make the theory inconsistent.

6 Conclusions

In this work we have described a novel and relatively simple characterization
of definable quotient types by idempotent functions, and described an encoding
of it within Cedille. We have presented concrete examples of quotient types: an
equality type with UIP, naturals modulo k, the even and odd subset of natu-
rals, finite sets (and their combination with even numbers), and a quotiented
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integer type with an induction principle. We have also developed function lift-
ing operations, showing that in particular compatible functions can be lifted
to a definitionally equal function over the quotient type. Moreover, dependent
intersection and the Kleene trick in Cedille allow full erasure of the packaging
of elements of a carrier type with proofs they are fixpoints of some idempotent
function, meaning no explicit coercions between the quotient and carrier type
are needed for equational reasoning, as would be the case for a similar encoding
in other dependently typed languages like Coq and Agda.

We are interested in expanding on this work by investigating what equational
constraints for higher inductive types would always guarantee that it is a defin-
able quotient inductive type, and thus derivable within CDLE. Also, in Cedille
a notion of (Mendler-style) histomorphism is derivable that allows for more flex-
ibility in recursive definitions [7]. We have shown that induction is possible in
terms of the quotient constructors, but we also want to extend this result to
histomorphisms on the quotient type.
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10. Giménez, E.: Codifying guarded definitions with recursive schemes. In: Dybjer, P.,
Nordström, B., Smith, J. (eds.) TYPES 1994. LNCS, vol. 996, pp. 39–59. Springer,
Heidelberg (1995). https://doi.org/10.1007/3-540-60579-7 3

https://doi.org/10.1007/3-540-39185-1_6
https://doi.org/10.1007/978-3-642-39634-2_17
https://doi.org/10.1007/3-540-44802-0_39
https://doi.org/10.1007/3-540-44802-0_39
https://doi.org/10.1007/978-3-319-94821-8_14
https://doi.org/10.1007/978-3-642-03359-9_23
https://doi.org/10.1007/978-3-642-03359-9_23
https://doi.org/10.1007/3-540-60579-7_3


20 A. Marmaduke et al.

11. Hofmann, M.: A simple model for quotient types. In: Dezani-Ciancaglini, M.,
Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 216–234. Springer, Heidelberg
(1995). https://doi.org/10.1007/BFb0014055

12. Homeier, P.V.: A design structure for higher order quotients. In: Hurd, J., Melham,
T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 130–146. Springer, Heidelberg (2005).
https://doi.org/10.1007/11541868 9

13. Jenkins, C., McDonald, C., Stump, A.: Elaborating inductive datatypes and course-
of-values pattern matching to Cedille. CoRR (2019). http://arxiv.org/abs/1903.
08233

14. Kopylov, A.: Dependent intersection: a new way of defining records in type the-
ory. In: Proceedings of the 18th Annual IEEE Symposium on Logic in Computer
Science, LICS 2003. IEEE Computer Society, Washington, DC (2003)

15. Li, N.: Quotient types in type theory. Ph.D. thesis, University of Nottingham (2015)
16. Maietti, M.E.: About effective quotients in constructive type theory. In: Altenkirch,

T., Reus, B., Naraschewski, W. (eds.) TYPES 1998. LNCS, vol. 1657, pp. 166–178.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48167-2 12

17. McBride, C.: Elimination with a motive. In: Callaghan, P., Luo, Z., McKinna,
J., Pollack, R., Pollack, R. (eds.) TYPES 2000. LNCS, vol. 2277, pp. 197–216.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45842-5 13

18. Miquel, A.: The implicit calculus of constructions extending pure type systems
with an intersection type binder and subtyping. In: Abramsky, S. (ed.) TLCA
2001. LNCS, vol. 2044, pp. 344–359. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-45413-6 27

19. Nogin, A.: Quotient types: a modular approach. In: Carreño, V.A., Muñoz, C.A.,
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Abstract. In this paper we set forth the thesis that a language type
checker can be an effective tool in teaching language design principles
of functional languages. We have used TypeSoundnessCertifier, a tool
for type checking languages and certifying their soundness, in the con-
text of a graduate course in programming languages. In this paper we
offer details on how the course took place, and we report on some data
gathered during evaluations. Although the work reported in this paper is
not statistically significant, we share our experience to show the type of
studies that we are conducting, and to inspire similar and larger studies
towards gathering evidence for, or against, our thesis.

Keywords: Language design · Teaching · Functional languages

1 Background

In this paper, we share our experience in teaching one instance of a course
in programming languages. The name of the course is Design of Programming
Languages. The course has been a semester long graduate level course. The first
half of the course covered programming languages theory, and two key learning
outcomes of this part are:

1 Understanding basic methods and tools of programming languages theory.
This includes that students must be able to read and write grammars and
semantics of language definitions.
2 Using such tools in the design of toy functional languages that are type
sound.

What Basic Methods and Tools? Much emphasis has been allocated in exposing
students to the theory and practice of defining programming languages the way
they are typically shared within the research community. Although there are
many approaches to the formal semantics of programming languages, and there
is no consensus as to which approach is the best, the approach with small step
operational semantics seems to be one of the most widespread. We have then
used this approach, also adopted in standard textbooks [10,11].
c© Springer Nature Switzerland AG 2020
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https://doi.org/10.1007/978-3-030-47147-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47147-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-47147-7_2


22 M. Cimini

Types T ::= Int | T → T | List T
Expressions e ::= x | λx : T.e | e e | nil | cons e e

| head e | tail e | error
Value v ::= λx.e | nil | cons v v
Errors er ::= error

Contexts E ::= E e | v E | cons E e | cons v E
| head E | tail E

Type System Γ � e : T

(t-lambda)
Γ, x : T1 � e : T2

Γ � λx : T1.e : T1 → T2

(t-app)
Γ � e1 : T1 → T2 Γ � e2 : T1

Γ � e1 e2 : T2

(t-nil)

Γ � nil : List T

(t-cons)
Γ � e1 : T Γ � e2 : List T

Γ � cons e1 e2 : List T

(t-head)
Γ � e : List T

Γ � head e : T

(t-tail)
Γ � e : List T

Γ � tail e : List T

(t-error)

Γ � error : T

Dynamic Semantics e −→ e

(λx : T.e) v −→ e[v/x] (beta)
head nil −→ error (r-head-nil)

head (cons v1 v2) −→ v1 (r-head-cons)
tail nil −→ error (r-tail-nil)

tail (cons v1 v2) −→ v2 (r-tail-cons)

e −→ e′

E[e] −→ E[e′]
(ctx) E[er ] −→ er (err-ctx)

Fig. 1. A simply typed lambda-calculus with lists.

To make an example of a language defined with this approach, Fig. 1 shows
the definition of a simply typed lambda-calculus with lists (Int only serves as
a base type). The language definition includes a BNF grammar for the syn-
tax of the language. With the grammar, language designers declare types and
expressions. Next, language designers decide which expressions constitute val-
ues. These are the possible results of successful computations. Similarly, the
language designer may define which expressions constitute errors, which are
possible outcomes of computations when something goes wrong. The syntactic
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category evaluation contexts declares within which context we allow reduction
to take place.

A language definition also includes inference rules that are used to populate
relations that are of interest for the language at hand. These are inductive defini-
tions, typically. Archetypical examples of such relations are a typing judgement,
with shape Γ � e : T in the particular example of Fig. 1, and a reduction rela-
tion, with shape e −→ e in Fig. 1. Inference rules are a convenient medium to
formally define relations.

Learning outcome 1 prescribes that students be fluent in understanding lan-
guage definitions like that of Fig. 1, and like those found, for example, in the
first chapters of Pierce’s TAPL book [11]. Students are also called to be able to
model languages of comparable difficulty on their own.

Type Soundness. One of the most important properties for modern programming
languages is type soundness. This property ensures that the type system at hand
faithfully predicts the shapes of values that will be encountered at run-time. In
other words, expressions that, at compile-time, are classified of a certain type
will indeed yield a value of that type at run-time, if evaluated.

Two aspects that are key, at least in the context of languages such as that
of Fig. 1, to achieve type soundness are progress, that is (roughly), all behavior
is specified, and type preservation, that is, in a computational step e −→ e′ we
have that e and e′ have the same type.

The focus of this paper is on the learning outcome 2, in which type soundness
is central: Students must not only be able to define languages, but be also able
to devise languages that are type sound and amenable to standard proofs.

1.1 TypeSoundnessCertifier

A distinctive feature of the course is the use of a software tool called TypeSound-
nessCertifier [6]. TypeSoundnessCertifier is a tool for type checking language
definitions and certifying their soundness. The tool is based on theoretical results
by Cimini, Miller and Siek that have been described in a preprint paper on the
arXiv [7]. The tool and its theoretical underpinning are not contributions of this
present paper. We here simply report on our experience in using the tool. To
this aim, we review some features of the tool as reported in Cimini et al. [7].

TypeSoundnessCertifier makes use of a domain-specific language to define the
grammar, typing rules and operational semantics of languages. Figure 2 shows
the language definition in TypeSoundnessCertifier for the simply typed lambda-
calculus with lists (as in Fig. 1, int serves just as base type). This definition
describes a grammar (lines 1–9)1, a type system (lines 11–20), and a dynamic
semantics (lines 22–26), and does so with, essentially, a textual representation of
the syntax that is typically used in operational semantics2. Perhaps, the biggest
1 A constraint of our system is that it works with closed terms as values, therefore a

variable x cannot be declared as a value.
2 This is not a novelty. The Ott language, for example, achieved the same effect

previously.
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1 Expression E ::= x | (abs T (x)E) | (app E E) | emptyList

2 | (cons E E) | (head E) | (tail E)

3 | error

4 Type T ::= int | (arrow T T) | (list T)

5 Value V ::= (abs T (x)E) | emptyList | (cons V V)

6 Error ::= error

7 Context C ::= [] | (app C E) | (app V C)

8 | (cons C E) | (cons V C)

9 | (head C) | (tail C)

10
11 Gamma |- (abs T1 (x)E) : (arrow T1 T2) <==

12 Gamma , x : T1 |- E : T2.

13 Gamma |- emptyList : (list T).

14 Gamma |- (cons E1 E2) : (list T) <==

15 Gamma |- E1 : T /\ Gamma |- E2 : (list T).

16 Gamma |- (app E1 E2) : T2 <==

17 Gamma |- E1 : (arrow T1 T2) /\ Gamma |- E2 : T1.

18 Gamma |- (head E) : T <== Gamma |- E : (list T).

19 Gamma |- (tail E) : (list T) <== Gamma |- E : (list T).

20 Gamma |- error : T.

21
22 (app (abs T (x)E) V) --> E[V/x].

23 (head emptyList) --> error.

24 (head (cons V1 V2)) --> V1.

25 (tail emptyList) --> error.

26 (tail (cons V1 V2)) --> V2.

Fig. 2. Example of language definition in TypeSoundnessCertifier. Binding is limited
to unary lexical scoping [5], which is sufficient in the scope of our course. We express
binding with syntax such as (x)E, that is, x is bound in E. This is similar to the direc-
tive (+ bind x in e +) in the Ott tool [15]. E[V/x] represents the capture-avoiding
substitution.

departure is that grammar variables are always capitalized and the horizontal
line of an inference rule

premises

conclusion

is replaced with an inverse implication <== that can be read “provided that”.
Students that have been exposed to operational semantics would likely find no
difficulties in connecting the syntax of the tool with what they know.

Type Systems for Language Design Principles. A relevant feature of TypeSound-
nessCertifier is that the tool type checks language definitions and makes sure
that the components of the language (value declarations, typing rules, reduction
semantics rules, etc.) are all in order so that type soundness automatically holds.

Previous approaches to type checking languages are based on intrinsic typing
[2,3,13,14]. In that approach, soundness is achieved indirectly by leveraging on



Teaching with a Language Type Checker 25

the good properties of a host meta type theory. For example, if you can make your
language definition type check within a logic with exhaustive pattern-matching
that is strongly normalizing then the progress theorem, which is one aspect of
type soundness, holds for you. The unique feature of TypeSoundnessCertifier is
that, unlike the intrinsic typing approach, is based on a type system that explic-
itly models language design principles and invariants of the (object) language
being defined. Some examples of design principles that TypeSoundnessCertifier
enforces on the object language are:

– Classification of the operators of the language in introduction forms (such
as the abstraction in the simply typed lambda-calculus), elimination forms
(such as application), derived operators (such as let and letrec in ML-
like languages), errors and error handlers (such as try in languages with
exceptions).

– Elimination forms of a type manipulate values of that type. That is, for the
beta-reduction rule (app (abs T (x)E) V) −→ E[V/x] TypeSoundnessCertifier
detects that app has been classified as an elimination form of type arrow.
Then it checks that the principal argument (in Harper’s terminology [10]),
which is highlighted, is a value and that is built with an introduction form
of the type arrow. In this case, abs is an introduction form of arrow
indeed. Furthermore, TypeSoundnessCertifier detects that (abs T (x)E) is
indeed declared in the grammar of values.

– If an operational semantics rule requires the argument of an operator to be
a value, then that argument must be an evaluation context. For example, in
the beta-reduction rule (app (abs T (x)E) V ) −→ E[ V /x] the second argu-
ment is a value V , hence the tool checks that an evaluation context such as
(cons V C ) exists. Without such evaluation context, the expression that is
equivalent to the lambda-calculus term ((λx.x) ((λx.x) 3)) would be stuck,
jeopardizing type soundness.

– Each elimination form of a type T must have a reduction rule defined for each
of the values of the type T . To make an example, this invariant prescribes that
we do not forget to define the behavior of the head list operation for the empty
list, and that we give a reduction rule such that (head emptyList) −→ error
or otherwise our programs may get stuck, jeopardizing type soundness.

These are only few of the language design principles that TypeSoundnessCer-
tifier enforces. The interested reader is invited to refer to the archived paper of
Cimini, Miller and Siek [7], which makes these principles explicit, and formulates
them in the context of a formal type system over language definitions.
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Informative Error Messages. One of the features of the TypeSoundnessCertifier
tool that we highlight here is its ability of pinpointing design mistakes that
hinder type soundness3. A few illustrative examples are:

– Suppose that we deleted the rule at line 23 of the code in Fig. 2, TypeSound-
nessCertifier would print the error message “Operator head is elimination
form for the type list but does not have a reduction rule for handling one of
the values of type list: value emptyList”.

– Suppose we deleted the context declaration (app C E) at line 7, TypeSound-
nessCertifier would print the error message “The principal argument of the
elimination form app is not declared as evaluation context, hence some pro-
grams may get stuck”

– Suppose we omit to type check the second argument of cons at line 15,
TypeSoundnessCertifier would print this typing rule saying “This typing rule
does not assign a type to expression E2”

– Suppose we replaced line 24 with (head (cons V1 V2)) −→ V2 , i.e. now the head
operation returns the rest of the list, then TypeSoundnessCertifier would print
the error message “Reduction rule of head for handling a value cons is not
type preserving”.

– Were we to change context declaration (cons C E) to (cons C V) at line
8, TypeSoundnessCertifier would reject the definition and print the error
message “Evaluation contexts have cyclic dependencies, hence some pro-
grams may get stuck”. (The reader can verify that with evaluation contexts
cons E v | cons v E the expression (cons ((λx.x) 3) ((λx.x) emptyList))
is stuck. The first argument will not be evaluated until the second is a value,
but the second will not start evaluating until the first becomes a value.)

1.2 Our Thesis on Teaching with Language Type Checkers

Thanks to the explicit modeling of language design principles with a type system,
the TypeSoundnessCertifier tool has a high-level view on the language being
analyzed and can report design mistakes using the same vocabulary of language
designers. Because of this, we believe that TypeSoundnessCertifier can be an
effective tool for teaching functional language design to those students that are
engaging in a programming languages course and are exposed to programming
languages theory, including its vocabulary. Furthermore, the tool can be used
to collect statistics on the frequency of design mistakes that students may make
during their language modeling exercises. These statistics may inform instructors
towards best practices in teaching.

3 For those language definitions that TypeSoundnessCertifier type check as type sound,
the tool also produces a machine-checked proof in the Abella theorem prover [1,4],
hence the name of the tool. However, we are not concerned with this aspect of the
tool.
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Scope of our Teaching Experience and Objectives of This Paper. Our long-term
goal is to demonstrate that the claim above be true. However, the teaching
experience that we report on here is rather restricted in scope, and lacking in
statistical significance. We therefore leave the claim as an open thesis yet to be
substantiated. Below, we make the scope of our teaching experience clear.

Functional languages: We focus on functional languages only. In particular,
we have restricted ourselves to an operational semantics relation with shape
e −→ e, that is, the computation is a rewrite of an expression into another
expression.

Basic designs: We have restricted ourselves to language design patterns of
the like of those that have been pointed out in the previous section. These
are certainly not enough to guarantee type soundness for modern functional
languages features such as modules, type classes, macros, and other complex
features. They are enough, however, to define simple functional languages.

Early experience: Finally, we stress that we report on an early experience.
This paper is based, indeed, on only one instance of a course. Furthermore, the
study had only 11 student participants in total.

In this paper, we make the following contributions.

– We set forth the thesis that a language type checker can be an effective tool
for teaching the basics of functional language design. This paper does not
substantiate this claim, doing so is part of our ongoing work.

– We give details about the course we have taught for the benefit of instructors
that would like to replicate/adapt this teaching experience (Sect. 2), possibly
contributing to gathering evidence for, or against, our thesis.

– We share some simple statistics and our impressions about them, but we make
sure that it be clear that no conclusion can be drawn from our experience.
More, and more extended experiments should be conducted (Sect. 3).

2 The Details of the Course

The course is a graduate level course in CS and has been divided into two parts:
Programming languages theory and advanced features4. Only the first part is
relevant to this paper, and we shall give some details as to what it comprised:
in class, outside of the class, and during the evaluation.

2.1 In Class

The part on programming languages theory has been addressed in the first half
of the course (7 weeks, lectures amounted to around 3 hours per week). We have
adopted the Pierce’s TAPL textbook [11], of which we have covered the typical
chapters on the simply typed lambda-calculi with common datatypes, and the
chapters on languages with references, and subtyping.
4 Advanced features included monads, gradual typing [16,17], and data race freedom

in the Rust type system, to name a few.
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A Note on Teaching Strategy. It is hard to point out what worked and what did
not in only one iteration of the course. In our opinion, the following elements
have been fitting choices for the course. The first is that we have devoted a
whole week to the proof of type soundness of a toy functional languages with few
operators such as functions, booleans and if-then-else, lists and pairs. This part
has covered the proof in great details. The second is that we have demonstrated
the TypeSoundnessCertifier tool in class over a number of examples from TAPL.
The third is that we aimed at connecting the dots between

– (i) language design,
– (ii) the tool
– (iii) how programs can go wrong, and
– (iv) the proof of type soundness.

We have given four examples of language design principles in Sect. 1.1, which
we have then taught in class. For example, let us consider the beta-reduction
rule (λx.e v) −→ e[v/x] and the fact that it fires only so long as the argument is
a value. (i) A language design principle that applies is that an evaluation context
such as (v E) must exist. Then, it is beneficial to (ii) show that TypeSoundness-
Certifier rejects the language when that context is missing. It is also beneficial
to (iii) show an example of program that gets stuck in that situation, such as
(λx.x (head [1])). Finally, it is instructive to (iv) show where in the proof of type
soundness we reach a point where we cannot complete the proof.

2.2 Outside of the Class

Students have been encouraged to download the tool and practice using it outside
of the class. TypeSoundnessCertifier has a repository of examples that includes
a number of language definitions that are automatically checked as type sound
[6]. Students have been invited to browse and reason over these examples. To
encourage practice, the instructor invited the students to model three operations
with TypeSoundnessCertifier. The three operations have an increasing level of
difficulty:

– length e, as in: length [4, 5, 7] −→∗ 3.
– reverseRange e, as in: reverseRange 3 −→∗ [3, 2, 1]. (A reversed range is

easier than range, as it does not need a helper function).
– map, the typical operator in functional programming languages.

Solving these tasks was encouraged but not mandatory. Future instances of
the course may make those tasks, or comparable tasks, mandatory.

Length, ReverseRange, and Map. To solve these three tasks, students were called
to write three language definitions from scratch in TypeSoundnessCertifier, one
for each of the operators above, and have the tool type check the definitions
as type sound. In each of the tasks, students were asked to give the syntax for
expressions, values, types, and evaluation contexts, as well as modeling appro-
priate typing rules and reduction semantics rules.
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To give the reader an idea on how difficult the requested tasks are, and what
aspects they would exercise, we give solutions below.

length: A possible language definition for length includes natural numbers
and is the following.

1 Expression E ::= zero | (succ E) | emptyList

2 | (cons E E) | (length E)

3 Type T ::= int | (list T)

4 Value V ::= zero | (succ V) | emptyList

5 | (cons V1 V2)

6 Context C ::= [] | (succ C) | (cons C E)

7 | (cons V C) | (length C)

8
9 Gamma |- zero : int.

10 Gamma |- (succ E) : int <== Gamma |- E : int.

11 Gamma |- emptyList : (list T).

12 Gamma |- (cons E1 E2) : (list T) <==

13 Gamma |- E1 : T /\ Gamma |- E2 : (list

T).

14 Gamma |- (length E) : int <== Gamma |- E : (list T).

15
16 (length emptyList) -- > zero.

17 (length (cons V1 V2)) --> (succ (length V2)).

An interesting aspect of this solution is that the recursive call to length
appears as argument of succ at line 17. This means that reductions must be
performed within the context of succ. To provide a solution, the student must
have a good grasp on evaluation contexts and how they work.

reverseRange: A possible solution is below.

1 Expression E ::= zero | (succ E) | emptyList

2 | (cons E E) | (reverseRange E)

3 Type T ::= int | (list T)

4 Value V ::= zero | (succ V) | emptyList

5 | (cons V1 V2)

6 Context C ::= [] | (succ C) | (cons C E)

7 | (cons V C) | (reverseRange C)

8
9 Gamma |- zero : int.

10 Gamma |- (succ E) : int <== Gamma |- E : int.

11 Gamma |- emptyList : (list T).

12 Gamma |- (cons E1 E2) : (list T) <==

13 Gamma |- E1 : T /\ Gamma |- E2 : (list T).

14 Gamma |- (reverseRange E) : (list int) <==

15 Gamma |- E : int.

16
17 (reverseRange zero) --> emptyList.

18 (reverseRange (succ V))

19 --> (cons (succ V) (reverseRange V)).
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Similarly to length, lines 18–19 prescribe that reduction occurs in the context
of cons. An aspect that is more difficult in reverseRange than in length is
making this reduction rule correctly typed, and such that the type of the right-
hand side of --> is the same as that of the left-hand side. In length, the task
is easier because succ has only one argument while cons has two arguments.
Students would have to think a little more about types in solving the task for
reverseRange.

map: A possible formulation of map is the following.

Expression E ::= x | (abs T (x)E) | (app E E) | zero

| (succ E) | emptyList | (cons E E)

| (map E E)

Type T ::= int | (arrow T T) | (list T)

Value V ::= (abs T (x)E) | zero | (succ V) | emptyList

| (cons V1 V2)

Context C ::= [] | (succ C) | (cons C E) | (cons V C)

| (app C E) | (app V C) | (map C E)

| (map V C)

Gamma |- zero : int.

Gamma |- (succ E) : int <== Gamma |- E : int.

Gamma |- emptyList : (list T).

Gamma |- (cons E1 E2) : (list T)

<== Gamma |- E1 : T

/\ Gamma |- E2 : (list T).

Gamma |- (abs T1 (x)E) : (arrow T1 T2)

<== Gamma , x : T1 |- E : T2.

Gamma |- (app E1 E2) : T2

<== Gamma |- E1 : (arrow T1 T2)

/\ Gamma |- E2 : T1.

Gamma |- (map E1 E2) : (list T2)

<== Gamma |- E1 : (list T1)

/\ Gamma |- E2 : (arrow T1 T2).

(app (abs T (x)E) V) --> E[V/x].

(map emptyList V) --> emptyList.

(map (cons V1 V2) V3)

--> (cons (app V3 V1) (map V2 V3)).

This task exercises the two aspects mentioned previously, but at a greater
level of difficulty.

2.3 The Evaluation

Each student arranged an appointment to meet with the instructor at the
instructor’s office. Students have been evaluated in the context of this meet-
ing. This appointment was individual for each student. The student used a
laptop with TypeSoundnessCertifier installed. The instructor assigned the stu-
dent with the task of modeling a simple language with TypeSoundnessCertifier.
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All students have been assigned the same language, which we here call filterOpt,
and whose details are given below. The student did know that this part of the
evaluation would consist of modeling a language but did not know what spe-
cific language would be assigned prior to the meeting. The student had 20 min
to complete the task. The task was completed successfully when filterOpt was
modeled and TypeSoundnessCertifier said that it was a type sound language defi-
nition. During language modeling, students could invoke TypeSoundnessCertifier
as many times as they pleased. The number of failed attempts and the nature
of the mistakes reported by the tool did not affect the grade. The grade was
assigned based on how close the language definition of the student was to the
requested solution after 20 min. Roughly speaking, this time limit did not count
the time that was not spent in using modeling skills or interacting with the tool
to realize such skills. For example, if students did not remember something of
the tool syntax, they may have spent time fixing parser errors, or asked the
instructor about it. This time did not count. The rational for this is that the
focus of the instructor was exclusively on evaluating the language modeling skills
of students, not their memorization skills w.r.t. the domain-specific language at
hand. In replicating/adapting this teaching experience, other instructors may
have a different take on this aspect.

The filterOpt (Toy) Language. The student was provided with an existing
language definition that included functions, booleans, if-then-else and lists. The
task was to extend this language definition with

– option types (with operators none, some e, get e), and
– an operator called filterOpt, a variant of the filter operation of functional

programming. filterOpt l f takes a list l of elements of type T , and a func-
tion f from T to booleans, and creates a list in which every element v of l is
(some v), if f(v) is true, or none, if f(v) is false5.

To model a type sound language, the student was called to update the syn-
tax for expressions, values, types, and evaluation contexts, as well as adding
appropriate typing rules and reduction semantics rules. To give the reader an
intuition of how difficult the requested task is, below we show a possible solution
of it in TypeSoundnessCertifier. (We show only the relevant part and omit the
rest using dots . . .).

Expression E ::= ... | none | (some E) | (get E)
| (filterOpt E E)

Type T ::= ... | (option T)
Value V ::= ... | none | (some V)
Error ::= error
Context C ::= ... | (some C) | (get C)

| (filterOpt C E) | (filterOpt V C)

5 Since a solution for the ordinary filter operation is comparable to that of map, and
map has been given as exercise (see Sect. 2.2), we preferred to make the exam more
difficult with filterOpt.
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Gamma |- none : (option T).
Gamma |- (some E) : (option T) <== Gamma |- E : T.
Gamma |- (get E) : T <== Gamma |- E : (option T).
Gamma |- (filterOpt E1 E2) : (list (option T)) <==

Gamma |- E1 : (list T) /\ Gamma |- E2 : (arrow T
bool).

Gamma |- error : T.

(get none) -- > error.
(get (some V)) -- > V.
(filterOpt emptyList V) -- > emptyList.
(filterOpt (cons V1 V2) V3)

-- > (cons
(if (app V3 V1) (some V1) none)
(filterOpt V2 V3)

).

3 Report on Our Experience

The course had 11 students participants. We have kept note of the mistakes that
TypeSoundnessCertifier has reported during evaluations. Below, we share some
data about these evaluations, and our impressions about them. It is important
to notice that the total number of evaluations (11) is largely insufficient, and we
cannot draw general conclusions from our data.

3.1 Students’ Mistakes

– Missing evaluation contexts: 5 out of 11 students forgot to declare some eval-
uation contexts. Our impression is that, for future experiments, this aspect
should be monitored: If future data supports the conclusion that this mis-
take is frequent, it may be appropriate to adjust the teaching style towards
allocating more emphasis to evaluation contexts.

– Reduction rules failed type preservation: 4 out of 11 students failed in defining
a type preserving reduction rule. Again, we should monitor this aspect and
see if future experiments support a conclusion that this is a frequent mistake.
In this case, different instructors may have a different view on this aspect.
On one hand, type errors in the modeling of a reduction rule may be seen
much like type errors in programming. Overall, we are hardly worried if our
students do not write a perfectly well-typed program at first attempt.

On the other hand, it is to say that, at least in our setting, reduction rules are
typically a one line effort involving a few expressions whose types must match. It
is, therefore, legitimate for some instructors to think that type errors on simple
reduction rules may not be equivalent to type errors on, say, a program with 30
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lines of code that a student attempts to type check. For simple languages, these
errors may be the mirror of a deeper misunderstanding or poor training in how
types and typing work. Therefore, in that case instructors may decide to adjust
their teaching style in class and include more examples, exercises and homework
on this aspect.
This particular author leans towards the latter view, but understands that other
instructors may not, hence both views have been critically mentioned.

– Missing value declarations: 3 out of 11 students forgot to declare a value in
the grammar of values. In the future, we would like to monitor this aspect.
In language design, having a clear idea of the values of the language at hand
is paramount, and determining values should be one of the first actions of
language designers. If future data supports the conclusion that missing value
declarations is frequent, it may entail some confusion on the end of students.
Instructors may want to allocate more emphasis on the role of values.

3.2 Overall Experience in Using TypeSoundnessCertifier

Ultimately, 6 out of 11 students completed the task successfully:

– 1 student succeeded at the 6th attempt,
– 1 student succeeded at the 4th attempt,
– 3 students succeeded at the 3rd attempt,
– 1 student succeeded at first attempt, i.e., no errors.

When students failed their attempts, they received a feedback from Type-
SoundnessCertifier in the form of an error message. In that case, they returned to
the language definition, and tried to fix it. On average, students who completed
the task invoked the tool 3.333 times before succeeding. If we excluded the
student with exceptional performance as outlier (no errors), students invoked
the tool 3.8 times on average before succeeding. That some students did not
complete the task is not uncommon, as it may not be the case that all students
score perfectly at a course exam.

At the end of the course, we have given a survey to participants but unfortu-
nately it did not receive a large participation: 6 students out of 11 have partici-
pated. The survey comprised statements to assess whether the tool was helpful in
modeling languages and helped achieve the expected learning outcome. Students
assigned a grade to the statem‘ents amongst

– Strongly Agree (SA)
– Somewhat Agree (SWA)
– Neither Agree nor Disagree (Neith)
– Somewhat Disagree (SWD)
– Strongly Disagree (SD)
– N/A or do not remember (NA)

Figure 3 shows how many participants selected a grade per each statement.
The low participation makes it impossible to draw any conclusion at this time.
We show the survey as an example of the studies that we are conducting in the
context of this project.
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Fig. 3. Results from the survey. (No conclusion can be drawn from this figure.) Here,
the term languages refer to those languages that are in the scope described in this
paper and not, generally, any language.

4 Related and Future Work

Related Work. There are various syllabi on programming languages theory that
have a marked focus on exposing students to the meta-theoretic properties of
programming languages. Many syllabi are based on PLT Redex [9], Software
Foundations [12], TAPL [11], and PFPL [10], among others.

We are not aware of any course that accompanies (a part of) those syllabi
with the use of a language type checker that is capable of pinpointing design
mistakes that hinder type soundness.

Future Work. In the future, we would like to replicate our course experience sev-
eral times, and report on our extended findings to the community. We especially
would like to conduct large studies that collect statistics on the frequency of lan-
guage design mistakes. These statistics may be precious to inform best practices
to teachers. Outside of academic courses, ideal venues for conducting our stud-
ies at a larger scale would be in the context of conference tutorials and summer
schools, but we have no specific plans in this regard at the time of writing.

The setting of our course evaluation was such to impose a time constraint
(20 min). This may have influenced students in the way they have used the tool
during their evaluations. Some may have decided to frequently invoke the tool
and incrementally obtain the correct solution based on the tools’ feedback, while
some others may have decided to write a first attempt of the whole solution as
quickly as possible. In future studies, especially in those that are not in the con-
text of an academic course evaluation, we would like to relax the time constraint,
as well as remove the dependency of the users’ outcome to an academic grade.
We also would like to ask users, after having used the tool, whether they have
employed a strategy intentionally. Measures such as these may constitute the
basis for classifying user experiences much more precisely.

We would like to expand the course to make subtyping a relevant part
of the evaluation. TypeSoundnessCertifier handles subtyping (see [6]) but this
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feature was not part of the language filterOpt. TypeSoundnessCertifier checks
only standard shapes of subtyping. In particular, inference rules that define
subtyping can be axioms (such as Int <: Float) or have recursive calls on argu-
ments. Moreover, such recursive calls can only be of covariant, contravariant
and invariant shapes. Of course, these are restricted shapes that do not nearly
exhaust the kind of subtyping relations that language designers may want to
adopt. It would be interesting to extend the tool to more liberal shapes, and
incorporate such feature in the context of our course.

Similarly, Cimini, Miller and Siek have plans on extending their results to
languages with stores, and on upgrading TypeSoundnessCertifier accordingly. In
this instance of the course, languages with stores (and also subtyping) have been
covered with lectures based on TAPL, with no use of an auxiliary language type
checker, but as soon as that feature is captured by TypeSoundnessCertifier we
believe it would be possible to create a semester-long course syllabus based on
the tool. We also plan on extending the tool to cover properties other than type
soundness. This may entail that we first establish the language design principles
that facilitate or are necessary to satisfy a property, and formulate a type checker
over languages accordingly.

When a reduction rule is not type preserving it may not always be the fault
of the rule for being ill-designed. As an example, below the reduction rule on the
left is correct but the typing rule on the right is mistaken (tail should return
List T ).

tail (cons v1 v2) −→ v2
Γ � e : List T

Γ � tail e : T

The current take of TypeSoundnessCertifier is to firmly trust the type system.
In this case, TypeSoundnessCertifier blames the reduction rule for not respect-
ing types. It would be interesting to explore an extension of the tool in which
the reversed perspective is available, i.e., the tool firmly trusts the reduction
rule and blames typing rules. Users could choose which perspective to adopt
before running the tool, or may ask the tool to provide the feedback from both
perspectives.

We plan to explore the usefulness of the error messages of TypeSoundness-
Certifier. Examples of our messages have been shown in Sect. 1.1. In Fig. 3 the
fourth statement, which is about the feedback from the tool, had a generally
positive response but ranked the lowest. (It is to notice that the number of
responses was small). Can we find a way to report better messages to users? A
direction that we would like to explore is to provide a human-readable counter-
example that witnesses the design mistake. In this regard, it would be beneficial
if counter-examples also suggested a solution. A challenge here is that there may
be several errors in a language definition and we need to establish which ones
to provide a counter-example for. Identifying a suitable error is important as
there may be an error that is at the root of several errors. We believe that error
reporting in this context can be a challenging research problem.
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We would like to empower TypeSoundnessCertifier with automatic grad-
ing capabilities in the style of Automata Tutor [8]. The challenges in such an
endeavor is in accommodating the different viewpoints that different instructors
might have on how mistakes should affect the grade. For example, some instruc-
tors may find mistakes on type preservation unacceptable and decide to detract
substantial points for that kind of mistakes. Simultaneously, they may consider
missing evaluation contexts as a harmless oversight and detract a small amount
of points for that. Other instructors may have the opposite viewpoint w.r.t. these
mistakes. To accommodate these scenarios, we envision TypeSoundnessCertifier
to load a table that associates a weight to each type of mistake from an external
configuration file.

5 Conclusions

Our thesis is that a language type checker can be an effective tool in teaching
functional language design. We have used TypeSoundnessCertifier in the context
of an instance of a course in programming languages. The work here reported is
not statistically significant, and we leave the claim as an open question. Nonethe-
less, we have offered details on how our course took place, and reported on some
data gathered during our evaluations. This paper shows the type of studies that
we are, and we will be, conducting in the future to obtain evidence for, or against,
our thesis. We offer these details also to inspire our colleagues to engage in simi-
lar studies. The fact that 6 out of 11 students could complete a language design
task through the feedback of the tool is encouraging. It was certainly a joy to
see students try their language definitions against the tool, receive feedback, fix
accordingly, and ultimately succeed.
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Abstract. A selective CPS transformation enables us to execute a pro-
gram with delimited control operators, shift and reset, in a standard
functional language without support for control operators. The selective
CPS transformation dispatches not only on the structure of the input
term but also its purity: it transforms only those parts that actually
involve control effects. As such, the selective CPS transformation consists
of many rules, each for one possible combination of the purity of sub-
terms, making its verification tedious and error-prone. In this paper, we
first formalize a monomorphic version of the selective CPS transforma-
tion in the Agda proof assistant. We use intrinsically typed term and con-
text representations together with parameterized higher-order abstract
syntax (PHOAS) to represent binding structures. We then prove the cor-
rectness of the transformation, i.e., the equality of terms is preserved by
the CPS transformation. Through the formalization, we confirmed that
all the rules of the selective CPS transformation in the previous work
are correct, but found that one lemma on the behavior of shift was not
precise.

Keywords: Selective CPS Transformation · Shift/Reset · Agda ·
PHOAS

1 Introduction

A continuation represents the rest of the computation that remains to be done
in a program. Although programmers are usually not so aware of continuations
in their program, every program has its own continuation. For example, even in
a simple arithmetic expression 1+2∗3, we first evaluate the multiplication 2∗3.
At this point, the continuation takes the result of the multiplication, and adds 1
to the result. The idea of continuations has been applied in many ways, such as
let-insertion in partial evaluation [13], non-deterministic programming [7], and
representing monads [10].

To express continuations explicitly in a program, we can use control oper-
ators. For instance, shift/reset [7] is a pair of delimited control operators,
where shift captures the continuation that is delimited by reset. Although
control operators enable us to manipulate continuations easily, not so many pro-
gramming languages support control operators.
c© Springer Nature Switzerland AG 2020
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Another way to express continuations in a program is to transform the pro-
gram into continuation-passing style (CPS). Even if the programming language
does not support any control operators, we can transform the source program
that includes control operators into the output program that handles continua-
tions explicitly without control operators. In this way, it is possible to implement
control operators in a programming language that has no support for control
operators.

In a proper CPS program, every function in a program carries an additional
argument that represents the current continuation. This is what the standard
CPS transformation produces; it translates the whole input program into CPS,
no matter if the input program uses any control operators or not. However, this
approach has its weakness. Because all the functions in the output program of
the standard CPS transformation carry a continuation, the output program has
the new cost that might affect its performance.

Instead, the selective CPS transformation detects the expressions that require
the CPS transformation, runs the CPS transformation for those parts only, and
leaves the rest of the program as is. This approach reduces the cost of carrying
the continuation around the program. For example, Kim et al. [12] translated
ML programs with exception handlers both in the standard and selective CPS
transformation, and showed that the performance of the output program of the
selective CPS transformation was better than the standard version. As such,
Rompf et al. [17] used the selective CPS transformation to efficiently implement
shift and reset in Scala.

The target transformation in this paper is the selective CPS transformation
for shift and reset [2]. It uses two annotations, impure and pure, to show
whether the program triggers any control effects or not. For example, since the
program that includes shift operator may use continuations in a non-standard
way, it is automatically annotated as impure. The impure parts of the program
are transformed into CPS, while the pure parts are kept as they are.

This paper verifies the monomorphic version of the selective CPS transfor-
mation for call-by-value lambda calculus extended with shift and reset [2],
using the proof assistant Agda [16]. We show that the transformation preserves
the relation between two terms: if term e1 is reduced to e2, the translated term
[[e1]] is equal to [[e2]]. Since the definition of our selective CPS transformation has
evolved from Danvy and Filinski’s standard CPS transformation [8], the overall
structure of those proofs are similar to each other.

However, the proof for the selective CPS transformation contains two main
difficulties. One is the greater number of cases to analyse. This is because we
put impure/pure annotations at every subexpression in the source program. For
example, in the definition of the selective CPS transfromation, the translation
rule for the function application [[e1 @ e2]] is divided into nine cases: one case
for when the surrounding context is pure so that the application must also be
completely pure, and eight cases for when the surrounding context is impure in
which the body of the function e1, the argument e2, and the application (@) are
either impure or pure.
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The other difficulty is that the evaluation contexts become more complex
because of the annotations. In our proof, we often need to compare the same
two evaluation contexts consisting of the same expression but with different
annotations for their holes (Sect. 2.4).

To handle these two complexities, it is highly desirable to implement the
source language and the necessary definitions as simple as possible. Represent-
ing name binding using de Bruijn index is an option, but we choose parameter-
ized higher-order abstract syntax (PHOAS) [4]. For necessary definitions such
as substitution and reduction, we use relational representations. Also, we use
intrinsically typed term representations so that only well-typed terms are defin-
able [1]. These implementing strategies are useful in alleviating the tediousness
for both proof writers and readers.

Through the proof formalization in Agda, we confirm that the definition of
the selective CPS transformation [2] is correct. However, we find that one crucial
lemma that characterizes the behavior of the shift operator was not precise. In
this paper, we show the precise version of the lemma as “shift lemma”.

The contributions of this paper are summarized as follows:

– We prove the correctness of the selective CPS transformation for call-by-value
lambda calculus with shift and reset, using Agda.

– We find that one lemma in the previous work was not precise. We present the
precise version of it.

– We provide a non-trivial case study of taking advantage of PHOAS and intrin-
sically typed representations in formalization.

The rest of the paper is organized as follows. After introducing source terms in
Sect. 2, we formalize the selective CPS transformation in Sect. 3. The correctness
and necessary lemmas are shown in Sect. 4. Related work is discussed in Sect. 5
and the paper concludes in Sect. 6.

The formalized proof in Agda is available at:
http://pllab.is.ocha.ac.jp/∼asai/papers/tfp19.agda

2 Direct-Style Terms

In Fig. 1, we introduce the source language of the selective CPS transformation.
We call terms in the source language direct-style terms. We first show how we for-
malize purity annotations, types, and terms, followed by substitution, contexts,
and reduction rules.

2.1 Purity Annotations, Types, and Terms

Purity annotations are either i (impure) or p (pure). Impure expressions possibly
capture continuations and trigger control effects, while pure expressions never
do. For example, an expression that includes shift is impure, while numbers and
variables are basically pure. The two annotations satisfy the inequality relation
p < i, meaning that pure terms can be lifted to impure terms.

http://pllab.is.ocha.ac.jp/{~}asai/papers/tfp19.agda
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a ::= p | i purity annotations
τ ::= Nat | τ2 → τ1@cps[τ3, τ4, a] types

Γ ::= · | Γ, x : τ type environments

v ::= n | x | λax. A1 values
e ::= v | A1 @a A2 | Sac. A1 | 〈A1〉 terms
A ::= ea annotated terms

Fig. 1. Purity annotations, types, and terms

A type is either a base type Nat or an arrow type τ2 → τ1@cps[τ3, τ4, a]. The
arrow type is a function type from τ2 to τ1, but the application of the function
changes the answer type (the type of the surrounding delimited context) from τ3
to τ4. The annotation a indicates the purity of the function. When it is pure, the
function does not use any control effects when applied. In that case, the types τ3
and τ4 must be equal. When a is impure, the function possibly triggers control
effects. In that case, the answer type may change.

Direct-style terms are represented as annotated terms, where all the subterms
are decorated with purity annotations. A value is either a natural number n, a
variable x, or an abstraction λax.A1. The purity annotation a here specifies the
purity of the body of the function observed from outside: even if the top-most
annotation of A1 is p, it can be lifted to i because of the type inference. A term
is either a value, an application, a shift construct, or a reset expression. The
purity annotation a in an application indicates if the execution of the function
would trigger control effects. In the same way as an abstraction, a in (Sac.A1)
indicates if the continuation c would be treated as either impure or pure.

Although the definition in Fig. 1 uses a named representation of variables
for readability, we employ PHOAS by Chlipala [4] in the Agda formalization.
That is, an abstraction and a shift construct are formalized using a binder
in the metalanguage (i.e., Agda) and a variable is formalized as a constructor
applied to a variable parameterized in the metalanguage. We do not go into the
details of PHOAS, however, since PHOAS works naturally for most cases.1 We
will explain explicitly when the PHOAS is used in a non-trivial way.

Figure 2 shows the (monomorphic) typing rules for terms [2].2 We can read
the judgement Γ � ea : τ1 @cps[τ2, τ3, a] as: in a type environment Γ , an anno-
tated term ea has type τ1 and the execution of ea changes the answer type
from τ2 to τ3. The typing rules are the same as the standard ones [6] except
for the purity annotations. In addition to an inequality constraint of the form
a1 ≤ a2 on purity annotations, the typing rules include a constraint of the form

1 PHOAS prevents us from case splitting on the body of an abstraction and a shift

construct until they are applied. It is not a problem for formalizing and verifying
CPS transformations.

2 We do not consider let-polymorphism in this paper. See [19] for the formalization of
a (non-selective) CPS transformation of lambda calculus (without control operators)
extended with let-polymorphism.
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Γ � ea : τ1 @cps[τ2, τ3, a]

x : τ1 ∈ Γ

Γ � xp : τ1 @cps[τ2, τ2, p]
(Var)

Γ � np : Nat@cps[τ1, τ1, p]
(Nat)

Γ, x : τ2 � e1
a1 : τ1 @cps[τ3, τ4, a1] a1 ≤ a2 τ3 �= τ4 ⇒ a1 = i

Γ � (λa2x. e1
a1)p : (τ2 → τ1@cps[τ3, τ4, a2])@cps[τ5, τ5, p]

(Fun)

a1 ≤ a a2 ≤ a a3 ≤ a τ5 �= τ6 ⇒ a1 = i τ4 �= τ5 ⇒ a2 = i τ3 �= τ4 ⇒ a3 = i
Γ � e1

a1 : (τ2 → τ1@cps[τ3, τ4, a3])@cps[τ5, τ6, a1] Γ � e2
a2 : τ2 @cps[τ4, τ5, a2]

Γ � (e1a1 @a3 e2
a2)a : τ1 @cps[τ3, τ6, a] (App)

Γ, c : (τ3 → τ4@cps[α, α, a2]) � e1
a1 : τ1 @cps[τ1, τ2, a1] τ1 �= τ2 ⇒ a1 = i

Γ � (Sa2c. e1
a1)i : τ3 @cps[τ4, τ2, i]

(Shift)

Γ � e1
a1 : τ1 @cps[τ1, τ2, a1] τ1 �= τ2 ⇒ a1 = i

Γ � 〈e1a1〉p : τ2 @cps[τ3, τ3, p]
(Reset)

Fig. 2. Typing rules

τ1 �= τ2 ⇒ a1 = i. It ensures the well-formedness of types: if τ1 and τ2 differ, the
annotation a1 must be i, or, if the annotation a1 is p, τ1 and τ2 must be equal.

In the Agda formalization, we use an intrinsically typed representation where
the typing rules are incorporated into the definition of terms. Although we show
a grammar of terms in Fig. 1, the actual definition of terms is given by Fig. 2.

2.2 Substitution Relation

Figure 3 shows the substitution relation for direct-style terms. It has the form
ea[vp/y] = e′a, meaning that ea possibly has a free variable y, and substituting
vp for y in ea results in e′a. The use of the same annotation a indicates that the
substitution does not change the purity of the term. Since we have to mention a
free variable y to define the substitution relation, it is defined using the higher-
order representation [4]. Namely, y in ea is bound at the metalanguage (Agda).

When a variable yp is the one to be replaced (S-Var=), we immediately
replace it with vp. Otherwise, we leave the variable as is (S-Var �=). The rule
(S-Fun) utilizes PHOAS. The body e1

a1 of an abstraction λa2x. e1
a1 may con-

tain free occurrences of variable x. In the premise of (S-Fun), the variable x is
bound in the metalanguage: we require that e1

a1 [vp/y] = e′
1
a1 holds for any x.

The same technique is used in (S-Shift).
Chlipala shows that substitution can be implemented both as a relation and

a function in PHOAS [5]. In our implementation, we define substitution as a
relation, not as a function, following our previous work [19]. Although defining
substitution by a function in PHOAS is neat, the relational definition appears
to work better in combination with other program transformations.
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Since the substitution relation is typed, it automatically proves that the
substitution preserves types.

ea[vp/y] = e′a yp[vp/y] = vp (S-Var=)
xp[vp/y] = xp (S-Var�=)

np[vp/y] = np (S-Nat)
∀x. (e1a1 [vp/y] = e′

1
a1)

(λa2x. e1
a1)p[vp/y] = (λa2x. e′

1
a1)p

(S-Fun)

e1
a1 [vp/y] = e′

1
a1 e2

a2 [vp/y] = e′
2

a2

(e1a1 @a3 e2
a2)a[vp/y] = (e′

1
a1 @a3 e′

2
a2)a

(S-App)

∀c. (e1a1 [vp/y] = e′
1

a1)

(Sa2c. e1
a1)i[vp/y] = (Sa2c. e′

1
a1)i

(S-Shift) e1
a1 [vp/y] = e′

1
a1

〈e1a1〉p[vp/y] = 〈e′
1

a1〉p (S-Reset)

Fig. 3. Substitution relation for direct-style terms

2.3 Frames and Evaluation Contexts

This section presents frames and evaluation contexts to be used for defining the
reduction rules in Sect. 2.5. Frames enforce call-by-value, left-to-right evaluation
order. Each frame has one hole. A redex in the hole will be evaluated next.
Many layers of frames constitute an evaluation context. Both frames and evalu-
ation context are standard except that they are decorated with types and purity
annotations.

Figure 4 shows the definition of frames. In addition to the standard frames
enforcing left-to-right evaluation, we have another frame used only in a reset
construct. As in terms, frames are also decorated with purity annotations. In
particular, the superscript a0 of F a0 and F a0

p describes the purity annotation of
the hole of the frames.

The type of frames, represented by σf, consists of types of the hole and the
frame. The type in the bracket, τ1@cps[τ2, τ3, a1], is the type of a term to be
plugged into the hole, whereas the type after the bracket, τ4@cps[τ5, τ6, a2], is
the type of the whole term when the hole is plugged with a term.

We have two kinds of frames, a standard frame F a0 and a pure frame F a0
p ,

which excludes the reset frame.3 Pure frames are necessary to define a reduction
rule for the shift construct, where we capture the context up to the nearest
surrounding reset construct.

The typing rules for frames (also in Fig. 4) are derived from those for terms.
The rules (F -App1) and (Fp-App1) are for when the function part of an appli-
cation is being evaluated. Thus, the type of the function in (App) in Fig. 2 is
3 Following Kameyama and Hasegawa [11], the word ‘pure’ in a pure frame (and a pure

context to be introduced soon) is used to mean “no surrounding reset constructs”,
not whether control effects are used or not.
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placed in the bracket, while the type of the whole application is placed after the
bracket. The purity annotation a1 of the hole [ ]a1 means that the hole should
receive a term with annotation a1. The argument and other constraints are all
inherited from (App).

σf ::= [τ1@cps[τ2, τ3, a1]]f τ4@cps[τ5, τ6, a2] frame types

F a0 ::= ([ ]a0 @a3 e2
a2)a | (v1p @a3 [ ]a0)a | 〈[ ]a0〉p (ai ≤ a for all i) frames

F a0
p ::= ([ ]a0 @a3 e2

a2)a | (v1p @a3 [ ]a0)a (ai ≤ a for all i) pure frames

Γ � F a0 : σf Γ � F a0
p : σf

a1 ≤ a a2 ≤ a a3 ≤ a
τ5 �= τ6 ⇒ a1 = i τ4 �= τ5 ⇒ a2 = i τ3 �= τ4 ⇒ a3 = i

Γ � e2
a2 : τ2 @cps[τ4, τ5, a2]

Γ � ([ ]a1 @a3 e2
a2)a : [(τ2 → τ1@cps[τ3, τ4, a3])@cps[τ5, τ6, a1]]f τ1@cps[τ3, τ6, a]

(F -App1)
(Fp-App1)

a2 ≤ a a3 ≤ a τ4 �= τ5 ⇒ a2 = i τ3 �= τ4 ⇒ a3 = i
Γ � v1 : (τ2 → τ1@cps[τ3, τ4, a3])@cps[τ5, τ5, p]

Γ � (v1p @a3 [ ]a2)a : [τ2@cps[τ4, τ5, a2]]f τ1@cps[τ3, τ5, a]
(F -App2, Fp-App2)

τ1 �= τ2 ⇒ a1 = i
Γ � 〈[ ]a1〉p : [τ1@cps[τ1, τ2, a1]]f τ2@cps[τ3, τ3, p]

(F -Reset)

Fig. 4. Frames and pure frames for direct-style terms

σc ::= [τ1@cps[τ2, τ3, a1]]c τ4@cps[τ5, τ6, a2] context types

Ea0
p ::= [ ]a0 | F a1

p ◦ Ea0
p pure evaluation contexts

Γ � Ea0
p : σc

τ2 �= τ3 ⇒ a = i
Γ � [ ]a : [τ1@cps[τ2, τ3, a]]c τ1@cps[τ2, τ3, a]

(Ep-Hole)

Γ � F a2
p : [τ4@cps[τ5, τ3, a2]]f τ6@cps[τ7, τ3, a3]

Γ � Ea1
p : [τ1@cps[τ2, τ3, a1]]c τ4@cps[τ5, τ3, a2]

Γ � F a2
p ◦ Ea1

p : [τ1@cps[τ2, τ3, a1]]c τ6@cps[τ7, τ3, a3]
(Ep-Frame)

Fig. 5. Pure evaluation contexts for direct-style terms

The rules (F -App2) and (Fp-App2) are similar except that the function
part is already known to be a value v1. Since the value is pure (a1 = p), the
answer types τ5 and τ6 in (App) is unified and the corresponding constraints are
removed. The rule (F -Reset) is derived from (Reset) in a similar way.

Next, we define pure evaluation contexts Ea0
p in Fig. 5. A pure evaluation

context consists of a sequence of pure frames, whose type is expressed as σc.



Verifying Selective CPS Transformation for Shift and Reset 45

Similarly to frames, the hole of a context has type τ1@cps[τ2, τ3, a1], while the
return type of the context is τ4@cps[τ5, τ6, a2].

For the empty evaluation context, the type of the term to be plugged into
the hole, τ1@cps[τ2, τ3, a1], becomes the type of the entire evaluation context;
see (Ep-Hole). In the rule (Ep-Frame), we add a new pure frame F a2

p on top
of a pure evaluation context Ea0

p . Since the hole of the evaluation context Ea0
p

becomes the hole of the entire evaluation context, the type and the annotation
of the hole becomes the type and the annotation of the hole of Ea0

p . Also, the
type of the whole evaluation context is updated by the application of F a2

p .

F a1
p

∼=f F
a′
1

p ([ ]a1 @a3 e2
a2)a ∼=f ([ ]a

′
1 @a3 e2

a2)
a (∼=f-App1)

(v1p @a3 [ ]a1)a ∼=f (v1p @a3 [ ]a
′
1)

a (∼=f-App2)

F a1 ∼=f F a′
1 The two rules above and: 〈[ ]a1〉p ∼=f 〈[ ]a′

1〉p
(∼=f-Reset)

Ea1
p

∼=c E
a′
1

p [ ]a1 ∼=c [ ]a
′
1

(∼=c-Hole)
F a2

p
∼=f F

a′
2

p Ea1
p

∼=c E
a′
1

p

(F a2
p ◦ Ea1

p ) ∼=c (F
a′
2

p ◦ E
a′
1

p )
(∼=c-Frame)

Fig. 6. Relation between frames and contexts with impure/pure holes

Defining (pure) frames and (pure) evaluation contexts in a typeful manner
is non-trivial. Once they are defined, we can also define functions to plug a term
into a frame and an evaluation context in a typeful manner.

2.4 Frames and Contexts with Impure/Pure Holes

In Sect. 2.3, we formalized the frames and the evaluation contexts. To define the
reduction relation using them, we need a relation between the same evaluation
contexts with different purity annotations for their holes. In this section, we
define such relations before we move on to the reduction rules. See Fig. 6.

Two pure evaluation contexts Ea1
p and E

a′
1

p are equal, written Ea1
p

∼=c E
a′
1

p ,
if they are identical except that the purity of the hole is a1 for the former and
a′
1 for the latter. We start with the minimal case (∼=c-Hole). When both holes

receive terms that have the same type but different purity annotations, we regard
those holes as equal. We can extend it with a recursive rule (∼=c-Frame). If the
two contexts are equal (Ea1

p
∼=c E

a′
1

p ), the equality is maintained when we add
the same frames on top of the contexts. The purity of the holes of the newly
added frames, F a2

p and F
a′
2

p , can be different, because even if Ea1
p and E

a′
1

p are
the same except for the purity of their holes, discrepancy between a1 and a′

1 can
propagate to the purity of Ea1

p and E
a′
1

p , and hence the holes of F a2
p and F

a′
2

p .
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Similarly to evaluation contexts, two pure frames F a1
p and F

a′
1

p are equal,

written F a1
p

∼=f F
a′
1

p , if they are identical except that the purity of the hole is a1

for the former and a′
1 for the latter. The same is true for the standard frames

F a1 and F a′
1 , including the case of the reset construct.

2.5 Reduction Relation

We are now ready to define a reduction relation for the direct-style terms in
Fig. 7. Our implementation employs the equality relation between pure contexts
defined in the previous section, as well as the substitution relation in Sect. 2.2.

The rule (R-Beta) is the standard βv-reduction in the lambda calculus,
except for the purity annotations and the constraint. If we have a substitution
relation between e1

a1 and e′
1
a′
1 and the annotations satisfy the relation a1 ≤ a3 ≤

a, we can perform βv-reduction. The rule (R-Frame) reduces a term within
the two frames F a1 and F a′

1 that satisfy the equality relation (F a1 ∼=f F a′
1).

This is the first instance where we use the same frames with different purity
annotations. Repeated use of (R-Frame) allows us to reduce a term within an
arbitrary evaluation context. The rule (R-Reset) returns a value v1 when the
body of a reset expression is already a value v1.

ea � e′a′
a1 ≤ a3 ≤ a e1

a1 [v2p/y] = e′
1

a1

((λa3x. e1
a1)p @a3 v2

p)a � e′
1

a1
(R-Beta)

F a1 ∼=f F a′
1 e1

a1 � e′
1

a′
1

F a1 [e1a1 ] � F a′
1 [e′

1
a′
1 ]

(R-Frame)
〈v1p〉p � v1

p (R-Reset)

a1 ≤ a3 ≤ a4 E i
p

∼=c Ep
p

〈(E i
p[(Sa2c. e1

a1)i])
i〉p � 〈((λa3c. e1

a1)p @a3 (λa2x. 〈(Ep
p[xp])a5〉p)p)a4〉p

(R-Shift)

Fig. 7. Reduction rules

Finally, the rule (R-Shift) shows how we execute the shift construct. The

expression 〈(E i
p[(S

a2c. e1
a1)i])

i〉
p

is executed in the following way: when a shift

construct appears in a pure evaluation context E i
p within a reset construct, it cap-

tures the current delimited context E i
p, reifies it to a function λa2x. 〈(Ep

p[xp])a5〉p,
binds it to the variable c, and executes the body e1

a1 . Note that before the reduc-
tion, the context is plugged with an impure term (Sa2c. e1

a1)i, while after the
reduction, it is plugged with a pure term xp. Since we keep track of the type of
the hole of contexts, we cannot use an identical context to both of them. This is
the second and crucial case where we need the equality relation for pure contexts
we introduced in Sect. 2.4. We use two pure contexts, E i

p and Ep
p, that are equal

except for the purity of their holes (E i
p

∼=c Ep
p). Before the reduction, the pure

context has the form E i
p. After the reduction, it becomes Ep

p.
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Since we employ PHOAS, the reader might think that we could avoid this
complication by making contexts higher order: we define a function that, given
the purity of a plugged term, returns a suitable context. In fact, we can define
the reduction rule for the shift construct this way. However, we will later have
to prove a lemma on the behavior of the shift construct by induction on the
structure of pure evaluation contexts. At that point, the higher-order method
fails: we cannot dispatch on the structure of pure evaluation contexts since they
are higher order. This is why we define the equality on pure contexts. Biernacki
and Polesiuk [3] define a similar relation between typed contexts.

Because terms are defined in a typeful manner in the Agda formalization,
the definition of the reduction relation also serves as a proof of the preservation
property, i.e., the reduction preserves types.4

τ := Nat | τ1 → τ2 CPS types
v := n | x | λx. e CPS values
e := v | e1 @ e2 | letx = e1 in e2 CPS terms

Fig. 8. CPS types, CPS values, and CPS terms

e[v/y] = e′ y[v/y] = v
(Scps-Var=)

x[v/y] = x
(Scps-Var�=)

n[v/y] = n
(Scps-Nat)

∀x. (e1[v/y] = e′
1)

(λx. e1)[v/y] = (λx. e′
1)

(Scps-Fun)

e1[v/y] = e′
1 e2[v/y] = e′

2

(e1 @ e2)[v/y] = (e′
1 @ e′

2)
(Scps-App)

Fig. 9. Substitution relation for CPS terms

3 Selective CPS Transformation

In this section, we introduce the selective CPS transformation. Direct-style terms
in the previous section are transformed into CPS terms, which is the standard
lambda calculus free from any purity annotations or answer types. We call them
CPS terms because they are the target of the selective CPS transformation.
Since direct-style terms include control operators and the CPS transformation
is selective, the target of the CPS transformation is not in proper CPS; it may
contain nested applications.
4 On the other hand, it looks difficult to prove the progress property in this formal-

ization, because the relational definition of substitution prohibits us from extracting
the result of substitution (reduct) from the higher-order representation of a redex.
This is not a problem since we do not need the progress property.
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3.1 CPS Terms

Figure 8 shows the definition of CPS terms. We distinguish CPS terms from
direct-style ones by representing them without any annotations. Also, we use
underlines to express syntactic constructors in CPS terms.

A CPS type is either a base type Nat or the function type τ1 → τ2 without any
answer types or purity annotations. CPS values and CPS terms are defined in
accordance with the simply-typed lambda calculus. For readability, we introduce
the let construct, which is an abbreviation for a function application:

letx = e1 in e2 ≡ (λx. e2) @ e1.

We define a substitution relation for CPS terms in Fig. 9. Similarly to the
direct-style terms, it employs PHOAS. In particular, the rule (Scps-Fun) spec-
ifies that the substitution relation for the body of the abstraction should hold
for any choice of x in the metalanguage.

[[np]]p = n
[[xp]]p = x

[[(λpx. e1
p)p]]p = λx. [[e1p]]p

[[(λix. e1
p)p]]p = λx. λk. k@ [[e1p]]p

[[(λix. e1
i)p]]p = λx. λk. [[e1 i]]i @(λv. k@ v)

[[(e1p @p e2
p)p]]p = [[e1p]]p @ [[e2p]]p

[[〈e1p〉p]]p = [[e1p]]p
[[〈e1 i〉p]]p = [[e1 i]]i @(λv. v)

[[(e1p @p e2
p)i]]i = λκ. (λv. κ@ v)@ ([[e1p]]p @ [[e2p]]p)

[[(e1p @p e2
i)i]]i = λκ. (λv1. [[e2 i]]i @(λv2. (λv. κ@ v)@ (v1 @ v2)))@ [[e1p]]p

[[(e1 i @p e2
p)i]]i = λκ. [[e1 i]]i @(λv1. (λv. κ@ v)@ (v1 @ [[e2p]]p))

[[(e1 i @p e2
i)i]]i = λκ. [[e1 i]]i @(λv1. [[e2 i]]i @(λv2. (λv. κ@ v)@ (v1 @ v2)))

[[(e1p @i e2
p)i]]i = λκ. ([[e1p]]p @ [[e2p]]p)@ (λv. κ@ v)

[[(e1p @i e2
i)i]]i = λκ. (λv1. [[e2 i]]i @(λv2. (v1 @ v2)@ (λv. κ@ v)))@ [[e1p]]p

[[(e1 i @i e2
p)i]]i = λκ. [[e1 i]]i @(λv1. (v1 @ [[e2p]]p)@ (λv. κ@ v))

[[(e1 i @i e2
i)i]]i = λκ. [[e1 i]]i @(λv1. [[e2 i]]i @(λv2. (v1 @ v2)@ (λv. κ@ v)))

[[(Spc. e1
p)i]]i = λκ. letx = λv. κ@ v in [[e1p]]p

[[(Spc. e1
i)i]]i = λκ. letx = λv. κ@ v in [[e1 i]]i @(λv. v)

[[(S ic. e1
p)i]]i = λκ. letx = λv. λk′. k′ @(κ@ v) in [[e1p]]p

[[(S ic. e1
i)i]]i = λκ. letx = λv. λk′. k′ @(κ@ v) in [[e1 i]]i @(λv. v)

Fig. 10. Selective CPS transformation from direct-style terms to two-level CPS terms

We also have the standard equality relation for the CPS terms, written as ∼,
consisting of βv-equality and equality in arbitrary contexts, as well as reflexivity,
symmetry, and transitivity. On top of these, we use two rules that are known to
hold in the call-by-value lambda calculus [11]. One is βΩ-rule:

(λx.E[x]) @ e ∼ E[e] if x does not occur free in E
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where E is a call-by-value, left-to-right, evaluation context. The other is an
instance of βlift -rule:

(letx = e1 in e2) @ v ∼ letx = e1 in (e2 @ v) if x does not occur free in v

We use an equality relation rather than a reduction relation for CPS terms,
because only the equality is known to be preserved in the presence of con-
trol operators [2]. It is still an open problem whether it is possible to define
a reduction-preserving CPS transformation for programs with control operators.

3.2 Selective CPS Transformation

Figure 10 shows the one-pass selective CPS transformation. The definition is
taken from our previous work [2] as is, except that the let construct here is
interpreted as monomorphic rather than polymorphic.

Given a direct-style term, this selective CPS transformation produces two-
level terms with overlines and underlines. Following Danvy and Filinski [8],
we call overlined constructs static and underlined ones dynamic. Among the
obtained two-level term, the static parts (administrative β-redexes) are reduced
to produce the final result that consists of only dynamic parts. This style of
the CPS transformation is called “two-pass”, because a two-level term is first
produced and the static parts are reduced afterwards. However, it is possible to
remove administrative β-redexes by implementing static terms in metalanguage
level and reducing them at the transformation time. In our implementation, the
static lambda abstraction (λ) is written in Agda’s lambda abstraction, while
the dynamic lambda abstraction (λ) is written using the lambda abstraction
construct in CPS values shown in Fig. 8. The CPS transformation that uses
these two-level terms is called “one-pass”, because it reduces the administrative
β-redexes during the CPS transformation.

The selective CPS transformation in Fig. 10 consists of two kinds of transfor-
mations: one for pure terms and the other for impure terms. When e1 is pure, we
leave the term in direct style, since it means that no control effects are used in
e1 and it is not necessary to transform it into CPS. Thus, [[e1p]]p is basically an
identity function, returning e1 with annotations removed but transforms impure
parts hidden under an abstraction. When e1 is impure, on the other hand, [[e1i]]i
receives a static continuation κ at transformation time and returns an appropri-
ate result according to the purity of the subterms of e1.

At first, the many cases of the selective CPS transformation for impure terms
are a bit overwhelming, but if we look at the last cases of an application and
a shift construct, we find that they are exactly the familiar definition of the
non-selective CPS transformation. All the other rules are their simplification,
turning the pure parts back into direct style. See [2] for more details.

4 Correctness of the Transformation

In this section, we prove the correctness of the selective CPS transformation. We
begin with a few definitions and necessary lemmas.
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4.1 Schematic

A continuation κ is said to be schematic, if κ does not manipulate nor destroy the
syntactic structure of the value it receives [8]. The theorem we prove (Theorem 1)
requires this property.

Definition 1 (schematic). Assume that y does not occur free in κ. A static
continuation κ is schematic, if it satisfies (κ @ y)[v/y] = κ @ v, for any CPS
value v.

To understand what a schematic continuation is, it is instructive to see when
a continuation is not schematic. A continuation κ0 is not schematic if it returns
1 when applied to a CPS-term variable, and returns 2 otherwise, as can be seen:

(κ0 @ y)[v/y] = 1[v/y] = 1 �= 2 = κ0 @ v.

We want to regard (κ0 @ y)[v/y] and κ0 @ v are equal, because substituting v for
y in (κ0 @ y) appears to yield (κ0 @ v). This is not the case as shown above, how-
ever. Note that when we write (κ0 @ y)[v/y], the static application happens before
the substitution is performed. The continuation κ0 is not schematic because it
behaves differently according to the syntactic structure of its argument. We
exclude such ill-behaved continuations.

4.2 Substitution Lemma

Throughout the proof in Sect. 4.5, we need a substitution lemma whenever we
substitute a direct-style value over the selective CPS transformation.

To show the substitution lemma, we first define a substitution relation for
static continuations.

Definition 2 (substitution on continuation). We write κ1[v/y] = κ2, if
for any v1 and v′

1 such that v1[v/y] = v′
1, we have (κ1 @ v1)[v/y] = κ2 @ v′

1.

Substitution on static continuations is defined by substitution on continuations
applied to values in the same substitution relation.

Since we have two transformations, one for pure terms and the other for
impure terms, the substitution lemma is divided into two parts. Furthermore,
we have two subcases for the impure case, one for substituting both a term and a
continuation (corresponding to standard function application) and the other for
substituting a continuation only (corresponding to a continuation application).

Lemma 1 (substitution).

(1) If Γ, y : τ � e1
p : τ1 @cps[τ2, τ2, p], Γ � e2

p : τ1 @cps[τ2, τ2, p],
Γ � vp : τ @cps[α, α, p], and e1

p[vp/y] = e2
p,

then we have [[e1p]]p[[[vp]]p/y] = [[e2p]]p.
(2) If Γ, y : τ � e1

i : τ1 @cps[τ2, τ3, i], Γ � e2
i : τ1 @cps[τ2, τ3, i],

Γ � vp : τ @cps[α, α, p], e1
i[vp/y] = e2

i, and κ1[[[vp]]p/y] = κ2,
then we have ([[e1i]]i @κ1)[[[vp]]p/y] = ([[e2i]]i @κ2).
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(3) If Γ � e1
i : τ1 @cps[τ2, τ3, i], κ1[v/y] = κ2, and y does not appear in e1

i,
then we have ([[e1i]]i @κ1)[v/y] = ([[e1i]]i @κ2).

The statements (1) and (2) in the substitution lemma can be proved by
mutual induction on the derivation of e1

a[vp/y] = e2
a and case analysis on e1

a.
Essentially, we have nine cases for the statement (1) (two cases for a variable,
[[xp]]p and [[yp]]p, and one case for all the other cases of [[ep]]p) and twelve cases
for the statement (2) (one case for all the cases of [[ei]]i).

The statement (3) is proved independently by induction on the structure of
impure terms e1

i, with twelve cases, one for all the cases of [[ei]]i.

4.3 Continuation Reduction Lemma

We also need a lemma to replace continuations of the impure CPS transforma-
tion.

Lemma 2 (continuation reduction). If Γ � e1
i : τ1 @cps[τ2, τ3, i], κ1 and κ2

are schematic, and κ1 @ [[vp]]p ∼ κ2 @ [[vp]]p for any vp, then we have [[e1i]]i @ κ1 ∼
[[e1i]]i @κ2.

We prove this lemma by induction on the structure of e1
i. When e1

i has
the form of (App), we examine all the possible purity annotations a1, a2, and
a3, which makes up to eight cases. It is also possible for e1

i to have the form of
(Shift), and we have four cases for all the combinations of the purity annotations
in (Shift).

4.4 Shift Lemma

Before proving the main theorem, we need to characterize the behavior of the
shift construct. It extracts the shift construct out of the surrounding pure
evaluation context and enables us to reason about the shift construct sepa-
rately.5

Lemma 3 (shift lemma). If Γ � E i
p : [τ1@cps[τ2, τ3, i]]c τ4@cps[τ5, τ3, i],

Γ � Ep
p : [τ1@cps[τ2, τ2, p]]c τ4@cps[τ5, τ2, a], E i

p
∼=c Ep

p, Γ � e1 :
τ @cps[τ, τ3, a1], and κ is schematic, then we have

[[(E i
p[S

a2c. e1
a1 ])

i
]]i @κ ∼ [[((λa3x. (Ep

p[x])a)p @a3 (Sa2c. e1
a1)i)

i
]]i @ κ

The shift lemma can be proved by induction on the structure of pure contexts,
i.e., on the derivation of E i

p
∼=c Ep

p. When both contexts are holes (i.e., [ ]i ∼=c [ ]p),
we deduce that a = p from the second premise and (Ep

p-Hole). We could then

5 We conjecture that the same lemma holds not only for a shift construct but also
for an arbitrary expression. We have not formalized the general case yet, however.



52 C. Ishio and K. Asai

dispatch on the remaining purity annotations, a1, a2, and a3, which yields eight
cases in total.

When both contexts have at least one pure frame, we split into two cases
according to the structure of the top pure frame. By careful analysis, possibly
sharing the proofs as much as possible, we have ten cases for App1 and six cases
for App2.

Once the statement of the shift lemma is fixed, it is not too hard to prove
the lemma, except for the many tedious cases (around 4900 lines in Agda). We
could prove the inductive cases by first applying the induction hypothesis and
then using various reduction rules. The rules to use are often clear from the goals.
However, it was not at all trivial to find the right statement of the lemma. For
example, the expression E i

p[S
a2c. e1

a1 ] is always surrounded by a reset construct
whenever we use this lemma. However, placing a reset construct around it would
make the induction hypothesis too weak to prove the lemma. The definition of
the equality between two pure evaluation contexts is subtle, as well as the types
(answer types in particular) and purity annotations of E i

p and Ep
p. Basically, we

started from the most general types and collected necessary constraints; but we
needed to try many variations before reaching the current statement.

In the previous work [2], we presented the shift lemma as follows.

[[(E i
p[(S

a2c. e1
a1)i])

i
]]i @ κ ∼ [[(Sa2c. e1

a1)i]]i @ (λx. [[Ep
p[xp]]]i @ κ)

When we tried to formalize this lemma in Agda, we found that the statement
did not even type check. The static continuation (λx. [[Ep

p[xp]]]i @κ) receives a
CPS value in x, but when it is plugged into the pure context Ep

p, it has to be
a direct-style term since Ep

p[xp] is an argument to [[·]]i. The present shift lemma
avoids this problem by keeping the whole lambda abstraction (λa3x.Ep

p[x]a) in
direct style. If we expand the right-hand side of the shift lemma for the case
a = a3 = i, we have:

[[((λix. (Ep
p[x])i)

p
@i (Sa2c. e1

a1)i)
i
]]i @κ

≡ (λv1. [[(Sa2c. e1
a1)i]]i @ (λv2. (v1 @ v2) @ (λv. κ@ v)))@ [[(λix. (Ep

p[x])i)
p
]]p

∼ [[(Sa2c. e1
a1)i]]i @ (λv2. ([[(λix. (Ep

p[x])i)
p
]]p @ v2) @ (λv. κ@ v))

≡ [[(Sa2c. e1
a1)i]]i @ (λv2. ((λx. λk. [[(Ep

p[x])i]]i @ (λv. k @ v)) @ v2) @ (λv. κ@ v))

It seems if we could further perform two βv-reductions in the static contin-
uation, we would obtain the previous shift lemma. It is not possible, however,
since we cannot substitute an arbitrary CPS value v2 into a direct-style variable
x. To substitute x, we first need to transform v2 back to direct style.

Besides, we observe that the previous lemma covered only the case a = a3 = i.

4.5 Proof of the Correctness of the CPS Transformation

We now prove the main theorem: the correctness of our selective CPS transfor-
mation. It states that whenever a direct-style term is reduced to another term,
their translations are equal in the target language. We have three cases depend-
ing on the annotation of the reduction: either e1

p � e2
p, e1

i � e2
p, or e1

i � e2
i.
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Theorem 1 (correctness).

(1) If Γ � e1
p : τ1 @cps[τ2, τ2, p] and e1

p � e2
p, then [[e1p]]p ∼ [[e2p]]p.

(2) If Γ � e1
i : τ1 @cps[τ2, τ2, i] and e1

i � e2
p,

then [[e1i]]i @ κ ∼ (λv. κ@ v) @ [[e2p]]p.
(3) If Γ � e1

i : τ1 @cps[τ2, τ3, i], e1
i � e2

i, and κ is schematic,
then [[e1i]]i @ κ ∼ [[e2i]]i @κ.

The proof is by induction on the derivation of the reduction relation e1
a1 �

e2
a2 . The statement (2) is the easiest to prove. Since the only possible reduc-

tion of the form e1
i � e2

p is (R-Beta), we simply consider this case (two cases
according to the purity of the body of the applied function). We need no con-
dition on κ in this case. Note that (R-Shift) does not apply here, because the
redex is a reset construct, which is pure.

To prove the statement (3), we also consider the case for (R-Frame) in
addition to (R-Beta). The case for (R-Frame) is long (but routine) because
we have to consider all the possible combinations of purity for each case of frames.
The case for (R-Beta) is similar to the statement (2), but we additionally need
a condition on κ to be schematic. This can be understood by the fact that an
application to a static continuation happens in all the cases of [[(e1a1 @a3 e2

a2)a]]i.
Without κ being schematic, we cannot perform the substitution incurred by
(R-Beta).

The statement (1) is the most difficult to prove. In addition to (R-Beta)
and (R-Frame), we need to consider (R-Reset) and (R-Shift). Among them,
the cases for (R-Beta) and (R-Reset) are simple. The case for (R-Frame)
requires many subcases, but all are straightforward. The hard part is the case
for (R-Shift). In (R-Shift), we have five purity annotations, a1, a2, a3, a4, and
a5. Among them, a1, a3, and a4 should satisfy a1 ≤ a3 ≤ a4, and we have four
possible patterns:

(a1, a3, a4) ∈ {(p, p, p), (p, p, i), (p, i, i), (i, i, i)}.

Also we have arbitrary annotations a2 and a5. Since the result of the selective
CPS transformation differs for each case, we have to split over all the possible
cases for those purity annotations. Thus, we have sixteen cases for (R-Shift),
each being quite complex.

We pick out one of the most complicated cases from (R-Shift) in Fig. 11,
where a1 = p and a2 = a3 = a4 = a5 = i. The goal is to show that the expressions
(1) and (16) are equal in the target language. At the beginning of the figure, the
expression (1) is equivalent to the next expression (2) by the definition of the
selective CPS transformation. We represent the evaluation in the metalanguage
(i.e., definitional equality) by connecting the expressions with ≡. We then use the
shift lemma to extract the shift construct out of its context, which is reduced
to the expression (4).

We then perform a series of βv-reduction forward from (5) to (8). In (4), sub-
stituting the variable v1 with (λx. λk. ([[(Ep

p[xp])i]]i @ (λv. k @ v))) generates (5).
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(1) [[〈(E i
p[(S ic. e1

p)i])
i〉
p
]]p

(2) ≡ [[(E i
p[(S ic. e1

p)i])
i
]]i @(λv. v)

(3) ∼ [[((λix. (Ep
p[xp])i)

p
@i (S ic. e1

p)i)
i
]]i @(λv. v 3ammeL)

(4) ≡ (λv1. letx = (λx. λk′. k′ @((v1 @x)@ (λv. v))) in [[e1p]]p)
@ (λx. λk. ([[(Ep

p[xp])i]]i @(λv. k@ v)))
(5) ∼ letx = λx. λk′. k′ @(((λx. λk. ([[(Ep

p[xp])i]]i @(λv. k@ v)))@x)@ (λv. v)) in [[e1p]]p
βv

(6) ∼ letx = λx. λk′. k′ @((λk. ([[(Ep
p[xp])i]]i @(λv. k@ v)))@ (λv. v)) in [[e1p]]p

Lemma 1 (2), βv

(7) ∼ letx = λx. λk′. k′ @([[(Ep
p[xp])i]]i @(λv. (λv. v)@ v)) in [[e1p]]p Lemma 1 (3), βv

(8) ∼ letx = λx. λk′. k′ @([[(Ep
p[xp])i]]i @(λv. v)) in [[e1p]]p Lemma 2, βv

(9) ∼ letx = λx. λk′. k′ @([[(Ep
p[xp])i]]i @(λv. v)) in ((λv. v)@ [[e1p]]p) βΩ

(10) ∼ letx = λx. λk′. k′ @([[(Ep
p[xp])i]]i @(λv. v)) in ((λy. (y@ [[e1p]]p))@ (λv. v)) βv

(11) ∼ (letx = λx. λk′. k′ @([[(Ep
p[xp])i]]i @(λv. v)) in (λy. y @ [[e1p]]p))@ (λv. v) βlift

(12) ≡ ((λx. λy. y@ [[e1p]]p)@ (λx. λk′. k′ @([[(Ep
p[xp])i]]i @(λv. v))))@ (λv. v)

(13) ≡ ([[(λix. e1
p)p]]p @ [[(λix. 〈(Ep

p[xp])i〉p)p]]p)@ (λv. v)
(14) ≡ (λκ. ([[(λix. e1

p)p]]p @ [[(λix. 〈(Ep
p[xp])i〉p)p]]p)@ (λv. κ@ v))@ (λv. v)

(15) ≡ [[((λix. e1
p)p @i (λix. 〈(Ep

p[xp])i〉p)p)i]]i @(λv. v)

(16) ≡ [[〈((λix. e1
p)p @i (λix. 〈(Ep

p[xp])i〉p)p)i〉
p
]]p

Fig. 11. An extract of the proof of correctness of the CPS transformation

We use Lemma 1 on (5) and (6). In (5), we choose Lemma 1 (2), because we sub-
stitute the variable xp in the body of the impure transformation [[(Ep

p[xp])i]]i. In
(6), on the other hand, we apply Lemma1 (3), because substitution is necessary
only in the continuation part of the impure transformation; PHOAS representa-
tion ensures that the variable k does not appear in [[(Ep

p[xp])i]]i. In (7), we per-
form the standard βv-reduction on (λv. (λv. v)@ v). It requires Lemma 2 because
the reduction happens in the continuation passed to the impure transformation.
Without the lemma, we do not know how the continuation is used in [[(Ep

p[xp])i]]i
and thus if we can perform βv-reduction before the static application.

At this point, we jump to the goal (16) and perform reduction backward. We
successively expand the outermost reset (15), an application (14), followed by
static reduction (13), and two abstractions (12). Looking at the goal expression
(8), we rewrite (12) to use a let expression (11). In (11), the body of the let
expression (λy. y @ [[e1p]]p) eventually receive the argument (λv. (λv. v) @ v). We
use βlift to reorder the let expression and the application to obtain (10). We
then perform the standard βv-reduction in the body of the let-expression in
(10). Finally, we reduce the application ((λv. v) @ [[e1p]]p) in (9) to obtain (8).
This is not the standard βv-reduction, since e1

p in [[e1p]]p could have the form
(App) or (Shift) and may not be a CPS value. Instead, we use βΩ with an
empty evaluation context.
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4.6 Notes on Agda Formalization

Regarding the formalization, we have discussed the advantages of PHOAS,
intrinsically typed representations, and the relational representations so far.
Other than those techniques, we also rely on equational reasoning. As used in
the Agda standard library, we implemented an equational reasoning module for
reduction relation. When using this module, there are mainly three parts to fill
in: the current expression E , the expected transformation rule f , and the evalu-
ated expression f(E). However, because Agda can automatically generate f(E)
from f and E by solving constraints, and because the initial E is given, we only
need to work manually on f . This turned out to be useful, especially when the
size of E and f(E) is large.

Even with the equational reasoning, however, the overall proof process is
quite tedious. Because Agda does not have a strong automated proof search
engine as in Coq, we had to fill in all the rules manually, even when what we
have to do was clear from the shape of the expression. Our experience suggests
that if we prove the same theorem in Coq using automated proof search, we
would obtain much smaller proof. The current proof script in Agda has around
7800 lines in total. It consists of:

– source/target term and the selective CPS transformation (700 lines),
– necessary lemmas including shift lemma (5200 lines), and
– the main proof (Theorem 1) (1900 lines).

After the proof is finished, we reexamined the structure of the proof and
rearranged it in a nicer form as presented in this paper. Despite its length, we
believe the proof is clear enough to say that it reflects the simple manual proof of
the correctness of the standard non-selective CPS transformation, yet highlights
what we need for the selective CPS transformation.

5 Related Work

As far as we are aware, Biernacki and Polesiuk’s work [3] is the only one that
formalized the selective CPS transformation using a proof assistant. They for-
malize a selective CPS transformation for a calculus with shift0 and reset0
and show the coherence of effect subtyping in Coq. They also use a typed rep-
resentation for contexts in a similar way as we did. Although we handle similar
delimited control operators, the semantics as well as the selective CPS transfor-
mation of shift0 and reset0 [14] are quite different from those of shift and
reset. The overall structure of the proof is also different: they use step-indexed
logical relations whereas we use more basic equality relation.

As for non-selective CPS transformations, many researchers have formalized
various flavors of calculi in various languages: in Isabelle/HOL with a complete
formalization of α-equivalence [15], in Twelf in a relational form [18], and in Coq
using two sets of de Bruijn indices [9].

Our work is directly based on Chlipala’s work [4] using PHOAS, formalizing
the simply-typed lambda calculus and System F in Coq. We also follow Chlipala
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in employing the relational presentation of substitution. Our work is a non-
trivial case study showing the effectiveness of these techniques in formalizing
CPS transformations.

As another case study, we have previously applied Chlipala’s technique in
formalizing a CPS transformation for the lambda calculus extended with let-
polymorphism [19]. The current work is different from the previous one in that
we target a selective CPS transformation rather than the non-selective one and
we handle delimited control operators rather than let-polymorphism. Ultimately,
we plan to incorporate both delimited control operators and let-polymorphism,
but it is still left as future work.

6 Conclusion

In this paper, we have formalized and proved the correctness of the selective CPS
transformation for shift and reset in Agda. We investigated and implemented
every definition in the previous work, and found that the selective CPS trans-
formation is correct, but one lemma was not precise. We provided the precise
version of the lemma as “shift lemma”. We used PHOAS and intrinsically typed
term and context representation, which worked smoothly in formalizing CPS
transformations in a typeful manner. For evaluation contexts, we introduced a
relation between two evaluation contexts with different purity annotations.

Our future work includes proof automation and an extension to let-polymor-
phism. Through the formalization, we found that each step of the proof is simple,
but the whole proof script became quite long. We are currently working on
automating the proof using Agda’s reflection API. We hope to reduce the amount
of work for completing the proof by using the mechanism that is similar to tactics
in Coq. Another direction for future work would be to merge the current work
with our previous work on the correctness of a CPS transformation for a let-
polymorphic language [19]. Although the proof in this paper is not short, its
overall structure is clear enough. We hope to merge the two results into one,
resulting in the full formalization of the calculus presented in [2].

Acknowledgements. We would like to thank Youyou Cong and anonymous review-
ers for valuable comments and feedbacks. This work was partly supported by JSPS
KAKENHI under Grant No. JP18H03218.
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Abstract. Property-based testing tools test software against a specifi-
cation, rather than a set of examples. This tutorial paper presents five
generic approaches to writing such specifications (for purely functional
code). We discuss the costs, benefits, and bug-finding power of each app-
roach, with reference to a simple example with eight buggy variants. The
lessons learned should help the reader to develop effective property-based
tests in the future.

1 Introduction

Property-based testing (PBT) is an approach to testing software by defining
general properties that ought to hold of the code, and using (usually randomly)
generated test cases to test that they do, while reporting minimized failing tests
if they don’t. Pioneered by QuickCheck1 in Haskell [9], the method is now sup-
ported by a variety of tools in many programming languages, and is increas-
ingly popular in practice. Searching for “property-based testing” on Youtube
finds many videos on the topic—most of the top 100 recorded at developer con-
ferences and meetings, where (mostly) other people than this author present
ideas, tools and methods for PBT, or applications that make use of it. Clearly,
property-based testing is an idea whose time has come. But equally clearly, it is
also poorly understood, requiring explanation over and over again!

We have found that many developers trying property-based testing for the
first time find it difficult to identify properties to write—and find the simple
examples in tutorials difficult to generalize. This is known as the oracle problem
[3], and it is common to all approaches that use test case generation.

In this paper, therefore, we take a simple—but non-trivial—example of a
purely functional data structure, and present five different approaches to writing
properties (invariants, postconditions, metamorphic properties and the preserva-
tion of equivalence, inductive properties, and model-based properties). We show
the necessity of testing the random generators and shrinkers that property-based
testing depends on. We discuss the pitfalls to keep in mind for each kind of
property, and we compare and contrast their effectiveness, with the help of eight
buggy implementations. We hope that the concrete advice presented here will

1 http://hackage.haskell.org/package/QuickCheck.
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enable readers to side-step the “where do I start?” question, navigate the zoo of
different kinds of property, and quickly derive the benefits that property-based
testing has to offer.

2 A Primer in Property-Based Testing

Property-based testing is an approach to random testing pioneered by
QuickCheck2 in Haskell [9], in which universally quantified properties are eval-
uated as tests in randomly generated cases, and failing tests are simplified by
a search for similar, smaller cases. There is no precise definition of the term,
however: indeed, MacIver writes3

‘Historically the definition of property-based testing has been “The thing
that QuickCheck does”.’

The basic idea has been reimplemented many times—Wikipedia in 2019 lists
more than 50 implementations, in 36 different programming languages4, of all
programming paradigms. Among contemporary PBT tools are, for example,
ScalaCheck [19] for the JVM, FsCheck5 for .NET, Quviq QuickCheck [2,16]
and Proper [17,20] for the BEAM, Hypothesis6 for Python, PrologCheck [1] for
Prolog, and SmallCheck [23], SmartCheck [21] and LeanCheck [4] for Haskell,
among many others. These implementations vary in quality and features, but
the ideas in this paper—while presented using Haskell QuickCheck—should be
relevant to a user of any of them.

Suppose, then, that we need to test the reverse function on lists. Any devel-
oper will be able to write a unit test such as the following:

test Reverse = reverse [1, 2, 3] === [3, 2, 1]

Here the (===) operator is an equality comparison for use in tests, which displays
a message including the compared values if the comparison is False.

This test is written in the same form as most test cases worldwide: we apply
the function under test (reverse) to known arguments ([1, 2, 3]), and then com-
pare the result to a known expected value ([3, 2, 1]). Developers are practiced
in coming up with these examples, and predicting expected results. But what
happens when we try to write a property instead?

prop Reverse :: [Int ] → Property
prop Reverse xs = reverse xs === ???

2 http://hackage.haskell.org/package/QuickCheck.
3 https://hypothesis.works/articles/what-is-property-based-testing/.
4 https://en.wikipedia.org/wiki/QuickCheck.
5 https://fscheck.github.io/FsCheck/.
6 https://pypi.org/project/hypothesis/.
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https://hypothesis.works/articles/what-is-property-based-testing/
https://en.wikipedia.org/wiki/QuickCheck
https://fscheck.github.io/FsCheck/
https://pypi.org/project/hypothesis/
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The property is parameterised on xs, which will be randomly generated by
QuickCheck; we state a monomorphic type signature explicitly, even though
the reverse function is polymorphic, to tell QuickCheck what type of test data
to generate. The result type is Property , not Bool , because this is what (===)
returns—Propertys are not pure booleans, because they can generate diagnostic
output, among other things.

The property can clearly test reverse in a much wider range of cases than the
unit test—any randomly generated list, rather than just the list [1, 2, 3]—which
is a great advantage. But the question is: what is the expected result? That is,
what should we replace ??? by in the definition above? Since the argument to
reverse is not known in advance, we cannot precompute the expected result. We
could write test code to predict it, as in

prop Reverse :: [Int ] → Property
prop Reverse xs = reverse xs === predictRev xs

but predictRev is not easier to write than reverse—it is exactly the same function!
This is the most obvious approach to writing properties—to replicate the

implementation in the test code—and it is deeply unsatisfying. It is both an
expensive approach, because the replica of the implementation may be as com-
plex as the implementation under test, and of low value, because there is a grave
risk that misconceptions in the implementation will be replicated in the test code.
“Expensive” and “low value” is an unfortunate combination of characteristics
for a software testing method!

“Avoid replicating your code in your tests.”

We can finesse this problem by rewriting the property so that it does not
refer to an expected result, instead checking some property of the result. For
example, reverse is its own inverse:

prop Reverse :: [Int ] → Property
prop Reverse xs = reverse (reverse xs) === xs

Now we can pass the property to QuickCheck, to run a series of random tests
(by default 100):

*Examples> quickCheck prop_Reverse

+++ OK, passed 100 tests.

We have met our goal of testing reverse on 100 random lists, but this property
is not very strong—if we had accidentally defined

reverse xs = xs

then it would still pass (whereas the unit test above would report a bug).
We can define another property that this buggy implementation of reverse

passes, but the correct definition fails:
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prop Wrong :: [Int ] → Property
prop Wrong xs = reverse xs === xs

Since reverse is actually correctly implemented, this allows us to show what
happens when a property fails:

*Examples> quickCheck prop_Wrong

*** Failed! Falsified (after 5 tests and 3 shrinks):

[0,1]

[1,0] /= [0,1]

Here the first line after the failure message shows the value of xs for which
the test failed ([0, 1]), while the second line is the message generated by (===),
telling us that the result of reverse (that is, [1, 0]) was not the expected value
([0, 1]).

Interestingly, the counterexample QuickCheck reports for this property is
almost always [0, 1], and occasionally [1, 0]. These are not the random coun-
terexamples that QuickCheck finds first; they are the result of shrinking the
random counterexamples via a systematic greedy search for a simpler failing
test. Shrinking lists tries to remove elements, and numbers shrink towards zero;
the reason we see these two counterexamples is that xs must contain at least two
different elements to falsify the property, and 0 and 1 are the smallest pair of
different integers. Shrinking is one of the most useful features of property-based
testing, resulting in counterexamples which are usually easy to debug, because
every part of the counterexample is relevant to the failure.

Now we have seen the benefits of property-based testing—random generation
of very many test cases, and shrinking of counterexamples to minimal failing
tests—and the major pitfall: the temptation to replicate the implementation in
the tests, incurring high costs for little benefit. In the remainder of this paper,
we present systematic ways to define properties without falling into this trap. We
will (largely) ignore the question of how to generate effective test cases—that
are good at reaching buggy behaviour in the implementation under test—even
though this is an active research topic in its own right (see, for example, the
field of concolic testing [12,24]). While generating good test cases is important,
in the absence of good properties, they are of little value.

3 Our Running Example: Binary Search Trees

The code we shall develop properties for is an implementation of finite maps
(from keys to values) as binary search trees. The definition of the tree type is
shown in Fig. 1; a tree is either a Leaf , or a Branch containing a left subtree, a
key, a value, and a right subtree. The operations we will test are those that create
trees (nil , insert , delete and union), and that find the value associated with a
key in the tree. We will also use auxiliary operations: toList , which returns a
sorted list of the key-value pairs in the tree, and keys which is defined in terms
of it. The implementation itself is standard, and is not included here.

Before writing properties of binary search trees, we must define a generator
and a shrinker for this type. We use the definitions in Fig. 2, which generate
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data BST k v = Leaf | Branch (BST k v) k v (BST k v)
deriving (Eq ,Show ,Generic)

-- the operations under test
find :: Ord k ⇒ k → BST k v → Maybe v
nil :: BST k v
insert :: Ord k ⇒ k → v → BST k v → BST k v
delete :: Ord k ⇒ k → BST k v → BST k v
union :: Ord k ⇒ BST k v → BST k v → BST k v

-- auxiliary operations
toList :: BST k v → [(k , v)]
keys :: BST k v → [k ]

Fig. 1. The API under test: binary search trees.

instance (Ord k ,Arbitrary k ,Arbitrary v) ⇒ Arbitrary (BST k v) where
arbitrary = do

kvs ← arbitrary
return $ foldr (uncurry insert) nil (kvs :: [(k , v)])

shrink = genericShrink

Fig. 2. Generating and shrinking binary search trees.

trees by creating a random list of keys and values and inserting them into the
empty tree, and shrink trees using a generic method provided by QuickCheck.
The type restriction in the definition of arbitrary is needed to fix kvs to be a
list, because foldr is overloaded to work over any Foldable collection. We shall
revisit both these definitions later, but they will do for now.

We need to fix an instance type for testing; for the time being, we choose to
let both keys and values be integers, and define

type Key = Int
type Val = Int
type Tree = BST Int Int

Int is usually an acceptably good choice as an instance for testing polymorphic
properties, although we will return to this choice later. In the rest of this article
we omit type signatures on properties for brevity, although in reality they must
be given, to tell QuickCheck to use the types above.

4 Approaches to Writing Properties

4.1 Validity Testing

“Every operation should return valid results.”

Many data-structures need to satisfy invariant properties, above and beyond
being well-typed, and binary search trees are no exception: the keys in the tree
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prop NilValid = valid (nil :: Tree)
prop InsertValid k v t = valid (insert k v t)
prop DeleteValid k t = valid (delete k t)
prop UnionValid t t ′ = valid (union t t ′)

Fig. 3. Validity properties.

should be ordered. In this section, we shall see how to write properties that check
that this invariant is preserved by each operation.

We can capture the invariant by the following function:

valid Leaf = True
valid (Branch l k v r) =

valid l ∧ valid r ∧
all (<k) (keys l) ∧ all (>k) (keys r)

That is, all the keys in a left subtree must be less than the key in the node, and
all the keys in the right subtree must be greater.

This definition is obviously correct, but it is an inefficient implementation of
the validity checking function; it is quadratic in the size of the tree in the worst
case. A more efficient implementation would exploit the validity of the left and
right subtrees, and compare only the last key in the left subtree, and the first
key in the right subtree, against the key in a Branch node. But the equivalence
of these two definitions depends on reasoning, and we prefer to avoid reasoning
that is not checked by tests—if it turns out to be wrong, or is invalidated by
later changes to the code, then tests using the more efficient definition might fail
to detect some bugs. Testing that two definitions are equivalent would require
testing a property such as

prop ValidEquivalent t = valid t === fastValid t

and to do so, we would need a generator that can produce both valid and invalid
trees, so this is not a straightforward extension. We prefer, therefore, to use the
obvious-but-inefficient definition, at least initially. The trees we are generating
are relatively small, so quadratic complexity is not a problem.

“Test your tests.”

Now it is straightforward to define properties that check that every operation
that constructs a tree, constructs a valid one (see Fig. 3). However, these prop-
erties, by themselves, do not provide good testing for validity. To see why, let us
plant a bug in insert , so that it creates duplicate entries when inserting a key
that is already present (bug (2) in Sect. 5). prop InsertValid fails as it should,
but so do prop DeleteValid and prop UnionValid :

=== prop_InsertValid from BSTSpec.hs:19 ===

*** Failed! Falsified (after 6 tests and 8 shrinks):

0
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0

Branch Leaf 0 0 Leaf

=== prop_DeleteValid from BSTSpec.hs:22 ===

*** Failed! Falsified (after 8 tests and 7 shrinks):

0

Branch Leaf 1 0 (Branch Leaf 0 0 Leaf)

=== prop_UnionValid from BSTSpec.hs:25 ===

*** Failed! Falsified (after 7 tests and 9 shrinks):

Branch Leaf 0 0 (Branch Leaf 0 0 Leaf)

Leaf

Thus, at first sight, there is nothing to indicate that the bug is in insert ; all
of insert , delete and union can return invalid trees! However, delete and union
are given invalid trees as inputs in the tests above, and we cannot expect them
to return valid trees in this case, so these reported failures are “false positives.”

The problem here is that the generator for trees is producing invalid ones
(because it is defined in terms of insert). We could add a precondition to each
property, requiring the tree to be valid, as in:

prop DeleteValid k t = valid t =⇒ valid (delete k t)

which would discard invalid test cases (not satisfying the precondition) without
running them, and thus make the properties pass. This is potentially inefficient
(we might spend much of our testing time discarding test cases), but it is also
really just applying a sticking plaster: what we want is that all generated trees
should be valid! We can test this by defining an additional property:

prop ArbitraryValid t = valid t

which at first sight seems to be testing that all trees are valid, but in fact tests
that all trees generated by the Arbitrary instance are valid. If this property fails,
then it is the generator that needs to be fixed—there is no point in looking at
failures of other properties, as they are likely caused by the failing generator.

Usually the generator for a type is intended to fulfill its invariant, but—as
in this case—is defined independently. A property such as prop ArbitraryValid
is essential to check that these definitions are mutually consistent.

It is also possible for the shrink function to violate a datatype invariant. For
this reason, we should also write a property requiring all the smaller test cases
returned by shrink to be valid:

prop ShrinkValid t = all valid (shrink t)

Unfortunately, with the definitions given so far, this property fails:

=== prop_ShrinkValid from BSTSpec.hs:28 ===

*** Failed! Falsified (after 6 tests and 8 shrinks):

Branch (Branch Leaf 0 0 Leaf) 0 1 Leaf
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Inspection reveals that this argument to shrink is already invalid—and so it
is no surprise that shrink might include invalid trees in its result. The problem
here is that, even though QuickCheck initially found a valid tree with an invalid
shrink, it shrunk the test case before reporting it using the invalid shrink function,
resulting in an invalid tree with invalid shrinks. What we want to see, when
debugging, is a valid tree with an invalid shrink; to ensure that this is what
QuickCheck reports, we must add a valid t =⇒ precondition to this property.
This precondition should always hold for a randomly generated test (provided
arbitrary is correct), but prevents such a test case being shrunk to an invalid
case when the property fails; thus, we avoid the potential inefficiency discussed
on page 7, whereby preconditions cause many randomly generated tests to be
discarded.

We can also reexpress the check in a slightly different, but equivalent form,
so that when a failing test is reported we see both the valid original tree, and
the invalid tree that it is shrunk to:

prop ShrinkValid t = valid t =⇒ filter (not ◦ valid) (shrink t) === [ ]

With these changes the failing test is easy to interpret:

=== prop_ShrinkValid from BSTSpec.hs:28 ===

*** Failed! Falsified (after 7 tests and 8 shrinks):

Branch (Branch Leaf 0 0 Leaf) 1 0 Leaf

[Branch (Branch Leaf 0 0 Leaf) 0 0 Leaf] /= []

We see that shrinking the key 1 to 0 invalidated the invariant.
We must thus redefine shrinking for the BST type to enforce the invariant.

There are various ways of doing so, but perhaps the simplest is to continue to
use genericShrink , but discard smaller trees where the invariant is broken:

shrink = filter valid ◦ genericShrink

This section illustrates well the importance of testing our tests; it is vital to test
generators and shrinkers independently of the operations under test, because a
bug in either can result in many very-hard-to-debug failures in other properties.

Summary: Validity testing consists of defining a function to check the
invariants of your datatypes, writing properties to test that your generators
and shrinkers only produce valid results, and writing a property for each
function under test that performs a single random call, and checks that the
return value is valid.

Validity properties are important to test, whenever a datatype has an invari-
ant, but they are far from sufficient by themselves. Consider this: if every func-
tion returning a BST were defined to return nil in every case, then all the
properties written so far would pass. insert could be defined to delete the key
instead, or union could be defined to implement set difference—as long as the
invariant is preserved, the properties will still pass. Thus, we must move on to
properties that better capture the intended behaviour of each operation.
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4.2 Postconditions

“Postconditions relate return values to arguments of a single call.”

A postcondition is a property that should be True after a call, or (equivalently,
for a pure function) True of its result. Thus, we can define properties by asking
ourselves “What should be True after calling f ?”. For example, after calling
insert , then we should be able to find the key just inserted, and any previously
inserted keys with unchanged values.

prop InsertPost k v t k ′ =
find k ′ (insert k v t) === if k ≡ k ′ then Just v else find k ′ t

One may wonder whether it is best to parameterize this property on two different
keys, or just on one: after all, for the type chosen, independently generated keys
k and k ′ are equal in only around 3.3% of cases, so most test effort is devoted
to checking the else-branch in the property, namely that other keys than the
one inserted are preserved. However, using the same key for k and k ′ would
weaken the property drastically—for example, an implementation of insert that
discarded the original tree entirely would still pass. Moreover, nothing hinders
us from defining and testing a specialized property:

prop InsertPostSameKey k v t = prop InsertPost k v t k

Testing this property devotes all test effort to the case of finding a newly
inserted key, but does not require us to replicate the code in the more general
postcondition.

We can write similar postconditions for delete and union; writing the prop-
erty for union forces us to specify that union is left-biased (since union of finite
maps cannot be commutative).

prop UnionPost t t ′ k = find k (union t t ′) === (find k t <|> find k t ′)

(where (<|>) is the operation that chooses one of two Maybe values, choosing the
first argument if it is of the form Just x , and the second argument otherwise).

Postconditions are not always as easy to write. For example, consider a post-
condition for find . The return value is either Nothing , in case the key is not
found in the tree, or Just v , in the case where it is present with value v . So it
seems that, to write a postcondition for find , we need to be able to determine
whether a given key is present in a tree, and if so, with what associated value.
But this is exactly what find does! So it seems we are in the awkward situation
discussed in the introduction: in order to test find , we need to reimplement it.

We can finesse this problem using a very powerful and general idea, that of
constructing a test case whose outcome is easy to predict. In this case, we know
that a tree must contain a key k , if we have just inserted it. Likewise, we know
that a tree cannot contain a key k , if we have just deleted it. Thus we can write
two postconditions for find , covering the two cases:
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prop FindPostPresent k v t = find k (insert k v t) === Just v
prop FindPostAbsent k t = find k (delete k t) === Nothing

But there is a risk, when we write properties in this form, that we are only
testing very special cases. Can we be certain that every tree, containing key k
with value v , can be expressed in the form insert k v t? Can we be certain that
every tree not containing k can be expressed in the form delete k t? If not, then
the postconditions we wrote for find may be less effective tests than we think.

Fortunately, for this data structure, every tree can be expressed in one of
these two forms, because inserting a key that is already present, or deleting one
that is not, is a no-op. We express this as another property to test:

prop InsertDeleteComplete k t = case find k t of
Nothing → t === delete k t
Just v → t === insert k v t

Summary: A postcondition tests a single function, calling it with random
arguments, and checking an expected relationship between its arguments
and its result.

4.3 Metamorphic Properties

“Related calls return related results.”

Metamorphic testing is a successful approach to the oracle problem in many
contexts [7]. The basic idea is this: even if the expected result of a function call
such as insert k v t may be difficult to predict, we may still be able to express
an expected relationship between this result, and the result of a related call. In
this case, if we insert an additional key into t before calling insert k v , then we
expect the additional key to appear in the result also. We formalize this as the
following metamorphic property:

prop InsertInsert (k , v) (k ′, v ′) t =
insert k v (insert k ′ v ′ t) === insert k ′ v ′ (insert k v t)

A metamorphic property, like this one, (almost) always relates two calls to the
function under test. Here the function under test is insert , and the two calls
are insert k v t and insert k v (insert k ′ v ′ t). The latter is constructed by
modifying the argument, in this case also using insert , and the property expresses
an expected relationship between the values of the two calls. Metamorphic testing
is a fruitful source of property ideas, since if we are given O(n) operations to
test, each of which can also be used as a modifier, then there are potentially
O(n2) properties that we can define.

However, the property above is not true: testing it yields
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=== prop_InsertInsert from BSTSpec.hs:78 ===

*** Failed! Falsified (after 2 tests and 5 shrinks):

(0,0)

(0,1)

Leaf

Branch Leaf 0 0 Leaf /= Branch Leaf 0 1 Leaf

This is not surprising. The property states that the order of insertions does
not matter, while the failing test case inserts the same key twice with different
values—of course the order of insertion matters in this case, because “the last
insertion wins”. A first stab at a metamorphic property may often require cor-
rection; QuickCheck is good at showing us what it is that needs fixing. We just
need to consider two equal keys as a special case:

prop InsertInsert (k , v) (k ′, v ′) t =
insert k v (insert k ′ v ′ t)
===
if k ≡ k ′ then insert k v t else insert k ′ v ′ (insert k v t)

Unfortunately, this property still fails:

=== prop_InsertInsert from BSTSpec.hs:78 ===

*** Failed! Falsified (after 2 tests):

(1,0)

(0,0)

Leaf

Branch Leaf 0 0 (Branch Leaf 1 0 Leaf) /=

Branch (Branch Leaf 0 0 Leaf) 1 0 Leaf

Inspecting the two resulting trees, we can see that changing the order of
insertion results in trees with different shapes, but containing the same keys and
values. Arguably this does not matter: we should not care what shape of tree
each operation returns, provided it contains the right information7. To make our
property pass, we must make this idea explicit. We therefore define an equiva-
lence relation on trees that is true if they have the same contents,

t1 � t2 = toList t1 === toList t2

and re-express the property in terms of this equivalence:

prop InsertInsert (k , v) (k ′, v ′) t =
insert k v (insert k ′ v ′ t)
�
if k ≡ k ′ then insert k v t else insert k ′ v ′ (insert k v t)

7 Recall that we have not imposed any balance condition on our trees. If we were to
repeat this entire exercise for balanced trees, then we would need a stronger invariant
to capture the balance condition, but we would still face the same problem in this
property, since balance conditions don’t require a unique tree shape. Both trees in
this example are balanced—they are just different balanced representations of the
same information.
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Now, at last, the property passes. (We discuss why we need both this equivalence,
and structural equality on trees, in Sect. 7).

There is a different way to address the first problem—that the order of inser-
tions does matter, when inserting the same key twice. That is to require the keys
to be different, via a precondition:

prop InsertInsertWeak (k , v) (k ′, v ′) t =
k �≡ k ′ =⇒ insert k v (insert k ′ v ′ t) � insert k ′ v ′ (insert k v t)

This lets us keep the property in a simpler form, but is weaker, since it no longer
captures that “the last insert wins”. We will return to this point later.

We can go on to define further metamorphic properties for insert , with dif-
ferent modifiers—delete and union:

prop InsertDelete (k , v) k ′ t =
insert k v (delete k ′ t)
�
if k ≡ k ′ then insert k v t else delete k ′ (insert k v t)

prop InsertUnion (k , v) t t ′ =
insert k v (union t t ′) � union (insert k v t) t ′

and, in a similar way, metamorphic properties for the other functions in the API
under test. We derived sixteen different properties in this way, which are listed in
Appendix A. The trickiest case is union which, as a binary operation, can have
either argument modified—or both. We also found that some properties could
be motivated in more than one way. For example, prop InsertUnion (above)
can be motivated as a metamorphic test for insert , in which the argument is
modified by union, or as a metamorphic test for union, in which the argument is
modified by insert . Likewise, the metamorphic tests we wrote for find replicated
the postconditions we wrote above for insert , delete and union. We do not see
this as a problem: that there is more than one way to motivate a property does
not make it any less useful, or any harder to come up with!

Summary: A metamorphic property tests a single function by making
(usually) two related calls, and checking the expected relationship between
the two results.

Preservation of Equivalence. Now that we have an equivalence relation on
trees, we may wonder whether the operations under test preserve it. For example,
we might try to test whether insert preserves equivalence as follows:

prop InsertPreservesEquiv k v t t ′ =
t � t ′ =⇒ insert k v t � insert k v t ′

This kind of property is important, since many of our metamorphic proper-
ties only allow us to conclude that two expressions are equivalent; to use these
conclusions in further reasoning, we need to know that equivalence is preserved
by each operation.
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Unfortunately, testing the property above does not work; it is very, very
unlikely that two randomly generated trees t and t ′ will be equivalent, and
thus almost all generated tests are discarded. To test this kind of property, we
need to generate equivalent pairs of trees together. We can do so be defining a
type of equivalent pairs, with a custom generator and shrinker—see Fig. 4. This
generator constructs two equivalent trees by inserting the same list of keys and
values in two different orders; the shrinker is omitted for brevity. The properties
using this type appear in Fig. 5, along with properties to test the new generator
and shrinker.

data Equivs k v = BST k v :�: BST k v deriving Show

instance (Arbitrary k ,Arbitrary v ,Ord k) ⇒ Arbitrary (Equivs k v) where
arbitrary = do

kvs ← L.nubBy ((≡) ‘on‘ fst) < $ > arbitrary
kvs ′ ← shuffle kvs
return (tree kvs :�: tree kvs ′)
where tree = foldr (uncurry insert) nil

shrink (t1 :�: t2 ) = ...

Fig. 4. Generating equivalent trees.

prop InsertPreservesEquiv k v (t :�: t ′) = insert k v t � insert k v t ′

prop DeletePreservesEquiv k (t :�: t ′) = delete k t � delete k t ′

prop UnionPreservesEquiv (t1 :�: t1 ′) (t2 :�: t2 ′) = union t1 t2 � union t1 ′ t2 ′

prop FindPreservesEquiv k (t :�: t ′) = find k t === find k t ′

prop Equivs (t :�: t ′) = t � t ′

prop ShrinkEquivs (t :�: t ′) =
t � t ′ =⇒ all (λ(t :�: t ′) → t � t ′) (shrink (t :�: t ′))
where t � t ′ = toList t ≡ toList t ′

Fig. 5. Preservation of equivalence.

4.4 Inductive Testing

“Inductive proofs inspire inductive tests.”

Metamorphic properties do not, in general, completely specify the behaviour
of the code under test. However, in some cases, a subset of metamorphic prop-
erties does form a complete specification. Consider, for example, the following
two properties of union:
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prop UnionNil1 t = union nil t === t
prop UnionInsert t t ′ (k , v) =

union (insert k v t) t ′ � insert k v (union t t ′)

We can argue that these two properties characterize the behaviour of union
precisely (up to equivalence of trees), by induction on the size of union’s first
argument. This idea is due to Claessen [8].

However, there is a hidden assumption in the argument above—namely, that
any non-empty tree t can be expressed in the form insert k v t ′, for some smaller
tree t ′, or equivalently, that any tree can be constructed using insertions only.
There is no reason to believe this a priori—it might be that some tree shapes can
only be constructed by delete or union. So, to confirm that these two properties
uniquely characterize union, we must test this assumption.

One way to do so is to define a function that maps a tree to a list of insertions
that recreate it. It is sufficient to insert the key in each node before the keys in
its subtrees:

insertions Leaf = [ ]
insertions (Branch l k v r) = (k , v) : insertions l ++ insertions r

Now we can write a property to check that every tree can be reconstructed from
its list of insertions:

prop InsertComplete t = t === foldl (flip $ uncurry insert) nil (insertions t)

However, this is not sufficient! Recall that the generator we are using, defined
in Sect. 3, generates a tree by performing a list of insertions! It is clear that any
such tree can be built using only insert , and so the property above can never
fail, but what we need to know is that the same is true of trees returned by
delete and union! We must thus define additional properties to test this:

prop InsertCompleteForDelete k t = prop InsertComplete (delete k t)
prop InsertCompleteForUnion t t ′ = prop InsertComplete (union t t ′)

Together, these properties also justify our choice of generator—they show that
we really can generate any tree constructible using the tree API. If we could not
demonstrate that trees returned by delete and union can also be constructed
using insert , then we could define a more complex generator for trees that uses
all the API operations, rather than just insert—a workable approach, but con-
siderably trickier, and harder to tune for a good distribution of test data.

Finally, we note that in these completeness properties, it is vital to check
structural equality between trees, and not just equivalence. The whole point is
to show that delete and union cannot construct otherwise unreacheable shapes
of trees, which might provoke bugs in the implementation.



72 J. Hughes

Summary: Inductive properties relate a call of the function-under-test to
calls with smaller arguments. A set of inductive properties covering all
possible cases together test the base case(s) and induction step(s) of an
inductive proof-of-correctness. If all the properties hold, then we know the
function is correct–inductive properties together make up a complete test.

4.5 Model-Based Properties

“Abstract away from details to simplify properties.”

In 1972, Hoare published an approach to proving the correctness of data rep-
resentations [14], by relating them to abstract data using an abstraction function.
Hoare defines a concrete and abstract implementation for each operation, and
then proves that diagrams such as this one commute:

t

t′

insert k v

kvs
abstraction

kvs ′abstraction
abstract insert k v

In this case we abstract trees t (the concrete implementation) as ordered lists
of key–value pairs kvs (the abstract data), using an abstraction function which
is just toList . The diagram says that both paths from top left to bottom right
should yield the same result: applying the concrete version of insertion to a
tree, and then abstracting the result to a list of key–value pairs, yields the
same list as the abstract version of insertion, applied to the abstracted input.
If a similar diagram commutes for every operation in an API, then it follows
that any sequence of concrete operations behaves in the same way as the same
sequence of abstract ones.

We can use the same idea for testing. Since Data.List already provides an
insertion function for ordered lists, it is tempting to define

prop InsertModel k v t = toList (insert k v t) === L.insert (k , v) (toList t)
(in which Data.List is imported under the name L). However, this property fails:

*** Failed! Falsified (after 5 tests and 6 shrinks):

0

0

Branch Leaf 0 0 Leaf

[(0,0)] /= [(0,0),(0,0)]

The problem is that the insertion function in Data.List may create duplicate
elements, but insert for trees does not. So it is not quite the correct abstract
implementation; we can correct this by deleting the key if it is initially present—
see the correct properties in Fig. 6.

We refer to these properties as “model-based” properties, and we refer to
the abstract datatype, in this case an ordered list of keys and values, as the
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prop NilModel = toList (nil :: Tree) === [ ]

prop InsertModel k v t =
toList (insert k v t) === L.insert (k , v) (deleteKey k $ toList t)

prop DeleteModel k t = toList (delete k t) === deleteKey k (toList t)

prop UnionModel t t ′ =
toList (union t t ′) === L.sort (L.unionBy ((≡) ‘on‘ fst) (toList t) (toList t ′))

prop FindModel k t = find k t === L.lookup k (toList t)

deleteKey k = filter ((�≡ k) ◦ fst)

Fig. 6. Model-based properties.

“model”. The model can be thought of as a kind of reference implementation of
the operations under test, though with a much simpler representation. Model-
based properties are very powerful: they make up a complete specification of
the behaviour of the operations under test, with only a single property per
operation. On the other hand, they do require us to construct a model, which
in more complex situations may be quite expensive, or may resemble the actual
implementation more than is healthy.

Summary: A model-based property tests a single function by making a
single call, and comparing its result to the result of a related “abstract
operation” applied to related abstract arguments. An abstraction function
maps the real, concrete arguments and results to abstract values, which we
also call the “model”.

4.6 A Note on Generation

Throughout this paper, we have used integers as test data, for both keys and
values. This is generally an acceptable choice, although not necessarily ideal. It
is useful to measure the distribution of test data, to judge whether or not tests
are likely to find bugs efficiently. In this case, many properties refer to one or
more keys, and a tree, generated independently. We may therefore wonder, how
often does such a key actually occur in an independently generated tree?

To find out, we can define a property just for measurement. QuickCheck
allows properties to label test cases with one or more strings; the labelling strings
are collected as tests are run, and their distribution displayed in a table after-
wards. In this case, we measure how often k appears in t , and also where among
the keys of t it appears:



74 J. Hughes

prop Measure k t =
label (if k ∈ keys t then "present" else "absent") $
label (if t ≡ nil then "empty" else

if keys t ≡ [k ] then "just k" else
if (all (� k) (keys t)) then "at start" else
if (all (� k) (keys t)) then "at end" else
"middle") $

True

Two tables are generated by testing this property, one for each of the calls of
the label function. After a million tests, we saw the following distributions:

79.1973% absent

20.8027% present

75.0878% middle

9.6716% at end

9.6534% at start

5.1782% empty

0.4090% just k

From the second table, we can see that k appears at the beginning or end of
the keys in t about 10% of the time for each case, while it appears somewhere in
the middle of the sequences of keys 75% of the time. This looks quite reasonable.
On the other hand, in almost 80% of tests, k is not found in the tree at all!

For some of the properties we defined, this will result in quite inefficient
testing. For example, consider the postcondition for insert :

prop InsertPost k v t k ′ =
find k ′ (insert k v t) === if k ≡ k ′ then Just v else find k ′ t

In almost 80% of tests k ′ will not be present in t , and since k ′ is rarely equal
to k , then in most of these cases both sides of the equation will be Nothing . In
effect, we spend most of our effort testing that inserting key k does not insert an
unrelated key k ′ into the tree! While this would be a serious bug if it occurred,
it seems disproportionate to devote so much test effort to this kind of case.

More reasonable would be to divide our test effort roughly equally between
cases in which the given key does occur in the random tree, and cases in which
it does not. We can achieve this by changing the generation of keys. If we choose
keys from a smaller set, then we will generate equal keys more often. For example,
we might define a newtype of keys containing a smaller non-negative integer:

newtype Key = Key Int deriving (Eq ,Ord ,Show)

instance Arbitrary Key where
arbitrary = do

NonNegative n ← scale (‘div ‘2) arbitrary
return $ Key n

shrink (Key k) = Key <$> shrink k
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Here scale adjusts QuickCheck’s internal size parameter in the generation of n,
resulting in random values whose average is half that of QuickCheck’s normal
random non-negative integers. Testing prop Measure using this type for keys
results in the following, much better, distribution:

55.3881% present

44.6119% absent

70.6567% middle

11.6540% at end

10.8601% at start

5.1937% empty

1.6355% just k

This example illustrates that “collisions” (that is, cases in which we randomly
choose the same value in two places) can be important test cases. Indeed, consider
the following (obviously false) property:

prop Unique x y = x �≡ y

If we were to choose x and y uniformly from the entire range of 64-bit inte-
gers, then QuickCheck would never be able to falsify it, in practice. If we use
QuickCheck’s built-in Int generator, then the property fails in around 3.3% of
cases. Using the Key generator we have just defined, the property fails in 9.3%
of cases. The choice of generator should be made on the basis of how important
collisions are as test cases.

5 Bug Hunting

To evaluate the properties we have written, we created eight buggy implemen-
tations of binary search trees, with bugs ranging from subtle to blatant. These
implementations are listed in Fig. 7.

The results of testing each property for each buggy version are shown in
Fig. 8. We make the following observations.

5.1 Bug Finding Effectiveness

Validity properties miss many bugs (five of eight), as do “preservation of equiva-
lence” and “completeness of insertion” properties. In contrast, every bug is found
by at least one postcondition, metamorphic property, and model-based property.

Invalid test data provokes false positives. Bug #2, which causes invalid trees
to be generated as test cases, causes many properties that do not use insert to
fail. This is why prop ArbitraryValid is so important—when it fails, we need not
waste time debugging false positives in properties unrelated to the bug. Because
of these false positives, we ignore bug #2 in the rest of this discussion.
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Bug # Description
1 insert discards the existing tree, returning a single-node tree just

containing the newly inserted value.
2 insert fails to recognize and update an existing key, inserting a

duplicate entry instead.
3 insert fails to update an existing key, leaving the tree unchanged

instead.
4 delete fails to rebuild the tree above the key being deleted, return-

ing only the remainder of the tree from that point on (an easy
mistake for those used to imperative programming to make).

5 Key comparisons reversed in delete; only works correctly at the
root of the tree.

6 union wrongly assumes that all the keys in the first argument
precede those in the second.

7 union wrongly assumes that if the key at the root of t is smaller
than the key at the root of t ′, then all the keys in t will be smaller
than the key at the root of t ′.

8 union works correctly, except that when both trees contain the
same key, the left argument does not always take priority.

Fig. 7. The eight buggy implementations.

Model-based properties are effective at finding bugs; each property tests just
one operation, and finds every bug in that operation. In fact, the model-based
properties together form a complete specification of the code, and so should be
expected to find every bug.

Postconditions are quite effective; each postcondition for a buggy operation finds
all the bugs we planted in it, but some postconditions are less effective than we
might expect. For example, prop FindPostPresent uses both find and insert , so
we might expect it to reveal the three bugs in insert , but it reveals only two of
them.

Metamorphic properties are less effective individually, but powerful in combi-
nation. Weak properties miss bugs (compare each line ending in Weak with
the line below), because their preconditions to exclude tricky test cases result
in tricky bugs escaping detection. But even stronger-looking properties that we
might expect to find bugs miss them—prop InsertDelete misses bug #1 in insert ,
prop DeleteInsert misses bug #3 in insert , and so on. Degenerate metamorphic
properties involving nil are particularly ineffective. Metamorphic properties are
essentially an axiomatization of the API under test, and there is no guarantee
that this axiomitization is complete, so some bugs might be missed altogether.
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insert bugs delete
bugs

union bugs

Property #1 #2 #3 #4 #5 #6 #7 #8
Validity properties
prop ArbitraryValid
prop NilValid
prop InsertValid
prop DeleteValid
prop UnionValid
prop ShrinkValid
Postconditions
prop InsertPost
prop DeletePost
prop FindPostPresent
prop FindPostAbsent
prop InsertDeleteComplete
prop UnionPost
Metamorphic properties
prop InsertInsertWeak
prop InsertInsert
prop InsertDeleteWeak
prop InsertDelete
prop InsertUnion
prop DeleteNil
prop DeleteInsertWeak
prop DeleteInsert
prop DeleteDelete
prop DeleteUnion
prop UnionNil1

insert bugs delete
bugs

union bugs

Property #1 #2 #3 #4 #5 #6 #7 #8
Metamorphic properties contd.
prop UnionNil2
prop UnionDeleteInsert
prop UnionUnionIdem
prop UnionUnionAssoc
prop FindNil
prop FindInsert
prop FindDelete
prop FindUnion
Preservation of equivalence
prop InsertPreservesEquivWeak
prop InsertPreservesEquiv
prop DeletePreservesEquiv
prop UnionPreservesEquiv
prop FindPreservesEquiv
Completeness of insertion
prop InsertComplete
prop InsertCompleteForDelete
prop InsertCompleteForUnion
Model-based properties
prop NilModel
prop InsertModel
prop DeleteModel
prop UnionModel
prop FindModel
Total failures 12 17 8 12 9 10 10 8

Fig. 8. Failing properties for each bug.

5.2 Bug Finding Performance

Property type Min Max Mean
Postcondition 7.1 245 77
Metamorphic 2.4 714 56
Model-based 3.1 9.8 5.8

Fig. 9. Average mean number of tests required to make a property of each type fail.

Hitherto we have discussed which properties can find bugs, given enough test-
ing time. But it also matters how quickly a property can find a bug. For seven
of our eight bugs (omitting bug #2, which causes invalid test cases to be gen-
erated), and for each postcondition, metamorphic property, and model-based
property that detects the bug, we found a counterexample to the property using
QuickCheck 1,000 times with different random seeds, and recorded the mean
number of tests needed to make that property fail for that bug. Note that find-
ing a counterexample 1,000 times requires running far more than 1,000 random
tests: we ran over 700,000 tests of the hardest-to-falsify property in total, in
order to find a counterexample 1,000 times. We then averaged the mean-time-
to-failure across all bugs, and all properties of the same type. The results are
summarized in Fig. 9.
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In this example model-based properties find bugs far faster than postcon-
ditions or metamorphic properties, while metamorphic properties find bugs a
little faster than postconditions on average, but their mean time to failure varies
more.

Digging a little deeper, for the same bug in union, prop UnionPost fails after
50 tests on average, while prop UnionModel fails after only 8.4 tests, even though
they are logically equivalent. The reason is that after computing a union that is
affected by the bug, the model-based property checks that the model of the result
is correct—which requires every key and value to be correct. The post-condition,
on the other hand, checks that a random key has the correct value in the result.
Thus prop UnionPost may exercise the bug many times without detecting it.
Each model-based test may take a little longer to run, because it validates the
result of union more thoroughly, but this is not significant compared to the
enormous difference in the number of tests required to find the bug—the entire
test case must be generated, and the union computed, in either case, so the
difference in validation time is not really important.

5.3 Lessons

These results suggest that, if time is limited, then writing model-based properties
may offer the best return on investment, in combination with validity properties to
ensure we don’t encounter confusing failures caused by invalid data. In situations
where the model is complex (and thus expensive) to define, or where the model
resembles the implementation so closely that the same bugs are likely in each, then
metamorphic properties offer an effective alternative, at the cost of writing many
more properties.

6 Related Work

Pre- and post-conditions were introduced by Hoare [15] for the purpose of prov-
ing programs correct, inspired by Floyd [11]. The notion of a data representa-
tion invariant, which we use here for “validity testing”, comes from Hoare’s 1972
paper on proving data representations correct [14]. Pre- and post-conditions and
invariants also form an integral part of Meyer’s “Design by Contract” approach
to designing software [18], in which an invariant is specified for each class, and
pre- and post-conditions for each class method, and these can optionally be
checked at run-time—for example during testing.

Metamorphic testing was introduced by Chen, Cheung and Yiu as a way of
deriving tests that do not require an oracle [6]. They consider, for example, an
algorithm to find shortest-paths in a graph. While it is difficult to check whether
a path found by the algorithm is actually shortest, it is easy to compare the
path found from a node with the paths found from its neighbours, and check
that it is no longer than the shortest path via a neighbour. As in this case,
the key idea is to compare results from multiple invocations of the code-under-
test, and check that an appropriate “metamorphic relation” holds between them.
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We have used equalities and equivalences as metamorphic relations in this paper,
but the idea is much more general—for example, one might test that insert does
not reduce the size of a tree, which would catch bugs that accidentally discard
part of the structure. Metamorphic testing is useful in many contexts, and is
now the subject of an annual workshop series8.

Metamorphic properties which are equations or equivalences are a form of
algebraic specification [13]. Guttag and Horning divide the operations into those
that return the type of interest (nil , insert , delete, and union, in our case),
and observations that return a different type (find). They give conditions for
“sufficient completeness”, meaning that the specification precisely determines
the value of any observation.

We already saw that the idea behind model-based properties comes from
Hoare’s seminal paper [14]. Using an abstract model as a specification is also
at the heart of the Z specification language [25], and the field of model-based
testing [5], an active research area with two workshop series devoted to it9,10.

The title of the paper is of course inspired by Polya’s classic book [22].

7 Discussion

We have discussed a number of different kinds of properties that a developer can
try to formulate to test an implementation: invariant properties, postconditions,
metamorphic properties, inductive properties, and model-based properties. Each
kind of property is based on a widely applicable idea, usable in many different
settings. When writing metamorphic properties, we discovered the need to define
equivalence of data structures, and thus also to define properties that test for
preservation of equivalence. We discussed the importance of completeness—our
test data generator should be able to generate any test case—and saw how to test
this. We saw the importance of testing both our generators and our shrinkers, to
ensure that other properties are tested with valid data. We saw how to measure
the distribution of test data, to ensure that test effort is well spent.

Model-based testing seemed the most effective approach overall, revealing all
our bugs with a small number of properties, and generally finding bugs fast. But
metamorphic testing was a fertile source of ideas, and was almost as effective at
revealing bugs, so is a useful alternative, especially in situations where a model
is expensive to construct.

We saw that some properties must use equivalence to compare values, while
other properties must use structural equality. Thus, we need two notions of
“equality” for the data structures under test. In fact, it is the equivalence which
ought to be exported as the equality instance for binary search trees, because
structural equality distinguishes representations that ought to be considered
equal outside the abstraction barrier of the abstract data type. Yet we need to
use structural equality in some properties, and of course, we want to use the
8 http://metwiki.net/MET19/.
9 http://mbt-workshop.org/.

10 https://conf.researchr.org/series/a-most.

http://metwiki.net/MET19/
http://mbt-workshop.org/
https://conf.researchr.org/series/a-most
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derived Eq instance for the representation datatype for this. So we appear to
need two Eq instances for the same type! The solution to this conundrum is
to define two types: a data type of representations with a derived structural
equality, which is not exported to clients, and a newtype isomorphic to this
datatype, which is exported, with an Eq instance which defines equality to be
equivalence. This approach does mean that some properties must be inside the
abstraction barrier of the data type, and thus must be placed in the same module
as the implementation, which may not be desirable as it mixes test code and
implementation code. An alternative is to define an Internals module which
exports the representation type, and can be imported by test code, but is not
used by client modules.

The choice of properties (and generators) may also depend on whether the
tester takes a “white box” or “black box” view of the code. From the perspective
of an implementor, it makes sense to use properties such as validity properties,
that depend on the representation of the data. From the perspective of a user,
properties should use only the API exported by the implementor—as do meta-
morphic and model-based properties. In this paper we generated random trees
using the exported API, but of course we could also have generated the represen-
tation directly. This is certainly possible, but more complicated and error-prone,
and often no more effective.

The ideas in this paper are applicable to testing any pure code, but code
with side-effects demands a somewhat different approach. In this case, every
operation has an implicit “state” argument, and an invisible state result, making
properties harder to formulate. Test cases are sequences of operations, to set up
the state for each operation under test, and to observe changes made to the
state afterwards. Nevertheless, the same ideas can be adapted to this setting; in
particular, there are a number of state-machine modelling libraries for property-
based testing tools that support a “model-based” approach in a stateful setting.
State machine modelling is heavily used at Quviq AB11 for testing customer
software, and an account of some of these examples can be found in [16].

We hope the reader will find the ideas in this paper helpful in developing
effective property-based tests in the future.

Acknowledgements. I’m grateful to the anonymous referees for many useful sug-
gested improvements, and to Vetenskapsr̊adet for funding this work under the SyTeC
grant.

11 A company founded in 2006 by the author and Thomas Arts, to commercialize
property based testing. See http://quviq.com.

http://quviq.com
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A Metamorphic Properties

prop InsertInsertWeak (k , v) (k ′, v ′) t = k �≡ k ′ =⇒
insert k v (insert k ′ v ′ t) � insert k ′ v ′ (insert k v t)

prop InsertInsert (k , v) (k ′, v ′) t =
insert k v (insert k ′ v ′ t)
� if k ≡ k ′ then insert k v t else insert k ′ v ′ (insert k v t)

prop InsertDeleteWeak (k , v) k ′ t = k �≡ k ′ =⇒
insert k v (delete k ′ t) � delete k ′ (insert k v t)

prop InsertDelete (k , v) k ′ t =
insert k v (delete k ′ t)
� if k ≡ k ′ then insert k v t else delete k ′ (insert k v t)

prop InsertUnion (k , v) t t ′ = insert k v (union t t ′) � union (insert k v t) t ′

prop DeleteInsertWeak k (k ′, v ′) t = k �≡ k ′ =⇒
delete k (insert k ′ v ′ t) � insert k ′ v ′ (delete k t)

prop DeleteNil k = delete k nil === (nil :: Tree)

prop DeleteInsert k (k ′, v ′) t =
delete k (insert k ′ v ′ t)
� if k ≡ k ′ then delete k t else insert k ′ v ′ (delete k t)

prop DeleteDelete k k ′ t = delete k (delete k ′ t) � delete k ′ (delete k t)

prop DeleteUnion k t t ′ =
delete k (union t t ′) � union (delete k t) (delete k t ′)

prop UnionNil1 t = union nil t === t

prop UnionNil2 t = union t nil === t

prop UnionDeleteInsert t t ′ (k , v) =
union (delete k t) (insert k v t ′) � insert k v (union t t ′)

prop UnionUnionIdem t = union t t � t

prop UnionUnionAssoc t1 t2 t3 =
union (union t1 t2 ) t3 === union t1 (union t2 t3 )

prop FindNil k = find k (nil :: Tree) === Nothing

prop FindInsert k (k ′, v ′) t =
find k (insert k ′ v ′ t) === if k ≡ k ′ then Just v ′ else find k t

prop FindDelete k k ′ t =
find k (delete k ′ t) === if k ≡ k ′ then Nothing else find k t

prop FindUnion k t t ′ = find k (union t t ′) === (find k t <|> find k t ′)
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Abstract. In this paper, we extend a rank 2 intersection type system
with gradual types. We then show that the problem of finding a principal
typing for a lambda term, in a rank 2 gradual intersection type system
is decidable. We present a type inference algorithm which builds the
principal typing of a term through the generation of type constraints
which are solved by a new extended unification algorithm constructing
the most general unifier for rank 2 gradual intersection types.

1 Introduction

Gradual typing [5,6,11,12] has earned a great deal of attention in the types
research community. Aiming to seamlessly integrate static and dynamic typing,
its focus is on enabling the fine-tuning of the distribution of static and dynamic
type checking in a program, and to harness the strengths of both typing dis-
ciplines. The successful application [11] of gradual typing to the parametric
polymorphic Hindley-Milner (HM) type system [9,14,20] marks an important
breakthrough, showing that it is possible to apply it to statically typed func-
tional programming languages such as Haskell or ML.

Intersection types [7,8,18,25] extend the simply typed lambda-calculus [13],
adding to the language of types an intersection operator ∩ and allowing to type
terms with different types belonging to an intersection (T1∩. . .∩Tn). Intersection
types provide a form of polymorphism in which it is possible to explicitly indicate
every single instance of a type. Thus a term may have multiple types belonging
to a finite set (intersection) of type possibilities. Although the type inference
problem for intersection types is not decidable in general, it becomes decidable
for finite rank fragments of the general system [17].

Recently there has been an increasing interest in intersection types for general
purpose programming languages. Examples include TypeScript [26] and Flow [4].
These systems use intersection types to combine different types into one. This
enables its use in contexts where the classic object-oriented model does not apply.
Rank 2 intersection types [15,16] are particularly interesting for languages with
type inference: they are more powerful than parametric polymorphic types [9] for
functional programming languages such as ML, because they type more terms,
and this extra power comes for free, since the complexity of typability is identical
in both systems. In fact, in the two systems typability is DEXPTIME-complete.
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In this paper, we present a type inference algorithm for a rank 2 intersection
gradual type system which automatically deduces the type of an expression,
allowing the programmer to write code without worrying about type annotations.

If dynamic types, which are only introduced by a programmer, are allowed
as instances of intersection types, expressions may be typed with both static and
dynamic types simultaneously. For example, consider the following expression:

λx : Int ∩ Dyn . x x

The occurrences of the variable x may be assigned both the Dyn and the Int type.
A possible assignment of types which well-types the expression is the following:

λx : Int ∩ Dyn . xDyn xInt

Here we define a type inference algorithm which first generates a set of con-
straints on types and then solves them using an extended type unification algo-
rithm. The first phase of type inference is to assign initial types to expressions
and then generate constraints between these types. For example, consider the
expression referred previously:

λx : Int ∩ Dyn . x x

Let �̇ denote a consistent subtyping [12] constraint between two types, which
means that the two types might satisfy the consistent subtyping relation. The
constraint generation algorithm generates the following initial typings and cor-
responding constraints for the expression (several typings are generated due to
different choices of where to assign types to variables):

λx : Int ∩ Dyn . xDyn xInt : (Int ∩ Dyn) → Dyn

{Int �̇ Dyn}

λx : Int ∩ Dyn . xDyn xDyn : Dyn → Dyn

{Dyn �̇ Dyn}

The �̇ constraint guarantees that, when applying a function, the type of the
argument is a consistent subtype of the domain type of the function. The con-
straint solving algorithm solves the constraints and produces a substitution of
types for type variables, which when applied to the initial type assigned to the
expression returns a final type for the expression. For the previous example, we
will end up with the following well-typed expression as result:

λx : Int ∩ Dyn . x x : (Int ∩ Dyn → Dyn) ∩ (Dyn → Dyn)

Thus, this paper makes the following main contributions:

1. A type inference algorithm: following [11], our approach first generates type
constraints and then solves these constraints using a new unification algorithm
for gradual intersection types of rank 2.



86 P. Ângelo and M. Florido

2. Theorems of soundness and completeness of the type inference algorithm,
which show that the types returned by the algorithm are derivable in the
type system and that, given an expression, the algorithm produces a syntactic
description of all the types which type the expression using the type system.

3. The existence of principal typings, typings which represent all other typings
for the same expression, for rank 2 gradual intersection types.

Related Work. In [2], intersections were used to type overloaded functions
which can discriminate on the type of the argument and execute different code
for different types. Functions typed with intersections run different pieces of code
accordingly to the type of their arguments. These systems extended semantic
subtyping [10] with gradual types, and types are interpreted as sets of values.
Another view of intersection types originated in the Turin group of intersection
type systems [7,8], and was also used in the programming language Forsythe
[21,22]. Intersection types are used as finitely parametric polymorphic types
where functions with intersection types have a uniform behaviour: when applied
to arguments of different types, they always execute the same code for all of
these types. Here we follow this second approach. In previous work, we inte-
grated gradual types with intersection types on a gradual intersection type sys-
tem [29], which considered intersection types without a finite rank restriction,
thus the type inference problem was not decidable. In this paper, by restricting
intersection types to rank 2, we can define a type inference algorithm.

Type inference for a system with intersection and gradual types was presented
before in [3]. In this contribution, constraint solving reused existing solving algo-
rithms such as unification and tallying and, in the type inference algorithm,
intersections were coded in a type language with union types, an empty type
and negation types. In [3], type inference is sound but not complete, and it is
semi-decidable for set-theoretical gradual types. Here we present a sound and
complete type inference algorithm, where decidability is achieved by restricting
the type system to types of a finite rank.

Type inference for gradual type systems is the topic of other previous works
described in [24] and [11]. These systems inferred gradual types for a given
expression and were also based on extended type unification algorithms which
deal with type equality in the presence of dynamic types. Both systems deal
with gradual types, but not intersection types. For intersection type systems,
type inference [15–18] was previously defined for finite-rank intersection types,
using a generalization of the unification algorithm dealing with the complicated
operation of type expansion. These systems deal with intersection types but not
gradual types.

2 Rank 2 Gradual Intersection Types

We consider a type language where intersection types are limited to rank 2,
following a definition of rank 2 inspired in [16,19]. Thus, we define rank 2 gradual
intersection types here:
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T 0 ::= X | B | Dyn | T 0 → T 0

T 1 ::= T 0 | T 0 ∩ . . . ∩ T 0

T 2 ::= T 0 | T 1 → T 2

X represents a type variable, B is the set of base types, such as Int and Bool , T 0

is the set of simple types, containing type variables, base types and the dynamic
type and also arrow types. T 1 is the set of rank 1 types, which contain finite and
non-empty intersections of simple types. Finally, T 2 represents the set of rank
2 types, which may contain intersections, but only to the left of a single arrow.
We refer to the set of possible types under our system, T 1 ∪ T 2, simply as T .
The following types are considered rank 2 gradual intersection types:

(T1 → T1 ∩ T2 → T2) → (T1 ∩ T2) → T

((T1 → T2) ∩ T1) → T2

However, these do not belong to the set of rank 2 gradual intersection types:

((T1 → T1) ∩ (T2 → T2)) → (T1 ∩ T2) → (T1 ∩ T2)
((T1 ∩ T2) → T1) → T2

Therefore, intersection types are not allowed in the codomain of an arrow
type, agreeing with the original definition in [7]. Intersections are commutative
(e.g. T1 ∩ T2 = T2 ∩ T1), idempotent (e.g. T1 ∩ T1 = T1) and associative (e.g.
(T1 ∩ T2) ∩ T3 = T1 ∩ (T2 ∩ T3). There is no distinction between a singleton
intersection of types and its sole element, so for any type T , T can be considered
an intersection of types of size 1. The intersection type connective ∩ has higher
precedence (binds tighter) than the arrow type. Also, we can abbreviate an
intersection type with the following definition:

T1 ∩ . . . ∩ Tn =
⋂n

i=1 Ti

These two representations are used interchangeably.
In presenting the syntax of our language we will follow the convention that c

ranges over constants such as integers and truth values, x ranges over variables,
e ranges over expressions and T ranges over types. The language of expressions
in our system is given by the following grammar:

Expressions e ::= x | λx : T 1 . e | λx . e | e e | c

Note that there are two lambda abstraction expressions, one for typed code,
allowing the insertion of type annotations, and another one for untyped code,
which does not require type annotations. We impose one restriction on type
annotations in lambda abstractions, besides being rank 1 types, they may not
contain type variables X. As we are presenting a type inference algorithm, type
annotations are not required since types will be inferred automatically by the
algorithm. We also fix a set of term constants for the base types. For example, we
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might assume a base type Int , and the term constants are the natural numbers.
In the type system, term constants have the appropriate base types. Note that
if the language is only implicitly typed (without type annotations) the inferred
types are static. Dynamic types are introduced only by type annotations. This
design option goes back to previous work regarding type inference for gradual
typing [11] where also “there can be no dynamism without annotation”.

A typing context is a finite set, represented by {x1 : T 1
1 , . . . , xn : T 1

n}, of
(type variable, T 1 type) pairs called bindings. We use Γ to range over typing
contexts. We write Γ (x) for the type bounded by the variable x in the typing
context Γ and define Γ (x) as: Γ (x) = T , if x : T ∈ Γ . We write dom(Γ ) for
the set {x | x : T ∈ Γ}, for all T , and cod(Γ ) for the set {T | x : T ∈ Γ}, for
all x. We write Γx for the typing context Γ with any binding for the variable x
removed. We define Γx as: Γx = Γ/{x : T}, for any type T .

An annotation context is a finite set, represented by {x1 : T 1
1 , . . . , xn : T 1

n}, of
(type variable, T 1 type) pairs called bindings. We use A to range over annotation
contexts. We write A(x) for the type paired with the variable x in the annotation
context A, defined as: A(x) = T if x : T ∈ A. We write dom(A) for the set
{x | x : T ∈ A}, for all T . We write cod(A) for the set {T | x : T ∈ A}, for all
x. We write Ax for the annotation context A with any pair for the variable x
removed. We define Ax as: Ax = A/{x : T}, for any type T .

3 Type System

In this section, we present the rank 2 gradual intersection type system (GITS),
in Fig. 1. The GITS system type checks an explicitly typed lambda-calculus
language with integers and booleans. This type system is composed of type rules
that originate from both gradual typing [5] and intersection types, particularly
from [7]. As with gradual typing, to declare terms as either dynamically typed or
statically typed, we simply add an explicit domain-type declaration in lambda
abstractions.

The cornerstone of gradual typing is the ∼ (consistency) relation on types.
We say that two types are consistent if the parts where both types are defined
(static) are equal. If the expected type of an expression is an arrow type, in the
T-App rule for example, but that expression is typed with the Dyn type, then
the system assumes that the type of the expression is an arrow type. Therefore,
pattern matching (�) is a feature of gradual typing that enables the Dyn type
to be treated as a function type from Dyn to Dyn (Dyn → Dyn), or if the type is
already an arrow type, it gets its domain and codomain. Rule T-Abs: generalizes
a similar rule for abstractions for the Forsythe programming language [22]. In
this rule, the type of the formal parameter must be a subset of the set of types
declared explicitly in the abstraction (as an intersection type).

We now define the subtyping (≤) relation, which in this system is just a
simplified version of the subtyping (or type inclusion) relation from [1]. Albeit
having no use in the type system, we include subtyping in this paper because it
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Syntax

Types T, PM ::= B | Dyn | T → T | T ∩ . . . ∩ T

Expressions e ::= x | λx . e | λx : T 1 . e | e e | c

Γ �∩G e : T Typing

x : T1 ∩ . . . ∩ Tn ∈ Γ

Γ �∩G x : Ti

T-Var
Γ, x : T1 �∩G e : T2 static(T1)

Γ �∩G λx . e : T1 → T2
T-Abs

Γ, x : T1 ∩ . . . ∩ Tm �∩G e : T m ≤ n

Γ �∩G λx : T1 ∩ . . . ∩ Tn . e : T1 ∩ . . . ∩ Tm → T
T-Abs:

Γ �∩G e1 : PM PM � T1 ∩ . . . ∩ Tn → T
Γ �∩G e2 : T ′

1 ∩ . . . ∩ T ′
n T ′

1 � T1 . . . T ′
n � Tn

Γ �∩G e1 e2 : T
T-App

Γ �∩G e : T1 · · · Γ �∩G e : Tn

Γ �∩G e : T1 ∩ . . . ∩ Tn

T-Gen
Γ �∩G e : T1 ∩ . . . ∩ Tn

Γ �∩G e : Ti

T-Inst

c is a constant of type T

Γ �∩G c : T
T-Const

T � T Pattern Matching

T1 → T2 � T1 → T2 Dyn � Dyn → Dyn

Fig. 1. Gradual intersection type system (�∩G)

is necessary for soundness and completeness properties. The subtyping relation
is inductively defined using the following rules (bear in mind that subtyping is
transitive):

Definition 1 (Subtyping)

1. T ≤ T
2. T1 ∩ . . . ∩ Tn ≤ T1 ∩ . . . ∩ Tm with m ≤ n
3. T1 → T2 ≤ T3 → T4 ⇐⇒ T3 ≤ T1 ∧ T2 ≤ T4

4. T ≤ T1 ∩ . . . ∩ Tn ⇐⇒ T ≤ T1 and . . . and T ≤ Tn

5. (T → T1) ∩ . . . ∩ (T → Tn) ≤ T → T1 ∩ . . . ∩ Tn

At first glance, gradual typing and intersection types seem rather incompatible
for two reasons: types in these two systems are compared using different relations,
∼ for gradual types and ≤ for intersection types; and also type inference rules
for gradual typing know what type to assign a variable since only one type is
annotated in abstractions while type inference rules for intersection types don’t
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know which instance will be used for a particular occurrence of a term variable,
hence assigning a type variable instead. Approaching the first incompatibility,
an obvious solution would be to combine these two key relations so that they can
be used in the same system while maintaining their purposes. Keeping in mind
that the ≤ relation is not commutative, the following definition captures the
essence of both relations. The consistent subtyping [12] relation is inductively
defined using the following rules:

Definition 2 (Consistent Subtyping)

1. Dyn � T
2. T � Dyn
3. T � T
4. T1 ∩ . . . ∩ Tn � T1 ∩ . . . ∩ Tm with m ≤ n
5. T1 → T2 � T3 → T4 ⇐⇒ T3 � T1 ∧ T2 � T4

6. T � T1 ∩ . . . ∩ Tn ⇐⇒ T � T1 ∧ . . . ∧ T � Tn

7. (T → T1) ∩ . . . ∩ (T → Tn) � T → T1 ∩ . . . ∩ Tn

In a sense, � represents the ≤ relation from intersection types but extended to
take into account the consistency of all types with the Dyn type, hence rules
1 and 2. Also, bear in mind that consistent subtyping is not transitive. The
following cases hold under �:

Int → Int � Int → Int ∩ Dyn
Int → Dyn � Dyn → Dyn

Now that we have overcome this first obstacle, we now define substitutions, our
constraints and how they relate with substitutions.

Substitutions are the standard substitution on types but extended to deal
with the Dyn type and intersection types. Let [X �→ T 0] be a type substitution
of X to T 0, meaning that when applied to a type T ′ ([X �→ T 0]T ′), every
occurrence of X in T ′ is replaced with T 0. We restrict T 0 to be a simple type,
therefore, substitution cannot introduce intersection types, but only substitute
type variables with simple types. A substitution applied to an intersection type
is the same as applying the same substitution to each instance of the intersection
type. The composition of substitutions is written as S1 ◦ S2 and it is the same
as applying the substitutions S2 and then S1, similar to the standard function
composition. We sometimes write the composition of substitutions as [X1 �→
T1, . . . , Xn �→ Tn], which is equivalent to writing [X1 �→ T1]◦ . . .◦ [Xn �→ Tn]. We
lift substitutions to apply to expressions, by leaving the expression unchanged
and substituting type annotations.

Constraints are defined by the following grammar:

Constraints C ::= T �̇ T | T
.= T | C ∪ C

We define two types of constraints: the �̇ constraint states that two types should
satisfy the consistent subtyping [12] relation and the .= constraint is the standard
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equality constraint. A substitution S models a constraint C (S |= C) between
two types, T1 and T2, if the relation associated with that constraint holds for
S(T1) and S(T2).

Definition 3 (Constraint Satisfaction)

1. S |= ∅
2. S |= T1 �̇ T2 ⇐⇒ S(T1) � S(T2)
3. S |= T1

.= T2 ⇐⇒ S(T1) = S(T2)
4. S |= C1 ∪ C2 ⇐⇒ S |= C1 and S |= C2

The type inference algorithm will be defined bottom-up regarding the assign-
ment of types, thus different occurrences of the same term variable may be typed
with different type variables. The application of expressions containing different
bindings for the same variable must join the bindings in the same typing con-
text. The following operation combines typing contexts resulting from different
derivations of the type inference algorithm. For two typing contexts Γ1 and Γ2,
we define Γ1 + Γ2 as follows:

Definition 4 (Γ1 + Γ2). For each x ∈ dom(Γ1) ∪ dom(Γ2),

(Γ1 + Γ2)(x) =

⎧
⎪⎨

⎪⎩

Γ1(x), if x �∈ dom(Γ2)
Γ2(x), if x �∈ dom(Γ1)
Γ1(x) ∩ Γ2(x), otherwise

Combining typing contexts is essentially gathering the types bound to a certain
variable, in multiple typing contexts, in an intersection type, for each variable
in each typing context. We can abbreviate the sum of various typing contexts as
following, and these two representations are used interchangeably:

Γ1 + . . . + Γn =
∑n

i=1 Γi

4 Type Inference

Adapting ideas from the type inference algorithms for gradual typing [11] and
intersection types [15], we adopt the common scheme for type inference, intro-
duced by [27], which is to generate constraints for typeability and solve them
through a constraint unification phase.

4.1 Constraint Generation

Given an annotation context A (whose elements are provided by user-supplied
annotations in lambda-abstractions) and an expression e, the constraint gener-
ation algorithm A | Γ �∩G e : T | C (in Fig. 2, see auxiliary definitions in Figs. 3
and 4) returns a set of tuples containing a typing context Γ , a type T and a set
of constraints C.
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A | Γ �∩G e : T | C Constraint Generation

A(x) = T1 ∩ . . . ∩ Tn i ∈ 1..n if x ∈ dom(A)
A | {x : Ti} �∩G x : Ti | {} C-Var1

X is a fresh type variable if x �∈ dom(A)
A | {x : X} �∩G x : X | {} C-Var2

c is a constant of type T

A | {} �∩G c : T | {} C-Const
A | Γ �∩G e : T | C if x ∈ dom(Γ )

A | Γx �∩G λx . e : Γ (x) → T | C
C-Abs1

A | Γ �∩G e : T | C if x �∈ dom(Γ ) X is a fresh type variable
A | Γ �∩G λx . e : X → T | C

C-Abs2

Ax ∪ {x : T1 ∩ . . . ∩ Tn} | Γ �∩G e : T | C if x ∈ dom(Γ )
A | Γx �∩G λx : T1 ∩ . . . ∩ Tn . e : Γ (x) → T | C

C-Abs:1

Ax ∪ {x : T1 ∩ . . . ∩ Tn} | Γ �∩G e : T | C if x �∈ dom(Γ )
A | Γ �∩G λx : T1 ∩ . . . ∩ Tn . e : (T1 → T ) ∩ . . . ∩ (Tn → T ) | C

C-Abs:2

A | Γ1 �∩G e1 : T1 | C1 A | Γ2 �∩G e2 : T2 | C2

cod(T1)
.= T3 | C3 T2 �̇ dom(T1) | C4 T1 is simple type
A | Γ1 + Γ2 �∩G e1 e2 : T3 | C1 ∪ C2 ∪ C3 ∪ C4

C-App

A | Γ �∩G e1 : T1 ∩ . . . ∩ Tn → T | C
A | Γ1 �∩G e2 : T ′

1 | C1 . . . A | Γn �∩G e2 : T ′
n | Cn

A | Γ + Γ1 + . . . + Γn �∩G e1 e2 : T | C ∪ C1 ∪ {T ′
1 �̇ T1} ∪ . . . ∪ Cn ∪ {T ′

n �̇ Tn} C-App∩

Fig. 2. Constraint generation

The constraint generation algorithm follows bottom-up traversing the syntac-
tic tree of the expression. So, when assigning types to expressions, the algorithm
will first assign types to the leaves of the syntactic tree of the expression, and
then work its way up. This is useful for intersection types because we can assign
different type variables to different instances of the same variable. This allows
generating different typings for the same variable, which can be joined in the
same intersection type. An issue we overcome arises from having the assignment
of types working as bottom-up while also forcing certain variables to be typed
with certain types, using annotations in lambda abstractions. The algorithm
cannot decide which instance of the type bound by a variable in the typing
context by lambda abstractions, will be assigned to a certain occurrence of that
variable, before checking the context in which that variable is located. Therefore,
the types of variables must be chosen before knowing how the variable’s type is
constrained by its use in the program.

For example, consider the following expression:

λf . λx : Int ∩ Dyn . f (x x)
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cod(T1)
.= T2 | C

X1, X2 are fresh
cod(X) .= X2 | {X

.= X1 → X2} cod(T1 → T2)
.= T2 | {}

cod(Dyn) .= Dyn | {}

Fig. 3. Constraint Codomain Judgment

T2 �̇ dom(T1) | C

X1, X2 are fresh

T2 �̇ dom(X) | {X
.= X1 → X2, T2 �̇ X1} T2 �̇ dom(T11 → T12) | {T2 �̇ T11}

T2 �̇ dom(Dyn) | {T2 �̇ Dyn}

Fig. 4. Constraint Domain judgment

The algorithm cannot decide if it should assign type Int or Dyn to the first
occurrence of variable x. According to the context, it is clear that the first
occurrence should have an arrow type, which can be converted from the Dyn
type. However, when typing x the algorithm hasn’t accessed this information
yet. Since in the gradual type inference defined in [11] we know what type to
assign to a variable before reaching that variable, the adaptation of gradual
type inference to support intersection types is not trivial. To solve this difficulty,
the type inference algorithm produces various typings, each corresponding to a
choice of what type to assign to that particular variable.

According to rule C-Var1, we choose an instance of the type bound by x
in the annotation context A. This leads to the generation of various typings
(a more complete explanation is provided in Subsection 4.4). For the choices
which originate an ill-typed expression, the algorithm fails, returning only the
choices leading to a well-typed expression. This way we avoid committing to
a single choice, which could cause a typeable expression to be rejected by the
type inference. Regarding the variables x, in the previous example, the following
typings are produced:

{x : Int ∩ Dyn} | {x : Int} �∩G x : Int | {}
{x : Int ∩ Dyn} | {x : Int} �∩G x : Int | {}

{x : Int ∩ Dyn} | {x : Int} �∩G x : Int | {}
{x : Int ∩ Dyn} | {x : Dyn} �∩G x : Dyn | {}
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{x : Int ∩ Dyn} | {x : Dyn} �∩G x : Dyn | {}
{x : Int ∩ Dyn} | {x : Int} �∩G x : Int | {}

{x : Int ∩ Dyn} | {x : Dyn} �∩G x : Dyn | {}
{x : Int ∩ Dyn} | {x : Dyn} �∩G x : Dyn | {}

Then, by rule C-App, the algorithm checks if the type of the expression in the
left-hand side is an arrow type or can be converted to one. In the first two
typings, this is not true. Therefore the algorithm fails for those alternatives and
proceeds for the last two alternatives.

Regarding the rules for application, the expression on the left-hand side can
be typed with a type whose domain is an intersection type or a simple type.
Therefore, we require two rules to discriminate between these two cases. When
the domain type of the expression is a simple type, the rule for application,
C-App, is the standard one from [11] with a few minor changes. Constraint
Codomain Judgment (Fig. 3) and the Constraint Domain Judgment (Fig. 4) are
adapted to deal with the � relation instead of the ∼ relation, and thus rule
C-App ensures that the type of the expression on the left-hand side of an appli-
cation is an arrow type and that the domain of this arrow type is a supertype
(i.e. it includes it using the subtype relation) of the type of the argument (the
expression on the right-hand side of the application).

When the type of the expression on the left-hand side is an intersection
type, the rule C-App∩ requires the generation of different typings, one for each
instance of the intersection type in the domain of the expression. Then it checks
if the different types for the argument are consistent with the instances of the
intersection type in the domain. This rule is inspired by an analogous rule in [15].

Both constraint generation rules will then join together the typing contexts
of the two subexpressions, or in the case of rule C-App∩, the typing contexts of
the different typings, by combining the types bound to the same variables as an
intersection type, according to Definition 4.

The next lemmas show that the constraint generation algorithm is both sound
and complete, w.r.t. the type system.

Lemma 1 (Constraint Soundness). If A | Γ �∩G e : T | C and S |= C
then S(Γ ) �∩G S(e) : S(T ).

Proof. By induction on the length of the derivation tree of A | Γ �∩G e : T | C.

Lemma 2 (Constraint Completeness). If Γ1 �∩G e : T1 then

1. there exists a derivation A | Γ2 �∩G e : T2 | C such that ∃S . S |= C
2. for A | Γ21 �∩G e : T21 | C1 such that ∃S1 . S1 |= C1 and . . . and A | Γ2n �∩G

e : T2n | Cn such that ∃Sn . Sn |= Cn then
(a) for each x ∈ dom(Γ1) ∩ dom(

∑n
i=1 Γ2i), Γ1(x) ≤ Si(Γ2i(x)), ∀i ∈ 1..n

(b)
⋂n

i=1 Si(T2i) ≤ T1

Proof. By induction on the length of the derivation tree of Γ1 �∩G e : T1.
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C ⇒ S Constraint Solving

∅ ⇒ ∅ Em
C ⇒ S

{Dyn �̇ T} ∪ C ⇒ S
CS-DynL

C ⇒ S

{T �̇ Dyn} ∪ C ⇒ S
CS-DynR

C ⇒ S T ∈ {Int ,Bool} ∪ TV ar

{T �̇ T} ∪ C ⇒ S
CS-Refl

C ⇒ S m ≤ n

{T1 ∩ . . . ∩ Tn �̇ T1 ∩ . . . ∩ Tm} ∪ C ⇒ S
CS-Inst

C ⇒ S

{(T → T1) ∩ . . . ∩ (T → Tn) �̇ T → T1 ∩ . . . ∩ Tn} ∪ C ⇒ S
CS-Assoc

{T3 �̇ T1, T2 �̇ T4} ∪ C ⇒ S

{T1 → T2 �̇ T3 → T4} ∪ C ⇒ S
CS-Arrow

{T �̇ T1, . . . , T �̇ Tn} ∪ C ⇒ S

{T �̇ T1 ∩ . . . ∩ Tn} ∪ C ⇒ S
CS-InstR

{X1 �̇ T1, T2 �̇ X2, T
.= X1 → X2} ∪ C ⇒ S

X1, X2 are fresh type variables

{T1 → T2 �̇ T} ∪ C ⇒ S
CS-ArrowL

{T1 �̇ X1, X2 �̇ T2, T
.= X1 → X2} ∪ C ⇒ S

X1, X2 are fresh type variables

{T �̇ T1 → T2} ∪ C ⇒ S
CS-ArrowR

{T1
.= T2} ∪ C ⇒ S T1, T2 ∈ {Int ,Bool} ∪ TV ar

{T1 �̇ T2} ∪ C ⇒ S
CS-Eq

C ⇒ S T ∈ {Int ,Bool} ∪ TV ar

{T
.= T} ∪ C ⇒ S

Eq-Refl
{T1

.= T3, T2
.= T4} ∪ C ⇒ S

{T1 → T2
.= T3 → T4} ∪ C ⇒ S

Eq-Arrow

{X
.= T} ∪ C ⇒ S T �∈ TV ar

{T
.= X} ∪ C ⇒ S

Eq-VarR
[X �→ T ]C ⇒ S X �∈ V ars(T )

{X
.= T} ∪ C ⇒ S ◦ [X �→ T ]

Eq-VarL

Fig. 5. Constraint solving

4.2 Constraint Solving

Given a set of constraints C, obtained by constraint generation, we shall define,
in Fig. 5, a solving relation between a set of constraints C and a substitution S
(C ⇒ S) meaning: solving the set of constraints C results in S. Rules in Fig. 5 are
syntax-directed and define a decision algorithm by successively applying these
rules using a bottom-up proof search strategy.

Our constraint solving algorithm extends Robinson unification [23] to deal
with new equality definitions which account for dynamic types and intersection
types. Most of these rules are adapted from [5] and [15], with a few exceptions.
Since there are two types of constraints, there are two groups of constraint solv-
ing rules, and also a base case to halt the algorithm (rule Em). The constraint
solving algorithm first transforms any �̇ constraint into an equivalent standard
unification problem involving only equality constraints. Thus, there is an order of
application of rules in the constraint solver defined in Fig. 5. First, rules CS trans-
form �̇ constraints into a set of equations. Then, rules Eq, solve the resulting set
of equations yielding a substitution as the solution for the initial set of constraints.
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Given that �̇ constraints are a new concept, a brief walkthrough of the rules
will clarify their meaning. Most rules that deal with �̇ are a direct adaptation of
[15] and relate to subtyping (Definition 1). Only rules CS-DynL and CS-DynR
stand out, since they are used to simulate ∼ from [11]. The remaining rules, which
regard .= constraints, come from [11]. When we have a �̇ constraint between
different type variables or base types, we constrain those types to be equal, since
they cannot be solved further. The remaining rules, for the .= constraint, are
based on standard unification rules for equality.

Going back to the example above, the two alternatives that haven’t failed,
produce the following typings and constraints:

λf . λx : Int ∩ Dyn . f (x x) : X1 → (Int ∩ Dyn) → X3

{Int �̇ Dyn,X1
.= X2 → X3,X1

.= X4 → X5,Dyn �̇ X4}

λf . λx : Int ∩ Dyn . f (x x) : X1 → Dyn → X3

{Dyn �̇ Dyn,X1
.= X2 → X3,X1

.= X4 → X5,Dyn �̇ X4}
Since the step by step solving of the constraints produced for each typing are
equal, only one solving will be shown. Applying the first step (rule CS-DynR)
leads both constraint sets to:

{X1
.= X2 → X3,X1

.= X4 → X5,Dyn �̇ X4}
By rule Eq-VarL, the constraint set is reduced to

{X2 → X3
.= X4 → X5,Dyn �̇ X4}

and the first substitution is produced: [X1 �→ X2 → X3]. Then, by rule Eq-
Arrow, the constraint set is further reduced to

{X2
.= X4,X3

.= X5,Dyn �̇ X4}
Applying rule Eq-VarL two times reduces the constraint set to just one con-
straint

{Dyn �̇ X4}
and updates the substitutions to [X3 �→ X5,X2 �→ X4,X1 �→ X2 → X3]. Finally,
solving the remaining constraint gives as final the substitutions:

[X3 �→ X5,X2 �→ X4,X1 �→ X2 → X3]

The final typings of the expressions are then:

λf . λx : Int ∩ Dyn . f (x x) : (X4 → X5) → (Int ∩ Dyn → X5)
λf . λx : Int ∩ Dyn . f (x x) : (X4 → X5) → (Dyn → X5)

This extended unification algorithm used for constraint solving is both sound
and complete, with respect to constraint satisfaction (Definition 3). Note that
completeness means that the extended unification algorithm produces most gen-
eral unifiers.
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Lemma 3 (Unification Soundness). If C ⇒ S then S |= C.

Proof. By induction on the length of the derivation tree of C ⇒ S.

Lemma 4 (Unification Completeness). If S1 |= C then C ⇒ S2 for some
S2, and furthermore S1 = S ◦ S2 for some S.

Proof. We proceed by induction on the breakdown of constraint sets by the
unification rules.

4.3 Gradual Types

Any type is a consistent subtype, or consistent supertype, of the Dyn type, thus
there is no need for further checks, such as recursively checking consistent sub-
typing through the structure of the type. Constraints which require a type to be
consistent subtype, or supertype, with the Dyn type have been discarded up until
now using our definition of constraint solving since they are satisfiable with any
substitution. Discarding these constraints brings a problem regarding the instan-
tiation of type variables. A type variable that is only constrained to be consistent
with the Dyn type will not be substituted since no substitution concerning that
variable will be produced. However, as that type variable is only constrained by
the Dyn type, it should be instantiated to the Dyn type, so a substitution from
that variable to the Dyn type should be produced. Implementing this only takes
a simple extension [11] to our constraint solving algorithm. Therefore, given a set
of constraints C, the constraint solving algorithm G | C ⇒ S will produce a set of
substitutions S and a set of gradual types G. The extension is shown in Fig. 6.

G | C ⇒ S Constraint Unification

G | ∅ ⇒ [V ars(G) �→ Dyn]
Em

G ∪ {T} | C ⇒ S

G | {Dyn �̇ T} ∪ C ⇒ S
CS-DynL

G ∪ {T} | C ⇒ S

G | {T �̇ Dyn} ∪ C ⇒ S
CS-DynR

[X �→ T ]G | [X �→ T ]C ⇒ S X �∈ V ars(T )
G | {X

.= T} ∪ C ⇒ S ◦ [X �→ T ]
Eq-VarL

Fig. 6. Constraint solving with gradual types

To instantiate these unconstrained type variables to Dyn, we first need to col-
lect them. When any constraint of the form T �̇ Dyn or Dyn �̇ T is encountered
by the solver, we store the type T , per rules CS-DynL and CS-DynR. Note that
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these types might be constrained by other constraints, however, we collect them
nonetheless. These will be considered gradual types since they potentially con-
tain the Dyn type. When a constraint is solved and a substitution is produced,
the constraint solver applies the substitution to the remaining constraints to
avoid unconstrained type variables. This behaviour must also be implemented,
regarding the gradual types stored. In rule Eq-VarL, when a substitution is
produced, it is applied to the remaining constraints and also to the collection of
gradual types. Finally, when all constraints have been solved and all the substi-
tutions have been produced, we will get the complete collection of gradual types.
These will possibly contain base types, such as Int , compound types such as the
arrow type and type variables. Then, we take the type variables from these types
and produce substitutions from those type variables to Dyn. This is done by rule
Em. V ars(G) is the set of all the type variables present in all the types in G.
The overline means that a substitution will be produced for each type variable
obtained by V ars(G).

Since the constraint unification algorithm has been updated, we need to
update the soundness and completeness lemmas to match the new algorithm’s
specification.

Lemma 5 (Unification Soundness). If G | C ⇒ S then S |= C.

Proof. Extends proof of Lemma 3. By induction on the length of the derivation
tree of G | C ⇒ S.

Lemma 6 (Unification Completeness). If S1◦[V ars(G) �→ Dyn] |= C then
G | C ⇒ S2 for some S2, and furthermore S1 ◦ [V ars(G) �→ Dyn] = S ◦ S2 for
some S.

Proof. Extends proof of Lemma 4. By induction on the breakdown of constraint
sets by the unification rules.

Continuing the example above, with the extended constraint solving algo-
rithm, a final substitution is added:

[X4 �→ Dyn,X3 �→ X5,X2 �→ X4,X1 �→ X2 → X3]

The final typings of the expressions are then:

λf . λx : Int ∩ Dyn . f (x x) : (Dyn → X5) → (Int ∩ Dyn → X5)
λf . λx : Int ∩ Dyn . f (x x) : (Dyn → X5) → (Dyn → X5)

Notice that only in the first solution all the instances of the type in the annotation
of the lambda abstraction are used.

4.4 Multiple Solutions

In the language described in Sect. 2, variables may be annotated with intersec-
tion types in lambda abstractions. In these cases, the type inference algorithm
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assigns a particular instance of that intersection type to a particular occurrence
of that variable. However, given the fact that we are dealing with idempotent
intersection types, we cannot know in advance which instance to assign to a
particular occurrence of a variable since some choices lead to ill-typed expres-
sions while other choices lead to well-typed expressions. For example, consider
the following expression,

λx : Int ∩ Dyn . x x x

We must choose, for each of the three occurrences of x, either the Int or the Dyn
type. Some choices lead to the expression becoming ill-typed, such as:

λx : Int ∩ Dyn . xInt xDyn xInt

Other choices lead the expression to become well-typed, such as:

λx : Int ∩ Dyn . xDyn xDyn xInt

λx : Int ∩ Dyn . xDyn xInt xInt

Therefore, our type inference algorithm first produces several typings for an
expression. Since there are many different choices to type variables, we generate
different typings according to each choice. The generation of multiple typings is
clear in rule C-Var1, which generates a typing for a variable for each instance of
intersection type bound to that variable in the annotation context.

Constraint generation produces several sets of constraints and each set of
constraints is solved by the constraint solving algorithm leading to multiple
incomparable solutions. We will show that the type inference algorithm is sound
and complete and that the set of substitutions computed by the algorithm is
principal in the sense that any other solution is an instance of one in the set
returned by the solver when it is applied to the different constraint sets produced
in the constraint generation phase.

The expression λx : Int ∩ Dyn . x x x has a total of 8 typings, which cor-
respond to choosing different combinations of Int and Dyn for the three occur-
rences of the variable x. We can see that of those choices, only 4 will produce
a typeable expression. Choosing Int for the first occurrence of x leads to an
ill-typed expression. Therefore, we end up with 4 different typings:

λx : Int ∩ Dyn . xDyn xInt xInt : Int ∩ Dyn → Dyn

λx : Int ∩ Dyn . xDyn xDyn xInt : Int ∩ Dyn → Dyn

λx : Int ∩ Dyn . xDyn xInt xDyn : Int ∩ Dyn → Dyn

λx : Int ∩ Dyn . xDyn xDyn xDyn : Dyn → Dyn

However, note that the last typing does not use all the instances in typing vari-
ables. The type inference algorithm is then described as follows:

Definition 5 (Type Inference). Let e be an expression, Γ a context, T a
type, S a substitution and Sol a set of triples of the form (Γ, T, S). The type
inference function I from expressions to sets of triples (Γ, T, S), is defined by
the following steps:
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1. Sol = ∅
2. for every derivation of ∅ | Γ �∩G e : T | C that holds

(a) if ∅ | C ⇒ S holds then

Sol = Sol ∪ {(S(Γ ), S(T ), S)}
3. return Sol

Step 2 generates constraints with derivations in the constraint generation system.
Given an empty annotation context and the expression e, ∅ | Γ �∩G e : T | C gets
us the typing context Γ , the type of the expression T and the set of constraints
C. In step 2.a, given an empty set of gradual types and the constraints C, if
the constraint solver algorithm ∅ | C ⇒ S produces a substitution S, then that
substitutions S is added to the solutions.

4.5 Decidability

Different typings in the constraint generation system in Fig. 2 arise from inter-
sections, and intersections are always finite, thus the number of derivations for a
given expression is also finite. Also, since constraint generation follows the syn-
tactic tree of the expression, each constraint generation derivation terminates.

Lemma 7 (Termination of Constraint Generation). Given a context A
and an expression e, the number of derivations by the constraint generation
system for A | Γ �∩G e : T | C is finite.

Proof. The proof follows by structural induction on e.

Now, to prove that the successive application of constraint solving rules in Fig. 5
always halt, note that, every rule, when applied to a consistent subtyping con-
straint, reduces the number of type constructors in consistent subtyping con-
straints or reduces the number of consistent subtyping constraints. If the rule
applies to an equality constraint then every rule reduces the number of type con-
structors in equality constraints or reduces the number of equality constraints.
The only rule that has a different behaviour is Eq-VarR, but it will be followed
by rule Eq-VarL which reduces the number of equality constraints. Thus to
prove termination we use a metric well-ordered by a lexicographical order on the
tuples (NICS,NCCS,NCS) and (NVEq,NCEq,NTXEq,NEq), where NICS
is the number of unique intersection types in the left of an �̇ constraint + the
number of unique intersection types in the right of an �̇ constraint; NCCS is
the number of type constructors in �̇ constraints; NCS is the number of �̇ con-
straints; NVEq is the number of different type variables in .= constraints; NCEq
is the number of type constructors in .= constraints; NTXEq is the number of
.= constraints of the form T

.= X; and NEq is the number of .= constraints. The
result is stated in the following lemma.

Lemma 8 (Termination of Constraint Solving). C ⇒ S terminates for
every set of constraints C.
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Proof. By a metric well-ordered by a lexicographical order. The full proof can
be consulted in Appendix A.

Finally, decidability of the type inference algorithm follows from the two last
lemmas.

Theorem 1 (Decidability). Type inference is decidable.

Proof. By Lemmas 7 and 8

4.6 Soundness and Completeness

Soundness and completeness are two important properties which show the cor-
rectness and usefulness of the type inference algorithm. Soundness guarantees
that if the type inference algorithm returns a type, then that type is derivable
in the type system. Completeness states that the output of the type inference
algorithm represents the most general type judgment able to type the expression,
a property known as principal typing. The full proofs of the following theorems
can be consulted in Appendix A.

Theorem 2 (Soundness). If (Γ, T, S) ∈ I(e) then S(Γ ) �∩G S(e) : S(T ).

Proof. By Lemmas 1 and 5.

Principal Typing. A type judgment, or typing, for a term, is principal if and
only if all other typings for the same expression can be derived from it by some
set of operations. Thus principal typings can be seen as the most general typings.
The notion of principal typing and its relation with the slightly different notion
of principal type was studied in detail in [16,28].

Definition 6 (Principal Typing). If Γp �∩G e : Tp, then we say that (Γp, Tp)
is a principal typing of e if whenever Γ1 �∩G e : T1 holds, then for some sub-
stitutions S, for each x ∈ dom(Γ1) ∩ dom(Γp), we have Γ1(x) ≤ S(Γp(x)) and
S(Tp) ≤ T1.

As the following theorem shows, our language has principal typings for every
well-typed expression.

Theorem 3 (Principal Typings). If Γ1 �∩G e : T1 then there are Γ21, . . . ,
Γ2n, T21, . . . , T2n, S21, . . . , S2n and S1, . . . , Sn such that ((Γ21, T21, S21), . . . ,
(Γ2n, T2n, S2n)) = I(e) and, for each x ∈ dom(Γ1) ∩ dom(Γ21 + . . . + Γ2n),
we have Γ1(x) ≤ S1 ◦ S21(Γ21(x)) and . . . and Γ1(x) ≤ Sn ◦ S2n(Γ2n(x)) and
S1 ◦ S21(T21) ∩ . . . ∩ Sn ◦ S2n(T2n) ≤ T1.

Proof. By Lemmas 2 and 6.

Principal typings are clearly a quite relevant feature of our type system. They
allow compositional type inference, where type inference for a given expression
uses only the typings inferred for its subexpressions, which can be inferred inde-
pendently in any order.
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5 Conclusion

Here we study the type inference problem for the rank 2 fragment of our general
system and prove that it is decidable, by defining a type inference algorithm,
sound w.r.t. the type system and complete in the sense that returns principal
typings. This strongly indicates that rank 2 intersection gradual types may be
safely and successfully applied to the design and implementation of gradually
typed programming languages able to type values which are all of many different
types.
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A Proofs

Lemma 9 (Weakening). If Γ �∩G e : T then Γ + Γ ′ �∩G e : T for any
typing context Γ ′.

Proof. We proceed by induction on the derivation tree of Γ �∩G e : T .

Base cases:

– Rule T-Var. If Γ �∩G x : Ti then x : T1∩. . .∩Tn ∈ Γ . If x : T ′
1∩. . .∩T ′

m ∈ Γ ′,
then x : T1 ∩ . . . ∩ Tn ∩ T ′

1 ∩ . . . ∩ T ′
m ∈ Γ + Γ ′. Therefore, Γ + Γ ′ �∩G x : Ti.

– Rule T-Const. If Γ �∩G c : T and c is a constant of type T, then Γ +Γ ′ �∩G

c : T .

Induction step:

– Rule T-Abs. To avoid capture we assume that α−reduction is made whenever
needed to rename formal parameters. If Γ �∩G λx . e : T1 → T2 then Γ, x :
T1 �∩G e : T2. By induction hypothesis, Γ, x : T1 + Γ ′ �∩G e : T2. By rule
T-Abs, Γ + Γ ′ �∩G λx . e : T1 → T2.

– Rule T-Abs. To avoid capture we assume that α−reduction is made whenever
needed to rename formal parameters. If Γ �∩G λx : T1 ∩ . . . ∩ Tn . e :
T1∩ . . .∩Tm → T then Γ, x : T1∩ . . .∩Tm �∩G e : T . By induction hypothesis,
Γ, x : T1 ∩ . . . ∩ Tm + Γ ′ �∩G e : T . By rule T-Abs:, Γ + Γ ′ �∩G λx :
T1 ∩ . . . ∩ Tn . e : T1 ∩ . . . ∩ Tm → T .

– Rule T-App. If Γ �∩G e1 e2 : T then Γ �∩G e1 : PM , PM�T1∩. . .∩Tn → T ,
Γ �∩G e2 : T ′

1 ∩ . . . ∩ T ′
n and T ′

1 � T1 . . . T ′
n � Tn. By induction hypothesis,

Γ + Γ ′ �∩G e1 : PM and Γ + Γ ′ �∩G e2 : T ′
1 ∩ . . . ∩ T ′

n. By rule T-App,
Γ + Γ ′ �∩G e1 e2 : T .

– Rule T-Gen. If Γ �∩G e : T1 ∩ . . . ∩ Tn then Γ �∩G e : T1 and . . . and
Γ �∩G e : Tn. By induction hypothesis, Γ + Γ ′ �∩G e : T1 and . . . and
Γ + Γ ′ �∩G e : Tn. By rule T-Gen, Γ + Γ ′ �∩G e : T1 ∩ . . . ∩ Tn.
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– Rule T-Inst. If Γ �∩G e : Ti then Γ �∩G e : T1 ∩ . . . ∩ Tn. By induction
hypothesis, Γ + Γ ′ �∩G e : T1 ∩ . . . ∩ Tn. By rule T-Inst, Γ + Γ ′ �∩G e : Ti

Lemma 1 (Constraint Soundness). If A | Γ �∩G e : T | C and S |= C then
S(Γ ) �∩G S(e) : S(T ).

Proof. We proceed by induction on the length of the derivation tree of A | Γ �∩G

e : T | C.

Base cases:

– Rule C-Var1. If A | {x : Ti} �∩G x : Ti | {} and S |= {} then {x :
S(Ti)} �∩G x : S(Ti). Since S({x : Ti}) = {x : S(Ti)} and S(x) = x, then
S({x : Ti}) �∩G S(x) : S(Ti).

– Rule C-Var2. If A | {x : X} �∩G x : X | {} and S |= {} then {x :
S(X)} �∩G x : S(X). Since S({x : X}) = {x : S(X)} and S(x) = x, then
S({x : X}) �∩G S(x) : S(X).

– Rule C-Const. If A | {} �∩G c : T | {} and S |= ∅ then c is a constant of
type T. Therefore, S({}) �∩G S(c) : S(T ).

Induction step:

– Rule C-Abs1. If A | Γx �∩G λx . e : Γ (x) → T | C and S |= C then
A | Γ �∩G e : T | C. By the induction hypothesis, S(Γ ) �∩G S(e) : S(T ).
Then, by rule T-Abs, S(Γ )x �∩G λx . S(e) : S(Γ (x)) → S(T ). As S(Γx) =
S(Γ )x, S(λx . e) = λx . S(e) and S(Γ (x) → T ) = S(Γ (x)) → S(T ) then
S(Γx) �∩G S(λx . e) : S(Γ (x) → T ).

– Rule C-Abs2. If A | Γ �∩G λx . e : X → T | C and S |= C then A | Γ �∩G

e : T | C. By the induction hypothesis, S(Γ ) �∩G S(e) : S(T ). As x : S(X) is
not used to type e and thus x �∈ Γ then we also have S(Γ ) ∪ {x : S(X)} �∩G

S(e) : S(T ). Then by the T-Abs, S(Γ ) �∩G S(λx . e) : S(X → T ).
– Rule C-Abs:1. If A | Γx �∩G λx : T1∩ . . .∩Tn . e : Γ (x) → T | C and S |= C

then Ax ∪ {x : T1 ∩ . . . ∩ Tn} | Γ �∩G e : T | C. By the induction hypothesis,
S(Γ ) �∩G S(e) : S(T ). Therefore, S(Γ )x �∩G λx : T1 ∩ . . . ∩ Tn . S(e) :
S(Γ (x)) → S(T ). As S(Γx) = S(Γ )x, S(Γ (x) → T ) = S(Γ (x)) → S(T )
and {x : T1 ∩ . . . ∩ Tm} ∈ Γ then S(Γx) �∩G λx : S(T1 ∩ . . . ∩ Tm) ∩
Tm+1 ∩ . . . ∩ Tn . S(e) : S(Γ (x) → T ). As Tm+1 ∩ . . . ∩ Tn does not occur
in e, then those those types are not affected by substitutions. Therefore,
S(Γx) �∩G S(λx : T1 ∩ . . . ∩ Tn . e) : S(Γ (x) → T ).

– Rule C-Abs:2. If A | Γ �∩G λx : T1 ∩ . . .∩Tn . e : T1 → T ∩ . . .∩Tn → T | C
and S |= C then Ax ∪ {x : T1 ∩ . . . ∩ Tn} | Γ �∩G e : T | C. By the
induction hypothesis, S(Γ ) �∩G S(e) : S(T ). As x �∈ dom(Γ ) then x doesn’t
occur in e. Therefore, we also have S(Γ ) ∪ {x : S(T1)} �∩G S(e) : S(T )
and . . . and S(Γ ) ∪ {x : S(Tn)} �∩G S(e) : S(T ). Then, by rule T-Abs:,
S(Γ ) �∩G S(λx : T1 ∩ . . . ∩ Tn . e) : S(T1 → T ) and . . . and S(Γ ) �∩G S(λx :
T1 ∩ . . . ∩ Tn . e) : S(Tn → T ). By rule T-Gen, we have S(Γ ) �∩G S(λx :
T1 ∩ . . . ∩ Tn . e) : S(T1 → T ∩ . . . ∩ Tn → T ).
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– Rule C-App. If A | Γ1 + Γ2 �∩G e1 e2 : T3 | C1 ∪ C2 ∪ C3 ∪ C4 and S |=
C1 ∪ C2 ∪ C3 ∪ C4 then A | Γ1 �∩G e1 : T1 | C1 and A | Γ2 �∩G e2 : T2 | C2

and cod(T1)
.= T3 | C3 and T2 �̇ dom(T1) | C4. There are three possibilities:

• T1 = X. Then, T3 = X2. By the induction hypothesis, S(Γ1) �∩G S(e1) :
S(X) and S(Γ2) �∩G S(e2) : S(T2). As S |= {X

.= X1 → X2,X
.= X3 →

X4, T2 �̇ X1}, then S(Γ1) �∩G S(e1) : S(X1 → X2) and S(T2) � S(X1).
Therefore, S(Γ1) �∩G S(e1) : S(X1) → S(X2). Therefore, by Lemma 9,
S(Γ1 + Γ2) �∩G S(e1 e2) : S(X2).

• T1 = T11 → T12. Then, T3 = T12. By the induction hypothesis, S(Γ1) �∩G

S(e1) : S(T11 → T12) and S(Γ2) �∩G S(e2) : S(T2). Therefore, S(Γ1) �∩G

S(e1) : S(T11) → S(T12). As S |= T2 �̇ T11, then S(T2) � S(T11).
Therefore, by Lemma 9, S(Γ1 + Γ2) �∩G S(e1 e2) : S(T12).

• T1 = Dyn. Then T3 = Dyn. By the induction hypothesis, S(Γ1) �∩G

S(e1) : S(Dyn) and S(Γ2) �∩G S(e2) : S(T2). Therefore, S(Γ1) �∩G

S(e1) : Dyn and Dyn �Dyn → Dyn. As S(T2) � Dyn then, by Lemma 9,
S(Γ1 + Γ2) �∩G S(e1 e2) : S(Dyn).

– Rule C-App∩. If A | Γ + Γ1 + . . . + Γn �∩G e1 e2 : T | C ∪ C1 ∪ {T ′
1 �̇ T1} ∪

. . . ∪ Cn ∪ {T ′
n �̇ Tn} and S |= C ∪ C1 ∪ {T ′

1 �̇ T1} ∪ . . . ∪ Cn ∪ {T ′
n �̇ Tn}

then A | Γ �∩G e1 : T1 ∩ . . .∩Tn → T | C and A | Γ1 �∩G e2 : T ′
1 | C1 and . . .

and A | Γn �∩G e2 : T ′
n | Cn and S(T ′

1) � S(T1) and . . . and S(T ′
n) � S(Tn).

By the induction hypothesis, S(Γ ) �∩G S(e1) : S(T1 ∩ . . . ∩ Tn → T ) and
S(Γ1) �∩G S(e2) : S(T ′

1) and . . . and S(Γn) �∩G S(e2) : S(T ′
n). Since, by

Lemma 9, S(Γ + Γ1 + . . . + Γn) �∩G S(e1) : S(T1 ∩ . . . ∩ Tn) → S(T ),
S(Γ +Γ1 + . . .+Γn) �∩G S(e2) : S(T ′

1) and . . . and S(Γ +Γ1 + . . .+Γn) �∩G

S(e2) : S(T ′
n), then by rule T-App, S(Γ +Γ1 + . . .+Γn) �∩G S(e1 e2) : S(T ).

Lemma 10 (Consistent Subtyping to Subtyping). If T1 � T2 and both
T1 and T2 are static, then T1 ≤ T2.

Proof. We proceed by induction on Definition 2.

Base cases:

– T � T . If T � T then T ≤ T .
– T1 ∩ . . .∩Tn � T1 and . . . and T1 ∩ . . .∩Tn � Tn. If T1 ∩ . . .∩Tn � T1 and . . .

and T1 ∩ . . .∩Tn � Tn, then T1 ∩ . . .∩Tn ≤ T1 and . . . and T1 ∩ . . .∩Tn ≤ Tn.
– (T → T1) ∩ . . . ∩ (T → Tn) � T → T1 ∩ . . . ∩ Tn. If (T → T1) ∩ . . . ∩ (T →

Tn) � T → T1 ∩ . . .∩Tn then (T → T1)∩ . . .∩ (T → Tn) ≤ T → T1 ∩ . . .∩Tn.

Induction step:

– T1 → T2 � T3 → T4 ⇐⇒ T3 � T1 ∧ T2 � T4. There are two possibilities:
• We proceed first for the right direction of the implication. If T1 → T2 �

T3 → T4 then T3 � T1 and T2 � T4. By the induction hypothesis, T3 ≤ T1

and T2 ≤ T4. Then by the Definition 1, T1 → T2 ≤ T3 → T4.
• We now proceed for the left direction of the implication. If T3 � T1

and T2 � T4 then T1 → T2 � T3 → T4. By the induction hypothesis,
T1 → T2 ≤ T3 → T4. By Definition 1, T3 ≤ T1 and T2 ≤ T4.
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– T � T1 ∩ . . . ∩ Tn ⇐⇒ T � T1 ∧ . . . ∧ T � Tn. There are two possibilities:
• We proceed first for the right direction of the implication. If T � T1 ∩

. . . ∩ Tn then T � T1 and . . . and T � Tn. By the induction hypothesis,
T ≤ T1 and . . . and T ≤ Tn. Therefore, by Definition 1, T ≤ T1 ∩ . . .∩Tn.

• We now proceed for the left direction of intersection types. If T � T1 and
. . . and T � Tn then T � T1 ∩ . . . ∩ Tn. By the induction hypothesis,
T ≤ T1 ∩ . . . ∩ Tn. By Definition 1, T ≤ T1 and . . . and T ≤ Tn.

Lemma 2 (Constraint Completeness). If Γ1 �∩G e : T1 then

1. there exists a derivation A | Γ2 �∩G e : T2 | C such that ∃S . S |= C
2. for A | Γ21 �∩G e : T21 | C1 such that ∃S1 . S1 |= C1 and . . . and A | Γ2n �∩G

e : T2n | Cn such that ∃Sn . Sn |= Cn then
(a) for each x ∈ dom(Γ1) ∩ dom(

∑n
i=1 Γ2i), Γ1(x) ≤ Si(Γ2i(x)), ∀i ∈ 1..n

(b)
⋂n

i=1 Si(T2i) ≤ T1

Proof. We proceed by induction on the length of the derivation tree of Γ1 �∩G

e : T1.

Base cases:

– Rule T-Var. If Γ1 �∩G x : Ti then x : T1 ∩ . . . ∩ Tn ∈ Γ1. There are two
possibilities:

• x ∈ dom(A). If x ∈ dom(A), then x : T1 ∩ . . . ∩ Tn ∈ A, since the type
T1 ∩ . . . ∩ Tn came from the annotation of the lambda abstraction that
binds x. To prove 1., we have that A | {x : T1} �∩G x : T1 | ∅ and for
a S1 = [], S1 |= ∅ and . . . and A | {x : Tn} �∩G x : Tn | ∅ and for a
Sn = [], Sn |= ∅. To prove 2.a), we have that since S1(Γ21(x)) = T1 and
. . . and Sn(Γ2n(x)) = Tn and Γ1(x) = T1 ∩ . . . ∩ Tn then by Definition 1,
Γ1(x) ≤ S1(Γ21(x)) and . . . and Γ1(x) ≤ Sn(Γ2n(x)) and to prove 2.b),
we have that S1(T1) ∩ . . . ∩ Sn(Tn) ≤ Ti.

• x �∈ dom(A). To prove 1., we have that A | {x : X1} �∩G x : X1 | ∅ and for
a S1 = [X1 �→ T1], S1 |= ∅ and . . . and A | {x : Xn} �∩G x : Xn | ∅ and
for a Sn = [Xn �→ Tn], Sn |= ∅. To prove 2.a), since S1(Γ21(x)) = T1 and
. . . and Sn(Γ2n(x)) = Tn and Γ1(x) = T1 ∩ . . . ∩ Tn then by Definition 1,
Γ1(x) ≤ S1(Γ21(x)) and . . . and Γ1(x) ≤ Sn(Γ2n(x)) and to prove 2.b),
we have that S1(X1) ∩ . . . ∩ Sn(Xn) ≤ Ti.

– Rule T-Const. If Γ �∩G c : T , then c is an constant of type T. Therefore,
to prove 1., we have that A | {} �∩G c : T | {} and S |= ∅. Since there is no
x ∈ dom(Γ1)∩dom({}), 2.a) is proved. To prove 2.b), we have that S(T ) ≤ T ,
by Definition 1.

Induction step:

– Rule T-Abs. If Γ1 �∩G λx . e : T1 → T2 then Γ1, x : T1 �∩G e : T2. There are
two possibilities:
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• x ∈ dom(Γ2). By the induction hypothesis on 1., exists A | Γ2 �∩G e :
T ′
2 | C such that ∃S . S |= C.

By the induction hypothesis on 2., we have that for A | Γ21 �∩G e :
T21 | C1 such that ∃S1 . S1 |= C1 and . . . and for A | Γ2n �∩G e :
T2n | Cn such that ∃Sn . Sn |= Cn, then for each y ∈ dom(Γ1, x :
T1) ∩ dom(

∑n
i=1 Γ2i), we have (Γ1, x : T1)(y) ≤ Si(Γ2i(y)), ∀i ∈ 1..n, and⋂n

i=1 Si(T2i) ≤ T2.
To prove 1., we have that as A | Γ2 �∩G e : T ′

2 | C such that ∃S . S |= C,
then by rule C-Abs1, exists A | Γ2x �∩G λx . e : Γ2(x) → T ′

2 | C and
S |= C.
To prove 2., we have that for A | Γ21 �∩G e : T21 | C1 then A | Γ21x �∩G

λx . e : Γ21(x) → T21 | C1 and S1 |= C1 and . . . and for A | Γ2n �∩G e :
T2n | Cn then A | Γ2nx �∩G λx . e : Γ2n(x) → T2n | Cn and Sn |= Cn.
To prove 2.a), as (Γ1, x : T1)(y) ≤ S1(Γ21(y)) and . . . and (Γ1, x :
T1)(y) ≤ Sn(Γ2n(y)) for each y ∈ dom(Γ1, x : T1) ∩ dom(Γ2) then
(Γ1)(y) ≤ S1(Γ21x(y)) and . . . and (Γ1)(y) ≤ Sn(Γ2nx(y)).
To prove 2.b), as S1(T21) ∩ . . . ∩ Sn(T2n) ≤ T2 and T1 ≤ S1(Γ21(x)) and
. . . and T1 ≤ Sn(Γ2n(x)) then by Definition 1, rule 4, T1 ≤ S1(Γ21(x)) ∩
. . . ∩ Sn(Γ2n(x)). Therefore, by Definition 1, rule 3, S1(Γ21(x)) ∩ . . . ∩
Sn(Γ2n(x)) → S1(T21) ∩ . . . ∩ Sn(T2n) ≤ T1 → T2. Therefore, by Def-
inition 1, rule 5, (S1(Γ21(x)) ∩ . . . ∩ Sn(Γ2n(x)) → S1(T21)) ∩ . . . ∩
(S1(Γ21(x)) ∩ . . . ∩ Sn(Γ2n(x)) → Sn(T2n)) ≤ T1 → T2. By Definition 1,
rule 2, S1(Γ21(x) → T21) ∩ . . . ∩ Sn(Γ2n(x) → T2n) ≤ T1 → T2.

• x �∈ dom(Γ2). By the induction hypothesis on 1., exists A | Γ2 �∩G e :
T ′
2 | C such that ∃S . S |= C.

By the induction hypothesis on 2., we have that for A | Γ21 �∩G e :
T21 | C1 such that ∃S1 . S1 |= C1 and . . . and for A | Γ2n �∩G e :
T2n | Cn such that ∃Sn . Sn |= Cn then for each y ∈ dom(Γ1, x :
T1) ∩ dom(

∑n
i=1 Γ2i), we have (Γ1, x : T1)(y) ≤ Si(Γ2i(y)), ∀i ∈ 1..n

and
⋂

i = 1nSi(T2i) ≤ T2.
To prove 1., we have that as A | Γ2 �∩G e : T ′

2 | C such that ∃S . S |= C
then by rule C-Abs2, exists A | Γ2 �∩G λx . e : X → T ′

2 | C and S |= C.
To prove 2., we have that for A | Γ21 �∩G e : T21 | C1 then A | Γ21 �∩G

λx . e : X1 → T21 | C1 and S1 |= C1 and . . . and for A | Γ2n �∩G e :
T2n | Cn then A | Γ2n �∩G λx . e : Xn → T2n | Cn and Sn |= Cn.
Since X1 is a fresh type variable, it is not contained in C1 and . . . and since
Xn is a fresh type variable, it is not contained in Cn. Then, we can consider
S1 = S′

1 ◦ [X1 �→ T1] and . . . and we can consider Sn = S′
n ◦ [Xn �→ T1].

To prove 2.a), as for each y ∈ dom(Γ1, x : T1) ∩ dom(
∑n

i=1 Γ2i), we
have (Γ1, x : T1)(y) ≤ Si(Γ2i(y)), ∀i ∈ 1..n, then Γ1(y) ≤ Si(Γ2ix(y)),
∀i ∈ 1..n.
To prove 2.b), as T1 ≤ S1(X1) and . . . and T1 ≤ Sn(Xn) then by
Definition 1, rule 4, T1 ≤ S1(X1) ∩ . . . ∩ Sn(Xn). As S1(T21) ∩ . . . ∩
Sn(T2n) ≤ T2, then by Definition 1, rule 3, S1(X1) ∩ . . . ∩ Sn(Xn) →
S1(T21) ∩ . . . ∩ Sn(T2n) ≤ T1 → T2. Therefore, by Definition 1, rule 5,
(S1(X1) ∩ . . . ∩ Sn(Xn) → S1(T21)) ∩ . . . ∩ (S1(X1) ∩ . . . ∩ Sn(Xn) →
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Sn(T2n)) ≤ T1 → T2. By Definition 1, rule 2, S1(X1 → T21) ∩ . . . ∩
Sn(Xn → T2n) ≤ T1 → T2.

– Rule T-Abs. If Γ1 �∩G λx : T1 ∩ . . . ∩ Tn . e : T1 ∩ . . . ∩ Tm → T then
Γ1, x : T1 ∩ . . . ∩ Tm �∩G e : T . There are two possibilities:

• x ∈ dom(Γ2). By the induction hypothesis on 1., exists Ax ∪ {x : T1 ∩
. . . ∩ Tn} | Γ2 �∩G e : T ′ | C such that ∃S . S |= C.
By the induction hypothesis on 2., we have that for Ax ∪ {x : T1 ∩ . . . ∩
Tn} | Γ21 �∩G e : T ′

1 | C1 such that ∃S1 . S1 |= C1 and . . . and for
Ax ∪{x : T1 ∩ . . .∩Tn} | Γ2l �∩G e : T ′

l | Cl such that ∃Sl . Sl |= Cl then
for each y ∈ dom(Γ1, x : T1 ∩ . . . ∩ Tm) ∩ dom(

∑l
i=1 Γ2i), we have that

(Γ1, x : T1 ∩ . . . ∩ Tm)(y) ≤ Si(Γ2i(y)), ∀i ∈ 1..l, and
⋂l

i=1 Si(T ′
i ) ≤ T .

To prove 1., we have that as Ax∪{x : T1∩. . .∩Tn} | Γ2 �∩G e : T ′ | C such
that ∃S . S |= C, then A | Γ2x �∩G λx : T1 ∩ . . .∩Tn . e : Γ2(x) → T ′ | C
and S |= C.
To prove 2., we have that for Ax ∪{x : T1 ∩ . . .∩Tn} | Γ21 �∩G e : T ′

1 | C1

then A | Γ21x �∩G λx : T1 ∩ . . . ∩ Tn . e : Γ21(x) → T ′
1 | C1 and S1 |= C1

and . . . and for Ax ∪ {x : T1 ∩ . . . ∩ Tn} | Γ2l �∩G e : T ′
l | Cl then

A | Γ2lx �∩G λx : T1 ∩ . . . ∩ Tn . e : Γ2l(x) → T ′
l | Cl and Sl |= Cl.

To prove 2.a), as for each y ∈ dom(Γ1) ∩ dom(
∑l

i=1 Γ2i), we have (Γ1, x :
T1 ∩ . . . ∩ Tm)(y) ≤ Si(Γ2i(y)), ∀i ∈ 1..l, then Γ1(y) ≤ Si(Γ2ix(y)).
To prove 2.b), we have that T1∩. . .∩Tm ≤ S1(Γ21(x)) and . . . and T1∩. . .∩
Tm ≤ Sl(Γ2l(x)). As T1∩. . .∩Tm ≤ S1(Γ21(x)) and . . . and T1∩. . .∩Tm ≤
Sl(Γ2l(x)) then by Definition 1, rule 4, T1 ∩ . . . ∩ Tm ≤ S1(Γ21(x)) ∩ . . . ∩
Sl(Γ2l(x)). As S1(T ′

1) ∩ . . . ∩ Sl(T ′
l ) ≤ T , then by Definition 1, rule 3,

S1(Γ21(x)) ∩ . . . ∩ Sl(Γ2l(x)) → S1(T ′
1) ∩ . . . ∩ Sl(T ′

l ) ≤ T1 ∩ . . . ∩ Tm →
T . Therefore, by Definition 1, rule 5, (S1(Γ21(x)) ∩ . . . ∩ Sl(Γ2l(x)) →
S1(T ′

1))∩. . .∩(S1(Γ21(x))∩. . .∩Sl(Γ2l(x)) → Sl(T ′
l )) ≤ T1∩. . .∩Tm → T .

By Definition 1, rule 2, S1(Γ21(x) → T ′
1) ∩ . . . ∩ Sl(Γ2l(x) → T ′

l ) ≤
T1 ∩ . . . ∩ Tm → T .

• x �∈ dom(Γ2). By the induction hypothesis on 1., exists Ax ∪ {x : T1 ∩
. . . ∩ Tn} | Γ2 �∩G e : T ′ | C such that ∃S . S |= C.
By the induction hypothesis on 2., we have that for Ax ∪ {x : T1 ∩ . . . ∩
Tn} | Γ21 �∩G e : T ′

1 | C1 such that ∃S1 . S1 |= C1 and . . . and for
Ax ∪{x : T1 ∩ . . .∩Tn} | Γ2l �∩G e : T ′

l | Cl such that ∃Sl . Sl |= Cl then
for each y ∈ dom(Γ1, x : T1 ∩ . . . ∩ Tm) ∩ dom(

∑l
i=1 Γ2i), we have that

(Γ1, x : T1 ∩ . . . ∩ Tm)(y) ≤ Si(Γ2i(y)), ∀i ∈ 1..l, and
⋂l

i=1 Si(T ′
i ) ≤ T .

To prove 1., we have that as Ax ∪ {x : T1 ∩ . . . ∩ Tn} | Γ2 �∩G e : T ′ | C
such that ∃S . S |= C then by rule C-Abs:2, exists A | Γ2 �∩G λx :
T1 ∩ . . . ∩ Tn . e : T1 → T ′ ∩ . . . ∩ Tn → T ′ | C and S |= C.
To prove 2., we have that for Ax ∪{x : T1 ∩ . . .∩Tn} | Γ21 �∩G e : T ′

1 | C1

then A | Γ21 �∩G λx : T1 ∩ . . . ∩ Tn . e : T1 → T ′
1 ∩ . . . ∩ Tn → T ′

1 | C1 and
S1 |= C1 and . . . and for Ax ∪ {x : T1 ∩ . . . ∩ Tn} | Γ2l �∩G e : T ′

l | Cl

then A | Γ2l �∩G λx : T1 ∩ . . . ∩ Tn . e : T1 → T ′
l ∩ . . . ∩ Tn → T ′

l | Cl and
Sn |= Cn.
To prove 2.a), as for each y ∈ dom(Γ1, x : T1 ∩ . . .∩Tm)∩dom(

∑l
i=1 Γ2i),
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we have that (Γ1, x : T1 ∩ . . . ∩ Tm)(y) ≤ Si(Γ2i(y)), ∀i ∈ 1..l, then
Γ1(y) ≤ Si(Γ2i(y)).
To prove 2.b), as x does not occur in e, then T1 and . . . and Tn are not
affected by S1, . . . , Sn. Therefore S1(T1 ∩ . . .∩Tn) = T1 ∩ . . .∩Tn and . . .
and Sl(T1∩ . . .∩Tn) = T1∩ . . .∩Tn. Therefore, S1((T1 → T ′

1)∩ . . .∩(Tn →
T ′
1))∩ . . .∩Sl((T1 → T ′

l )∩ . . .∩ (Tn → T ′
l )) = (T1 → S1(T ′

1))∩ . . .∩ (Tn →
S1(T ′

1))∩ . . .∩ (T1 → Sl(T ′
l ))∩ . . .∩ (Tn → Sl(T ′

l )). Then, by Definition 1,
rule 2, (T1 → S1(T ′

1)) ∩ . . . ∩ (Tn → S1(T ′
1)) ∩ . . . ∩ (T1 → Sl(T ′

l )) ∩ . . . ∩
(Tn → Sl(T ′

l )) ≤ (T1 ∩ . . .∩Tm → S1(T ′
1))∩ . . .∩ (T1 ∩ . . .∩Tm → Sl(T ′

l )).
Then, by Definition 1, rule 5, (T1∩. . .∩Tm → S1(T ′

1))∩. . .∩(T1∩. . .∩Tm →
Sl(T ′

l )) ≤ T1 ∩ . . . ∩ Tm → S1(T ′
1) ∩ . . . ∩ Sl(T ′

l ). Then, by Definition 1,
rule 3, T1 ∩ . . . ∩ Tm → S1(T ′

1) ∩ . . . ∩ Sl(T ′
l ) ≤ T1 ∩ . . . ∩ Tm → T .

– Rule T-App. If Γ �∩G e1 e2 : T then Γ �∩G e1 : PM , PM�T1∩. . .∩Tn → T ,
Γ �∩G e2 : T ′

1 ∩ . . . ∩ T ′
n and T ′

1 � T1 and . . . and T ′
n � Tn. There are two

possibilities:
• Using rule C-App. By the induction hypothesis on 1., exists A | Γ1 �∩G

e1 : PM ′ | C1 such that ∃S1 . S1 |= C1 and exists A | Γ2 �∩G e2 : T ′′ | C2

such that ∃S2 . S2 |= C2.
By the induction hypothesis on 2., we have that for A | Γ11 �∩G e1 :
PM1 | C11 such that ∃S11 . S11 |= C11 and . . . and A | Γ1n′ �∩G e1 :
PM1n′ | C1n′ such that ∃S1n′ . S1n′ |= C1n′ then for each x ∈ dom(Γ ) ∩
dom(

∑n′

i=1 Γ1i), we have that Γ (x) ≤ S1i(Γ1i(x)) and
⋂n′

i=1 S1i(PMi) ≤
PM .
Also, by the induction hypothesis on 2., we have that for A | Γ21 �∩G

e2 : T ′′
1 | C21 such that ∃S21 . S21 |= C21 and . . . and A | Γ2m′ �∩G e2 :

T ′′
m′ | C2m′ such that ∃S2m′ . S2m′ |= C2m′ then for each x ∈ dom(Γ ) ∩

dom(
∑m′

j=1 Γ2j), we have that Γ (x) ≤ S2j(Γ2j(x)) and
⋂m′

j=1 S2j(T ′′
j ) ≤

T ′
1 ∩ . . . ∩ T ′

n.
To prove 1., we want to prove that since A | Γ1 �∩G e1 : PM ′ | C1

such that ∃S1 . S1 |= C1 and since A | Γ2 �∩G e2 : T ′′ | C2 such that
∃S2 . S2 |= C2, and for cod(PM ′) .= T3 | C3 and T ′′ �̇ dom(PM ′) | C4,
then exists A | Γ1 + Γ2 �∩G e1 e2 : T3 | C1 ∪ C2 ∪ C3 ∪ C4 such that
∃Sk . Sk |= C1 ∪ C2 ∪ C3 ∪ C4.
To prove 2., we want to prove that, for ∀i ∈ 1..n′ and ∀j ∈ 1..m′ such
that A | Γ1i �∩G e1 : PMi | C1i such that ∃S1i . S1i |= C1i, A | Γ2j �∩G

e2 : T ′′
j | C2j such that ∃S2j . Sj2 |= C2j , cod(PMi)

.= T3i | C3i and
T ′′
j �̇ dom(PMi) | C4k, with k ∈ 1..i ∗ j then for A | Γ1i +Γ2j �∩G e1 e2 :

T3i | C1i ∪ C2j ∪ C3i ∪ C4k, such that ∃Sk . Sk |= C1i ∪ C2j ∪ C3i ∪ C4k

then 2.a) for each x ∈ dom(Γ ) ∩ dom(Γ1i + Γ2j) we have that Γ (x) ≤
Sk(Γ1i + Γ2j)(x), and 2.b) S1(T13) ∩ . . . ∩ Sn′∗m′(Tn′3) ≤ T . We define
dom� as dom�(Dyn) = Dyn and dom�(T1 → T2) = T1 and cod� as
cod�(Dyn) = Dyn and cod�(T1 → T2) = T2. Since cod�(PM) = T , we
want to prove that Sk(Ti3) ≤ cod�(Si1(PMi)).
By Definition 1, rule 4, we have that Γ (x) ≤ (S1i(Γ1i) + S2j(Γ2j))(x).
Since substitutions in S1i don’t affect Γ2j and substitutions in S2j don’t



Type Inference for Rank 2 Gradual Intersection Types 109

affect Γ1i, then Γ (x) ≤ (S1i ◦ S2j(Γ1i + Γ2j))(x). For an S3i |= C3i and
S4k |= C4k, S3i doesn’t affect S2j .

There are 3 possibilities:

* PMi = X. Proof for 1. We have that exists A | Γ1 �∩G e1 : PM ′ | C1

such that ∃S1 . S1 |= C1 and exists A | Γ2 �∩G e2 : T ′′ | C2 such
that ∃S2 . S2 |= C2, and for cod(X) .= X2 | {X .= X1 → X2} and
T ′′ �̇ dom(PM ′) | {X .= X3 → X4, T

′′ �̇ X3} then, by rule C-App,
A | Γ1 +Γ2 �∩G e1 e2 : T3 | C1 ∪C2 ∪{X .= X1 → X2}∪{X .= X3 →
X4, T

′′ �̇ X3}. We now have to prove that ∃S . S |= C1 ∪C2 ∪{X .=
X1 → X2}∪{X .= X3 → X4, T

′′ �̇ X3}. Since S2(T ′′) ≤ T ′
1∩ . . .∩T ′

n,
and T ′

1 � T1 and . . . and T ′
n � Tn and T1 ∩ . . .∩Tn ≤ dom�S1(PM ′),

then S2(T ′′) � dom�(S1(PM ′)). Therefore, it is proved.
Proof for 2. For all i ∈ 1..n′, j ∈ 1..m′, such that A | Γ1i �∩G e1 :
PMi | C1i and ∃S1i . S1i |= C1i, A | Γ2j �∩G e2 : T ′′

j | C2j and
∃S2j . S2j |= C2j , cod(PMi)

.= T3i | C3i and T ′′
j �̇ dom(PMi) | C4k,

then A | Γ1i + Γ2j �∩G e1 e2 : T3i | C1i ∪ C2j ∪ C3i ∪ C4k, with
k ∈ 1..i ∗ j.
Since PMi is a type variable, then there exists a term variable x such
that PMi = Γ1i(x) and so we have that C3i = {X

.= X1 → X2} and
Ck4 = {X

.= X3 → X4, T
′′
j �̇ X3}. As Γ (x) ≤ S1i(X) and, since we

are dealing with an expression application, Γ (x) = T1 → T for some
simple types T1 and T , then T1 → T ≤ S1i(X). Since substitutions
don’t introduce intersection types, then T1 → T = S1i(X).
Proof for 2.a). If Sk |= T ′′

j �̇ X3, then by Definition 3, Sk(T ′′
j ) �

Sk(X3). If T ′′
j ∈ cod(S2j(Γ2j)) and T ′′

j is static, then S2j(Γ2j)(x) ≤
Sk(Γ2j)(x). Also, since X ∈ cod(Si1(Γi1)), then Si1(Γi1) ≤ Sk(Γi1).
For a Sk such that Sk |= Ci1∪Cj2∪Ci3∪Ck4, Γ (x) ≤ Sk(Γi1+Γj2)(x).
Proof for 2.b). We have that T = cod�(Si1(PMi)) and Sk(Ti3) = T .

* PMi = T3 → T4. We have that exists A | Γ1 �∩G e1 : PM ′ | C1

such that ∃S1 . S1 |= C1 and exists A | Γ2 �∩G e2 : T ′′ | C2

such that ∃S2 . S2 |= C2, and for cod(T3 → T4)
.= T4 | {}

and T ′′ �̇ dom(T3 → T4) | {T ′′ �̇ T3} then, by rule C-App,
A | Γ1+Γ2 �∩G e1 e2 : T4 | C1∪C2∪{T ′′ �̇ T3}. We now have to prove
that ∃S . S |= C1 ∪ C2 ∪ {T ′′ �̇ T3}. Since S2(T ′′) ≤ T ′

1 ∩ . . . ∩ T ′
n,

and T ′
1 � T1 and . . . and T ′

n � Tn and T1 ∩ . . . ∩ Tn ≤ S1(T3), then
S2(T ′′) � S1(T3). Therefore, it is proved.
For all i ∈ 1..n′, j ∈ 1..m′, such that A | Γ1i �∩G e1 : PMi | C1i and
∃S1i . S1i |= C1i, A | Γ2j �∩G e2 : T ′′

j | C2j and ∃S2j . S2j |= C2j ,
cod(PMi)

.= T3i | C3i and T ′′
j �̇ dom(PMi) | C4k, then A | Γ1i +

Γ2j �∩G e1 e2 : T3i | C1i ∪ C2j ∪ C3i ∪ C4k, with k ∈ 1..i ∗ j.
Proof for 2.a). Si3 doesn’t affect Γi1 and Γj2. We don’t allow variables
in annotations in lambda abstractions. If T3 = Dyn or T ′′

j = Dyn
then [] |= T ′′

j �̇ T3 and so, Γ (x) ≤ Sk(Γi1 + Γj2)(x). One way that
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PMi = T3 → T4 is if e1 is a term variable and T3 is a type variable,
and so T3 �∈ Γi1 then Γ (x) ≤ Sk(Γi1 + Γj2)(x). Another way that
PMi = T3 → T4 is if e1 is a lambda abstraction and T3 → T4 ∈ Γi1,
and so T3 is not a type variable, then Γ (x) ≤ Sk(Γi1+Γj2)(x). There-
fore, if T ′′

j ∈ Γj2, and as Sk |= T ′′
j �̇ T3 then Γ (x) ≤ Sk(Γi1+Γj2)(x).

Proof for 2.b). We have that Ti3 = T4, then cod�(Si1(PMi)) =
Si1(Ti3). We want to prove that Si(Ti3) ≤ Si1(Ti3). If Ti3 is not a vari-
able, then Si(Ti3) = Si1(Ti3). If Ti3 is a variable, then either Ti3 �= T3,
in which case Sk doesn’t affect Si1(T4) and so Si1(T4) = Sk(T4).
Otherwise, T3 = T4 = Ti3. Therefore, as Sk |= T ′′

j �̇ T4. So,
Sk(T4) � Si1(T4). Since Sk doesn’t have a subtitution that turns
T4 into Dyn, then by Lemma 10, Sk(T4) ≤ Si1(T4).

* PMi = Dyn. Proof for 1. We have that exists A | Γ1 �∩G e1 : Dyn | C1

such that ∃S1 . S1 |= C1 and exists A | Γ2 �∩G e2 : T ′′ | C2

such that ∃S2 . S2 |= C2, and for cod(Dyn) .= Dyn | {} and
T ′′ �̇ dom(Dyn) | {T ′′ �̇ Dyn} then, by rule C-App, A | Γ1 +Γ2 �∩G

e1 e2 : Dyn | C1 ∪ C2 ∪ {T ′′ �̇ Dyn}. Since ∃S . S |= C1 ∪ C2 ∪
{T ′′ �̇ Dyn}, it is proved.
Proof for 2. For all i ∈ 1..n′, j ∈ 1..m′, such that A | Γ1i �∩G e1 :
PMi | C1i and ∃S1i . S1i |= C1i, A | Γ2j �∩G e2 : T ′′

j | C2j and
∃S2j . S2j |= C2j , cod(PMi)

.= T3i | C3i and T ′′
j �̇ dom(PMi) | C4k,

then A | Γ1i + Γ2j �∩G e1 e2 : T3i | C1i ∪ C2j ∪ C3i ∪ C4k, with
k ∈ 1..i ∗ j.
Proof for 2.a). For A | Γ1i+Γ2j �∩G e1 e2 : T3i | C1i∪C2j ∪C3i∪C4k,
with k ∈ 1..i ∗ j such that Sk |= C1i ∪ C2j ∪ C3i ∪ C4k, we have that
Ci3 = {} and Ck4 = {T ′′

j �̇ Dyn}. Therefore, Sk = S1 ◦ S2 and then
Γ (x) ≤ Sk(Γi1 + Γj2)(x).
Proof for 2.b). We have that cod�(Si1(PMi)) = Dyn and Si(Ti3) =
Dyn.

• Using rule C-App∩. By the induction hypothesis on 1., exists A | Γ ′ �∩G

e1 : T1 ∩ . . . ∩ Tm → T0 | C such that ∃S . S |= C and exists A | Γ ′′ �∩G

e2 : T ′′ | C ′′ such that ∃S′′ . S′′ |= C ′′ and . . . and exists A | Γ ′′ �∩G e2 :
T ′′ | C ′′ such that ∃S′′ . S′′ |= C ′′.
By the induction hypothesis on 2., we have that for A | Γ1 �∩G e1 :
T11 ∩ . . . ∩ T1m1 → T10 | C1 such that ∃S1 . S1 |= C1 and . . . and for
A | Γn′ �∩G e1 : Tn′1∩. . .∩Tn′mn′ → Tn′0 | Cn′ such that ∃Sn′ . Sn′ |= Cn′

then for each x ∈ dom(Γ )∩dom(
∑n′

i=1 Γi), we have that Γ (x) ≤ Si(Γi(x))
and

⋂n′

i=1 Si(Ti1 ∩ . . . ∩ Timi → Ti0) ≤ PM .
Also, by the induction hypothesis on 2., we have that for A | Γ ′

1 �∩G e2 :
T ′′
1 | C ′

1 such that ∃S′
1 . S′

1 |= C ′
1 and . . . and for A | Γ ′

k �∩G e2 : T ′′
k | C ′

k

such that ∃S′
k . S′

k |= C ′
k then for each x ∈ dom(Γ ) ∩ dom(

∑k
l=1 Γ ′

i ), we
have that Γ (x) ≤ S′

l(Γ
′
l (x)) and

⋂k
l=1 S′

l(T
′′
l ) ≤ T ′

1 ∩ . . . ∩ T ′
n.

Proof for 1. If S(T1 ∩ . . . ∩ Tm → T0) ≤ PM , then by Definition 1 and
�, PM = T1 ∩ . . . ∩ Tn → T . Therefore, T1 ∩ . . . ∩ Tn ≤ S(T1 ∩ . . . ∩ Tm)
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and S(T0) ≤ T . We have that S′′(T ′′) ≤ T ′
1 ∩ . . . ∩ T ′

n and T ′
1 � T1 and

. . . and T ′
n � Tn and T1 ∩ . . . ∩ Tn ≤ S(T1 ∩ . . . ∩ Tm). Therefore, we have

that S′′(T ′′) � S(T1) and . . . and S′′(T ′′) � S(Tm). Therefore, we have
that A | Γ ′ + Γ ′′ + . . . + Γ ′′ �∩G e1 e2 : T0 | C ∪ C ′′ ∪ {T ′′ �̇ T1} ∪ . . . ∪
C ′′ ∪ {T ′′ �̇ Tm} such that S ◦ S′′ ◦ . . . ◦ S′′ |= C ∪ C ′′ ∪ {T ′′ �̇ T1} ∪
. . . ∪ C ′′ ∪ {T ′′ �̇ Tm}.
Proof for 2. For all i ∈ 1..n′, j ∈ 1..mi, l, l′ ∈ 1..k, such that A | Γi �∩G e1 :
Ti1∩. . .∩Timi → Ti0 | Ci such that ∃Si . Si |= Ci, A | Γ ′

l �∩G e2 : T ′′
l | C ′

l

such that ∃S′
l . S′

l |= C ′
l and . . . and A | Γ ′

l′ �∩G e2 : T ′′
l′ | C ′

l′ such that
∃S′

l′ . S′
l |= C ′

l′ then A | Γi + Γ ′
l + . . . + Γ ′

l′ �∩G e1 e2 : Ti0 | Ci ∪ C ′
l ∪

{T ′′
l �̇ Ti1} ∪ . . . ∪ C ′

l′ ∪ {T ′′
l′ �̇ Timi}.

Proof for 2.a). By Definition 1, rule 4, we have that Γ (x) ≤ (Si(Γi) +
S′
l(Γ

′
l )+. . .+S′

l′(Γ
′
l′))(x). Since substitutions in Si and S′

l and . . . and S′
l′ ,

don’t affect each other, then Γ (x) ≤ Si◦S′
l ◦ . . .◦S′

l′(Γi+Γ ′
l + . . .+Γ ′

l′)(x).
For all i ∈ 1..n′, j ∈ 1..mi, l, l′ ∈ 1..k, for A | Γi + Γ ′

l + . . . + Γ ′
l′ �∩G

e1 e2 : Ti0 | Ci ∪ C ′
l ∪ {T ′′

l �̇ Ti1} ∪ . . . ∪ C ′
l′ ∪ {T ′′

l′ �̇ Timi} such that
∃Si ◦ S′

l ◦ S′′
l ◦ . . . ◦ S′

l′ ◦ S′′
l′ . Si ◦ S′

l ◦ S′′
l ◦ . . . ◦ S′

l′ ◦ S′′
l′ |= Ci ∪ C ′

l ∪
{T ′′

l �̇ Ti1} ∪ . . . ∪ C ′
l′ ∪ {T ′′

l′ �̇ Timi}, with S′′
l |= T ′′

l �̇ Ti1 and . . . and
S′′
l′ |= T ′′

l′ �̇ Timi , then we have several possibilities. If either T ′′
l = Dyn

or Tij = Dyn, then [] |= T ′′
l �̇ Tij , and therefore Γ (x) ≤ Si ◦S′

l ◦S′′
l ◦ . . .◦

S′
l′ ◦ S′′

l′(Γi + Γ ′
l + . . . + Γ ′

l′)(x). If T ′′
l ∈ cod(Γ ′

l ), since S′′
l |= T ′′

l �̇ Tij ,
then Γ (x) ≤ Si ◦ S′

l ◦ S′′
l ◦ . . . ◦ S′

l′ ◦ S′′
l′(Γi + Γ ′

l + . . . + Γ ′
l′)(x). If e1

is a lambda abstraction, then Timi �∈ cod(Γi). If e1 is a term variable,
then Tij → T ′′′ ∈ Γi, for some T ′′′. Since S′′

l |= T ′′
l �̇ Tij , then Γ (x) ≤

Si ◦ S′
l ◦ S′′

l ◦ . . . ◦ S′
l′ ◦ S′′

l′(Γi + Γ ′
l + . . . + Γ ′

l′)(x).
Proof for 2.b). If S1(T11∩. . .∩T1m1 → T10)∩. . .∩Sn′(T ′

n′1∩. . .∩Tn′mn′ →
Tn′0) ≤ PM , then by Definition 1 and �, PM = T1 ∩ . . . ∩ Tn → T .
Therefore, S1(T10) ∩ . . . ∩ Sn′(Tn′0) ≤ T . Since Ti0 is not affected by
substitutions besides Si, then

⋂n′

i=1(
⋂k

l=1 . . .
⋂k

l′=1 Si ◦ S′
l ◦ S′′

l ◦ · · · ◦ S′
l′ ◦

S′′
l′(Ti0)) ≤ T .

– Rule T-Gen. If Γ �∩G e : T1 ∩ . . . ∩ Tn then Γ �∩G e : T1 and . . . and
Γ �∩G e : Tn. By the induction hypothesis on 1., exists A | Γ1 �∩G e : T ′

1 | C1

such that ∃S1 . S1 |= C1 and . . . and exists A | Γn �∩G e : T ′
n | Cn such that

∃Sn . Sn |= Cn.
By the induction hypothesis on 2., we have that for A | Γ11 �∩G e : T ′

11 | C11

such that ∃S11 . S11 |= C11 and . . . and for A | Γ1m1 �∩G e : T ′
1m1 | C1m1 such

that ∃S1m1 . S1m1 |= C1m1 then for each x ∈ dom(Γ ) ∩ dom(
∑m1

j=1 Γ1j), we
have that Γ (x) ≤ S1j(Γ1j(x)), ∀j ∈ 1..m1, and S11(T ′

11)∩ . . .∩S1m1(T ′
1m1) ≤

T1 and . . . and we have that for A | Γn1 �∩G e : T ′
n1 | Cn1 such that

∃Sn1 . Sn1 |= Cn1 and . . . and for A | Γnmn �∩G e : T ′
nmn | Cnmn such that

∃Snmn . Snmn |= Cnmn then for each x ∈ dom(Γ )∩dom(
∑mn

j=1 Γnj), we have
that Γ (x) ≤ Snj(Γnj(x)), ∀j ∈ 1..mn, and Sn1(T ′

n1)∩ . . .∩Snmn(T ′
nmn) ≤ Tn.

Proof for 2.b). By Definition 1, we have that S11(T ′
11) ∩ . . . ∩ S1m1(T ′

1m1) ∩
. . . ∩ Sn1(T ′

n1) ∩ . . . ∩ Snmn(T ′
nmn) ≤ T1 ∩ . . . ∩ Tn.
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– Rule T-Inst. If Γ1 �∩G e : Ti then Γ1 �∩G e : T1 ∩ . . . ∩ Tn. By the induction
hypothesis on 1., exists A | Γ2 �∩G e : T ′ | C such that ∃S . S |= C.
By the induction hypothesis on 2., we have that for A | Γ21 �∩G e : T ′

1 | C1

such that ∃S1 . S1 |= C1 and . . . and for A | Γ2n �∩G e : T ′
n | Cn such

that ∃Sn . Sn |= Cn then for each x ∈ dom(Γ1) ∩ dom(
∑n

i=1 Γ2i), we have
Γ1(x) ≤ Si(Γ2i(x)), ∀i ∈ 1..n, and S1(T ′

1) ∩ . . . ∩ Sn(T ′
n) ≤ T1 ∩ . . . ∩ Tn.

Proof for 2.b). As, by Definition 1, T1∩ . . .∩Tn ≤ Ti, by transitivity, S1(T ′
1)∩

. . . ∩ Sn(T ′
n) ≤ Ti.

Lemma 3 (Unification Soundness). If C ⇒ S then S |= C.

Proof. We proceed by induction on the length of the derivation tree of C ⇒ S.

Base cases:

– Rule Em. If ∅ ⇒ ∅, then by Definition 3, ∅ |= ∅.

Induction step:

– Rule CS-DynL. If {Dyn �̇ T} ∪ C ⇒ S then C ⇒ S. By the induction
hypothesis, S |= C. Since S(Dyn) � S(T ) then S |= Dyn �̇ T . Therefore,
by Definition 3, S |= {Dyn �̇ T} ∪ C.

– Rule CS-DynR. If {T �̇ Dyn} ∪ C ⇒ S then C ⇒ S. By the induction
hypothesis, S |= C. Since S(T ) � S(Dyn) then S |= T �̇ Dyn. Therefore,
by Definition 3, S |= {T �̇ Dyn} ∪ C.

– Rule CS-Refl. If {T �̇ T}∪C ⇒ S then C ⇒ S. By the induction hypothesis,
S |= C. Since S(T ) � S(T ), then S |= T �̇ T . Therefore, by Definition 3,
S |= {T �̇ T} ∪ C.

– Rule CS-Inst. If {T1 ∩ . . . ∩ Tn �̇ T1 ∩ . . . ∩ Tm} ∪ C ⇒ S then C ⇒ S. By
the induction hypothesis, S |= C. Since S(T1 ∩ . . . ∩ Tn) � S(T1 ∩ . . . ∩ Tm),
then S |= T1 ∩ . . . ∩ Tn �̇ T1 ∩ . . . ∩ Tm. Therefore, by Definition 3, S |=
{T1 ∩ . . . ∩ Tn �̇ T1 ∩ . . . ∩ Tm} ∪ C.

– Rule CS-Assoc. If {(T → T1)∩ . . .∩(T → Tn) �̇ T → T1∩ . . .∩Tn}∪C ⇒ S
then C ⇒ S. By the induction hypothesis, S |= C. Since S((T → T1) ∩ . . . ∩
(T → Tn)) � S(T → T1∩. . .∩Tn), then S |= (T → T1)∩. . .∩(T → Tn) �̇ T →
T1 ∩ . . . ∩ Tn. Therefore, by Definition 3, S |= {(T → T1) ∩ . . . ∩ (T →
Tn) �̇ T → T1 ∩ . . . ∩ Tn} ∪ C.

– Rule CS-Arrow. If {T1 → T2 �̇ T3 → T4}∪C ⇒ S then {T3 �̇ T1, T2 �̇ T4}∪
C ⇒ S. By the induction hypothesis, S |= {T3 �̇ T1, T2 �̇ T4} ∪ C. Since
S |= {T3 �̇ T1, T2 �̇ T4}, then S(T3) � S(T1) and S(T2) � S(T4). Therefore,
by Definition 2, S(T1) → S(T2) � S(T3) → S(T4). Therefore, S(T1 → T2) �
S(T3 → T4). By Definition 3, S |= {T1 → T2 �̇ T3 → T4}. Therefore, by
Definition 3, S |= {T1 → T2 �̇ T3 → T4} ∪ C.

– Rule CS-InstR. If {T �̇ T1∩. . .∩Tn}∪C ⇒ S then {T �̇ T1∧. . .∧T �̇ Tn}∪
C ⇒ S. By the induction hypothesis, S |= {T �̇ T1, . . . , T �̇ Tn} ∪ C. Since
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S |= {T �̇ T1, . . . , T �̇ Tn}, then by Definition 3, S(T ) � S(T1)∧. . .∧S(T ) �
S(Tn). Therefore, by Definition 2, S(T ) � S(T1) ∩ . . . ∩ S(Tn). Therefore,
S(T ) � S(T1 ∩ . . . ∩ Tn). By Definition 3, S |= T �̇ T1 ∩ . . . ∩ Tn. Therefore,
S |= {T �̇ T1 ∩ . . . ∩ Tn} ∪ C.

– Rule CS-ArrowL. If {T1 → T2 �̇ T} ∪ C ⇒ S then {T3 �̇ T1, T2 �̇ T4, T =
T3 → T4}∪C ⇒ S. By the induction hypothesis, S |= {T3 �̇ T1, T2 �̇ T4, T

.=
T3 → T4} ∪ C. Since S |= {T3 �̇ T1, T2 �̇ T4, T

.= T3 → T4}, then by
Definition 3, S(T3) � S(T1) and S(T2) � S(T4) and S(T ) = S(T3 → T4). By
Definition of �, S(T1) → S(T2) � S(T3) → S(T4). Therefore, S(T1 → T2) �
S(T3 → T4). Since S(T ) = S(T3 → T4), then S(T1 → T2) � S(T ). Therefore,
by Definition 3, S |= T1 → T2 �̇ T . Therefore, S |= {T1 → T2 �̇ T} ∪ C.

– Rule CS-ArrowR. If {T �̇ T1 → T2} ∪ C ⇒ S then {T1 �̇ T3, T4 �̇ T2, T =
T3 → T4}∪C ⇒ S. By the induction hypothesis, S |= {T1 �̇ T3, T4 �̇ T2, T

.=
T3 → T4} ∪ C. Since S |= {T1 �̇ T3, T4 �̇ T2, T

.= T3 → T4}, then by
Definition 3, S(T1) � S(T3) and S(T4) � S(T2) and S(T ) = S(T3 → T4). By
Definition of �, S(T3) → S(T4) � S(T1) → S(T2). Therefore, S(T3 → T4) �
S(T1 → T2). Since S(T ) = S(T3 → T4), then S(T ) � S(T1 → T2). Therefore,
by Definition 3, S |= T �̇ T1 → T2. Therefore, S |= {T �̇ T1 → T2} ∪ C.

– Rule CS-Eq. If {T1 �̇ T2} ∪ C ⇒ S then {T1
.= T2} ∪ C ⇒ S. By the

induction hypothesis, S |= {T1
.= T2} ∪ C. By Definition 3, S(T1) = S(T2).

By Definition 2, S(T1) � S(T2). By Definition 3, S |= T1 �̇ T2. Therefore,
S |= {T1 �̇ T2} ∪ C.

– Rule Eq-Refl. If {T
.= T}∪C ⇒ S then C ⇒ S. By the induction hypothe-

sis, S |= C. Since S(T ) = S(T ), then by Definition 3, S |= T
.= T . Therefore,

S |= {T
.= T} ∪ C.

– Rule Eq-Arrow. If {T1 → T2
.= T3 → T4} ∪ C ⇒ S then {T1

.= T3, T2
.=

T4} ∪ C ⇒ S. By the induction hypothesis, S |= {T1
.= T3, T2

.= T4} ∪ C.
By Definition 3, S(T1) = S(T3) and S(T2) = S(T4). Then S(T1) → S(T2) =
S(T3) → S(T4). Therefore, S(T1 → T2) = S(T3 → T4). By Definition 3,
S |= T1 → T2

.= T3 → T4. Therefore, S |= {T1 → T2
.= T3 → T4} ∪ C.

– Rule Eq-VarR. If {T
.= X} ∪ C ⇒ S then {X

.= T} ∧ C ⇒ S. By the
induction hypothesis, S |= {X

.= T} ∪ C. By Definition 3, S(X) = S(T ).
Then, S(T ) = S(X). By Definition 3, S |= T

.= X. Therefore, S |= {T
.=

X} ∪ C.
– Rule Eq-VarL. If {X

.= T} ∪ C ⇒ S ◦ [X �→ T ] then [X �→ T ]C ⇒ S. By
the induction hypothesis, S |= [X �→ T ]C. Then, for each constraint of the
form T ′

1
.= T ′

2 or T ′
1 �̇ T ′

2 in C, S([X �→ T ]T ′
1) = S([X �→ T ]T ′

2) or S([X �→
T ]T ′

1) ≤ S([X �→ T ]T ′
2). Therefore, S ◦ [X �→ T ](T ′

1) = S ◦ [X �→ T ](T ′
2) or

S ◦ [X �→ T ](T ′
1) ≤ S ◦ [X �→ T ](T ′

2). Therefore, S ◦ [X �→ T ] |= C. It follows
that S◦[X �→ T ] |= {X

.= T}∪C, because S◦[X �→ T ](X) = S◦[X �→ T ](T ).
Therefore, S ◦ [X �→ T ] |= {X

.= T} ∪ C.
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Lemma 4 (Unification Completeness). If S1 |= C then C ⇒ S2 for some
S2, and furthermore S1 = S ◦ S2 for some S.

Proof. We proceed by induction on the breakdown of constraint sets by the uni-
fication rules.

Base cases:

– Rule Em. If S1 |= ∅ then ∅ ⇒ ∅. As S1 = S ◦ ∅ for some S1, it is proved.

Induction step:

– Rule CS-DynL. If S1 |= {Dyn �̇ T} ∪ C then by Definition 3, S1 |= C.
By the induction hypothesis, C ⇒ S2 and S1 = S ◦ S2. As C ⇒ S2, then
{Dyn �̇ T} ∪ C ⇒ S2.

– Rule CS-DynR. If S1 |= {T �̇ Dyn} ∪ C then by Definition 3, S1 |= C.
By the induction hypothesis, C ⇒ S2 and S1 = S ◦ S2. As C ⇒ S2, then
{T �̇ Dyn} ∪ C ⇒ S2.

– Rule CS-Refl. If S1 |= {T �̇ T} ∪ C then by Definition 3, S1 |= C.
By the induction hypothesis, C ⇒ S2 and S1 = S ◦ S2. As C ⇒ S2, then
{T �̇ T} ∪ C ⇒ S2.

– Rule CS-Inst. If S1 |= {T1∩. . .∩Tn �̇ T1∩. . .∩Tm}∪C then by Definition 3,
S1 |= C. By the induction hypothesis, C ⇒ S2 and S1 = S ◦ S2. As C ⇒ S2,
then {T1 ∩ . . . ∩ Tn �̇ T1 ∩ . . . ∩ Tm} ∪ C ⇒ S2.

– Rule CS-Assoc. If S1 |= {(T → T1)∩. . .∩(T → Tn) �̇ T → T1∩. . .∩Tn}∪C
then by Definition 3, S1 |= C. By the induction hypothesis, C ⇒ S2 and
S1 = S ◦ S2. As C ⇒ S2, then {(T → T1) ∩ . . . ∩ (T → Tn) �̇ T → T1 ∩ . . . ∩
Tn} ∪ C ⇒ S2.

– Rule CS-Arrow. If S1 |= {T1 → T2 �̇ T3 → T4} ∪ C then by Definition 3,
S1(T1 → T2) � S1(T3 → T4) and S1 |= C. Then, S1(T1) → S1(T2) �
S1(T3) → S1(T4) and by Definition 2, S1(T3) � S1(T1) and S1(T2) � S1(T4).
Then, by Definition 3, S1 |= {T3 �̇ T1, T2 �̇ T4} ∪ C. By the induction
hypothesis, {T3 �̇ T1, T2 �̇ T4} ∪ C ⇒ S2 and S1 = S ◦ S2. Therefore,
{T1 → T2 �̇ T3 → T4} ∪ C ⇒ S2.

– Rule CS-InstR. If S1 |= {T �̇ T1 ∩ . . . ∩ Tn} ∪ C then by Definition 3,
S1(T ) � S1(T1 ∩ . . . ∩ Tn) and S1 |= C. Therefore, by Definition 2, S1(T ) �
S1(T1) ∩ . . . ∩ S1(Tn), and therefore, S1(T ) � S1(T1) and . . . and S1(T ) �
S1(Tn). By Definition 3, S1 |= {T �̇ T1, . . . , T �̇ Tn} ∪ C. By the induction
hypothesis, {T �̇ T1, . . . , T �̇ Tn} ∪ C ⇒ S2 and S1 = S ◦ S2. Therefore,
{T �̇ T1 ∩ . . . ∩ Tn} ∪ C ⇒ S2.

– Rule CS-ArrowL. If S1 |= {T1 → T2 �̇ T} ∪ C then, by Definition 3,
S1(T1 → T2) � S1(T ) and S1 |= C. Then, it exists a T3 and T4, such
that S1(T ) = S1(T3 → T4), so that S1(T1 → T2) � S1(T3 → T4).
By Definition 2, S1(T3) � S1(T1) and S1(T2) � S1(T4). By Definition 3,
S1 |= T3 �̇ T1, T2 �̇ T4, T

.= T3 → T4 ∪ C. By the induction hypothesis,
{T3 �̇ T1, T2 �̇ T4, T

.= T3 → T4} ∪ C ⇒ S2 and S1 = S ◦ S2. Therefore,
{T1 → T2 �̇ T} ∪ C ⇒ S2.
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– Rule CS-ArrowR. If S1 |= {T �̇ T1 → T2} ∪ C then, by Definition 3,
S1(T ) � S1(T1 → T2) and S1 |= C. Then, it exists a T3 and T4, such
that S1(T ) = S1(T3 → T4), so that S1(T1 → T2) � S1(T3 → T4).
By Definition 2, S1(T3) � S1(T1) and S1(T2) � S1(T4). By Definition 3,
S1 |= T3 �̇ T1, T2 �̇ T4, T

.= T3 → T4 ∪ C. By the induction hypothesis,
{T3 �̇ T1, T2 �̇ T4, T

.= T3 → T4} ∪ C ⇒ S2 and S1 = S ◦ S2. Therefore,
{T1 → T2 �̇ T} ∪ C ⇒ S2.

– Rule CS-Eq. If S1 |= {T1 �̇ T2} ∪ C and T1, T2 ∈ {Int ,Bool} ∪ TV ar then,
by Definition 3, S1(T1) � S1(T2) and S1 |= C. Therefore, by Definition 2,
S1(T1) = S1(T2). Then, S1 |= {T1

.= T2}. By the induction hypothesis,
{T1

.= T2} ⇒ S2 and S1 = S ◦ S2. Therefore, {T1 �̇ T2} ⇒ S2.
– Rule Eq-Refl. If S1 |= {T

.= T}∪C1 then, by Definition 3, S1 |= C. By the
induction hypothesis, C ⇒ S2 and S1 = S◦S2. Therefore, {T

.= T}∪C ⇒ S2.
– Rule Eq-Arrow. If S1 |= {T1 → T2

.= T3 → T4} ∪ C then, by
Definition 3, S1(T1 → T2) = S1(T3 → T4) and S1 |= C. Then, S1(T1) →
S1(T2) = S1(T3) → S1(T4) and S1(T1) = S1(T3) and S1(T2) = S1(T4).
Then, by Definition 3, S1 |= {T1

.= T3, T2
.= T4} ∪ C. By the induction

hypothesis, {T1
.= T3, T2

.= T4} ∪ C ⇒ S2 and S1 = S ◦ S2. Therefore,
{T1 → T2

.= T3 → T4} ∪ C ⇒ S2.
– Rule Eq-VarR. If S1 |= {T

.= X}∪C then, by Definition 3, S1(T ) = S1(X)
and S1 |= C. Then, S1(X) = S1(T ) and therefore, S1 |= {X

.= T} ∪ C. By
the induction hypothesis, {X

.= T} ∪ C ⇒ S2 and S1 = S ◦ S2. Therefore,
{T

.= X} ∪ C ⇒ S2.
– Rule Eq-VarL. If S1 |= {X

.= T} ∪ C then, by Definition 3, S1(X) = S1(T )
and S1 |= C. Then, S1 |= [X �→ T ]C. By the induction hypothesis, [X �→
T ]C ⇒ S2 and S1 = S ◦ S2. Therefore, {X

.= T} ∪ C ⇒ S2 ◦ [X �→ T ] and
S1 = S ◦ S2 ◦ [X �→ T ].

Lemma 5 (Unification Soundness). If G | C ⇒ S then S |= C.

Proof. Only proofs for cases Em, CS-DynL, CS-DynR and Eq-VarL are
included since proofs for other cases are straightforward adaptations from the
proofs of Lemma 3. We proceed by induction on the length of the derivation tree
of G | C ⇒ S.

Base cases:

– Rule Em. If G | ∅ ⇒ [V ars(G) �→ Dyn], then by Definition 3,
[V ars(G) �→ Dyn] |= ∅.

Induction step:

– Rule CS-DynL. If G | {Dyn �̇ T} ∪ C ⇒ S then G ∪ {T} | C ⇒ S. By the
induction hypothesis, S |= C. Since S(Dyn) � S(T ) then S |= Dyn �̇ T .
Therefore, by Definition 3, S |= {Dyn �̇ T} ∪ C.
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– Rule CS-DynR. If G | {T �̇ Dyn} ∪ C ⇒ S then G ∪ {T} | C ⇒ S. By the
induction hypothesis, S |= C. Since S(T ) � S(Dyn) then S |= T �̇ Dyn.
Therefore, by Definition 3, S |= {T �̇ Dyn} ∪ C.

– Rule Eq-VarL. If G | {X .= T} ∪ C ⇒ S ◦ [X �→ T ] then [X �→ T ]G | [X �→
T ]C ⇒ S. By the induction hypothesis, S |= [X �→ T ]C. Then, for each
constraint of the form T ′

1
.= T ′

2 or T ′
1 �̇ T ′

2 in C, S([X �→ T ]T ′
1) = S([X �→

T ]T ′
2) or S([X �→ T ]T ′

1) ≤ S([X �→ T ]T ′
2). Therefore, S ◦ [X �→ T ](T ′

1) =
S ◦ [X �→ T ](T ′

2) or S ◦ [X �→ T ](T ′
1) ≤ S ◦ [X �→ T ](T ′

2). Therefore, S ◦
[X �→ T ] |= C. It follows that S ◦ [X �→ T ] |= {X

.= T} ∪ C, because
S ◦ [X �→ T ](X) = S ◦ [X �→ T ](T ). Therefore, S ◦ [X �→ T ] |= {X

.= T}∪C.

Lemma 6 (Unification Completeness). If S1 ◦ [V ars(G) �→ Dyn] |= C then
G | C ⇒ S2 for some S2, and furthermore S1 ◦ [V ars(G) �→ Dyn] = S ◦ S2 for
some S.

Proof. Only proofs for cases Em, CS-DynL, CS-DynR and Eq-VarL are
included since proofs for other cases are straightforward adaptations from the
proofs of Lemma 4. We proceed by induction on the breakdown of constraint
sets by the unification rules.

Base cases:

– Rule Em. If S1 ◦ [V ars(G) �→ Dyn] |= ∅ then G | ∅ ⇒ [V ars(G) �→ Dyn]. As
S1 ◦ [V ars(G) �→ Dyn] = S ◦ [V ars(G) �→ Dyn] for some S, it is proved.

Induction step:

– Rule CS-DynL. If S1 ◦ [V ars(G) �→ Dyn] |= {Dyn �̇ T} ∪ C then by
Definition 3, S1 ◦ [V ars(G) �→ Dyn] |= C. By the induction hypothesis,
G∪{T} | C ⇒ S2 and S1 ◦ [V ars(G) �→ Dyn] = S ◦S2. As G∪{T} | C ⇒ S2,
then G | {Dyn �̇ T} ∪ C ⇒ S2.

– Rule CS-DynR. If S1 ◦ [V ars(G) �→ Dyn] |= {T �̇ Dyn} ∪ C then by
Definition 3, S1 ◦ [V ars(G) �→ Dyn] |= C. By the induction hypothesis,
G∪{T} | C ⇒ S2 and S1 ◦ [V ars(G) �→ Dyn] = S ◦S2. As G∪{T} | C ⇒ S2,
then G | {T �̇ Dyn} ∪ C ⇒ S2.

– Rule Eq-VarL. If S1 ◦ [V ars(G) �→ Dyn] |= {X
.= T} ∪ C then, by

Definition 3, S1 ◦ [V ars(G) �→ Dyn](X) = S1 ◦ [V ars(G) �→ Dyn](T ) and
S1 ◦ [V ars(G) �→ Dyn] |= C. Then, S1 |= [X �→ T ]C. By the induction
hypothesis, [X �→ T ]G | [X �→ T ]C ⇒ S2 and S1◦ [V ars(G) �→ Dyn] = S ◦S2.
Therefore, G | {X .= T} ∪ C ⇒ S2 ◦ [X �→ T ].
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Theorem 2 (Soundness). If (Γ, T, S) ∈ I(e) then S(Γ ) �∩G S(e) : S(T ).

Proof. If (Γ, T, S) ∈ I(e) then by Definition 5, ∅ | Γ �∩G e : T | C, ∅ | C ⇒ S.
By Lemma 5, S |= C. Therefore, by Lemma 1, S(Γ ) �∩G S(e) : S(T ).

Theorem 3 (Principal Typings). If Γ1 �∩G e : T1 then there are Γ21, . . . ,
Γ2n, T21, . . . , T2n, S21, . . . , S2n and S1, . . . , Sn such that ((Γ21, T21, S21), . . . , (Γ2n,
T2n, S2n)) = I(e) and, for each x ∈ dom(Γ1) ∩ dom(Γ21 + . . . + Γ2n), we have
Γ1(x) ≤ S1◦S21(Γ21(x)) and . . . and Γ1(x) ≤ Sn◦S2n(Γ2n(x)) and S1◦S21(T21)∩
. . . ∩ Sn ◦ S2n(T2n) ≤ T1.

Proof. If Γ1 �∩G e : T1 then by Lemma 2, for A | Γ21 �∩G e : T21 | C1 such
that ∃S11 . S11 |= C1 and . . . and for A | Γ2n �∩G e : T2n | Cn such that
∃S1n . S1n |= Cn then for each x ∈ dom(Γ1) ∩ dom(Γ21 + . . . + Γ2n), we have
Γ1(x) ≤ S11(Γ21(y)) and . . . and Γ1(x) ≤ S1n(Γ2n(y)) and S11(T21) ∩ . . . ∩
S1n(T2n) ≤ T1. By Lemma 6, G1 | C1 ⇒ S21 for some S21 and furthermore
S11 = S1 ◦ S21, for some S1 and . . . and Gn | Cn ⇒ S2n for some S2n and
furthermore S1n = Sn ◦ S2n, for some Sn. As A | Γ21 �∩G e : T21 | C1 and
G1 | C1 ⇒ S21 and . . . and A | Γ2n �∩G e : T2n | Cn and Gn | Cn ⇒ S2n,
then by Definition 5, ((Γ21, T21, S21), . . . , (Γ2n, T2n, S2n)) = I(e) and for each
x ∈ dom(Γ1) ∩ dom(Γ21 + . . . + Γ2n), Γ1(x) ≤ S1 ◦ S21(Γ21(x)) and . . . and
Γ1(x) ≤ Sn ◦ S2n(Γ2n(x)) and S1 ◦ S21(T21) ∩ . . . ∩ Sn ◦ S2n(T2n) ≤ T1.

Lemma 8 (Termination of Constraint Solving). C ⇒ S terminates for
every set of constraints C.

Proof. A unification problem C ⇒ S is solved if C = ∅. We define the following
metrics with respect to the unification problem C ⇒ S:

– NICS is the number of unique intersection types in the left of an �̇ constraint
+ the number of unique intersection types in the right of an �̇ constraint

– NCCS is the number of type constructors in �̇ constraints
– NCS is the number of �̇ constraints
– NVEq is the number of different type variables in .= constraints
– NCEq is the number of type constructors in .= constraints
– NTXEq is the number of .= constraints of the form T

.= X
– NEq is the number of .= constraints

We will prove termination by showing that both NCS and NEq reduce to 0.
The first part of the proof consists of reducing only �̇ constraints. Termina-

tion of C ⇒ S, is proved by a measure function that maps the constraint set
C to a tuple (NICS, NCCS, NCS). The following table shows that each step
decreases the tuple w.r.t. the lexicographic order:
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NICS NCCS NCS
CS-DynL ≥ ≥ >
CS-DynR ≥ ≥ >
CS-Refl = = >
CS-Inst >
CS-Assoc >
CS-Arrow = >
CS-InstR >
CS-ArrowL ≥ >
CS-ArrowR ≥ >
CS-Eq = = >

Note that the number of �̇ constraints decreases to 0, leaving only .= con-
straints in C.

The second part of the proof consists of reducing the remaining .= constraints.
Termination of C ⇒ S, where now only .= are in C, is proved by a measure
function that maps the constraint set C to a tuple (NVEq, NCEq, NTXEq,
NEq). The following table shows that each step decreases the tuple w.r.t. the
lexicographic order:

NVEq NCEq NTXEq NEq
Eq-Refl ≥ ≥ ≥ >
Eq-Arrow = >
Eq-VarR = = >
Eq-VarL >

Note that the number of .= constraints decreases to 0, leaving C empty.
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Abstract. Set constraints provide a highly general way to formulate
program analyses. However, solving arbitrary boolean combinations of
set constraints is NEXPTIME-hard. Moreover, while theoretical algo-
rithms to solve arbitrary set constraints exist, they are either too complex
to realistically implement or too slow to ever run.

We present a translation that converts a set constraint formula into an
SMT problem. Our technique allows for arbitrary boolean combinations
of set constraints, and leverages the performance of modern SMT solvers.
To show the usefulness of unrestricted set constraints, we use them to
devise a pattern match analysis for functional languages, which ensures
that missing cases of pattern matches are always unreachable. We imple-
ment our analysis in the Elm compiler and show that our translation is
fast enough to be used in practical verification.

Keywords: Program analysis · SMT · Pattern-matching · Set
constraints

1 Introduction

Set constraints are a powerful tool for expressing a large number of program
analyses in a generic way. Featuring recursive equations and inequations over
variables denoting sets of values, set constraints allow us to model the sets of
values an expression could possibly take. While they were an active area of
research in decades prior, they have not seen widespread adoption. In their most
general form, finding solutions for a conjunction of set constraints is NEXPTIME-
complete. While efficient solvers have been developed for restricted versions of
the set constraint problem [4,26], solvers for unrestricted set constraints are not
used in practice.

However, since the development of set constraints, there have been significant
advances in solvers for SAT modulo theories (SMT). Although SMT requires
exponential time in theory, solvers such as Z3 [31] and CVC4 [8] are able to
solve a wide range of satisfiability problems in practice. Given the success of
SMT solvers in skirting the theoretical intractability of SAT, one wonders, can
these solvers be used to solve set constraints? We show that this is possible with
reasonable performance. Our full contributions are as follows:
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• We devise a pattern match analysis for a strict functional language, expressed
in terms of unrestricted set constraints (Sect. 2).

• We provide a method for translating unrestricted set constraint problems into
SAT modulo UF, a logical theory with booleans, uninterpreted functions, and
first order quantification (Sect. 3). Additionally, we show that projections, a
construct traditionally difficult to formulate with set constraints, are easily
formulated using disjunctions in SMT (Sect. 3.1).

• We implement our translation and analysis, showing that they are usable for
verification despite NEXPTIME-completeness (Sect. 4).

Motivation: Pattern Match Analysis

Our primary interest in set constraints is using them to devise a functional pat-
tern match analysis. Many functional programming languages feature algebraic
datatypes, where values of a datatype D are formed by applying a constructor
function to some arguments. Values of an algebraic type can be decomposed
using pattern matching, where the programmer specifies a number of branches
with free variables, and the program takes the first branch that matches the
given value, binding the corresponding values to the free variables. If none of the
patterns match the value, a runtime error is raised.

Many modern languages, such as Elm [12] and Rust [25] require that pattern
matches be exhaustive, so that each pattern match has a branch for every pos-
sible value of the given type. This ensures that runtime errors are never raised
due to unmatched patterns, and avoids the null-pointer exceptions that plague
many procedural languages. However, the type systems of these languages cannot
express all invariants. Consider the following pseudo-Haskell, with an algebraic
type for shapes, and a function that calculates their area.

data Shape =

Square Double

| Circle Double

| NGon [Double]

area :: Shape -> Double

area shape = case shape of

NGon sides -> ...

_ -> simpleArea shape

where simpleArea sshape = case sshape of

Square len -> len * len

Circle r -> pi * r * r

_ -> error "This�cannot�happen"

The above code is perfectly safe, since simpleArea can only be called from
area, and will never be given an NGon. However, it is not robust to changes. If
we add the constructor Triangle Double Double Double to our Shape definition,
then both matches are still exhaustive, since the _ pattern covers every possible
case. However, we now may face a runtime error if area is given a Triangle. In
general, requiring exhaustiveness forces the programmer to either manually raise
an error or return a dummy value in an unreachable branch.
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x ∈ ProgVariabe, X ∈ TypeVariable, D ∈ DataType, K ∈ DataConstructor
Terms

t ::= x | λx. t | match t with {−−−−→
P ⇒ t;}

| t1 t2 | KD(
−→
t ) | let x = t1 in t2

Patterns

P ::= x | KD(
−→
P )

Underlying Types

τ ::= X | D | τ1 → τ2

Datatype environments

Δ ::= · | D =
−−−−→
K(

−→
T ), Δ

Underlying Type Schemes

σ ::= ∀−→
X. τ

Type Environments

Γ ::= · | X, Γ | x : T, Γ

Fig. 1. λMatch: syntax

We propose an alternate approach: remove the catch-all case of simpleArea,
and use a static analysis to determine that only values matching Circle or Square
will be passed in. Such analysis would mark the above code safe, but would signal
unsafety if Triangle were added to the definition of Shape.

The analysis for this particular case is intuitive, but can be complex in
general:

• Because functions may be recursive, we need to be able to handle recur-
sive equations (or inequations) of possible pattern sets. For example, a
program dealing with lists may generate a constraint of the form X ⊆
Nil ∪ Cons(�, Cons(�,X)).

• We wish to encode first-match semantics: if a program takes a certain branch
in the pattern match, then the matched value cannot possibly match any of
the previous cases.

• We wish to avoid false negatives by tracking what conditions must be true
for a branch to be taken, and to only enforce constraints from that branch
when it is reachable. If we use logical implication, we can express constraints
of the form “if x matches pattern P1, then y must match pattern P2”.

Section 2 gives such an analysis, while Sect. 3 describes solving these con-
straints. Both are implemented and evaluated in Sect. 4.

2 A Set Constraint-Based Pattern Match Analysis

Here, we describe an annotated type system for pattern match analysis. It tracks
the possible values that expressions may take. Instead of requiring that each
match be exhaustive, we restrict functions to reject inputs that may not be cov-
ered by a pattern match in the function’s body. Types are refined by constraints,
which are solved using an external solver (Sect. 3).
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2.1 λMatch Syntax

We present λMatch, a small, typed functional language, whose syntax we give in

Fig. 1. Throughout, for a given metavariable M we write
−→M

i
for a sequence of

objects matching M. We omit the positional index i when it is unneeded.

Γ � t : τ (Expression typing)

Ctor

K(−→τ ) ∈ Δ(D)−−−−−→
Γ � t : τ

Γ � KD(
−→
t ) : D

Lam
x : τ1, Γ � t : τ2

Γ � λx. t : τ1 → τ2
App

Γ � t1 : τ1 → τ2
Γ � t2 : τ1

Γ � t1 t2 : τ2

Var
Γ (x) = ∀−→

X. τ

Γ � x :
−−−−→
[τ ′/X]τ

Mat
Γ � t : τ

−−−−−−−−→
Γ � P : τ |Γ ′ −−−−−−−→

Γ ′ � t′ : τ ′

Γ � match t with {−−−−→
P ⇒ t′; } : τ ′

Let
x : τ1,

−→
X, Γ � t1 : τ1 x : ∀−→

X. τ1, Γ � t2 : τ2
Γ � let x = t1 in t2 : τ2

Γ � P : τ |Γ ′ (Pattern typing and binding generation)

Var
Γ � x : τ |(x : τ), Γ

Ctor
K(−→τ ) ∈ Δ(D)

−−−−−−−−→
Γ � P : τ |Γ ′

Γ � KD(
−→
P ) : D| ⋃ −→

Γ ′

Fig. 2. Underlying typing for expressions and patterns

In addition to functions and applications, we have a form KD(
−→
t ) which

applies the data constructor K to the argument sequence
−→
t to make a term of

type D. Conversely, the form match t′ with {−−−−→
P ⇒ t;} chooses the first branch

Pi ⇒ ti; for which t′ matches pattern Pi, and then evaluates ti after binding the
matching parts of t′ to the variables of Pi. We use Haskell-style shadowing for
non-linear patterns: e.g. (x, x) matches any pair, and binds the second element
to x. We omit advanced matching features, such as guarded matches, since these
can be desugared into nested simple matches. We use type environments Γ store
free type variables and types for program variables. We assume a fixed datatype
environment Δ that stores the names of each datatype D, along with the name
and argument-types of each constructor of D.

2.2 The Underlying Type System

The underlying type system is in the style of Damas and Milner [13], where
monomorphic types are separated from polymorphic type schemes. The declar-
ative typing rules for the underlying system are standard (Fig. 2). We do not
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check the exhaustiveness of matches, as this overly-conservative check is pre-
cisely what we aim to replace. The analysis we present below operates on these
underlying typing derivations, so each expression has a known underlying type.

V ∈ SetVariable

Set constraints

C ::= E1 ⊆ E2 | C1 ∧ C2 | C1 ∨ C2 | ¬C

Annotated Types

T ::= XE | DE | (T1 → T2)E

Set expressions

E ::= V | E1 ∪ E2 | E1 ∩ E2 | ¬E

| KD(
−→
E ) | K−i

D (E) | � | ⊥
Annotated Schemes

S ::= ∀−→
X,

−→
V . C ⇒ T

Fig. 3. λMatch: annotations

2.3 Annotated Types

For our analysis, we annotate types with set expressions (Fig. 3). We define their
semantics formally in Sect. 3, but intuitively, they represent possible shapes that
the value of an expression might have in some context. We have variables, along
with intersection, union and negation, and � and ⊥ representing the sets of
all and no values respectively. The form KD(E1 . . . Ea) denotes applying the
arity-a constructor K of datatype D to each combination of values from the sets
denoted by

−→
E . Conversely, K−i

D (E) denotes the ith projection of K: it takes the
ith argument of each value constructed using K from the set denoted by E.

Set constraints then specify the inclusion relationships between those sets.
These are boolean combinations of atomic constraints of the form E1 ⊆ E2. Our
analysis uses these in annotated type schemes, to constrain which annotations a
polymorphic type accepts as instantiations. The idea is similar to Haskell’s type-
class constraints, and we adopt a similar notation. Since each syntactic variant
has a top-level annotation E, we use TE to denote an annotated type T along
with its top-level annotation E. Annotated types TE replace underlying types τ
in our rules, and our analysis emits constraints on E that dictate its value. We
note that boolean operations such as =⇒ and ⇐⇒, can be decomposed into
∧, ∨, and ¬. Similarly, we use E1 = E2 as a shorthand for E1 ⊆ E2 ∧ E2 ⊆ E1,
and T and F as shorthands for ⊥ ⊆ � and � ⊆ ⊥ respectively.

2.4 The Analysis

We present our pattern match analysis in Fig. 4. The analysis is phrased as an
annotated type system in the style of Nielson and Nielson [32]. The judgment
Γ |Cp � t : TE | C says that, under context Γ , if Cp holds, then t has the
underlying type of T and can take only forms from E, where the constraint C
holds. Cp is an input to the judgment called the path constraint, which must
hold for this part of the program to have been reached. The set expression E
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Fig. 4. Pattern match analysis

and constraint C are outputs of the judgment, synthesized by traversing the
expression. We need an external solver for set constraints to find a value for
each variable V that satisfies C. This is precisely what we define in Sect. 3. We
write the conversion between patterns and set-expressions as P[[P ]].

The analysis supports higher-order functions, and it is polyvariant : refined
types use polymorphism, so that precise analysis can be performed at
each instantiation site. A variant of Damas-Milner style inference with let-
generalization is used to generate these refined types. Moreover, the analysis
is push-button: no additional input need be provided by the programmer. It is
sound but conservative: it accounts for all possible values an expression may
take, but may declare some matches unsafe when they will not actually crash.
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T1 ≡ T2 := C (Type equating)

(T1 → T ′
1)

E1 ≡ (T2 → T ′
2)

E2 := (T1 ≡ T2) ∧ (T ′
1 ≡ T ′

2) ∧ E1 = E2

XE1 ≡ XE2 := E1 = E2 DE1 ≡ DE2 := E1 = E2 T1 ≡ T2 := F otherwise

freshen(T ) := T (Annotation freshening where V fresh)

freshen(XE) := XV freshen(DE) := DV

freshen((T1 → T2)E) := (freshen(T1) → freshen(T2))V

P[[P ]] := E (Set expression matched by pattern )

P[[x]] := � P[[K(
−→
P )]] := K(

−−−→P[[P ]])

Pi(
−→
P ) := C (Not-yet covered pattern at branch i)

P0(P0 . . . Pn) = � Pi(P0 . . . Pn) = ¬P[[P0]] ∩ . . . ¬P[[Pi−1]] when 0 < i ≤ n

Fig. 5. Auxiliary metafunctions

The lack of polymorphic recursion is a source of imprecision, but a necessary one
for preserving termination without requiring annotations from the programmer.

We generate two sorts of constraints. First, we constrain what values expres-
sions could possibly take. For example, if we apply a constructor KD(

−→
t ), and

we know the possible forms
−→
E for

−→
t , then in any context, this expressions can

only ever evaluate to values in the set K(
−→
E ). Second, we generate safety con-

straints, which must hold to ensure that the program encounters no runtime
errors. Specifically, we generate a constraint that when we match on a term t,
all of its possible values are covered by the left-hand side of one of the branches.

Variables: Our analysis rule AVar for variables looks up a scheme from Γ .
However, typing schemes now quantify over type and set variables, and carry a
constraint along with the type. We then take instantiation of type variables as
given, since we know the underlying type of each expression. Each set variable
is instantiated with a fresh variable. We then give x the type from the scheme,
with the constraint that the instantiated version of the scheme’s constraint must
hold if this piece of code is reachable (i.e. if the path condition is satisfiable).

Functions and Applications: The analysis rule ALam for functions is
straightforward. We generate a fresh set variable with which to annotate the
argument type in the environment, and check the body in this extended envi-
ronment. Since functions are not algebraic datatypes and cannot be matched
upon, we emit � as a trivial set of possible forms for the function itself.

We know nothing about the forms that the parameter-type annotation V
may take, since it depends entirely on what concrete argument is given when
the function is applied. However, when checking the body, we may encounter a
pattern match that constraints what values V may take without risking runtime
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failure. So our analysis may emit safety constraints involving V , but it will not
constrain it otherwise. Generally, (TE1

1 → TE2
2 ) means that the function can

safely accept any expression matching E1, and may return values matching E2.
Applications are analyzed using AApp. Annotations and constraints for the

function and argument are both generated, and we emit a constraint equating
the argument’s annotated type with its domain, under the assumption that the
path condition holds and this function call is actually reachable. The metafunc-
tion TE1

1 ≡ T
E′

1
1 (defined in Fig. 5) traverses the structure of the argument and

function domain type, constraining that parallel annotations are equal. This
traversal is possible because the underlying type system guarantees that the
function domain and argument have identical underlying types.

Constructors: As we mentioned above, applying a constructor to arguments
can only produce a value that is that constructor wrapped around its argu-
ment’s values. The rule ACtor for a constructor K infers annotations and con-
straints for each argument, then emits those constraints and applies K to those
annotations.

Pattern Matching: It is not surprising that in a pattern match analysis, the
interesting details are found in the case for pattern matching. The rule AMat
begins by inferring the constraint Cdsc and annotation E for the discriminee t.

For each branch, we perform two tasks. First, for each branch’s pattern Pi,
we use an auxiliary judgment to generate the environment Γi binding the pat-
tern variables to the correct types and annotations, using projection to access
the relevant parts. For P1, the annotation of the whole pattern is E i.e. the
annotation for t. However, the first-match semantics mean that if we reach Pi,
then the discriminee does not match any of P1 . . . Pi−1. So for each Pi, we extend
the environment with annotations obtained by intersecting E with the negation
of all previous patterns, denoted Pi(

−→
P ) (Fig. 5).

Having obtained the extended environment for each branch, we perform our
second task: we check each right-hand-side in the new environment, obtaining an
annotation E′

i. When checking the results, we augment the path constraint with
Ci, asserting that some possible input matches this branch’s pattern, obtained
via P[[]] (Fig. 5), but none of the previous. This ensures that safety constraints
for the branch are only enforced when the branch can actually be taken.

To determine the annotation for the entire expression, we could naively take
the union of the annotations for each branch. However, we can be more precise
than this. We generate a fresh variable V for the return annotation, and constrain
that it contains the result E′

i of each branch, provided that it Ci holds, and it is
possible we actually took that branch. This uses implication, justifying the need
for a solver that supports negation and disjunction.

Finally, we emit a safety constraint Csaf , saying that if it is possible to reach
this part of the program (that is, if Cp holds), then the inputs to the match must
be contained within the values actually matched.
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Let-Expressions: Our ALet rule deals with the generalization of types into
type schemes. This rule essentially performs Damas-Milner style inference, but
for the annotations, rather than the types. When defining x = t1, we check t1
in a context extended with its type variables, and a monomorphic version of its
own type. The metafunction freshen takes the underlying type for t1 and adds
fresh annotation variables across the entire type. This allows for monomorphic
recursion. The metafunction ≡ constrains the freshly generated variables on T ′

to be equal to the corresponding annotations on T1 obtained when checking t1.
Again this traversal is possible because the underlying types must be identical.
Once we have a constraint for the definition, we check that its constraint is in
fact satisfiable, ensuring that none of the safety constraints are violated. In our
implementation, this is where the call to the external solver is made.

To generate a type scheme for our definition, we generalize over all variables
free in the inferred annotation or constraint but not free in Γ or Cp. Finally, we
check the body of the let-expression in a context extended with the new vari-
able and type scheme. Because let-expressions are where constraints are actually
checked, we assume that all top-level definitions of a program are wrapped in
let-declarations, and are typed with environment · and path constraint T.

Example - Safety Constraints: To illustrate our analysis, we return to the
Ngon code from Sect. 1. We assume that all Double terms are given annotation
�. Then, the simpleArea function would be given the annotated type scheme
∀V1, V2. C1 ∧ C2 ∧ C3 ⇒ NgonV1 → DoubleV2 , where

C1 := V1 ⊆ Square(�) ∪ Circle(�) C2 := (V1 ∩ Square(�) �⊆ ⊥) =⇒ � ⊆ V2

C3 := ((V1 ∩ Circle(�) ∩ ¬Square(�)) �⊆ ⊥) =⇒ � ⊆ V2

C1 is the Csaf generated by the AMat rule, saying that the function can safely
accept input from Square(�) ∪ Circle(�). C2 and C3 are conjuncts of Cres,
describing how, if the input overlaps with Square then the output can be any-
thing, and that if the input overlaps with Circle but not Square, then the output
can be anything. C2 and C3 are trivially satisfiable: Circle(�)∩¬Square(�) is
Circle(�), so they are essentially saying that V2 must be �.

When we call simpleArea from area, we are in the branch after the Ngon

case has been checked. The scheme for simpleArea is instantiated with the path
constraint V4 ⊆ � ∩ ¬(Ngon(�)), where V4 is the annotation for shape, because
it is called after we have a failed match with Ngon sides.

Suppose we instantiate V1, V2 with fresh V ′
1 , V

′
2 . The call to simpleArea creates

a constraint that V4 = V ′
1 . Taking this equality into account, the safety constraint

is instantiated to V4 ⊆ � ∩ ¬(Ngon(�)) =⇒ V4 ⊆ (Square(�) ∪ Circle(�)).
This is satisfiable for any value of shape, so at every call to area the analysis sees
that the safety constraint is satisfied. If we add a Triangle constructor, then the
constraint is unsatisfiable any time V4 is instantiated to a set with Triangle.

Example - Precision on Results of Matching: To illustrate the precision of
our analysis for the results of pattern matching, we turn to a specialized version
of the classic map function:
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intMap : (Int -> Int) -> List Int -> List Int ->

intMap f l = case l of

Nil -> Nil

Cons h t -> Cons (f h) (intMap f t)

Suppose we have concrete arguments f : (IntV11 → IntV12)V1 and
l : (ListInt)V2 . The safety constraint for the match is that V2 ⊆ Nil ∪
Cons(�,�), which is always satisfiable since the match is exhaustive. The result
of the case expression is given a fresh variable annotation V3. From the first
branch, we have the constraint that V2 ∩ Nil �⊆ ⊥ =⇒ Nil ⊆ V3.

The analysis is more interesting for the second branch. The bound pattern
variables h and t are given annotations Cons−1(V2) and Cons−2(V2) respec-
tively, since they are the first and second arguments to Cons. Because our
recursion is monomorphic, the recursive call intMap f t generates the trivial
constraint (V2 ∩ ¬Nil ∩ Cons(�,�)) �⊆ ⊥ =⇒ V1 ⊆ V1, and the more interest-
ing constraint (V2 ∩ ¬Nil ∩ Cons(�,�)) �⊆ ⊥ =⇒ Cons−2(V2) ⊆ V2. This sec-
ond constraint may seem odd, but it essentially means that without polymorphic
recursion, our program’s pattern matches must account for any length of list.
This is where having set constraints is extremely useful: if we were to use some
sort of symbolic execution to try to determine a single logical value that l could
take, then treating the recursive call monomorphically would create an impossi-
ble equation. But the set {Cons(a, Nil), Cons(a, Cons(b, Nil)), . . .} satisfies our
set constraints, albeit in an imprecise way.

When checking the body, suppose that V5 is the fresh variable ascribed to the
return type of intMap. For the result of the second branch, we have the constraints
V2 ∩ ¬Nil∩ Cons(�,�) �⊆ ⊥ =⇒ Cons(V12, V5) ⊆ V3. This essentially says that
if the input to the function can be Cons, then so can the output, but if the input
is always Nil, then this branch contributes nothing to the overall result. Finally,
we have a constraint V5 = V3, generated by the metafunction ≡.

Our result annotation V3 is constrained by (V2 ∩ Nil �⊆ ⊥ =⇒ Nil ⊆
V3) ∧ (V2 ∩ ¬Nil ∩ Cons(�,�) �⊆ ⊥ =⇒ Cons(V12, V3) ⊆ V3), capturing
how intMap returns nil empty result for nil input, and non-nil results for non-nil
input.

3 Translating Set Constraints to SMT

While the above analysis provides a fine-grained way to determine which pattern
matches may not be safe, it depends on the existence of an external solver to
check the satisfiability of the resulting set constraints. We provide a simple,
performant solver by translating set constraints into an SMT formula.

3.1 A Primer in Set Constraints

We begin by making precise the definition of the set constraint problem. Consider
a set of (possibly 0-ary) functions F = {fa1

1 , . . . , fan
n }, where each a ≥ 0 is the

arity of the function fa
i . The Herbrand Universe HF is defined inductively: each



Set Constraints, Pattern Match Analysis, and SMT 131

f0
i ∈ F is in HF , and if a > 0 and h1, . . . , ha are in HF , then fa

i (h1, . . . , ha)
is in HF . (We write HF as H when the set F is clear.) Each fa

i is injective,
but is otherwise uninterpreted, behaving like a constructor in a strict functional
language. We assume all terms are finite, although similar analyses can account
for laziness and infinite data [28].

This allows us to formalize the semantics of set expressions. The syntax is
the same as in Fig. 3, although we use the notation fa

i (
−→
E ) instead of KD(

−→
E )

to denote that we are using arbitrary function symbols from some Herbrand
universe H, instead of specific constructors for a datatype. Given a substitu-
tion σ : V → P(H), we can assign a meaning H[[E]]σ ⊆ H for an expression E
by mapping variables to their substitutions, and applying the corresponding set
operations. The full semantics are given in Fig. 6. Note that the expressions on
the left are to be interpreted as syntax, whereas those on the right are mathe-
matical sets.

H[[⊥]]σ = ∅
H[[�]]σ = H
H[[V ]]σ = σ(V )

H[[¬E1]]σ = H \ H[[E1]]σ

H[[E1 ∩ E2]]σ = H[[E1]]σ ∩ H[[E2]]σ
H[[E1 ∪ E2]]σ = H[[E1]]σ ∪ H[[E2]]σ

H[[fa
i (E1, . . . , Ea)]]σ = {fa

i (h1, . . . , ha)

| h1 ∈ H[[E1]]σ, . . . , ha ∈ H[[Ea]]σ}

Fig. 6. Semantics of set expressions

A set constraint atom A is a constraint of the form E1 ⊆ E2. These are also
referred to as positive set constraints in previous work. A set constraint literal
L is either an atom or its negation ¬(E1 ⊆ E2), which we write as E1 �⊆ E2.

Constraints which contain negative literals are called negative set constraints.
An unrestricted set constraint, denoted by metavariable C, is a boolean combi-
nation (i.e. using ∧, ∨ and ¬) of set constraint atoms, as we defined in Fig. 3.
For example, (X ⊆ Y =⇒ Y ⊆ X) ∧ (Y �⊆ Z) is an unrestricted set constraint.

Given a set constraint C, the satisfiability problem is to determine whether
there exists a substitution σ : V → P(H) such that, if each atom E1 ⊆ E2 in C
is replaced by the truth value of H[[E1]]σ ⊆ H[[E2]]σ, then the resulting boolean
expression is true. Since solving for arbitrary boolean combinations of set con-
straints is difficult, we focus on a more restricted version of the problem. The
conjunctive set constraint problem for a sequence of literals

−→
L is to find a vari-

able assignment that causes
∧ −→

L to be true. We explain how to extend our
approach to arbitrary boolean combinations in Sect. 3.7.

One can see that the Herbrand universe H closely matches the set of terms
that can be formed from a collection of algebraic datatypes, and that allowing
negative constraints and arbitrary boolean expressions satisfies the desiderata
for our pattern match analysis.
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3.2 Projection

Many analyses (including ours) on a notion of projection. For a set expression E,
we denote the jth projection of E for function fa

i by f−j
i (E). For a substitution

σ, we have H[[f−j
i (E)]]σ = {hj | fa

i (h1, . . . , hj , . . . ha) ∈ E}.
While we don’t explicitly include projections in our grammar for set expres-

sions, we can easily express them using boolean formulae. Given some constraint
C[f−j

i (E)], we can replace this with:

C[Xj ] ∧ (E ∩ fa
i (�, . . . ,�)) = fa

i (X1, . . . , Xj , . . . Xa) ∧ (E = ⊥ ⇐⇒ Xj = ⊥)

where each Xk is a fresh variable. The first condition specifies that our variable
holds the jth component of every f(

−→
h ) in E. The second condition is necessary

because fa
i (X1, . . . , Xj , . . . Xa) = ⊥ if any Xk is empty, so any value of Xj

vacuously satisfies E′ = fa
i (X1, . . . , Xj , . . . Xa) if E′ and some Xi are empty.

M ∈ M (Monadic formulae)
E [[E]] = M (Predicates for set expressions)

E [[�]] = ∀x. P�(x) | E [[⊥]] = ∀x. ¬P⊥(x) | E [[X]] = T

E [[E1 ∩ E2]] = ∀x. PE1∩E2(x) ⇐⇒ (PE1(x) ∧ PE2(x))

E [[E1 ∪ E2]] = ∀x. PE1∪E2(x) ⇐⇒ (PE1(x) ∨ PE2(x))

E [[¬E1]] = ∀x. P¬E1(x) ⇐⇒ ¬PE1(x)

E [[fa
i (E1, . . . , Ea)]] = (∀x1 . . . xa. Pfa

i (E1,...,Ea)(f
a
i (x1, . . . , xa)) ⇐⇒ PE1(x1) ∧ . . . PEa(xa))

(
∧

ga′
j �=fa

i

∀x1 . . . xa′Pfa
i (E1,...,Ea)(g

a′
j (x1, . . . , x

′
a)) ⇐⇒ F)

L[[L]] = M (Literal predicates)

L[[E1 ⊆ E2]] = ∀x. PE1(x) =⇒ PE2(x)

L[[E1 �⊆ E2]] = ∃y. PE1(y) ∧ ¬PE2(y)

L[[
∧ −→

L ]] = M (Conjunction)

L[[
∧ −→

L ]] = E [[E1]] ∧ . . . ∧ E [[En]] ∧
∧ −−−→L[[L]]

where E1 . . . En all subexpressions of
−→
L

Fig. 7. Translating set constraints to monadic logic

3.3 Set Constraints and Monadic Logic

The first step in our translation is converting a conjunction of set constraint liter-
als into a formula in first-order monadic logic, for which satisfiability is decidable.
We then translate this into a search for a solution to an SMT problem over UF,
the theory of booleans, uninterpreted functions and first-order quantification. We
gradually build up our translation, first translating set constraints into monadic
logic, then translating monadic logic into SMT, then adding optimizations for
efficiency. The complete translation is given in Sect. 3.6.

Monadic first order logic, sometimes referred to as the monadic class,
consists of formulae containing only unary predicates, boolean connectives,
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and constants. Bachmair et al. [7] found a translation from a conjunction
∧ −→

L
of positive set constraint atoms to an equisatisfiable monadic formula, which
was later extended to negative set constraints with equality [11]. We summarize
their procedure here, with a full definition in Fig. 7. For each sub-expression
E of

∧ −→
L , we create a predicate PE(x), denoting whether an element x is

contained in E. Along with this, the formula E [[E]] gives the statement that
must hold for PE to respect the semantics of set expressions. This is similar
to the Tsieten transformations used to efficiently convert arbitrary formulae
to a normal form [38]. Given PE(x) for each E, we can represent the con-
straint E1 ⊆ E2 as ∀x. (PE1(x) =⇒ PE2(x)). Similarly, E1 �⊆ E2 corresponds
to ∃x. (PE1(x) ∧ ¬PE2(x)).1

The key utility of having a monadic formula is the finite model property [1,29]:

Theorem 1. Let T be a theory in monadic first-order logic with N predicates.
Then, for any sentence S in T , there exists a model satisfying S if and only if
there exists a model satisfying S with a finite domain of size at most 2N .

The intuition behind this is that if there exists a model satisfying S, then we
can combine objects that have identical truth values for each predicate. This is
enough to naively solve set constraints: we convert them into formulae monadic
logic, then search the space of all models of size up to 2N for one that satisfies
the monadic formulae. However, this is terribly inefficient, and disregards much
of the information we have from the set constraints.

Example - Translation: Consider C3 from the safety constraint example in
Sect. 2. We see that L[[((V1 ∩ Circle(�) ∩ ¬Square(�)) �⊆ ⊥) =⇒ � ⊆ V2]] is
(∃y. PV1∩Circle(�)∩¬Square(�)(y) ∧ ¬F) =⇒ (∀x.T =⇒ PV2(x)). Applying the E [[]]
equivalences for ∩,∪ and ¬ with basic laws of predicate logic gives us:

(∃y. PV1(y) ∧ PCircle(�)(y) ∧ ¬PSquare(�)(y)) =⇒ ∀x. PV2(x).

Finally, adding the E [[]] conditions for functions gives us:

(∀x. PCircle(�)(fCircle(x))) ∧ (∀x.¬PCircle(�)(fSquare(x)))
∧ (∀x. PSquare(�)(fSquare(x))) ∧ (∀x.¬PSquare(�)(fCircle(x)))
∧ ((∃y. PV1(y) ∧ PCircle(�)(y) ∧ ¬PSquare(�)(y)) =⇒ ∀x. PV2(x)).

C3 is satisfiable iff there is a model defining predicates PV1 , PV2 , PCircle(�) and
PSquare(�), and functions fCircle, fSquare in which the above formula is true.

3.4 Monadic Logic in SMT

To understand how to translate monadic logic into SMT, we first look at what
exactly a model for a monadic theory is. Suppose B = {T,F} is the set of
booleans, which we call bits, and say a bit is set if it is T. For our purposes,
1 The original translation transformed constants and functions into existential vari-

ables. We skip this, since SMT supports uninterpreted functions and constants.
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a model consists of a set D, called the domain, along with interpretations IP :
D → B for each predicate P and fa

i : Da → D for each function, which define
the value of P (x) and f(x1, . . . , xa) for each x, x1, . . . , xa ∈ D. A naive search for
a satisfying model could guess M ≤ 2N , set D = {1 . . . M}, and iterate through
all possible truth assignments for each IP , and all possible mappings for each
fa

i , searching for one that satisfies the formulae in the theory.
However, we can greatly speed up this search if we instead impose structure

on D. Specifically, if we have predicates P1 . . . PN , we take D ⊆ BN : each element
of our domain is a boolean sequence with a bit for each sub-expression E. The
idea is that each element of BN models a possible equivalence class of predicate
truth values. For b ∈ D, we want bi to be T when PEi

(b) holds. This means that
our maps IP are already fixed: IPEi

(b) = bi i.e. the ith bit of sequence b.
However, with this interpretation, BN is too large to be our domain. Suppose

we have formulae Ei and Ej where Ej = ¬Ei. Then there are sequences in Bn

with both bits i and j set to T. To respect the consistency of our logic, we need
D to be a subset of BN that eliminates such inconsistent elements.

Suppose that we have a function D : BN → B, which determines whether
a bit-sequence is in the domain of a potential model. If L[[

∧ −→
L ]] contains the

formula ∀x1 ∈ D . . . ∀xn ∈ D.Φ[x1 . . . xn], for some Φ, we can instead write:

∀b1 ∈ BN . . . ∀bn ∈ BN .D(b1) ∧ . . . ∧ D(bn) =⇒ Φ[b1 . . . bn].

That is, our domain can only contain values that respect the semantics of set
expressions. Similarly, if L[[

∧−→
L ]] contains ∃x. Φ[x], we can write ∃b ∈ BN .D(b)∧

Φ[b]. Since all functions in a model are implicitly closed over the domain, we also
specify that ∀−→

b ∈ (Bn)a.
−−→
D(b) =⇒ D(fa

i (
−→
b )). This ensures that our formulae

over boolean sequences are equivalent to the original formulae.
This is enough to express L[[

∧ −→
L ]] as an SMT problem. We assert the exis-

tence of D : BN → B along with fa
i : (BN )a → BN for each function in our

Herbrand universe. We modify each formula in L[[
∧ −→

L ]] to constrain a boolean
sequences variable bi ∈ Bn in place of each variable xi ∈ D as described above.
We add D qualifiers to existentially and universally quantified formulae, and
replace each PEi

(xj) with the ith bit of bj . We add a constraint asserting that
each fa

i is closed over the values satisfying D. The SMT solver searches for values
for all existential variables, functions, and D that satisfy this formula.

3.5 Reducing the Search Space

While this translation corresponds nicely to the monadic translation, it has more
unknowns than are needed. Specifically, D will always reject boolean sequences
that violate the constraints of each E [[Ei]]. For example, the bit for PE1∩E2 in b
must always be exactly PE1(b) ∧ PE2(b). In fact, for each form except function
applications and set variables, the value of a bit for an expression can be recur-
sively determined by values of bits for its immediate subexpressions (Fig. 8).
This means that our boolean sequences need only contain slots for expressions
of the form X or fa

i (E1, . . . Ea), shrinking the problem’s search space.
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P�(b) := T

PX(b) := bit for X in b

Pfa
i (E1,...Ea)(b) := bit for fa

i (E1, . . . Ea) in b

P¬E1(b) := ¬PE1(b)

P⊥(b) := F

PE1∩E2(b) := PE1(b) ∧ PE2(b)

PE1∪E2(b) := PE1(b) ∨ PE2(b)

Fig. 8. Recursive definition of predicates for the SMT translation

What’s more, we now only need to include the constraints from E [[]]
for expressions of the form X or fa

i (E1, . . . Ea), since the other constraints
hold by definition given our definitions of each PE . Similarly, our constraints
restrict the freedom we have in choosing fa

i . Specifically, we know that
Pfa

i (E1,...,Ea)(f
a
i (b1, . . . , ba)) should hold if and only if PEi

(bi) holds for each
i ≤ a. Similarly, we know that Pfa

i (E1,...,Ea)(g
a′
j (b1, . . . , ba′)) should always be F

when f �= g. So for each fa
i , it suffices to find a mapping from inputs b1, . . . , ba

to the value of PX(fa
i (b1, . . . , ba)) for each variable X. This reduces the number

of unknowns in the SMT problem.

3.6 The Complete Translation

Given a conjunction of literals
∧ −→

L , let X1, . . . Xk, Ek+1, . . . EN be the sequence
of variable and function-application sub-expressions of

−→
L . We define PE(b) for

each sub-expression E of
−→
L as in Fig. 8.

As unknowns, we have:

• a function D : BN → B;
• for each negative literal Ei �⊆ E′

i, an existential variable yi ∈ BN ;
• for each function fa

i and each variable X ∈ −→
L , a function fa

iX : (BN )a → B,
which takes a sequences of N bits, and computes the value of the bit for PX

in the result.

We define the following known functions:

• fa
ifa

i (E1,...,Ea)
: (BN )a → B for each fa

i and each sub-expression of the form
fa

i (E1, . . . , Ea), where fa
ifa

i (E1,...,Ea)
(b1, . . . , ba) = PE1(b1) ∧ . . . ∧ PEa

(ba);
• fa

iga′
j (E1,...,Ea′ )

: (BN )a → B returning F, for each fa
i and each sub-expression

of the form ga′
j (E1, . . . , Ea′) where f �= g;

• fa
iSMT : (BN )a → BN for each fa

i , where fa
iSMT (b1, . . . , ba) is the sequence:

fa
iX1

(b1, . . . , ba) . . . fa
iXk

(b1, . . . , ba)fa
iEk+1

(b1, . . . , ba) . . . fa
iEN

(b1, . . . , ba)

We assert that the following hold:

• for each negative constraint Ei �⊆ E′
i with corresponding existential variable

yi, that D(yi) ∧ PEi
(yi) ∧ ¬PE′

I
(yi) holds;

• ∀x ∈ BN . (D(x) ∧ PEi
(x)) =⇒ PE′

i
(x) for each positive Ei ⊆ E′

i;
• ∀x1 . . . xa. (

∧
j=1...a D(xj)) =⇒ D(fa

iSMT (x1, . . . , xa)) for each function fa
i

A solution to these assertions exists iff the initial set constraint is satisfiable.
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3.7 Arbitrary Boolean Combinations

Allowing arbitrary boolean combinations of set constraints enriches our pattern
match analysis and to allow us to use projections. To do this, for each atom Ei ⊆
E′

i in a constraint C, we introduce a boolean �i, which the SMT solver guesses.
We modify our translation so that L[[Ei ⊆ E′

i]] = �i =⇒ ∀x. (PEi
(x) =⇒

PE′
i
(x)) and L[[Ei �⊆ E′

i]] = ¬�i =⇒ (∃y. PEi
(y) ∧ ¬PE′

i
(y)). So li is true iff

Ei ⊆ E′
i. Finally, we assert the formula that is C where each occurrence of

Ei ⊆ E′
i is replaced by �i and Ei �⊆ E′

i is replaced by ¬�i. Thus, we force our
SMT solver to guess a literal assignment for each atomic set constraint, and
then determine if it can solve the conjunction of those literals. When �i is false,
then L[[Ei ⊆ E′

i]] will be vacuously true, with the opposite holding for negative
constraints.

4 Evaluation and Discussion

We implemented our translation [18] atop Z3 4.8.5 with mbqi and UFBV. On
an i7-3770 CPU 32 GB RAM machine, we compared the running time of Elm’s
exhaustiveness check with an implementation of our analysis [17].

Table 1. Compilation time (ms) of exhaustiveness versus pattern match analysis

Library EX-TN PMA-TN EX-FP PM-FP EX-TP PM-TP

elm-graph 50 168 45 178 44 173

elm-intdict 42 115 38 5121* 35 113

elm-interval 40 69 39 1217* 36 1261

In order to make the analysis practical, we implemented several optimizations
on top of our analysis. Trivially satisfiable constraints were removed, and obvious
simplifications were applied to set expressions. When a match was exhaustive,
its safety constraint was omitted, and since non-safety constraints should be
satisfiable, calls to Z3 were only made for non-empty safety constraint lists. A
union-find algorithm was used to combine variables constrained to be equal, and
intermediate variables were merged. Since the constraint of an annotated scheme
is copied at each instantiation, these ensured that the size of type annotations
did not explode. For simplicity, annotated types were not carried across module
boundaries: imported functions were assumed to accept any input and always
have return annotation �. Similarly, a conservative approximation was used in
place of the full projections when determining pattern variables’ annotations.

We ran our tests on the Elm graph [21], intdict [22], and interval [9] libraries.
Each of these initially contained safe partial matches, but were modified to return
dummy values in unreachable code when Elm 0.19 was released. The results of
the evaluation are given in Table 1. Runs with the prefix EX used the exhaus-
tiveness check of the original Elm compiler, while those marked PMA used
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our pattern-match analysis. We tested the compilers on three variants of each
library, a true-negative (-TN) version in which all matches were exhaustive, a
false-positive (-FP) version in which a match was non-exhaustive but safe, and a
true-positive (-TP) version in which a required branch was missing and running
the program would result in an error. Cases marked with an asterisk (*) are
those which were rejected by the Elm compiler, but which our analysis marked
as safe. Notably, the elm-graph library relied on the invariant that a connected
component’s depth-first search forest has exactly one element, which was too
complex for our analysis to capture.

Our analysis is slower than exhaustiveness checking in each case. However, the
pattern match analysis requires less than one second in the majority of cases, and
in the worst case requires only six seconds. The slowdown was most prominent
in the false-positive cases that our analysis marks as safe, where Z3 was not able
to quickly disprove the satisfiability of the constraints. Conversely, in the -TN
cases where Z3 was not called, our analysis cause very little slowdown. Partial
matches tend to occur rarely in code, so we feel this is acceptable performance
for a tool integrated into a compiler.

Future Work: While our translation of set constraints to SMT attempts to
minimize the search space, we have not investigated further optimizations of
the SMT problem. The SMT solver was given relatively small problems. Few
programs contain hundreds of constructors or pattern match cases. Nevertheless,
more can be done to reduce the time spent in the SMT solver for larger problems.
Solvers like CVC4 [8] are highly configurable with regards to their strategies for
solving quantification. Fine tuning the configuration could decrease the times
required to solve our problems without requiring a custom solver. Conversely, a
solver specialized to quantified boolean arithmetic could yield faster results.

Likewise, type information could be used to speed up analysis. While we have
modeled patterns using the entire Herbrand space, values of different data types
reside in disjoint universes. Accounting for this could help partition one problem
with many variables into several problems with few variables.

Related Work - Set Constraints: The modern formulation of set constraints
was established by Heintze and Jaffar [23]. Several independent proofs of decid-
ability for systems with negative constraints were given, using a number-theoretic
reduction [2,37], tree automata [20], and monadic logic [11]. Charatonik and
Podelski established the decidability of positive and negative constraints with
projection [34]. The first tool aimed at a general, practical solver for set con-
straints was BANE [4], which used a system of rewrite rules to solve a restricted
form of set constraints [5]. Banshee improved BANE’s performance with code
generation and incremental analysis [26]. Neither of these implementations allow
for negative constraints or unrestricted projections. Several survey papers give
a more in-depth overview of set constraint history and research [3,24,33].

Related Work - Pattern Match Analysis: Several pattern match analyses
have been presented in previous work. Koot [27] presents a higher-order pattern
match analysis as a type-and-effect system, using a presentation similar to ours.
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This work was extended by Koot and Hage [28], who present an analysis based
on higher-order polymorphism. This improves the precision of the analysis, but
suffers from the same problems as our regarding polymorphic recursion. All
of these efforts use restricted versions of set constraints, and do not allow for
unrestricted projection, negation, and boolean combinations of constraints.

Previous versions of type inference for pattern matching have utilized condi-
tional constraints [6,35,36], similar to our path constraints. Castagna et al. [10]
describe a similar system, albeit more focused on type-case than pattern match-
ing. Catch [30] uses a similar system of entailment, with a restricted constraint
language to ensure finiteness. These systems are similar in expressive power to
the constraints that we used in our final implementation, but our underlying
constraint logic is more powerful. There are restrictions on where unions and
intersections can appear in conditional constraints [6], and there is not full sup-
port for projections or negative constraints. In particular, negative constraints
allow for analyses to specify that a function’s input set must not be empty, so
that the type error can point to the function definition rather than the call-site,
avoiding the “lazy” inference described by Pottier [36]. While these have not
been integrated into our implementation, our constraint logic makes it easy to
incorporate these and other future improvements.

Another related line of work is datasort refinements. [14–16,19]. As with our
work, the goal of datasort refinements is to allow partial pattern matches while
eliminating runtime failures. This is achieved by introducing refinements of each
algebraic data type corresponding to its constructors, possibly with unions or
intersections. Datasort refinements are presented as a type system, not as a
standalone analysis, so their handling of polymorphism and recursive types is
more precise than ours. However, checking programs with refined types requires
at least some annotation from the programmer, where our analysis can check
programs without requiring additional programmer input.

Conclusion: Unrestricted set constraints previously were used only in theory.
With our translation, they can be solved in practice. SMT solvers are a key tool
in modern verification, and they can now be used to solve set constraints. We
have shown that even NEXPTIME-completeness is not a complete barrier to the
use of set constraints in practical verification.
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