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Abstract We propose a new approach for performance comparisons with a goal
similar to the DEA or efficiency analysis based on stochastic frontiers. Our approach
accounts for varying environmental factors and human resources among the units
under consideration by assuming individual production possibility sets (PPS). In
a partial equilibrium framework we assume that the observed netputs represent
an equilibrium. Thus, each DMU is efficient with respect to its individual PPS.
The netputs and estimated prices common for all units reveal characteristics of
the individual PPSs and assess the units’ relative performance. To obtain such
prices from scarce data we assume that the observed netput vectors represent a
random sample of netput vectors. We use prices which render the realizations of
individual profits or returns of the DMUs most likely. We compare the DEA

based efficiency rankings with our performance rankings. Strong rank correlation
is observed between the two. The discriminatory power of our ranking is superior
to conventional DEA methods.
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1 Introduction

Financial accounting figures, such as profit, return on assets, etc., remain widely
used and easily understandable performance measures of firms, for instance, in
annual and quarterly reports. They are commonly used for performance compar-
isons of individual firms as well. On the other hand, since the introduction of DEA

by Charnes et al. (1978), we have witnessed the success of efficiency analysis both
in academic and in field studies. DEA provides a simple framework to compare
the efficiency of units with multiple inputs and outputs. Commonly, a production
possibility set (PPS) is defined by feasible combinations of input and output
vectors, and using some distance function, the efficiency score of a DMU is based
on how far its netput vector is from the efficient frontier of the PPS. A number of
articles involve a stochastic production frontier which may be parametric or non-
parametric; see e.g., Kumbhakar and Lovell (2000), and Kumbhakar et al. (2015).

The approach we put forward does not fall in the domain of DEA or stochastic
frontier approaches but it has common goals with them: to produce for units
under consideration scores ranking their performance. It includes two important
advantages that are not present in the simple original DEA models: first, our
approach takes care of different environments and human resources of the units
and, second, has superior discriminatory power. Additional elements have been
suggested for taking care of the varying environments and lack of discriminations
in DEA models.

When productivity analysis is carried out the assumption of units functioning
in similar environments is rarely close to the true situation. In the DEA several
additions have been suggested (e.g. Ruggiero 1998; Fried et al. 2002; Banker and
Natarajan 2008) as a remedy, while our approach deals with different environments
assuming individual production possibility sets (PPS). The discriminatory power
of DEA related to the scores of the units can been increased by the inclusion of
preference information (weight restrictions or benchmarks, see Pedjara-Chaparro
et al. 1997; Halme et al. 1999), or by e.g. second stage DEA (e.g. Ramalho et al.
2010). Our approach considers value (profit) or return efficiency (for corresponding
DEA formulations see Halme et al. 1999; Kuosmanen et al. 2010, Eskelinen et al.
2014) instead of dealing with technical efficiency. The approach uses the same
prices for all units.

One major factor that apparently increases the variety of the units is the quality
of the management. Personnel economics research provides strong evidence that
a firm’s productivity and its production possibility set (PPS) can be strongly
influenced by human resources, such as management skills; for an extensive survey,
see Bloom and Van Reenen (2011). Furthermore, there are other DMU -specific
environmental factors, such as those determined by location. A single PPS may
not be entirely feasible for any DMU . Motivated by the above, we assume an
individual (possibly unobservable) PPSj for each DMUj , j = 1, . . . , n, and
propose an approach where performance scores are not based on some common
efficient frontier. To avoid confusion, our methodology is introduced as performance
analysis (PA) to distinguish it from frontier based efficiency analysis (EA).
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In a partial equilibrium framework, given prices of inputs and outputs, we assume
that each DMUj chooses the best feasible netput vector; i.e., given the resources
and environment of DMUj , the management and employers do the best within their
skills. Noting that each PPSj is assumed to account for human resource capabilities
and other differing factors of the environment for each DMUj , we assume that the
observed choices of the DMUs are equilibrium netput vectors. To obtain estimates
for equilibrium prices from the scarce data of netput vectors, we assume that the
observed netput vectors represent a random sample of netput vectors.

We use profit or return as a performance measure, which depends on the prices of
inputs and outputs. From an admissible set we look for a price vector which renders
the realizations of individual performance measures of the DMUs most likely. Such
prices are used as estimates for equilibrium prices. Optimality conditions together
with such prices and the netput vectors yield an estimated PPS for each DMUj

individually. The generally non-convex likelihood maximization problem for price
estimates is solved using an evolutionary algorithm of Deb et al. (2002).

In our performance measurement—unlike typically in DEA approaches—the
prices used for evaluation of the DMUs are common for each unit. Profit or return
is used as a performance measure. The fact that market conditions are present today
everywhere, also in public organizations, supports the one-price-for-all choice as an
approximation of real world.

Our approach suffers neither from the lack of discriminatory power often
encountered by DEA applications nor from the problems related to economies of
scale (DEA can use some tests for diagnosing the returns to scale assumption such
as suggested by Kneip et al. 2016). For instance, in the field study discussed in this
article, 28–32% of the DMUs are found efficient by DEA.

Since both the frontier based methods and our approach provide a basis of
ranking for the DMUs, we compare the rankings of a field study whose results
qualitatively represent well numerous other cases we have considered. Despite the
differences our test results of the two approaches show a strong correlation of
rankings; however, a stronger discriminatory power is achieved by PA.

The rest of the article proceeds as follows. In Sect. 2 we introduce performance
analysis (PA). Section 3 reviews traditional efficiency analysis (EA) methods to
be used for comparison with PA in Sect. 4. Section 5 concludes. Supplementary
material is in the Appendix: an evolutionary optimization procedure for price
estimation is presented in Appendix A illustrative simulated examples of PA are
in Appendix B; data and results of a field study are shown in the Appendix C.

2 Performance Analysis

We begin by introducing the economic basis of PA in Sect. 2.1. The principle of
estimating the price vector is introduced in Sect. 2.2. Thereafter we define PA

scores in Sect. 2.3, propose density estimates of profit and return in Sect. 2.4, and
discuss computational considerations in Sect. 2.5.
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2.1 Economic Foundation

Consider firms or other decision-making units DMUj for j = 1, 2, . . . , n. Because
of differing availability of resources (including human resources) and environmental
considerations, we assume a specific production possibility set PPSj for each
DMUj . In a partial equilibrium framework, consider profit maximizing producers
DMUj , j = 1, . . . , n. For each DMUj , there are m inputs and k outputs. Let
ξj ≤ 0 denote the input vector and ηj ≥ 0 the output vector of DMUj . For all j ,
let gj (ξj , ηj ) be a multi-input multi-output transformation function of DMUj such
that PPSj is defined by gj (ξj , ηj ) ≤ 0. Transformation function gj (ξj , ηj ) may
represent, for instance, CET -GD technology (e.g., Kumbhakar et al. 2015). Let
p(η) be an integrable price function (inverse demand function) facing aggregate
output supply η = ∑

j ηj and let c(ξ) be an integrable marginal cost function

(supply function) facing aggregate input demand ξ = ∑
j ξ j .

Assuming price taking behavior1 for each DMUj , consider a competitive
equilibrium. For each DMUj , the observed inputs ξj = −xj ∈ Rm+ and outputs
ηj = yj ∈ Rk+ represent equilibrium choices lying on the efficient frontier of
PPSj . For a non-negative input vector x ∈ Rm+ and a non-negative output vector
y ∈ Rk+, the netput vector z is defined by

zt = (−xt , yt ), (1)

where superscript t refers to a transpose. For all j , zj is the observed equilibrium
netput vector of DMUj with input vector xj and output vector yj .

Given an equilibrium price vector μ∗
x for inputs and μ∗

y for outputs with μ∗ =
(μ∗

x, μ
∗
y), the performance of DMUk in terms of profit or return may appear

superior to DMUj because of the differences in PPSk and PPSj . Using optimality
conditions of each DMUj , we note that price estimates for μ∗ together with inputs
xj and outputs yj imply the individual transformation functions—provided that the
number of parameters of each transformation function is not excessive—and thereby
the production possibility sets PPSj are revealed. For numerical examples, see
Appendix B.

2.2 Estimating Prices

The price function for outputs, the cost function for inputs, and transformation
functions for the DMUs are not known; in addition to observed inputs and outputs,
we may only have partial price information which imposes some conditions for

1If prices of some products or services are not observable in the market, we interpret the prices
resulting from rational expectations equilibrium.
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price relationships and possibly takes into account some price observations, for
instance. Therefore, to estimate the prices we assume that observed netput vectors
zj represent a random sample from netput vector z̃ with a multivariate pdf �(z).
While an efficient production frontier characterizes each PPSj , we need not assume
a bounded support for z̃.

Let row vector μ = (μx, μy) ∈ Rm+k denote the vector of prices with input
prices μx ∈ Rm and output prices μy ∈ Rk . The prices are expressed in monetary
units per unit of product. Partial price information is given by the admissible set of
prices P . We require μ ≥ ε, for some ε ≥ 0. Prices are restricted by other means
as well. For scaling the prices, we may fix the value of some cost and/or revenue
component. Some prices may be fixed or restricted to some interval and price ratios
may be bounded. We may also employ subjective judgment. For instance, if zj is
seen superior to zk in terms of profit in a pair-wise comparison among two netput
vectors, we may include such judgmental information in the analysis. In this case
we require μ(zj − zk) ≥ 0. We assume that the set of admissible prices P is a non-
empty compact and convex set defined by linear equations and linear inequalities.

We now turn to an estimate μ̂ of μ∗ to be used in PA. For netput vector
zt = (−xt , yt ) with x ≥ 0 and y ≥ 0, given a price vector μ = (μx, μy) ∈ P

we determine a performance measure κ = κ(μ, z). Subsequently κ stands for profit
π = r − c or return ρ = r/c with revenue r = μyy and cost c = μxx. Given
pdf �(z), price vector μ, and the definition of κ , a pdf ψ(κ;μ) of κ is implied
for each μ. Of course, ψ(κ;μ) may not have an analytical expression even if �(z)

has one. An estimate of ψ(κ;μ) is denoted by ψ̂(κ;μ) and it will be discussed
in Sect. 2.4. Prices are parameters of such a pdf and we look for prices which
make the individual performance figures of the DMUs most likely. For DMUj ,
the performance measure κj = κj (μ, zj ) depends on prices μ ∈ P whose values
we determine by log-likelihood maximization:

max
μ∈P

n∑

j=1

log ψ̂(κj (μ, zj );μ). (2)

An optimal price vector in (2) is denoted by μ̂ and it is used to evaluate the return
and value performance scores defined in Sect. 2.3.

2.3 Return and Value Performance Scores

Given an estimate μ̂ of the equilibrium price vector and the netput vector zj we can
evaluate return and profit. Thereby we may state alternative scores for return and
value performance.

For return performance analysis (RPA), return ρ plays the role of performance
measure κ . Given estimate μ̂ for the equilibrium price vector with components
μ̂x for inputs and μ̂y for outputs, the random return is ρ̃ = μ̂y ỹ/μ̂x x̃ and we
calculate the return ρ̂j of each DMUj . Then the return performance (RP ) score of
DMUj is the probability of ρ̃ ≤ ρ̂j . A score 0.68 of DMUj means that 68% of the
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realizations of z̃ are inferior or as good as DMUj or that DMUj is ranked among
top 32%; see Fig. 1.

For value performance analysis (VPA) measure κ is profit π . Given price vector
estimate μ̂, we obtain the random profit π̃ = μ̂z̃ and we calculate profit π̂j of each
DMUj . Then the value performance (V P ) score of DMUj is the probability of
π̃ ≤ π̂j .

2.4 Density Estimates of Profit and Return

Consider three cases for the distribution of netput vector z̃: Case 1, z̃ is multivariate
normal; Case 2, no distributional assumption is made; Case 3, a parametric family
of multivariate distributions is adopted. Case 1 in Sect. 2.4.1 applies to V PA but
not for RPA. In Sect. 2.4.2 of Case 2, a kernel density estimate is employed for pdf
ψ̂(κ;μ) of the performance measure κ . In Sect. 2.4.3 of Case 3, parameters of pdf
�(z) are estimated first to obtain �̂(z) and ψ̂(κ;μ) is derived thereafter. At the first
reading, one may proceed directly to Sect. 2.5.

2.4.1 Multivariate Normal Distribution of Netput Vectors

In this section we assume z̃ has a multivariate normal pdf �(z).2 Maximum
likelihood estimates z̄ and V for the expected value and the covariance matrix of
z̃ are

z̄ = 1

n

∑

j

zj

V = 1

n

∑

j

(zj − z̄)(zj − z̄)t .

Hence pdf �̂(z), the estimate of �, is the pdf N(z̄, V ), and given a price vector
μ ∈ P , the random profit π = μz̃ has the pdf N(π̄, σ 2), where π̄ = μz̄ and
σ 2 = μV μt . Therefore, in case of V PA, ψ̂(π;μ) has a normal distribution. For
each DMUj , price vector μ ∈ P and netput vector zj yield profit πj = μzj .
Thus the log-likelihood function in (2) for profits πj (omitting constant terms) is
−(n/2) log(σ 2). Hence, the estimate for price vector μ is obtained by minimizing
the variance σ 2; i.e. our problem is to find price vector μ to

min
μ∈P

μV μt . (3)

2In this case we expect that the likelihood for x �≥ 0 and y �≥ 0 is small.
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Given optimal price vector μ̂ in (3), we obtain the normal pdf for the random profit
π̃ = μ̂z, whose expected value is μ̂z̄ and variance is the optimal objective function
value in (3).

2.4.2 Kernel Density Estimate of ψ(κ;μ)

Kernel density estimate with Gaussian kernel and bandwidth δ is a standard
approach which may be adopted for estimating univariate distribution ψ ; see e.g.,
Rosenblatt (1956) and Silverman (1998). Given price vector μ and netput vectors
zj , with κj = κ(μ, zj ) we define

ψ̂(κ;μ) = 1

n

n∑

j=1

1√
2πδ

exp[− (κ − κj )
2

2δ2 ]. (4)

We employ the following result in Silverman (1998): if the pdf to be estimated is
normal with variance σ 2, then an approximate optimal bandwidth δ minimizing the
mean integrated square error is

δ = σ(4/3n)1/5. (5)

Figure 1 shows the kernel density estimate ψ̂(ρ; μ̂) with bandwidth δ = 0.088 in
the grocery stores case study of Sect. 4.

We use (5) where σ 2 is replaced with the variance σ̂ 2 of the sample {κj }. Since
σ̂ depends on prices, we need to search for a suitable bandwidth δ to satisfy (5) with
sample variance associated with the estimate μ̂ of equilibrium prices. In the case
studies in Sect. 4 such values of δ range from 0.063 to 0.158.

Fig. 1 Kernel density
estimate of probability
density function ψ̂(ρ; μ̂) of
return for RPA in the grocery
stores case study of Sect. 4.
The shaded area is the return
performance (RP ) score 0.68
of the DMU ranking eighth
among the 25 DMUs

2.5

1.5

0.5

0
0 mean return

1

2
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2.4.3 Parametric Distribution of Netput Vectors

Next, consider a family of multivariate pdfs for �(z) with some set of parameters
(a multivariate log-normal distribution, for example). The observations zj , j =
1, . . . , n, are used for parameter estimation and �̂(z) denotes the estimated pdf of
z̃. Given pdf �̂(z), price vector μ and the definition of κ , let φ(κ;μ) denote the
associated pdf of the measure κ given price vector μ.

Typically an analytical expression for φ(κ;μ) is not available, wherefore we
employ an approximation ψ̂ of φ. To derive ψ̂ , consider a family of normal pdfs
f (κ; κ ′, δ2) of κ with expected values κ ′ and variance δ2. In this family, let φ(κ ′;μ)

be the pdf of expected values κ ′. Then expected pdf at κ is

E(κ, δ) ≡ E[f (κ; κ ′, δ2)] =
∫

κ ′
f (κ; κ ′, δ2)φ(κ ′;μ)dκ ′. (6)

As δ approaches zero, f (κ; κ ′, δ2) approaches the Dirac delta function, and
therefore

lim
δ→0

E(κ, δ) = φ(κ;μ). (7)

We approximate the integral in (6) by a sample average. Using a random sample
{zs} of S independent draws from �̂(z), define κs = κ(μ, zs). Then {κs} is a random
sample of S draws from φ(κ;μ) and the sample average pdf is

ψ̂(κ;μ) = 1

S

∑

s

f (κ; κs, δ
2) = 1

S

∑

s

1√
2πδ

exp[− (κ − κs)
2

2δ2
]. (8)

By (6)–(8), for large S and small δ > 0 we have

ψ̂(κ;μ) ≈ E(κ, δ) ≈ φ(κ;μ). (9)

Equation (8) is in fact a Gaussian kernel density estimate of φ(κ;μ) based on
the sample. However, an advantage compared with (4) is that we now are better
informed in choosing the bandwidth δ. Based on pdf �̂(z), the true pdf φ(κ;μ) is
known in principle but not necessarily its analytic expression. However, sample esti-
mates for its moments can be evaluated. Therefore, we employ approximation (8)
choosing the bandwidth in such a way that the first few moments of φ(κ;μ) and
ψ̂(κ;μ) are approximately the same.

To get an idea of the precision of this approximation, we compare the moments
of κ based on the sample from φ(κ;μ) and on the approximation ψ̂(κ;μ). For
integers l > 0, m̂l = (1/S)

∑
s κl

s is the sample mean of κl and ml denotes the lth
moment of κ with respect to ψ̂(κ;μ). Using (8) and the moments of N(κs, δ

2) we
obtain (Cook 2012)
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ml = 1

S

∑

s

[l/2]∑

i=0

(
l

2i

)

(2i − 1)!! δ2i κ(l−2i)
s =

[l/2]∑

i=0

(
l

2i

)

(2i − 1)!! δ2i m̂(l−2i)

= m̂l + O(δ2), (10)

where [·] denotes rounding down and (·)!! denotes double factorial.3 The residual
term O(δ2) is of the order of δ2. For example, m1 = m̂1, m2 = m̂2 + δ2, m3 =
m̂3 + 3m̂1δ

2 m4 = m̂4 + 6m̂2δ
2 + 3δ4, etc. For large S, the sample means m̂l

approach the respective moments based on φ(κ;μ), and for small δ, the moments ml

are close to respective moments m̂l . Silverman’s rule (5) here matches the moments
unsatisfactory.

Note that for the first moments, m1 = m̂1. Let σ̂ 2 = m̂2 − m̂2
1 denote the sample

variance of κ and σ 2 = m2 − m2
1 the variance based on ψ̂(κ;μ). Their relative

difference is δ2/σ̂ 2. For computations in Sect. 4, we use sample size S = 1000 and
1/2δ2 = 105. For these choices the relative difference δ2/σ̂ 2 of the variances is less
than 0.03% in all cases considered. Furthermore, in Sect. 2.4.1

A test of approximation (8) is as follows. In the multivariate normal case for
V PA an approximation is not needed but can be used; an optimal price estimate
is obtained from (3), while near optimal prices are obtained using the sample
approximation (8) in (2). With sample size S = 1000 and 1/2δ2 = 105 we
solve (2) in two cases of Sect. 4 where the distribution of netput vectors most closely
resembles a multivariate normal distribution. These cases refer to bank branches and
grocery stores. Based on the results we rank the DMUs according to V P scores.
Then the ranking is done based on the scores obtained from the “exact” problem (3).
The Spearman rank correlation (of approximate vs. “exact”) is 1.00 both for bank
branches and grocery stores.

2.5 Price Computations

Finally, we discuss computations for obtaining a price vector estimate μ̂ from
the likelihood problem (2). In the special and simple case of V PA assuming the
netput vector z̃ is multivariate normal an optimal solution for (2) is obtained solving
the convex problem (3). For other cases we use evolutionary optimization. Using
approximation (8) for pdf ψ̂ in (2) the objective function may become highly
nonlinear with plenty of local optima; for an illustration of RPA, see Fig. 2 (right)
concerning the grocery stores case in Sect. 4. Instead, using the kernel density
estimate (4) the objective can be relatively smooth; see Fig. 2 (left). In both cases
we end up with a non-convex problem. For global optimization we employ an
implementation of the evolutionary optimization procedure PCX-G3 (see Deb
et al. 2002). The algorithmic steps are presented in Appendix A including some

3For integer k ≥ 1, k!! is the product of positive integers up to k with the same parity as k, and
0!!=(-1)!!=1.
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Fig. 2 Log-likelihood functions for RPA in the grocery stores case study with two inputs, two
outputs, and price constraints μ1 + μ2 = 1 and μ3 + μ4 = 1. On the left, kernel density estimate
(4) with bandwidth δ = 0.088. On the right, multivariate log-normal distribution for netput vectors
is employed and approximation (8) with sample size S = 1000 and 1/2δ2 = 105. Both figures
show the log-likelihood in (2) as a function of price vector μ. The horizontal coordinates refer to
μ2 (increasing to the left) and μ4, both ranging from 0 to 1. Optimal price vector on the left is
μ̂ = (0.914, 0.086, 0.892, 0.108) and on the right μ̂ = (0.912, 0.088, 0.921, 0.079)

sensitivity analysis for the control parameters of evolutionary optimization. For
computations we use AMPL (Fourer et al. 2003) and MINOS (Murtagh and
Saunders 1978).

3 Conventional DEA Based Methods

We now review two DEA based approaches for EA, value (or profit) efficiency
analysis (V EA) based on profit (see e.g., Nerlove 1965, Chambers et al. 1998 and
Halme et al. 1999) and return efficiency analysis (REA) based on return (see e.g.,
CCR by Charnes et al. 1978 and BCC by Banker et al. 1984). The rankings based
on these methods are used for comparisons with V PA and RPA in Sect. 4 using
five real cases of efficiency analysis.

We adopt the presentation of V EA and REA from Kallio and Kallio (2002). We
begin by introducing the set of feasible netput vectors (PPS). We judge DMUr in
terms of its netput vector zr with respect to a production possibility set T of feasible
netput vectors z and (as in Sect. 2.2) a set P of admissible price vectors μ. For each
DMUj , we assume that zj ∈ T .

Consider feasible netput vectors, which are linear combinations of the netput
vectors zj ; i.e., for a set  ⊂ Rn of weight vectors λ = (λj ), we define

T = {z| z =
∑

j

λj z
j , λ ∈ }. (11)
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Choices of  result in alternative sets T of which one is adopted for efficiency
evaluation. In our comparisons of Sect. 4 we use two alternatives. Under a constant
returns to scale (CRS) hypothesis,

 = {λ ∈ Rn| λ ≥ 0}, (12)

and under a variable returns to scale (V RS) hypothesis,

 = {λ ∈ Rn|
∑

j

λj = 1, λ ≥ 0}. (13)

In value efficiency analysis (V EA) the difference measure of efficiency of DMUr

is the difference of the best profit achievable by netput vectors in T and the profit
of DMUr and the prices are chosen from the admissible set P to minimize the
difference. To test for profit efficiency of DMUr we solve the problem of finding
admissible prices μ ∈ P and a scalar θ to

min
θ,μ

{θ − μzr | μ ∈ P and μz ≤ θ for all z ∈ T }. (14)

At an optimal solution of (14), θ is the maximum profit over T and θ − μzr ≥ 0
because zr ∈ T . If θ − μzr = 0, then zr maximizes μz over T and DMUr is profit
efficient. The optimal objective function value θ − μzr in (14) is the difference
measure of profit efficiency.

In return efficiency analysis REA, the ratio measure of return efficiency of
DMUr is the return (productivity) relative to the best return taking into account all
netput vectors in T , and the prices are chosen from the admissible set P to maximize
return ratio for DMUr . To test for return efficiency of netput vector zr of DMUr ,
we solve the problem of finding admissible prices μ = (μx, μy) ∈ P and a scalar
θ , recalling decomposition of netput vector z in (1), to

max
θ,μx,μy

{ μyy
r

μxxr

1

θ
| μ ∈ P and

μyy

μxx
≤ θ for all z ∈ T }. (15)

At the optimal solution of (15), θ is the maximum return over T and the optimal
objective function value in (15) is the ratio measure of return efficiency. This
measure is at most one because zr ∈ T , and it is equal to one if zr maximizes
the return over T in which case DMUr is return efficient. As usual, LP is applied
to solve (14) and (15).
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4 Comparison of PA and EA Methods

For comparisons of V EA and REA with V PA and RPA, we used five published
field studies concerning (i) bank branches (Eskelinen et al. 2014), (ii) parishes
(Halme and Korhonen 2015), (iii) dental care units (Halme and Korhonen 2000),
(iv) grocery stores (Korhonen et al. 2002), and (v) power plants (Kuosmanen 2012).
Here we only discuss case (i) in some detail; results from the other four cases were
very similar.

The bank branch study by Eskelinen et al. (2014) concerns sales performance
of branches in the Helsinki OP Bank. The analysis covers the years 2007–2010 in
the 25 branches operating in the Helsinki metropolitan area. The bank considers
financing and investment services as outputs in the model. The output quantities by
bank branch are shown in the Appendix C where both output figures are in average
number of aggregated transactions per annum. There are five inputs: total work time
in five categories of the sales force. The input figures in average full-time years per
annum for each branch are shown as well. For V EA and REA, a constant returns to
scale (CRS) hypothesis is adopted for the set T of feasible netput vectors. Hence,
T is defined by (11) and (12).

For PA we consider both a multivariate log-normal distribution z̃ and a kernel
density estimate for the performance measure (return or profit). We use a set of
admissible prices with a lower limit 10−6 for all prices and we scale the input prices
such that the average cost μxx̄ = 1, where x̄ is the average of input vectors xj in
the sample. Additionally for REA and RPA, we require that the revenue μyȳ ≥ 1,
where ȳ is the average of output vectors yj .4

For the bank branch case the Appendix C shows PA and EA based efficiency
scores as well as ranking of DMUs based on different methods. Figure 3 (top)
shows the comparisons of conventional REA efficiency (horizontal axis in each
diagram) vs. return performance of RPA (vertical axis). Figure 3 (bottom) displays
a similar comparison of V EA and V PA. In each case, results based on both
density estimates (log-Normal/kernel) are depicted.5 In these figures, one can
see the correlation between the pairs of scores. The corresponding Spearman rank
correlation ranges from 0.80 to 0.91. The number of efficient DMUs is 9 for
both V EA and REA. The ranking based on PA is nearly independent of the
distributional assumption of z̃.

4For V EA this additional requirement under CRS leads to infeasibility.
5Note that in Fig. 3 the REA and RPA scores are positively correlated whereas in Fig. 3 the V EA

and V PA scores have negative correlation because high V EA score means poor performance.
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Fig. 3 The bank branches case with 25 units. Top: Correlation diagrams of REA scores
(horizontal axis in each diagram) and return performance (vertical axis) of RPA. REA employs
the ratio measure of return efficiency. Bottom: Correlation diagrams of V EA scores (horizontal
axis in each diagram) and value performance (vertical axis) of V PA. V EA shows the difference
measure of profit efficiency

5 Conclusions

We propose a novel approach to measure value (profit) and return performance of
decision-making units. The method does not rely on distances from an efficient
frontier. Therefore, for the sake of clarity, we discuss performance analysis (PA)
instead of frontier based efficiency analysis. Contrary to the assumption made by
DEA the units considered typically function in various environments which is why
we assume the production possibility sets are individual for each unit. We adopt a
partial equilibrium perspective wherefore the observed netput vector of each unit
is assumed to be on the efficient frontier of the individual production possibility
set. Common prices are calculated for all the units and they represent estimates for
equilibrium prices. Our single-price requirement is justified, for instance, by the
market forces confronting all kinds of organizations today. Price restrictions can
be employed to account for partial price information. The discriminatory power is
superior to DEA based methods.
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The rankings produced by PA are compared with the rankings based on
efficiency analysis of DEA methods. In spite of the significantly different starting
points, it turned out that in five published case studies our ranking results compared
with conventional DEA based methods of value (profit) and return efficiency were
highly correlated. This is an interesting observation as the problem of zero prices is
quite common in DEA.
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